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Abstract Microbial processes are crucial in producing and oxidizing biological methane (CH4) in natural
wetlands. Therefore, modeling methanogenesis and methanotrophy is advantageous for accurately projecting
CH4 cycling. Utilizing the CLM‐Microbe model, which explicitly represents the growth and death of
methanogens and methanotrophs, we demonstrate that genome‐enabled model parameterization improves
model performance in four natural wetlands. Compared to the default model parameterization against CH4 flux,
genomic‐enabled model parameterization added another contain on microbial biomass, notably enhancing the
precision of simulated CH4 flux. Specifically, the coefficient of determination (R2) increased from 0.45 to 0.74
for Sanjiang Plain, from 0.78 to 0.89 for Changbai Mountain, and from 0.35 to 0.54 for Sallie's Fen,
respectively. A drop in R2 was observed for the Dajiuhu nature wetland, primarily caused by scatter data points.
Theil's coefficient (U) and model efficiency (ME) confirmed the model performance from default
parameterization to genome‐enabled model parameterization. Compared with the model solely calibrated to
surface CH4 flux, additional constraints of functional gene data led to better CH4 seasonality; meanwhile,
genome‐enabled model parameterization established more robust associations between simulated CH4
production rates and environmental factors. Sensitivity analysis underscored the pivotal role of microbial
physiology in governing CH4 flux. This genome‐enabled model parameterization offers a valuable promise to
integrate fast‐cumulating genomic data with CH4 models to better understand microbial roles in CH4 in the era
of climate change.

Plain Language Summary Soil microbes are the real engines for producing and oxidizing biological
CH4 in natural wetlands. However, most existing models do not explicitly simulate the dynamics of
methanogens and methanotrophs, the microbial functional groups responsible for CH4 production and
oxidation. This study illustrates that genome‐enabled model parameterization notably enhances model
performance by comparing model versions with and without parameter optimization against functional gene
data for methanogenesis and methanotrophy in four natural wetlands. In contrast to models solely calibrated to
surface CH4 flux, the additional constraint of the functional gene data improved the model performance in CH4
at a seasonal level. This study proved that fast‐cumulating gene data functional gene data could add value to
microbial models.

1. Introduction
Methane (CH4) is the second most potent greenhouse gas (Forster, 2007), contributing to approximately 25% of
the human‐induced radiative warming over the past century (IPCC, 2021). A minor increase in CH4 emissions
from terrestrial ecosystems might cause disproportionately profound impacts on climate warming (Kirschke
et al., 2013). Natural wetlands are a significant source of CH4 emissions (Melton et al., 2013; Tootchi et al., 2019),
accounting for 62% of total biological CH4 emissions in terrestrial ecosystems (Nazaries et al., 2013). Therefore,
understanding CH4 cycling in natural wetlands has profound implications for improving the predictions of
terrestrial CH4 emissions to the atmosphere.

The CH4 fluxes in wetlands depend on the balance between microbial methanogenesis and methanotrophy (Fazli
et al., 2013). In particular, changes in the composition of methanogens and their spatial dynamics play crucial
roles but are often overlooked in estimating CH4 production in natural wetlands (Kharitonov et al., 2021).
Functional gene data provide insights to distinguish CH4‐producing bacteria from CH4‐oxidizing bacteria and
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enable the identification of different functional types of CH4‐producing bacteria and CH4‐oxidizing bacteria,
thereby providing a better understanding of their contributions within ecosystems (Bajic & Sanchez, 2020). As
emphasized in previous research, microbial functional gene data hold significant potential for improving CH4
microbial models (Nazaries et al., 2013; Xu, Riley, et al., 2016). Such data facilitate the differentiation of the
abundance of various methanogens, thereby providing insights into CH4 processes in diverse wetland environ-
ments (Bajic & Sanchez, 2020). Moreover, functional gene data can effectively distinguish CH4 production
pathways, thus revealing the specific functions of microbial communities in the CH4 processes (Wang, Zhu,
et al., 2022). In summary, as microorganisms play a central role in CH4 cycling, identifying how microbial
processes might underpin variability in CH4 production may further improve our ability to understand, represent,
and predict wetland CH4 cycling globally (Chen et al., 2020). Nevertheless, the diversity of microbial commu-
nities and the varying dominance of species in different ecosystems engaged in CH4 cycling adds to the
complexity of genome‐enabled parameterization (Kharitonov et al., 2021).

Although the archeal and bacterial taxa responsible for methanogenesis and methanotrophy are increasingly well‐
defined, these microbial communities are often underrepresented in CH4 models (Arnold et al., 2023; Xu, Yuan,
et al., 2016). Recently, growing focus has been placed on integrating microbial processes into terrestrial
ecosystem models (Sulman et al., 2014; Walker et al., 2018; Xu et al., 2014). Several CH4 models have indeed
integrated microbial processes, such as JULES‐Microbe (Chadburn et al., 2020), XPTEM‐XHAM (Oh
et al., 2020), ELM‐SPRUCE (Ricciuto et al., 2021; Yuan, Wang, Ricciuto, Shi, Yuan, et al., 2021; Yuan, Wang,
Ricciuto, Shi, Hanson, et al., 2021), and CLM‐Microbe (Wang et al., 2019, 2022b; Xu et al., 2015). These models
merely incorporate microbial processes into the model to distinguish CH4 production and CH4 oxidation path-
ways, using empirically derived parameters, without validating the individual CH4 process. Model‐data fusion
methods have recently been employed to assess wetland CH4 emissions (Sharp et al., 2024). This approach uses
observational data to constrain process models that are difficult to calibrate and can be used to evaluate CH4
cycling processes (Ueyama et al., 2023).

To explore the impact of genome‐driven parameterization in the CH4 model and deepen our understanding of
microbial mechanisms involved in CH4 cycling, we aimed to integrate functional gene data with the CLM‐
Microbe model, specifically focusing on different methanogenic processes. Simulations were run for four sites
(the Sanjiang Plain, Changbai Mountain, Dajiuhu Peatland, and Sallie's Fen) with meteorology, gross primary
productivity (GPP), CH4 flux, and gene data. Our primary objectives encompass three key aspects: (a) to develop
a model parameterization approach to integrate genomic data with a CH4 model, (b) to compare the simulated
CH4 between simulations conducted with and without gene data, and (c) to gain a better understanding of the
microbial mechanisms of various methanogenesis pathways.

2. Methodology
2.1. Site Description
This study selected four wetland ecosystems: the Sanjiang Plain, Changbai Mountain, Dajiuhu Peatland, and
Sallie's Fen. The sites were chosen based on data availability for prectical analysis and comparison, as well as
previous studies, connecting the research to existing literature and providing additional comparative standards for
results (Zuo et al., 2022). The Sanjiang Plain is located in northeast China (47.58°N, 133.52°E). The climate is
characterized by a continental monsoon regime. It has a mean annual temperature (MAT) of 2.52°C and a mean
annual precipitation (MAP) of 558 mm. This wetland represents a freshwater marshland wetland type. The
wetland in Changbai Mountain (42.35°N, 126.38°E) is characterized by a continental monsoon climate, with a
MAT of 3.3°C and a MAP of 1,054 mm. It falls into the category of cold temperate mountain peatland wetland
type. The dominant plant community consists of moss species. This wetland is characterized by a Holocene peat
layer measuring 4–5 m deep, primarily moss peat. The Dajiuhu peatland is situated in southern China (31.47°N,
110.00°E). It has a temperate monsoon climate with a MAT of 10°C and a MAP ranging from 1,200 to 1,500 mm.
This peatland falls into temperate peatland wetland type category. . Sallie's Fen site (43.21°N, 71.06°W), which is
a poor fen located in Barrington, New Hampshire, USA, has a continental climate with cold winters and warm
summers, with MAT ranging from 5°C to 10°C. Its MAP is approximately 1,000–1,400 mm, and its dominant
vegetation is sedge.
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2.2. Model Description
The CLM‐Microbe model branches from the framework of default CLM4.5 by developing a microbial functional
group‐based module for CH4 production and consumption (Xu et al., 2015) and a framework of microbial C
assimilation (Xu et al., 2014). It incorporates mechanisms of dissolved organic carbon (DOC) fermentation,
hydrogenotrophic methanogenesis, acetoclastic methanogenesis, aerobic methanotrophy, anaerobic methano-
trophs, and H2 production (He et al., 2021a, 2021b; Wang et al., 2019; Xu et al., 2015; Zuo et al., 2022). Detailed
mathematical expressions for CH4 production and consumption processes were described by Xu et al. (2015). We
introduce the major governing equation of CH4 processes in CLM‐Microbe in Supporting Information. The codes
of the CLM‐Microbe model have been archived on GitHub (https://github.com/email‐clm/CLM‐Microbe). The
model version used in this study was checked out from GitHub on 27 May 2020.

2.3. Model Forcing Data
Model forcing data include air temperature, relative humidity, wind speed, atmospheric pressure, precipitation,
incoming longwave radiation, and shortwave radiation. The Sanjiang Plain simulation was driven by the climate
data from the Sanjiang field observation station with a resolution of 1 km ⇥ 1 km, and organized into hourly
datasets. For the Changbai Mountain and Dajiuhu Peatland simulations, we used the Chinese atmospheric forcing
dataset (CMFD) with a resolution of 0.1 ⇥ 0.1° and divided into hourly time steps. For Sallie's Fen simulation, we
used the CRUNCEP Version 7 dataset for the Community Land Model that is set on a 0.5 ⇥ 0.5° global grid and is
divided into hourly time steps (Table 1).

2.4. Functional Gene Data for Methanogenesis
We collected microbial functional gene data for four seasons at four sites. The microbial functional gene data
collected in the Sanjiang Plain were from a soil profile of 100 cm and a resolution of 10 cm. The data were
collected during October 10–12, 2019, December 27–29, 2019, May 13–15, 2020, and July 19–21, 2020, rep-
resenting autumn, winter, spring, and summer, respectively (Wang, Zhu, et al., 2022). The functional gene data
from the other three sites across four seasons were compiled from published literature; they represented a depth of
60 cm and a resolution of 10 cm, 20 cm, and 20 cm, respectively (Liu et al., 2021; Perryman et al., 2022;
Shi, 2019). Microbial functional gene data were obtained through two distinct sequencing methods: metagenomic
sequencing for the Sanjiang Plain and 16S rRNA sequencing for the other three sites. Both techniques provide
valid information for distinguishing the relative abundance of different methanogens within the wetland

Table 1
Site Information and Data Sources of Atmospheric Forcing Data and Observations (GPP, CH4 Flux, Methanogens Biomass)

Site Location Data Resolution Year Source
Sanjiang Plain 47.58°N, 133.52°E Atmospheric forcing 1 km ⇥ 1 km 2005–2018 Sanjiang Plain Marsh Wetland Ecological Experimental Station

(http://sjm.cern.ac.cn/meta/metaData)GPP Daily 2012–2020
CH4 Daily 2012–2020

Gene data Depth of 10 cm 2019–2020
Changbai Mountain 42.35°N, 126.38°E Atmospheric forcing 0.1 ⇥ 0.1° 2003–2018 China Meteorological Forcing Dataset (https://data.tpdc.ac.cn/)

GPP Daily 2011 (Cao, 2015)
CH4 Daily 2011 (Shi, 2019)

Gene data Depth of 10 cm 2011 (Shi, 2019)
Dajiuhu Peatland 31.50°N, 110.00°E Atmospheric forcing 0.1 ⇥ 0.1° 2010–2018 China Meteorological Forcing Dataset

GPP Daily 2019–2021 MODIS (https://lpdaac.usgs.gov/products/mod17a2hv006/)
CH4 Monthly 2016,2019 (Liu et al., 2021)

Gene data Depth of 20 cm 2019 (Liu et al., 2021)
Sallie 43.51°N, 71.05°W Atmospheric forcing 0.5 ⇥ 0.5° 2000–2016 CRUNCEP Version 7 dataset

GPP Daily 2010 MODIS
CH4 Daily 2008–2011 (Noyce et al., 2014)

Gene data Depth of 20 cm 2014 (Perryman et al., 2022)
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ecosystems. In the metagenomic sequencing of the Sanjiang Plain, we utilized modules M00357 and M00567 to
represent the acetate and hydrogenotrophic CH4 metabolic pathways, respectively. The vertical relative trends of
these metabolic pathways are employed to characterize the vertical relative trends of acetate and hydro-
genotrophic methanogenesis abundance. This study utilized the gene data collected from Changbai Mountain,
Dajiuhu Peatland, and Sallie's Fen, which were analyzed using 16S rRNA sequencing in combination with mcrA
gene primers (e.g., 338F and 806R) to characterize CH4‐producing microbial communities (Liu et al., 2021;
Perryman et al., 2022; Shi, 2019). We differentiated acetoclastic and hydrogenotrophic methanogens based on
microbial metabolic characteristics (utilization of acetate or H2/CO2), aiming to infer the relative abundance
variations of acetoclastic and hydrogenotrophic methanogens along the vertical spatial gradient (Kalyuzhnaya
et al., 2019).

In this study, we employed the functional gene data to validate the model using relative trends rather than absolute
values, as relative trends better reflect variations under different conditions, thus minimizing errors while pro-
cessing genetic abundance data. To achieve this, we computed the averages of the relative abundance of ace-
toclastic and hydrogenotrophic methanogens across four seasons at each site. Subsequently, we standardized
these averages to calculate the annual trends in methanogen variation with depth. To validate model accuracy, we
calibrated parameters related to methanogen growth and mortality (GrowRH2Methanogens, Dead-
RH2Methanogens, YH2Methanogens, GrowRAceMethanogens, DeadRAceMethanogens, YAceMethanogens, see
Supporting Information equations (7)–(11)). Finally, we standardized the model‐simulated results for both
methanogen types to facilitate comparison with observed values.

2.5. Model Implementation
In our previous research, we validated the CLM‐Microbe model in simulating CH4 flux and further examined the
model performance in three typical wetlands in Northeast China (Zuo et al., 2022). In this study, we further
expanded our previous study by including more sites and optimizing the parameters for parameterizing the model
in simulating methanogens and methanotrophs. We selected 15 critical parameters for model parameterization as
those parameters primarily control the decomposition of soil organic C, CH4 production and oxidation, and
microbial physiology (Table S1 in Supporting Information S1).

To identify the role of gene data in CH4 dynamics, we conducted model simulations for each site using two
different configurations: default CLM‐Microbe (without gene data) and parameterized CLM‐Microbe (with gene
data) models. We set up model simulations for each site using the CLM‐Microbe model. The model imple-
mentation was carried out in three stages for all sites. First, the accelerated model spin‐up was set up for
2,000 years to allow the system to accumulate C. Then a final spin‐up was set up for 50 years to enable the
ecosystem to reach a state with the realistic decomposition rates before the transient simulations that cover the
period of 1850–2019 (Koven et al., 2013; Thornton & Rosenbloom, 2005). Since observational CH4 fluxes are
reported daily, we maintained a consistent daily time step for the output resolution of transient simulations.

For the default CLM‐Microbe model simulations, the parameters were set to be the default parameter in Xu
et al. (2015) and Zuo et al. (2022); it was performed within their ranges to determine the optimal values of pa-
rameters in the CH4 module for simulating the observational gross primary productivity (GPP) and CH4 flux for
each site. For the parameterization of the CLM‐Microbe model, the model parameterization was initialized with
the values of the default CLM‐Microbe model for each site; subsequently, gene data were utilized to parameterize
the CH4 microbial module. We primarily focused on the parameters related to decomposition of soil organic C
(KAce, AceProdACmax), CH4 production and oxidation, and microbial physiology (e.g., GrowRH2Methanogens,
DeadRH2Methanogens, YH2Methanogens, GrowRAceMethanogens, DeadRAceMethanogens, YAceMetha-
nogens). These parameters were set as the default values according to Xu et al. (2015). The experiment was
performed within their specified ranges to determine the optimal parameter values in the microbial module for
simulating the observed CH4 flux and microbial biomass at each site.

We validated the model for the Sanjiang Plain wetland using GPP and CH4 flux observation data spanning from
2012 to 2020, along with gene data collected from 2019 to 2020. For the Changbai Mountain site, we extracted
GPP and CH4 flux data from Cao (2015) for the year 2011 and validated the biomass of methanogens in the model
using gene data from the same year (Shi, 2019). For the Dajiuhu peatland, we obtained GPP data from the MODIS
dataset from 2019 to 2021 and extracted CH4 flux and gene data from Liu et al. (2021). Similarly, we used
MODIS data in the year 2010 to validate GPP for Sallie's Fen, whereas validated CH4 flux data from 2008 to 2011
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and microbial biomass with microbial data from 2014 were obtained from the literature for model validation
(Noyce et al., 2014; Perryman et al., 2022). We calculated the correlation between CH4 production rate and
environmental factors with different parameterization methods to quantify these relationships.

2.6. Model Evaluation and Sensitivity Analysis
To evaluate the model performance regarding GPP and CH4 flux, we used error statistics to quantify the dif-
ference between the modeled results and observational data. Simple linear regression was used to analyze the
relationship between observed and simulated values. To estimate the accuracy of the model, we used three ac-
curacy evaluation indicators: coefficient of determination (R2), root mean square error (RMSE), mean absolute
error (MAE), modeling efficiency (ME), and Theil's inequality coefficient (U). To investigate the impact of
genome‐enabled parameterization on the methanogenesis process in microorganisms, we performed simple linear
regression analyses to examine the relationship between the rates of acetoclastic methanogenesis and hydro-
genotrophic methanogenesis with soil temperature, moisture, atmospheric temperature, and precipitation. The R2

was used to evaluate the overall performance of the model before and after genomic‐enabled parameterization
optimization.

R2 à ∑n
ià1�yi � byi�2

∑n
ià1�yi � y�2

RMSE à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑n

ià1�yi � byi�2
n

s
MAE à ∑n
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�� yi � byi
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ME à 1 � ∑�yi � byi�2
∑�yi � mean� byi��2

U à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑
n

ià1
�yi � byi�2

∑n
ià1 y2

i

vuuut
Where yi is the observed value; byi means the simulated value; meanÖbyi Ü indicates the mean of the simulated value;
n is the number of data points. The MAE indicates the mean error of the model simulation, and thus smaller MAE
values suggest better model performance. The RMSE quantifies the mean error of model simulation with low
values indicating high model accuracy. R2 indicates the general performance of the model. Parameter U is Theil's
inequality coefficient (Blanco et al., 2007; Theil, 1966), and it could be 0 or greater. U à 0 means he perfect fit
between the model results and observations; larger U value means poorer model performance. ME à 1 indicates a
perfect fit. ME à 0 reveals that the model is no better than a simple average, and negative values indicate poor
performance.

A global sensitivity analysis was conducted for each wetland type to identify the most critical process and pa-
rameters for CH4 and microbial dynamics. We focused on the 15 parameters related to plant and microbial
processes critical for microbial biogeochemistry (Table S2 in Supporting Information S1). We set up model
simulations for each parameter withá20% and�20% changes and investigated the responses of the modeled CH4
microbial biomass and CH4 flux. The index S, comparing the change in the model output relative to the model
response for a nominal set of parameters, was calculated based on the following equation (Xu et al., 2015):

S à ÖRa � RnÜ=Rn
ÖPa � PnÜ=Pn

where S is the ratio of the standardized change in model response to the standardized change in parameter values.
Ra and Rn are model responses for altered and nominal parameters, respectively, and Pa and Pn are the altered
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and nominal parameters, respectively. S is negative if the direction of the model response opposes the direction of
parameter change (Wang et al., 2019; Xu et al., 2015; Yuan et al., 2021a, 2021b).

3. Results
3.1. Parameter Optimization With Functional Gene Data
We conducted the parameterization of the CH4 module using gene data and optimized the parameters for CH4‐
related microbial processes (Table 2). These parameters primarily govern substrate decomposition and the growth
and death rates of CH4‐related microbes. Compared with default parameter values, changes in major parameters
were observed in the Sanjiang Plain. Specifically, the growth rate and efficiency parameters (GrowRH2Metha-
nogens and YH2Methanogens, respectively) for hydrogenotrophic methanogens increased by 0.19 and 0.085,
respectively, while the death rate (DeadRH2Methanogens) decreased. These changes resulted in a 52% increase
in the CH4 production rate of hydrogenotrophic methanogens (Figure 1a). In the case of the Changbai Mountain,
the optimization process led to an increase in the growth rate for hydrogenotrophic methanogens (GrowRH2-
Methanogens) and a 50% reduction in the death rate for acetoclastic methanogens (DeadRAceMethanogens).
Furthermore, the maximum rate of acetoclastic CH4 production (AceProdACmax) increased, leading to a higher
CH4 production rate for both methanogens than the default values (Figure 1b). In the Dajiuhu peatland, we
observed a 50% reduction in the half‐saturation coefficient (KAce) of available carbon and a 80% reduction in the
maximum acetate production rate (AceProdACmax). Simultaneously, the growth rates for both methanogens

Table 2
Default Values and Final Optimization Values of Eight Key Parameters Related to the Methanogenesis Process for Four Sites

Parameter
Sanjiang plain Changbai mountain Dajiuhu peatland Sallie's fen

Default value Optimized value Default value Optimized value Default value Optimized value Default value Optimized value
KAce 64 64 32 32 32 16 45 64
AceProdACmax 6e�6 6e�6 2e�6 5e�6 3e�6 6e�7 0.00005 1e�5
GrowRH2Methanogens 0.01 0.2 0.03 0.1 0.1 0.2 1e�6 1e�6
DeadRH2Methanogens 0.001 1e�6 0.0001 0.0001 0.00001 0.00001 1e�7 1e�8
YH2Methanogens 0.015 0.1 0.01 0.01 0.01 0.01 1e�4 1e�4
GrowRAceMethanogens 0.008 0.05 0.1 0.1 0.1 0.15 1e�6 1e�5
DeadRAceMethanogens 0.002 2e�6 0.0002 0.0001 0.00001 1e�6 9e�6 9e�5
YAceMethanogens 0.2 0.1 0.2 0.00001 0.1 0.01 1e�7 1e�6

Note. Light red indicates parameter values increasing, light blue indicates parameter values decreasing, and blank represents no change.

Figure 1. Simulation of CH4 production rate in different methanogenesis pathways (AM: Acetoclastic methanogenesis, MM: Hydrogenotrophic methanogenesis). (a),
(e) Sanjiang Plain, (b), (f) Changbai Mountain, (c), (g) Dajiuhu Peatland, (d), (h) Sallie's Fen. DOY: day of year.
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(GrowRH2Methanogens and GrowRAceMethanogens, respectively) increased. These adjustments resulted in a
smoother seasonal variation trend for the CH4 production rate of the two methanogenesis (Figure 1c). For Sallie's
Fen, the microbial growth and death rates were calibrated to lower values than the other three sites. A comparison
revealed that AceProdACmax and DeadRH2Methanogens parameters decreased, while the values of KAce,
GrowRAceMethanogens, DeadRAceMethanogens, and YAceMethanogens increased. These changes reduced the
seasonal fluctuations of CH4 production rates for both methanogenic pathways (Figure 1d).

3.2. Comparison of Simulated CH4 Flux With and Without Genomic‐Enabled Parameterization
The CLM‐Microbe model effectively captures the dynamic of CH4 fluxes (Figure 2) and the observed GPP
(Figure S1 in Supporting Information S1). Compared with simulation results with the default parameters, the
accuracy of CH4 flux simulated with the optimized parameters at all sites was enhanced, but genome‐driven
parameterization minimally influenced GPP. The R2 values of CH4 flux at all sites exceeded 0.5, among
which the R2 values for Sanjiang Plain, Changbai Mountain, Dajiuhu Peatland, and Sallie's Fen were 0.74, 0.89,
0.78, and 0.54, respectively (Table 3). Furthermore, the R2 values increased for most sites after parameterization,
except for Dajiuhu peatland. Specifically, the R2 values increased by 0.29, 0.11, and 0.19 for Sanjiang Plain,
Changbai Mountain, and Sallie's Fen, respectively, while the R2 value decreased by 0.13 for Dajiuhu Peatland.

The optimized parameterization improved simulation accuracy, with substantial reductions in RMSE and MAE
values observed, especially in the Sanjiang Plain, Changbai Mountain, and Sallie's Fen. Specifically, the RMSE
values decreased from 0.18, 0.25, and 0.33 to 0.14, 0.18, and 0.23, for Sanjiang Plain, Changbai Mountain, and
Sallie's Fen, respectively. Correspondingly, the MAE values decreased from 0.15, 0.14, and 0.26 to 0.11, 0.11,
and 0.17 (Table 3). The ME values for the genome‐enabled parameterization across sites like Sanjiang Plain
(0.61) and Sallie's Fen (0.72) demonstrate the robustness of model, indicating a considerable improvement over
default modeling. A resulting U à 0 meant a perfect fit between the model results and observations; a larger U
value meant poorer model performance (Blanco et al., 2007). The genome‐enabled parameterization results in
relatively low U values (Sanjiang Plain: 0.11, Changbai Mountain: 0.27, and Sallie's Fen: 0.31), reflecting good
alignment between modeled and observed CH4 flux. Theil's U values for both parameterizations are relatively low
(0.28 for genome‐driven and 0.21 for default).

The genome‐enabled parameterization method estimated annual CH4 emissions ranging from 7.62 to
30.52 g·m�2·a�1 among sites, whereas the default parameterization yields estimated ranging from 9.06 to
30.79 g·m�2·a�1 among sites. Interestingly, genome‐driven parameterization showed that the highest annual CH4

Figure 2. Observed and modeled CH4. (a), Sanjiang Plain (b), Changbai Mountain (c), Dajiuhu Peatland (d), Sallie's Fen.
DOY: day of year.
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emissions were observed in the Sanjiang Plain, while the lowest was in the Changbai Mountain site. Conversely,
the default simulation indicated that the Dajiuhu peatlands exhibit the lowest annual CH4 emissions. Compared to
the default parameterization results, the genome‐driven parameterization showed that CH4 emissions for the
Sanjiang Plain and Changbai Mountain decreased by 0.27 and 4.47 g·m�2·a�1, respectively, while the CH4
emissions for the Dajiuhu Peatland and Sallie's Fen increased by 1.12 and 1.33 g·m�2·a�1, respectively.

3.3. Vertical Distribution of Methanogens and Methanotrophs
Compared to the default simulation, the gene data‐parameterized CLM‐Microbe model captured vertical varia-
tions in the biomass of methanogens that were consistent with the overall trend of the observed values (Figure 3,
Figure S3 in Supporting Information S1). In the Sanjiang Plain, we observed a decreasing trend in the biomass of
both methanogens along the soil profile, with a notably higher biomass of acetoclastic methanogens (AM)
compared to hydrogenotrophic methanogens (MM). At the Changbai Mountain site, the biomass of AM increased
with depth, reaching a stable level below 30 cm, while the biomass of MM exhibited a declining trend with depth
and stabilized below 30 cm. In contrast, in the Dajiuhu peatland and Sallie's Fen, AM biomass exhibited an overall
decreasing trend with depth, while MM biomass showed an increasing trend. Overall, the model predictions of
methanogen biomass variations with depth align with the observed patterns.

In the surface layer of the Sanjiang Plain wetland, the biomass of methanotrophs was relatively lower than in the
deeper layers (Figure S2). As the depth increased, the biomass of anaerobic methanotrophs (AOM) exhibited an
initial increase followed by a decrease. In contrast, the biomass of aerobic methanotrophs (OM) showed an
increasing trend with depth. In the Changbai Mountain peatland, there was an overall decrease in AOM biomass
with depth, while the biomass of OM increased with depth. The Dajiuhu peatland and Sallie's Fen exhibited a

Table 3
Site Level Evaluation of the Goodness‐Of‐Fit Criteria Computed for the Simulated CH4 Flux (gC/m2/d)

Sites
Genome‐driven parameterization Default parameterization

R2 RMSE MAE U ME R2 RMSE MAE U ME
Sanjiang Plain 0.74 0.14 0.11 0.11 0.61 0.45 0.18 0.15 0.15 0.32
Changbai Mountains 0.89 0.18 0.11 0.27 0.25 0.78 0.25 0.14 0.28 �0.12
Dajiuhu 0.78 0.21 0.15 0.28 0.43 0.91 0.11 0.09 0.21 0.55
Sallie 0.54 0.23 0.17 0.31 0.72 0.35 0.33 0.26 0.32 0.15
Note. MAE, mean absolute error; RMSE, root mean square error; R2, R square. MAE and RMSE values indicate the mean
error of the model; smaller values represent higher model performance. R2 values mean the proportion of variation explained
by the model; higher R2 values indicate better model performance; Theil's inequality coefficient (U): Parameter U could be
0 or greater than 1. A resulting U à 0 meant a perfect fit between the model results and observations; a larger U value meant
poorer model performance; Modeling efficiency (ME): A resulting ME à 1 indicated a perfect fit, ME à 0 reveals that the
model was no better than a simple average, and negative values indicated poor performance.

Figure 3. Comparison between observed functional gene abundance and modeled methanogens microbial biomass along soil
depth. (a) Sanjiang Plain, (b) Changbai Mountain, (c) Dajiuhu Peatland, (d) Sallie's Fen. AM: Acetoclastic methanogenesis,
MM: Hydrogenotrophic methanogenesis.
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similar trend, where the biomass of both AOM and OM initially increased and then decreased with depth in the
surface layer.

3.4. Environmental Factors and CH4 Production Rates
The better model performance after genome‐enabled parameterization is also advocated by the apparent sea-
sonality in simulated CH4 production rates and their association with environmental factors. Water content and
temperature are essential factors affecting CH4 emissions, and in this study, we selected air temperature, pre-
cipitation, soil temperature, and soil moisture as environmental factors. The seasonal patterns of CH4 production
rates, simulated with genome‐driven parameterization, more closely align with the annual trends of environment
factors than production rates from the default model (Figure 4, Figures S8 and S11 in Supporting Information S1).
We calculated the correlation between CH4 production rate and environmental factors with different parame-
terization methods to quantify these relationships. The outcomes of the acetoclastic CH4 production rate and soil
temperature correlation analysis revealed a slight increase in R2 values for the Sanjiang Plain and Changbai
Mountain compared with default parameterization. However, for the Dajiuhu peatland and Sallie's fen, R2 values
increased by 0.60 and 0.66, respectively (Figure S4 in Supporting Information S1). Furthermore, compared with
the default parameterization, the hydrogenotrophic CH4 production rate and soil temperature correlation analysis
indicate that R2 values experienced noticeable increases with genome‐driven parameterization for the Sanjiang
Plain, Dajiuhu peatland, and Sallie's Fen, with increments of 0.30, 0.55, and 0.65, respectively (Figure S5 in
Supporting Information S1). The CH4 production rate for Changbai Mountain displayed an approximately
threefold increase compared to the default parameterization results (Figures 4b and 4ure 4f).

The correlation between the two CH4 production rates and soil moisture content showed that in Dajiuhu Peatland
and Sallie's Fen, the R2 values obviously increased (Figures S6 and S7 in Supporting Information S1). Specif-
ically, for the acetoclastic CH4 production rate, the R2 values increased by 0.61 and 0.21, respectively, and for the
hydrogenotrophic CH4 production rate, the R2 values increased by 0.57 and 0.21, respectively (Figures S6 & S7 in
Supporting Information S1). The changes in the correlation between the CH4 production rate and atmospheric
temperature were similar to those with soil temperature (Figures S8, S9, & S10 in Supporting Information S1).
Additionally, compared to the default parameterization results, only the R2 value related to CH4 production rate
and precipitation increased in the Dajiuhu peatland (Figures S11, S12, & S13 in Supporting Information S1). In
contrast, the R2 values for other sites remained relatively stable.

4. Discussion
4.1. Strengths of Using Gene Data to Parameterize the Model
This study used microbial functional gene data to parameterize a microbial explicit model—CLM‐Microbe to
simulate microbial mechanisms on CH4 cycling in four natural wetlands. Compared to the default parameters of

Figure 4. Soil temperature、soil water and simulation of CH4 production rate in different methanogenesis pathways (AM:
Acetoclastic methanogenesis, MM: Hydrogenotrophic methanogenesis). (a), (e), Sanjiang Plain (b), (f), Changbai Mountain
(c), (g), Dajiuhu Peatland (d), (h), Sallie's Fen. DOY: day of year. Orange represents the CH4 production rate simulated by
default parameters, blue represents the CH4 production rate simulated by genomic‐driven parameterization, brown line
represents soil temperature, and dark gray represents soil moisture.
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the CLM‐Microbe model, optimization through the integration of functional gene data with CH4 models led to
changes in parameters controlling the growth and mortality rates of CH4‐producing bacteria (Table 2). In the
Sanjiang Plain, the growth rate (GrowRH2Methanogens) of hydrogenotrophic methanogens increased while the
death rate (DeadRH2Methanogens) decreased, indicating an increase in the biomass of hydrogenotrophic
methanogens, resulting in an increased CH4 production rate via the hydrogenotrophic pathway (Figure 1e). The
growth and death rate parameters of both CH4‐producing bacteria in Changbai Mountain, Dajiuhu peatland, and
Sallie's Fen were also verified through gene data (Figure 3), further optimizing the seasonal variation trends of
CH4 production rates and improving the accuracy of CH4 flux simulations. Previous studies have shown that gene
data can reveal the diversity of CH4 microbial communities and elucidate different CH4 production metabolic
pathways (Wang, Yuan, et al., 2022). Model‐data fusion methods have recently been used to assess wetland CH4
emissions (Sharp et al., 2024; Ueyama et al., 2022). This approach utilizes observational data to constrain process
models that are difficult to calibrate and can be used to evaluate CH4 cycling processes (Ueyama et al., 2023).
Microbial gene data holds immense potential in ecological modeling, as it can enhance model accuracy (Sulman
et al., 2018).

We found that integrating gene data with models can improve the accuracy of CH4 flux simulations, as evidenced
by the increased R2 values, decreased RMSE, and MAE values in between simulated and observed CH4 flux in the
Sanjiang Plain, Changbai Mountain, and Sallie's Fen (Table 3). The increase in R2 values for the Sanjiang Plain,
Changbai Mountain, and Sallie's Fen confirms the improved accuracy of the model simulations. The decrease in
RMSE and MAE values indicates a reduction in model prediction errors, further corroborating the overall
improvement in simulation accuracy. However, the increase in R2 values for Changbai Mountain and Sallie's Fen
was slightly lower compared to the Sanjiang Plain, and the R2 value for Dajiuhu peatland decreased. There may be
several reasons for the relatively poor performance of the CLM‐Microbe model at those sites. First, the available
observational data were limited. Second, differences in measurement methods for the gene abundance of
methanogens are also an important factor. The metagenomic sequencing method was used to measure gene
abundance in Sanjiang Plain, while the 16S rRNA sequencing method was used in the other three sites. It is well‐
known that compared to metagenomic sequencing methods, 16S rRNA sequencing methods have limited reso-
lution and can only provide limited taxonomic information, which may lead to errors in observational data and
subsequently affect the verification results of CH4‐producing bacteria gene abundance (Church et al., 2020).
Third, although microbial processes of CH4 oxidation are included in our model, the lack of data on CH4‐
oxidizing genes prevent the validation of methanotrophs biomass.

Previous research suggests that validated CH4 models based on microbial functional groups can enhance our
ability to estimate regional CH4 budgets using the model and study the combined contributions of microbes and
the environment to surface CH4 flux (Kharitonov et al., 2021; Reid, 2011). This aligns with the findings of this
study. The decrease in R2 values for CH4 flux in the Dajiuhu Peatland may be due to the limited number of
observed values (Table 3). This study accurately simulated the vertical trends in methanogen biomass (Figure 3),
optimized the seasonal variations in different CH4 production (Figure 1), and improved the accuracy of CH4 flux
simulations (Figure 2). Previous studies indicated that integrating gene data and models aids in a deeper un-
derstanding of the CH4 cycling process. Methanogens in the soil significantly influence CH4 emissions (Kroeger
et al., 2021), and the CH4 production process is a crucial factor in regulating CH4 temporal patterns (Ricciuto
et al., 2021). This aligns with the findings of this study. Environmental factors influence microbial CH4 pro-
duction processes, and this study reaffirms this by correlating simulated results from gene and model integration
with environmental factors (Figure 4).

4.2. Key Parameters Controlling CH4 Microbial Processes
In our analysis, the sensitivity results emphasize the critical role of parameters that govern substrate decompo-
sition, microbial growth rates, and death rates in influencing CH4 flux (Figure 5). Notably, acetate, a primary
substrate in the CH4 production process, significantly impacts CH4 flux, a point well‐established in previous
studies (Dellagnezze et al., 2023; Hines et al., 2008). Our research echoes these findings by highlighting the
importance of controlling acetate‐related parameters (KAce and AceProdACmax) in governing CH4 flux
(Figure 5). For the simulations at the Changbai Mountain, Dajiuhu peatland, and Sallie's Fen, we adjusted
substrate‐related parameters to optimize CH4 production rates, which enhanced the accuracy of the simulated CH4
flux (Table 2). Moreover, earlier models by researchers such as James (1993) and Segers (1998) have also
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underscored the substantial influence of acetate on CH4 flux, which is consistent with our research (James, 1993;
Segers, 1998).

The substrates and CH4 production are crucial factors regulating the temporal patterns of CH4 (Ricciuto
et al., 2021). In this study, not only parameters related to CH4 substrates but also those controlling CH4 microbial
growth and death rates, as well as growth efficiency, are crucial in affecting CH4 flux in this study (Figure 5).
Previous research has confirmed that microorganism growth and death rates are the primary drivers controlling
CH4 flux (Tiedje et al., 2022). An increase in microbial growth rate typically results in higher CH4 production
rates, while increasing microbial death rate may reduce CH4 consumption speed (Kroeger et al., 2021). In
particular, for the simulation at the Sanjiang Plain, we adjusted parameters related to hydrogenotrophic metha-
nogens to increase methanogen abundance (Figure 5, Table 2), which enhanced CH4 production rates via the
hydrogenotrophic pathway (Figure 1). Therefore, adjusting these parameters can notably impact the seasonal
distribution of CH4 flux. Furthermore, changing the parameters for microbial growth and death rates is vital for
simulating CH4 flux variations under different environmental conditions (Ricciuto et al., 2021; Zuo et al., 2022).
Diverse ecosystems or habitats may host distinct microbial communities and environmental conditions; hence,
parameter adjustments to accommodate these variations are crucial (Sihi et al., 2021; Song et al., 2020).

4.3. Implications
Integrating gene data with wetland CH4 models is profoundly meaningful for several reasons. Firstly, integrating
genetic data with CH4 models optimized CH4 microbial process parameters, improving the seasonal variation

Figure 5. Sensitivity analysis of the CLM‐Microbe model in terms of CH4 flux, AM, MM, OM, and AOM to14 parameters
(Table 2) (KAce, AceProdACmax, GrowAceMethanogens, GrowH2Methanogens, GrowRMethanotrophs,
DeadAceMethanogens, DeadH2Methanogens, DeadRMethanotrophs, YAceMethanogens, YH2Methanogens,
YMethanotrophs) for (a) Sanjiang Plain, (b)Changbai Mountain, (c) Dajiuhu Peatland, and (d) Sallie's fen. The symbols
“á”and “‐” indicate a 20% increase or 20% decrease of parameter values. Darker red and darker blue indicate a stronger
positive or negative model response to a parameter change, respectively. S is negative if the direction of model response
opposes the direction of a parameter change, and vice versa.
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trends of CH4 production rates and enhancing the accuracy of CH4 flux simulations (Figure 2). In a few models
that include microbial CH4 production processes, the lack of data for parameterizing these processes hindered
model optimization (Ricciuto et al., 2021). For instance, the JULES model introduced CH4‐producing bacteria
growth and dormancy processes, resulting in an approximately 12% increase in CH4 emissions (Chadburn
et al., 2020); the TEM model, by incorporating CH4‐producing bacteria and CH4‐oxidizing bacteria into key
model processes, found that CH4 uptake nearly doubled (Oh et al., 2020). Therefore, integrating gene data with
CH4 models is crucial for understanding wetland CH4 microbial processes and model development.

Second, integrating gene data and modeling methods enables us to gain a mechanistic understanding of microbial
CH4 production and its responses to the environment in wetland ecosystems. In this study, the application of gene
data allowed us to optimize the season trends of CH4 production rates, reveal the vertical trends of methanogens,
and explore the relationships between various environmental factors and CH4 production rates (Figures 1, 3 and
4). Microbes are pivotal players in wetlands, significantly influencing CH4 flux (Iqbal et al., 2019; Tiwari
et al., 2020). Through the lens of gene data, we can decipher how different microbial communities respond to
environmental changes (Arnold et al., 2023). This knowledge grants us a more profound understanding of the
intricate mechanisms governing CH4 cycling in these ecosystems. Consequently, it reveals the functions and
interactions of microbes within ecosystems, further enriching our ecological insights into wetlands.

Lastly, integrating functional gene data with wetland CH4 models plays a vital role in bridging knowledge gaps in
the field of research. The dynamics of wetland CH4 cycling represent a complex ecological process, and previous
models have often considered only limited factors. Gene data steps in to provide a more comprehensive data
source, aiding in the establishment of ecosystem‐scale predictability. This predictability is founded on site‐
specific observation data and micro‐scale omics datasets (Xu & Rodrigues, 2023). As a result, this integration
enhances model parameterization based on omics data and ecosystem‐scale CH4 flux, and concurrently, it offers
pivotal insights into addressing broader climate and environmental issues.

4.4. Limitations
This study demonstrated that genome‐enabled model parameterization enhances the performance of the CLM‐
Microbe model in simulating microbial mechanisms for CH4 cycling in four natural wetlands. We identified
four key limitations that will be addressed in future work. First, the dormancy of methanogens and methanotrophs
was not considered; previous research has shown that the dormant methanogen population constitutes a signif-
icant portion (Liu et al., 2011; Thauer, 1998), although active biomass generally explains seasonal variations in
CH4 flux (King, 1994). Second, the consistency of functional gene measurement will likely reduce the bias of the
present study. The wetland in the Sanjiang Plain used shotgun metagenomic sequencing, while the other three
sites relied on 16S rRNA sequencing. Although clustering analysis of 16S rRNA sequences provides information
on microbial community composition, it poses limitations in distinguishing strains involved in different CH4
production pathways, as most CH4 producers can utilize both acetate and CO2 (Angle et al., 2017). On the other
hand, shotgun metagenomic sequencing directly differentiates functional gene abundances associated with
distinct pathways by analyzing comprehensive genomic functional information and comparing it with databases
(Wang, Zhu, et al., 2022). Third, while the CLM‐Microbe model considers the impact of methanotrophy on CH4
cycling, this study needed to validate the methanotrophy biomass due to the scarcity of methanotrophy data. Some
studies have suggested that explicitly considering methanotrophy biomass can improve the simulation of seasonal
CH4 flux (Murguia‐Flores et al., 2018; Xu, Riley, et al., 2016). The lack of functional gene data for methanotrophs
prevents a robust parameterization in this study on the CH4 oxidation, which might manifest as significant biases
in the spatiotemporal dynamics of simulated CH4 flux (Barney et al., 2024). Therefore, we recommend that future
research focus on collecting as much measurement data as possible and further exploring the potential of inte-
grating gene data. Despite the explicit representation of methanogens and methanotrophs allowing the CLM‐
Microbe model to simulate the CH4 biomass of those microbes, current model parameterization limits relative
changes in those functional microbes, resulting in considerable uncertainties when estimating CH4 fluxes
(Figure 3).

5. Conclusions
This study reported a new approach to fusing functional gene data with the CLM‐Microbe model to adjust the
parameters to reach a better model simulation of CH4 flux at the site level. Additional constraints of gene data
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improved the simulation accuracy of seasonal variations in CH4 flux and captured relative trends in methanogen
microbial biomass. Sensitivity analysis revealed that growth and mortality rates of methanogens are critical
parameters controlling CH4 flux and microbial biomass. Furthermore, genome‐driven parameterization further
enhanced the CLM‐Microbe model in reproducing the seasonal variability of CH4 production rates through
different pathways. Additionally, the integration of gene data with the model has strengthened the relationship
between microbial CH4 production processes, specifically acetoclastic methanogenesis and hydrogenotrophic
methanogenesis, and environmental factors such as soil temperature and moisture, thereby enhancing the un-
derstanding of microbial mechanisms involved in CH4 production processes. The genome‐enabled parameteri-
zation of the microbial‐explicit model CLM‐Microbe represents a pioneering effort to link gene data with
ecosystem function. Explicit representation of CH4 microbial processes in the CLM‐Microbe model will deepen
our mechanistic understanding of wetland ecosystem CH4 cycling and improve predictability of microbial
community structures from regional to global scales, thus reducing uncertainties in global carbon projection.

Data Availability Statement
Model forcing, output data, and observational methane flux data are available through the Zenodo data repository:
https://doi.org/10.5281/zenodo.11127249 (Zuo et al., 2024). The CLM‐Microbe model code can be found at
Github: https://github.com/email‐clm/CLM‐Microbe (Xu et al., 2022).
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