
PALDIA: Enabling SLO-Compliant and
Cost-Effective Serverless Computing on

Heterogeneous Hardware

Vivek M. Bhasi, Aakash Sharma, Shruti Mohanty, Mahmut Taylan Kandemir, Chita R. Das
The Pennsylvania State University

Email: {vmb5204, abs5688, sxm1743, mtk2, cxd12}@psu.edu

Abstract—Among the variety of applications (apps) being
deployed on serverless platforms, apps such as Machine Learn-
ing (ML) inference serving can achieve better performance
from leveraging accelerators like GPUs. Yet, major serverless
providers, despite having GPU-equipped servers, do not offer
GPU support for their serverless functions. Given that server-
less functions are deployed on various generations of CPUs
already, extending this to various (typically more expensive) GPU
generations can offer providers a greater range of hardware
to serve incoming requests according to the functions and
request traffic. Here, providers are faced with the challenge
of selecting hardware to reach a well-proportioned trade-off
point between cost and performance. While recent works have
attempted to address this, they often fail to do so as they overlook
optimization opportunities arising from intelligently leveraging
existing GPU sharing mechanisms. To address this point, we
devise a heterogeneous serverless framework, PALDIA, which uses
a prudent Hardware selection policy to acquire capable, cost-
effective hardware and perform intelligent request scheduling
on it to yield high performance and cost savings. Specifically,
our scheduling algorithm employs hybrid spatio-temporal GPU
sharing that intelligently trades off job queueing delays and
interference to allow the chosen cost-effective hardware to also
be highly performant. We extensively evaluate PALDIA using 16
ML inference workloads with real-world traces on a 6 node
heterogeneous cluster. Our results show that PALDIA significantly
outperforms state-of-the-art works in terms of Service Level
Objective (SLO) compliance (up to 13.3% more) and tail latency
(up to ∼50% less), with cost savings up to 86%.

I. INTRODUCTION

Serverless platforms have risen in popularity over the years,

with an increasing variety of apps being deployed on them [5],

[49], [50], [74]. The adoption of serverless computing in apps

such as Facebook Messenger Bots [30], Amazon Alexa skills

[29], and Optical Character Recognition (OCR) [31], not only

affirms this, but also points to the rising number of serverless

use cases that are based on ML inference. Such ML inference

apps are typically deployed in user-facing settings and hence,

are administered under strict SLOs in terms of response time

deadlines [54], [60], [86]. Ideally, we would want such apps

to be highly SLO compliant, by which we mean that a high

percentage (at least >99% [1], [16]) of all requests should

meet their SLO targets. Achieving a low tail latency is also

critical for these apps as it is an integral part of the Quality of

Service (QoS) delivered to the end-user [33], [35], [44], [45].
It is well known that such inference apps can benefit,

performance-wise, by leveraging accelerators like GPUs, that

are becoming increasingly prevalent in cloud datacenters [37],

[76], [77]. Despite this, major serverless providers do not cur-

rently offer direct GPU support for their serverless functions.

This is likely due to the challenges of effective GPU sharing

between fine-grained serverless tasks and the high demand

for GPU nodes. While it could be possible to host serverless

functions on GPU-based VMs/nodes (interchangeably referred

to as GPU instances), this generally costs more than doing so

on CPU-only nodes/VMs (interchangeably referred to simply

as CPU nodes/instances), primarily due to GPU instances

being typically more expensive than CPU instances [7].

However, since serverless platforms can experience occa-

sional request surges during, otherwise, relatively stable and

sparse request traffic [9], [75], providers can potentially benefit

from leveraging both CPU and GPU nodes to serve requests.

Here, CPU nodes can serve low request traffic and GPU

nodes can serve request surges (due to the (typically) higher

achievable throughput for inference jobs on GPUs versus

CPUs [17]). This makes sense from a cost perspective as

well, since it requires multiple CPU nodes to achieve the same

throughput for such jobs, thus, also resulting in higher costs.

Recent research works, such as [47], [48], [61], [65],

[68], [69], [73], [86], [89], have attempted to offer heteroge-

neous serverless computing by also enabling GPU-accelerated

serverless functions. However, as we will demonstrate in this

paper, these frameworks fail to remain highly SLO compliant

while also being cost-effective. A large part of this can be

attributed to the inability of these schemes to share GPUs

efficiently to service higher request rates since this is usually

critical in determining overall performance (as will become

evident in Section VI). The specific reasons for the observed

performance of these works include the following:

• The majority of the aforementioned works are not designed

to be SLO compliant. This includes works like Molecule
[47], which currently does not support GPU spatial sharing

techniques (such as NVIDIA MPS [22]) and hence, can suffer

performance degradation due to queuing delays arising from

serving workloads (typically as batches), one after the other,

via time sharing. This is especially true when Molecule is

deployed on more cost-effective (typically wimpier) GPUs.

• Even works like INFless [86] and Llama [69], which use

GPU spatial sharing via MPS (aiming to possibly improve

100

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00018

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

87
11

-7
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

57
95

5.
20

24
.0

00
18

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

Features A
to

ll
[8

0
]

L
la

m
a

[6
9

]

M
o

le
cu

le
[4

7
]

IN
F

le
ss

[8
6

]

G
P

U
le

t
[4

0
]

K
R

IS
P

[4
1

]

E
la

st
ic

F
lo

w
[5

1
]

G
P

U
-e

n
ab

le
d

F
aa

S
[8

9
]

C
E

-s
ca

li
n

g
[8

5
]

P
A

L
D

IA

Serverless framework � � � � � � � � � �
Heterogeneous Hardware support � � � � � � � � � �

Overall SLO Compliance � � � � � � � � � �
Cost-effective � � � � � � � � � �

GPU time-sharing � � � � � � � � � �
GPU spatial-sharing � � � � � � � � � �

High CPU/GPU node utilization � � � � � � � � � �
Satisfactory tail latency � � � � � � � � � �

TABLE I: Comparison of PALDIA against a few related works.

The features listed here are only promised by the works

(excluding PALDIA) and may not reflect in the results shown

in our evaluation (Section VI).

SLO compliance), suffer from performance degradation due to

being agnostic to job interference. Specifically, while serving

requests using a GPU, these works only consider whether a

batch of requests can be executed in isolation on it within the

SLO target and hence, consolidate excessive workload batches

on the GPU, leading to high job interference. This is especially

detrimental to performance when using cheaper (typically

wimpier) GPUs. Additionally, their interference-agnostic na-

ture may prevent them from leveraging the appropriately-

powerful GPU to serve all incoming requests1.

From the above discussion, we can infer that an ideal

heterogeneous framework should (i) select the appropriate

hardware to service requests according to the workloads and/or

request rates, and (ii) be capable of serving high request

rates with cost-effective GPUs efficiently without suffering

excessive overheads due to job interference and/or queueing.

To this point, we propose PALDIA, a heterogeneous server-
less framework, that uses (i) a prudent Hardware Selection

module to select cost-effective hardware (CPU and/or GPU

nodes) that can serve requests according to the workload

and request rates, and (ii) a hybrid time/spatial GPU sharing

mechanism that minimizes total job overhead by intelligently

trading off job interference and queueing delays, thus, yielding

high performance (especially SLO compliance), even when

using cost-effective GPUs. To our knowledge, PALDIA is the

first serverless framework that improves performance by intel-

ligently leveraging both the MPS and time sharing capabilities

of GPUs. PALDIA also employs other essential features, such

as request batching, conservative autoscaling mechanisms and

keep-alive policies, to keep the framework performant. Table

I compares PALDIA against related works.

We perform an extensive evaluation of PALDIA on a 6×
heterogeneous CPU/GPU node cluster with real world traces

using 16 ML inference workloads in the domains of vision and

language. Our results show that PALDIA significantly outper-

forms state-of-the-art works in terms of SLO compliance (up

to ∼13.3% more) and tail latency (up to ∼50% less), while

reducing cost by up to 86%.

1ElasticFlow [51], while designed for ML training, also only uses MPS, and
would behave similarly to these schemes, if repurposed for user-facing apps.

II. BACKGROUND AND MOTIVATION

This section discusses the state of the art of heteroge-

neous serverless frameworks and other relevant technologies.

Through this, we arrive at the insights that underpin our work.

A. Heterogeneous Serverless Computing
In serverless computing, developers upload their application

code (composed of function(s)) to the serverless provider

and have their functions invoked by events (such as user

requests) to run them in sandbox environments (henceforth,

containers will be the default) inside Virtual Machines (VMs)

[36], [84]. Here, function execution may be preceded by a

container bootup latency (called the cold start), which can

take up to multiple seconds [3], [4]. Typically, the VMs

here are hosted on hardware chosen from a range of CPU

nodes in the datacenter so as to allow providers flexibility in

scheduling functions and improve datacenter utilization [36],

[84]. Serverless computing also mitigates resource manage-

ment overheads for developers, while offering instantaneous

scalability and fine-grained billing. These factors have led to

serverless becoming a prime candidate for deploying latency-

critical, user-facing apps on the cloud.

Why use CPUs and GPUs for serverless? Many latency-

critical apps (especially ML inference apps) can achieve

greater performance using datacenter GPUs due to their ar-

chitecture [17], [37]. Moreover, improving interconnect tech-

nologies continue to lower data movement costs of GPUs, thus,

facilitating inference serving on them [21], [25]. However,

hosting serverless functions on GPU-based VMs can typi-

cally cost more than (traditional) CPU-based hosting since

(a) serverless costs are tied to host VM/instance costs [88],

(b) in a one-to-one comparison, GPU instances are typically

more expensive than CPU instances [7]. Nevertheless, given

that serverless platforms can experience occasional bursts of

requests during, otherwise, relatively stable and sparse request

traffic [9], [75], providers can potentially use both CPUs and

GPUs to serve requests, wherein CPUs can be used during low

request traffic and GPUs can be used to serve request bursts

(since a larger number of jobs can more effectively be served

on GPUs versus CPUs [17]). This typically makes monetary

sense as well, since serving the same, large number of requests

using multiple CPU instances will cost more compared to us-

ing a single GPU instance to achieve comparable throughput.

For example, in AWS EC2, we observe that serving a ResNet
50 model at a throughput of ∼750 requests per second (rps)

requires at least seven m4.xlarge (CPU) instances, costing 86%

more versus using a single g3s.xlarge (GPU) instance.

Insight 1: Both datacenter CPU and GPU nodes can
be used to cost-efficiently service serverless requests
according to the dynamic workloads and request rates.

Despite this potential, major commercial serverless plat-

forms including AWS Lambda [8], Microsoft Azure Func-

tions [19] and Google Cloud Functions [15] continue to

offer only CPU support for their serverless functions. Re-

cent research works [47], [48], [61], [65], [68], [69], [73],

[86], [89], however, have attempted to extend serverless

101

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

platforms to being heterogeneous by also enabling GPU-

accelerated serverless functions. Note that, while there are

also GPU-enabled serverless startups, such as Banana [10],

Beam [12], Pipeline [26], Replicate [28], Cerebrium [13] and

trainML [32], given that their job scheduling techniques are

not public, and that some of them only execute on GPUs, we

do not draw comparisons against them.

SLO compliance in heterogeneous serverless: Both CPU-

enabled [52] and GPU-enabled inference systems [54], [60],

[67] have been employed in industrial settings with SLO

(latency) targets. However, in the serverless landscape, none

of the major commercial providers offer SLOs with respect

to latency. Moreover, only one of the GPU serverless star-

tups mentioned earlier, Banana, offers any SLO guarantees

– though it is at least 13× worse than PALDIA [11]. Note

that meeting SLO targets can be critical to the reliability and

operational stability of user-facing apps and can make the

serverless offering more appealing to the end user [1], [16],

[35], [59]. The majority of heterogeneous serverless research

works are also not designed to be highly SLO compliant.

This includes works such as Molecule [47], which share GPUs

via time sharing only and hence, suffer from SLO violations

caused due to request queueing. Even works like INFless [86]

and Llama [69], which are designed for SLO compliance, fail

to meet SLOs when attempting to also be cost efficient, as

we will demonstrate in this paper. This is primarily because

these works are agnostic to the job interference arising from

spatially sharing GPUs (with MPS) among too many requests.

To elucidate the above points, we investigate common GPU

sharing mechanisms and their implications next.

B. GPU Resource Sharing
Below, we present two common GPU sharing mechanisms:

Time Sharing: GPU time (temporal) sharing emerged around

the mid to late 2000s with the rising need for improved

GPU usage in datacenters. Here, jobs are interleaved such

that each one gets a time slice to execute on the GPU.

While time sharing can ensure that each job does not have to

contend with other jobs for GPU resources while executing,

it has two major drawbacks: (i) time-sharing GPUs can leave

them underutilized, especially when running light-weight tasks

common to serverless platforms, and (ii) some jobs can suffer

from high queueing delays due to being scheduled later on the

GPUs and this may degrade the overall SLO compliance.

Spatial Sharing via Multi-Process Service (MPS): MPS

[22], introduced from the Kepler-based NVIDIA GPUs, en-

ables co-operative multi-process CUDA apps to be processed

concurrently on the GPU via software-based spatial sharing.

MPS divides the GPU compute units, Streaming Multiproces-

sors (SMs), into multiple partitions such that each partition is

dedicated to a user app (process). Thus, multiple apps can exe-

cute on the GPU at once, thereby, utilizing it more effectively.

However, each app is not isolated from the interference from

other apps when using MPS. This interference arises due to

the contention for memory bandwidth, caches and capacity, all

of which are shared between the concurrent MPS processes.

This can potentially cause SLO violations as well.

80.00%

85.00%

90.00%

95.00%

100.00%

0

75

150

225

300

Time Shared
Only (P)

MPS Only (P) Time Shared
Only ($)

MPS Only ($) Offline Hybrid

%
 S

LO
 C

om
pl

ia
nc

e

Ti
m

e
(m

s)

(a) SENet 18.

80.00%

85.00%

90.00%

95.00%

100.00%

0

75

150

225

300

375

Time Shared
Only (P)

MPS Only (P) Time Shared
Only ($)

MPS Only ($) Offline Hybrid

%
 S

LO
 C

om
pl

ia
nc

e

Ti
m

e
(m

s)

(b) DenseNet 121.

Fig. 1: Breakdown of tail (P99) latencies vs. SLO compliance

for the considered schemes. Here, ‘Min possible time’ is the

execution time independent of queueing and/or interference.

Quantification of tradeoffs: To appreciate the above discus-

sion, we conduct an experiment comparing various schemes

subjected to ML inference workloads using the (relatively

stable) Wiki request trace [83]: (i) SENet 18 [57] (μ ≈ 575

rps, batch size: 128), and (ii) DenseNet 121 [58] (μ ≈ 160rps,

batch size: 64). Depending on the scheme, the workloads are

executed either on an NVIDIA M60 or V100 GPU. We set an

SLO of 200ms for all requests for both workloads [86]. The

schemes considered are described below.

• Time Shared Only (P) executes each workload batch on the

most performant GPU (V100) in a time-shared manner.

• MPS Only (P) spatially shares the most performant GPU

(V100) among all the workloads using MPS only.

• Time Shared Only ($) executes workloads on the most cost-

effective GPU (M60) in a time-shared manner.

• MPS Only ($) spatially shares the most cost-effective GPU

(V100) among all the workloads using MPS only.

• Offline Hybrid uses both time and spatial sharing (via MPS)

to execute only a limited number of batches (determined

offline) with spatial sharing and queue the other batches for

execution. Here, we use the cost-effective M60 GPU to run

the workloads.

Note that the time-shared schemes are variants of Molecule’s

GPU sharing strategy [47], whereas the spatial-shared schemes

represent variations of INFless/Llama’s schemes [69], [86].

For the Offline Hybrid scheme, we perform a sweep of numer-

ous possible combinations of workload occupancy on the GPU

beforehand. From these combinations, we pick the number of

time/spatial sharing batches which yields the highest overall

SLO compliance. The cost values for the compute nodes

here are obtained from the pricing of the corresponding AWS

EC2 instances [7], with the M60 and V100 nodes priced at

$0.75/hour and $3.06/hour, respectively.

From Figure 1, we observe that Offline Hybrid achieves high

SLO compliance (> 99%) while also remaining cost-effective.

This is because it prudently trades off queueing delays and job

interference effects by determining the appropriate number of

102

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

requests to perform spatial and time sharing, respectively.

For both SENet 18 and DenseNet 121 (Figures 1a, and

1b), MPS Only ($) achieves up to 16% less SLO compliance

compared to Offline Hybrid. Upon analysis of their tail latency

breakdowns, we infer that this is due to MPS Only ($) suffering

from up to 2.2x more overhead (due to job interference) versus

Offline Hybrid. This is a result of MPS Only ($) consolidating

too many jobs on the M60 GPU. Similarly, Time Shared Only
($) also has up to ∼11% lower SLO compliance than Offline
Hybrid due to high queueing delays incurred as a result of

time sharing the GPU with too many request batches. Offline
Hybrid, on the other hand, finds the appropriate tradeoff point

(in terms of number of requests) where the combined overhead

from interference (due to spatial sharing) and queueing (due

to time sharing) is minimal. While MPS Only (P) and Time
Shared Only (P) have up to 0.78% higher SLO compliance

than Offline Hybrid, they accomplish this by executing on the

most performant (and costly) GPU (V100) compared to that of

Offline Hybrid (M60). As a consequence, both these schemes

incur more than 4× the cost of that of Offline Hybrid [7].

Insight 2: Queuing delays and job interference can
possibly be traded off to improve SLO compliance on
GPUs by choosing the appropriate number of requests
to perform spatial and time sharing. This can allow
requests to be served effectively on cheaper GPUs.

Here, Offline Hybrid is infeasible for real-time request
serving because: (i) Offline Hybrid sweeps through numerous

combinations, which is impractical in real-time request serving

as the same workload should not be repeatedly executed for

every request: there must be a mechanism to predict the ideal

number of requests to temporally/spatially share the GPU, and

(ii) Since there will be multiple generations of CPUs and GPUs

to potentially execute workloads in production datacenters,

choosing the appropriate hardware can be time consuming:

it would be beneficial to prune the hardware search space. We

address these two issues through profiling workloads/hardware

and by modeling interference and queueing tradeoffs. This is

discussed in detail in the next section.
III. MODELING INTERFERENCE AND QUEUEING

OVERHEADS

Towards predicting the ideal number of requests to perform

temporal and spatial GPU sharing, we model the overheads

due to queueing and job interference, respectively, that result

from this, and find the appropriate balance between them to

ensure high SLO compliance. For this, we modify the job inter-

ference model for co-located MPS jobs from Prophet [38], to

use the number of requests and batch size as input parameters.

We also introduce the execution time of queued requests as an

additional term, which is approximated (with < 4% error) as

the proportionate fraction of the batch execution time. Here,

we want the execution time of the requests executed last,

Tmax, to remain within the SLO, where Tmax is:

SoloM · y

BSM
+ SoloM ·

{
(NM − y)

BSM
· FBRM

}
< SLO.

(1)

Here, SoloM is the execution time of the model M when

run in isolation on the concerned GPU, BSM is the model’s

batch size, NM is the number of requests corresponding to

M at that given time, FBRM is the Fractional Bandwidth

Requirement (FBR) of the model. For example, an FBR of

0.2 indicates that the job requires 20% of the global memory

bandwidth. Here, y requests are queued and (NM−y) requests

are concurrently executed on the GPU via spatial sharing.

As shown in Equation (1), we wish to find a suitable y value

so as to keep the execution times of all requests within the

SLO target. The term SoloM · y
BSM

(an approximation that we

introduce) represents the execution time of y queued requests

and SoloM ·
{

(NM−y)
BSM

· FBRM

}
(modified from Prophet’s

model) is the execution time of the other requests that are

executed concurrently with spatial GPU sharing (via MPS).

Here, all terms except y in Equation (1) are either known

beforehand for the arrived requests (BSM , SLO, and NM),

or can be obtained through profiling the workloads over

time on the GPU (SoloM , and FBRM). This profiling can

also aid in significantly reducing the hardware search space
when servicing requests as we can identify capable hardware

candidates that can serve the given workloads and request

rates. Note here that there are additional constraints that y
must satisfy: (i) NM > y – this simply implies that y
cannot exceed the total number of current requests, and (ii)(

NM−y
BSM

)
· FBRM > 1 – this is to ensure that there are

enough requests that are co-located via MPS so that the job

interference portion of Equation (1) is valid [38]. Now, given

Equation (1) and these constraints (with known values for

all other terms), we can obtain a suitable range of values
(which we refer to as the ‘optimal range’) to find y so as to
minimize Tmax. In practice, we are able to obtain the best y
value with minimal overhead (< 3 ms) through multi-threading

by comparing possible Tmax values obtained by substituting

various y values from the optimal range.

For cases where a suitable y value does not exist due to

an invalid optimal range, we reattempt the same procedure

for the next more performant (and typically more expensive)

GPU available which will more likely be capable of serving

the same requests within the SLO using our spatial/temporal

hybrid scheduling technique. We prefer this to techniques like

rate limiting (i.e., reducing NM in Equation (1), which can

cause many requests to violate the SLO (due to throttling) in

order to serve the other requests with the current GPU. The

above-discussed modeling techniques lay the foundation for

the scheduling policies in our design.

IV. OVERALL DESIGN OF PALDIA

Figure 2 outlines the overall design of PALDIA. The Gate-

way 1 provides a point of access to user requests to our server-

less framework. These requests are routed to the appropriate

worker nodes (chosen by the Hardware Selection module 2)

by the Dispatcher 3 . Depending on the workload and request

rates, a small pool of capable hardware candidates (determined

through profiling) are explored by the Hardware Selection

module to find the cheapest (yet, performant) hardware config-

103

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

AutoscalerBatching

Worker Nodes

Job
Distribution

…

VM

Users

Requests

…

Containers

Manager Node

Queue Head

4 5

6

Gateway
1

Dispatcher

Hardware
Selection

3

CPU

GPU

…

Request
Queue

…

+

Batched Requests

Time Sharing
(Requests queued)

Spatial Sharing

Batched Inference

A suitable CPU node(s) is (typically) selected to handle lower request rates

For higher request rates, hybrid
(time/spatial) GPU sharing on a suitable
GPU(s) node minimizes total overhead

OR/
AND

OR/
AND

2

Fig. 2: A schematic depicting PALDIA’s design.

uration for upcoming requests. At the selected worker node(s),

the requests are first batched 4 for improved throughput

while inference serving. The Autoscaler 5 appropriately scales

containers up or down as required to service each incoming

request batch. The containers use the Job Distribution logic 6

to schedule jobs on the compute hardware of the worker

node. In particular, when using GPUs, we use a hybrid

time/spatial sharing mechanism where a certain number of

requests are serviced concurrently using MPS on the GPU

and the remaining requests are queued. We use the techniques

described in Section III to determine the appropriate number

of requests for time and spatial sharing in order to effectively

trade off job interference and queueing delays (Equation (1)).

We detail the key design features of PALDIA below.

A. Hardware Selection
Algorithm 1 shows the working of the Hardware Selection

module 2 . As mentioned in Section III, from the provider’s

perspective, we can profile workloads by observing their

execution latency values (and other relevant metrics) when

executing on various available hardware configurations in

order to gain an understanding of the best possible candidate

workers for specific workloads and request rate ranges. This

pool of candidate hardware configurations is chosen such that

each configuration is able to serve requests arriving in the

immediate future (∼4s ahead) within the target latency (SLO)

b . The number of future requests can be estimated using a

lightweight statistical model (such as EWMA [80]) which

relies on current and history request information (regarding

the workload, request rate etc.) a . We choose the appropriate

hardware pool for future requests so as to allow enough time

to acquire the hardware to service those requests. Typically,

we use CPU nodes to handle lower request rates (up to

∼25 rps for workloads with high FBRs) by selecting the

cheapest one that can serve the requests capably c . For higher

request rates, the suitable hardware candidates are usually

GPU nodes. From this pool of GPU nodes, the Hardware

Selection module first estimates the worst-case execution time

(Tmax from Equation 1) that each GPU will yield based on

the workload, future request rate, the hardware itself, and the

Algorithm 1 Hardware Selection.

for Every Monitor Interval= W do
from curr request queue get curr queue info
Hardware Selection(current req info)

procedure HARDWARE SELECTION(curr req info)
init: HW dict : null
ini wait ctr : 0
future req info ← predict req(curr req info, history info) a
HW pool ← get HW pool(future req info) b
HW pool.sort by cost ascending() for do
par for HW in HW pool do

cost ← get cost(HW)
least T max ← ∞
best y ← null
if HW.type is CPU then c

least T max ← approx T max(HW, future req info)
HW dict[HW] ← [least T max, best y, cost]
break

else
par for y in optimal range(HW, future req info) do

T max ← calc T max(y, HW, future req info) d
if T max < least T max then

least T max ← T max
best y ← y

end par for
HW dict[HW] ← [least T max, best y, cost]

end par for
chosen HW ← choose best HW(HW dict) e
if chosen HW is not current HW then f

if wait ctr >= wait limit then
reconfigure HW(chosen HW) g

else
wait ctr ← wait ctr + 1

if curr HW is chosen HW then
wait ctr ← 0

y value d (from Equation (1)). To get the lowest possible

Tmax, we probe multiple possible y values in parallel, and

pick the one that yields the lowest Tmax for each GPU. Given

the best achievable execution latency values for the GPU

nodes considered, the choose best HW() procedure selects

the cheapest node that has latency within ∼50ms of that of

the most performant one e (from our experience, this strikes

a good balance between cost savings and performance).

Finally, our choice of hardware is compared against the cur-

rent one f and we procure our new hardware choice if there is

a mismatch between our choice and the current hardware and

similar mismatches have happened repeatedly (3 times at least)

g . We do this since multiple mismatches can reveal a trend

in variations in the request trace and thus, indicates that our

current hardware is likely not capable and/or cost-effective to

handle future request rates. To acquire the hardware, we launch

a VM on our chosen node and spawn the appropriate number

of containers on it using the autoscaling techniques discussed

in the next subsection. This is done in the background (so as

to tolerate hardware procurement overheads) as the current

hardware is used to serve the current requests. Once the

containers are spawned on the newly procured hardware, we

reroute requests to them and relinquish the current hardware.

It is the responsibility of the reconfigure HW() procedure in

Algorithm 1 to perform these actions.

B. Request Batching
To enable high throughput and resource utilization, espe-

cially for GPUs, we enable requests to be batch-served 4 [78],

104

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

[86] by containers. In order to keep the maximum execution

time of a batch within the SLO, we keep an upper bound for

the batch sizes we use and this is dependent on the hardware

and workloads being considered. We allow flexible batch

sizes to be used on-the-fly, especially to facilitate the hybrid

time/spatial sharing on GPUs, which could require different,

specific number of requests to be queued and/or concurrently

executed (via MPS) on the GPU (something which uniform

batching would hinder).

C. Autoscaling
PALDIA has an auto-scaling module 5 which is re-purposes

to better suit inference apps and especially prevent SLO

violations due to container under-provisioning:

Reactive scale-up – Containers are scaled up such that there

is one container spawned per batch of requests that will be

spatially shared, as determined by the Hardware Selection

module. This allows each container to launch jobs in a parallel

fashion on the GPU via spatial sharing (MPS). Having fewer

containers than batches would lead to the same container

serving multiple batches, resulting in request batches being

queued, which, in turn, can deteriorate the overall SLO com-

pliance. For time sharing, we only require one container, since

each request batch is executed one at a time on the GPU. For

this, we can reuse a warm container spawned for the spatially-

shared requests. Thus, the total number of containers spawned

for all incoming requests, nc, is given by nc =
⌈

nspatial(m)
batch size(m)

⌉
,

where nspatial(m) is the number of incoming requests that

will be spatially shared for the model m, and batch size(m)

is the current model batch size.

Predictive scale-up – While reactive scale-up spawns con-

tainers that can aid in servicing an unexpected number of

requests, the newly-spawned containers only come into play

after incurring cold start delays. During this time, existing

containers are used to serve the increased load, which can

lead to queuing, and thus, result in SLO violations. To

avoid complete reliance on reactive scale-up, we pre-warm

containers so as to service future request loads that we predict

using a lightweight, pluggable model (EWMA in our case)

(as in [34], [80]). In effect, predictions about the number of

future incoming requests for a model is made every ∼ 10s
using history information collected in that time window. If

more containers are deemed necessary than the current number

of containers (using similar criteria as in Reactive scale-up),

containers are scaled up as required.

Delayed termination – For increased SLO compliance, we

terminate active (warm) containers only after an extended

(tunable) period of time (∼10 minutes) elapses throughout

which some containers (which will eventually be shut down)

are consistently deemed to be ‘surplus’ by the other scaling

policies (similar to existing keep-alive policies [84]). This,

combined with request batching, reduces the number of cold
starts by up to 98%, versus scaling down containers immedi-

ately in response to temporary request load reduction.

D. Job Distribution
The containers spawned by the autoscaling module employ

the Job Distribution logic 6 to effectively schedule jobs on

the selected hardware. For lower request rates, we service the

incoming requests using the native batched CPU execution

mode of the ML framework that we use. When scheduling

on GPUs (for high request rates), the Job Distributor uses

the best y value calculated already by the Hardware Selection

module for the selected GPU (which minimizes the maximum

end-to-end latency) (Section IV-A) to determine the number

of requests that should perform spatial and temporal GPU

sharing, respectively (using Equation (1)). The Job Distrib-

utor then leverages both the GPU’s time and spatial (MPS)

sharing mechanisms to schedule the respective number of

jobs estimated for each mechanism. The Job Distributor also

automatically adjusts the request batch size to enable this.

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

PALDIA is implemented primarily in Python with its mod-

ules being daemon processes that perform their respective

tasks, as described in Section IV. Specifically, when using

GPUs to service requests, we leverage the default GPU time

sharing mechanism as well as the spatial sharing MPS [22]

feature (wherever applicable), to spawn GPU-accelerated con-

tainers [20] (which use PyTorch v1.1 [66]) on the appropriate

node. When using CPU nodes, we use Pytorch’s default CPU

batched mode execution for servicing requests. We use Docker

(v20) swarm [14] to manage the cluster.

Below, we detail some aspects of the experimental setup.

Hardware: PALDIA is set up on a 7 node cluster (including a

dedicated manager node). The 6 worker nodes are from AWS

EC2 [6] and are equipped with a range of compute hardware,

the details of which are listed in Table II.

Name Primary Compute Hardware CPU/GPU Memory Cost
p3.2xlarge NVIDIA V100 GPU 16 GB $3.06/h

p2.xlarge NVIDIA K80 GPU 12 GB $0.9/h

g3s.xlarge NVIDIA M60 GPU 8 GB $0.75/h

c6i.4xlarge Intel IceLake CPU, 16 vCPUs 32 GB $0.68/h

c6i.2xlarge Intel IceLake CPU, 8 vCPUs 16 GB $0.34/h

m4.xlarge Intel Broadwell CPU, 2 vCPUs 8 GB $0.2/h

TABLE II: Worker node details from AWS EC2. Here, ’Pri-

mary Compute Hardware’ refers to the compute unit used by

the node to serve the inference requests,

For our experiments, the cost values reported are primarily

based on the total weighted cost of each scheme calculated

according to the time spent using each type of compute

node (since the experiments are run for the same time with

approximately the same number of containers for all schemes).

We measure GPU and CPU node utilization using NVIDIA-

smi [23], and htop [18], respectively. Here, ‘utilization’ refers

to percentage GPU/CPU non-idle time. For GPU power mea-

surements, we use the nvtop tool [24]. Since our public cloud

CPU nodes have no Running Average Power Limit (RAPL)

interface support, we resort to projecting power measurements

from the powerstat tool [27] run on the same hardware in a

private cluster for the same experiments.

Workloads: We use workloads based on 16 ML inference

models in the vision and language domains. For our primary

experiments, we use image classification workloads based

on the following models: ResNet 50 [55], GoogleNet [81],

105

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

DenseNet 121 [58], DPN 92 [39], VGG 19 [79], ResNet 18
[55], MobileNet [56], MobileNet V2 [71], SENet 18 [57],

ShuffleNet V2 [63], EfficientNet-B0 [82], and Simplified DLA
[87]. We use a maximum batch size of 128 and the ImageNet

1k [70] dataset. As a part our sensitivity study, we use

sequence classification workloads that are based on large

language models with very high FBRs, namely, AlBERT [62],

BERT [46], DistilBERT [72], and Funnel-Transformer [43].

The maximum batch size used here is 8 and the dataset is

the Large Movie Review Dataset [64]. We set all workload

SLOs to be 200 ms, as reported for inference requests in

[86]. Similarly, our batch sizes are selected so that the batch

execution latency remains between ∼50-200ms [86].

Request Traces: For the majority of our experiments, we

use a sample trace from the Azure serverless traces [9],

[75] which represents request arrival behavior in an actual

serverless setting. Our chosen trace has a large peak-to-mean

ratio (∼673:55), thus, also capturing potential request surges

that the serverless platform can be subjected to. The trace

duration here is ∼25 minutes, and each experiment conducted

using the trace is repeated for 5 times. These ensure that the

results are minimally impacted by randomness. We also scale

the request rates of the trace according to the workload used,

with high-FBR (Section III) vision models (such as GoogleNet,
DPN92 etc.) subjected to a peak rate of 225 rps and the other

vision models subjected to double the peak (∼450 rps). For

the language models, we use a much lighter request trace,

with a peak of only 8 rps, owing to their much higher FBRs

compared to vision models.

Evaluated schemes: We compare PALDIA against schemes

which employ the request serving policies of state-of-the-art

GPU-enabled serverless frameworks, namely, INFless [86],

Llama [69], and Molecule [47]. Despite being different frame-

works, INFless and Llama both employ MPS to spatially
share the available GPU(s) by scheduling multiple request

batches onto it. They are, however, agnostic of the performance

degradation that can occur due to the resultant job interference.

Molecule, currently, offers minimal GPU support and thus,

executes workloads on the GPU(s) via time sharing only. For

our experiments, we use cost-effective ($) and performance-
focused (P) variants of these schemes: (i) INFless/Llama ($)
represents a version of INFless/Llama where its hardware

selection policy chooses the most cost-effective hardware that

can serve one batch of requests (for the current request

rate) within the SLO, (ii) INFless/Llama (P) is a version of

those schemes which uses the most performant GPU (V100)

to serve requests regardless of the request rate, (iii) Since

Molecule does not have an explicit hardware selection policy,

we have Molecule (beta) ($) which represents its request

serving mechanism but with the same hardware selection as

INFless/Llama ($), and (iv) Molecule (beta) (P), which is a

variant that uses the same hardware as INFless/Llama (P).

VI. EVALUATION

This section presents a thorough evaluation of PALDIA. Unless

mentioned otherwise, the plots presented pertain to the average

values of the concerned metric (with outliers of more than

2.5× the standard deviation from the mean ignored) when

using the Azure serverless trace with vision workloads. For

isolated examples, similar results are seen for other workloads

also.

A. Primary Results
1) SLO compliance and Tail Latency: : Figure 3 depicts

the percentage of all requests satisfying their SLO target for

all vision models and Figure 4 shows the P99 latency values of

two characteristically different models. We observe that PAL-

DIA is among the most performant schemes with up to 13.3%

more of its requests being SLO-compliant than its competitors

(Figure 3). Similarly, we observe PALDIA to also have tail

latency that is well within the SLO target (Figure 4). Note that

Molecule (beta) (P) and INFless/Llama (P) only outperform

PALDIA (marginally, in terms of SLO compliance, by up to

∼0.8%) due to always using the most performant hardware

(the V100 GPU, in our case) and thus, incurring much higher

costs (up to 6.9× more than PALDIA, as we will see in the

next subsection). PALDIA’s high SLO compliance (and low

cost) can be attributed primarily to it efficiently leveraging

cost-effective hardware (which it procures using its Hardware

Selection module) by intelligently using hybrid (time/spatial)

GPU sharing as discussed in Sections III and IV. Now, let us

delve into the specific reasons for each scheme’s performance

by considering the breakdown of tail (P99) latency values

plotted in Figure 4. When discussing the following results,

note that the major differences in performance between the

schemes arise when serving high request rates using GPUs, as

all schemes are (typically) able to serve low request rates with

their selected hardware (CPU and/or GPU nodes, depending

on the scheme) in a performant fashion.

When serving high request rates, INFless/Llama ($) spa-

tially shares the selected (cheap) GPU among all incoming

requests using MPS (Section V). This often results in the co-

location of too many requests on the GPU, leading to increased

job interference between them, in turn, degrading their col-

lective performance (Figure 4). For instance, for ResNet 50
(Figure 4a), 76% of the tail latency of INFless/Llama ($) is due

to the job interference of all co-located requests. Consequently,

for the same model, these schemes have an SLO compliance

of only 89.43% (Figure 3). On the other hand, PALDIA has

99.55% SLO compliance in this case. From Figure 4a, we

can observe that this is mainly due to the reduced total

overhead incurred by PALDIA due to both job interference

(spatial sharing) and queueing delays (time sharing). PALDIA

achieves this by (i) intelligently scheduling the appropriate

number of requests to perform spatial and time sharing of the

GPU, as discussed in Section III, and (ii) occasionally using

more powerful GPU nodes to handle sudden request surges,

since PALDIA’s Hardware Selection module, unlike that of

INFless/Llama ($) (and even Molecule (beta) ($)), can detect

when the job interference can cause SLO violations.

Since Molecule (beta) ($) time shares its selected (cost-

effective) GPUs to serve requests, it suffers from high queue-

ing overheads, especially at P99 (Figure 4). For example,

106

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

80.00%

85.00%

90.00%

95.00%

100.00%

ResNet 50 GoogleNet DenseNet 121 DPN 92 VGG 19 ResNet 18 MobileNet MobileNet V2 SENet 18 ShuffleNet V2 EfficientNet-B0 Simplified DLA

%
 S

LO
 C

om
pl

ia
nc

e

Molecule (beta) (P) INFless/Llama (P) Molecule (beta) ($) INFless/Llama ($) Paldia

Fig. 3: Comparison of SLO compliance of all schemes for all vision models.

0

100

200

300

Ti
m

e
(m

s)

(a) ResNet 50.

0

100

200

300

Ti
m

e
(m

s)

(b) VGG 19.
Min Possible Time Queueing Interference Queueing + Interference SLO

Fig. 4: Breakdown of tail (P99) latencies for the considered

schemes. Here, ‘Min possible time’ refers to the execution

time of a workload batch (free of interference and queueing)

on the selected hardware.

for VGG 19, Molecule (beta) ($) suffers from up to 84%

queueing overhead and as a result, only achieves 95.11%

SLO compliance here (Figure 4b). PALDIA, in comparison,

achieves higher SLO compliance (99.85%) and lower tail

latency (∼50%) than Molecule (beta) ($) due to suffering 59%

lower total overhead than it (due to its hardware selection and

hybrid GPU sharing strategies).

As mentioned earlier, since both INFless/Llama (P) and

Molecule (beta) (P) always use the most performant GPU

to serve all requests, they have the highest SLO compliance

(99.99% on average) and least tail latency values (< 100ms

on average). This is a consequence of the minimal inter-

ference/queueing overheads they suffer from as a result of

the brawnier GPU they use compared to the other schemes.

Despite using cheaper (and less performant) GPUs, PAL-

DIA remains within 0.38% of the SLO compliance of these

schemes (on average) by intelligently employing its hybrid

scheduling on its selected GPUs. In the next subsection, we

detail the cost benefits that PALDIA yields due to this.

2) Cost Savings : : PALDIA, through its Hardware Se-

lection module (described in Section IV-A), acquires cost-

efficient hardware to serve requests according to the workload

and request rate, without compromising on performance. Due

to this, we observe that PALDIA yields cost savings of 85% (on

average) versus INFless/Llama (P), and Molecule (beta) (P),
which rely solely on the most expensive GPU to serve requests

(Figure 5). As can be observed, PALDIA has comparable SLO

compliance to these schemes, despite using cheaper (wimpier)

GPUs due to its hybrid scheduling, as previously discussed.

Note that the other cost-efficient schemes, INFless/Llama
($) and Molecule (beta) ($), select the cheapest available

hardware that can serve a batch of requests within the SLO.

85%

90%

95%

100%

0

0.25

0.5

0.75

1

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

 $
 C

os
t

(a) GoogleNet.

92%

94%

96%

98%

100%

0

0.25

0.5

0.75

1

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

 $
 C

os
t

(b) EfficientNet-B0.

Fig. 5: Comparison of Normalized Cost (in $) vs. SLO

compliance across all schemes for the shown models.

However, they do not consider the effects of job interference or

queueing that results from serving multiple batches of requests

at the same time. As a result, although these schemes have the

highest cost savings (marginally, by ∼1-3%), they have low

SLO compliance (Figure 5). In comparison, at nearly the same

cost, PALDIA achieves up to ∼11% more SLO compliance

than these schemes. The slightly higher cost of PALDIA (up

to ∼ 3%) is due to the fact that its hardware selection

module occasionally selects more expensive GPU/CPUs to

serve requests (especially during extremely high request rates

for workloads with high FBRs (Section III)) to avoid compro-

mising on performance. For instance, in Figure 5a, PALDIA

costs 2.4% more than the other cost-effective schemes, since

it uses more expensive hardware during ∼3% of the trace

duration. Note however that, for models with lower FBRs,

such as EfficientNet B0, the cost difference between the cost-

efficient schemes and PALDIA is minimal (0.3%, in this case,

from Figure 5b), since PALDIA can efficiently service requests

mostly with the same hardware as that of the others and only

switching to more expensive hardware for ∼1% of the time.

Given the above results, we believe that PALDIA strikes the

right balance between cost savings and SLO compliance.

3) Analysis of other Key Benefits: : Here, we evaluate

PALDIA with respect to other metrics.

End-to-End Latency Distribution An analysis of the end-

to-end latency distribution can elucidate the observed perfor-

mance of each of the schemes. Consider Figure 6. PALDIA

remains within the SLO for the entirety of the measured range

(until P99) owing to its intelligent hybrid time/spatial schedul-

ing and hardware selection policies that allow it to effectively

use cost-efficient hardware to serve incoming requests, even

during peak request traffic (as discussed previously). As we

can observe, INFless/Llama ($) and Molecule (beta) ($) exceed

the SLO at not only the tail (P99), but around P80 as well

since they suffer from high job interference and queueing

107

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

0

100

200

300

400

0.2 0.4 0.6 0.8 1

R
es

po
ns

e
Ti

m
e

(m
s)

CDF

Molecule (beta) (P) INFless/Llama (P)
Molecule (beta) ($) INFless/Llama ($)
Paldia SLO

Fig. 6: Cumulative Distribution Function (CDF) of the end-

to-end job latencies for all schemes for the SENet 18 model.

overheads, respectively, during periods of high request traffic.

INFless/Llama (P), and Molecule (beta) (P), both have latency

curves that are well within the SLO target, even at P99. This

is as expected, as they use the most performant GPU to serve

all requests. However, as discussed in subsection VI-A2, they

incur 6.9 × higher cost on average, in comparison to the

other (cost-efficient) schemes, including PALDIA. Also note

that PALDIA uses the appropriate cost-efficient hardware and

hybrid scheduling that leverages the ‘slack’ in latency afforded

by the latency target, something which INFless/Llama (P), and

Molecule (beta) (P) fail to do.

Tolerance to Request Surges We observe that the difference

in performance between the cost-efficient schemes, including

PALDIA, is heavily dependent on their performance during

request surges/spikes, since they (typically) are able to serve

low request traffic within the SLO. Consider Figure 7a, which

compares the ‘goodput’ of each scheme during the periods of

highest request traffic (up to 225 rps) for DenseNet 121. By

goodput, we refer to the average number of requests that can
be served within the SLO target. We also depict the average

request rate during this period with the dotted line shown.

Ideally, a scheme should be able to achieve a goodput that

matches the incoming request rate during high traffic. As we

can observe, the other cost-efficient schemes, INFless/Llama
($), and Molecule (beta) ($), can only serve 27% and 34% of

the incoming (high) request rate within the SLO, respectively.

This is because of the high interference/queueing overheads

that they suffer from due to relying solely on either spatial/time

sharing, and their choice of hardware. In comparison, PALDIA

is within 5% of the ideal goodput, owing to (i) its intelligent

hybrid GPU sharing policy, and (ii) selecting the appropriate

hardware (which may be more expensive, occasionally) to

service the high request rate. In contrast, INFless/Llama (P)
and Molecule (beta) (P), over-commit resources to serving the

request rate, effectively only bettering PALDIA by ∼0.4% SLO

compliance while incurring much higher costs (up to 6.9 ×).

Power Consumption Here, we report the average (nor-

malized) power consumption of each scheme. Generally, we

observe the average power consumption of each scheme to

be primarily dependent on its selection of hardware to serve

requests. From Figure 7b, we observe that PALDIA is among

the highly power-efficient schemes, as it consumes 45% lesser

power (on average) than INFless/Llama (P), and Molecule
(beta) (P). This is because PALDIA can rely on cost/power-

efficient hardware to effectively serve requests with very high

Ideal Goodput

0

225

450

675

G
oo

dp
ut

 (r
eq

s/
s)

(a) Goodput.

0

0.25

0.5

0.75

1

N
or

m
al

iz
ed

 P
ow

er
 (W

)

(b) Power Consumption.

Fig. 7: PALDIA’s other benefits: Goodput (for DenseNet 121),

and Power Consumption (for Simplified DLA).

0%

25%

50%

75%

100%

Molecule
(beta) (P)

INFless/Llama
(P)

Molecule
(beta) ($)

INFless/Llama
($)

Paldia

%
 N

on
-Id

le
 T

im
e

CPU node utilization GPU node utilization

N/A N/A

Fig. 8: Compute Node Utilization (non-idle time) comparison

of all schemes for the VGG 19 model.

SLO compliance due to its intelligent time/spatial GPU sharing

strategy. Compared to INFless/Llama ($), and Molecule (beta)
($), although PALDIA does consume up to 4% more power

(due to occasionally switching to more powerful hardware),

the higher performance it affords versus these schemes (as tes-

tified by the previous subsections), in our opinion, more than

compensates for the marginally higher power consumption.

Resource Utilization Here, we define CPU/GPU node uti-

lization as the non-idle time of the CPU/GPU nodes that

are used to service the workload. As per Figure 8, PALDIA,

similar to INFless/Llama ($), and Molecule (beta) ($), achieves

similar (high) values of CPU node utilization (∼72%) due to

using the batched CPU inference mode (supported by the ML

framework) to serve low request traffic. Since INFless/Llama
(P) and Molecule (beta) (P) only use the V100 GPU-equipped

nodes, this comparison is not applicable to them.

For GPU nodes, we observe that INFless/Llama ($) has the

highest GPU node utilization (99%) due to two reasons: (i)

it uses less powerful (and cheaper) GPUs, thereby, resulting

in higher utilization of its (relatively) limited resources, (ii) it

spatially shares the GPU among all incoming requests, thus,

maximizing its utilization. In comparison, Molecule (beta)
($), despite using the same GPU nodes as INFless/Llama
($), has lower utilization (∼90%) since it executes only

one request batch at a time on the GPU, without spatially

sharing it. PALDIA, owing to using a hybrid time/spatial GPU

sharing mechanism, has a GPU utilization of 94%, which

is between that of exclusively using time/spatial sharing. All

these schemes have higher GPU node utilization (up to 60%)

than both INFless/Llama (P), and Molecule (beta) (P) since

these ‘(P) schemes’ use nodes with more powerful GPUs that

get under-utilized due to not receiving an amount of requests

108

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

92%

94%

96%

98%

100%

ALBERT BERT Funnel
Transformer

DistilBERT

%
 S

LO
 C

om
pl

ia
nc

e

Molecule (beta) (P) INFless/Llama (P) Molecule (beta) ($)
INFless/Llama ($) Paldia

Fig. 9: Comparison of SLO compliance of all schemes for

large language models.

0

0.2

0.4

0.6

0.8

1

ALBERT BERT Funnel
Transformer

DistilBERT

N
or

m
al

iz
ed

 $
 C

os
t

Molecule (beta) (P) INFless/Llama (P) Molecule (beta) ($)
INFless/Llama ($) Paldia

Fig. 10: Cost of all schemes for large language models.

to serve that is commensurate with their compute capabilities.

B. Sensitivity Studies
Now, we evaluate PALDIA under varied settings from those

of the previous experiments.

Large Language Models Here, we consider large language

models which have significantly higher execution times, mem-

ory footprints, and FBRs than those of the vision models pre-

viously seen. We observe that all the cost-effective schemes,

including PALDIA, select more powerful (and expensive) hard-

ware, in general, to service the requests corresponding to

these models, resulting in an average increase in cost by 86%

compared to the cost values for the vision models (Figure 10).

Nevertheless, PALDIA and the other cost-effective schemes

achieve ∼72% cost savings (on average) versus INFless/Llama
(P), and Molecule (beta) (P), as they are able to serve most

requests with cheaper hardware. However, since PALDIA lever-

ages its intelligent time/spatial GPU sharing and occasionally

switches to more powerful hardware to serve peak request

rates (incurring a ∼2% average cost overhead), it achieves an

average of 99.54% SLO compliance compared to the 97.73%

of INFless/Llama ($), and Molecule (beta) ($) (Figure 9). In

fact, due to the reasons mentioned in the above discussion,

PALDIA remains within 0.45% (on average) of the SLO

compliance of the most performant schemes, INFless/Llama
(P), and Molecule (beta) (P) (Figure 9), by incurring a fraction

(29%, on average) of their cost (Figure 10).

Comparison versus Oracle: In this subsection, we compare

PALDIA against Oracle, an offline, clairvoyant scheme with

all of PALDIA’s policies, but with knowledge of the ideal

hardware to use for the request trace (which is also known

beforehand), and the best ratio of requests to perform hybrid

spatial/temporal scheduling (which can be obtained through

multiple offline configuration sweeps). From Figure 11, we ob-

96%
97%
98%
99%
100%

0.8
0.85

0.9
0.95

1

Paldia Oracle Paldia Oracle
MobileNet GoogleNet

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

$
C

os
t Cost SLO Guarantee

Fig. 11: Cost and SLO compliance: PALDIA versus Oracle.

serve that PALDIA, despite servicing requests in real time with

its non-clairvoyant request arrival and performance prediction

models, remains within ∼0.8% of the SLO compliance of Ora-
cle, and sometimes nearly matches Oracle’s performance (with

only a 0.1% difference). Note also that Oracle has slightly

lower cost than PALDIA due to: (i) the additional cost incurred

by PALDIA during hardware transition periods and (ii) the

performance difference between the two schemes. However,

the difference in cost between the schemes is minimal (<1%).
Additional Real-World Traces: We analyze the performance

of all schemes when other real-world traces are used.

Realistic Inference Request Arrival Pattern: We use a 5-day-

long trace (peak rate scaled to ∼170 rps) from Wikipedia

[83] as they capture the diurnal request arrival patterns of ML

inference workloads [53]. From Figure 12a, we observe that

the other cost-effective schemes, Molecule (beta) ($) and INF-
less/Llama ($), suffer more SLO violations compared to when

the serverless trace was used (Figure 3), achieving 84.39%,

and 79.93% SLO compliance, respectively. As seen previ-

ously, this is primarily because these cost-effective schemes

fail to efficiently spatially/temporally share the selected GPU

node during peak traffic. This is exacerbated here due to

the sustained period of high traffic (∼16 hours per day) of

the Wikipedia trace. With only a 4% higher cost than these

schemes (due to occasionally using more expensive hardware),

PALDIA achieves much higher SLO compliance (99.25%),

primarily due to using its hybrid GPU sharing capabilities,

as seen earlier. PALDIA is also within ∼0.7% of the SLO

compliance of the most performant schemes (which always

use the most expensive GPU node), while costing 72% less.
Erratic and Dense Request Arrival Pattern: We use a 90

minute sample from the erratic Twitter trace [2] with an

average request rate that is 5× higher than that of the

Serverless trace used for previous experiments. As with the

Wikipedia trace, the cost-effective schemes, Molecule (beta)
($), and INFless/Llama ($), achieve much lower SLO Compli-

ance values (71.86% and 70.28%, respectively) than PALDIA

(with 98.48%) due to being incapable of coping with the

high request rates throughout the trace (Figure 12b). This is

exacerbated by the erratic nature of the trace. PALDIA remains

relatively resilient to these adverse conditions (albeit costing

∼7% more than the other cost-effective schemes) by virtue

of its intelligent hardware selection and hybrid GPU shar-

ing mechanisms and policies. PALDIA achieves comparable

SLO compliance to that of the most performant (P) schemes

(99.82%) as well, despite costing 69% less overall.
Resource Exhaustion Scenario: This study compares the

109

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

70%

80%

90%

100%

0
0.2
0.4
0.6
0.8

1

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

 $
 C

os
t Cost SLO Compliance

(a) Wikipedia, ResNet 50.

65%

75%

85%

95%

0

0.25

0.5

0.75

1

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

 $
 C

os
t Cost SLO Compliance

(b) Twitter, DPN 92.

Fig. 12: Cost vs. SLO compliance of all schemes for the above

realistic traces and workloads.

performance of all schemes during a scenario of Resource

Exhaustion (R. Exhaustion), where the request rate is high

enough such that even the most powerful GPU cannot serve

all incoming requests concurrently within the target SLO.

For this, we use the GoogleNet workload with a synthetic

Poisson arrival trace (mean is ∼700 rps), in an attempt to

overwhelm even our most capable GPU (V100). Consequently,

all schemes resort to using the V100 GPU to serve requests

(thereby, costing the same) since using less capable hardware

results in much worse SLO compliance. From Figure 13a,

we observe that both schemes which solely spatially share

the GPU among all incoming requests, INFless/Llama ($)/(P),
only achieve ∼33% SLO compliance due to the high job

interference of the concurrent requests for the majority of

the trace duration. The schemes that time-share the GPU,

Molecule (beta) ($)/(P), while more performant than the

aforementioned spatial sharing schemes due to limiting the

number of concurrent jobs running on the GPU, still only

achieve ∼62% SLO compliance due to the excessive queueing

delays faced by requests at the back of the queue. PALDIA, by

virtue of its hybrid GPU sharing policy, appropriately manages

GPU occupancy so as to prudently trade off job interference

and queueing delays, thus, yielding the best SLO compliance

among all schemes (97.55%).

Node Failure Scenario: Here, we analyze the performance

of all schemes during a scenario where the node being used

by a scheme is made unavailable through an induced failure

at every minute, and stays unavailable for an entire minute.

To cope with node failures, we modify all schemes to switch

to the more performant hardware with the least cost so as

to not compromise on performance. Note that if a scheme is

using the most performant hardware when the failure occurs,

it switches to the next best GPU. From Figure 13b, we

observe that the cost-effective schemes, including PALDIA,

achieve higher SLO compliance than before (as in Figure 3). In

fact, PALDIA achieves the highest SLO compliance (99.82%)

here. This is because, despite minor SLO violations due to

temporary node unavailability, switching to more performant

hardware during failures improves the SLO compliance overall

for these schemes. However, INFless/Llama (P) and Molecule
(P) achieve worse SLO compliance (at most only 97.55%),

since they are forced to use less performant hardware during

node failures. Note that, here PALDIA, while being more

performant than these schemes, also costs ∼70% lesser.

0%

25%

50%

75%

100%

%
 S

LO
 C

om
pl

ia
nc

e

(a) R. Exhaustion, GoogleNet.

85%

90%

95%

100%

0

0.25

0.5

0.75

1

%
 S

LO
 C

om
pl

ia
nc

e

N
or

m
al

iz
ed

 $
 C

os
t Cost SLO Compliance

(b) Node failures, DenseNet 121.

Fig. 13: Performance and/or cost of all schemes under the

above adverse scenarios for the shown workloads.

Mixed Workloads: This study analyzes the effect of

co-location of ‘regular’ CPU-bound serverless workloads

(namely, file compression, dynamic HTML generation, and im-
age thumbnailing, from the SeBS Serverless Benchmark Suite

[42]) with the inference workloads. Here, we observe that

the SLO compliance of all cost-effective schemes, including

PALDIA, deteriorate (up to ∼10%) due to interference from

these ‘regular’ workloads running concurrently on the host

CPU of each node (Table III). The interference effects are

especially pronounced when the cost-effective schemes use

CPU-only nodes, since there is direct contention for the host

CPU’s resources from the regular workloads. Despite this,

PALDIA achieves ∼95% SLO compliance due to its choice

of hardware for certain parts of the trace. INFless/Llama (P)
and Molecule (P) suffer the least performance deterioration

since they exclusively use the most performant GPU (but

cost 6.9× versus PALDIA). PALDIA’s performance can likely

be improved by incorporating the interference effects of co-

resident CPU-bound workloads into our existing performance

model (which currently only accounts for GPU workload

interference). We leave this for future work.

Molecule(beta)(P) INFless/Llama(P) Molecule(beta)($) INFless/Llama($) PALDIA

99.99% 99.99% 76.44% 75.83% 94.78%

TABLE III: Resultant SLO compliance due to interference

from ‘regular’ serverless workloads.

VII. CONCLUDING REMARKS

The CPU-only and GPU nodes that are prevalent in cloud

datacenters can be leveraged for SLO compliant and cost-

effective serverless computing. To this end, we introduce PAL-

DIA, a heterogeneous serverless framework, which employs:

(i) cost-effective hardware acquisition policies that reduce

costs by choosing the appropriately-capable hardware to serve

dynamic workloads and/or request rates, and (ii) an intelligent

hybrid spatio-temporal GPU sharing technique that keeps the

framework highly SLO compliant by prudently trading off job

interference and queueing overheads. Our evaluation results

show that PALDIA outperforms state-of-the-art works in terms

of SLO compliance (up to 13.3% more) and tail latency (up

to ∼50% less), while reducing costs by up to 86%.

110

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Establishing Effective SLOs.” 2020, https://www.datadoghq.com/blog/
establishing-service-level-objectives/.

[2] “Twitter stream traces,” https://archive.org/details/twitterstream, 2020,
accessed: 2020-05-07.

[3] “AWS Lambda Cold Starts.” 2021, https://mikhail.io/serverless/
coldstarts/aws/.

[4] “Azure Functions Cold Starts.” 2021, https://mikhail.io/serverless/
coldstarts/azure/.

[5] “The State of Serverless.” 2022, https://www.datadoghq.com/state-of-
serverless/.

[6] “AWS EC2 Instance Types.” 2023, https://aws.amazon.com/ec2/
instance-types/.

[7] “AWS EC2 Pricing.” 2023, https://aws.amazon.com/ec2/pricing/on-
demand/.

[8] “AWS Lambda,” 2023, https://aws.amazon.com/lambda/.
[9] “Azure Public Dataset.” 2023, https://github.com/Azure/

AzurePublicDataset.
[10] “Banana.” 2023, https://docs.banana.dev/banana-docs/.
[11] “Banana Latency Guarantees.” 2023, https://www.banana.dev/banana-

vs-modal-comparison.
[12] “Beam.” 2023, https://www.beam.cloud/.
[13] “Cerebrium.” 2023, https://docs.cerebrium.ai/introduction.
[14] “Docker Swarm.” 2023, https://docs.docker.com/engine/swarm/.
[15] “Google Cloud Functions,” 2023, https://cloud.google.com/functions.
[16] “Google SRE Book: Implementing SLOs.” 2023, https://sre.google/

workbook/implementing-slos/.
[17] “GPUs vs CPUs for deployment of deep learning models.” 2023,

https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-
of-deep-learning-models/.

[18] “htop: an interactive process viewer.” 2023, https://htop.dev/.
[19] “Microsoft Azure Serverless Functions,” 2023, https://azure.microsoft.

com/en-us/services/functions/.
[20] “NVIDIA-Docker.” 2023, https://github.com/NVIDIA/nvidia-docker.
[21] “NVIDIA Grace Hopper Superchip Architecture In-Depth.” 2023,

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-
architecture-in-depth/.

[22] “NVIDIA Multi-Process Service.” 2023, https://docs.nvidia.com/deploy/
mps/index.html.

[23] “NVIDIA-smi.” 2023, https://developer.nvidia.com/nvidia-system-
management-interface.

[24] “NVTOP.” 2023, https://github.com/Syllo/nvtop.
[25] “PCIe Special Interest Group PCIe 6 Specification.” 2023, https://pcisig.

com/pci-express-6.0-specification.
[26] “Pipeline.” 2023, https://docs.pipeline.ai/docs.
[27] “Powerstat tool.” 2023, https://manpages.ubuntu.com/manpages/focal/

man8/powerstat.8.html.
[28] “Replicate.” 2023, https://replicate.com/docs.
[29] “Serverless Application Lens: Alexa Skills.” 2023, https:

//docs.aws.amazon.com/wellarchitected/latest/serverless-applications-
lens/alexa-skills.html.

[30] “Serverless Facebook Messenger Bot.” 2023, https://github.com/
pmuens/serverless-facebook-messenger-bot.

[31] “Serverless Optical Character Recognition (OCR) Tutorial.” 2023, https:
//cloud.google.com/functions/docs/tutorials/ocr.

[32] “trainML.” 2023, https://docs.trainml.ai/.
[33] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-Balter,

“RobinHood: Tail latency aware caching – dynamic reallocation from
Cache-Rich to Cache-Poor,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 195–212. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/berger

[34] V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and
C. Das, “Cypress: Input size-sensitive container provisioning and
request scheduling for serverless platforms,” in Proceedings of the
13th Symposium on Cloud Computing, ser. SoCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 257–272.
[Online]. Available: https://doi.org/10.1145/3542929.3563464

[35] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T.
Kandemir, and C. Das, “Kraken: Adaptive container provisioning for
deploying dynamic dags in serverless platforms,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’21. New York,

NY, USA: Association for Computing Machinery, 2021, p. 153–167.
[Online]. Available: https://doi.org/10.1145/3472883.3486992

[36] M. Brooker, A. Florescu, D.-M. Popa, R. Neugebauer, A. Agache,
A. Iordache, A. Liguori, and P. Piwonka, “Firecracker: Lightweight
Virtualization for Serverless Applications,” in NSDI, 2020.

[37] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A
cloud-scale acceleration architecture,” in 2016 49th Annual IEEE/ACM
international symposium on microarchitecture (MICRO). IEEE, 2016,
pp. 1–13.

[38] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” SIGARCH Comput.
Archit. News, vol. 45, no. 1, p. 17–32, apr 2017. [Online]. Available:
https://doi.org/10.1145/3093337.3037700

[39] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1707.01629

[40] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh,
“Serving heterogeneous machine learning models on Multi-GPU
servers with Spatio-Temporal sharing,” in 2022 USENIX Annual
Technical Conference (USENIX ATC 22). Carlsbad, CA: USENIX
Association, Jul. 2022, pp. 199–216. [Online]. Available: https:
//www.usenix.org/conference/atc22/presentation/choi-seungbeom

[41] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 624–637.

[42] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and
T. Hoefler, “Sebs: A serverless benchmark suite for function-as-
a-service computing,” in Proceedings of the 22nd International
Middleware Conference, ser. Middleware ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 64–78. [Online].
Available: https://doi.org/10.1145/3464298.3476133

[43] Z. Dai, G. Lai, Y. Yang, and Q. V. Le, “Funnel-transformer: Filtering
out sequential redundancy for efficient language processing,” 2020.
[Online]. Available: https://arxiv.org/abs/2006.03236

[44] J. Dean and L. A. Barroso, “The tail at scale,” Commun.
ACM, vol. 56, no. 2, p. 74–80, feb 2013. [Online]. Available:
https://doi.org/10.1145/2408776.2408794

[45] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” in Proceedings
of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles, ser. SOSP ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 205–220. [Online]. Available:
https://doi.org/10.1145/1294261.1294281

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.04805

[47] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
797–813. [Online]. Available: https://doi.org/10.1145/3503222.3507732

[48] H. Fingler, Z. Zhu, E. Yoon, Z. Jia, E. Witchel, and C. J. Rossbach,
“Dgsf: Disaggregated gpus for serverless functions,” in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2022, pp. 739–750.

[49] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 475–488. [Online]. Available:
http://www.usenix.org/conference/atc19/presentation/fouladi

[50] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-Latency video processing using thousands of tiny
threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). Boston, MA: USENIX Association,
Mar. 2017, pp. 363–376. [Online]. Available: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/fouladi

[51] D. Gu, Y. Zhao, Y. Zhong, Y. Xiong, Z. Han, P. Cheng, F. Yang,
G. Huang, X. Jin, and X. Liu, “Elasticflow: An elastic serverless training

111

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

platform for distributed deep learning,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
266–280. [Online]. Available: https://doi.org/10.1145/3575693.3575721

[52] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning
Inference Services with Resource Efficiency,” in USENIX Middleware
Conference, 2017.

[53] J. R. Gunasekaran, C. S. Mishra, P. Thinakaran, B. Sharma, M. T.
Kandemir, and C. R. Das, “Cocktail: A multidimensional optimization
for model serving in cloud,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). Renton, WA:
USENIX Association, Apr. 2022, pp. 1041–1057. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/gunasekaran

[54] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for optimizing
end-to-end at-scale neural recommendation inference,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 982–995. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00084

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[56] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” 2017.
[Online]. Available: https://arxiv.org/abs/1704.04861

[57] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1709.01507

[58] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2016. [Online]. Available:
https://arxiv.org/abs/1608.06993

[59] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in EuroSys, 2019.

[60] L. Ke, U. Gupta, M. Hempstead, C.-J. Wu, H.-H. S. Lee, and X. Zhang,
“Hercules: Heterogeneity-aware inference serving for at-scale personal-
ized recommendation,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 141–154.

[61] J. Kim, T. J. Jun, D. Kang, D. Kim, and D. Kim, “Gpu enabled
serverless computing framework,” in 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP), 2018, pp. 533–540.

[62] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “Albert: A lite bert for self-supervised learning of language
representations,” 2019. [Online]. Available: https://arxiv.org/abs/1909.
11942

[63] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” 2018. [Online].
Available: https://arxiv.org/abs/1807.11164

[64] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142–150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

[65] D. M. Naranjo, S. Risco, C. de Alfonso, A. Pérez, I. Blanquer,
and G. Moltó, “Accelerated serverless computing based on gpu
virtualization,” Journal of Parallel and Distributed Computing, vol.
139, pp. 32–42, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0743731519303533

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[67] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,

D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 446–459.

[68] S. Risco and G. Moltó, “Gpu-enabled serverless workflows for efficient
multimedia processing,” Applied Sciences, vol. 11, no. 4, p. 1438, 2021.

[69] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous serverless framework for auto-tuning video analytics
pipelines,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1–17. [Online]. Available:
https://doi.org/10.1145/3472883.3486972

[70] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[71] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018. [Online].
Available: https://arxiv.org/abs/1801.04381

[72] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” 2019. [Online].
Available: https://arxiv.org/abs/1910.01108

[73] K. Satzke, I. E. Akkus, R. Chen, I. Rimac, M. Stein, A. Beck,
P. Aditya, M. Vanga, and V. Hilt, “Efficient gpu sharing for
serverless workflows,” in Proceedings of the 1st Workshop on High
Performance Serverless Computing, ser. HiPS ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 17–24. [Online].
Available: https://doi.org/10.1145/3452413.3464785

[74] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Commun. ACM, vol. 64, no. 5, p. 76–84, apr 2021.
[Online]. Available: https://doi.org/10.1145/3406011

[75] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload
at a large cloud provider,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 2020, pp.
205–218. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/shahrad

[76] A. Sharma, V. M. Bhasi, S. Singh, R. Jain, J. R. Gunasekaran, S. Mitra,
M. T. Kandemir, G. Kesidis, and C. R. Das, “Stash: A comprehensive
stall-centric characterization of public cloud vms for distributed deep
learning,” in 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS), 2023, pp. 1–12.

[77] A. Sharma, V. M. Bhasi, S. Singh, G. Kesidis, M. T. Kandemir, and C. R.
Das, “Gpu cluster scheduling for network-sensitive deep learning,” arXiv
preprint arXiv:2401.16492, 2024.

[78] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose,
A. Krishnamurthy, and R. Sundaram, “Nexus: A gpu cluster engine
for accelerating dnn-based video analysis,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
322–337. [Online]. Available: https://doi.org/10.1145/3341301.3359658

[79] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available: https:
//arxiv.org/abs/1409.1556

[80] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency
serverless platform,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 138–152. [Online]. Available:
https://doi.org/10.1145/3472883.3486981

[81] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” 2014. [Online]. Available: https://arxiv.org/abs/1409.4842

[82] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” 2019. [Online]. Available: https:
//arxiv.org/abs/1905.11946

[83] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, 2009.

112

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

[84] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in ATC, 2018.

[85] H. Wu, J. Deng, H. Fan, S. Ibrahim, S. Wu, and H. Jin, “Qos-aware
and cost-efficient dynamic resource allocation for serverless ml work-
flows,” in 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2023, pp. 886–896.

[86] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and K. Li,
“Infless: A native serverless system for low-latency, high-throughput
inference,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 768–781. [Online]. Available:
https://doi.org/10.1145/3503222.3507709

[87] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
2017. [Online]. Available: https://arxiv.org/abs/1707.06484

[88] Y. Zhang, I. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety,
C. Delimitrou, and R. Bianchini, “Faster and cheaper serverless
computing on harvested resources,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, ser. SOSP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
724–739. [Online]. Available: https://doi.org/10.1145/3477132.3483580

[89] M. Zhao, K. Jha, and S. Hong, “Gpu-enabled function-as-a-service for
machine learning inference,” in 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 918–928. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS54959.2023.00096

113

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 19:14:59 UTC from IEEE Xplore. Restrictions apply.

