WILSON SPACES, SNAITH CONSTRUCTIONS, AND ELLIPTIC
ORIENTATIONS
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ABsTrRACT. We construct a canonical family of even periodic Ex-ring spectra, with
exactly one member of the family for every prime p and chromatic height n. At
height 1 our construction is due to Snaith, who built complex K-theory from CP°.
At height 2 we replace CP*>° with a p-local retract of BU(6), producing a new theory
that orients elliptic, but not generic, height 2 Morava E-theories.

In general our construction exhibits a kind of redshift, whereby BP(n — 1) is
used to produce a height n theory. A familiar sequence of Bocksteins, studied by
Tamanoi, Ravenel, Wilson, and Yagita, relates the K (n)-localization of our height

n ring to work of Peterson and Westerland building EQSGi from K(Z,n + 1).
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2 HOOD CHATHAM, JEREMY HAHN, AND ALLEN YUAN

1. INTRODUCTION

Integral cohomology, complex K-theory, and topological modular forms are three of
the most studied cohomology theories in algebraic topology. The corresponding spectra,
denoted HZ, KU, and TMF, share several desirable properties:

(1) They are E.-ring spectra, endowing the cohomology theories with both prod-
ucts and power operations.

(2) They are canonical, meaning they are constructed without arbitrary choices.

(3) They are integral, meaning they exist before completion at any prime.

These theories see progressively deeper information along the chromatic filtration of the
stable homotopy category, but they are increasingly difficult to construct. Constructing
similar theories at height 3 and beyond is a highly technical area of algebraic topology,
with deep connections to the theory of automorphic forms [BL10].

Here, we describe new cohomology theories represented by spectra satisfying (1) — (3).
Our theories are straightforward to construct, and there is exactly one of them for each
prime number p and chromatic height A > 1. Except for low values of h, our theories
do not exist before p-localization, but they do exist before any sort of completion.

Our starting point is a theorem of Snaith [Sna81] that constructs complex K-theory
out of integral cohomology. More precisely, Snaith built complex K-theory from CP* ~
Q>°32HZ:

Construction 1.1 (Snaith). Let 3: S? = CP' — CP* denote the generator of 7y (CP™).
Since CP* is an infinite loop space, its suspension spectrum X°CP™ is an Eq.-ring
spectrum. Taking the mapping telescope along multiplication by g produces another
Eoo-ring spectrum LCP>[3~!] [EKMM97, Section VIII|, and there is an equivalence

Ef(C]POO[B*l] ~ KU.
We iterate this procedure, using KU to construct our new height 2 theory at p = 2.

Construction 1.2. Consider the space
BU<6> >~ QOOTzﬁKU,

which is the 5-connected cover of the space BU. The first nontrivial homotopy group
of BU(6) is m¢BU(6) = Z. Choose a generator zg: S — BU(6), and let R denote the
Eoo-ring spectrum

R =STBU(6)[z5 ']

We prove the following theorems:

Theorem 1.3. The ring R has torsion-free homotopy groups concentrated in even de-
grees. In particular, R is complex orientable.

Theorem 1.4. Let K(n) denote a Morava K-theory of height n at the prime p. Then
K(n)®@ R=0 if and only if p=2 and n > 3.

After localization at the prime 2, both R and TMF are chromatic height 2 theories.
To relate them, recall that TMF is a homotopy limit of elliptic spectra [AHS01, Lurl8].
Examples of particular interest to us are the elliptic Morava E-theories, which we review
in Section 7. There is an elliptic Morava E-theory Ek’ & associated to any supersingular
elliptic curve C over a perfect field k of positive characteristic.

In Section 6 and Section 7, we explore what it means to give a ring map from R into
an elliptic Morava E-theory. We study this for various meanings of ‘ring map,’ ranging
from homotopy commutative to E,,. The following theorem is an example of the sort
of results we obtain:
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Theorem 1.5. Suppose that E,C & s an elliptic Morava E-theory associated to a su-
persingular elliptic curve C' over a perfect field k of characteristic 2. Then there is a
natural homotopy equivalence between

(1) The space of Eo-ring maps MSU — Ek)@, and

(2) The subspace of Eo-ring maps R — Ek)@ that respect the Weil pairing on C.

The subspace in (2) is the union of a collection of path components in the space
of Eq-ring homomorphisms R — Ek a- We clarify what it means to respect the Weil
pairing in the more precisely stated Definition 7.5 and Theorem 7.6.

Remark 1.6. There is geometric interest in E-ring maps out of MSU, since such maps
represent highly structured invariants of manifolds up to bordism.

Remark 1.7. Morava E-theories that are not elliptic often fail to receive even homotopy
commutative ring maps from R (cf. Example 6.14). In Corollary 6.29 we determine
exactly which Morava E-theories receive such homotopy ring maps.

1.1. The construction at a general prime and height.

Convention 1.8. For the remainder of this paper, we fix a prime number p and work
in the p-local category. That is to say, all spectra and simply connected spaces are
implicitly p-localized.

Convention 1.9. If F is a spectrum and n an integer, we sometimes use the notation
E, to denote

n=QCYX"E.
Convention 1.10. For each integer h > 0, we let v(h) denote the integer
h+1 _ 1
v(hy =2 "=
p—1

Definition 1.11. For each nonnegative integer h, let BP(h) denote the spectrum ob-
tained from BP by quotienting out the Hazewinkel generators vp1, Up12, ... € .(BP).
We define

Wy, = Q° L2 (WBP(h) = BP(h) 5,
Steve Wilson proved [Wil75] that any choice of generators vpy1,vp42,... yields the
same space W} — we choose the Hazewinkel generators solely for concreteness (cf.
Remark 2.6).

Remark 1.12. Note that Wy ~ CP at all primes p, while W; ~ BU(6) only for p = 2.
At odd primes W is a retract of BU(6).

Our ultimate generalization of Theorem 1.4 runs as follows:

Theorem 1.13. For each integer h > 0, let Ry, denote the Eo-ring spectrum
Ry, = STWy[z ™,
where x is a generator of the bottom nonzero homotopy group o, ny(Wh) = Z,y. Then:
(1) The homotopy groups of Ry are free Z,)-modules and vanish in odd degrees.
Hence, Ry, is complex orientable (Theorem 3.3 and Corollary 3.9).
(2) The ring Ry, is Landweber exact (Theorem 3.5).

(3) The chromatic localization L )Ry, vanishes if and only if n > h + 1 (Theo-
rem 8.1).

The last point states that R,_1 has chromatic height h for each integer h > 1. By
the main result of [Hah16], it is equivalent to the pair of computations K (h)® Rp_1 # 0
and K(h+1)® Rp—1 =0.
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While we are far from understanding the top chromatic localization Ly ) Rp—1 as
an E.-ring spectrum, we combine the Bousfield-Kuhn functor [Kuh89] with work of
Hopkins—Hunton [HH95| to identify L K(hyRh—1 as a spectrum:

Theorem 1.14. For h > 1 a positive integer, let E(h) denote the Johnson—Wilson
theory BP(h)[v; ]. There is an equivalence

LgmyRn-1 ~ Lgn) (\/ EQ[EUU) ;

where the right hand side is the completion of a countable wedge of even suspensions of
E(h). We stress that this splitting is additive, but not at all multiplicative.

1.2. Bocksteins and the top chromatic localization. In recent years there have
been other generalizations of Snaith’s theorem, also designed to produce E..-rings of
chromatic heights h > 1 [Wesl7, Lurl8, Pet19]. Unlike our work, these works proceed
entirely in the K (h)-local category, and invert K (h)-local Picard elements. Notably,
Lurie proved that all Morava E-theories admit such a construction [Lurl8, Construction
5.1.1, cf. Proposition 4.3.13].

While our ring Ry, 1 is integral, its K (h)-localization L )Ry, -1 is closely connected
to constructions of Peterson and Westerland [Pet19, Wes17]. We demonstrate this con-
nection by giving a different, and intrinsically K'(h)-local, construction of L ) Rp—1.

Definition 1.15. Concatenating the p-Bockstein, vi-Bockstein, vo-Bockstein, ..., and
vp—1-Bockstein yields a sequence of spectra
ShHF, — SMIHZ - 22 WHh2Bp(1) 5 2 @+h=3gp2) .. o 22 DBP(L — 1),
which we call the Bockstein tower. We refer to the long composite

S HF, — 22 UBP(h — 1)
as the Tamanoi Bockstein.
Remark 1.16. The Tamanoi Bockstein is studied by Tamanoi in [Tam97], where it
is used to define his BP fundamental class. It features in the proof by Hopkins and

Ravenel that suspension spectra are harmonic [HR92], as well as in several other papers
such as [SW15, RWY9g|.

Remark 1.17. Applying the functor £°Q°°(—) to the above sequence of Bocksteins
yields a sequence of E.,-ring spectra
ETK(FP’ h) —> ZTK(Z, h + 1) —> ETBP<1>2V(1)+h72 —> tt —> ZiOWh,]_,
and we will also refer to this composite of Eo.-ring maps as the Tamanoi Bockstein.
Definition 1.18. In Section 5, we follow [Wes17, Lemma 3.8] in considering a K (h)-
local splitting
L ETK(Fp h) = LgnySV ZV ZE2V - v 29771
where Z is a ®-invertible K (h)-local spectrum, representing an element of the K (h)-local
Picard group. The inclusion
20 Z = L) ST K(Fy, h)
defines an element z in the Picard graded homotopy groups 7, L g 1) X K(Fp, h). Com-
posing z with the Tamanoi Bockstein defines a class 2z € m, Ly )XWy 1.

Our alternative construction of Ly ) Rp—1 is provided by the following theorem:

Theorem 1.19. For h > 1 an integer, let z € T L)X Wh_1 denote the Picard
graded homotopy class of Definition 1.18. Then there is an equivalence of K(h)-local
Eo-ring spectra

Ly Rn-1~ LS Who1[z7].
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Remark 1.20. We may also use the classical p-Bockstein, which gives a map
LK(h)EfK(FP, h) — LK(h)EiOK(Z, h+ 1),
to define a ring
B(0) = Ly STK(Z,h+ 1)),
The ring B(0) was studied by Westerland [Wes17] when p > 2 and by Peterson [Pet19]
for p > 0. Westerland proved an equivalence
B(0) ~ E}"5*

where Ej is the Morava E-theory associated to the Honda formal group law over IF,n
and SG is a certain subgroup of the Morava stabilizer group. He showed that B(0) is
“half the K (h)-local sphere” meaning there is a fiber sequence

We refer the reader to [Wesl7] for details.

)

Remark 1.21. Inverting z along the Bockstein tower yields an entire sequence of E-
ring spectra. For example, if h = 4 there is a sequence

L@ 2FK(Z,5)[z7!] ———— Lg@)BFBP) 5, (1) 120271

ﬁ\/

LK<4)21°BP<2>2V(2)+1[271} — LK(4)BP<3>2V(3)[Z*1] ~ L) Rs.

Westerland [Wes17] identified the first element of the sequence as EZSGi. Theorem 1.14
relates the final element to a completed wedge of copies of E4. The middle elements of
the sequence have not yet been studied.

Open Question 1. Can the second element of the sequence,
LK(h)ZiOMQV(l)+h72[Z_1]a

be identified in more familiar terms when h > 2?7 Is it in any way related to a fixed
point of Morava E-theory by a subgroup of the Morava stabilizer group?

1.3. Further open questions. We end this introduction by advertising a few addi-
tional open questions:

Open Question 2. Since the ring Rj_; is complex orientable, m,(Rp_1) carries a
formal group. Can this ring and formal group be described algebro-geometrically? Note
that, since it is Landweber exact, Ry _1 is determined as a homotopy commutative ring
by this formal group.

Open Question 3 (cf. Section 6). For any formal group I of height h over a perfect field
k of characteristic p, recall that there is an associated Morava E-theory Ej r [GHO4|.
For what height h Morava E-theories Ej r does there exist a homotopy commutative
ring map

Ry — Epr?
Which of these homotopy commutative ring maps admit E., lifts?

Open Question 4 (cf. Question 7 in Section 3). Are there E,-ring homomorphisms
MU — Rp_17

Open Question 5 (cf. Question 8 in Section 4). Let x4 € m4(BSU) denote a generator.
Does the E,-ring spectrum

SPBSU[z; ']
admit an additive splitting into a wedge of suspensions of BP? In Remark 4.4 we observe
that this spectrum is a retract of a wedge of suspensions of BP.
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Open Question 6. In [CSY21|, Carmeli, Schlank, and Yanovski observe that the
sequence of K (n)-local rings in Remark 1.21 admit canonical T'(n)-local lifts, essentially
because the Picard element z € my Lg ()X K(Fp, n) lifts to the T'(n)-localization. Are
the Bousfield classes of these T'(n)-local rings distinct, and do these Bousfield classes
redshift under algebraic K-theory?

1.4. Organization. The paper begins with an explanation of how we arrived at our def-
inition of the rings Ry,. In Section 2, we review Steve Wilson’s PhD thesis work [Wil75],
which defines the spaces W), and proves that they enjoy remarkable properties. In Sec-
tion 3, we explain exactly how these properties ensure that R; has even-concentrated,
torsion-free homotopy. Additionally, we prove that Rj is Landweber exact, and use this
to prove Theorem 1.14.

In Section 4 we explore a few variations on our constructions that are of infinite
chromatic height — this is largely tangential to the rest of the paper. We justify the
claim that ¥3°BU(6)[z; '] has infinite height when p > 2.

In Section 5 we give our alternate construction of Ly (x)Rp—1, using the Tamanoi
Bockstein, and we also prove that this top chromatic localization is non-zero.

In Section 6 we determine exactly which height 2 Morava E-theories receive homotopy
commutative ring maps from R;. We also characterize, at any height, which Morava
E-theories receive Eo-ring homomorphisms from B(0).

In Section 7 we recall the notion of an elliptic Morava E-theory, as well as work
of Ando, Hopkins, Strickland, and Rezk on the o-orientation. We then use the o-
orientation to give our proof of Theorem 1.5.

Finally, Section 8 proves that Ly (,)Rn—1 vanishes for n > h. The proof uses the
language of Hopf rings, and is largely independent of the rest of our work.

1.5. Conventions. We fix throughout this paper a prime p. Unless we explicitly com-
ment otherwise, all spectra and simply connected spaces will be implicitly p-localized.
For the convenience of the reader, we summarize here some of the conventions introduced
later in the paper.

We define

V1,V2,... € F*(BP) = Z(p)[vl,vg, .. ]

to be the Hazewinkel generators [Rav03, A2.2.1|. For each integer h > 0, we let BP(h)
denote the quotient spectrum BP /(v 41, Upt2, - . .), and we let E(h) denote the Johnson—
Wilson theory BP(h)[v; !].

If E is a spectrum and m an integer, we sometimes use the notation £, to denote

E,, =Q°Y"E.
For any integer m > 0, we let v(m) denote the integer
m—+1 1
v(m) = L ——
p—1

We use W}, 2, to refer to the space
Wh ok = Q°X2 BP(h),

and use W}, as shorthand for
Wh = Wh 2u(n)-

The ring Ry, o5 is obtained by inverting the bottom cell S2k Y Wh,2k, and we
denote Ry, 2,(x) simply by Rp,.

The symbol K (h) always denotes the homotopy associative, (2p” —2)-periodic Morava
K-theory associated to the Honda formal group law over Fp,.

We will generally use I" to denote a finite height h > 1 formal group over a perfect field
k of characteristic p, with n-torsion schemes I'[n]. We let Ej r denote the associated



WILSON SPACES, SNAITH CONSTRUCTIONS, AND ELLIPTIC ORIENTATIONS 7

Morava FE-theory, which is a 2-periodic Eq-ring spectrum. We let Kj r denote the
associated 2-periodic Morava K-theory, which we view as a homotopy associative ring
spectrum equipped with a homotopy ring map from Fj, r.

We fix a K (h)-local splitting [Wes17, Lemma 3.8]

Ly STK(Fp, h) =~ LgnySV ZV Z9% v v 2971

and let z: Z — L) XCK(F,, h) denote the inclusion of the wedge summand. We also
fix an isomorphism of K (h).-algebras

K(h)«(K(Fp, h)) = K (h).[fol/(f§ = (=1)""vn fo),

such that K (h).(z) has image the K(h).-submodule spanned by fy. The degree of fy
is 2v(h — 1).

1.6. Acknowledgements. We thank Craig Westerland for some very enlightening dis-
cussions, particularly regarding Sections 5 & 6. We also owe thanks to Eric Peterson,
Piotr Pstragowski, Doug Ravenel, Andrew Senger, and Steve Wilson, and to the anony-
mous referee for numerous clarifying and enlightening remarks. Most of all we thank
Mike Hopkins, Jacob Lurie, and Haynes Miller, who served as the three authors’ three
PhD advisors and endured countless conversations about this work over the last several
years. Through the course of the work, the second author was supported by NSF Grant
DMS-1803273, and the third author by NSF Grant DGE-1122374.

2. WILSON SPACES

Definition 2.1. A simply connected space W is a Wilson space if:
(1) For each k > 0, Hox(W;%Z,) is a finitely generated free Z,)-module, and

H2k+1(W; Z(p)) = 0.
or eac > , T2k 1s a finite y generate ree -module, an
2) For each k > 1, moy (W) is a finitel d free Z,)-module, and
7T2]€+1(W) = (0.

Remark 2.2. Condition (1) of Definition 2.1 may be summarized by the statement that
Wilson spaces have even cells. This means that they admit p-local cell decompositions
with no odd-dimensional cells and only finitely many cells in each even dimension. A
Wilson space is a simply connected space that simultaneously has even cells and even
homotopy groups.

Example 2.3. The spaces CP*°, BU, BSU, and BU(6) are Wilson spaces for all primes
p. The spaces BSp and BO are Wilson spaces for primes p > 2. The product of any
finite number of Wilson spaces is a Wilson space.

As part of his PhD thesis work [Wil75], Wilson provided a complete classification of
all Wilson spaces. We recall his results:

h+1_q
p—1

Definition 2.4. Let h, k > 0 denote nonnegative integers with 1 < k <v(h) =Z
Denote by W}, o; the simply connected space

Whar = Q°X2*BP(h).
The space W}, o is said to be atomic if v(h — 1) < k < v(h). When k = v(h), we will

sometimes abbreviate W, o5, as Wp,.

Theorem 2.5 (Wilson). For each h > 0 and 1 < k < v(h), the space Wy, o1, is a Wilson
space. FEvery Wilson space is a product of atomic Wilson spaces, and no atomic Wilson
space can be expressed as a nontrivial product of other spaces.
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Remark 2.6. Definition 2.4 depends on a choice of BP(h) as a p-local spectrum. In
this paper, we define BP(h) as the quotient of BP by the regular sequence of Hazewinkel
generators vp11, Upta, - .. € m(BP). While a different choice of generators might yield a
different spectrum BP<(h), it is a consequence of Wilson’s work that the spaces W, o do
not depend on the choice of BP(h). The spectrum BP(h) is likely unique as well: recent
work of Angeltveit and Lind [AL17] shows that all choices of BP(h) are equivalent after
p-completion, and conjecturally this is true prior to p-completion. For example, BP(1)
is unambiguous as a p-local spectrum by a theorem of Adams and Priddy [AP76].

Example 2.7. Some of the spaces W}, o1, may be identified in more familiar terms:
o At all primes p, Wy = Wy 2 ~ CP™.

o At p= 2, WLQ ~ BU, W1,4 ~ BSU, and W1,6 = W1 >~ BU<6> While both W174
and Wi ¢ are atomic, BU is not atomic. Indeed,

BU ~ CP* x BSU ~ Wo,g X W1,4.
o At p =3, Wi 4 ~ BSpin and W; = W, g ~ BString.

We note here two corollaries of Theorem 2.5 that are not immediate from the definition
of Wilson spaces:

Corollary 2.8. FEvery Wilson space admits at least one infinite loop space structure.

Proof. Each atomic Wilson space is canonically an infinite loop space, and every Wilson
space is a product of atomic components. O

Corollary 2.9. Suppose that W is a Wilson space. Then the identity path-component
of O2W is also a Wilson space.

Proof. Since every Wilson space W is a product of atomic Wilson spaces, it suffices to
check the corollary for atomic Wilson spaces. For atomic Wilson spaces, the statement
follows from the relation Q?W), o ~ W ox—2. O

Remark 2.10. For k < v(h) we have the relationship W}, op = Q2W}, 2. 42. However,
the spaces W}, cannot be written as Q2W for any other Wilson space W.

Remark 2.11. There can be many different infinite loop space structures on a single
Wilson space W. For example, BU is usually equipped with the infinite loop space
structure arising from the addition of virtual rank 0 vector bundles. However, BU also
has an infinite loop space structure arising from the tensor product of virtual rank 1
vector bundles. This “multiplicative” infinite loop space structure is given by Q°°(X4kuV
Y2HZ), while the additive structure is given by Q°°X2ku.

Work of Adams and Priddy [AP76] shows, at each prime p, that W; has a unique
p-local infinite loop space structure. In forthcoming joint work with Andrew Senger, the
middle author uses the Angeltveit—Lind theorem [AL17] to prove that the p-completion
of any atomic Wilson space admits a unique p-complete infinite delooping.

Convention 2.12. For each h > 0 and 1 < k < v(h), we will regard W}, o, as an infinite
loop space via the formula

Wh ok =~ Q%2 BP(h).
This infinite loop space structure in principle depends on our choice of the Hazewinkel

generators in the definition of BP(h). As explained in Remark 2.6, this choice is con-
jecturally immaterial and has been proven irrelevant after p-completion.
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3. SNAITH CONSTRUCTIONS

In [Sna81], Snaith provided elegant constructions of the complex K-theory spectrum
KU and the periodic complex bordism spectrum MUP.

Theorem 3.1 (Snaith). Let
B: §? = CP' - CP* — BU
denote the bottom cell. Then there are equivalences of homotopy commutative ring spec-
tra
SPCP>®[B~ ! ~ KU, and
EPBU[B!] ~ MUP.

Remark 3.2. The equivalence X CP>[37!] ~ KU is in fact one of Ex-ring spectra.
The Eo-ring structure on ©°BU[37!] was studied in detail by the second and third

author in [HY19], where it is proved that the equivalence °BU[$7!] ~ MUP is E; but
not Es.

This paper arose as an attempt to axiomatize the properties of CP* and BU that
make Snaith’s constructions have reasonable homotopy groups. We are led to the fol-
lowing result:

Theorem 3.3. Let W denote a Wilson space equipped with a chosen double loop space
structure, and suppose that x € mo (W) is a homotopy class. Then the Eqo-ring spectrum

-1
YWl
is complex orientable, with torsion-free homotopy groups concentrated in even degrees.

Proof. If k = 0, then the image of  in m,X°W is 1 and the statement is trivially true.
Suppose that £ > 0. Because the space W has even homotopy groups, there are no
obstructions to making the following diagram

G2k ;3’ W.
22’“_2@9’(’/"
After suspending, this gives a map of spectra
ERRR2CP™ — BPW
and we may further compose to obtain a chain of maps
-1
RORHTICP® — YPW — 2PW [z T 2EEEW [z .
By construction, this gives a complex orientation of EfW[x’l], and hence a homotopy
commutative ring homomorphism
MU — W[z~ .
This implies in particular that ¥3°W[z~!] is a homotopy MU-module. Using the unit
map S — MU, the sequence of maps
S®EPW[a™!] > MU STW[z '] — SPW[a ™!
exhibits W [z~ as a retract of MU ® X°W [z~ !]. To finish, we need only show that
MU, (W)[z~1] is torsion-free and concentrated in even degrees. The Atiyah-Hirzebruch
spectral sequence
H.(W;m.(MU)) = MU, (W)

shows that MU, (W) is torsion-free and even concentrated. This property cannot change
upon inverting a class. O
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Remark 3.4. We suspect that some version of Theorem 3.3 holds assuming less than
a double loop space structure on W. A similar remark applies to Theorem 3.5 below.
It is technically convenient to posit a double loop space structure because there is a
good general theory for inverting elements in Eo-ring spectra [MNN15, Appendix A]. In
practice, all Wilson spaces we are interested in come equipped with infinite loop space
structures.

Theorem 3.5. Let W denote a Wilson space equipped with a double loop space structure,
and suppose x € o (W) is a homotopy class. For any choice of homotopy commautative
ring map

BP — W[z,

the homotopy groups m,(SW[z~]) are a Landweber ezact BP,-module.

Proof. Let A denote the ring spectrum E‘fW[afl]. The map of homotopy ring spectra
BP — A defines a sequence p,v1,vs,. .. € m«(A), and our goal is to prove that this is a
regular sequence. By Theorem 3.3, p is not a zero-divisor in 7, (A). Assume by induction
that we have shown the sequence p,vy,...,vs_1 to be regular for some positive integer
¢. Let I, denote the ideal (p,v1,...,v—1) C 74 (A) and suppose that a € m,(A) satisfies
the equation
vea =0 (mod Ip).

We would like to show that a itself is zero in m.(A)/I,.

We first claim that it suffices to show that a = 0 in BP,(A)/nr(ly) where ng(Ie)
denotes the image of the ideal I, under the right unit map ng: S® A — BP ® A. To
see this, note that since A is a homotopy commutative BP-algebra, we have a sequence
A — BP® A — A of homotopy commutative rings such that the composite is the
identity. As a result, we have the diagram of commutative rings

mu(A) —— BP,(A) —— m.(A)

| | |

7. (A)/Ip —— BP.(A)/nr(ls) —— 7. (A)/1;

such that the horizontal composites are the identity. It follows that the map m.(A)/I —
BP.(A)/nr(Iy) is an injection, so it suffices to show that the image of a in BP,(A4) /nr(1;)
is zero.

We recall two facts about Landweber ideals:

(1) Since I, is an invariant ideal, BP,(A)/nr(Ir) = BP.(A)/(p,v1,...,ve—1) where
v; € BP,(A) denotes the image of v; under the left unit map BP®S — BP® A.
(2) There is a congruence
nR('UZ) =wv; mod (pavlw"avéfl)
in BP.(A) because the analogous equation holds in BP,BP.
Combining the above two facts, we see that
vea =0 mod (p,v1,...ve—1)
in BP,(A), and we would like to conclude that a is itself congruent to zero modulo
(p,v1,...ve—1). There is an equivalence of rings BP,(A) = BP.(W)[z~!], so for some j
the equation _
2vea =0 mod (p,v1,...,0-1)
holds in BP,(W). The degeneration of the Atiyah-Hirzebruch spectral sequence for
BP.. (W) implies that BP,.(W) is a free BP,-module, and so

t'a=0 mod (p,v1,...,v_1)

in BP,(W). Inverting x, we see that a is zero in BP.(A)/(p,v1,...,vs—1) as desired. O
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A theorem of Hopkins and Hunton [HH95] restricts the homotopy type of any Landwe-
ber exact ring spectrum:

Definition 3.6. A space X is a weak product of Wilson spaces if there is some sequence
Ay, Ag, - -+ of Wilson spaces such that

N
X ~ h?vcggom (}_[1 Ai> .

Theorem 3.7 (Hopkins—Hunton). Let E denote a homotopy commutative, complex ori-
ented, Landweber exact ring spectrum. Suppose additionally that w.(F) is concentrated
in even dimensions, and that each even homotopy group mwan(E) is free of countable rank
over Zyy. Then, for each integer £, the connected component of the identity in

Q°x*E
is a weak product of Wilson spaces.

Corollary 3.8. Let W denote a Wilson space equipped with a double loop space struc-
ture, let x € wo. (W) denote a homotopy class, and let ¢ denote an integer. Then the
connected component of the identity in

QR E Wzl
is a weak product of Wilson spaces.

Proof. Use Theorem 3.5 to apply Theorem 3.7. (I

Corollary 3.9. Let W denote a Wilson space equipped with a double loop space struc-
ture, let © € mo.(W) denote a homotopy class, and let n denote any integer. Then
Ton (ST W[z™1) is a free Zy)-module.

Proof. The desired group is mo of the connected component of the identity in
QOOEQ—QnEioW[:E—I]’

so it suffices to show that 72 of a weak product of Wilson spaces is a free Z,)-module.
This is true because the homotopy groups of each Wilson space in the weak product are
free Z,)-modules, by definition. (I

Corollary 3.10. Let W denote a Wilson space equipped with a double loop space struc-
ture, let x € ma. (W) denote a homotopy class, and let n denote a positive integer. Then
there is a K (n)-local splitting

LMMETWW‘H:LMM(VE”EWU

of LK(H)ETW[x_l] into the completion of a countable wedge of even suspensions of the
Johnson-Wilson theory E(n). We allow here for the possibility that this wedge be empty
or finite.

Proof. We may use the Bousfield-Kuhn functor ®,, [Kuh08] to calculate
LSS Wz ~ &, (Q°EX Wz~ 1]).

It suffices to compute ®,, of the connected component of the identity in QWZfW[x_l],
since ®,,(X) is equivalent to ®,,(7>1X) for any space X. The connected component of
the identity is a weak product of Wilson spaces and the Bousfield-Kuhn functor com-
mutes with both finite products and filtered colimits [Heul8, Proposition 3.21, Theorem
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2.3]. To finish, it thus suffices to calculate ®,,(A) whenever A is an atomic Wilson space.
In particular, it suffices to note that

0if n >k,
P, (A°T*BP(k)) ~ %" Ly () BP(k) ~ { Ly E2"E(k) if n = k, and
LK(n) (\/ EME(H)) if n < k.
The final bit of this calculation, computing L, BP(k), may be found as [HS99a,
Theorem 4.3]. O

The following are our primary examples of Snaith constructions:

Definition 3.11. For each h > 0 and 1 < k < v(h), consider the Wilson space which is
the infinite loop space

Wh ok = Q°X2 BP(h).
We denote by R ok the Eo-ring spectrum

Rpok = S Whaklz5, ],

where x4, is any generator of the bottom nonzero homotopy group of W, o5. Just as we
denote W}, 9,,(n) by Wi, we abbreviate

Ry = Ry 20(n)-
Open Question 7. Which of the rings Rj, o1 admit highly structured ring homomor-
phisms MU — R, 217
Example 3.12. By work of Snaith [Sna81], we may make the identifications
Ry = Ry» ~ KU as E,-rings,
and at p =2
Ry 2 ~ MUP as homotopy commutative rings.
The next simplest cases at p = 2 are:
Ry 4 ~ ¥°BSU[z; '], and
Ry = Ry 6 ~ STBU(6)[25 ]
Remark 3.13. Theorem 3.3 applies when inverting any element = € 7,.(W). In the
rest of the paper, we only invert classes in the bottom nontrivial homotopy group.
To comment briefly on what happens in general, consider the case W = BU. Instead

of inverting the Bott element 8 € mo(BU), one might instead invert a generator zg of
7m6(BU). There is an E,-ring homomorphism

Ry = XTBU(6)[z5 '] — S°BU[zg ']

At p = 2, we will prove that Ry is K (2)-locally nontrivial but K (3)-acyclic. Though we
do not prove it here, computations show that $°BU[zg '] is K (1)-locally nontrivial but
K(2)-acyclic. In general, we expect that inverting classes other than the bottom cell
yields less interesting ring spectra, but it would be good to know if the results of such
inversions can be decomposed into smash products of simpler, well-known ring spectra.

4. THE INFINITE HEIGHT CASE

The Snaith constructions KU ~ X°CP*[3!] and MUP ~ XBU[3~!] are both
complex-oriented, but the former is supported at only finitely many chromatic heights.
We view this dichotomy as related to the fact that CP* is not the two-fold loop space
of a Wilson space, while BU = Q?BSU is.
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Theorem 4.1. Let W and W' be Wilson spaces such that W = Q?W'. Suppose
that W is 2k-connective and that x € mo(W) induces a surjection H**(W;Z,) —
H?*(52%, Z,)). Then there is an Eo-ring homomorphism

SPW(z~!] — MUP.

In particular, for no chromatic height n is LK(n)Eﬁf’W[:Efl] = 0, since there are no ring
homomorphisms from the zero ring to a nonzero ring.

Proof. Note that the element 2 € moy, (W) may also be viewed as a map S%¢+2 — W',
We begin by recalling that Es-ring maps

LEW — MUP
are equivalent to double loop maps

W — GL;(MUP).
These are in turn the same as maps of pointed spaces

W' — B2GL,(MUP).
Since W' admits an even cell decomposition and
7;(B2GL1 (MUP)) 2 7;_o(MUP) for i > 2,
the relative cohomology groups
HY(W', §%+2; 1, . 1B2GL, (MUP))

vanish. Thus, there are no obstructions to forming the dashed arrow in the diagram

2k
s2+2 2 B2GL, (MUP)

wr.
Applying 92, we get a double loop map
W — GL;(MUP),

and hence an Es-algebra map
LW — MUP

that sends = to $%*. Since $%" is invertible in 7,(MUP), we obtain the desired Ey-ring
homomorphism
EPWz~!] — MUP.

Corollary 4.2. Suppose h >0 and 1 < k < v(h). For all integers n > 0,
Lk (nyRn 2k # 0.
Example 4.3. At the prime p = 3,
BU(6) = Q*°S%u ~ Q> (ZBP(1) v S°BP(1)) = Wy 6 x Wis
as infinite loop spaces. It follows that
SPBU(B)zg'] ~ Ri6 ® ST Wis.

We have just learned that K(n).(Rig) # 0 for all n > 0. On the other hand,
K(n)«(Wi1s) # 0 because W7 g has even cells. It follows from the Kiinneth isomor-
phism that K (n).(XBU(6)[z5']) # 0. Analogous arguments at larger primes justify
the statement from the introduction that ¥3°BU(6)[z4 '] has infinite chromatic height
when p > 2.



14 HOOD CHATHAM, JEREMY HAHN, AND ALLEN YUAN

Open Question 8. Suppose that h > 0 and 1 < k < v(h). Is the spectrum Ry, of a
wedge of even suspensions of BP?

Remark 4.4. The answer to Question 8 is yes for p =2, h =1, and k = 1, by Snaith’s
computation
R172 ~ MUP.

The work of Ravenel and Wilson [RW77] shows that BP,.(BP(h) o) is a polynomial ring
over BP, when k < v(h). It follows in this case that BP. (R 2x) is a free BP,-module.
Since Ry of is complex-oriented, it is a retract of BP ® Rj, 2. This shows that Rj, o
is a retract of a wedge of even suspensions of BP. If Ry, 2, were connective, it would
follow that Rj 2, were a wedge of copies of BP, but we do not know how to conclude
something like this in the nonconnective setting.

It remains to analyze the chromatic localizations of Ry, = Ry, 2, (), where Theorem 4.1
does not apply. Most of the rest of this paper will be a meditation on this problem.

Remark 4.5. Suppose h > 0. Start with the quotient map of spectra
BP(h + 1) — BP(h)

and apply the functor £3Q°%2(M) (—). After inverting the bottom class, one obtains
a map of E.-ring spectra
Ryy1,00(n) = R,

where the source has infinite chromatic height. In the case h = 0 and p = 2 this
construction is familiar: it produces the map

MUP — KU
featured in, e.g., [GS09].

5. THE BOCKSTEIN TOWER

Throughout this section we fix an integer A > 1. In Section 8, we will prove that
the ring Rp 1 = Rp_1,2,(h—1) has chromatic height h. In this section, we study the top
non-trivial chromatic localization L g (5)Rp—1-

Our main theorem is an alternate construction of Ly () Rp—1. As we will explain, the
construction naturally produces a sequence of K (h)-local E.-rings

B(O) — B(].) — s = B(h — 1) = LK(;L)Rhfl.

We find this sequence extremely interesting, and, for the moment, mysterious. The ring
B(0) was studied extensively by Westerland [Wes17] for p > 2, and by Peterson [Pet19]
for large primes p > 0.

Remark 5.1. We freely use the language of [HMS94], and in particular assume famil-
iarity with the K (h)-local category and the notion of Picard graded homotopy.

5.1. A K(h)-local idempotent.

Recollection 5.2. Let K (h) denote the (2p" — 2)-periodic Morava K-theory associated
to the Honda formal group law over F,, with 7. K(h) = F,[vf] and |vy| = 2p" — 2.
Ravenel and Wilson computed [RW80] that

K(h)«(K(Fp, b)) = K (h).[fol/(f§ = (=1)""vn fo),

with |fo| = 2v(h — 1). Furthermore, fj is a coalgebra primitive. See also [HL13] for the
prime p = 2.
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Remark 5.3. Suppose p = 2 and consider the natural splitting

EFK(Fp,h) ~ SV E*K(Fa, h).
The above computation implies that K (h).(E*°K(Fa, h)) = K(h).{fo}. Thus, there is
a K (h)-local splitting

LK(h)EiOK(FQ, h) >~ LK(h)S \Y Z,
where Z = Ly X°K(Fg,h) is an element of the K(h)-local Picard group. Since
f& = (=1)"1uy, fo, it must be the case that Z®? ~ Z, so in fact Z ~ L ;S and there
is a K (h)-local splitting

LK(h)Zi_OK(]FQ, h) ~ LK(h)S V LK(h)S~
Remark 5.4. As explained in [Wesl7, Lemma 3.8|, for p > 2 there is a K (h)-local
splitting
Ly STK(Fp, h) = LgnySV ZV Z9? v v Z9P7 1

Here Z is a ®-invertible K(h)-local spectrum, but Z is not the sphere. Instead, Z
represents an element of order p—1 in the Picard group of the K (h)-local category. The
image of the inclusion K (h).(Z) — K (h).(K(Fp, h)) is K(h).{fo}, and for our purposes
this may be taken as the defining property of Z.

Definition 5.5. At all primes, we will use z to refer to the inclusion
z: Z — Lgmn) ST K(Fp, h),
s0 z € M, (L) STK(Fp, b)) is an element in Picard graded homotopy.

Remark 5.6. Let A denote a K (h)-local E-ring equipped with a map of Eo-rings
YPK(F,, h) — A.
Then the composite
2: Z = Lgam)XTK(Fp, h) = A
determines an element z in the Picard graded homotopy of A. We may invert this
element by taking the mapping telescope
colim(A - Z'@A—-Z20A— )
of the A-module map
2: ZQA— A,
and then K (h)-localizing the result, obtaining a K(h)-local Eo-ring A[z71]. If the

reader prefers not to contemplate inversion of Picard graded elements, it is equivalent
to invert the class 2P~ € mo(A4).

Proposition 5.7. Suppose that A is a K(h)-local Ex-ring equipped with a map of
Eoo-rings
¢: BTK(Fp, h) — A.
Then there is a splitting of A such that the localization map
A= Alz7Y
is the projection onto a wedge summand.

Proof. Let K denote the 2-periodic Morava K-theory associated to the Honda formal
group law over F,,, so K is the 2-periodification of K(h). We denote the periodicity
generator in mo K by u, so that w?" =1 = v,. The natural map K(h) — K allows us to
view elements of K (h).(K(Fp, h)) as elements of K, (K(F,,h)).

Now, let w € mo(L(n)ySFK(Fp, h)) be the element 1 — (—1)"~'2P~1. The map ¢
allows us to interpret w and z as elements in the Picard graded homotopy of A. We

claim that the natural map
A= Alz7Y v Aw™
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is an equivalence. Since the rings are K (h)-local, it suffices to check in K-homology.
Recall that K,(z) has image the K, multiples of an element f; € K.(K(F,,h)), and
that fo satisfies the equation

5= (0" o fo.
We define f € Ko(K(Fp, h)) to be
f _ ufv(hfl)fo'
We define g € Ko(K(F,, h)) to be the Hurewicz image of w. Then one has the equations
g=1- (1"t and gf =0,
and one needs to show that the natural map
K.(A) = K (AT @ K(A)g™]

is an equivalence. But this is clear because inverting f is the same as inverting the class
(—=1)"=1fP=1 and this is a complementary idempotent to g.
O

5.2. The rings B(i).
Construction 5.8. The quotient maps
BP(n) — BP(n — 1)
have associated Bockstein maps
BP(n — 1) — Sl*IT1BP(n).
These assemble into a Bockstein tower
SMHF, — SMHZ - SMPBP() — - 22 UBPGR - 1),

and we will refer to the long composite as the Tamanoi Bockstein. Applying Q> to the
Bockstein tower gives a sequence of infinite loop maps:

K(F,,h) > K(Z,h+1)—--- = Wp_1.

Suspending and K (h)-localizing then yields a sequence of E..-ring spectra:
LgmyXTK(Fp, h) = LgmyXTK(Z,h+1) = -+ = Lgmy ST Who1.
Finally, we invert z to obtain a sequence of E.,-rings
L STK(Fp, h)[z"'] — B(0) = B(1) —» --- — B(h — 1).

In particular, we make the definition

B(i) = Ly EEBPG@ oy iy —i—1 2.
Example 5.9. Note that

B(0) = Lic(y STK(Z. b+ D[],
For odd primes p, Westerland [Wes17, Corollary 3.25] proved that
B(0) =~ B[5°",

where Ej is the Morava E-theory associated to the Honda formal group law over IF .
Here, SG* denotes a specific subgroup of the Morava stabilizer group, defined by West-
erland as the kernel of a twisted version of the determinant map (see [Wesl7, Section
2.2] for details).
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Remark 5.10. For p > 2, Westerland defines a different K (h)-local Picard element
S(det), and proves [Wes17, Theorem 1.2 & Corollary 3.18] that B(0) may alternatively
be defined by inverting a class

p: S(det) — LK(h)EfK(Z, h+ 1)
This perspective is also taken up in [Pet19] for p > 0.

Aside from the description of B(0) in Example 5.9, the only other B(i) that we
consider partially understood is
B(h—1) = Lg@ ST Wy_1[z7'].
The main theorem of this section is as follows:

Theorem 5.11. There is an equivalence of Eo.-1ing spectra

B(h - 1) ~ LK(h)Rh—l-
In other words, starting from Ly n)XWh_1, the same ring is obtained by inverting
either the bottom cell 29, (p—1): S (h=1) 5 W, 1 or the K (h)-local Picard class z.

Proof. Throughout this proof, let k := v(h — 1) for ease of notation. There is a natural
zig-zag of E .-rings
LS Wheotlzg)] = Lry S Wheilzg) 271 + Ly 2 W[z
To show that both maps in this zig-zag are equivalences, it suffices to check that the
Hurewicz image of zay in K (h).(Wp—_1) is in the image of K (h).(z). By [Wesl7, Propo-
sition 3.7] (and the analogous statement at p = 2), the image of z in K (h).(K(Fp,h))
is generated, as a K (h).-module, by the element fo = a( o aqyo---oagp—1), where
agy € K(n)ypi (K(Fp,1)). Here, we use the Hopf ring notation of [RWY98, §8.3.1], and
the a; are elements represented in the Atiyah-Hirzebruch spectral sequence
H.(K(Fp,1); K(h)«) = K(h)«(K(Fp,1))

by the classes used to define 7; in the dual Steenrod algebra A,. It suffices to show that
the Hurewicz image of xox is a nonzero scalar multiple of fy.
Consider the diagram

SPK(Fp, h) —2— BW),

I 2
»hHF, —2— $2*BP(h — 1)

induced by the natural transformation ¥5°Q° — id. Here, the horizontal arrows are

induced by the Tamanoi Bockstein. By the above remarks, there is an element fo €
Hy,(K(Fp, h); Fp) which is an Atiyah-Hirzebruch representative for f, and such that

o1(fo) = 1071 -+ - Th—1 € A«. The image p2(7071 -+ 7h-1) in
Hy,(Z2*BP(h — 1),F,) =T,
is nonzero by [Tam97, Proposition 3.3]. Since Haj(02) is an isomorphism, it follows that
©1(fo) is a nonzero element of Hox(Wy—1,F)) = TF,,.
Denote by M the finite complex which is the union of the (2k — 1)-skeleton of

YFK(F,, h) and the single (2k)-cell defined by fo. By the above discussion, since Wj_1
is (2k — 1)-connected, M fits into a diagram

M — §%

£ =

YPK(Fp, h) —— X°Wi_1,



18 HOOD CHATHAM, JEREMY HAHN, AND ALLEN YUAN

where the top arrow is induced by collapsing onto the top cell and the map S?* —
YW} _1 is a choice of bottom cell z25. To finish, consider the Atiyah-Hirzebruch spec-
tral sequence computing the K (h)-homology of K(F,, k). Recall from Recollection 5.2
that

K (h).(K(Fp, h)) = K (h):fo] /(f§ = (=1)" " vn fo),

and so the element fo is a permanent cycle representing f, with no classes in lower
filtration. It follows that the image of fj is the same as the image of xof, in K (h).(Wp,_1).
O

Corollary 5.12. The natural map
L)y X3 Who1 = LinyRn-1
is given by projection onto a wedge summand.

Proof. This follows immediately from the combination of Theorem 5.11 and Proposi-
tion 5.7. |

Corollary 5.13. The localization L ) Rn—1 is nonzero.

Proof. Tt suffices to show that K(h).(Rp—1) is nontrivial. We can compute this as
K(h)«(Wy_1)[z71], where z is the Hurewicz image of a generator of the bottom ho-
motopy group 7o, (h—1)Wh-1, and so it suffices to show that z is not nilpotent in
K(h),(Wh_1).

According to the proof of Theorem 5.11, z may alternatively be described as the
image of fo under the Tamanoi Bockstein K (h),K(F,, h) = K(h).(Wp—1). Since f§ =
(=1)"~ vy, fo, it follows that zP = (—1)"~ly,x. Since  is nonzero (as it is the bottom cell
and the Atiyah—Hirzebruch spectral sequence for K (h).(W},_1) collapses by evenness),
we see that it is not nilpotent. (]

6. ORIENTING LUBIN-TATE THEORIES

If T is a height h formal group over a perfect field k of characteristic p, the Goerss—
Hopkins—Miller theorem |[GHO04] allows us to form an associated E..-ring, the Morava
E-theory EF = Ej r. In this section, we will be concerned with the following question:

Open Question 9. For which height h formal groups I' over perfect fields & are there
structured ring homomorphisms

Ry_1 — Epr?
Our interest in this question is sparked by the very elegant answer when h = 1:

Example 6.1. Recall that Snaith proved Ry ~ KU, with E..-ring structure given by
the tensor product of vector bundles. After p-completion, KU is a Morava E-theory.
Specifically, KU;\ is the Morava E-theory associated to the formal multiplicative group
@m over the field IF,,. On the other hand, there are many height 1 formal groups over F,
that are not isomorphic to @m (see Example 6.7), and their associated E-theories are
less clearly tied to geometry. We will soon see that homotopy commutative ring maps

RO — Ek,F

induce isomorphisms I' = @m of formal groups over k. In the case that I' & ((A}m,
the Goerss-Hopkins-Miller theorem provides an E.-ring homomorphism Ry — Fj r.
Together these statements give a complete answer to the height 1 case of Question 9.
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At a general height, note that any ring homomorphism
Ry_1 — Eyr

factors through Ly ) R—1, because height h Morava E-theories are K (h)-local. Thus
we may study such ring homomorphisms via the Bockstein tower

L ETK(Z,h+ 1)z = B(0) = B(1) = -+ = B(h — 1) = L(nyRn-1.
A homotopy ring map Rj_1 — Ej, r restricts to a homotopy ring map
B(0) = L STK(Z,h +1)[z""] = Ejr.

In Section 6.1, we show that this imposes a strong constraint on the formal group I' —
namely, that it must have top exterior power isomorphic to @m in an appropriate sense
(Theorem 6.12). In Section 6.2, we compute the space of E, B(0)-orientations of any
Morava E-theory; if ' has top exterior power @m, then we prove it receives an E., B(0)-
orientation. Finally, in Section 6.3, we discuss the problem of lifting B(0)-orientations
to Rj-orientations at height 2. In particular, we show that a height 2 Morava E-theory
Ej, r receives a homotopy commutative R;-orientation if and only the top exterior power

of I is isomorphic to G,,.

6.1. Exterior powers of formal groups and B(0)-orientations.

Definition 6.2. Given a height h formal group I' over a perfect field k of characteristic
p, we denote by K, r the associated 2-periodic Morava K-theory. This is a homotopy
associative ring spectrum equipped with a homotopy ring map

q: Ek’p — Kk,F~
In general, Kj 1 is not homotopy commutative.
Remark 6.3. In [RW80], Ravenel and Wilson computed that there is a non-canonical
isomorphism
KR r(K(Z,h + 1)) = k[a]
(at least for I" being the Honda formal group, with the general case being [HL13, The-
orem 2.4.10]). The multiplication map
K(Z,h+1)xK(Z,h+1) > K(Z,h+1)

then makes Spf (KE,FK(Z, h+ 1)) into a 1-dimensional formal group over k. Inspired
by Ravenel-Wilson, Buchstaber—Lazarev [BLO7], followed by Hopkins—Lurie [HL13|,
showed that the formal group Spf (K,(C),FK(Z, h + 1)) is the top exterior power of the

formal group I in an appropriate sense. To explain this, we begin by recalling the theory
of (covariant) Dieudonné modules.

Definition 6.4. Let Dy denote the free associative algebra over the Witt vectors W (k)
on two operators F' and V subject to the relations

FV=VF=p Fa=p(a)F V(a) = aV,

for a € W(k), where ¢: W (k) — W (k) denotes the Witt vector Frobenius. We will refer
to the ring Dy as the Dieudonné ring and left modules over Dy, denoted by LModp,
as Dieudonné modules.

We will be interested in Dieudonné modules because of their relationship to formal
groups through what is called the (covariant) Dieudonné correspondence. This classical
correspondence takes many forms [Dem86], but we state here a form suited to our uses:
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Theorem 6.5 (|[BL0O7, Theorem 12.5]). Let FGy denote the category of smooth 1-
dimensional commutative formal groups over a perfect field k of characteristic p. Then
there is a fully faithful functor

DM: FG; — LModp,

such that if T' € FGy, then DM(T) is a finitely generated free W (k)-module of rank equal
to the height of T.

Remark 6.6. We point out to the reader that the conventions regarding Dieudonné
modules of formal groups differ slightly in the two references [BL07, HL13] that we draw
from, but they agree for the p‘-torsion subgroups. We take the convention of [BLO7|
that our Dieudonné modules are free modules over W (k) given by the inverse limit of
the Dieudonné modules of the p’-torsion subgroups.

Example 6.7. The Dieudonné module M associated to a height 1 formal group I' over
F, is a free Z,-module of rank 1. Choosing a generator v € M, one deduces that the
Frobenius and Verschiebung operators on M are given by the formulas

Fu=a"u Vu = apu

for some a € Z,; . Since the Witt vector Frobenius ¢ is trivial, the constant a is inde-

pendent of the choice of generator u. Moreover, it can be shown that a is equal to 1
exactly when I is isomorphic to the multiplicative formal group [BLO7, Lemma 9.8 and
preceding].

Construction 6.8 (Exterior powers of Dieudonné modules [BLO7, Definition 9.5]).
Given a Dieudonné module M, one can endow the exterior algebra A’V’{,(k)(M ) with

the structure of a Dieudonné module by the formulas (cf. [BL07, Theorem 5.4 and
preceding)])

V(@i A Aam) =Var A AV,
F(V.Tl/\-'-/\Vl‘ifl /\xi/\V.’I;i+1/\"'/\V$m) =1 A ANz AFz; Az Ao - Ay,
Construction 6.9 (Top exterior power of formal groups [HL13, Corollary 3.5.5]). Given
a formal group I' € FGj, of height h, Hopkins-Lurie construct (via its associated p-
divisible group) a p-divisible group of height 1 and dimension 1 whose associated formal

group we denote by AT
This construction is related to the above one by the formula

DM(A"T) & Afy 1) DM(T).

We refer to these as the top exterior powers of the formal group and corresponding
Dieudonné module.

For us, the relevance of these exterior powers is the following theorem. This theorem
is closely inspired by work of Ravenel-Wilson [RW80], and was first expressed in the
setting of Dieudonné modules by Buchstaber—Lazarev [BLO7]:

Theorem 6.10 (Hopkins—Lurie). If T is a height h formal group over a perfect field k
of characteristic p, then there is an isomorphism of formal groups

Spf (K{ pK(Z,h +1)) = A"

Proof. This follows from applying Cartier duality to [HL13, Corollary 3.3.3] for d = h
and taking the colimit, noting that the Cartier dual of the left-hand side of their theorem
is Spec K (n)?(X) and the Cartier dual of Alt&)[pt] is what we denote A"T'[pt]. O

We now use these constructions to study B(0) orientations of Morava K-theories.
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Definition 6.11. Let K r denote a Morava K-theory associated to a height h formal
group I over a perfect field k of characteristic p. We call a homotopy ring map

YSTK(Z,h+1) = Ky r
nontrivial if it does not factor through the augmentation map L K(Z,h + 1) — S.

The following theorem and its proof are heavily influenced by the results of Westerland
[Wes17, Section 5.1]:

Theorem 6.12. Let Kj, 1 denote a Morava K -theory corresponding to a height h formal
group I' over a perfect field k of characteristic p. If there exists at least one non-trivial
homotopy ring map LK(Z, h —|—A1) — Kj.r, then the top exterior power AT of the
formal group T is isomorphic to G,,.

Proof. Recall that one can choose a (noncanonical) isomorphism
K p(K(Z, h + 1)) = k[].

Under this identification, the nontrivial homotopy ring map XK(Z,h + 1) — Kjr
corresponds to some power series 1 + f(z), where f(x) # 0 is divisible by 2. Consider
the homotopy commutative diagram

(1+f(2)®?

(S2K(Z, h + 1)) *° (Kr,r)®2

[ =

$°K(Z,h+ 1) 1+£(2) K.

The homotopy commutativity witnesses an equality between two classes in
KR p (SFK(Z, h 4 1)%?) = k[zy, 22].
Namely, we have the equation
L+ f(z1 +anr 22) = (14 f(21))(1 + f(22)).

Thus, f provides a nonzero formal group homomorphism from AT to @m. By the
following Lemma 6.13, we deduce that AT = G,,. (|

Lemma 6.13. Suppose that k is a perfect field of characteristic p and that T is a formal
group over k with a nonzero homomorphism f: ' — G,,. Then T’ =2 G,,.

Proof. Let ¢: T' — I'D denote the relative Frobenius on T'. In coordinates, ¢(x) = P
and the group law on T'M) satisfies (z +r y)? = 2P +pa) yP.

Note that any homomorphism of formal groups has derivative which is either every-
where nonzero (in which case the homomorphism is an isomorphism) or identically zero.
In this latter case, the homomorphism factors as the relative Frobenius followed by an-
other homomorphism of formal groups (cf. for instance [DFHH14, I11.3.3]). It follows
that since f is nonzero, there exists an integer n > 0 such that the map f factors as
g o ¢"™ for some isomorphism of formal groups g: I'™ — @m. Since k is perfect and
@5:} = ((A}m, we deduce that I' = @m O

If Ky receives a homotopy ring map from B(0), then precomposition with the
natural maps
YSTK(Z,h 4 1) = LgnETK(Z,h+ 1) — B(0)
produces a non-trivial ring map XK(Z,h + 1) — K}, r, which by Theorem 6.12 means

that A"T" = G,,. One consequence of this is that there are examples of height 2 Morava
K-theories over F), that do not receive an orientation from B(0).



22 HOOD CHATHAM, JEREMY HAHN, AND ALLEN YUAN

Example 6.14. Let I' be the Honda formal group over F, at height h = 2. By [BLO7,
Lemma 9.8 and preceding], the Dieudonné module of T' is given by Dy /(V — F), which
is easily seen to be a free Z, module on two generators w; and wy subject to:
Fuwy, = we Vwy = ws
Fwy = pw; Vws = pw;.
By Construction 6.8, DM(A?TI') = A2DM(T) has a single generator w; A wq with
V(wy Aws) = Vwy A Vwy = —p(wy A ws).

It follows from Example 6.7 that this is not isomorphic to the Dieudonné module for the
multiplicative group. Thus, AT is not isomorphic to G,,, and so Ky, r does not receive
a homotopy ring map from B(0).

6.2. Structured B(0)-orientations of Morava E-theories.

By Theorem 6.12, nontrivial homotopy ring maps ¥K(Z,n + 1) — K} can exist
only if AP = @m. In particular, homotopy ring maps B(0) — Ky can exist only if
APT = @m. Here, we prove a converse to this fact. More generally, we prove that if
AT 2 G,,, then the space of Eog-ring homomorphisms from B(0) to Ej, 1 is discrete and
nonempty. Our results are a generalization of [Wesl7, Theorem 3.22], and our proofs
are highly inspired by Westerland’s arguments.

Convention 6.15. We fix throughout this Section 6.2 a height h formal group I' over
a perfect field k of characteristic p. For simplicity, we denote K r by K and Ejr by
E.

Since there is an equivalence of categories between formal groups over Ey and formal
groups over the graded ring F,, we will sometimes use the same notation to refer to an
object of either category. We adopt a similar convention for formal groups over Ky and
K,.

Recollection 6.16. Hopkins and Lurie [HL13] show that there is a non-canonical iso-
morphism

E*(K(Z,h +1)) = E_,[].
Thus, Spf(E*(K(Z, h-+1))) is a formal group over the ring E, = W (k)[u1,ug, - - - ,up_1][u?].
Reducing this formal group mod the maximal ideal m, one obtains the formal group
Spf(K*(K(Z,h+1))) over K,, which was identified in the previous section as A"T". We

therefore denote the formal group Spf(E*(K(Z,h + 1))) by AT It is a deformation of
AT,

Though we will not need it here, Hopkins and Lurie in fact explicitly identify AT
[HL13, Theorem 3.4.1]. Specifically, they describe the torsion on APT as Cartier dual to
certain group schemes of alternating maps [HL13, Section 3.2, Corollary 3.5.4].

Our goal in Section 6.2 is to prove the following result:

Theorem 6.17. Let Hom(/(ﬁj7 @m) denote the set of maps APT = @m of formal groups

over E,, and let Isom(A"T, G,,) C Hom(AhF,@m) denote the subset of isomorphisms.
Then, there are equivalences of spaces

Eoo-Alg(SK(Z, h+ 1), E) ~ Hom(A'T, G,,)  and
E.-Alg(B(0), E) ~ Isom(A"T, G,,).
In particular, the spaces Eoo-Alg(X°K(Z,h+ 1), E) and Eo-Alg(B(0), E) are discrete.

We will prove this by applying Goerss-Hopkins obstruction theory in the following
form:
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Theorem 6.18 (|[GHO04|, [PV19]). Let A denote an augmented Eo,-algebra over E such
that m.(A ®g K) is concentrated in even degrees, and suppose that mo(A @ K) is a
perfect ring. Then the natural map
Ew-Algp(A,E) — E.-Alg(A,, E,)

is an equivalence of spaces. In particular, the former space is discrete.

Proof. This is standard, and follows for example from [PV19, Corollary 5.11] (see also
[SW15, Theorem 5.10] or the proof of [Wesl17, Theorem 3.22] for similar statements).
There is a spectral sequence converging to the homotopy groups of the space of E.-ring
homomorphisms from A to E, pointed by the augmentation. In this spectral sequence,
E&O is the set of Ey-algebra maps Ay — Ey (which are the same as E,-algebra maps
from A, to E.). The other terms of the E? page vanish so long as the cotangent complex
LEZ‘& A) /70 (E) is contractible. The perfection hypothesis implies that this cotangent com-

plex indeed vanishes (for example, see [PV19, Proof of Theorem 7.7], [Rez98, Corollary
21.3], [GHO4, Proposition 7.4]). O

We will apply this in the case A = Ly (,,)(E®XTK(Z, h+1)). Note that the homotopy
groups m, A are traditionally denoted

1A = ENK(Z, h +1)).

We analyze the structure of E/ (K(Z, h+1)) in Lemma 6.20, and we check that K, (K(Z, h+
1)) is perfect in Lemma 6.21.

Notation 6.19. For the remainder of this section, we fix an isomorphism
E*(K(Z,h + 1)) = E.[«]
of E.-algebras (cf. Recollection 6.16). There is a Hopf algebra pairing
E*(K(Z,h+1)) @ EXNK(Z,h + 1)) — E,,
which we denote by (—,~). We choose elements b; € EL(K(Z,h + 1)) such that
(29, b;) = {(1) z ;i
so that there is an isomorphism of F,-modules
ENK(Z,h+ 1)) = E{bo, by, ... }5.

The elements b; lift the K,-module generators of K,.(K(Z,h + 1)). Since these K,-
module generators are in even degrees, their lifts generate E(K(Z,h + 1)) as indicated
[HS99b, Proposition 8.4(f)].

Lemma 6.20. Define the generating function

b(s) =Y _bis' € BL(K(Z,h+1))[s].

Then by =1 and
b(s)b(t) = b(s + AT t).

Proof. Our argument is analogous to the proof of [RW77, Theorem 3.4]; see also the
proof of Theorem 6.12.

Define constants a?j such that b;b; = Zn a?jbn. It follows that
(A(x"™),b; @ bj) = (x",bibj) = a7,
where A denotes the comultiplication on E*(K(Z,h + 1)). In particular,

Az™) = Za?jmi ® !,
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1 are coefficients for the formal group law of A*T" under the coordinate

so the constants a;;

x.

To prove the first statement, we note that by unitality,
1 i=n
0 otherwise.

<Auwmmw@:a%:{

Thus bgb,, = b,, and so by = 1.
For the second statement, consider the equalities:

b(s)b(t) = > bib;s't)
= Z (Z a%bn> st
1,7 n
= Z by, Z afjsitj
n J

- an (Z agjsitj>n
= Z by (s + 0T )"

= b(S er t).

Next, we check the perfection hypothesis of Theorem 6.18:
Lemma 6.21. The ring Ko(K(Z,h + 1)) is perfect.

Proof. We will also denote by b; € Ko(K(Z,h + 1)) the image of the generators b; €
EXK(Z, h+1)) (multiplied by an appropriate power of u to be in degree 0). This gives an
isomorphism of coalgebras Ko(K(Z, h+1)) = k{bo, b1, ...} where A(b;) =3, ;_; bj®@bg.

As in Lemma 6.20, define the generating function b(s) = Y b;s* € Ko(K(Z, h+1))[s].
The formal group A"T is of height one, so

o0
[Planr (@) = a2 + 3" aia™,
1=2

where a; € mo(K) and a; is a unit. Applying Lemma 6.20, we see that
b(s)? = b([plarr(s))-

Comparing the coefficients of s, we find relations of the form
bf = G/ZlbZ + Z Cjbj
0<5<i

for some ¢; € Ko(K(Z,h + 1)). Now consider the filtration on Ko(K(Z,h + 1)) as a
Ky-module given by
Ko{bo} € Kofbo, b1} C -+ .

The previous relation implies that the Frobenius is a filtered map and that on the
associated graded, the Frobenius acts by ai. Since a; is a unit, the Frobenius map is an
isomorphism and Ky (K(Z, h + 1)) is perfect. O

Applying Theorem 6.18, we conclude that the natural map
Eco-Alg g (L (n)(E ® SFK(Z, h + 1)), E) — E.-Alg(EX(K(Z, h + 1)), Ex)

is an equivalence. We now compute this latter set of E,-algebra maps.
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Lemma 6.22. There is a bijection
B, -Alg(E K(Z, h + 1), E,) = Hom(AMT, Gyp).

Proof. While this is a formal consequence of Cartier duality, we will need the explicit
algebraic form of the identification, so we spell it out here. By Remark 6.23, an E,-
module map f: E)K(Z,h + 1) — E, is determined by where it sends the generators
b;. Thus, the set of such E,-module maps f is in bijection with the set of power series
g(x) € E,[z] by sending a map f to the power series

g(x) =Y f(bi)a' = f(b(x)).
If f is a ring homomorphism, we have by Lemma 6.20 that g(0) = f(by) = 1 and

9(x)g(y) = f(b(x)) f(b(y))
= f(b(x)b(y))
= f(0(z + Gt v))
=9 +51Y),

so g — 1 is a homomorphism AT — @m of formal groups over E..
Conversely, if g — 1 is a homomorphism A" — G, of formal groups over E,, then

FO(@)b(y) = Fo(x + G v) = 9(z + 5 v) = 9(2)g(y) = f(0(2)) f(b(y))-

Equivalently, we have

D FObaty = F(bi) f(by)a'y,

and equating terms of the generating functions we see that f(b;b;) = f(b;)f(b;). Thus,
f determines a map of E,-algebras. (I

Remark 6.23. Since E[K(Z,h + 1) is not free as an F,-module, but rather the m-
completion of the free E,-module on the b;’s, we justify here why an E,-module map
E2K(Z,h + 1) — E, is determined by where it sends the generators b;. The key point
is that E, is m-complete, so such a map is determined by its reduction modulo powers
of m.

For the next lemma, recall from Remark 5.4 the element
z: 7 = Lgm)XTK(Fy, h).
where Z is a K(n)-local Picard element.
Lemma 6.24. The map
K.z: K.Z — K.(K(F,,h))
factors through the sub-K.-module of coalgebra primitives in K,(K(Fp, h)).

Proof. Consider the diagram

K.K(Fy,h) % KIK(F,,h) & K(h). © K(F,, h)

K*ZT K;ZT K(h)*zT

K.Z K'Z K(h).Z

where K (h) denotes the (2p" — 2)-periodic Morava K-theory associated to the Honda
formal group and we have set K’ = K ® K(h).

Note that the maps ¢; and ¢5 in the top row are coalgebra maps, and each of the
groups in the bottom row are rank 1 free modules over their respective coefficient rings
— this is clear for Morava K-theories and true for K’ because it is a wedge of Morava
K-theories.
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In Recollection 5.2 and Remark 5.4, we noted that the image of K (h).z is generated
by an element fy which is primitive in K(h).K(F,,h). It follows that ¢2(fy) is also
primitive, and consequently the image of Kz is a 1-dimensional K -submodule of prim-
itives in K[K(FF,, h). On the other hand, since ¢ is injective, we can check whether an
element in K, K(IF,, h) is primitive after applying ¢,. It follows from the commutativity

of the left square that anything in the image of K,z is primitive, as desired.
O

Lemma 6.25. The bijection of Lemma 6.22 restricts to a bijection
E.-Alg(E}B(0), E,) = Isom(A"T, G,,).

Proof. Under the identification given in the proof of Lemma 6.22, the subset of isomor-
phisms of formal groups

Isom(A"T, G,,) C Hom(A"T,G,y,)

corresponds to the subset of maps f € E,-Alg(E)(K(Z,h + 1)), E,) that send b; to a
unit in F,.
On the other hand, let us choose a generator y € E2(K(Z, h+1)) of the image of the
map
z: ENZ) — EN(K(Z,h +1)).
Then we have an isomorphism EZ2(B(0)) = EXNK(Z,h + 1))[y~!], independent of the
choice of generator y. The subset

E.-Alg(EL(B(0)), E.) C E-Alg(E(K(Z,h + 1)), E.)

corresponds to the maps where y is sent to a unit.

It therefore suffices to show that y is sent to a unit if and only if b; is sent to a unit.
To see this, it is enough to show that the images of y and b; under the reduction map
EXNK(Z,h+1)) — K.(K(Z,h+1)) generate the same 1-dimensional K,-subspace. This
is true because the image of y is primitive by Lemma 6.24, but since K*(K(Z,h+1)) is a
power series ring on one variable, the primitives of K,(K(Z,h+1)) form a 1-dimensional
K ,-subspace generated by the image of b;. O

Combining Theorem 6.18 with Lemmas 6.20, 6.21, 6.22, 6.24, and 6.25, we have now
proved Theorem 6.17. It now follows that an E,.-ring homomorphism

B(O) — Ek,F

exists so long as APT = @m. By the following proposition, this condition is easily
checkable:

Proposition 6.26. There is an isomorphism APT = @m of formal groups over E, if
and only if there is an isomorphism AT =2 G,,, of formal groups over K,.

Proof. If APT = (@m) g, , then reducing this isomorphism modulo m yields an isomor-
phism A" = (G,,)g,. Conversely, suppose v: A"T'" — (G,,)x, is an isomorphism.

~

Then, the pair (AT, ¢) determines a deformation of (G,,)k,. Since the universal de-

~

formation of (G,,)k, is (@m)w(k)[ui], we obtain a map of formal groups
(£,0): (W(k)[u*],Cp) — (E., APT)

where f: W(k)[u*] — E, is a graded ring homomorphism and 6: G — APT is an
isomorphism of formal groups. Since f*(Gu.)w (k)] = (Gim)E, We see that there is an

isomorphism AT = (@m) g, of formal groups over E,. O
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6.3. Ri-orientations of Morava F-theories at height 2. In the preceding sections,
we discussed when a Morava E-theory receives a B(0)-orientation. The goal of this
section is to discuss when a B(0)-orientation extends to an L 2y R;-orientation. We
have the following result:

Theorem 6.27. Fiz an odd integer 3 <n < 2p—1. Let A denote a K(2)-local E,-ring
spectrum with trivial odd homotopy groups (e.g., A could be a height 2 Morava E-theory).
Suppose that there is an B, -ring homomorphism

LK(Z)ZTK(Z, 3)[2_1] — A

Then there exists a dotted arrow completing the following diagram in the category of
E,,_1-algebras:

SFK(Z,3) —— Lr@>FKEZ3)71] —— A

| e

SCBP) 9,00
In particular, there is an E,_1-ring homomorphism
Rl — A

Proof. The final part of this theorem follows by combining the first part with Theo-
rem 5.11. It remains to demonstrate the existence of the dashed arrow. The assumed
E,-ring map L 2)XK(Z, 3)[z7!] — A is determined by an n-fold loop map
K(Z,3) — GL1(A).
Delooping this n times yields a map of pointed spaces
K(Z,3+n) — B"GL;(A).
Note that, because n is odd and at most 2p — 1, BP(1)5,, has even cells. On the

other hand, B"GL;(A) has only odd homotopy groups, and so the following diagram
commutes in the homotopy category of pointed spaces:

BP(1)s,, —— *

]

K(Z,3 +n) — B"GLy(A).

Choosing an explicit homotopy filling (1), we may compare the homotopy fibers along
the two vertical arrows to obtain a map

hofib (Q°°23+"BP<1> —K(Z,3+ n)) = QY32 =2BP(1) —— B""!GL(A).
Looping n — 1 times gives the desired map. O

Remark 6.28. As pointed out by the anonymous referee, the following more general
statement is true, with an analogous proof: Suppose that n,h, and ¢ are integers such
that n < 2p"*! +i+1—h, nis odd and h — i is even. If A is an even K (h)-local E,,
ring receiving an E,, B(i) orientation, then that B(4) orientation automatically extends
to an E,_; B(i+ 1) orientation in at least one way. The inequalities on n, h and i here
are such that BP(i + 1)2,(;)+h+n—i—1 is even. When 7 does not have the same parity as
h, it is not clear whether B(7) orientations extend to B(i + 1) orientations.

We saw in Theorem 6.12 that, if a Morava K-theory Ky, 1 receives a homotopy B(0)-

orientation, then the top exterior power of I' must be isomorphic to G,,. A corollary
of Theorem 6.27 is that, at height 2, this condition is necessary and sufficient for the
corresponding Morava E-theory to receive an R;-orientation.



28 HOOD CHATHAM, JEREMY HAHN, AND ALLEN YUAN

Corollary 6.29. Let Ejr denote the Morava E-theory corresponding to a height 2
formal group T over a perfect field k of characteristic p. Then there exists a homotopy
commutative ring map

Rl — EkI

if and only if A°T = G-

Proof. Given a homotopy commutative ring map Ry — Ej r, we obtain a homotopy
ring map B(0) — Ky r. By Theorem 6.12, this implies that A%I" G.

Conversely, suppose that A%I" = @m. By Proposition 6.26, it is also true that AT =
@m. It follows by Theorem 6.17 that there exists an Eoo-ring map B(0) — Ej . Finally,
applying Theorem 6.27, we conclude that there is an Eg,_o-ring map R; — Eir. In
particular, there is a homotopy commutative ring map. ([

Open Question 10. Let I' denote a height h formal group over a perfect field k of
characteristic p, and suppose that A"T" 22 G,,. Must the Morava E-theory Ej. 1 receive
an [E,.-ring homomorphism from Rj;_17 In particular, is this true when h = 27

In the next section we will explore structured orientations of Fj, r in the special case
that the formal group I' arises from completing a supersingular elliptic curve. In this
case there is a canonical isomorphism A?I" 2 G,,,, given by the Weil pairing of the elliptic
curve.

7. ELLIPTIC ORIENTATIONS

Definition 7.1. An elliptic Morava E-theory is the data of a triple (F, X, f) where
E = Ejr is a height 2 Morava E-theory, X is an elliptic curve over Ey(x), and

f: SpfE°(CP>) =~ X

is an isomorphism of the formal group of E with the formal completion of X at the
identity.

As we explore below, the theory of Section 6 has particularly interesting consequences
in the case of elliptic Morava E-theories. This is powered by the Ando-Hopkins—
Strickland—Rezk o-orientation [AHS01, AHR10], which associates to any elliptic Morava
FE-theory E a canonical E..-ring homomorphism

og: MU(6) — E.

Notation. For the remainder of the section, we fix a perfect field k of characteristic
p. We additionally fix an elliptic Morava E-theory (F, X, f), which we will sometimes
refer to simply as E. The reduction of X modulo the maximal ideal is a supersingular
elliptic curve over k, which we will denote by C. We will implicitly identify C with the
formal group I' defining E via the isomorphism f.

Construction 7.2. The map og can be identified with a nullhomotopy of the composite
of infinite loop maps [ABG™14a]
BU(6) — BSU — BU % BGL, (S) — BGL,(E).

This nullhomotopy deloops to a nullhomotopy of a map of spectra ¥0ku — gl (E),
which corresponds to a specific choice of dotted map in the diagram below:

S0k —2— Ytku —L— Dgl, (S) — Zgly(E)

Y4HZ
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because ©*HZ is the cofiber of the map : X5ku — S*ku. By the universal property of
gl (E) [ABG™14al, the resulting map S*HZ — Ygl, (E) of spectra is the same data as
an E..-ring homomorphism

wp: $°K(Z,3) — E.

Theorem 7.3. After K(2)-localization, the map wg constructed above sends z to a unit
in T (E), and therefore induces a map of Eoo-ring spectra

wp: LgoXTK(Z,3)[z"] = B(0) — E.

Most of this section, beginning with Section 7.1, is dedicated to the proof of Theo-
rem 7.3; our arguments are simply an unpacking of work of Ando, Hopkins, Rezk, and
Strickland [AHS01, AHR10]. Before introducing the algebraic geometry needed to prove
Theorem 7.3, we give the topological consequences:

Corollary 7.4. In the co-category of Eoo-ring spectra, the space Eo-Alg” (R1, E) of
lifts in the diagram

L@l
is a collection of path components inside the space of Eo-ring maps Ry — E.

Proof. This is a consequence of the fact that the space of E.-ring maps from B(0) to
E is discrete (Theorem 6.17). Indeed, the desired space of lifts can be described as a
homotopy pullback

Eoo-Alg” (Ry, E) — Eoo-Alg(Ry, E)

| |

e E-Alg(B(0), B),

where the bottom arrow picks the point wg out of the discrete set Eo-Alg(B(0), E).
We recall that, since £ is K (2)-local, the space of Eo-ring maps from Ly o) R1 to E is
canonically identified with the space of Eo.-ring maps from R; to E. (]

Definition 7.5. We refer to the space Eo-Alg"” (R, E) of Corollary 7.4 as the space of
Eoo-ring maps Ry — E that respect the Weil pairing.

Theorem 7.6. The space Eoo-Alg" (R1, E) of Ex-ring maps Ry — E that respect the
Weil pairing is naturally homotopy equivalent to

(1) If p =2, the space of Eo-ring homomorphisms MSU — E.
(2) If p = 3, the space of Eoo-ring homomorphisms MSpin — E.
(3) If p > 3, the space of E-ring homomorphisms X5°W1 4 — E.

Proof. Consider the diagram

SABP(1) ——— Stku —L— gl (S) —— gl (E)

|

Y4HZ

|

¥2r+3BP(1),
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where the leftmost horizontal arrow is the inclusion of an Adams summand for p > 2 and

the canonical equivalence when p = 2. By the universal property of gl; (E) [ABG ™' 14a],

the space of lifts indicated by the dashed arrow is equivalent to the space of lifts
EfK@ﬁ)J@?E

-

-
-
-
-
-
-
-

W
in the co-category of E.-rings. By Theorem 7.3 this is the same as the space of lifts

B(0) —— E,
>

-
-
-
-
-
-
-
-

L2y Ra

which we have defined as Eo-Alg" (Ry, E).
Since the vertical sequence

YABP(1) — Y4HZ — 22PT3BP(1)

is a fiber sequence of spectra, the space Eo.-Alg”(R1, E) is naturally equivalent to the
space of nullhomotopies of the composite

S4BP(1) — Sku 2 Sgl, (S) — Sl (E).

By the theory of Thom spectra [ABG'14b, Corollary 4.12], this is in turn equivalent to
the space of E,-ring homomorphisms

.
Wi, — E,

where VVl'Y 4 is the Thom spectrum of the spherical bundle W7 4 — BGL1(S) obtained
by applying Q° to the map L*BP(1) — Ygl, (S).
To finish the proof, it suffices to identify Wf 4 when p = 2, when p = 3, and when
p>3:
e When p = 2, BP(1) ~ ku, so Wy 4 ~ ku, ~ BSU and the Thom spectrum of
J: BSU — BGL,(S) is W', ~ MSU.
e When p = 3, BP(1) ~ ko, so W; 4 ~ ko, ~ BSpin and the Thom spectrum of
J: BSpin — BGL,(S) is Wy, ~ MSpin.
e When p > 3, there is a splitting ku = \/’_7 £*BP(1). Let [ denote an integer
that reduces to a primitive (p — 1)st root of unity modulo p. By the stable
Adams conjecture [Fri80, BK18], if ¢! is the Adams operation corresponding to
I, then the composite J o (¢! —1): ku — ku — Xgl; (S) is null. The map ' — 1
is also an isomorphism on the summands £%BP(1) for which 4 is not divisible
by p — 1. It follows that, on these summands, the J-homomorphism is null. In
particular, when p > 3, the map L*BP(1) — gl (S) is null, and so there is an
equivalence of E,.-ring spectra Wf 4 = XW 4.
d

Remark 7.7. We conjecture that every elliptic Morava E-theory at the prime 2 receives
at least one E.-ring homomorphism from MSU, and that every elliptic E-theory at p = 3
receives an E.-ring map from MSpin. At the prime 3, Dylan Wilson [Will5] has proved
that the Ochanine genus factors through an E.-ring homomorphism

MSpin — tmfy(2).
In forthcoming joint work with Andrew Senger, the middle author will produce an E.-

ring homomorphism
MSU — tmf;(3)5.
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Remark 7.8. The equivalence of Theorem 7.6 can be described fairly explicitly, using
the fact that mo Eoo-Alg(MU(6), F) is a torsor (see, e.g., [AHR10, Section 2.3]) for the
abelian group

7o Eoo-Alg(EBU(6), E) = mo Spectra(r>6KU, gl, (E)).
Consider for example the case when p = 2. Given an E,-ring homomorphism
f:MSU — E|

we can use the canonical map MU(6) — MSU to pull this back to a map f': MU(6) — E.
The difference of f’ and the o-orientation is then a well defined E.-ring homomorphism

[ —og: EFBUG) — E.
The bottom cell zg € m6(BU(6)) will map to an invertible class in 76 FE, and thus there
is a unique extension of f' — og to a map
f —op: SPBUB)[zg'] = R — E.
7.1. Weil pairings. Our goal in this section is to prove Theorem 7.3 assuming one
statement (Proposition 7.13) that we address in the next section.
We start by making a reduction from Morava FE-theory to Morava K-theory. Let

K = K}, r denote the Morava K-theory associated to E and let ¢: £ — K denote the
associated homotopy ring map (cf. Definition 6.2).

Lemma 7.9. In the situation of Theorem 7.3, it suffices to show that the composite
Z 5 LrgoETK(Z,3) “H EL K
is a unit in T (K).
Proof. Observe that an element v € my(FE) is invertible if and only if the composite

qy € mo(K) is invertible. The lemma then follows by noting that z is a unit if and only
if 2P~! is a unit, and Z®P~1 ~ 9 (cf. Remark 5.4). O

Thus, in the remainder of the section, we will work with Morava K-theory and analyze
the map wg defined as the composite
wi: ¥YK(Z,3) “5 E L K.

Work of Ando and Strickland [ASO1] relates such ring maps Y°K(Z,3) — K to a
structure on the formal group I' known as a Weil pairing. We briefly recall their work:

Definition 7.10. A Weil pairing on I is a collection of bilinear pairings
Bi: T[p'] x T[p'] — [pi
for each i > 0, such that for any z,y € I'[p'*1], one has the relations
Bi(px,py) = Biv1(x,y)?
and
Biv1(z,y) = Bira(y,x) "

The Weil pairings on I' can be organized into a group scheme over k, which we denote
by W(T) following [ASO1].

Example 7.11. The Weil pairing of the elliptic curve C' determines a Weil pairing on
the formal group I' 2 C' of C' in the sense of Definition 7.10. We refer to this simply as
“the canonical Weil pairing on I"."

Proposition 7.12 ([ASO1], Proposition 2.9). There is an isomorphism
b: Spec(Ky(K(Z,3))) - W(T)

of group schemes over k.
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A homotopy ring map X°K(Z,3) — K induces a map of rings
Ko(SFK(Z,3)) = mo(K) = k,

which determines a k-point of the scheme Spec(Ko(K(Z,3))). By Proposition 7.12, this
in turn gives rise to a Weil pairing. By design, the Weil pairing corresponding to wg is
canonical:

Proposition 7.13. Under the isomorphism b of Proposition 7.12, the map
wri: XTK(Z,3) = K
corresponds to the canonical Weil pairing on T’ (up to a possible sign).

Remark 7.14. The work we build on to prove Proposition 7.13 leaves a possible am-
biguity in the sign [ASO1, Remark 4.3] which we do not resolve here and will not be
important for our theorems.

We defer the proof of this proposition to the next section and turn instead to the
proof of Theorem 7.3 assuming Proposition 7.13.

Proof of Theorem 7.3. Combine Lemma 7.9 and the following corollary of Proposition 7.13.
O

Corollary 7.15. The map wg : XFK(Z,3) — K sends the element
PSS Fz(LK(g)ZiOK(Z, 3))
to a unit in m (K).

Proof. Consider the K,-module map w: K,Z — K, induced by the composite wxz: Z —
K. Since K.Z is a free K,-module of rank 1, it suffices to show that this map w is
nonzero.

Recall from Section 5.1 that the element z factors as a composite

Z — Lg@)ETK(Fp,2) = Li2)XTK(Z,3),
where the first map extends to a K(2)-local splitting
L@ 2TK(Fp,2) ~ LSV ZV Z92 v ...v Zz97!

such that Ly 2)XK(Fy,2) is generated as a homotopy ring by the inclusion of Z.
Suppose for the sake of contradiction that the map w: K,Z — K, is zero. Then,
since the composite

K.(K(F,,2)) = K.(K(Z,3)) % K. (1)

is a ring map, the previous remarks imply that it factors through the augmentation. By
[ASO1, §2], the set of maps K, (K(F,,2)) — K, can be identified with what are called
ep-pairings on I', which are certain pairings

T[p] x T[p] = G

The map (1) factoring through the augmentation corresponds to the zero e,-pairing.
On the other hand, by Proposition 7.13, the pairing arising from wg is the underlying
ep-pairing of the canonical Weil pairing on an elliptic curve (up to a sign), which is
nonzero, contradicting our assumption. O
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7.2. Cubical structures and the proof of Proposition 7.13. We give here a very
brief recollection of the results of [AHS01] in order to extract a proof of Proposition 7.13;
we do not intend for this to be a thorough exposition of the material and refer the reader
to [AHSO01, AS01, Bre83] for further details.

Recollection 7.16 (|[AHS01] Definition 2.40). Given a line bundle £ on I, there is the
notion of a cubical structure on L. Let ©3(L) denote the line bundle on I'*3 whose fiber
at (z,y,z) € I*3 is given by the formula
‘Cw-i-y ® Eg;-i,—y & [-:y-i-z & LO

Loty Lz ®LyQL,
A cubical structure is a trivialization of ©3(L) satisfying certain conditions. We will

denote the set of cubical structures on £ by C3(T; £). These can be assembled into an
affine group scheme over k, which we give the same name.

Recollection 7.17 (|[Bre83] §2, see also [Gril8] §5). Given a line bundle £ on I" and a
cubical structure v € C3(T'; £), one can extract a Weil pairing which we will denote by
Bz (7). This procedure determines a map

Br: C3(I; L) — W(T)

O (L) (wy,2) =

of k-group schemes.

The association of a Weil pairing to a cubical structure is natural in the sense that
an isomorphism 1: £ ~ £’ of line bundles induces an identification v,: C3(T'; L) —
C3(T': L") under which we have an equality of pairings Bz (7) = B (¥s7).

These notions have incarnations in topology by the following results from [AHSOL,
ASO01]:

Theorem 7.18 ([ASO1]|, Theorem 1.1, Corollary 4.4). There is an isomorphism
J+ Spec Ko(BU(6)) = C¥(T'; Or)
of group schemes over k fitting into a square
Spec Ko(BU(6)) —— Spec Ko(K(Z, 3))

- |

CS(F;OF) B—Op> (F)

IR

which commutes up to a possible sign (cf. Remark 7.14). Here, the top map is induced
by the map K(Z,3) — BU(6) in the Postnikov tower for BU(6) and b is the identification
from Proposition 7.12.

Consider the following two torsors for Spec Ko(BU(6)):
(1) The k-scheme Spec Ko(MU(6)), which is a torsor for Spec K((BU(6)) because
MU(6) is a Thom spectrum over BU(6) and the ring K is complex orientable.
(2) The k-scheme C3(T';Z(0)), which is a torsor for C3(T'; Or) = Spec Ko(BU(6)),
where Z(0) denotes the ideal sheaf of functions vanishing at the identity. Roughly,
the torsor structure comes from the bundle Z(0) being trivializable and any two

cubical structures on Z(0) differing by a cubical structure on the trivial bundle
(see [AHSO01, Proposition 2.43]).

Theorem 7.19 ([AHSO01], Theorem 2.48). There is a map (and therefore, isomorphism)
of torsors for the k-group scheme Spec Ko(BU(6)):

g: Spec Ko(MU(6)) — C*(I'; Z(0)).

For the following, we will need the following definition/construction:
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Definition 7.20. Let R be a homotopy commutative ring and o : MU — R be a
homotopy ring map. By [AHR10, §2.3] (more precisely, the analogue for homotopy
rings), the space Mapy, 5, (MU(6), R) is a torsor for Mapy, 51, (25°BU(6), R) and so the

composite MU(6) — MU % R determines an isomorphism
to @ mo Mapy o1, (MU(6), R) — 7o Mapy, 51, (BU(6), R)
given by “taking the difference with o” in the torsor structure.
The key property of the o-orientation that we use is the following:

Recollection 7.21. The sheaf Z(0) on I" arises as the restriction of a sheaf on all of C,
which we will denote by Z¢(0). By the theorem of the cube (see, for instance, [Mum70]),
the ideal sheaf Z-(0) acquires a unique cubical structure y¢, which determines a cubical
structure v € C3(T;Z(0)) having the following properties:

e Consider the composite o : MU(6) 22 E — K. Then under the identification
g of Theorem 7.19, ok corresponds to the cubical structure v € C3(T; Z(0)).

e Since the cubical structure ¢ corresponds to the symmetric biextension de-
termined by the Poincare bundle on C' (cf. [Mum70, Mum69| for the relevant
background), the Weil pairing Sz (7) associated to the cubical structure + (cf.
Recollection 7.16) is exactly the canonical Weil pairing on T'.

This concludes our recollections of [AHS01, AS01]. We now use these ideas to prove
Proposition 7.13.

Proof of Proposition 7.13. Fix a homotopy commutative ring map a: MU — E. This
determines a map MU(6) — MU = E % K, which determines via Theorem 7.19 a
commutative square of isomorphisms

Homy, (Ko(MU(6)), k) —— Homy (Ko(BU(6)), k)

| ' i

C3(I5Z(0)) (k) ———— C*(T';Op)(k),

where the map s, can be described in the language of [AHSO01] as follows: the map
ga: MU — K provides a trivialization of the bundle Z(0) and s4, is induced by the
resulting identification ©3(Z(0)) = ©3(Or). Combining this square with Theorem 7.18,
we obtain a commutative diagram

Homy (Ko(MU(6)), k) % Homy, (Ko(BU(6)), k) —— Homy,(Ko(K(Z,3)), k)

o]~ = ”F

o

C3(T3Z(0)) (k) ——.— C*(I; Or)(k) B P — W(I')(k)
Recall that we are interested in analyzing a map ox: MU(6) — K, which induces on
K-homology a map of k-algebras (ox)«: Ko(MU(6)) — k corresponding to a point in
the top left set. Our strategy will be to determine its image in W (T")(k) under the upper
and lower composites.

We start with the lower composite. Unwinding the definitions, the horizontal com-
posite Boy. © S4q takes a cubical structure v on Z(0), regards it as a cubical structure on
Or via the trivialization of Z(0) provided by «, and then takes the associated Weil pair-
ing. By Recollection 7.17, this coincides with directly taking the Weil pairing Bz(g)(7),
which is the canonical Weil pairing on I' by Recollection 7.21.

It therefore suffices to show that the top composite

Homy, (Ko(MU(6)), k) =5 Homy,(Ko(BU(6)), k) — Homy,(Ko(K(Z, 3)), k)
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takes (0x)«: Ko(MU(6)) — k to the map induced on K-homology by wx : ¥3°K(Z, 3) —
K. This follows from an analogous statement at the level of spectra and before reducing
from E to K, which we prove as Lemma 7.22. U
Lemma 7.22. Let a: MU — E as before, and let

2% Ma‘phAlg(MU<6>a E) - MaphAlg(Ej—oBU<6>a E)
be the map of Definition 7.20. Here, Mapy, 5, denotes the set of homotopy commutative
ring maps. Then, under the composite

to oo o
MaphAlg(MU<6>a E) = MaphAlg(E—‘r BU(6), E) — MaphAlg(E—i- K(Z,3), ),

the o-orientation og is sent to wg.

Proof. In order to use the theory of Thom spectra [ABGT14a|, it is convenient to lift
a to an Ey-ring map, which can always be done by [CM15, Theorem 1.2]. We then
compute instead the composite
ta [e%) [e%e}
Mapg, (MU(6), E) = Mapg, (X3°BU(6), E) — Mapg, (XFK(Z, 3), E) (2)

which is analogous to the composite in the lemma statement with homotopy ring maps
replaced by Eg-ring maps. By the theory of Thom spectra [ABG'14a], the Ey-map
og: MU(6) — E can be identified with a nullhomotopy of the composite BU(6) —

BSU L BGL;(F) in Eg-spaces. Similarly, «: MU — E restricts to a map MSU —
MU % E corresponding to a nullhomotopy (in Egp-spaces) of BSU ERN BGL;(FE). These
induce a homotopy coherent diagram in Es-spaces

J<:>*

OE (&1

S

x —————— BGLy(F)
where the homotopies have been labeled by the corresponding orientations of E. This
extends to a larger diagram

BU(6) —— BSU

K(Z,3) ~--mmmme 5> BU(6) BSU
i \\\\ﬂ}l \\\\\ \
| T It
i¢2 GL1(E) ****************** > GLl(E) *
v k”// / /
GLl(E) *********************** > ok BGLl(E)

where GL;(F) is constructed as a pullback, and the remaining dotted arrows are con-
structed by taking fibers. To finish, we note that ¥9: K(Z,3) — GL1(F) is adjoint to
the map wg: ¥XK(Z,3) — E of Construction 7.2 and v, is adjoint to the image of o g
under the composite (2) above. The diagram shows that these are homotopic and the
lemma is proved. O

8. THE UPPER BOUND ON CHROMATIC HEIGHT

Our goal in this section is to complete the proof of the following theorem:
Theorem 8.1. Let n and h be nonnegative integers. Then the E,-ring spectrum
L n)Rn
vanishes if and only if n > h + 1. That is, the ring Ry has chromatic height h + 1.
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By the main result of [Hah16], this is equivalent to showing both that Ly j41)Rp 2 *
and that Ly (j42)Rp = *. The former statement is Corollary 5.13, so we will focus on the
latter, which we will prove by showing that K (n).(Rp) =0 for n > h + 1. Throughout
the proof, we will assume familiarity with the theory of Hopf rings, and, in particular,
the paper [RW77]. For the convenience of the reader, Section 8.2 lists some of the key
formulas that we will use.

8.1. The K (n)-homology of Rj;. Throughout this section, we fix nonnegative integers
n and h with n > h + 1. By definition,

Ry, = SFBPM) o, 15,0

where g,y € o, (n)(BFBPCA) 9, (1)) denotes a bottom cell. Thus, in order to show
K(n).(Rp) =0, it suffices to show that the Hurewicz image of x5, ;) is nilpotent. We
prove this as Theorem 8.3 below.

Remark 8.2. Although we do not use it in our proof, this computation in K(n)-
homology essentially follows from knowledge of HF .. (BP(h) 5,,(5), Which, as an algebra,
is a tensor product of a divided power algebra on infinitely many generators and a
polynomial algebra on infinitely many generators. This computation of HF,-homology
is known to Ravenel and Wilson, but the authors were unable to find it in the literature.

Notation. For a Hopf ring F, F ,, we denote by QE.F ,, the x-indecomposables. This
forms a graded ring under the o product.

Theorem 8.3. Let u denote the Hurewicz image of o,y in K(n).(BP(h) 5,,(,)). Then
uP = 0.
We first outline the strategy. In the Ravenel-Wilson basis, the element u is given by

b?g)(h). It follows from the distributivity law for Hopf rings that

_ (pov(W)\*P ov(h)
ut = (bm) ) = [Ploby) ™
We start by showing in Lemma 8.6 that, in the ring QK (n).(BP(h),,), the following
relations hold:

[vr] © b‘(jf)r = —[vp41] © b‘(jé’)rJr1 (mod [I]) for1<r<h-—1and
[on-1] o b =0 (mod [In-1]),
where [I,.] denotes the ideal ([p], [v1],. .., [vr—1]). Then we lift this to a statement before

quotienting by [I,] using Lemma 8.5. The relations for various r link up to show that
= [p o b7\ = 0.
Lemma 8.4. Let r < h be a nonnegative integer. In QK (n).(BP(h),,),
(o] 0 b8 € [I,]
Proof. The p-series of K(n) is
[Pl (x) = O(a?")  (mod I).
The p-series of BP(h) is
[plBpahy () = vpa?” + O(xpTH) (mod 1.
Thus, the Ravenel-Wilson relation b([p]x(n)(z)) = [pl[Bp)(b(2)) says in this case that

O(a?") = [v,] o Z b 2% + 0@ (mod (L], 1)

We extract the 2P term from both sides. Since r < h, the coefficient of 2P" on the left

hand side is 0 and we deduce that [v,] o b‘(’é’; =0 (mod [I]). O
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Lemma 8.5. Let r < h be a nonnegative integer and suppose k > v(r —1). If « is
an element of the augmentation ideal of K(n).BP(h) oy _o,r o which maps to zero in

QK (). (BPh) oy,_,r12)/[I] then a0 bl = 0.

Proof. We work by induction on r. When r = 0, the ideal [I,] is trivial and we need
to check that by o a = 0 if « is decomposable. Say o = 3 %~ where 3 and 7 are
in the augmentation ideal. Since A(b(g)) = [02] ® b(g) + b(o) ® [02], distributivity says
by o (B+7) = ([02]0 ) *(b)07)+ (b(o) ©8) *([02] o) = 0 since for any y, yo[0] = n(e(y)).

Now suppose 7 > 0 and « € (ker(e)*2,[I,.]). By induction we know that (ﬁ*fy)ob%“) =0
and [v;] o b‘(’g) =0 for ¢ < r — 1, so it suffices to show this for o = [v,_1]. We write

o op” ! o(k—p" !
[ora] 008 = (ol ot ) o ",

By Lemma 8.4, [v,_1] 0 b(()g;il € [I,_1]. Since k—p™= > v(r —1) —p"~! = v(r — 2) the
inductive hypothesis applies to show that

o1 o(k—p™1
([Urﬂ] o big) ) o b(é) P <.

Lemma 8.6. Let r +2 < n be a nonnegative integer. In QK (n).(BP(h)-,)/([I}]),

. _ opr+1
[v,] 0 b7 = raalobgy  r<h
0 r = h.
Proof. We have
[Pk (n)(x) = vaa? = O(aP").
Thus, in QK (n)«(BP(h),,)/([I;]) the Ravenel-Wilson relation says

0= [’U,«] o b(x)opr + [Ur-&-l} o b(z)opT+1 I O(mpwrz).

The 22" coefficient on the right hand side is [v,] o b‘()f)r +[vp41] 0 b‘(’g;ﬁ, so [v.] o b‘(’f)r =

—[vr41] 0 b?g;H as claimed. When r = h, we have v,11 =0 € BP(h) so [vp+1] =0. O
Lemma 8.7. Let r < h. In K(n).(BP(h),,),

_ - = prrr) < p
VUr| © bopl/(’r‘ 1) (¢] bOp = [UT+1] © (0)
[or] (0) 1) 0 r—=nh

Proof. Combine Lemma 8.6 and Lemma 8.5. O

Proof of Theorem 8.3. Lemma 8.7 gives the following chain of equalities:
_ ov(h)\xp _ ov(h)
u? = (b )" = lploby,

o o(v(h)—1
= —[v1] ob(g) ob(l()( )=

— o] 0 B o )

- opv(h—2) o(p"+p"1)
= FHona] o by o by

o opr(h—1) op™
= Flop] 0 b(é’) o b(f)

=0.
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8.2. A Review of Hopf Rings and the Ravenel-Wilson relation. We list here
some of the notation and formulas from [RW77] that we use in the above proof; the
reader is referred to the original source for additional details.

Recollection 8.8. A Hopf ring is a bigraded abelian group A; ; with the structures of
e coproduct A: A; ; — ®k+l:j Air® A,
o x-product *: A; ; ® A; ) = A; j+k, and
e o-product o: A; j ® Ag; — Aitk jyi-
These satisfy various properties, including:
e The #-product and coproduct make A; . into a commutative, cocommutative

Hopf algebra with unit element denoted by [0];.
e The o-product satisfies the distributivity relation

ao(bxc)= Z(a(l) oc)x (a? o)

and a o [0]; = n;1;(¢j(a)) where €;: A; . — k is the augmentation map and
Nitj: k — Aiyj« is the unit map.
e There is a o-unit in Ay denoted [1].
For instance, there are elements [n] = [1]x- - -*[1] for n a positive integer and we denote by
[—n] the antipode on [n]. The distributivity axiom implies that [nJoz = 3 2% -5z (™),

Notation. For any pair of rings R and S we may form the ring-ring R[S] by taking the
group algebra of the additive group of S and defining the o product by [s] o [s'] = [ss'].

Example 8.9. Given two homotopy commutative ring spectra E and F', the bigraded
abelian group E.F ,, forms a Hopf ring, provided there is a Kunneth isomorphism

Eo(F o X o) =2 Ex(F o) @ Eu(F o).

The diagonal map is induced by the diagonal of £ ,,, the *-product is induced by the loop
addition of F',,, and the o-product is induced by the multiplication map X{F A S/ F —
SR,

Notation. In this situation, given an element = € m,(F'), we denote the Hurewicz image
in EoF _,, by [z]. If we choose for x the element n in the image of the map Z — mo(F),
then [z] is the same [n] we defined before. The elements [z] satisfy A([z]) = [z] ® [z],
[] % [y] = [z + y], and [z] o [y] = [xy]. We get an injective map of Hopf rings from the
ring-ring E,[m.(F)] to E.F ,,.

Ravenel and Wilson study the case where both F and F' are complex oriented. In
this situation, an additional relation, known as the Ravenel-Wilson relation, is satisfied.

Definition 8.10. Suppose E and F' are complex oriented. Then the complex orientation
of E gives an isomorphism E,(CP*) = E. {81, B2,...} where |5;| = 2i. Pushing these
forward along the complex orientation map f: CP> — F, for F, we obtain elements
bi = fu(Bi) € EailF 5.

We denote by; by b(j).
Formula (Ravenel-Wilson Relation). Let b(s) be the generating function Y~ b;s%, and
denote by + g the formal group addition of E, so t +gy = > a%xiyj. Denote by +p
the expression 3, j[afg] 0 2° 0 y°. The Ravenel-Wilson relation is

b(s +pt) = b(s) +p b(1).

This is an equality of generating functions, so it indicates that the coefficient of s/ on
the left hand side is equal to the coefficient of the same monomial on the right hand
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side. We will only need to work out relations between the b;) := b,;, and so we will
only need the following special case of this relation involving the p-series:

b([p1E(s)) = [Pl (0(s))-

Ravenel and Wilson completely characterize the Hopf ring E, F 5, when F'is Landwe-
ber flat. They show that it is nearly free. Recall that the free Hopf ring over E, [m.(F)]
on the b;’s is formed by adjoining the elements b; with their copolynomial coproduct
A(b;) =3 k=; bj ® bk, forming all symbols using * and o on the b;’s, and then quoti-
enting by an ideal to impose all of the Hopf ring axioms.

Theorem 8.11 ([RW77, Corollary 4.7]). When E is complex oriented, the Hopf ring
E.BP,, is the free Hopf ring on the b;’s over the ring ring E.[m.(BP)] modulo the
Ravenel-Wilson relation.

Remark 8.12. Note that BP(h) is not Landweber flat. The Hopf ring E.BP(h),,
still contains the elements b(;) which still satisfy the Ravenel-Wilson relations, but it
is neither true that the b(;) generate E.BP(h),, nor that the Ravenel-Wilson relations
generate the relations in E,BP(h),,. However, the map BP — BP(h) induces a map of
Hopf rings E,.BP,, — E.BP(h),,. Through o-degree 2v(h), this map is surjective with
kernel ([vp41], [Un+2],-..) and hence E,BP(h),, is isomorphic to the Ravenel-Wilson
Hopf ring through o-degree 2v(h). This means that Ravenel and Wilson’s work com-
pletely characterizes E . Wj,.
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