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Abstract
We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the
theory in the case of a finite field to study the higher semiadditive structure of the K(1)-local
sphere Sg (1) at the prime 2, in particular realizing the non-2-adic rational element 1+ ¢ €
ToSk(1) as a “semiadditive cardinality” As a further application, we compute and clarify
certain power operations in TSk (1)-
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1 Introduction

A central question in stable homotopy theory is to understand the stable homotopy groups of
spheres
TS := lim 7rn+kSk.
k—o0
While computing every group 7,S is not feasible, one can try to study structural phenomena in
{m«S}.ez. For instance, it is classical that

Q ifn=0,

0 else,

7rn8®@§{

and that each 7,S for n # 0 is a finite torsion group. This effectively reduces the question to
understanding p-power torsion in 7S for a prime p (which we now fix). In his work on the J-
homomorphism, Adams isolated and completely understood a part of 7S known as the image of J,
which exhibited periodicity of order 2(p — 1) [Ada65¢, Ada65a, Ada65b, Ada66]. Motivated by this
work, Miller-Ravenel-Wilson [MRW77] generalized Adams’ periodic families by giving a framework
for studying higher periodicities of orders 2(p™ —1) in the Adams—Novikov spectral sequence (which
computes 7,S) and showing their nontriviality for small n. Through work of Quillen [Qui69] and
Morava [Mor85], these periodic families are closely related to the theory of formal groups.

The modern perspective on these periodic phenomena involves categorifying the above situation: in
this perspective, the central objects of study are called spectra. The collection Sp of all spectra forms
a tensor triangulated category (in fact, a symmetric monoidal stable co-category) with unit object S,
and the sets of maps between shifts of the unit recover the groups 7,S. Using Bousfield localization,
Ravenel [Rav84] described a decomposition of Sp into certain localizations {Spx ,)}nen such that
the periodic phenomena observed in the homotopy groups of spheres are reflected in structures at
the level of the categories Spy ;. For instance, Spg gy is essentially the homotopy theory of chain
complexes over Q, and the rational homotopy groups of S are captured by the endomorphisms
of the unit object Q; the phenomena observed by Adams are captured in SPr (1), and those of
Miller-Ravenel-Wilson in the higher Spy(,y’s. These Spy(,,)’s are stages of the so-called chromatic
filtration on Sp, and the study of these phenomena is known as chromatic homotopy theory.

Chromatic homotopy theory’s scope has now grown beyond its origins in understanding the homo-
topy groups of spheres, largely due to the following philosophy: Sp K (0) 18 essentially the derived
category of Q, and as n increases, the SpK(n) (in a precise way) behave more and more like a
characteristic p derived category. In other words, the chromatic filtration provides “intermediate
characteristics” which interpolate between characteristic 0 and characteristic p [Lurl5]. The utility
of these intermediate settings is that one can try to attack characteristic p questions by studying
their analogues in each Sp K(n): this strategy has been applied as broadly as symplectic geometry
[AB21, AMS21] and representation theory [YZ21]. Its success owes to a key phenomenon present in
the Q situation and the Sp K(n) Situation, but not the mod p situation: that of higher semiadditivity,
sometimes known as ambidexterity.



1.1 Higher semiadditivity

Let M be an abelian group with an action of a finite group G. Then one has a natural norm map
Nm¢ : Mg — M¢

given by the formula m +— ¥,gm. This map is not an isomorphism in general, but it is in the special
case where M is a Q-vector space. This key feature of the rational situation makes representation
theory in characteristic zero more tractable than representation theory in positive characteristic.
Strikingly, it turns out the Spy(,y also enjoy this feature:

Theorem 1.1.1. [Hovey-Sadofsky [HS96], Greenlees-Sadofsky [GSIG]] Let G be a finite group and
X e Spﬁfn) be a K (n)-local spectrum with G-action. Then the natural norm map

LK(n)XhG — XhG
is an equivalence.

Theorem 1.1.1 was subsequently generalized to the telescopic localizations Spr(,,) by Kuhn [Kuh04].

Hopkins and Lurie [HL13] gave the following insightful interpretation of these ideas: recall that if
% is a semiadditive category, then for any finite set T' and T-tuple of elements {Y;}:cr of €, there
is a canonical isomorphism [ [, Y; >~ [[,c ;. Theorem 1.1.1 asserts that an analogous statement
is true in SpK(n) with the groupoid BG in the place of the finite set T'; namely, by viewing X as a
functor X : BG — Sp(,), the theorem asserts that the colimit and the limit of X are naturally
homotopy equivalent.

Thus, SpK(n) exhibits a “higher” form of semiadditivity, which Hopkins and Lurie [HL13] dub 1-
semiadditivity: the idea is that a 0-semiadditive oo-category is simply a semiadditive co-category,
and for m > 0, an m-semiadditive co-category & should have the feature that for any m-truncated
w-finite space A (that is, a space with finite homotopy groups concentrated in degrees 0 through
m) and any diagram f : A — 2, there is a canonical isomorphism

Nimy : limy f = lim .

Hopkins and Lurie extend Theorem 1.1.1 by showing that Sp K(n) 18 m-semiadditive for all m. This
was further generalized in work by the first author, Schlank, and Yanovski [CSY18], who proved
the analogous statement for the telescopic localizations Spyp ).

An important consequence of higher semiadditivity is that the objects in a higher semiadditive
oo-category acquire a rich algebraic structure. Namely, recall that any object Y in a semiadditive
category canonically acquires the structure of a commutative monoid; in particular, for any finite
set T, there is a canonical addition map

IR IR
T T

which exists because the semiadditive structure supplies an isomorphism [[; Y ~ [[; Y. An object
X of an m-semiadditive co-category admits even more structure: one can sum not only over finite



sets, but over any m-truncated m-finite space A. More precisely, given such an A, there is a canonical
higher addition map [,: X* — X given by the composite

XA~ X®A—- X@pt~X.

Here, the first map is (the inverse of) the equivalence resulting from the higher semiadditive struc-
ture, and the second map is induced by the map A — pt.

Remark 1.1.2. The collection of these [, maps, together with corresponding restriction maps,
endow X with a structure known as an m-commutative monoid (with 0-commutative monoids
being just ordinary commutative monoids). First described systematically by Harpaz [Har20], this
m-commutative monoid structure for X is captured by a functor

X : Span(S,,)°P — Sp

given by A — X4. Here, Span(S,,) is the co-category of m-truncated m-finite spaces and spans.
In fact, we will work in a p-typical setting, where one further restricts to m-truncated mw-finite
spaces with homotopy groups of p-power order. We refer the reader to Section 2 for a more careful
discussion of (p-typical) m-commutative monoids.

1.2 Higher semiadditive cardinality

This paper focuses on one part of this m-commutative monoid structure:

Definition 1.2.1 ([CSY20] Definition 2.1.5, [HL13] Notation 5.1.7). Let € be an m-semiadditive
oo-category, let X € € and let A be an m-truncated m-finite space. Then let |A|x : X — X be the
endomorphism of X defined by the composite

Ay - X 24 x4 12, x

where A4 is the canonical diagonal map induced by A — pt. As X varies, these maps assemble to
a natural transformation |A| : Ide — Ids, which we will refer to as the cardinality of A.

Informally, |A| is the A-fold sum of the identity map. The term “cardinality” arises because in the
special case where A is discrete, the endomorphism |A| is given by multiplication by the cardinality
of the finite set A. In fact, the cardinality of w-finite spaces in rational spectra is a well-known
invariant:

Example 1.2.2. In the oo-category Spg of rational spectra, the cardinality of any m-finite space
A is given by the Baez-Dolan homotopy cardinality, which is the rational number

[Alo:= > [T a4, @)V,

a€mo(A)n>1

regarded as an element of 7 (Sg) ~ Q (cf. [CSY20, Example 2.2.2]).



But the cardinalities of 7-finite spaces determine canonical invariants in any higher semiadditive
oo-category. In particular, since Spy(,) is co-semiadditive [HL13], one has a family of natural
elements |Als,, € T0(Sk(n)), one for each 7-finite space A. While these invariants are not known
for general n, the main result of this paper is a (partial) extension of Example 1.2.2 to the case of
SPi(1)- More specifically, for any prime p and any 7-finite space A with p-power torsion homotopy
groups, we compute the cardinality of A as an element |A| € oSk (1) (Theorem A).

1.3 Motivation: T'(n)-local homotopy theory

The authors’ motivation for considering higher semiadditive cardinalities comes from studying the
oo-categories of telescopically localized spectra. Obtained by localizing spectra at a height n tele-
scope T'(n), these oo-categories Spy(,,) admit localization functors Ly (n) : Spp(n) — SPg(n) Which
Ravenel’s telescope conjecture predicts are equivalences; while this conjecture is true at height 1 by
work of Miller [Mil81], Mahowald [Mah81], and Bousfield [Bou79], it is widely believed to be false
for n > 2. As a result, telescopically localized homotopy theory is notoriously difficult to access
computationally.

However, by joint work between the second author, Schlank, and Yanovski [CSY 18], following work
of Kuhn [Kuh04] (in the case of l-semiadditivity), the oo-category of T'(n)-local spectra is oo-
semiadditive. It follows that one has canonical elements |Als,. ., € To(Sp(n)) for all 7-finite spaces
A. Moreover, the localization functor Ly (n) : Spp(n) = SPk (n) is colimit preserving, and therefore
sends the element |Als, ., to the element |Als, ,, € T0Sk(n). This provides a family of elements
|A] in the homotopy of the K (n)-local spheres which provably lift to elements in the T'(n)-local
spheres — one may then wonder which elements in mo(Sky,)) arise in this manner.

Example 1.3.1 (Example 2.2.4 [CSY20]). In the oo-category Modg, (Spf,,) of K (n)-local mod-
ules over a height n Lubin-Tate theory E,, one has the explicit formula

n—1
1BEC,| = p("+ ).
In other words, under the natural map Sp(,) — E,, the homotopy element |Bka\ST(n) is taken

to the integer p(ngl). Consequently, one may naturally ask whether the cardinalities |A| produce
interesting elements in the homotopy groups of St,), or if they are always just rational numbers
such as the ones given in Example 1.3.1.

A consequence of our main result is that the cardinalities of m-finite spaces can in general produce
non-rational elements in the K (n) or T'(n)-local spheres. In particular, we show at the prime 2 that
|BCalsy, € m0(Sk (1)) is not a 2-adic integer.

1.4 Outline of results

1.4.1 K(1)-local cardinalities

In order to state our results, we recall some facts about the K (1)-local sphere, many of which date
back to the work of Adams on the image of J; the reader is referred to [Hopl4, §1, §2] and [Hen17,
§6] for more details.



Let p be a prime and let S (1) denote the K (1)-local sphere at the prime p. Then Sk ;) fits into a
cofiber sequence

PI—1
Skay =+ K —— K (1)

where K denotes K UpA for p odd and KO% for p = 2, and 19 denotes an Adams operation corre-
sponding to a topological generator g € ZX if p odd and g € Z5 /{£1} if p = 2. From this fiber
sequence we can extract the ring structure of moSg(1). Note first that if n € m KO is the Hopf
element, then ¥9(n) = n. Then, by the long exact sequence of homotopy groups associated with
(1), we get

Z if p is odd,

ToSka) =4 *
Zo®Z)2-¢ ifp=2.

Here, 6: m KO} — ToSk (1) is the boundary map and
e=0(n)=n-¢

where ¢ = 0(1) € m_1Sk(1). Since, again from the long exact sequence, m_2Sg (1) = 0, we deduce
that ¢2 = 0 and hence 2 = 0. Therefore, we obtain the following ring structure for m,S K(1):

Zy, if p is odd,

2 . (2)
Zsle)/(e*,2e) ifp=2.

oSk (1) = {

Our main result, which is proven as Theorem 5.2.1, is:

Theorem A. Let p be a prime, let Sk 1y denote the K(1)-local sphere at the prime p, and let A
be a connected m-finite space with p-power torsion homotopy groups. Then

1 if p is odd,
|A|SK(1) = .
1+1logy(|Alo) - ifp=2,
where |Alg denotes the homotopy cardinality of Example 1.2.2. In particular,

1 if p is odd,

BCyls(y, =
| p| K {1—1—6 ifp=2.

Theorem A also determines [A[y : X — X for general X € Spy(qy as multiplication by [Als,,,-
In fact, the most essential content of the theorem is the computation of [BCs| in the Sk (1) at the
prime 2. This is because of the following two remarks:

Remark 1.4.1. For all primes p, the computation of the cardinalities for spaces as in Theorem A
reduces to the computation of |BC’p|SK(1) via formal properties of higher semiadditivity (cf. Theo-
rem 5.2.1 for the reduction).

Remark 1.4.2. The map of rings Sk (1) — KUpA induces a ring map

7T0SK(1) — 7T0KUZ;\ = Zp. (3)



This map arises as the endomorphisms of the unit of the colimit preserving functor
— ®SK(1) KU;\ SpK(l) — MOdKU{; (SpK(l))’

and thus, for any 7-finite space A, it sends |A| € ToSk (1) to |A] € WoKUZ/)\.

In the case when the prime p is odd, the map (3) is an isomorphism. It follows that since
|BCp|kupy =1 (in Modkup (Spg (1)) by Example 1.3.1, we also have [BCyls,,, = 1.

On the other hand, when p = 2, the map of (3) is the map

Zsle)/ (2, 2¢) — Zo,

given by the formula a 4+ be — a. Since this map is not injective, the fact that |BC2| = 1 in
Mod g (SpK(l)) does not imply the same statement in Spy ;). In particular, both 1 and 1 +¢
in oSk (1) map to 1 € mKUs'. The majority of the paper is dedicated to showing that in fact
|BCQ|SK(1) =1+4¢c¢€ WQSK(l).

1.4.2 Higher semiadditive Grothendieck-Witt theory

The proof of Theorem A is inspired by the following: at an odd prime p, it follows from work of
Quillen that one may identify Sg (1) as the K'(1)-local algebraic K-theory of a finite field Fy, where
¢ is prime such that £ € Z,' is a topological generator. At the prime p = 2, one may consider a more
sophisticated variant of this construction: instead of finite dimensional Fy-vector spaces, one may
consider the groupoid QF(F,) of pairs (V,b) where V is a finite dimensional Fy-vector space and
b is a non-degenerate symmetric bilinear form on V. The group completion spectrum of QF (Fy)
is known as the Grothendieck-Witt theory of F,, denoted GW(Fy); this construction has been
extensively generalized and studied in the foundational works [CDH*20a, CDH™20b, CDH™20c].
It follows essentially from work of Friedlander that one has the following:

Theorem 1.4.3 (Friedlander [Fri76]). Let £ = 3,5 (mod 8) and let Sk (1) denote the K(1)-local
sphere at the prime p = 2. Then there is an equivalence of spectra

Lia)GW(Fe) ~ Sk )-

Our strategy to prove Theorem A is to model the higher semiadditive structure on Sg (1) as the
effect on K-theory of certain explicit operations on symmetric bilinear forms. This will allow us to

compute the operation |BC5 : Sk (1) = Sk(1) in terms of a certain concrete map

|SK(1)

OF(F,) — QF 5% (F,) 2% o F(F,).

Here, QFB denotes the Ch-equivariant analog of QF, and the first map regards a symmetric
bilinear form as a Cy-equivariant symmetric bilinear form with respect to the trivial action.

More precisely, for every commutative algebra % in p-typically m-semiadditive co-categories (in the
sense of [CSY20, Definition 3.1.1]), we define a spectrum GW (%), the Grothendieck-Witt spectrum
of €. Moreover, we show that this construction is compatible with higher semiadditivity in the
following sense (cf. Section 2 for notations and Definition 3.2.9 for a more precise statement):



Theorem B (Higher semiadditive Grothendieck-Witt theory). Let € be a commutative algebra in
p-typical m-semiadditive co-categories. Then GW (%) extends canonically to a functor

GW (%) : Span(SP))°P — Sp

such that GW®®) (€¢) ~ GW(¥). Here, S\ denotes m-truncated spaces whose homotopy groups
are finite of p-power order.

In the case when % is the category of finite dimensional Fy-vector spaces and m = 1, the value
of the functor GW ™) (F,) := GW()(%) at a groupoid BG is the Grothendieck-Witt spectrum of
G-equivariant symmetric bilinear forms over Fy. One can think of this theorem as endowing these
various equivariant theories of symmetric bilinear forms with coherent restriction and transfer maps.
On the other hand, since SpK(l) is co-semiadditive, any K (1)-local spectrum X extends to an m-
commutative monoid

X : Span(SP))or — SPk(1)

given by A — X4, The following theorem asserts that, for X = Sk (1) (at the prime p = 2), this m-
commutative monoid structure can be understood in terms of the higher semiadditive Grothendieck-
Witt theory of Theorem B.

Theorem C. Let £ = 3,5 (mod 8) be a prime, let GW(i)(IFg) be as in Theorem B (with p = 2),
and let Sk (1) denote the K (1)-local sphere at the prime 2. Then there is a canonical equivalence

LicyGW) (Fp) ~ 8%,

of functors Span(sz))Op — Spk1)-
In other words, Friedlander’s equivalence Ly 1)GW(Fy) ~ Sk (1) extends to an equivalence of

(2-typical) 1-commutative monoids. We prove Theorem C in Section 4, and use it to compute

|BCss(,, in Theorem 5.2.1, thus finishing the proof of Theorem A.

1.4.3 Computational consequences in Sg (i)

As an application of Theorem A, we finish the paper by computing certain well-known operations
in oSk (1): namely, the power operations 6 (first defined by McClure [BMMSS86, §IX], [Hop14]) and
0, (appearing in the work of Schlank, Yanovski, and the first author [CSY18]), and the K (1)-local
logarithm log (1) of Rezk [Rez06].

Remark 1.4.4. These operations are completely computed in the literature in the case of an odd
prime p (this is elementary for the power operations 6, and 6,, and done by Rezk in the case of
logg(1y). In the case p = 2, there are additional ambiguities related to the torsion in mo(Sk(1)),
and the authors were not able to find a reference for complete computations of these operations,
though they may be known to experts. For the sake of completeness and convenience to the reader,
we state the following results for all primes p.



Theorem 1.4.5. Let p be a prime and let Sk 1y denote the K (1)-local sphere at p. Then for p odd
and x € To(Sk 1)) = Zy, we have

x — P
PR
For p =2 and an element r + de € mo(Sk (1)) = Zs[e]/(2¢,€?),

r—r?
do(r +de) = 0(r + de) — de = 5 + rde.

Theorem 1.4.6. Let log,: 1+ pZ, — Z, denote the p-adic logarithm, and consider the K (1)-local
Rezk logarithm map logK(l) 1 gliSk ) = Ska) on mo.

e For an odd prime p, the Rezk logarithm is given on mo(gl;Sk (1)) = (ToSk1))* = Z, by the
formula

1 _
IOgK(l)(x) = ];logp(a:p 1).

~

o For p =2, the Rezk logarithm is given on mo(gl;Sk(1)) = (moSk))* = (Zale]/(26,€%))* =
Ly ® 7)2Ze by the formula

2

log (1) (r +de) = %logg(r) + E.
This follows from work of Rezk [Rez06, Theorem 1.9] when p is odd and up to torsion when p = 2;
additionally, work of Clausen [Clal7] computes the p = 2 case on the Z5 component in the source.
We extend the result to all of (moSg (1)) using Theorem A and an observation of T. Schlank that
|BC2|SK<1) € (WQSK(U)X is always a strict unit, that is, the image of 1 under a spectrum map
7 — glng(l).

Outline of paper

In §2, we review some basic notions about higher semiadditivity. In §3, we construct a higher
semiadditive refinement of Grothendieck-Witt theory, proving Theorem B; this section is technical
and the details of the proof are not used elsewhere in the paper. In §4, we make the core argument
of the paper and prove Theorem C. Finally, in §5, we complete the proof of Theorem A and deduce
computations of operations on the K (1)-local sphere.

Acknowledgements

The authors would like to thank Clark Barwick, Jacob Lurie, Tomer Schlank, and Lior Yanovski
for many valuable discussions that led to this work. They also thank Robert Burklund, Dustin
Clausen, Peter Haine, Jeremy Hahn, Yonatan Harpaz, and Hadrian Heine for helpful discussions
and correspondences, and Robert Burklund, Dustin Clausen, Shay Ben Moshe, Tomer Schlank, and
Lior Yanovski for comments on a draft. Finally, they are grateful to two anonymous referees their



careful reading of this paper and wealth of clarifying comments and corrections. The first author
was partially supported by the Adams Fellowship of the Israeli Academy of Science, and by the
Danish National Research Foundation through the Copenhagen Centre for Geometry and Topology
(DNRF'151). The second author was supported in part by NSF grant DMS-2002029.

2 Higher commutative monoids and higher semiadditivity

We saw in the introduction (cf. Remark 1.1.2) that the objects in a higher semiadditive co-category
admit additional algebraic structure: in particular, for any X in an m-semiadditive co-category and
any m-finite space A, there is a natural map

Ja: X4 =X

which can be thought of as implementing “A-fold addition,” by analogy to the case when A is a
finite set. The [4 maps, as A ranges over m-finite spaces, fit together into an algebraic structure
known as an m-commutative monoid, first formalized by Harpaz [Har20]. In this section, we define
m-commutative monoids and their variants, and review some of the theory of higher semiadditive
oo-categories from this perspective.

2.0.1 Higher commutative monoids

For our applications to Grothendieck-Witt theory, it will be convenient to work in a p-typical
setting, where all homotopy groups are p-groups:

Definition 2.0.1. We say that a 7-finite space is p-typical if all its homotopy groups are of p-power
order. We denote by S,(,{)> the oco-category of m-truncated p-typical n-finite spaces: that is, spaces
A with finitely many connected components, such that m;(A4, a) is a finite p-group for all ¢ > 0 and
a € A, and vanishes for i > m.

The notion of a p-typical m-commutative monoid is defined using the co-category of spans Span(quf ))
[Barl7, §5]. Informally, its objects are m-truncated p-typical m-finite spaces, and a morphism be-
tween two such spaces A and B is a third space C € S,(,Zf ) together with a pair of maps A + C' — B.

Remark 2.0.2. When m = 0, Span(Sy(,’f)) is simply the (2, 1)-category Span(Fin) of spans of finite
sets.

It is a classical result that for a category € with products, a commutative monoid in € is a product
preserving functor from Span(Fin)°P to ¢!. By analogy, we have:

Definition 2.0.3 (Definition 5.10 [Har20]). Let ¥ € Catoo. A p-typical m-commutative pre-monoid
in ¥ is a functor M : Span(&(,f))"p — ¥. We say that M is a p-typical m-commutative monoid if
it additionally satisfies the following Segal-type condition:

ISee [Crall] for a detailed explanation and a generalization of this to the co-categorical setting.

10



(x) For every A € SP | the Segal map
pa: M(A) — li}‘nM(pt)

induced by the maps {a*: M(A) — M(pt)}a.ca, where a: pt — A are the point embeddings,
is an equivalence.

We denote by
CMon'”) (%) € PMon'?) (%) := Fun(Span(S®))°P, %)

the oo-category of p-typical m-commutative pre-monoids and the full subcategory of p-typical m-
commutative monoids in it. If ¥ admits Sf,f)—limits, then, as in [Har20, Proposition 5.14], we
have

CMon'P) (%) ~ FunS’ (Span(S(P))°P %),

Here, FunS7(5 * denotes functors which preserve limits indexed by spaces in ST(,’: ),

Remark 2.0.4. Informally, a p-typical m-commutative pre-monoid consists of restriction maps
[7: M(B) — M(A)

for f: A— B¢ ST(,IZ), and push-forward, or integration, maps
[t M(A) — M(B).

The functoriality in spans encodes Fubini and base-change type compatibilities of the restriction
and integration maps, as in [CSY18, Proposition 3.1.13 & Corollary 3.1.14]. In the special case
where M is a p-typical m-commutative monoid, and denoting M (pt) again by M, we can view the
above as an integration of M -valued functions on A along the fibers of the map f: A — B.

Remark 2.0.5. We can view a l-commutative pre-monoid M as a (p-typical) global equivariant
object in € (in the sense of [Sch18]) endowed with extra “exotic transfer,” or “deflation” maps
along morphisms of groupoids with non-discrete fibers. In this language, the property of being a
(p-typical) m-commutative monoid corresponds to the property of being Borel-complete.

2.0.2 From higher commutative monoids to higher semiadditivity

By work of Harpaz, the notion of a higher semiadditive oco-category can be formulated in terms
of higher commutative monoids. We review this formulation here, leading up to the key fact
(Proposition 2.0.7(3)) that objects in a (p-typical) m-semiadditive oco-category admit a unique
structure of a (p-typical) m-commutative monoid.

Recall that € is (p-typically) m-semiadditive if, for every map of spaces f: A — B with (p-typical)
m-~truncated w-finite fibers, the norm map

Nmg: fi = f.

between functors €4 — ¢ (which is defined inductively) is an isomorphism ([HL13, §4],[CSY20,
Definition 3.1.1]). For us, it will be convenient to use an alternative definition due to Yonatan
Harpaz, that we shall now present.

11



Notation 2.0.6. Denote by Cat ) the (non-full) subcategory of Cats, consisting of small co-

categories which admit S,gf)—colimits, and functors preserving &(ff)—colimits between them. We
denote by CatZ»"" C Cat s the full subcategory spanned by the p-typically m-semiadditive oo-
categories.

We will have to consider also the versions of these consisting of large co-categories. We will denote
by

Cat®r ™ C Catsﬁ,{’) C Cateo

the co-categories of large p-typically m-semiadditive, large with 87(5 )—colimits7 and large co-categories
respectively.

The oo-category Catg admits a canonical symmetric monoidal structure via the Lurie tensor

product (see [Lurl6, Corollary 4.8.1.4]) which we denote by ®, with respect to which S,(,f) is the unit.
In this setting, Harpaz has given the following beautiful characterization of higher semiadditivity:

Proposition 2.0.7.

e co-category Span(Sy,’) is an idempotent algebra in Cat ).

1) Th tegory Span(S\)) is an idempotent algebra in Cat

(2) The modules over Span(&(f;)) in Cat g are ezactly the p-typically m-semiadditive oo-categories;
that is, we have

Mod (Catsf(}:)) ~ Cat@r™ C Cat g -

Span(Sfo))
3) For a p-typically m-semiadditive co-category € € Cat©»™ | the forgetful functor CMon'? (%) —
oo m
% is an equivalence.

The non-p-typical case is discussed in [Har20, §5.1 and Corollary 5.15] and the proof for the p-
typical case is identical?>. Roughly, the first two parts of the proposition articulate a sense in which
the co-category

Span(S®)) e CAlg(CatST(T,:))

is universal among p-typically m-semiadditive co-categories.

The third part will be most critical to our arguments: it asserts that every object of ¥ admits a
unique structure of a p-typical m-commutative monoid in €. We shall use the following notation
for this unique structure:

(P) (%) the unique

m

Definition 2.0.8. Let ¢ € CatZr™. For X € ¢ we denote by X(~) € CMon
p-typical m-commutative monoid in ¢ whose underlying object is X.

Example 2.0.9. The oo-categories Spy(,) and Spy(,) are oo-semiadditive (i.e., m-semiadditive
for every m > 0) [HL13, CSY18]. We obtain higher commutative monoids

Sl € CMon®) (Spie()), Sl € CMon®) (Spry,)).

2The necessary properties of the collection of p-typical m-finite spaces are that, like the collection of m-finite
spaces, they are closed under finite limits and extensions.
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This paper is dedicated to studying these higher commutative monoids in the case n = 1 (in which
case they are same because the telescope conjecture holds at height 1, see, e.g., [Bou79, Theorem
4.1]).

2.0.3 Cardinalities

We saw in the introduction that if M is an m-commutative monoid and A is an m-finite space,
then there is a natural endomorphism |A|y; : M — M known as the cardinality of |A| (at M). In
fact, one can give this definition more generally for a p-typical m-commutative pre-monoid:

Definition 2.0.10. (sce [CSY20, Definition 2.1.5]) Let 4 € Catso and let M € PMon® (€). For
Ae Sr(,f) we define the map

Al M(pt) = M(A) L5 M(pt),

where 7: A — pt is the terminal map. In other words, |A|y; is the image of (pt <~ A = pt). We
refer to |A|ps as the cardinality of A at M.

The cardinalities of A on the various M’s assemble to a natural endomorphism of the functor
evpr: PMon?) (%) — % which evaluates at pt € Span(&%’)). We shall denote this natural trans-
formation simply by |A|. In particular, if € is p-typically m-semiadditive, we can restrict |A| to a
natural transformation of the identity functor of 4’ ~ CMon®)(%). These natural transformations
are studied systematically in [CSY20] — in particular, one can show (see [CSY20, Remark 2.1.10(2)])
that if ¢ is further symmetric monoidal and its tensor product distributes over Sy, -colimits, then
|Al, as a natural transformation of the identity functor of &, is given by multiplication with the

element |Aly, € moly.

3 Higher semiadditive Grothendieck-Witt theory

Let Sk (1) denote the K(1)-local sphere at the prime 2. Fix a prime £ congruent to 3 or 5 modulo
8. The main construction of this paper is a model for the 2-typical 1-commutative monoid

- 2
Sg(()l) € CMon )(SPK(l)) ~ SPg(1)

as the K (1)-localization of a 2-typical 1-commutative pre-monoid GW (™) (F,) € PMongz) (Sp), whose
underlying spectrum is the Grothendieck- Witt spectrum GW (Fy).

Recall that for a commutative ring R, the connective spectrum GW(R) is the group completion of
the commutative monoid of symmetric non-degenerate bilinear forms over projective R-modules.
We refer the reader to [CDH"20b, §4] for the precise definition and an extensive discussion of
Grothendieck-Witt theory.

Remark 3.0.1. We remark that we will exclusively consider symmetric bilinear forms over rings
in which 2 is invertible, where symmetric bilinear and quadratic forms are interchangeable.
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The construction R — GW(R) depends only the symmetric monoidal co-category of R-modules.
More generally, if € is a semiadditive symmetric monoidal co-category in which the tensor product
distributes over coproducts, we can define the connective spectrum GW (%) as the group completion
of the monoid of dualizable objects in ¥ endowed with a non-degenerate symmetric bilinear form.
In this section, we enhance this construction to take higher semiadditivity into account: in par-
ticular, we show that if & is a p-typical m-semiadditively symmetric monoidal co-category (i.e.,
€ € CAlg(Cat®r™)), then GW(%) naturally acquires the structure of a p-typical m-commutative
pre-monoid

GW)(%) : Span(8¥))°P — Sp.
Informally, the construction consists of the following data: for A € S,(ff ), we set
GWA(%) :== GW(%1).
Then, for every map f: A — B € Sy(,f), we provide maps
5 GWE(%) — GWA (%)
and
[r: GWA(€) — GWP(%).

Ignoring the symmetric bilinear forms, these maps are given by pre-composition with f and left
Kan extension along f, respectively. For a symmetric bilinear form b: X ® X — 1 on a dualizable
object X € €8, we set

* * * * *b *
Fo X0 X~ (XeX) LS g1,
To specify [; on a symmetric bilinear form b, it will be easiest to specify its mate.

Construction 3.0.2. Let f: A — B € S¥), let € € CAlg(Cat®™), and let (X,b) € QF(€4).
Then b determines a map
b X S D(X),

which we call its mate, where D(X) denotes the (symmetric monoidal) dual of the dualizable object
X. Note that bY is an equivalence because b is nondegenerate. We then define the bilinear form

[;b: X ® X = 1p

to be the mate of the composite

fiY

— fi(D(X))

Nm
f(X) —5 fo(D(X)) =~ D(fi(X)).

Although it is not clear from this definition, it is a consequence of our results that this procedure
defines a symmetric bilinear form. Our goal for the rest of this section is to show that these
constructions, currently given at the level of individual maps in Span(Sr(,f )), assemble into a functor

GW): Span(S,(f))Op — Sp.
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3.1 Semiadditive anti-involutions

Let € be a symmetric monoidal co-category. Our goal in this section will be to construct a space
QF(¥) of non-degenerate symmetric bilinear forms in €, and to explain the compatibility of this
construction with higher semiadditivity and the multiplicative structure on €.

We saw above that the data of a symmetric bilinear form b on a dualizable object X € % can be
encoded via its mate bY: X — D(X). In Section 3.1.1, we construct a categorical framework for
organizing such data. In fact, we will work in a more general setting where D is replaced by any
anti-involution 1 : € — €°P of € (cf. Definition 3.1.2). Given an anti-involution ¢ on %, we
will construct its co-category of fized points ®(%,¢): informally, an object of ®(%,¢) is the data
of an object X € € together with an equivalence X ~ ((X). We then construct QF (%) in the
above setting by taking ¢ to be the anti-involution given by formation of symmetric monoidal duals
(Definition 3.1.7).

In Section 3.1.2, we study the interaction of this construction with semiadditivity. In particular, we
will see (Theorem 3.1.12) that if € is additionally p-typically m-semiadditive, then its co-category
of fixed points ®(%,¢) acquires the structure of a p-typical m-commutative monoid in Cateo.

3.1.1 Anti-involutions and their fixed points

Given an co-category %, one can pass to its opposite co-category €°P. The assignment € — € °P
defines an action of Cy on the co-category Catoo.

Notation 3.1.1. Hereafter, we regard Cat, as equipped with this Cs action; for instance, Catﬁg2

will denote homotopy fixed points with respect to this action. We will also have reason to consider
the oo-category of functors from BCj to Cats, and we will denote this functor category by CatZ¢?

2.
Definition 3.1.2. An oco-category with anti-involution is an object of Catgoc"‘
%, an anti-involution on ¥ is a refinement of ¥ € Cats, to an object of Cat

. For an oo-category
hCs
o2

Concretely, an anti-involution on ¥ is an anti-equivalence t: 4 — %°P together with a natural
isomorphism ¢?2 = Id as well as higher coherence data. We will primarily be interested in the
following prototypical example:

Example 3.1.3. Let € be a symmetric monoidal co-category. Then the full subcategory €' C ¢

spanned by the dualizable objects admits a canonical anti-involution D: ¢IP! =5 (PP given
by taking the symmetric monoidal dual. This construction determines a functor
(—)4PL: CAlg(Catoy) — Cathe?

o0

(cf. [HLAS20, Theorem 5.11]).

We shall now construct the fixed points of an co-category with anti-involution. Recall that given
an oo-category €, one can cousider its twisted arrow oo-category Tw(%): informally, the objects of
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Tw(%) are given by arrows (X — Y') in € and the morphisms from (X — Y) to (X’ — Y”) can be
thought of as commutative squares
X —Y

X — Y.
One can construct Tw more formally as follows: let A denote the category of non-empty linearly
ordered finite sets. The complete Segal space construction of Rezk [Rez01] determines a fully

faithful embedding Cats, < S as presheaves of spaces on A satisfying a certain “complete
Segal” condition [Lur09, Corollary 4.3.16].

The oco-category A has an involution
(=)"V: A= A,

which reverses the order of a totally ordered set, and precomposition with (—)**" induces the Cs
action (—)°P of Cate, (cf. [Lurl7, §1.2.1]). Additionally, the category A admits a monoidal structure
by concatenation of linearly ordered sets, which we will denote by *x. One can then consider the
functor
Tw: S8 — 847

given by

Tw(€)(I) =~ I").
This functor takes complete Segal spaces to complete Segal spaces, so it restricts to an endofunctor
of Caty (c.f. [HMS20, Proposition A.2.3]): we denote this endofunctor also by

Tw: Caty — Caty .

When the oco-category ¥ additionally comes equipped with an anti-involution ¢, the co-category
Tw(%) acquires a natural Cy action given on objects by

X Lyy s o) Y ux).

Moreover, this procedure is functorial:
Lemma 3.1.4. The functor Tw: Cato, — Catyo lifts to a functor
Tw: Cat"?2 — CatZ°>
together with a Ca-equivariant natural transformation Tw(%€) — €°P x €. Here, the Coy action on

the target is given by (X,Y) — («(Y),(X)).

Proof. To demonstrate the lemma, we note that there is a natural isomorphism (Ix ™)™V & [x "V
in the ordinary category A and hence Tw intertwines the involution (—)°P of Cats, with the trivial
involution of Cat.,. Consequently, it induces a functor between the corresponding fixed points

Tw: Cat’® — CatZ2 .

Moreover, the forgetful map Tw(%) — €°P x € is induced from the natural embeddings I < I* I
and I < [ % I™V and so it is visibly equivariant. O
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Let (¢,¢) € Catgoc2 be an co-category with an anti-involution. Then the above lemma produces a
natural Cs-equivariant functor

Tw(%) — € x €°P.

There is also a natural functor -
@ 18, o o o

which is equivariant when the source, %, is endowed with the trivial Cs-action.

Definition 3.1.5. We define the functor
lax hC. BC:
O Catgs? — Caty, 2

by the formula
PG 1) = € xgxgor TW(E),

so that an object of ®%*(%,1) is a morphism a: X — ¢(X) in ¢, and a morphism between (X, a)
and (Y, ) is a commutative diagram of the form:

x—I oy
-l
X Y

o )Wﬁ( )

We also define the functor
d: Cath® — CatB

to be the full sub-functor ®(%, ) C ®'*%(%, 1) spanned by the isomorphisms X — (X).

We may think of ®'%*(%, 1) and ®(%, 1) as the “lax fixed points” and “fixed points,” respectively, of
¢ acting on ¥. While we are primarily interested in @, it will be useful to treat these two functors
in parallel.

Remark 3.1.6. For the purposes of this paper, it is enough to consider the composition

Cath> 2, CatB0 L2, s802 (4)
where (—)™ denotes the maximal subgroupoid functor. This composition has a simpler description®
which does not involve the construction ®. Namely, the non-trivial action of Cs on Cats, (given
by (—)°P) restricts to a trivial action of Co on S. Hence, the functor (—)=: Cate — S, being
right adjoint to the inclusion & — Cat.,, promotes to a Cs-equivariant functor, where the action
on the target is trivial. Taking Cs-fixed points, we get a functor Cz’:mtgoc2 — 8P Unwinding the
definitions, this functor is exactly the composition (4). Nevertheless, we shall discuss the functor
® as it constructs a category of nondegenerate symmetric bilinear forms, and not just a space.

3We are grateful to the anonymous referee for pointing out this simplification.
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Using this language, we can now define the space of objects equipped with a symmetric bilinear
form in % as follows.

Definition 3.1.7. For a symmetric monoidal co-category ¢ € CAlg(Cato,), we define the space
QF (%) by the formula
Q]:((K) ~ (@(%dbl’D)th):,

where (—) refers to the maximal subgroupoid. By definition, an object of ®(%"!, D) is a dualizable
object X € € together with an isomorphism X — D(X), which corresponds to a non-degenerate
bilinear map X ® X — 1. The group Cs acts by swapping the two tensor factors, and so its fixed
points are symmetric bilinear maps.

3.1.2 Anti-involutions and semi-additivity

Our aim now is to promote ®(%,¢) and ®'%*(%,1) to p-typical m-commutative monoids when ¢
is p-typically m-semiadditive. This will essentially follow from the facts that these functors are
compatible with the formation of p-typical m-commutative monoids (Lemma 3.1.8), and that every
object of (CatZr™)"C2 admits a canonical such structure (Corollary 3.1.11).

To see that ® and ®'** induce functors on m-commutative monoids, we show:

Lemma 3.1.8. The functors ®: Cat"?? — CatZ% and ®2*: Cat" — CatZ are limit pre-
Serving.

Proof. First, since the evaluation at the base-point functor CatOBOC2 — Caty, is conservative and
limit preserving, it suffices to verify the claim non-equivariantly.

To see that ®'2¢ is limit preserving, it suffices to see that each of the three functors in the pullback
DG 1) = € Xgxgor Tw(E)

preserves limits. The functors ¥ — % and € +— ¥ x €°P are clearly limit preserving. The functor
€ — Tw(%€) is limit preserving since it is given by pre-composition with a map A — A on SA7
and the fully faithful embedding Cats, — S2™ is conservative and limit preserving.

To deduce that ® is limit preserving, it is enough to show that, for every (small) co-category I and
every I-shaped diagram {(%,, tq)}acrs in Catgocz, the equivalence

N (lm ae1(Gas ta)) = Lim e r® (%o, ta))

carries the full subcategory @(@aej(%a, ta)) C @1ax(@ae](%a, lg)) to @aeﬂb(‘fa, tg). Unwind-
hCy

o0

ing the definitions, this reduces to the fact that for every diagram I — Cat_. 2, a map

{Cba}ael

{Xataer {ta(Xa)taer € l'&aeffa

is an isomorphism if and only if each ¢, is an isomorphism.
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We now turn to the second ingredient in the refinement of ®: the higher commutative monoid
structures on those (%,:) € Cat"%? for which % is p-typically m-semiadditive. In fact, we shall
package such pairs in a p-typically m-semiadditive co-category.

Proposition 3.1.9. The involution (—)°P of Caty, restricts to an involution of the (non-full)
subcategory CatZ»™ of Cato.

Proof. Since Cat®r™™ is a subcategory of Catq,, it suffices to see that

(1) If € € CatZ™ then €°P € Cat®r™™. This follows from [CSY20, Proposition 2.1.4(1)].

(2) A functor F: % — %1 in Cat®™ preserves S{-colimits if and only if F°P: €yt — 6
does. This is because a functor between p-typically m-semiadditive co-categories preserves
S,(f;)—limits if and only if it preserves S,(,]f)-colimits ([CSY20, Proposition 2.1.8]).

O

In view of this result, the Cs-action on Cats, by (—)°P restricts to an action on the subcategory
Cat®r™ C Caty, and we can form the co-category (CatZr™™)"C2 of p-typically m-semiadditive oo-
categories with anti-involution. We will now show that this category is itself higher semiadditive.

Lemma 3.1.10. The inclusion of the (non-full) subcategory CatZ»™ c C/aa preserves limits.

Proof. The claim follows from the fact that this inclusion admits a left adjoint; the analogous
statement in the non-p-typical case, and for small co-categories, is shown in [Har20, Theorem
5.28(2)], and the p-typical case for large oco-categories follows similarly.

O

Corollary 3.1.11. The co-category (CatZr )"z s p-typically m-semiadditive and the canonical
functor (Cat&r-™)hC> — Cath®2 s limit preserving.

Proof. By (the straightforward p-typical analog of) [CSY20, Proposition 2.2.11], the co-category
Cat®r is p-typically m-semiadditive. By Proposition 3.1.9, the involution (—)°P of Cat., restricts

m m

to an involution of Cat£»™™ so that we obtain a functor BCy — CatZr”

o —

of Cat&r™ ¢ Cat@»™. By Lemma 3.1.10 applied to this functor we deduce that (CatZr"™)hC2 is
p-typically m-semiadditive as well.

classifying this involution

It remains to show that the functor (Cat@»™)hC> — Cat"C? is limit preserving. This is because the
(non-fully faithful) inclusion Cat©»™ — Caty, is limit preserving (by the small category analogue
of Lemma 3.1.10) and limit-preserving functors are closed under limits in Caty. O

Let us illustrate this corollary more concretely: Let € be a p-typically m-semiadditive co-category.
Then % acquires a canonical p-typical m-commutative monoid structure, which provides for any
map f: A— Bin S an integration functor [; = fi ¢4 — €P (given by left Kan extension).
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Now suppose % is equipped with an anti-involution ¢, so (¢,¢) € (Cat2»™™)"C2. Then one can

build a diagram
f

%A ! (gB
LA LB (5)

(%A)OP % (%B>0p.

Corollary 3.1.11 implies that since (CatZr™)"C2 is p-typically m-semiadditive, (¢,¢) acquires a
canonical m-commutative monoid structure in (Cat&r)rCz
commutativity of (5): unwinding the constructions, this homotopy can be expressed concretely by
the formula

. Part of such data is a witness to the

(f)°Pet = (f)Put =B (6)
where the first equivalence comes from the norm equivalence fi ~ f, arising from the higher
semiadditivity of %, and the second comes from ¢ being an anti-involution.

We now define a higher semiadditive version of the functors ® and ®'x.

Theorem 3.1.12. The functors ®: (Cat&r™)hC> — CatB2 and d1x: (Cat®r™)hC2 5 CatBC>
admit refinements to functors

(Catgp'm)hc2 — CMongg)(Catoo)BCQ.

In other words, for (€,.) a p-typically m-semiadditive co-category with anti-involution, the oco-
categories (€, 1) and ®¥¥(€,1) are canonically Cy-equivariant p-typical m-commutative monoids
in Catos.

Proof. We prove the result for ®, the proof for ®** being completely analogous. Note that if 2, and
9, are oo-categories which admit 87(5 ) limits and F: Do — D1 is a Sy(ff)-limit preserving functor,
then post-composition with F' induces a functor

CMon'?) (%) — CMon'®) (7).

Indeed, the Segal condition involves only S,(,f )_limits and hence F preserves this condition. Conse-
quently, by Lemma 3.1.8, the functor ®: Catﬁf? — CatfoCQ induces a functor

CMon'?) (Cat"C2) — CMon'P) (CatZ) ~ CMonP) (Caty, ) P2,

Similarly, by the second part of Corollary 3.1.11, the functor (CatZ»™)"C> — Cat"%? is limit-
preserving and hence induces a functor

CMonff;) ((Catgif'm)hc2 ) — CMongﬁ) (Catgocz ).

Finally, by the first part of Corollary 3.1.11, (CatZr™)hC2 ig p-typically m-semidditive and hence
we have a canonical equivalence

(CatZr ™) =5 CMon'®) ((Cat&r™)"C2)

(see Proposition 2.0.7). Composing these three functors we get the desired refinement. O
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By abuse of notation, we denote the resulting functors
(Cat@r™)hC2 _, CMon'P) (Caty ) PC?

again by ® and ®'%*, so that if € is p-typically m-semiadditive, then ®(%,:) and ®'**(¥,.) are
higher commutative monoids in CatZ°2,

We end this section with an explicit description of this higher commutative monoid structure on
the level of objects.

Proposition 3.1.13. Let (¢,t) € (CatZr™)'C2. For every map f : A — B of p-typical m-finite
spaces, the higher commutative monoid structure on ®'%%(€, 1) provides a functor

ff: <I)1ax(‘€, L)A — Q)lax(‘ﬁ, L)B.

On an object (¢: X — 1(X)) € (¥, 1) (where X € €4 and v is applied pointwise), this functor
s given by the formula

(X B uX) = (hX B ufX) € O™(%.0)7,
where 1) is the composite

AX L8 pu(x) = o(£.X) L2 ().

Proof. The higher commutative monoid structure of ®¥(%¢, 1) is defined by applying the (limit
preserving) functor given by

PX(E 1) = € Xgxgor TW(E)
to the higher commutative monoid (%,:) € CMon'®) ((Cat&»"™)"C2). Here, we emphasize that the
functor € — € x €°P is given by (id,¢).
Using this pullback, we find that the integration map [; on an object (¢: X — «(X)) € Plax (¢, 1)4
consists of the following collection of data:

(1) The integration of X € ¢4, which is fiX € €5.

(2) The integration of the (twisted) arrow (X 2, (X)) in €4, which is the (twisted) arrow
(AX L2 fu(X)) in €5.

(3) The identification of their corresponding images in €2 x (¢2)°P. Referring to the first two
points, this amounts to identifying the pairs (f/i.X,¢(f1 X)) and (fiX, fie(X)). By definition,
this uses the compatibility of f; with ¢ inherent in the higher commutative monoid structure of
(€¢,1) € CMonP ((Cat&r™)hC2) . As in the discussion after Corollary 3.1.11 (and in particular
(6)), this is given by the composite

Fu(X) = (£ X) LR xy 8
Putting together this data, we obtain the claimed formula. O

Remark 3.1.14. Since the fully faithful embedding ®(%,:) C ®%(%,1) is compatible with the
higher commutative monoid structure, the same formula applies for ® instead of ®'#*.

4Note that ¢ is contravariant and hence flips the direction of the norm map.
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3.1.3 Lax symmetric monoidal structure on ¢

In the previous section, we defined a functor
®: (Cat@r™)rC2 y CMon!? (Cato, ) P2

taking an m-semiadditive co-category € with an anti-involution ¢: € —3 €°P to its co-category
of fixed points ®(€, ), considered as a (Cy-equivariant) higher commutative monoid in categories.
The purpose of this section is to endow ® with multiplicative structure: more precisely, we will
describe symmetric monoidal structures on the source and target of ®, and show that ® is lax
symmetric monoidal with respect to these structures. In Section 3.2.4, this will be used to endow
the Grothendieck-Witt spectrum of a higher semiadditive symmetric monoidal co-category with a
ring structure.

Recall that Cat%"m admits a symmetric monoidal structure coming from the Lurie tensor product
(cf. Section 2.0.2). We first show that this lifts to a symmetric monoidal structure on (Cat&r~)hCz,

Proposition 3.1.15. The Cy-action on CatZr™ given by € +— €°P lifts canonically to a symmetric
monoidal action, that is, a Co-action on Cat@»™ considered as an object of CAlg(Catyo).

Proof. For this proof, we will use the standard notations from the theory of co-operads of [Lurl6].
Let Catg denote the oo-operad corresponding to the Cartesian symmetric monoidal structure on
Catoo. Then, the oc-operad (Cat®r)® corresponding to the symmetric monoidal co-category
Cat®r™ is given as the subcategory (CatZ»™)® C Cat2 where (cf. [Lurl6, Notation 4.8.1.2]):

(1) The objects are the sequences (€1, %5, -+ ,6%) where each €; € CatZr ™.

(2) A morphism (61,%2,--- ,6x) = (21, Do, -+, D;) covering « : (k) — (j) is in the subcategory
(Cat2r™)®  Cat? iff each component functor

H C — Yo

ica—1(f)
preserves S,(TZZ )_colimits separately in each variable.

The Cy-action by op on Cat,, is symmetric monoidal, and thus induces a Cy-action on Cat® . To
see that this restricts to a symmetric monoidal action on CatZ»™™ it suffices to check that:

(1) The action map op : Cat2 — CatZ preserves the subcategory (Cat&»)®. This is true
on objects because the opposite of a p-typically m-semiadditive oco-category is p-typically m-
semiadditive. It follows for morphisms because functors between p-typically m-semiadditive

oo-categories preserve Sy(ff )_colimits if and only if they preserve S,g,f ) limits.

(2) The resulting functor op : (CatZr™)® — (CatZr"™)® sends coCartesian arrows to coCartesian
arrows. This is immediate for the inert morphisms, and follows for the active morphisms again
from the fact that functors between p-typically m-semiadditive co-categories preserve Sr(f )

colimits if and only if they preserve Sﬁf ) limits.
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O

As a consequence of this result, we can regard the fixed points (CatZ»™)"2 as taken within the oo-
category of symmetric monoidal co-categories; this equips (Cat?i;”m)hc2 with a symmetric monoidal
structure.

Next, we turn our attention to functor ®. We start by considering a closely related functor:

Lemma 3.1.16. Let (Qatgi;"'m)hc2 be given a symmetric monoidal structure via Proposition 3.1.15,

and regard CaLtOBOC2 as having the Cartesian symmetric monoidal structure. Then there is a canonical

lax symmetric monoidal structure on the composite
(CatZr-m)hC2 EN Cath¢? 2, CatZ,
where j denotes the forgetful functor.

Proof. This is because each functor in the composite admits a lax symmetric monoidal structure:

(1) By the proof of Proposition 3.1.15, the forgetful functor CatZ»™ — Cat,, extends to a
BC(C5-family of lax symmetric monoidal functors. Therefore, its limit, which is the functor j,
acquires a lax symmetric monoidal structure.

(2) The functor ® preserves limits by Lemma 3.1.8, and both the source and the target are given
the Cartesian symmetric monoidal structure; thus, ® is symmetric monoidal.

O

Hence, to endow the fixed points functor ®: (Cat&r™)"C2 — CMon®) (Catse )29 with a lax sym-
metric monoidal structure, it remains to consider the effect of taking m-commutative monoids on
lax symmetric monoidal functors.

The oco-category Span(é}(,f ))Op admits a symmetric monoidal structure given by the Cartesian prod-
uct in Sr(f ) [BGS19, §2]. Hence, for every presentably symmetric monoidal co-category %, we can
consider PMon®) (%) as a symmetric monoidal co-category via Day convolution [Glal6].

Proposition 3.1.17. Let % be a presentably symmetric monoidal oo-category. Then CMon'®) (%) is
a symmetric monoidal localization of PMong,’;) (¥), and in particular, it admits a unique symmetric
monoidal structure for which the localization functor PMon'® (%) — CMon'P) (%) is symmetric
monoidal. Moreover, the equivalence CMonS,’L’)(%) o~ CMODE,IZ)(S) ® € is a symmetric monoidal
equivalence.

Proof. This follows from [BMS21, Theorem 4.27]. O

Combining these results, we obtain

Theorem 3.1.18. The functor ®: (CatEr™)hC> — CMon'P) (CatB2) is lax symmetric monoidal.
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Proof. We can write ® as a composite

(Cat@r™)hC2 5 CMonP) ((CatZr™)"C2) — PMon® ((Cat®rm)hC2)
—)éo(_) PMonS,’Z)(CatOBOCQ) L, CMong,f)(CatoBOCQ),

where L is the symmetric monoidal localization from Proposition 3.1.17 and ® o (—) denotes post-
composition with ® regarded as a functor (CatZr)"Cz — Cati@. We show, in order, that each
map in this composite admits a lax symmetric monoidal structure.

e The equivalence
(Catgp-m)hcz AN CMOHg)((Catip_m)hCZ) ~ (Catgp'm)h@ ® CMOHg)(S)

identifies with the tensor product of the identity functor of (Cat@r)"C2 and the unit
S — CMOI’I,E,I;)(S). Hence, it is a symmetric monoidal equivalence by the second part of
Proposition 3.1.17.

e The inclusion CMon'®) ((CatZr™)"C2) s PMon'P)((CatZ»™)"C2) is the right adjoint of the
symmetric monoidal localization L, and hence is canonically lax symmetric monoidal.

e For symmetric monoidal co-categories .o/ and %, the Day convolution symmetric monoidal
structure on Fun(</, %) (when it exists) is functorial in post-composing with lax symmetric
monoidal functors. Hence, by Lemma 3.1.16, the functor ® o (—) is lax symmetric monoidal
with respect to Day convolution.

e Finally, L is a symmetric monoidal localization.

3.2 Grothendieck-Witt theory as a higher commutative monoid

We now refine GW to a functor valued in p-typical m-commutative pre-monoids. After some
preliminaries on symmetric monoidal duality, we refine the functor QF from Definition 3.1.7 to take
m-semiadditively symmetric monoidal categories to m-commutative monoids (Section 3.2.2). Then,
we apply group completion to obtain the semiadditive form of GW in Section 3.2.3, and discuss the
multiplicative structure in Section 3.2.4. Finally, in Section 5.1.2, we unwind the definition of the
higher semiadditive structure on GW in the special case of vector spaces over a field.

3.2.1 Symmetric monoidal duality and semiadditivity

Let ¢ be a symmetric monoidal co-category. Then recall (Example 3.1.3) that one can extract
the full subcategory "' C € of dualizable objects. This subcategory admits a canonical anti-
involution by symmetric monoidal duality, and so the assignment € +— €' determines a functor

(—)dP!: CAlg(Cato) — Cat2 .

We will need a higher semiadditive version of this functor:
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Proposition 3.2.1. The assignment € — €' determines a functor
(—)*"': CAlg(CatZr™) — (CatZr™)"2.

Moreover, this functor is lax symmetric monoidal with respect to the Lurie tensor product (cf.
Proposition 3.1.15).

The proof, which is assembled at the end of this section, will proceed by factoring (—)"! as a
composite of several lax symmetric monoidal functors. Let

CAlg(CatZr)e c CAlg(CatZr™)

denote the full subcategory of rigid p-typical m-semiadditively symmetric monoidal categories —
that is, those € € CAlg(Cat®r™™) satisfying the condition that every object X € € is dualizable.

Before we proceed, we shall need the following general lemma about the Lurie tensor product.

Lemma 3.2.2. Let K be a set of simplicial sets, let Catx denote the co-category of co-categories
which admit KC-shaped colimits (with morphisms functors preserving those colimits), and give Catx
a symmetric monoidal structure under — ® —, the Lurie tensor product [Lurl6, Corollary 4.8.1.4].

Then, for €,2 € Catg, the co-category € @ 2 is generated under K-shaped colimits by the image
of the canonical functor € X 9 — € ® 9.

Proof. Let & C € ® 2 be the full subcategory generated under K-colimits by the image of € x 2.
Then by construction, & admits a functor from ¢ x 2 which preserves K-colimits separately in
each variable, which extends by universal property to a K-colimit preserving functor

U:CRY — 8.

But the composite of u with the inclusion & C € ® Z is the identity of ¥ ® 2, again by the
universal property. It follows that the inclusion & C ¢ ® Z is essentially surjective and therefore
an equivalence of co-categories, as desired. O

Lemma 3.2.3. The subcategory CAlg(Cat@r)s ¢ CAlg(Cat2r™) is closed under the symmetric
monoidal structure (given by the Lurie tensor product).

Proof. Tt suffices to show that if ¥, 2 € CAlg(CatZ»™)"8 then their tensor product ¢ ® 2 is
also rigid. Note that by construction ([Lurl6, Proposition 4.8.1.10]), there is a symmetric monoidal
functor ¥ X Z — ¢ ® &, and so any object in the image of ¥ x Z is dualizable. But ¢ ® 2
is generated under Sy(ff)—colimits by the image of ¥ x 2 (Lemma 3.2.2), so the lemma follows

by noting that for categories in CAlg(CatZ»™), dualizable objects are closed under S _colimits
[CSY21, Corollary 2.7]°. O

5The reference treats the presentable case, and the general case follows from it by using the fully faithful sym-

’%’)

(p)
metric monoidal S;;,’-colimit preserving embedding ¢ — FunSwm (#°P,S), where the superscript denotes S,(,f)—limit

preserving functors.

25



It follows that CAlg(CatZ»"™)"8 inherits a symmetric monoidal structure under the tensor product.

Lemma 3.2.4. The assignment € — €' determines a lax symmetric monoidal functor
CAlg(CatZr ™) — CAlg(CatZr ™),
Proof. First we note:

(1) The co-category CAlg(Cat2»™) can be identified with the (non-full) subcategory of CAlg(Cat.,)
spanned by p-typical m-semiadditive co-categories in which the tensor product distributes over
Sﬁ,’; )—colimits, and symmetric monoidal functors which preserve Sy(ff )_colimits.

(2) There is a functor CAlg(Cato,) — CAlg(Caty, )™ given by extracting dualizable objects.

Thus, to construct the functor CAlg(Cat2»™) — CAlg(CatZr™) e it suffices to check that the
functor of (2) restricts appropriately; in particular we check:

e For ¥ € CAlg(CatZr™), the oo-category ¢! is also p-typically m-semiadditive. This is
because €IP! C % is closed under S -colimits [CSY21, Proposition 2.5].

o The tensor product in ¢! distributes over 87(,1; )—colimits; this is because the fully faithful
embedding €' C ¥ is symmetric monoidal and Sg)—colimit preserving, and the tensor
product in ¥ has this property.

« That for ¢, 2 € CAlg(CatZr™), a SP)_colimit preserving symmetric monoidal functor ¥ —
9 restricts to a Sﬁf)-colimit preserving functor on the dualizable objects. This again follows
from the fact that €% and 29! are closed under S -colimits in ¢ and 2 respectively.

It remains to see that this restricted functor is lax symmetric monoidal. But note that the sym-
metric monoidal structure on CAlg(CatZ»™™) is coCartesian (because it is a category of commu-
tative algebras), and the subcategory CAlg(CatZ»™™)"® is closed under the monoidal structure by
Lemma 3.2.3. Thus, the symmetric monoidal structure on CAlg(CatZ» )8 is also coCartesian.
Since the source CAlg(CatZr™) of the functor is unital, it follows from [Lurl6, Proposition 2.4.3.9]
that the functor is lax symmetric monoidal. O

We have seen that the construction ¥ — €°P defines a symmetric monoidal Cs-action on Cat,
and that this endows the subcategory Cat®r™ C Cat,, with a symmetric monoidal Cy-action (cf.
Proposition 3.1.15). It follows that CAlg(CatZ»™) also admits a Cy-action by & s €°P.

Lemma 3.2.5. The Co-action on CAlg(CatEr™) by € s €°P restricts to a Cy-action on the full
subcategory CAlg(CatZ» )8 and this restricted action admits a canonical trivialization. Conse-
quently, there is a lax symmetric monoidal functor

CAlg(CatZr ™)™ — (CAlg(CatZr)re)hC2,
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Proof. To restrict the action, it suffices to note that if & is rigid, then %°P is rigid. We have
seen (e.g. in the proof of Lemma 3.2.4) that CAlg(Cat&»™) ¢ CAlg(Caty,) is the inclusion of a
subcategory, and it follows from the construction of the Cs-action (proof of Proposition 3.1.15)
that this inclusion is Cj-equivariant with respect to the op action. Hence, one also has that
CAlg(CatZr)rie ¢ CAlg(Cato)™® is a Co-equivariant inclusion of a subcategory.

Now, [HLAS20, Theorem 5.11] provides a trivialization of the Cs-action on CAlg(Cat,)™8. Since
the subcategory CAlg(Cautgif"m)rig include all the equivalences, such a trivialization necessarily
restricts to a trivialization of the Cy-action on CAlg(CatZ»™)r8. This trivialization in turn provides
a functor

CAlg(CatZr™)e _y (CAlg(Cat@r™)118)BC2 ~ (CAlg(Cat@rm)rig)hCs,

It remains to show that this functor admits a lax symmetric monoidal structure. As in the proof of
Lemma 3.2.4, it would suffice to show that the symmetric monoidal structure on (CAlg(CatZr~™)rig)hC2
is coCartesian. Since CAlg(CatZ» ™)' is given the coCartesian structure, this follows from the gen-
eral fact that coCartesian symmetric monoidal oo-categories are closed under limits in CAlg(Cato ).

O

Now we can finish the proof of Proposition 3.2.1:

Proof of Proposition 3.2.1. We construct the desired functor (—)"' as a composite

CAlg(Cat@r™) - CAlg(CatBr)rs — CAlg(Cat@r-m)rie)hC2
— CAlg(CatZr )" — (CatErm)hC2,

The first two functors, and their lax symmetric monoidality, are Lemma 3.2.4 and Lemma 3.2.5,
respectively. The third functor exists and is symmetric monoidal because, by construction, one has a
symmetric monoidal Co-equivariant inclusion CAlg(Cat@»™)rs ¢ CAlg(CatZ»™™). Finally, the last
functor is induced by the forgetful functor CAlg(CatZr™) — CatZ»™™, which is Cy-equivariantly
symmetric monoidal by Proposition 3.1.15.

O

3.2.2 Symmetric bilinear forms

We may now refine QF (%) to a higher commutative monoid.
Definition 3.2.6. Let OF"): CAlg(Cat® ™) — CMon'?)(S) be the composite

_\dbl
CAlg(CatZr™) O, (Cat@em)hC2 2, CMon'?) (Cat,, ) PC?
(—)re2 ®) ()~ »)
——— CMon,?’ (Cats ) —— CMon,?’(S).

In particular, a point of the space QF A(‘K) is a pair (X, b) where X € €4 and b is a non-degenerate
symmetric bilinear form on X, with respect to the point-wise tensor product of €. We also have
the expected integration maps for QF (™) (%):
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Proposition 3.2.7. Let € € CAlg(CatZ»™) and let f: A— B € S The map
[s: QFX€) = QF"(¥)
agrees with the map constructed in Construction 3.0.2.

Proof. Since QF 7 (%) ~ (&(€ P!, D)=)"C2 the claim follows immediately from Proposition 3.1.13.
O

3.2.3 Higher semiadditive Grothendieck-Witt theory

To produce the higher semiadditive version of Grothendieck-Witt theory from QF (_)((5), all that
is left is to perform group completion level-wise. For this, we first need to promote the spaces
QFA(%) to commutative monoids in spaces in a way compatible with the higher commutative
monoid structure of QF (™) (€). In fact, such an extension is automatic:

Proposition 3.2.8. For every m > 0, there is a canonical equivalence
CMon'?)(8) ~ CMon® (CMon(S))

Proof. We have CMon® (CMon(8)) ~ CMon(8)®CMon?)(S), where ® denotes the tensor product
of presentable co-categories [Lurl6, §4.8]. Since CMon(S) is an idempotent algebra in Pr classifying
0-semiadditivity (see, e.g., [CSY20, Proposition 5.3.1]), the result follows from the fact that for every
m > 0, CMonP)(S) is a semiadditive co-category. O

Recall that the underlying space functor Q2°°: Sp — § refines to a functor Sp — CMon(S), whose
left adjoint (—)8P: CMon(S) — Sp is the group completion functor.
Definition 3.2.9. For m > 0, define the functor

GW): CAlg(Cat® ™) — PMon? (Sp)

to be the composite

CAlg(Cat®r™) LZANN CMon'?(S) ~ CMon®) (CMon(S))
< PMon!”) (CMon(S)) o, PMon'®) (Sp).

Namely, GW*(%) is the connective spectrum obtained from QF(%4) € CMon(S) via group-
completion. Note that the summation operation in the monoid QF (%), and hence in the spectrum
Gw4 (%), is given by direct sum of symmetric bilinear forms.

Remark 3.2.10. Although QF (™) (%) is a p-typical m-commutative monoid, the functor GW™) (%)
need not satisfy the Segal condition in general, and hence it is only a p-typical m-commutative pre-
monotd.
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3.2.4 Multiplicative structure on GW

Recall that the oo-category PMon(® (Sp) = Fun(Span(S,(yf)),Sp) admits a symmetric monoidal
structure given by Day convolution. In this section, we show that for every symmetric monoidal p-
typically m-semiadditive co-category €, the Grothendieck-Witt object GW(™) (%) € PMon'? (Sp)

m
admits a canonical structure of a commutative (a.k.a. Eo-) algebra in PMon'®)(Sp). To accomplish

this, we refer to Definition 3.2.9, in which the functor
GW) : CAlg(Cat2»™) — PMon'?) (Sp)

is defined as a certain composite: we will show that each functor in the composite, and consequently
GW ) itself, is a lax symmetric monoidal functor.

Proposition 3.2.11. The functor
QF (). CAlg(Cat® ™) — CMon'?)(S)

of Definition 3.2.6 is lax symmetric monoidal. Hence, for any symmetric monoidal p-typically

m-semiadditive co-category €, the space QF (€) acquires a canonical structure of a commutative
algebra in CMon?(S).

Proof. We check that each functor in the composite of Definition 3.2.6 is lax symmetric monoidal.
(1) The functor (—)P! is lax symmetric monoidal by Proposition 3.2.1.

(2) The functor ® is lax symmetric monoidal by Theorem 3.1.18.

(3) The functor (—)"“2 is lax symmetric monoidal because it is right adjoint to the symmetric
monoidal functor CMon® (Cats) — CMon'?) (Catoe)BC> which takes the constant functor
on BOQ

(4) The functor (—)= is lax symmetric monoidal because it is right adjoint to the symmetric
monoidal inclusion CMon#)(S) ¢ CMon® (Cat.,).

Corollary 3.2.12. The functor
GW() : CAlg(Cat» ™) — PMon'?)(Sp)

is lax symmetric monoidal. Hence, for any symmetric monoidal p-typically m-semiadditive co-
category €, the spectrum GW(¥) acquires a canonical structure of a commutative algebra in
PMon'?) (Sp).

Proof. We check that the functors in Definition 3.2.9 are lax symmetric monoidal:

(1) The functor QF =) is lax symmetric monoidal by the previous proposition.
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(2) The equivalence CMon'?(S) ~ CMon®) (CMon(S)) is symmetric monoidal by combining (the
proof of) Proposition 3.2.8 with Proposition 3.1.17.

(3) The inclusion CMon® (CMon(S)) < PMon®) (CMon(S)) is lax symmetric monoidal because
it is right adjoint to a symmetric monoidal localization (cf. Proposition 3.1.17).

(4) The functor (—)&P : CMon(S) — Sp is symmetric monoidal, and thus the functor
PMon?) (CMon(S)) — PMon® (Sp)

induced by post-composition is lax symmetric monoidal for the Day convolution structure
[Lurl6, Example 2.2.6.17].

3.2.5 The structure on GW of a discrete ring

Let R be a discrete commutative ring. Then the category Mod g (Ab) is semiadditive, and therefore
by Definitions 3.2.6 and 3.2.9, we obtain objects

QF(R) := OF (Modg(Ab)) € CMon{(S)
GW(R) := GW(Modg(Ab)) € Sp.

Moreover, by Proposition 3.2.11 and Corollary 3.2.12, since Modg(Ab) is semiadditively symmetric
monoidal, the objects QF (R) and GW(R) naturally acquire the structure of E..-algebras in their
respective categories. In fact, one can explicitly describe the resulting ring structures on 7o QF (R)
and GWq(R) acquire natural ring structures: if (V,q), (V’,¢’) € moQF (R) are symmetric bilinear
forms, then their sum is given by (V & V’/,q @ ¢’) and their product by (V @ V', ¢ ® ¢').

The payout of our work in Section 3 is the following extension of this situation:
Example 3.2.13. Let R be a discrete commutative ring in which 2 is invertible. Then the category

Modpg(Ab) is 2-typically 1-semiadditive®. Therefore, by Definitions 3.2.6 and 3.2.9, QF(R) and
GW(R) extend to functors

QF ) (R) : Span(8V)°P — S
GW(R) : Span(é?l(Q))Op — Sp
where QF(7)(R) additionally satisfies the Segal condition. Moreover, since Modg(Ab) is in fact

semiadditively symmetric monoidal, we have QF ™) (R) € CAlg(CMon(l2)(S)) and GW()(R) e
CAlg(PMonf)(Sp)) by Proposition 3.2.11 and Corollary 3.2.12.

6This follows, for instance, by [CSY20, Proposition 3.2.2], noting that this category has height 0 because 2 is
invertible.
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4 K(1)-local Grothendieck-Witt theory of finite fields

Let Sk (1) denote the K(1)-local sphere at the prime 2. Recall that, in order to prove Theorem A,
we aim to compute the element |BCy| € mo(Sk (1)), which is defined in terms of the 1-commutative
monoid structure on Sk (1), that is, a certain functor

S(K_()l) : Spaun(S{Q))Op — Sp.

The goal of this section is to show that this functor can be understood in terms of the functor
GW ) constructed in Section 3. In particular, we will show:

Theorem 4.0.1. Let £ = 3,5 (mod 8) be a prime, and let
GW(i)(Fg) : Span(sz))op — Sp

denote the functor constructed in Example 3.2.15. Then there is a natural transformation of functors
GW(_)(IFZ)Q\ — S(K_()l) which, pointwise, exhibits the source as the connective cover of the target.

The proof of Theorem 4.0.1, which takes up the bulk of this section, will be outlined and given in
Section 4.1.

Remark 4.0.2. A special case of our theorem, given by evaluating at a point, is an identification

for primes ¢ = 3,5 (mod 8). This equivalence is essentially due to Friedlander [Fri76]. As we will
see, the proof of our theorem draws heavily on later work of Fiedorowicz-Hauschild-May [FHMS82],
which generalizes (7) to the equivariant setting.

4.1 Relating GW(F,) to Sk

Our proof of Theorem 4.0.1 proceeds in roughly two steps. First, we start by working with the
Grothendieck-Witt theory of F,, rather than Fy; in Section 4.1.1, we use work of Fiedorowicz-
Hauschild-May [FHMS82] to show that L K(l)GW(_)(E) is a 1-commutative monoid (in fact, we will
see that it is the unique 1-commutative monoid structure on K02%). Then, in Section 4.1.2, we pass
to Frobenius fixed points and finish the proof of the theorem.

4.1.1 Relating GW(F,) to KO

Our goal in Section 4.1.1 will be to show:

Proposition 4.1.1. For any prime £, the functor
LK(l)GW(i)(Fg)I Span(Sf))Op — Sp

satisfies the Segal condition (cf. Definition 2.0.3). In other words, LK(l)GW(i)(ﬁ() defines a
2-typical 1-commutative monoid in K (1)-local spectra.
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This proposition follows essentially immediately from results of Fiedorowicz-Hauschild-May [FHMS&2]
and the Atiyah-Segal completion theorem, which we now state.

Proposition 4.1.2 (Fiedorowicz-Hauschild-May [FHMS82, Theorem 0.3]). Let ¢ be an odd prime,
let G be a finite 2-group, and let KOS denote the (genuine) G-fized points of the equivariant real

K -theory spectrum. Then there is an equivalence’

BG : GWG(Fg)é\ — Tzo(KOG)é\.

Moreover, these equivalences are compatible with restriction in G in the sense that there is a com-
mutative square

GWY(Fy)p 2% (GW(Fy)5)he

J/BG lBhG

T>0(KO%)y —— (150K 0%)"¢

where ppa denotes the Segal map (Definition 2.0.3) and the bottom arrow is the canonical map
induced by the genuine G-equivariant structure.

Proposition 4.1.3 (Atiyah-Segal Completion Theorem, 2-complete form [AS69]). Let G be a 2-
group. Then the natural map of spectra KO% — KOPBC is an equivalence after 2-completion.

Proof. Since the spectra in question are of finite type, the homotopy groups of the 2-adic completions
are the 2-completion of the homotopy groups, it suffices to show this is a 2-complete equivalence
on homotopy groups. By the usual Atiyah-Segal completion theorem [AS69], this map exhibits
7. (KOBY) as the completion of the ring m,(KO%) at the augmentation ideal. Since G is a 2-
group, the augmentation ideal defines the 2-adic topology (see [AT69, Proposition I11.1.1]). O

Given these, the proof of Proposition 4.1.1 is just unwinding definitions.

Proof of Proposition 4.1.1. Since the functor takes disjoint unions of spaces to products of spectra,
it suffices to check the Segal condition on connected spaces in 8{2), i.e., spaces of the form BG for
a finite 2-group G. In this case, we would like to show that the map

pBG : Lic1yGWY(Fy) = L)GW(F,)P¢

induced by the point embeddings pt — BG is an equivalence. By Proposition 4.1.2, this amounts
to showing that the natural map

750(KO%)) — (150K 04)P¢

"Note that while 2-completion and connective cover do not commute in general, they do when the spectra in
question are of finite type. Since we will apply these functors in the finite type setting, we use a notation which does
not distinguish the order of applying them.
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is an equivalence after K (1)-localization for every 2-group G. But (KO%)% is K(1)-local and K (1)-
localization is insensitive to connective cover, so the left-hand side localizes to (KO%)%. For the
right-hand side, we have

Li(1)(120K05)P% ~ L1y (K0%)PY ~ (K0J)PY ~ (KOP)3,

where the first equivalence is because K (1)-localization only depends on the connective cover, the
second is because K (1)-local spectra are closed under limits in Sp, and the third is because the
formula for 2-completion X4' = lim; X /2% implies that it commutes with limits. Thus, the conclusion
follows from Proposition 4.1.3. O

Remark 4.1.4. Note that, by Proposition 4.1.2, the 2-typical 1-commutative monoid GW (™) (F,)
of Proposition 4.1.1 has underlying object KO%. Although we will not need this explicitly, we
remark that, by the uniqueness of 1-commutative monoid structures on K (1)-local spectra (Propo-
sition 2.0.7(3)), this means that GW(™)(F,) and (K0%)) (cf. Definition 2.0.8) are equivalent as
2-typical 1-commutative monoids.

4.1.2 Fixed points of Frobenius

Note that the Frobenius automorphism induces an action of the group Z on F,, and thus on the
functor GW(_)(Fg). We denote the corresponding natural transformation by

©: GW)(Fy) = GW ().

On the other hand, the inclusion F, — F, is Z-equivariant (with respect to the trivial action on the
source), and thus we have an induced natural transformation

w: GW(Fy) = GWE) (F)" ~ fib(1 — ).
The work of Fiedorowicz-Hauschild-May [FHMS82] shows that u is close to an equivalence:

Proposition 4.1.5. Let f¢ : GWE(F,)) — 150(KO%), denote the equivalence of Proposi-
tion 4.1.2. Then we have:

(1) Under the equivalence 3%, the Frobenius automorphism o: GWC (F,) — GWY(F,) is identi-
fied with the map Y° : 750(KO%)) — 750(KO%)) induced by the (-th Adams operation.

(2) The 2-completion of the map u exhibits the functor GW ™) (Fy)} as the (pointwise) connective
cover of (GW ) (Fy)H)hZ.

Proof. Part (1), the identification of the Frobenius with the Adams operation, is demonstrated in
[FHMS82, Section 8], in the proof of [FHMS82, Theorem 0.5]. Part (2) is [FHMS82, Theorem 8.1]
(note that the connective cover comes from the fact that their theorem is stated in spaces). O

We have the following immediate consequence:
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Lemma 4.1.6. The K (1)-localization map GW ™) (Fy)) — LK(l)GW(_)(IF‘g) pointwise exhibits the
source as the connective cover of the target.

Proof. We have

GWI(Fo)p = 750 (GW ) (Fr)p)"”

~ 750(T20(KO%)5)"*
T>0((KO%)p)"*
~ 750 Lk (1)T>0(T20(KO%)5)*

~ 750L 1y GWY (Fy),

12

where the first two equivalences use Proposition 4.1.5, the third is by connectivity considerations,
the fourth is because L (1) is zero on coconnective spectra, and the last equivalence is by the first
two equivalences. O

We may now finish the proof of Theorem 4.0.1, with the critical input being Proposition 2.0.7(3),
which asserts that K (1)-local spectra admit an essentially unique 1-commutative monoid structure.

Proof. By Proposition 4.1.5(2), the map of functors
w: GW)(Fy) — GWE)(F,)H2

is an equivalence after applying Ly ;). Thus, since L K(l)GW(f)(E) satisfies the Segal condition,
so does LK(l)GW(i)(Fg) (note that (—)"% is a finite limit so it can be applied before or after K (1)-
localization with the same effect). Finally, applying Proposition 4.1.5(1), we see that the underlying
space of the resulting 2-typical 1-commutative monoid L K(l)GW(i)(]Fg) is the fiber of the map

1 -4l KOy — KOj.

When ¢ = 3,5 (mod 8), ¢ is a topological generator for Z; /{+1} ~ Zs and therefore this fiber is
equivalent to Sk (1) (see, for instance, [Hop14]). By Proposition 2.0.7(3), we conclude that there is
an equivalence of 2-typical 1-commutative monoids

The theorem then follows by Lemma 4.1.6. O

5 Computations in the K(1)-local sphere

Let p = 2 and let ¢ be a prime congruent to 3 or 5 modulo 8. The fact that the 2-typical 1-
commutative monoid SE(_()l) is the K (1)-localization of the 1-commutative pre-monoid GW (™) (F,)
allows us to deduce facts about the K (1)-local sphere from more concrete computations in symmetric
bilinear forms over the finite field Fy.
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We start by briefly recalling some aspects of the classical theory of GW(F,) and explicitly relating
GWo(FF¢) to moSk (1) in Section 5.1. Our first application of this relationship is to compute the
cardinalities of 2-typical m-finite spaces in moSg (1) (Theorem A) in Section 5.2.

We then turn to computing various natural power operations on TSk (1). Because of the multi-
plicative nature of the K (1)-local equivalence L K(l)GW(i)(Fg) ~ S&;()l), these power operations
can be expressed in terms of multiplicative operations on symmetric bilinear forms over F,. The
first of these operations is the operation «,, (studied in [CSY18]), which we compute in Section 5.3.
In Section 5.4, we use oy, to compute two closely related operations: the operation 6 (originally
due to McClure, cf. [BMMSS86, Hopl4]), and the canonical p-derivation §,, which was used in the
proof of the higher semiadditivity of Spy,,, in [CSY18]. Finally, we compute Rezk’s logarithm on
WOSIX((D in Section 5.5.

5.1 Relating GW(F;) to moSk)

The purpose of this section will be to compile some of the explicit consequences of our work to this
point. We will review the theory of symmetric bilinear forms over a finite field in Section 5.1.1. Then,
in Section 5.1.2, we specialize the results of Section 3 to the case of GW of a discrete ring R in which
2 is invertible and describe the resulting transfer maps coming from the l-commutative monoid
structure on QF(R). Finally, in Section 5.1.3, we explicitly understand the map GWy(F,) —
moSk (1) induced by the identification of Theorem 4.0.1, which will allow us to deduce how the
higher semiadditive transfers act on mSg 1)

5.1.1 Symmetric bilinear forms over a discrete ring

Notation 5.1.1. Let R be a commutative ring. Then every invertible element » € R* determines
a nondegenerate symmetric bilinear form

b (e ©y) = ra,

and we denote the class of (R,b,) in moQF(R) or GWy(R) by [r]. Note that the construction
r + [r] determines a group homomorphism R* — GWy(R).

The monoid moQF (R) can be explicitly described when R is a finite field in which 2 # 0.

Example 5.1.2. Let k be a finite field of characteristic not equal to 2. Then any nondegenerate
symmetric bilinear form (V, ¢) can be diagonalized, and therefore splits as a sum

(V,q) = Z[%]

for elements x; € k> /(k*)?2. Since k is a finite field, this latter group is isomorphic to Z/2, generated
by a nonsquare class r. Moreover, the only relation is 2[r] = 2, so the monoid QF(k) of symmetric
bilinear forms over k is the free commutative monoid on [1] and [r] subject to the relation 2[r] = 2[1].
Moreover, the multiplicative structure satisfies [r]? = [1].
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This monoid comes with two homomorphisms

rank : QF (k) = N det : QF (k) — kX /(k*)?
allj]+o[r]—a+b all] +b[r] = r°

(rank,det)

—

whose product is an injective map QF (k)
form can be recovered from its rank and determinant.

N x Z/2. That is, any symmetric bilinear

From this example, one can read off the 0-th Grothendieck-Witt group (see, e.g., [Lam05, Theorem
3.5]):

Proposition 5.1.3. Let k be a finite field of odd characteristic. Then
1oGW (k) ~ Z[e]/ (€2, 2¢),

where e = [r] — [1] for r € k™ a non-square.

5.1.2 The higher semiadditive integration maps on GWj

Let R be a commutative ring in which 2 is invertible. Then we have seen in Example 3.2.13 that
the 2-typical 1-semiadditive structure on Modg(Ab) gives us functors

OF)(R) : Span(8P)P = S
GW)(R) : Span(S{?)°P — Sp.

The following proposition describes explicitly the integration maps for QF (7)(R) (and thus for
GW)(R)).

Proposition 5.1.4. Let G be a finite 2-group, let R be a commutative ring in which 2 is invertible,
and let (V,b) € Q]:BG(R) be a G-equivariant R-module equipped with an equivariant symmetric
bilinear form.

Then the map
Ipc: QFPC(R) — QF(R)

sends the pair (V,b) to the pair (Vg, [ga b) where the symmetric bilinear form [pa b is given by the
formula

[pab(@7) = 3 blgv,u).

geaG

Here, Vo denotes the G-coinvariance of V and w,v € Vg are the images of u,v € V under the
quotient map.
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Proof. The underlying module is Vg because [ is, by construction, given by left Kan extension
along BG — pt on the underlying object. To determine the bilinear form, let 5¥: V' — DV be the
mate of b. Then, by Proposition 3.2.7, the map (/g b)Y is given by

(f b)Y (@) = b" (Nmpe () = b" (D gu)

geG

so that

(J 0)(@ o) =((] b)Y (@)([®) = (bY(Y_ gw)(v) = D blgu,v).

BG geaG geG

Corollary 5.1.5. For any finite 2-group G, we have
Ipclrl =1Gl-r] € QF(R).
Proof. By Proposition 5.1.4 and because G acts trivially on R, we have

(Upabr)(@y) =Y belgz,y) =D bz, y) = |G| - bz, y) = bgyr(2, ),

geG geG

which is exactly the symmetric bilinear form on R corresponding to the object [|G|-r] € QF(R). O

5.1.3 Relating GW,(F;) and 7Sk 1)

Theorem 4.0.1 roughly asserts that the 1-semiadditive structure of Sk ;) can be understood in
terms of the higher semiadditive Grothendieck-Witt theory of a finite field via a certain natural
transformation GW(f)(]Fg) — Sﬁ;()l). In order to better translate between the two objects, we will
compute GW(F;) — Sg (1) explicitly on .

First, recall from Section 1.4.1 the equivalence
oSk (1) =~ Zo [e]/(527 2¢),
where € := 7 - (. On the other hand, by Proposition 5.1.3, one has an isomorphism
ToGW(Fy) =~ Z[e] / (€2, 2¢)
where e represents the class [r] — [1] for a nonsquare r € F}'.
Lemma 5.1.6. Let £ = 3,5 (mod 8) be prime. Then the ring map
Zle]/ (€, 2€) ~ moGW (F¢) = moSr(1) = Zole]/ (%, 2¢)
of Theorem 4.0.1 sends e to €.

Proof. By Theorem 4.0.1, the map exhibits the target as the 2-completion of the source so e cannot
go to zero. Since e is the only nilpotent element in Z[e]/(e?,2¢) and € is the only nilpotent element
of Zs[e]/(e?,2¢), we deduce that this homomorphism must take e to e. O
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We then have the following immediate corollary of Lemma 5.1.6 and Example 5.1.2.

Corollary 5.1.7. Let | = 3,5 (mod 8) be prime and suppose that (V,q) € QF (£) such that
rank(V,q) =r, det(V,q) =d.

Then the image of (V,q) under the composite
QFo(Fe) — GWo(Fr) = moSk (1)

is given by r + de.

5.2 K(1)-local cardinalities of 2-typical n-finite spaces

Recall that, for a 7-finite space A, one can associate an element |A| € moSg(1), known as the
(K (1)-local) cardinality of A (cf. Definition 2.0.10). In this section, we explain how to compute
these cardinalities for every 2-typical w-finite space A. In fact, it suffices to do this in the case A
is connected, as if A = L; A;, then |[A| = " |A;|. For connected A, we shall express the result in
terms of its homotopy cardinality, defined by the formula

Ao =TT Imal =",

ieN
We have:

Theorem 5.2.1. Let Sk (1) denote the K(1)-local sphere at the prime 2, and let A be a connected
2-typical w-finite space. Then we have

‘A| =1+ 10g2(|A‘0) e € WOSK(l). (8)

In particular,
‘BCQ| =1+e.

Proof. We first reduce the general case to the case A = BC5. Let A — B — C be a principal fiber
sequence of 2-typical 7-finite spaces such that A is connected. Then, since Sp ;) is of semiadditive
height 1, we have by [CSY20, Theorem A(4)] that

|Bl=|A]-|C] € moSk()-

On the other hand, since we have |B|o = |A|o|Clo (either by the long exact sequence on homotopy
or by the same reference), and since 2 = 0, we deduce that

1+ logy(|Blo)e = 1+ logy(|Alo)e +loga(|Clo)e = (1 +loga(|Ao)e) - (1 4 loga(|Clo)e).-

Hence, both the left hand side and the right hand side in the proposed identity (8) are multiplicative
in principal fiber sequences with connected fiber.
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Note that every connected 2-typical m-finite space A is nilpotent, and hence participates in a
sequence of principal fibrations

A:A()—>A1—>...—>Ak:pt

such that, for every 0 < i < k — 1, the fiber of the map A; — A;_; is of the form B%Cj, for some
¢; > 0. Hence, the claim for general A follows from the cases A = B‘C,. Moreover, since we have

principal fiber sequences
Be_lcg — pt — 36027

we may further reduce these cases to the single case A = BCs.

We now prove the claim for BC5y. By the results of Section 4, we have a (unital) map
- (=)
GW ) (Fy) — Si)

in PMongQ)(Sp). Thus, by definition of the cardinality, the map moGW(F;) — moSk (1) carries the
element |BCy| € moGW(Fy) to the element |BCs| € moSg(1). Therefore, it is enough to compute
|BCy| in moGW (F¢). Moreover, since (by Lemma 5.1.6) the map moGW (F;) — oSk (1) sends e to
g, it suffices to see that

|B02| =14e € WoGW(Fg).

Let m : BCy — pt denote the terminal map. By definition, |BCy| € mgGW(F,) is given by
[ 71, where 1 € mgGW(IFy) is represented by the symmetric bilinear form [1] € QF (F,). Under
7 : GW(F;) — GWB2(F), the element 1 € myGW(F,) is sent to the element 1 € meGWZ2(F,)
represented by the symmetric bilinear form [1] € QF (F,), thought of as a Cs-equivariant form via
the trivial Cs-action on F,. Thus, by Corollary 5.1.5 we have

|BCa| = /[1]=[ICzI'l]=[2]=[1]+([2]—[1]) € mGW(Fy).

BCs
Finally, since ¢ = 3,5 (mod 8) by assumption, 2 is not a square in F;, and so [2] — [1] is a
representative for e in GWq(F,) and the result follows. O

5.3 The operation «

Let (¢,14) be a symmetric monoidal co-category, let R € CAlg(%), and let ¥, denote the sym-
metric group on p letters. Then, consider the natural map of sets

— (0°®r ®p\hS hSp o pBY
mo(R) := o Map(l¢, R) ——— 7o Map(lg, R®P)"*? — 7o Map(l¢, R)"*? = moR"*7,

where the first arrow is induced by taking pth tensor power and the second by multiplication. We
refer to this map as the total p-power operation and denote it by

P,: mo(R) — mo(RP>).

39



This map can be thought of as taking z € my(R) to the canonical BX,-family of p-th powers of z.
If € is p-typically 1-semiadditive, then one can integrate P, over the classifying space BC), of the
p-Sylow subgroup C), C 3, to obtain a self map of my(R). Let i: BC), — B, be the map induced
by the inclusion of a p-Sylow subgroup of ¥,.

Definition 5.3.1 ([CSY18] §4.2). Let ¢ € CAlg(Cat@™). For R € CAlg(%), we define the map
ap: mo(R) = mo(R) by the composite

i* /
Ayt mo(R) 2 mo(RZ7) 5 o (RECR) 272 no(R),
Informally, we have
ap(z) = Isc, @

Remark 5.3.2. Morally, oy, is supposed to resemble the function ‘%p. For example, one can show

[CSY18, §4.2] that «,, satisfies the functional equation

(x+y)P—al —yP
. .

9)

Oép(x +y) — Oép(x) - O‘p(y) =

Here, the right hand side does not actually involve division by p, and hence makes sense in every
ring.
Remark 5.3.3. The operation o, has a simple interaction with cardinalities, namely that
c
ap(JA[) = [A1Cp| = [(A*")ne, |,

where C, acts on A*%» by permuting the factors [CSY18, Theorem 4.2.12].

When combined with the functional equation from Remark 5.3.2, this fact gives a computation of
ap on Zy = TSk (1)-

Theorem 5.3.4. Let Sk (1) denote the K(1)-local sphere at the prime p, and for p = 2 let ¢ =
n-¢ € ToSk(1)- For an odd prime p, we have

P+ (p—1)z
ap(x) = % € WOSK(l)-

For p =2, we have

r2+7“
2

as(r +de) = +(rd+r+de € mSk()-

Proof. First, a direct computation shows that the proposed formulas for a,, satisfy the functional
equation in Remark 5.3.2. Note that every two functions moSg (1) — moSk (1) which satisfy this
equation differ by a function moSg (1) — mSk (1) which is additive. Hence, we may a priori write
oy, as the sum of the proposed formula and an additive term.
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Additionally, note that any additive function Z, — Z, is given by multiplication by an element of
Zy; this is because such an additive function is necessarily continuous for the p-adic topology, and
thus determined on the dense subgroup Z C Z,. To finish the proof, we consider two cases:

Case 1: p odd. Here, we may write a,(x) = 2"+ =Dz 4 oo for some a € Zy. Plugging in z =1

and using that |BCp| = 1 for odd p (say by Theorem A), we have by Remark 5.3.3 that
l1+a=0a(l)=|BC,| =1,

from which we conclude a = 0, as desired.

Case 2: p = 2. Here, we deduce immediately from the above remarks that any additive function
Zse]/(2¢,€?) — Zsle]/(2¢,€?) takes the form

T+ de — ru 4+ dv
for some u, v € Za[e]/(2¢,€%) (note that v will be divisible by €). Thus, we may write

2
ag(r+de) = i

+ (rd+r+d)e+ru+dv.

Combining our formula of K(1)-local cardinalities (Theorem A) and the interaction of ag with
cardinalities (Remark 5.3.3), we deduce that

l+e+u=az(l)=|BCy=1+¢,

while
l+etut+v=az(l+e¢)=0a(|BCs|) =|B(C21Cs)|=1+3c=1+¢.

This implies that u = v = 0, as desired. O

5.3.1 « and symmetric bilinear forms

The determination of s in Theorem 5.3.4 is based on the “coincidence” that |[BCs| = 1 + €.
Indeed, if it happened that |BC3| = 1, the above method (of using the functional equation) would
not have sufficed to determine as. We now present a theoretically more involved yet more systematic
approach to the computation of as, based on the multiplicative aspects of our higher semiadditive
Grothendieck-Witt theory.

By Example 3.2.13, QF(F,) lifts to an object in CAlg(CMongm (8)). We start by computing the
operation s here, on mgQF (Fy), for an odd prime /.

Proposition 5.3.5. The total power map Py: 7o QF (Fy) — moQF B2 (Fy) is given by
Py(V,0) = (Ve V,b®b).

Here, Cy acts on V@ V' by permuting the tensor factors.
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Proof. The space QF (Fy) is 1-truncated and hence, for (V,b) € moQF (F;) the map
PQ(‘/, b) : BCy — Q]:(IF@)

is completely determined by its restriction to the 1-skeleton RP! ~ S of BC5. The restriction of
the total power Pa(z) of an element x in a commutative ring R to the 1-skeleton of BC5 is described
as follows: it takes the basepoint of S to the square 2 and the 1-cell of the circle to the symmetry
that swaps the two z-factors using the commutativity of the ring R.

In the special case z = (V,b) € 79 QF (F,), we see that the basepoint of S* goes to (V ®V,b®b) and
the 1-cell to the involution o(v ® u) = u ® v, by the definition of the commutative ring structure of
QF(Fy) (ct. Section 5.1.1). This gives us the desired formula for Po(V,b). O

Using the above, we may now write

a2 (V,b) = (V@ V)e,, [e,(b®@b)) = (Sme(V), Ipc,(b©@ b))

where, by Proposition 5.1.4, we have the formula
JBc,(b®@b)(u®v,u’ @) = blu,u")b(v,v") + b(u,v")b(u’, v). (10)

Recall that a symmetric bilinear form b over F is completely determined by its rank and determinant
(cf. Example 5.1.2). Hence, to describe [, (b®b) is suffices to compute its rank and determinant.
For this, we have:

Proposition 5.3.6. Let £ be an odd prime, let (V,b) be a symmetric bilinear form over Fy, and let
r =dim(V). Then,

rank(as(V, b)) = (r; 1)

and
det(as(V,b)) = 2" det(V,b)'™! € By /(F))?

Proof. The first statement amounts to the fact that the rank of as(V, b) is the dimension of Sym?(V/)

which equals ("}'). It remains to compute the determinant of [, b ® b. Choose a basis ey, ..., e,

of V which is orthogonal with respect to b, and set \; := b(e;, ;). Then, Sym? (V) has a basis given
by {ei - ej}i<;j. By formula (10), we immediately see that these basis elements e; - e; are pairwise
orthogonal. Moreover, we have
A ifi#£g
[ b b)(e;-ej,ei-e;)= ’

Consequently, we have

det(az(V;0)) = [[ 237 - [[aids = 2 [T =27 det(V, b))+ € Fy/(F))?

i=1 i<j i=1
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We can now present an alternative proof for the formula of as.

Proof of Theorem 5.3.4 at p = 2. Choose a prime ¢ = 3,5 (mod 8) and consider the diagram

Lrw

o QF (Fy) ——— moGW(F¢) ——— mSk (1)

L
FoQ.FBCQ (Fg) —_— WOGW(]FZ)BC2 &) 71'08??12)

lf}acrz l/Bcz lchz
L

7TOQ]:(IF@) WoGW(F@) &WOSK(D

The upper squares commute because the horizontal maps, given by group completion QF(F,) —
Q*°GW(F,) and K(1)-localization, induce maps of commutative semi-rings in &, and hence inter-
twine the total power map. The lower squares commute because the maps are maps of 2-typical
1-commutative pre-monoids (cf. Theorem 4.0.1). We deduce that the outer square commutes, or
in other words, that we have a commutative square

T QF (Fy) — moSk 1)

N

m0QF (F¢) — moSk (1)-

Now, let (V,b) be an r-dimensional vector space over F, with a symmetric bilinear form b of
determinant 2¢. Then, since 2 is not a quadratic residue mod ¢, the horizontal maps (which we
have labeled v) take (V,b) to r + de. Using our formula for the determinant and rank of as(V,b)
we now get:

r+1 r?+r

2

ag(r +de) = az(v(V, b)) = v(az(V, b)) = ( ) +((r+1)d+r)e= + (r+d+rde,

for elements of the sub-semiring N[e]/(2¢,£2) C Zs[e]/(2¢,£?) spanned by those elements of the
form r 4+ de where r,d € N. By Remark 5.3.2 and the lemma following this proof, we see that as
is continuous with respect to the 2-adic topology on Zs[e]/(2¢,€2); thus, because Ng]/(2¢,€?) is
dense in Zz[e]/(2¢,¢?%), we conclude that our formula must hold everywhere in Zs[e]/(2¢,¢?). O

Lemma 5.3.7. Let R be a discrete commutative Zy-algebra and assume that v : R — R is a
function satisfying the functional equation

(x+y)P —aP —yP

Y +y) —y(z) —v(y) = »

Then v is continuous with respect to the p-adic topology on R.
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Proof. Setting y = p’h, we compute

| @+ —ar — @iy

Y(z +p'h) — v(z) = y(p'h) 5

It suffices to show that each of the two terms on the right has p-adic valuation which grows arbitrarily
large as j grows. This is elementary for the second term, and for the first term, this can be seen
directly from the formula
t—tP
p
for t € Q [CSY18, Lemma 4.1.9]. O

P

v(tz) = ty(z) + T

5.4 The operations 0 and 0,

The operation oy, has two closely related cousins: the operation d,, which is defined in any symmetric
monoidal higher semiadditive category [CSY18], and the operation 6, which was introduced by
McClure for any K (1)-local E-ring [BMMS86, Hopl4]. Our aim is to clarify the relationship
between these operations and compute them for the K (1)-local sphere. We start by reviewing their
definitions.

Definition 5.4.1 (Definition 4.3.1 [CSY18]). Let 4 be a 1-semiadditively symmetric monoidal,
additive co-category. For R € CAlg(¥%), let d,: mo(R) — mo(R) be defined by the equation

bp(w) = |BCp|x — ap(w).

To define and compute the operation 6, we need to introduce some notation.

Notation 5.4.2.

o Let ¥, be the group of permutations on p letters and let e: pt — BY,, and m: BX, — pt be
the inclusion of the basepoint of BY,, and the projection to the point, respectively.

o For an object X of a stable oo-category ¥, the above induce maps 7: X[BY,] — X and
e: X — X[BY,], and corresponding restrictions 7*: X — XB% and e*: XB¥ — X. Here,
X[BX,] denotes the tensoring of X with the space BX, in 4.

o Since ¥ is stable (therefore semiadditive), we also have transfer maps Tr.: X[BX,] — X and
[o: X — XB%,

In the special case where ¥ = SpK(l), we have:

Proposition 5.4.3 ([Hopl4], Lemma 3). Let X € Spk1)- Then the map
(7, Tre): X[BS,) » X @ X

is an equivalence in Spy (q)-
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Consequently, for R € CAlg(Spg(q)), we can specify an element = € moR[BY,] by specifying its
composites with 7 and Tr., which will be elements 7(z), Tr.(z) € mo(R).

Definition 5.4.4 ([Hopl14], §3). Let R € CAlg(Spg(y)). Define the element 6 € moR[BY,] by the
requirements: 8

Tr.(0) =—-(p—-1)! € m(R)
m(0) =0 € m(R).

Our next goal is to compare 6 with «, culminating in Corollary 5.4.7.

Remark 5.4.5. For our comparison, it will be convenient to think about the dual situation: namely,
by linear duality, we have maps

Mapg(R, R[BY,]) — Mapg(RP*", R)
Ma'pR(R[BEP]v R) — MapR(Rv RBEP)

which we will denote by f — f*. Here, Mapy denotes the space of maps in K(1)-local R-modules,
and these maps are equivalences because BY, is K(1)-locally dualizable ([HS99, Theorem 8.6],
[Hop14]). This duality acts as follows for the maps described in Notation 5.4.2:

e We have et = ¢e* : RB¥ — R and nt = n* : R — RB>».

o We may write Tr. as the composite

e*

N
RIBY,) —222, RBS &, R,
Here, Nmps,, denotes the additive norm map for the group ¥,; note that since it comes from
a symmetric pairing R[BY, x BY,| — R, it is linearly self-dual. Therefore, (Tr.)" is given by

the composite:
Nmps,

R 5 R[BY,] ——2 RP>r

which is, by definition, [, .
We proceed by rewriting 6 in terms of maps more closely related to a and d,,. Recall that i: BC,, —

BY, is induced by the inclusion of a p-Sylow subgroup, and let i*: RB¥ — RBC denote the
corresponding restriction.

Proposition 5.4.6. Let R € CAlg(Spg1)). Then we have

chp i* — |BCyle*
p—1

8We note that the first requirement differs from [Hop14]; the formula given there contains a typo, as can be seen

0" = €  Map(RP>, R).

from its inconsistency with the formula relating it to the Adams operation.
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Proof. Combining Remark 5.4.5 and Proposition 5.4.3, it suffices to check this equation after pre-
composition with 7t = 7* and (Tr.)! = [,. Thus, by definition of 6, it is enough to verify the pair
of identities:

fBCp *m* — |BCple*n*

)

p—1
and _
fBCpZ*fe_IBCP‘e*fe . ( o
p—T =-(p-1L

Now, we claim that

(1) [pc, @*m" = |BCyp|. This follows from the fact that ¢ is restriction along the terminal map
BC, — pt and the definition of the cardinality.

(2) e*n* = 1. This follows from the fact that 7 o e = Idp.

(3) [pe. i J. =|%p/Cyl = (p— 1)!. This follows from the base-change formula for integrals (see
[CSY18, Proposition 3.1.13]) applied to the pullback square

Yp/Cp pt

Lk

BC, ——= BY,,.

Indeed, from this pullback square we deduce that i* [, = |£,/C,| [, where € is the inclusion
of the basepoint of BC),. The claim then follows because

‘Zp/cpl fBC,, Jer = |Zp/cp|
by the Fubini Theorem for integration (see [CSY18, Proposition 2.1.15]).

(4) e* [, = |¥,| = p!l. This again follows from base-change of integration along the pullback

square
Yp —pt

L

pt —— BY,,.

Using (1) — (4) above and the fact that p|BCy| = p for all primes p (which follows directly from
our computation of |[BCp|), we see that

chp i'mt — |BCyletm* _ |BC,| — |BCy| _

p—1 p—1 0
and . .
KEQZJ;%BQM.&:(prFﬂBQ$pu:@—Jﬁfpk:_@_ly
p—1 p—1 p—1 '
as we wanted to show. O
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We can use the map 6 to define a power operation by the composition 6* o P,. We shall abuse
notation and denote the resulting power operation by 6.

Corollary 5.4.7. As a power operation for K(1)-local Ex-rings, we have

O‘p(x) — |BCy|zP

fa) = 20

Proof. Recall that a,(x) = [p¢, i*Pp(2) (Definition 5.3.1). Thus, by Proposition 5.4.6,

_ fBC,, i*Pp(z) — |BCplePp(x) _ap(z) — |BCy|a?
- p—1 B p—1

0(x)

O

As a result, we can now compute both the operations d, and 6 for the K (1)-local sphere, as they
are expressed in terms of o, and |BCp|. We remark that the computations are elementary and
well-known for odd primes, and may also be known to experts in general; we state it for all primes
for the sake of completeness:

Theorem 5.4.8. For p an odd prime, the power operations 6, and 6 are given on woSg (1) =~ Zy by

xr — xP

p

For p = 2, these power operations are given on moSk (1) by

2
r rJrrde

62(7" —+ dE) =

and
2

0(r+d5):T_

+ (1 +7)de.
Proof. At an odd prime, we have a,(z) = IPP%I +  (Theorem 5.3.4) and |BCp| = 1. Hence, using
the formulas of Definition 5.4.1 and Corollary 5.4.7, we get

r — xP
p

bp(z) = |BCplz — ap(z) =

and

BC » ﬁ;w+x_$p »
9(:6) _ O‘P(x) *‘ P‘x __p _ r—z )
p—1 p—1 P

At the prime 2 we have a(r+de) = TZ% + (r+d+rd)e (Theorem 5.3.4) and |BCs| = 1+¢. Hence,

we get

2 2
T T r—r
+ + rde.

62(r+d5):(1+5)(r+d5)—( +(r+d+rd)5> =
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Here, we used the facts that 2¢ = £2 = 0. Similarly, using the fact that r — 72 =0 (mod 2), we get

r2+r

O(r +de) = ( +(r+d+rd)5)(1+5)(r+de)2

— 2 _ 2
:r2r +(rfr2+(1+r)d)5:r !

+ (1 +r)de,

as we wanted to show. O

5.5 The Rezk logarithm

For a K(n)-local Ex-ring R, let R* (sometimes denoted gl; (R)) denote the connective spectrum
of units in R. In [Rez06], Rezk defined a “logarithmic power operation”

lOgK(n): RX — R,

which arises as the composite of the K (n)-localization map R* — Ly (,)R* with a certain equiv-
alence L (n)R* ~ L )R supplied by the Bousfield-Kuhn functor (we refer the reader to [Rez06]
for a more extensive discussion). In addition to defining this logarithmic operation, Rezk computes
it (on mp) for Morava E-theory of any height, and for any K(1)-local E..-ring spectrum R satis-
fying the technical condition that the kernel of the unit map 7Sk (1) — moR contains the torsion
subgroup of moSk (1) (which is automatically satisfied for odd p).

Here, we refine this computation by computing the map
log (1) WOS[X“U — ToSK(1)
in the case p = 2. For the sake of completeness, we state the result at all primes p:

Theorem 5.5.1 (Rezk [Rez06] for p odd). Let log,: 1+ pZ, — Z, denote the p-adic logarithm.

e For an odd prime p, the Rezk logarithm is given on WOSIX((D =~ Z, by the formula
1 -1
10g1<(1)(x) = 5 logp(l" )-

o For p =2, the Rezk logarithm is given on WoSIX{(l) ~ 75 ® ZLse by

r—

1
log (1) (r +de) = B logy(7) +

We note that when p = 2, most of this computation is carried out by Clausen in [Clal7, Proposition
1.10]; namely, one has an isomorphism

71'OSIX((l) ~ (Zolel/(2¢,6%)))* ~ L5 & Z/2Ze,

and Clausen computes logg (1) on the Z5 component. In this section, we extend the computation
to Z/2Ze-component by showing that the logarithm vanishes on |[BC3| =1 +¢€.
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Definition 5.5.2. Let R be an E.-ring. A strict unit in R is a map of connective spectra Z — R*.

By abuse of language, we will say a unit x € moR* is a strict unit if there is a strict unit a: Z — R*
such that z = «(1).

Lemma 5.5.3. Let n > 1 and let R be a K(n)-local Es-ring. Then the map
10g ¢ (1) : moR* = mR
vanishes on strict units.

Proof. Let a: Z — R* be a strict unit. To show that log(,)(a(1)) = 0, it would suffice to show
that the composite log x(,,) o vanishes in Mapg,(Z, R). But R is K(n)-local and Z is K (n)-acyclic,
so there are no nonzero spectrum maps Z — R. O

In view of this lemma, to show that log;)(|BC2|) = 0, it would suffice to show that |BCs| is a
strict unit. In fact, this follows from the following general phenomenon, which we learned from
Tomer Schlank:

Proposition 5.5.4 (T. Schlank). Let p be a prime and let K(n) be a Morava K -theory of height
n at the prime p. Then the cardinality |B"Cplsy ,, € T0Sk(n) is a strict unit.

Proof. If n = 0 then Sk () ~ Q and every unit is a strict unit. Assume from now on that n > 1.

Since Sg(n) is an n-commutative monoid in Spy(,), we have a canonical map of semirings

n)s

| - ‘SK(n): (STL): - QC>OSI((7L)

taking an n-truncated w-finite space A to the K(n)-local cardinality of A (here, S, denotes the
oo-category of n-truncated 7w-finite spaces). We also have a map of commutative monoids

B": Vecty, — (Sn)~

taking a finite dimensional F,-vector space V' to the space B"V, where the monoid operation on
the source is direct sum of vector spaces and on the target the Cartesian product. The composite
|B"(-)

|SK(17.) : VectF:p — (Sn): — QOOSK(R) (11)

is hence again a morphism of commutative monoids, where the commutative monoid structure on
2°°Sk(n) is given by multiplication. Since Spy , is an oo-category of semiadditive height n (in the
sense of [CSY20]), the cardinality [B™V| is invertible for every V' € Vecty, (cf. [CSY20, Theorem
4.4.5]) and so (11) determines a map of spectra

K(Fp) = (Vecty )5 — Sf((n),

which we denote again by |B"(—)ls,,,-

49



To show that [ B"Cy| is a strict unit, it would suffice to show that |B™(—)|s.,, factors through the 0-
truncation map K(F,) — moK(F,) ~ Z. For this, it is enough to show that Map(r>1K (F,), S]X((n))
is contractible. Note that

Map(7>1K (Fp), Sfx((n)) ~ Map(r>1K(F,), TzlSIan)). (12)

In the source, p acts invertibly by Quillen’s computation of the higher K-groups of F,, [Qui72]. On
the other hand, we claim the target is p-complete. Recall that a spectrum is p-complete if and
only if each homotopy group is derived p-complete [Bou79, Proposition 2.5]. Thus, since Sk, is
p-complete for n > 1 and m;Sg () ~ 71'1'8;((”) for i > 1, it follows that TzlSIX((n) is also a p-complete
spectrum. Together, these facts imply that the mapping space (12) is contractible and the result
follows. O

As a corollary, we have

Corollary 5.5.5. At the prime 2, the element 1 + ¢ € moSk (1) is a strict unit.

Proof. By Theorem 5.2.1, we have 1 4+ ¢ = |BCj3|, and so the result follows from Proposition 5.5.4.
O

We are now ready to complete the computation of logy (1) for moSg (1) at p = 2:

Proof of Theorem 5.5.1. If p is odd, this is [Rez06, Theorem 1.9], and if p = 2 and d = 0 this
formula is shown in [Clal7, Proposition 1.10]. Hence, it remains to show that log(r + €) = log(r)
for r 4 & € mo(Sk (1)) . Note that the invertibility of r 4- & implies that r is odd. Hence, we have

(14+e)(r+e)=r+(r+le=r
This, together with Corollary 5.5.5 implies that

logge(1)(1) = log (1) (1 +€)(r +€)) =log (1) (1 + &) + log (1) (r + €) = logg 1) (r + €).
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