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1. Introduction

In algebra, one often studies questions over the integers by understanding them
over Q and after completion at each prime p. The analog of this idea in topology,
due to Sullivan [52], is that any space X can be approximated by its rationalization
XQ and its p-completions X∧

p . These approximations, in turn, can be understood in
terms of their algebras of cochains. Work of Sullivan (and Quillen in a dual setting)
shows that for sufficiently nice X, the rationalization XQ is captured completely
by a commutative differential graded algebra (cdga) which is quasi-isomorphic to
C∗(X, Q). More precisely:

Theorem 1.1 (Sullivan [51], Quillen [44]). The assignment X !→ C∗(X, Q) de-
termines a fully faithful functor from the ∞-category of simply connected rational
spaces of finite type to the ∞-category CAlgQ of rational cdgas.

In the p-adic case, Mandell proves an analogous result with cdgas over Q replaced
by E∞-algebras over Fp:

Theorem 1.2 (Mandell [36]). The assignment X !→ C∗(X, Fp) determines a fully
faithful functor from the ∞-category of simply connected p-complete spaces of finite
type to the ∞-category CAlgFp

of E∞-algebras over Fp.

In the above theorems, we say a rational (resp. p-complete) space is of finite type
if each homotopy group is finitely generated over Q (resp. Zp). The next natural
question is whether a similar cochain model for spaces exists integrally.
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Warning 1.3. Mandell [37] shows that the assignment X !→ C∗(X; Z) determines
a functor from spaces to E∞-algebras over Z that is faithful but not full.

Let us illustrate the difficulty in producing such an integral model: Sullivan
showed that any sufficiently nice space X can be recovered from its rationalization
and p-completions together with the additional data of a map

XQ →
(∏

p

X∧
p

)
Q

via a homotopy pullback square

X
∏

p

X∧
p

XQ
(∏

p

X∧
p

)
Q.

One might hope to construct the desired integral model for spaces by assembling
the above cochain models via an analogous procedure. However, it is unclear how
this assembly would work: for instance, one might hope to relate the algebra models
– C∗(X; Q) for XQ and C∗(X; Fp) for X∧

p – via some comparison over Qp; but it

does not seem obvious how to obtain a Qp algebra from C∗(X; Fp).

1.1. Summary of results. In this paper, we give an integral cochain model for
simply connected finite spaces. We accomplish this by producing a Frobenius action
on certain E∞-ring spectra and modeling spaces in terms of the fixed points of this
action. We now state our main theorems informally, with more refined statements
to follow later in this section.

Theorem A (Frobenius action). For each prime p, the Nikolaus–Scholze Frobenius
determines an action of the monoidal category BZ≥0 on the ∞-category of p-
complete E∞-rings which are finite over the p-complete sphere.

In fact, as we explain shortly, the action exists on a larger ∞-category of E∞-
rings which we call Fp-stable. We may then consider the homotopy fixed points for
this Frobenius action, which we call p-Frobenius fixed E∞-rings. We will explain
that a p-Frobenius fixed E∞-ring is the data of an E∞-ring A equipped with a par-
ticular sequence of homotopies, the first of which is a trivialization of its Frobenius
endomorphism (cf. Warning 1.11). Using this notion, we give a p-adic model for
spaces:

Theorem B (p-adic model). Let p be a prime and let X be a simply connected finite
complex. Then:

• The E∞-algebra (S∧
p )X of cochains on X with values in the p-complete

sphere is naturally a p-Frobenius fixed E∞-ring.
• The data of the space X∧

p is captured completely by (S∧
p )X as a p-Frobenius

fixed E∞-ring.

These p-adic models are amenable to assembly into an integral model: in partic-
ular, Theorem B implies that the E∞-ring SX of sphere-valued cochains on X (i.e.,
its Spanier-Whitehead dual) is what we will call Frobenius fixed, meaning that for
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each prime p, its p-completion is p-Frobenius fixed. These Frobenius fixed E∞-rings
are our integral model for spaces:

Theorem C (Integral model). The data of a simply connected finite complex X is
captured completely by its Spanier-Whitehead dual SX as a Frobenius fixed E∞-
ring.

We now proceed to a more detailed outline of the paper.

1.2. Integral models for spaces and the Frobenius. Let p be a prime and X
be a simply connected p-complete space of finite type. Mandell’s theorem (Theorem
1.2) asserts that the functor X !→ C∗(X; Fp) is fully faithful, so X can be recovered
as the mapping space

X $ CAlgFp
(C∗(X, Fp), Fp).

On the other hand, the assignment X !→ C∗(X, Fp) fails to be fully faithful: one
has that

CAlgFp
(C∗(X, Fp), Fp) $ CAlgFp

(
C∗(X, Fp), Fp

)hZ

$ CAlgFp
(C∗(X, Fp), Fp)

hZ $ XhZ $ LX

with Z acting on Fp by Frobenius [36]. If this functor to CAlgFp
were fully faithful,

the result of this calculation would be X; we see that the extra free loop space has
to do with a failure to account for the Frobenius. In analogy to classical algebra,
one might hope that any E∞-algebra over Fp has a natural Frobenius map, and
that the S1-action on LX = Hom(S1, X) arises intrinsically on the left-hand side
from an S1-action on the ∞-category CAlgFp

whose monodromy on any object is

Frobenius. Then, taking fixed points for S1 would “undo” the free loop space that
appears in the above calculation.

In fact, there is a candidate for this Frobenius map, first defined by Nikolaus-
Scholze [42]. For any E∞-ring A and prime p, they constructed a natural map
of E∞-rings ϕA : A → AtCp which we will call the E∞-Frobenius (or simply the
Frobenius). This Frobenius map ϕA is not generally an endomorphism of A: it
takes values in the Cp-Tate cohomology of A (taken with trivial action). Thus, ϕA

can be regarded as an E∞ analog of the pth power map R → R/p for an ordinary
ring R (cf. Example 3.4). In particular, the E∞-Frobenius is not an endomorphism

for the E∞-ring Fp because FtCp
p is not equivalent to Fp, so the conjectural picture

above is not correct as stated. However, the main theme of this paper is that one
can realize this picture by working not with Fp-algebras, but with algebras over the
p-complete sphere.

Example 1.4. Any E∞-ring spectrum A admits another canonical ring map can :
A → AtCp by the composite

A → AhCp → AtCp

of restriction to group cohomology of Cp followed by projection to Tate cohomol-
ogy. When A = S∧

p , the p-complete sphere, the theorems of Lin [30] (p = 2) and
Gunawardena [20] (p odd) assert that this canonical map is an equivalence. Thus,
the Frobenius can be regarded as an endomorphism of S∧

p .

Motivated by this example, we extract a full subcategory CAlgF
p of p-complete

E∞-rings which we call Fp-stable: these are characterized by the requirement that
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the natural map can : A → AtCp , as well as certain generalized versions of it,
canV : A → AτV for elementary abelian p-groups V , is an equivalence (cf. Definition
6.1). Most relevantly, we will see that any E∞-ring which is finite over the p-
complete sphere is Fp-stable by the Segal conjecture.

By design, we may think of the Frobenius as a natural endomorphism of any
Fp-stable ring A (given by can−1 ◦ϕ). This determines a functor

Φ : BZ≥0 → Fun(CAlgF
p , CAlgF

p )

sending the unique object of BZ≥0 to the identity functor and the morphism 1 ∈
Z≥0 to the Frobenius endomorphism, considered as a natural transformation id →
id.

Question. Does Φ lift to a monoidal functor and thus define an action of BZ≥0

on the ∞-category CAlgF
p ?

Remark 1.5. This question is due to Jacob Lurie and Thomas Nikolaus, who for-
mulated it in the dual setting of p-complete bounded below E∞-coalgebras. We
address this closely related case in upcoming work [55].

Our first main theorem answers this question to the affirmative:

Theorem A (Frobenius action). The ∞-category CAlgF
p of Fp-stable E∞-rings

admits an action of BZ≥0 for which 1 ∈ Z≥0 acts by the Frobenius.

We will elaborate on Theorem A and its proof starting in §1.3 below. For now,
we return to the application in mind with a straightforward corollary of Theorem
A.

Theorem A◦. Let CAlgperf
p ⊂ CAlgF

p denote the full subcategory of Fp-stable E∞-

rings for which the Frobenius acts invertibly. Then the ∞-category CAlgperf
p admits

an action of S1 whose monodromy induces the Frobenius automorphism on each
object.

We refer to such E∞-rings A ∈ CAlgperf
p as p-perfect.

Example 1.6. The p-complete sphere S∧
p is p-perfect because the Frobenius is a

ring map and S∧
p is the initial p-complete E∞-ring. Since CAlgperf

p ⊂ CAlg is closed
under finite limits, it follows that for any finite space X, the E∞-algebra of cochains
(S∧

p )X is p-perfect.

In fact, the Frobenius is better than just an equivalence for the p-complete
sphere – since S∧

p is initial among p-complete E∞-rings, the Frobenius is the identity
(analogous to how the classical Frobenius is the identity on Fp). One can capture
this idea as follows:

Definition 1.7. Let CAlgϕ=1
p := (CAlgperf

p )hS1
denote the ∞-category of homo-

topy fixed points under the S1-action of Theorem A◦. We will refer to objects
of CAlgϕ=1

p as p-Frobenius fixed E∞-rings, and we will sometimes refer to a lift

Aϕ=1 ∈ CAlgϕ=1
p of a p-perfect E∞-ring A as providing a p-Frobenius fixed struc-

ture on A.

Example 1.8. Since S∧
p is initial in CAlgperf

p , it admits a canonical lift to CAlgϕ=1
p

which we denote by (S∧
p )ϕ=1.
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Since CAlgϕ=1
p admits finite limits which are computed on the underlying E∞-

ring, we see that for any finite complex X, the cochain algebra (S∧
p )X admits a

canonical lift (S∧
p )X

ϕ=1 ∈ CAlgϕ=1
p to a p-Frobenius fixed E∞-ring. This is essentially

our p-adic model for spaces; to state it more precisely, we will need the following
finiteness condition:

Notation 1.9. We say a simply connected space X is p-complete finite if X is p-
complete and

⊕
i∈Z Hi(X; Fp) is a finite abelian group. We let S fsc

p denote the full
subcategory of spaces which are simply connected and p-complete finite.

Remark 1.10. By a standard Hurewicz theorem argument, a simply connected p-
complete space X is p-complete finite if and only if X is built out of a finite number
of p-complete spheres via a (finite) sequence of cell attachments. We remark that a
(simply connected) p-complete finite space need not be the p-completion of a finite
complex – we thank Robert Burklund for clarifying this point for us and refer the
reader to [11, Counterexample 3.4] for a discussion.

Theorem B gives a model for S fsc
p in terms of E∞-algebras and the Frobenius

action of Theorem A.

Theorem B (p-adic model). The cochain functor (S fsc
p )op → CAlgS∧

p
given by

X !→ (S∧
p )X lifts to a fully faithful functor

(S∧
p )(−)

ϕ=1 : (S fsc
p )op → CAlgϕ=1

p .

The essential image of the functor (S∧
p )(−)

ϕ=1 consists of those p-Frobenius fixed E∞-
rings whose underlying E∞-ring A satisfies the following two conditions:

(1) A is finite as a module over S∧
p .

(2) The unit map Fp → Fp ⊗ A induces an isomorphism on πk for k ≥ −1.

Informally, Theorem B asserts that for any simply connected p-complete finite
space X, the algebra of cochains (S∧

p )X admits a canonical p-Frobenius fixed struc-
ture, and that X is captured completely by the E∞-ring (S∧

p )X together with this
p-Frobenius fixed structure.

Warning 1.11. A p-Frobenius fixed structure is not simply a trivialization of the
E∞-Frobenius map. To illustrate this, note first that the S1 action of Theorem A◦

allows one to construct a fibration q : (CAlgperf,(
p )hS1 → BS1 of spaces (the action

groupoid). This begets the outer pullback square in the diagram:

CAlgperf,(
p (CAlgperf,(

p )hS1

∗ CP 1 · · · BS1 $ CP∞

q

The data of a p-Frobenius fixed algebra is the data of a section of q. One can
view such a section as being built cell-by-cell along the cell decomposition of CP∞.
A section of q over the point is the data of a p-perfect E∞-ring A. Extending this
section to a section over CP 1 is just the data of a trivialization of the Frobenius
map on A. However, to promote this to a p-Frobenius fixed structure on A, one
needs to further extend this section over all of CP∞; this requires one to specify
an additional homotopy for each additional cell of CP∞.
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As promised, this model of p-complete spaces is more compatible with the ratio-
nal model of Theorem 1.1; unlike CAlgFp

, the ∞-category CAlgϕ=1
p of p-Frobenius

fixed algebras admits an obvious functor to CAlgQp
by forgetting the p-Frobenius

fixed structure and extending scalars along the map S∧
p → Qp. This allows our p-

adic model to be compared to Sullivan’s rational model for spaces. We now describe
the resulting integral model for spaces.

Definition 1.12. We will say that an E∞-ring A is perfect if for each prime p,
its p-completion A∧

p is p-perfect. Let CAlgperf ⊂ CAlg be the full subcategory

of perfect E∞-rings. Additionally, let the ∞-category CAlgϕ=1 of Frobenius fixed
E∞-rings be defined by the pullback square

CAlgϕ=1
∏

p

CAlgϕ=1
p

CAlgperf
∏

p

CAlgperf
p .

!

∏
(−)∧p

Informally, a Frobenius fixed E∞-ring is a perfect E∞-ring A equipped with a p-
Frobenius fixed structure on its p-completion A∧

p for each prime p.

By Example 1.8, the sphere spectrum S admits a canonical lift to a Frobenius
fixed E∞-ring, which we denote by Sϕ=1 ∈ CAlgϕ=1. Let S f denote the full sub-
category of spaces which are homotopy equivalent to a finite complex. Then, since
finite limits exist in CAlgϕ=1 and are computed on the underlying E∞-ring, Sϕ=1

determines an essentially unique functor

S(−)
ϕ=1 : (S f)op → CAlgϕ=1

which preserves finite limits and whose value on the point is Sϕ=1. Our final
theorem, which is a corollary of Theorem B and Theorem 1.1, is that this functor
is an integral model for simply connected finite complexes:

Theorem C (Integral model). The restriction of the functor S(−)
ϕ=1 to the full sub-

category S fsc ⊂ S f of simply connected finite complexes is fully faithful.

In other words, for a simply connected finite complex X, the algebra SX of
spherical cochains can be canonically promoted to a Frobenius fixed E∞-ring SX

ϕ=1,

and the data of X is completely captured by SX
ϕ=1. In contrast to the p-adic case,

we have not succeeded in determining the essential image of S(−)
ϕ=1 (cf. Question

7.11).

Remark 1.13. Unlike Theorem 1.2, this spherical model only works for finite simply
connected spaces (see also §7.4). Of course, since any simply connected space is
a filtered colimit of finite ones, one could model the whole ∞-category of simply
connected spaces by pro-objects in Frobenius fixed E∞-rings.

1.3. The Frobenius action. We return to the main technical focus of this paper,
which is the development of the Frobenius action of Theorem A.
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Remark 1.14. The analog of Theorem A in classical algebra is easy. Letting CAlg♥Fp

denote the category of discrete commutative Fp-algebras, we can define a functor

Φ♥ : BZ≥0 → Fun(CAlg♥Fp
, CAlg♥Fp

)

by sending 1 ∈ Z≥0 to the Frobenius endomorphism for discrete Fp-algebras. This
functor is monoidal if and only the corresponding map on centers (i.e., endomor-
phisms of the unit object)

Z≥0 → End(idCAlg♥
Fp

)

is a map of commutative monoids. This is automatic because the category of
commutative monoids is a full subcategory of the category of monoids; in algebra,
commutativity is a property.

This argument breaks down in homotopy theory. The space End(idCAlgF
p
) is

naturally E2-monoidal because it arises as endomorphisms of the unit object in
a monoidal ∞-category. The Frobenius ϕ ∈ End(idCAlgF

p
) determines a map of

E1-spaces

Z≥0 → End(idCAlgF
p
)

because Z≥0 is free as an E1-monoid, and one needs to show that it can be promoted
to a map of E2-spaces. This is no longer automatic and the content of Theorem A
is that this is possible.

Theorem A has the following concrete consequence: for any ψ1,ψ2∈End(idCAlgF
p

),
the E2-structure provides a homotopy ψ1ψ2 ∼ ψ2ψ1. This induces an action of the
braid group on n strands on the natural transformation ϕn : idCAlgF

p
→ idCAlgF

p
.

Theorem A asserts that this action is trivial, which can be thought of heuristically
as saying that the Frobenius “commutes with itself.”

The majority of the paper is dedicated to proving Theorem A. The proof pro-
ceeds in two steps, which we believe may be of independent interest and which we
outline in §1.4 and §1.5, respectively. Roughly, the first step is to use equivariant
stable homotopy theory to produce a “lax” version of the Frobenius action which
exists for all E∞-rings, without p-completing or restricting to CAlgF

p (Theorem A#).
The second step is to use a “pre-group-completed” variant of algebraic K-theory
which we call partial K-theory to descend this to an action of BZ≥0 on the full
subcategory CAlgF

p ⊂ CAlg.

1.4. Frobenius for genuine globally equivariant rings. The Frobenius action
of Theorem A arises by observing that one can associate a Frobenius operator to
every finite group G and then carefully studying the interaction between these op-
erators. We describe this using equivariant stable homotopy theory. In §3, we
construct an ∞-category CAlgGlo of global algebras (Definition 3.19), which are
roughly E∞-rings A together with the additional structure, for each finite group G,
of a genuine G-equivariant multiplication map NGA → trivG A from the norm of A
to the ring A with trivial G-action. The genuine multiplications on a global algebra
can be thought of as lifting various composites of the E∞-Frobenius to endomor-
phisms of A (cf. Example 3.18). As such, global algebras admit natural Frobenius
endomorphisms for each G, and we denote the associated natural transformation
by ϕG : id → id.
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The endomorphisms ϕG exhibit interesting functorialities in the group G: we
observe that the various Frobenius operators assemble into an action of a symmet-
ric monoidal 1-category Q (roughly, Quillen’s Q-construction on finite groups, cf.
Definition 3.13), whose objects are finite groups and whose morphisms from H to
G are isomorphism classes of spans (H " K ↪→ G). Namely, in Theorem 3.23, we
show that Q acts on the ∞-category CAlgGlo in a way such that each object in Q
acts trivially and the span (∗ " ∗ ↪→ G) is sent to ϕG.

The action of Q on the ∞-category of global algebras does not directly induce an
action on the ∞-category of E∞-rings. A global algebra is, in general, more data
than an E∞-ring. However, we explain that the ∞-categories CAlg and CAlgGlo

are related via the notion of a Borel global algebra (Definition 3.30, Theorem 3.33).
We then deduce that the E∞-Frobenius A → AtCp extends to an oplax action of Q
on the ∞-category CAlg of E∞-ring spectra; this oplax action is unwound explicitly
in §3.2 and is the content of Theorem 3.15, stated here in rough form:

Theorem A# (Integral Frobenius action). There is an oplax monoidal functor

Q → Fun(CAlg, CAlg)

extending the E∞-Frobenius in the sense that Cp ∈ Q is sent to (−)tCp and the
span (∗ " ∗ ↪→ Cp) acts by the Frobenius id → (−)tCp .

We emphasize that Theorem A# applies to all E∞-rings and finite groups, and in
particular does not require p-completion or passing to a subcategory of rings. It can
be seen as describing the relationship between various “stable power operations”
on E∞-rings (cf. Remark 3.17).

1.5. Partial algebraic K-theory. Recall that the Q-construction is a device in-
troduced by Quillen in order to define higher algebraic K-theory. In this light, the
Frobenius acting through Q can be seen as articulating that the action of Frobenius
is “K-theoretic” or “additive in exact sequences” in the sense that for a short exact
sequence G′ → G → G′′ of groups, the Frobenius for G is equivalent to the Frobe-
nius for G′ followed by the Frobenius for G′′. Theorem A follows from Theorem A#

by making this idea precise.
Fixing a prime p, we restrict the oplax action of Theorem A# to the full sub-

categories CAlgF
p ⊂ CAlg and QVectFp ⊂ Q (spanned by the elementary abelian

p-groups) to obtain a (strong) action of QVectFp on CAlgF
p . Recall the following

computation of Quillen regarding QVectFp :

Theorem 1.15 (Quillen [45]). The natural map

Ω|QVectFp | =: K(Fp) → π0K(Fp) $ Z
induces an isomorphism in Fp-homology.

Motivated by this computation, one might hope that our action of QVectFp

extends to an action of the underlying E∞-space |QVectFp |. Since |QVectFp | $
BK(Fp) is p-adically equivalent to BZ $ S1, the resulting S1 action would restrict
to the desired action of BZ≥0. Unfortunately, this is impossible because S1 is group
complete, and the Frobenius on CAlgF

p does not necessarily act by equivalences.
We overcome this difficulty in §4 by introducing a non-group-complete variant of
algebraic K-theory which we call partial K-theory (Definition 4.5). This construc-
tion takes a Waldhausen (∞-)category C and produces an E∞-space Kpart(C) such
that:
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• There is a canonical equivalence of E∞-spaces Kpart(C)gp $ K(C).
• The monoid π0(Kpart(C)) is freely generated by the objects of C subject to

the relation [A] + [C] = [B] for every short exact sequence 0 → A → B →
C → 0.

We show that many statements in algebraic K-theory have analogs in partial
K-theory. For instance, while the definition of Kpart(C) uses Waldhausen’s S•-
construction, we give an alternate construction in the case of an exact category
C involving Quillen’s Q-construction and show that the two definitions coincide
(Theorem 4.14).

It follows from this latter construction of partial K-theory that the action of
QVectFp on CAlgF

p descends to an action of the monoidal ∞-category BKpart(Fp)

on CAlgF
p . The BZ≥0 action of Theorem A arises by combining this action of

BKpart(Fp) with the following partial K-theory analog of Theorem 1.15:

Theorem 5.2. The natural map

Kpart(Fp) → π0K
part(Fp) $ Z≥0

induces an isomorphism in Fp-homology.
In addition to proving Theorem A, our methods also imply the following asser-

tions about global algebras, which may be of independent interest:

Theorem 6.9.

(1) The ∞-category CAlgGlo of global algebras admits an action of the monoidal
∞-category BKpart(Z) for which an abelian group G acts by the Frobenius
ϕG : id → id.

(2) The full subcategory CAlgGlo
p ⊂ CAlgGlo of global algebras with p-complete

underlying E∞-ring admits an action of BZ≥0 for which 1 ∈ Z≥0 acts by
the Frobenius (for the group Cp).

Remark 1.16. The notion of a global algebra is not new; they have appeared in
the literature as the normed algebras of [4] and are closely related to Schwede’s
ultra-commutative monoids [48].

1.6. Relationship to other work. There has been much previous work on under-
standing spaces via chain and cochain functors. The rational case is due to Quillen
[44] and Sullivan [51]. Recent work of Heuts [22] and Behrens-Rezk [10] extends
this rational picture to the setting of vn-periodic spaces. In another vein, Goerss
[19] gives a model for p-local spaces in terms of simplicial coalgebras, and Kriz [28]
for p-complete spaces in terms of cosimplicial algebras.

Our work is closest in spirit to work of Mandell [36] and Dwyer-Hopkins (un-
published, cf. [36, Appendix C, Theorem C.1]), who study p-complete spaces via
E∞-algebras over Fp. In [37], Mandell further explains that the functor of integral
cochains from (nice enough) spaces to E∞-algebras over Z is faithful but not full.
This paper essentially realizes a program due to Thomas Nikolaus, in the setting of
coalgebras, for making a fully faithful model. The idea for this starts with unpub-
lished work of Mandell which lifts p-adic homotopy theory from Fp to the spherical
Witt vectors of Fp. Then, it is an insight of Nikolaus that having a homotopy co-
herent Frobenius action allows one to descend to a statement over the sphere. Our
contribution is to produce this Frobenius action (in the dual setting of algebras).
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We also acknowledge that Nikolaus has concurrent work in the dual setting of p-
complete perfect E∞-coalgebras. In forthcoming work [55], we show how our meth-
ods adapt to the setting of coalgebras to produce a BZ≥0-action on all p-complete
bounded below E∞-coalgebras. We will also (at least conjecturally) describe the
Goodwillie filtration in that setting, relating our model to the Tate coalgebras of
Heuts [21, §6.4].

1.7. Organization. In §2, we record the requisite preliminaries on equivariant
stable homotopy theory. Then in §3, we introduce the E∞-Frobenius and use the
results of §2 to prove Theorem A# (as Theorem 3.15).

In §4, we introduce and develop basic results about partial K-theory. Then in
§5, we present our results on the partial K-theory of Fp (Theorem 5.2).

In §6, we combine the previous results to prove Theorem A. Then in §7, we apply
Theorem A to prove Theorems B and C about E∞-algebra models for spaces.

Finally, in the appendix, we settle certain technical constructions needed in §3.

1.8. Notation and conventions. We use the following notations and conventions
throughout:

• For an abelian group A, we denote the corresponding Eilenberg-MacLane
spectrum by A.

• We let S denote the ∞-category of spaces and Sp denote the ∞-category
of spectra.

• We will call a space p-complete if it is Bousfield local with respect to Fp-
homology, and we will call a spectrum p-complete if it is Bousfield local
with respect to the Moore spectrum S/p [12, 13].

2. Equivariant stable homotopy theory

In this section, we briefly review notions in equivariant stable homotopy theory
that feature heavily in this paper. We will use a variant of the framework of [4, §9],
but we refer the reader to [29] for a classical treatment of the subject and [38] for
another helpful account. The material in this section is not new, with the possible
exception of Theorem 2.7, which the author thanks Jacob Lurie for suggesting.

In §2.1, we will set notation by giving examples and motivation for the formal
constructions related to global equivariance that follow in §2.2. Then in §2.3, we
review the notion of Borel equivariant spectra and its relationship to Tate construc-
tions.

2.1. Global equivariance. For a finite group G, let SpG denote the ∞-category
of genuine G-spectra. This construction is contravariantly functorial in the group
G, so for any group homomorphism f : H → K, one has a functor f∗ : SpK → SpH :

(1) For an injection f : H ↪→ G, f∗ : SpG → SpH can be thought of as
restricting to the subgroup H, and so we will sometimes denote this functor
by resG

H .
(2) For a surjection f : G # K, f∗ : SpK → SpG can be thought of as giving

a spectrum the trivial action on ker(f). As such, we will sometimes denote
this functor by trivG

K .

In general, the functor f∗ can be computed by factoring f : H → K as H
f ′

−−−#
G

f ′′

↪−→ K and setting f∗ = f ′∗ ◦ f ′′∗.
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One also has a covariant functoriality in the group G by multiplicative transfer:

(3) For an injection g : H ↪→ G, one has a norm functor g⊗ : SpH → SpG, due
to [23]. We will sometimes denote this functor by NG

H .
(4) For a surjection g : G # K, one has a geometric fixed point functor g⊗ :

SpG → SpK , which we sometimes denote by Φker(g).

Analogously to the restriction functors, these are “part of the same functorial-
ity”; one can functorially associate a multiplicative transfer map g⊗ to any group
homomorphism g in a way that recovers the norm and geometric fixed point functors
in the above cases.

Example 2.1. For the composite e
g′

−→ G
g′′

−→ e, we can check that g′′⊗ ◦ g′⊗ = id =
id⊗ because the geometric fixed point of the norm is the identity.

Variant 2.2. The ∞-categories SpG and the functors above depend only on the
groupoid BG and not the group G; in fact, one can make sense of all the above no-
tions with groupoids in place of groups. Let Gpd denote the 2-category of groupoids
X such that π0(X) and π1(X) are finite. We will refer to objects of Gpd simply as
groupoids.

For X ∈ Gpd, we let:

• SetX denote the category of X-sets.
• FinX denote the category of finite X-sets.
• SpX denote the ∞-category of genuine X-spectra [4, §9].

Example 2.3. When X =
∐

BGi, the ∞-category SpX is equivalent to
∏

SpGi .

For a map f : X → Y of groupoids, one has functors f∗ : SpY → SpX and
f⊗ : SpX → SpY which coincide with the similarly notated functors above when f
is induced by a group homomorphism. These two opposing functorialities interact
as follows: let Span(Gpd) denote the ∞-category of spans of groupoids [8, §5].
Then, by [4, §9], there is a functor

Span(Gpd) → Cat∞

which sends a groupoid X to the ∞-category SpX and sends a span X
f←− M

g−→ Y
to the functor g⊗f∗ : SpX → SpY .

Example 2.4. When g =
∐

gi :
∐

Xi → Y is a map of groupoids, g⊗ is given by
the tensor product of the (gi)⊗.

We use a variant of this framework which arises from modifying the ∞-category
Span(Gpd):

Variant 2.5. In Definition 2.13, we construct a (2, 1)-category Glo+ which can be
described informally as follows:

• The objects of Glo+ are groupoids X ∈ Gpd.
• For two objects X, Y ∈ Glo+, the morphism groupoid Hom(X, Y ) is the

category of finite coverings M → X × Y and isomorphisms of coverings.
We will think of a morphism as a span X ← M → Y .

• For two composable morphisms X ← M → Y and Y ← N → Z, the
composite is the span X ← T → Z such that the map T → X × Z
fits into the essentially unique factorization M ×Y N → T → X × Z of
M ×Y N → X × Z into a map with connected fibers followed by a finite
cover.
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In contrast, maps from X to Y in Span(Gpd) are given by arbitrary groupoids
M → X × Y . We will see (Proposition 2.16 and Convention 2.17) that there is a
functor Span(Gpd) → Glo+ which is “the identity on objects” and can be thought
of as sending the morphism M above to its 0-truncation relative to X × Y .

Remark 2.6. For groupoids BH, BG, BK ∈ Glo+, the morphism groupoid
Glo+(BH, BG) can be identified with the groupoid of (G, H)-bisets and isomor-
phisms, and the composition

Glo+(BG, BK) × Glo+(BH, BG) → Glo+(BH, BK)

sends a (K, G)-biset T and a (G, H)-biset U to the (K, H)-biset T ×G U .

As promised, Glo+ parametrizes the various equivariant stable homotopy cate-
gories and associated functorialities:

Theorem 2.7. There is a functor

Ψ+
fun : Glo+ → Cat∞

sending a groupoid X to the ∞-category SpX of genuine X-spectra, and sending a

span X
f←− M

g−→ Y to the functor g⊗f∗ : SpX → SpY .

We will prove Theorem 2.7 in the following section as Theorem 2.18.

Example 2.8. The full subcategory of Glo+ spanned by discrete groupoids is
equivalent to the (2, 1)-category Span(Fin) of spans of finite sets. The restricted
functor Span(Fin) → Cat∞ sends a finite set T to Fun(T, Sp) and exhibits Sp as a
symmetric monoidal ∞-category.

Example 2.9. Inside Glo+, we have the composite of morphisms

(BCp ← ∗ → ∗) ◦ (∗ ← ∗ → BCp) = (∗ ← Cp → ∗).

Applying Ψ+
fun, we recover the fact that the composite of the norm N

Cp
e : Sp →

SpCp and the restriction res
Cp
e : SpCp → Sp is the p-fold tensor product functor

(−)⊗p : Sp → Sp.

Example 2.10. A more subtle example comes from composing the spans

(BCp ← BCp → ∗) ◦ (∗ ← BCp → BCp).

The composite as spans of groupoids would be (∗ ← BCp → ∗). However, by the
composition law of Glo+, this is replaced by (∗ ← ∗ → ∗). This expresses the
fact that for a spectrum E, there is a canonical equivalence ΦCp trivCp E $ E.
These equivalences ΦG trivG E $ E are exactly the additional data captured by
Ψfun : Glo+ → Cat∞ but not by the corresponding functor from Span(Gpd) (see
Remark 2.19).

Example 2.11. Let H ⊂ G be finite groups. Then the composite of spans

(BG ← BG → ∗) ◦ (BH ← BH → BG) = (BH ← BH → ∗)

expresses the fact that for E ∈ SpH , there is a canonical equivalence ΦGNG
HE $

ΦHE.
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Example 2.12. Let G # K be a surjection of finite groups. Then the composite
in Glo+

(BG ← BG → ∗) ◦ (BK ← BG → BG) = (BK ← BK → ∗)
expresses the fact that for E ∈ SpK , there is a canonical equivalence ΦG trivG

K E $
ΦKE.

2.2. Formal constructions around Glo+. We now give a formal definition of
Glo+ and prove Theorem 2.7 (appearing here as Theorem 2.18).

Definition 2.13. Let the (2, 1)-category Glo+ ⊂ Cat1 be the subcategory of the
(2, 1)-category of 1-categories whose objects are categories of the form SetX for
X ∈ Gpd and whose morphisms are functors which preserve limits and filtered
colimits.

We will now unwind this definition of Glo+ to see that it admits the description
given in Variant 2.5. Lemma 2.14 relates Definition 2.13 to Remark 2.6.

Lemma 2.14. Let H and G be finite groups. There is a fully faithful functor

(FinH×Gop

)op → Fun(SetH , SetG)

given by sending T ∈ FinH×Gop

to the functor X !→ HomH(T, X). The essential
image is the full subcategory FunR,ω(SetH , SetG) ⊂ Fun(SetH , SetG) of functors
which preserve limits and filtered colimits.

Proof. Let FunL(SetG, SetH) denote the full subcategory of left adjoint functors,
which coincides with the full subcategory of colimit preserving functors by the
adjoint functor theorem. Since SetG is freely generated under colimits by the free
transitive G-set, we have the equivalences

FunL(SetG, SetH) $ Fun(BGop, SetH)

$ Fun(BH × BGop, Set) $ SetH×Gop

.

By taking adjoints, we obtain a fully faithful embedding

FunR,ω(SetH , SetG) ⊂ FunL(SetG, SetH)op $ (SetH×Gop

)op

with essential image exactly the finite G-H-bisets. $
Remark 2.15. By the adjoint functor theorem, the opposite category (Glo+)op can
be described as the subcategory of Cat1 spanned by categories of the form SetX for
X ∈ Gpd and colimit preserving functors which send compact objects to compact
objects. This acquires a symmetric monoidal structure under the tensor product
of presentable categories (cf. [33, §4.8]), and so Glo+ also inherits a symmetric
monoidal structure. On objects, one has SetX ⊗ SetY $ SetX×Y .

We now relate Glo+ to the ∞-category Span(Gpd). Recall that the latter has
the structure of a symmetric monoidal ∞-category under the Cartesian product of
groupoids [9, §7].

Proposition 2.16. There is a symmetric monoidal functor

π : Span(Gpd) → Glo+

which sends a groupoid X to the category SetX and sends a span (X
f←− M

g−→ Y )
to the functor g×f∗ : SetX → SetY , where g× denotes the right adjoint to g∗.
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Proof. The (Set-valued) Yoneda embedding gives a functor Gpdop → Glo+ which
takes products of groupoids to tensor products of presentable categories. The re-
striction functors admit right adjoints satisfying the necessary Beck-Chevalley con-
ditions, so by [9, Construction 7.6], we obtain the desired symmetric monoidal
functor π : Span(Gpd) → Glo+.

$

Convention 2.17. It follows from Lemma 2.14 that for X, Y ∈ Glo+, the groupoid
Glo+(X, Y ) can be identified with the groupoid of finite coverings of X×Y . Under
this identification, the functor π of Proposition 2.16 sends a span M̃ → X × Y to
the span M → X ×Y determined by the canonical factorization M̃ → M → X ×Y
of M̃ → X × Y into a map with connected fiber followed by a finite cover. This
justifies the description given in Variant 2.5. We will, therefore, continue to think of
the 2-category Glo+ as groupoids with certain spans between them unless otherwise
specified.

We now arrive at the goal of this section:

Theorem 2.18. There is a coCartesian fibration Ψ+ : Glo+Sp → Glo+ such that

the fiber over X ∈ Glo+ is SpX , and for any span σ = (X
f←− M

g−→ Y ), the
associated functor σ∗ : SpX → SpY is given by g⊗ ◦ f∗.

Proof. The proof is an imitation of work of Bachmann-Hoyois [4, §9.2]. There is
a tautological functor ι : Glo+ → Cat1 sending an object of Glo+, thought of as
a category, to its subcategory of compact objects. Thinking of Glo+ in terms of
groupoids, this sends, for instance, BG to FinG. One may then apply the procedure
of [4, §9.2] (to which we refer the reader for details): namely, one notes that ι
determines a functor

Fin⊗
+ : Glo+ → CAlg(Cat1)

which sends a groupoid X to the category FinX+ of finite pointed X-sets, given a
symmetric monoidal structure under smash product. Then, applying PΣ pointwise,
one obtains a functor

S⊗
+ : Glo+ → CAlg(Catsift∞ ),

which sends a groupoid X to the category SX+ of pointed genuine X-spaces. Here,
Catsift∞ denotes the ∞-category of ∞-categories with sifted colimits, and sifted col-
imit preserving functors. For each X, one can consider the subset T (X) of objects
of SX+ of the form p⊗(S1) as p ranges over finite coverings Y → X (explicitly, p⊗
should be thought of as indexed smash product along the fibers of Y → X). The
key feature of the functor S⊗

+ is that for any map X → Y in Glo+, the induced map
SX+ → SY + sends objects in T (X) to objects in T (Y ). Then, by the argument
of [4, §6.1], this allows one to invert (pointwise) the chosen objects to obtain the
desired functor which sends a groupoid X to SpX . $

Remark 2.19. Theorem 2.18 is a strengthening of the constructions in [4, Sec-
tion 9.2], which produces the restriction of the fibration Ψ+ along the functor
π : Span(Gpd) → Glo+ of Proposition 2.16. The extension of this fibration to
Glo+ encodes exactly the additional fact that geometric fixed point is inverse to
giving trivial action, as explained in Example 2.10. This additional data turns out
to power the construction of the Frobenius action in §3.
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We will also be interested in a subcategory of Glo+ which restricts the types of
multiplicative transfers that are allowed:

Definition 2.20. Let Glo ⊂ Glo+ be the wide subcategory where the morphisms

are spans (X
f←− M

g−→ Y ) which have the property that the forward map g has
discrete fibers. Note that Glo is closed under the monoidal structure on Glo+ and
therefore inherits a symmetric monoidal structure. We shall denote the restriction
of Ψ+ along the inclusion by Ψ : GloSp → Glo.

Remark 2.21. Note that Glo is also a subcategory of Span(Gpd). Thus, for the
purposes of defining Glo, one can simply start with the ∞-category Span(Gpd).
However, we will see that in order to get the Frobenius action, it will be important
that Glo is embedded inside Glo+ rather than just Span(Gpd).

2.3. Borel equivariant spectra and proper Tate constructions. Let X ∈
Gpd be a groupoid. Then for every point in X, one obtains a restriction functor
SpX → Sp. These assemble to a functor SpX → Fun(X, Sp) which can be thought
of as taking a genuine equivariant X-spectrum to its underlying spectrum (with
group action). This functor admits a fully faithful right adjoint jX : Fun(X, Sp) ↪→
SpX which we think of as cofreely promoting a non-genuine spectrum to a genuine
spectrum. The essential image of this embedding is known as the full subcategory
(SpX)Bor ⊂ SpX of Borel X-spectra. We will also abusively refer to objects of
Fun(X, Sp) as Borel X-spectra. We write βX , or simply β, for the composite

SpX → Fun(X, Sp)
jX−−→ SpX ,

so every E ∈ SpX admits a natural Borelification map E → βE.

Remark 2.22. A genuine G-spectrum E is Borel if and only if, for every subgroup
H ⊂ G, the canonical map EH → EhH from genuine H-fixed points to homotopy
H-fixed points is an equivalence.

The condition of being Borel can also be seen in terms of geometric fixed points:

Example 2.23. The data of a genuine Cp-spectrum E can be presented as a
triple (E0, E1, f) where E0 ∈ Fun(BCp, Sp) is the underlying spectrum, E1 ∈ Sp is

thought of as ΦCpE, and f : E1 → E
tCp

0 is a map of spectra. From this data, one
recovers the genuine fixed points of E via the homotopy pullback square

ECp E1

E
hCp

0 E
tCp

0 .

f

Thus, the genuine Cp-spectrum E is Borel if and only if the specified map f : E1 →
E

tCp

0 is an equivalence.

For more general finite groups G, a variant of the Tate construction becomes
relevant.

Definition 2.24 ([2, Definition 2.7]). For a finite group G, let

(−)τG : SpG → Sp
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denote the functor given by the formula EτG = ΦG(βX). We will refer to (−)τG as
the proper Tate construction for G. When G = Cp, this agrees with the ordinary
Tate construction.

Remark 2.25. The proper Tate construction is a lax symmetric monoidal functor
because both ΦG and β are.

Remark 2.26. Just as the Tate construction can be thought of as universally killing
G-spectra of the form G+ ⊗ E, the proper Tate construction can be thought of as
universally killing G-spectra induced from any proper subgroup (i.e., of the form
(G/H)+ ⊗ E for H ! G). This description is made precise in [2, Remark 2.16]
using Verdier quotients of stable ∞-categories.

Remark 2.27. It is clear from the definition that the proper Tate construction
depends only on the underlying spectrum with G-action. Unwinding the definition
of geometric fixed points, one can give an alternate description of the proper Tate
construction analogous to the description of the usual Tate construction as the
cofiber of the additive norm map. Let G be a finite group, let OG denote the
category of finite transitive G-sets, and let O−

G ⊂ OG denote the full subcategory
spanned by G-sets with nontrivial action. Then, a spectrum X with G-action
determines a functor T : OG → Sp which sends G/H to XhH and sends maps of
G-sets to the corresponding additive transfer maps. The spectrum XτG is the total
cofiber of this diagram; i.e., it fits into the cofiber sequence

colim
O−

G

T → XhG → XτG.

Example 2.28 (Tate diagonals). Let G be a finite group. There is a canonical
lax symmetric monoidal natural transformation NG(−) → βNG(−) of functors
Sp → SpG. Applying geometric fixed points, this yields a natural transformation

∆G : id $ ΦGNG(−) → ΦGβNG(−) $ ((−)⊗G)τG

which we call the Tate diagonal for G. This has been considered previously in
various places [2, 21, 27, 42].

3. The integral Frobenius action

In this section, we prove Theorem A# by building what we call the integral
Frobenius action. This is an oplax action of the symmetric monoidal category Q
on the ∞-category CAlg of E∞-rings which captures the functoriality of the E∞-
Frobenius.

In §3.1, we begin by recalling the E∞-Frobenius map from [42]. We then gen-
eralize this construction in §3.2 to produce certain “generalized Frobenius maps”
associated to inclusions H ⊂ G of finite groups and use them to give a precise
statement of Theorem A# (Theorem 3.15). The remainder of the section is dedi-
cated to proving this theorem. In §3.3, we construct the ∞-category CAlgGlo of
global algebras, which are roughly E∞-rings A together with “genuine equivariant
multiplications” that we think of as specifying lifts of the generalized Frobenius
maps to endomorphisms of A. We show that these Frobenius lifts assemble into an
action of Q on CAlgGlo (Theorem 3.23). It then remains to descend this action to
CAlg. We accomplish this in §3.4 by introducing a structure mediating between
E∞-rings and global algebras: we call these Borel global algebras and denote the
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∞-category of them by CAlgGlo
Bor. These Borel global algebras are, on the one hand,

close enough to global algebras that one obtains an oplax action of Q on CAlgGlo
Bor.

On the other hand, the main result of §3.4 is that CAlgGlo
Bor is actually equivalent to

the ∞-category of E∞-rings. Together, these facts imply Theorem A#.

3.1. The E∞-Frobenius.

Example 3.1. Let R be a discrete commutative ring and let p be a prime. Then
one has two natural ring maps R → R/p: the quotient map and the pth power
map.

There are analogous maps for an E∞-ring A, which we now recall (following
[42]).

Definition 3.2. Let canA : A → AtCp denote the composite

A → AhCp → AtCp ,

where the first map is the restriction induced by the map BCp → ∗ and the second
map is the canonical projection to the Tate construction. We refer to canA as the
canonical map and remark that canA makes sense for any spectrum A but is a ring
map if A is a ring.

Definition 3.3. Let ϕA : A → AtCp denote the composite

ϕA : A
∆−→ (A⊗p)tCp → AtCp

of the Tate diagonal followed by multiplication. This is a ring map because ∆ and
(−)tCp are lax monoidal (cf. Remark 2.25 and Example 2.28). We will refer to this
map throughout as the E∞-Frobenius, or simply the Frobenius.

Example 3.4. When A = R is a discrete commutative ring, the canonical map
R → RtCp on π0 exhibits π0(RtCp) as the quotient R/p. Under this identification,
the Frobenius on π0 is given by the pth power map R → R/p.

However, the E∞-Frobenius for a discrete ring is not simply the classical Frobe-
nius (indeed, it has a different target). Instead, one sees the Steenrod operations
in higher homotopy groups.

Example 3.5 ([42, Theorem IV.1.15]). When A = F2, we have that π∗AtC2 $
F2((t)) where |t| = −1. The Frobenius

ϕF2 : F2 → FtC2
2

is given, as a map of spectra, by the product over i ≥ 0 of

Sqi : F2 → ΣiF2,

where we interpret Sq0 as the identity on F2.
In the case A = Fp for an odd prime p, the action of F×

p on Cp induces an

action of F×
p on FtCp

p , and we have π∗(FtCp
p )hF×

p ∼= Fp((tp−1)) ⊗ Fp[e]/e2, where
|tp−1| = −2(p− 1) and |e| = 1. The Frobenius map is equivariant for this action of
F×

p , and the resulting map

ϕFp : Fp → (FtCp
p )hF×

p
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has components given by

Fp → ΣkFp =






P s if k = 2s(p − 1), s ≥ 0,

βP s if k = 2s(p − 1) + 1, s ≥ 0,

0 else.

Again, we interpret P 0 as the identity in the above formulas.

Remark 3.6. If M is an Fp-module spectrum, then the canonical map can : M →
M tCp is equivariant for F×

p , yielding a map can : M → (M tCp)hF×
p . On homotopy

groups, this map can be identified with the natural inclusion

π∗(M) → π∗(M)((t)),

where |t| = −1 for p = 2, and

π∗(M) → π∗(M)((tp−1))[e]/e2,

where |tp−1| = −2(p − 1), |e| = 1 for p odd.

Example 3.7. More generally, if A is an E∞-algebra over Fp, the E∞-Frobenius

determines a map of E∞-rings A → (AtCp)hF×
p . Under the identification of the

homotopy groups of the target given in the previous remark, one can identify this
map on homotopy groups by the formula

x !→
∑

i∈Z
Sqi(x)t−i

when p = 2, and

x !→
∑

i∈Z
P i(x)t−i(p−1) +

∑

i∈Z
βP i(x)t−i(p−1)e

for p odd. Here, the {Sqi}i∈Z and {P i,βP i}i∈Z are the extended Steenrod opera-
tions of May [41] and Mandell [36]. For further explanation of this fact, the reader
is referred to [54, §3.5] or [42, §IV.1].

In general, the Frobenius can be thought of as a “total degree p stable power
operation.” The basic example that will be important to us is the following:

Example 3.8. When A = S, the sphere spectrum, the Frobenius map and the
canonical map are both the unique ring map S → StCp (since S is the initial E∞-
ring). In fact, this map exhibits StCp as the p-completion of S by the theorems of
Lin [30] (p = 2) and Gunawardena [20] (p odd).

3.2. Generalized Frobenius and canonical maps. As explained in Remark
1.14, Theorem A heuristically says that the Frobenius “commutes with itself.” To
prove this, one has to understand all ways of composing the Frobenius with itself.
We accomplish this by creating a Frobenius composite ϕG : A → AτG for every
finite group G (and, in fact, a map ϕG

H : AτH → AτG for any inclusion H ⊂ G of
finite groups), and then describing how these interact. Roughly, if |G| = pk, one can
think of ϕG as a version of the k-fold composite of the E∞-Frobenius ϕ : A → AtCp .

Construction 3.9 (Generalized Frobenius maps). Let H ⊂ G be an inclusion of
finite groups and let A ∈ CAlg be an E∞-ring spectrum. Then, there is a natural
map A⊗G/H → A of E∞-rings with G-action. We may regard A⊗G/H as the
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underlying spectrum of the genuine G-spectrum NG
H (βH trivH A). By the universal

property of Borel G-spectra, one obtains a natural map

NG
H (βH trivH A) → βG trivG A

of E∞-algebras in genuine G-spectra. Applying ΦG and using the equivalence of
Example 2.11, we obtain a generalized Frobenius map

ϕG
H : AτH $ ΦH(βH trivH A) $ ΦGNG

H (βH trivH A) → ΦG(βG trivG A) $ AτG.

Remark 3.10. In the special case H = ∗, the generalized Frobenius map ϕG is given
by the composite

A
∆G

−−→ (A⊗G)τG → AτG

of the Tate diagonal (cf. Example 2.28) with multiplication. In particular, taking
G = Cp, we recover the E∞-Frobenius.

There are corresponding generalizations of the canonical maps.

Construction 3.11 (Generalized canonical maps). Let G # K be a surjection of
finite groups and let A ∈ CAlg be an E∞-ring spectrum. Then one has a genuine
G-equivariant map

trivG
K(βK trivK A) → βG trivG A

by the universal property of Borel G-spectra. Applying ΦG and using the equiva-
lence of Example 2.12, we obtain a generalized canonical map

canG
K : AτK → AτG.

Remark 3.12. In the special case K = ∗, the generalized canonical map canG is
given by the composite

A → AhG → AτG.

In particular, when G = Cp, we recover the canonical map of Definition 3.2.

We see that while the generalized Frobenius maps are covariantly functorial for
injections of groups, the generalized canonical maps are contravariantly functorial
for surjections of groups. The interaction between these opposing functorialities is
captured by a variant of Quillen’s Q-construction:

Definition 3.13. Let Q be the symmetric monoidal 1-category defined as follows:

• The objects of Q are finite groups.
• For finite groups G, H, HomQ(H, G) is the set of isomorphism classes of

spans of finite groups (H " K ↪→ G) where the left morphism is a surjec-
tion and the right morphism is an injection.

• Composition of morphisms is the usual composition of spans.
• The symmetric monoidal structure is by Cartesian product of groups.

Remark 3.14. Strictly speaking, the category of finite groups is not an exact cat-
egory, and so Q is not an example of Quillen’s Q-construction. However, the full
subcategory of Q spanned by the finite abelian groups is Quillen’s Q-construction
[46] on the exact category of abelian groups.

We may now state Theorem A# more precisely:

Theorem 3.15 (Integral Frobenius action). There is an oplax monoidal functor

Θ : Q → Fun(CAlg, CAlg)

with the following properties:
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• The object G ∈ Q acts by the functor (−)τG : CAlg → CAlg.
• A left morphism (K " G → G) in Q is sent to the natural transformation

canG
K : (−)τK → (−)τG.

• A right morphism (H ← H ↪→ G) in Q is sent to the natural transformation
ϕG

H : (−)τH → (−)τG.

Remark 3.16. The oplax structure corresponds to a natural map Aτ(G×H) →
(AτG)τH for any E∞-ring A and finite groups G, H. The map can be constructed di-
rectly by the universal property of the proper Tate construction (cf. Remark 2.26),
but one may also give a description in the spirit of Constructions 3.9 and 3.11 as
follows: we observe that the underlying Borel G-spectrum of ΦHβG×H trivG×H A
and trivG ΦHβHA are both AτH with the trivial G action. This yields a canonical
genuine G-equivariant map

ΦHβG×H trivG×H A → βG trivG ΦHβHA,

from which we extract the desired map as the composite

AτG×H $ ΦGΦHβG×H trivG×H A → ΦGβG trivG ΦHβHA $ (AτH)τG.

Remark 3.17. Recall from Example 3.7 that the Frobenius map for an F2-algebra A
captures the total Steenrod operation. Unwinding the functoriality of Theorem 3.15
on the full subcategory of Q spanned by the groups ∗, C2 and C2×C2, one recovers
the proof of the Adem relations given in [15] and [54] (the functoriality encoding the
invariance of the two-fold composite of the total power operation under conjugation
inside Σ4 or Σ2 / Σ2). More generally, thinking of the Frobenius as a “total stable
power operation,” this theorem can be seen as expressing the higher relations that
occur when one composes stable power operations.

The remainder of the section is dedicated to proving Theorem 3.15.

3.3. Global algebras. Let G be a finite group. Then any E∞-ring spectrum A
comes equipped with a multiplication map (A⊗G)hG → A. However, one could ask
for a stronger notion of multiplication.

Question. Does the multiplication on A canonically lift to a genuine G-equivariant
multiplication map NGA → trivG A?

In general, the answer is no – one needs to specify more data:

Example 3.18. Consider the case G = Cp. Recall that the data of a genuine Cp-
spectrum X is the data of a spectrum X with Cp-action, a spectrum ΦCpX, and a
map ΦCpX → XtCp . To specify a genuine Cp-equivariant map NCpA → trivCp A
lifting the E∞ multiplication on A is to fill in the dotted arrow in the following
diagram:

ΦCpNCpA A A ΦCp trivCp A

(A⊗p)tCp AtCp

∆ can

where the bottom arrow is induced by the E∞ structure. In other words, one
needs a lift of the E∞-Frobenius map A → AtCp to an endomorphism of A. In
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general, a genuine G-equivariant multiplication in the above sense gives A the
dotted “Frobenius lift” in the following diagram:

A A

AτG.
ϕG canG

We now define the notion of a global algebra, which is roughly an E∞-ring spec-
trum together with coherent choices of genuine G-equivariant multiplication for all
G.

Definition 3.19. A global algebra is a section of the fibration Ψ : GloSp → Glo
(cf. Definition 2.20) which is coCartesian over the left morphisms. We let CAlgGlo

denote the ∞-category of global algebras.

Remark 3.20. Concretely, such a section A : Glo → GloSp is an assignment to
each groupoid X ∈ Glo a genuine equivariant spectrum A(X) ∈ SpX together with
certain structure maps. The condition that the section is coCartesian over the left
morphisms implies in particular that A(BG) $ trivG A(∗) (by considering the span
(∗ ← BG → BG)), so that the value of the section on a point determines the value
of the section on any other groupoid. The functoriality in the span (∗ ← ∗ → BG)
encodes the genuine multiplication maps

NGA(∗) $ (∗ ← ∗ → BG)∗A(∗) → A(BG) $ trivG A.

Remark 3.21. The restriction of a global algebra A along the inclusion Span(Fin) →
Glo of Example 2.8 endows A(∗) with the structure of an E∞-ring spectrum by
[4, Corollary C.2]. We will think of A(∗) as the underlying E∞-ring of A.

By Example 3.18, we can think of a global algebra as an E∞-ring together
with “Frobenius lifts.” The functoriality of these Frobenius lifts is explained by
Observation 3.22:

Observation 3.22. Let A ∈ CAlgGlo and G be a finite group. Then one can form
another global algebra AG (thought of as A twisted by G), which is given on objects
via the formula

AG(X) = σ∗A(X × BG),

where σ denotes the morphism (X × BG ← X × BG
proj1−−−→ X) in Glo+. More

concretely, we have for any finite group H that

AG(BH) = ΦGA(BH × BG) $ ΦG trivH×G
H A(BH).

We will construct AG formally in the proof of Theorem 3.23 using the results of
the appendix.

These twists AG have certain functorialities in the finite group G:

(1) For an injection H → G, we have a natural map AH → AG given by:

AH(X) = (X × BH ← X × BH → X)∗A(X × BH)

% (X × BG ← X × BG → X)∗(X × BH ← X × BH → X × BG)∗A(X × BH)

→ (X × BG ← X × BG → X)∗A(X × BG) = AG(X),

where we have used that A is a section over Glo and that X ×BH → X ×BG
has discrete fibers.
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(2) For a surjection G → K, we have a natural map AK → AG given by:

AK(X) = (X × BK ← X × BK → X)∗A(X × BK)

% (X × BG ← X × BG → X)∗(X × BK ← X × BG → X × BG)∗A(X × BK)

→ (X × BG ← X × BG → X)∗A(X × BG) = AG(X),

where we note that we have used critically the definition of the composition
law of Glo+ and the fact that X × BG → X × BK has connected fibers.

The main result of this section is that these two opposing functorialities assemble
into an action of Q on global algebras. In fact, the twists make sense for any section
of Ψ – not just global algebras; we therefore state our theorem more generally:

Theorem 3.23. There is a monoidal functor

Q → Fun(sect(Ψ), sect(Ψ))

sending a group G to the functor A !→ AG and such that maps in Q are sent to
the corresponding maps identified in Observation 3.22. This action fixes the full
subcategory of global algebras, and thus determines an action of Q on CAlgGlo.

Proof. By Proposition A.10 applied to the coCartesian fibration q+ = Ψ+ : Glo+Sp
→ Glo+ and the subcategory i = ι : Glo → Glo+, we learn that the ∞-category
sect(Ψ) admits a natural right action of the monoidal ∞-category
Fun(Glo, Glo) ×Fun(Glo,Glo+) Fun(Glo, Glo+)/ι. Since Q is symmetric monoidal,
left and right actions by Q coincide, so the proof is completed by Proposition 3.24,
which asserts that this action can be restricted to an action of Q admitting the
description given in Observation 3.22. $

Proposition 3.24. There is a monoidal functor

Q → Fun(Glo, Glo) ×Fun(Glo,Glo+) Fun(Glo, Glo+)/ι

sending a group G to the functor (−) × BG : Glo → Glo given by multiplication
by BG together with the natural transformation ι(−) × BG → ι(−) of functors
Glo → Glo+ given on X ∈ Glo by the span (X × BG ← X × BG → X).

Proof. The symmetric monoidal inclusion ι : Glo → Glo+ endows Glo+ with the
structure of a module over the symmetric monoidal ∞-category Glo. The ∞-
category ModGlo(Cat∞) of Glo-module ∞-categories is naturally tensored over
Cat∞ via the Cartesian product and the forgetful functor ModGlo(Cat∞) → Cat∞
respects this tensoring.

Recall the Cartesian fibration M → Cat∞ of Construction A.4. We make the
following variant: let N → ModGlo(Cat∞) denote the Cartesian fibration classified
by the functor ModGlo(Cat∞) → Catop∞ which sends C to FunGlo(C, Glo+)op, where
the subscript denotes the ∞-category of Glo-module maps. The forgetful natural
transformation

FunGlo(C, Glo+)op → Fun(C, Glo+)op

yields a functor U : N → M. By construction, the functor U respects the tensoring
over Cat∞. Moreover, the inclusion ι : Glo → Glo+ is a map of Glo-modules, so
(Glo, ι) ∈ M admits a natural lift (Glo, ι) ∈ N . Consequently, there is a monoidal
functor

EndN (Glo, ι) → EndM(Glo, ι) = Fun(Glo, Glo) ×Fun(Glo,Glo+) Fun(Glo, Glo+)/ι.
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It therefore suffices to produce an appropriate monoidal functor Q → EndN (Glo, ι).
By an analogous argument to Lemma A.5, we may identify the underlying ∞-
category

EndN (Glo, ι) $ FunGlo(Glo, Glo) ×FunGlo(Glo,Glo+) FunGlo(Glo, Glo+)/ι

$ Glo×Glo+ Glo+
/∗ .

Let us analyze the natural projection

p : EndN (Glo, ι) $ Glo×Glo+ Glo+
/∗ → Glo,

which has the structure of a monoidal functor by construction. Consider the fol-
lowing subcategories:

(1) Let D ⊂ Glo×Glo+ Glo+
/∗ be the full subcategory spanned by spans of the

form (X = X → ∗) such that X is connected. For ease of notation, we may
refer to this object of D simply as X.

(2) Let Q̃ ⊂ Glo be the subcategory spanned by the connected groupoids and

morphisms of the form (X
f←− M

g−→ Y ) where f has connected fibers and g
has discrete fibers. In other words, the spans take the form BH ← BG →
BK where G → H is surjective and G → K is injective.

It is immediate that D and Q̃ are monoidal subcategories, and that the projection
p restricts to a monoidal functor p : D → Q̃.

Lemma 3.25. The restricted functor p : D → Q̃ is an equivalence of monoidal
∞-categories.

Proof. Essential surjectivity is obvious so it suffices to show that p : D → Q̃ is fully
faithful. For this, consider two objects of D corresponding to the groupoids BH
and BK together with the natural maps pH = (BH = BH → ∗) and pK = (BK =
BK → ∗) in Glo+. We would like to show that the natural map

HomGlo(BH, BK) ×HomGlo+ (BH,BK) HomGlo+
/∗

(BH, BK) → HomQ̃(BH, BK)

is an equivalence of groupoids. We first observe that any map BH → BK in Glo
which is compatible with the natural maps BH → ∗ and BG → ∗ in Glo+ is
automatically in the subcategory Q̃ ⊂ Glo. Thus, it suffices to show the natural
map

HomQ̃(BH, BK) ×HomGlo+ (BH,BK) HomGlo+
/∗

(BH, BK) → HomQ̃(BH, BK)
(1)

is an equivalence of groupoids. But we have that

HomGlo+
/∗

(BH, BK) $ HomGlo+(BH, BK) ×HomGlo+ (BH,∗) {pH}.

The lemma then follows by noting that for any σ ∈ HomQ̃(BH, BK), we have
pH = pK ◦ σ so (1) is essentially surjective, and pH ∈ HomGlo+(BH, ∗) $ (Finop

H )(

has no automorphisms (since it corresponds to the singleton as an H-set) so (1) is
fully faithful. $

As a consequence of the lemma, we obtain a monoidal functor Q̃ → EndN (Glo, ι).
To complete the proof of Proposition 3.24 and with it, Theorem 3.23, we will show
that there is a monoidal functor from Q (whose objects are groups) to Q̃ (whose
objects are groupoids), which allows us to restrict the action to Q. To do this,
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we note that one can consider the ∞-category Span(Gpd∗) of pointed groupoids,
which admits a monoidal forgetful functor

(2) Span(Gpd∗) → Span(Gpd).

Recall that the monoidal ∞-category Q̃ was defined above as a monoidal subcat-
egory of Glo, and thus of Span(Gpd) (Remark 2.21). On the other hand, one
can consider the subcategory of Span(Gpd∗) spanned by connected groupoids, and
where maps from BH to BK are spans BH ← BG → BK where the backward
arrow is surjective on π1 and the forward arrow is injective on π1. This subcategory
is closed under the monoidal structure, and is easily seen to be equivalent to a 1-
category; therefore it is elementary to check that Ω and B define inverse monoidal
equivalences of this subcategory with Q. Hence, we may restrict (2) along the in-
clusion of the subcategory Q to obtain a monoidal functor Q → Span(Gpd). This
has image inside the monoidal subcategory Q̃, and so we may restrict the codomain
to obtain the desired monoidal functor Q → Q̃. $

3.4. Borel global algebras. In this section, we complete the proof of Theorem
3.15, which concerns producing an oplax action of Q on CAlg. We will deduce
this from Theorem 3.23 by studying the difference between E∞-rings and global
algebras.

Let A ∈ CAlg be an E∞-ring spectrum. We have seen that A does not canonically
determine a global algebra because A does not come with a genuine Cp-equivariant
map NCpA → trivCp A. However, A does have a weaker version of this structure:
the data of a genuine Cp-equivariant map NCpA → βCp trivCp A, because this is
the same data as a map A⊗p → A of spectra with Cp-action. The notion of a Borel
global algebra is the analog of a global algebra where one demands this weaker
structure.

After constructing the ∞-category CAlgGlo
Bor of Borel global algebras, we show

that the action of Theorem 3.23 descends to an oplax action of Q on CAlgGlo
Bor

(Proposition 3.32). On the other hand, we prove that sending a Borel global algebra
to its underlying E∞-ring induces an equivalence of ∞-categories CAlgGlo

Bor $ CAlg
(Theorem 3.33). Together, these two facts imply Theorem 3.15.

Definition 3.26. The total space GloSp of Ψ can be described as the ∞-category
of pairs (E, X) where X ∈ Glo and E ∈ SpX is a genuine X-spectrum. For each
X ∈ Glo, recall that there is a full subcategory jX : (SpX)Bor ↪→ SpX of Borel X-
spectra. Let GloSpBor ⊂ GloSp be the full subcategory on the pairs (E, X) ∈ GloSp
with the property that E ∈ (SpX)Bor. This yields a diagram

(3)

GloSpBor GloSp

Glo .

j

ΨBor Ψ

Proposition 3.27. The map ΨBor is a coCartesian fibration.

Proof. The map ΨBor is an inner fibration because it is a full simplicial subset of
an inner fibration.
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Let σ = (X ← S → Y ) be a morphism in Glo and E ∈ (SpX)Bor. Then, σ has
a coCartesian lift given by the arrow (E, X) → (βY σ∗E, Y ) in GloSpBor induced
by the natural map σ∗E → βσ∗E. It follows that ΨBor is a locally coCartesian
fibration. But these locally coCartesian arrows are closed under composition: for
any τ = (Y ← T → Z) in Glo, we have that the natural transformation βZτ∗ →
βZτ∗βY of functors SpY → SpZ is an equivalence, so for any E ∈ (SpX)Bor, the
natural map

βZ(τ ◦ σ)∗E → βZτ∗βY σ∗E

is an equivalence (note that it is important that we are working with Ψ and not all
of Ψ+ because this may not be true if τ is in Glo+ but not Glo.). Thus, ΨBor is a
coCartesian fibration by [34, Proposition 2.4.2.8]. $
Warning 3.28. The inclusion GloSpBor ⊂ GloSp does not send coCartesian arrows
to coCartesian arrows because the natural map σ∗E → βσ∗E need not be an
equivalence.

Lemma 3.29. The inclusion j : GloSpBor → GloSp of diagram (3) admits a left
adjoint relative to Glo in the sense of [33, Definition 7.3.2.2].

Proof. We apply [33, Proposition 7.3.2.11]. The functors Ψ and ΨBor are coCarte-
sian fibrations by Theorem 2.18 and Proposition 3.27, and therefore they are locally
coCartesian categorical fibrations. For condition (1), we need only recall that for
each X ∈ Glo, the inclusion jX : (SpX)Bor → SpX admits a left adjoint

βX : SpX −−⇀↽−− (SpX)Bor : jX .

Condition (2) amounts to the fact that the genuine equivariant norm and restriction
maps coincide with the corresponding Borel norm and restriction maps on the
underlying Borel equivariant spectrum. $
Corollary 3.29.1. There is an adjunction

βs : sect(Ψ) −−⇀↽−− sect(ΨBor) : js

at the level of sections which restricts to the adjunction

βX : SpX −−⇀↽−− (SpX)Bor : jX

over each X ∈ Glo.

We now make the analog of Definition 3.19 in this setting.

Definition 3.30. A Borel global algebra is a section of the fibration ΨBor which
is coCartesian over the left morphisms. We let CAlgGlo

Bor denote the ∞-category of
Borel global algebras.

Remark 3.31. A Borel global algebra can be thought of as an E∞ algebra A(BG) ∈
Fun(BG, Sp) for every groupoid BG together with structure maps corresponding
to the various maps in Glo. As in the case of global algebras, A(∗) acquires the
structure of an E∞-ring spectrum (cf. Remark 3.21) and determines the value of
A at any other X ∈ Glo. The right morphisms then encode certain multiplication
maps; for instance the span (∗ ← ∗ → BCp) encodes a map

βNCpA(∗) → β trivCp A(∗)
in Fun(BCp, Sp). We saw at the beginning of the section that this map is already
part of the E∞-structure on A(∗). In fact, we will show in Theorem 3.33 that the
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additional structure of a Borel global algebra is specified uniquely by A(∗) as an
E∞-ring.

Theorem 3.15 follows immediately from the following two statements about
CAlgGlo

Bor:

Proposition 3.32. There is an oplax monoidal functor

Q → Fun(CAlgGlo
Bor, CAlgGlo

Bor)

which admits the description of Theorem 3.15 on underlying E∞-rings.

Proof. By Theorem 3.23 and Lemma A.1 applied to the adjunction of Corollary
3.29.1, we obtain an oplax monoidal functor

Q → Fun(sect(ΨBor), sect(ΨBor)).

One can describe this action more explicitly as follows. Let A ∈ sect(ΨBor) and
G ∈ Q. By the formula of Observation 3.22, we see that the action of G on A yields
a new section AG whose value on a groupoid BH is given by

AG(BH) = βBHΦGjBH×BGA(BH × BG).

If A is in the full subcategory CAlgGlo
Bor ⊂ sect(ΨBor) of Definition 3.30, then this is

equivalent to AτG with the trivial H-action for all H; thus, if A is a Borel global
algebra, then AG is as well. It follows that the oplax action on sect(ΨBor) restricts
to an oplax action on CAlgGlo

Bor. Unwinding the definitions, we see that the maps in
Q act as described in the statement of Theorem 3.15. $
Theorem 3.33. The restriction functor CAlgGlo

Bor → CAlg induces an equivalence
of ∞-categories.

Proof. The relevant restriction functor is implemented by restricting a section of
ΨBor along the inclusion i : Span(Fin) → Glo (cf. Remark 3.21). We show this
induces an equivalence by proving the existence of and computing the ΨBor-right
Kan extension along this inclusion.

Let A ∈ CAlg be an E∞-ring, and let us first compute the pointwise ΨBor-right
Kan extension in the diagram

Span(Fin) GloSpBor

Glo Glo

A

ΨBor

at X ∈ Glo; this is given by a certain ΨBor-limit indexed by the 2-category
Span(Fin) ×Glo GloX/.

We first examine the indexing category. An object of Span(Fin)×Glo GloX/ is a
span of groupoids (X ← Y → Z) such that Z is a finite set and the map Y → Z
has discrete fibers. It follows that Y must also be a finite set. We shall use the
shorthand Fin/X for the category Fin×Gpd Gpd/X whose objects are finite sets T
equipped with a map of groupoids p : T → X. We have Lemma 3.34:

Lemma 3.34. The functor θ : (Fin/X)op → Span(Fin) ×Glo GloX/ defined by

(p : T → X) !→ (X
p←− T

=−→ T )

admits a right adjoint.
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Proof. The adjoint is given by sending (X
q←− T → U) to the map q : T → X. The

groupoid T is a finite set by the remarks above and it is immediate that this is a
right adjoint. $

It follows that θ is coinitial and we have reduced to computing the relative
limit over (Fin/X)op. Unwinding the definitions, a limit of this diagram relative to

the fibration ΨBor is the data of Ã ∈ Fun(X, Sp) equipped with compatible maps
νp : A(T ) → θ(p)∗Ã for each p : T → X ∈ Finop

/X such that for any E ∈ Fun(X, Sp),
the natural map

HomFun(X,Sp)(Ã, E) −→ lim
p:T→X∈Finop

/X

HomFun(T,Sp)(θ(p)∗Ã, θ(p)∗E)

−→ lim
p:T→X∈Finop

/X

HomFun(T,Sp)(A(T ), θ(p)∗E)

is an equivalence.
We claim that Ã := (∗ ← X

=−→ X)∗A(∗) = trivX A(∗) (together with the
obvious choice of νp) has the desired universal property. Because everything in
sight sends disjoint unions in X to products, it suffices to consider the case when
X is connected. Without loss of generality, let X = BG. Then we have Fin/X $
Finfree

G , the category of finite free G-sets, and we wish to show that for any E ∈
Fun(BG, Sp), the natural map

HomFun(BG,Sp)(triv
G(A(∗)), E)

→ lim
U∈(Finfree

G )op
HomFun(U/G,Sp)(A(U/G), (BG ← U/G → U/G)∗E)

is an equivalence. Since A was assumed to be an E∞-algebra, the functor of U on
the right-hand side is product preserving. Since Finfree

G is generated freely under
coproducts by the full subcategory on the transitive free G-set, it follows that the
limit diagram is right Kan extended from that subcategory, and so we have

lim
U∈(Finfree

G )op
HomFun(U/G,Sp)(A(U/G), (BG ← U/G → U/G)∗E)

$ lim
BG

HomSp(A(∗), (BG ← ∗ → ∗)∗E)

$ HomSp(A(∗), rese
G E)hG

$ HomFun(BG,Sp)(triv
G(A(∗)), E),

as desired.
We have shown that the ΨBor-right Kan extension exists at every point, and

so by [33, Lemma 4.3.2.13], the ΨBor-right Kan extension exists. Moreover, our
calculation shows that this Kan extension takes an E∞-algebra to a Borel global
algebra with the same underlying E∞-ring. It follows that both the unit and the
counit of the resulting adjunction are equivalences. Thus, the left adjoint induces
an equivalence of ∞-categories CAlgGlo

Bor → CAlg as desired. $

This concludes the proof of Theorem 3.15. We make two remarks about the
proof:

Remark 3.35. In fact, the proof of Proposition 3.24 shows that the monoidal functor
from Q arises from one defined on the larger 2-category Q̃. We do not know if this
additional generality has interesting consequences and will not use it in this paper.
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Remark 3.36. The action of Theorem 3.15 could not have been produced directly
using Proposition A.10 because the coCartesian fibration ΨBor does not arise as
the restriction of a fibration over all of Glo+. This results in an oplax, rather
than strict, action. In terms of equivariant homotopy theory, this corresponds to
the fact that Borel equivariant homotopy theory does not admit a monoidal fixed
point functor analogous to geometric fixed points in genuine equivariant homotopy
theory.

4. Partial algebraic K-theory

Let C be an exact category in the sense of Quillen [46]. Then, the zeroth K-
theory of C, denoted K0(C), is the free abelian group on the objects of C subject to
the relation [A] + [C] = [B] for every short exact sequence 0 → A → B → C → 0
in C. Quillen categorified this construction, defining the higher algebraic K-theory
space K(C) by means of a certain category Q(C). Waldhausen [53] generalized
the construction of algebraic K-theory to what are now known as “Waldhausen
categories” by means of his S•-construction and proved that the definition coincides
with Quillen’s in the special case of an exact category. These constructions were
generalized to the higher categorical setting by Barwick [5, 7, 8].

The goal of this section is to give analogs of these constructions in a non-group-
complete setting. In §4.1, we introduce a construction called partial K-theory,
which is a non-group-complete analog of algebraic K-theory. It associates to a
Waldhausen ∞-category C a (not necessarily grouplike) E∞-space Kpart(C) with
the following two properties:

(1) There is a canonical equivalence of E∞-spaces Kpart(C)gp $ K(C) (Corol-
lary 4.9.2).

(2) The monoid π0(Kpart(C)) is the free (discrete) monoid on C subject to the
relation [A]+[C] = [B] for every short exact sequence 0 → A → B → C → 0
(Proposition 4.10).

Then, in §4.2, we give an alternate construction of partial K-theory for exact ∞-
categories via Quillen’s Q-construction and show that it coincides with the previous
definition (Theorem 4.14).

4.1. Partial K-theory via the S•-construction. Let C be a Waldhausen ∞-
category in the sense of [8]. One can extract from C a simplicial ∞-category S•(C)
such that Sn(C) is equivalent to the ∞-category of sequences of cofibrations

∗ ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xn

between objects Xi ∈ C [8, 53].

Definition 4.1 ([8, 53]). The algebraic K-theory of C is the E1-space

K(C) := Ω|S•(C)(|,

where S•(C)( denotes the simplicial space obtained by taking the maximal sub-
groupoid of S•(C) level-wise.

The algebraic K-theory of C can be thought of as the universal way to make
S•(C) into a grouplike E1-monoid in spaces. As explained in §1, we need a variant
of this construction which can produce non-group-complete monoids.
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Definition 4.2. A Segal space is a functor X(−) : ∆op → S such that for each
n ≥ 1, the collection of maps ρi : [1] → [n] in ∆ defined by ρi(0) = i, ρi(1) = i + 1
for 0 ≤ i ≤ n − 1 induces an equivalence

n−1∏

i=0

X(ρi) : X([n]) $ X([1]) ×X([0]) · · · ×X([0]) X([1]).

We will denote the ∞-category of Segal spaces by Seg(S).

Definition/Proposition 4.3 ([33], Proposition 4.1.2.10). Let Mon(S) denote the
∞-category of E1-monoids in spaces. Then there is a fully faithful functor

B : Mon(S) → Fun(∆op, S)

which sends a monoid M to its bar construction

BM =
(
∗ M M × M · · ·

)
.

The essential image of B is the full subcategory of Segal spaces X with the additional
property that X([0]) $ ∗. We will sometimes implicitly identify Mon(S) with this
subcategory of simplicial spaces.

Definition 4.4. Since the full subcategory Mon(S) ⊂ Fun(∆op, S) is closed under
limits and filtered colimits, the functor B admits a left adjoint [34, Corollary 5.5.2.9],
which we denote by

L : Fun(∆op, S) → Mon(S).

The main object of study in this section is:

Definition 4.5. Let C be a Waldhausen ∞-category. Then the partial algebraic
K-theory of C is the E1-monoidal space

Kpart(C) := L(S•(C)().

It can be helpful to rephrase this definition in terms of the notion of complete
Segal spaces, which we now very briefly recall.

Recollection 4.6. The ∞-category of small ∞-categories Cat∞ can be identified
with a full subcategory

CplSeg(S) ⊂ Seg(S)

of Segal spaces known as complete Segal spaces [31, Corollary 4.3.16] and due to
[47]. Via this identification, the inclusion Cat∞ ⊂ Fun(∆op, S) admits a left adjoint,
which we denote by

CSS : Fun(∆op, S) → Cat∞ .

The functor CSS can be described as the unique colimit preserving functor sending
the representable simplicial space corresponding to [n] ∈ ∆op to the standard n-
simplex as an ∞-category.

Just as the subcategory CplSeg(S) ⊂ Fun(∆op, S) of complete Segal spaces can
be identified with Cat∞, the ∞-category Seg(S) ⊂ Fun(∆op, S) can be identified
with the ∞-category Catfl∞ of flagged ∞-categories [3, Theorem 0.26]. A flagged
∞-category is a triple (C, X, f) consisting of an ∞-category C, a space X, and an
essentially surjective functor f : X → C. A Segal space Y• determines a flagged
∞-category via the canonical functor Y0 → CSS(Y•). Under this identification, the
full subcategory CplSeg(S) ⊂ Seg(S) corresponds to the full subcategory of flagged
∞-categories (C, X, f) with the property that f induces an equivalence of spaces
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X $ C(. The left adjoint to this inclusion corresponds to the forgetful functor
Catfl∞ → Cat∞ given by (C, X, f) !→ C.

Remark 4.7. Combining Definition/Proposition 4.3 with Recollection 4.6, we obtain
an equivalence of ∞-categories between Mon(S) and the ∞-category (Cat∞)0 of
∞-categories equipped with an essential surjection from a point. This equivalence
can be thought of as sending an E1-monoid M to the ∞-category BM with one
object whose space of endomorphisms is M .

Since the above constructions are all compatible with finite products, this equiv-
alence also lifts to an equivalence, for any n ≥ 1, between En-monoids in spaces
and En−1-monoidal ∞-categories with the property that the inclusion of the unit
is an essential surjection.

Using this language, Definition 4.5 can be rephrased as follows:

Proposition 4.8. Let C be a Waldhausen ∞-category. Then there is an equivalence
of ∞-categories

CSS(S•(C)() $ BKpart(C).

In other words, just as BK(C) is the underlying space of S•(C)(, the ∞-category
BKpart(C) is the “underlying ∞-category” of S•(C)(.

Proof.

Notation. In the course of this proof, if f is a fully faithful functor, we will denote
by fL (resp. fR) its left (resp. right) adjoint, provided it exists.

Let Fun∗(∆op, S) ⊂ Fun(∆op, S) be the full subcategory of simplicial spaces X•
such that X0 $ ∗. Then, the inclusion Mon(S) ⊂ Fun(∆op, S) factors through an
inclusion k : Mon(S) ↪→ Fun∗(∆op, S). Because S•(C)( is in the full subcategory
Fun∗(∆op, S), there is an equivalence

(4) LS•(C)( $ kLS•(C)(.

Since ∗ ∈ Fun(∆op, S) is left Kan extended from its value at [0], it is an initial
object in Fun∗(∆op, S). It follows that there is a fully faithful functor embedding

i0 : Fun∗(∆
op, S) → Fun(∆op, S)∗/.

This extends to a commutative diagram of fully faithful functors

CplSeg(S)∗/ Seg(S)∗/ Fun(∆op, S)∗/

Mon(S) Fun∗(∆op, S).

j1 j0

i1

k

i0

We note that i0 admits a right adjoint iR0 which extracts the simplices which only
involve the given zero simplex. It is given on a simplicial space T• by the formula

(iR0 T•)n $ Tn ×(T0)×n+1 ∗,

where Tn → T×n+1
0 are the vertex maps. It is immediate from this formula that

iR0 takes the full subcategory Seg(S)∗/ ⊂ Fun(∆op, S)∗/ to the full subcategory
Mon(S) ⊂ Fun∗(∆op, S), so i1 admits a right adjoint iR1 such that iR0 j0 $ kiR1 . It
follows by taking left adjoints that jL

0 i0 $ i1kL. In particular, jL
0 i0(S•(C)) is a Segal

space whose zeroth space is contractible (since it is in the image of i1); it follows
from Remark 4.7 that jL

1 jL
0 i0(S•(C)() = (j0j1)Li0(S•(C)(), which is CSS(S•(C)()
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with the canonical basepoint, is an ∞-category of the form BM for a monoid M in
spaces. But M is exactly kL(S•(C)(), since the functor iR1 j1 takes BM to M and

kL(S•(C)() $ iR1 i1k
L(S•(C)() $ iR1 jL

0 i0(S•(C)() $ iR1 j1j
L
1 jL

0 i0(S•(C)().

$

One consequence of Proposition 4.8 is that although partial K-theory has a
universal property as an E1-space, it naturally admits the structure of an E∞-
space.

Lemma 4.9. The functor CSS : Fun(∆op, S) → Cat∞ commutes with finite prod-
ucts.

Proof. We would like to show that for simplicial spaces X and Y , the natural map

CSS(X × Y ) → CSS(X) × CSS(Y )

is an equivalence. We observe that products preserve colimits separately in each
variable in both Fun(∆op, S) and Cat∞, and the functor CSS preserves colim-
its. Consequently, it suffices to check this statement on representable objects in
Fun(∆op, S). But each representable simplicial space ∆n is in the image of the
fully faithful right adjoint Cat∞ ⊂ Fun(∆op, S), which clearly preserves products,
so the conclusion follows. $

Since the coproduct on C endows S•(C)( with the structure of an E∞-monoid in
simplicial spaces, we may use Lemma 4.9 to equip CSS(S•(C)() with the structure
of a symmetric monoidal ∞-category. We then have Corollaries 4.9.1 and 4.9.2 of
Proposition 4.8.

Corollary 4.9.1. Let C be a Waldhausen ∞-category. Then the coproduct on C
endows Kpart(C) with the structure of an E∞-monoidal space.

Corollary 4.9.2. There is a natural equivalence Kpart(C)gp $ K(C) of E∞-spaces.

Proof. Note that the functor S → Fun(∆op, S) sending a space to the constant
simplicial space factors as a composite

S → CplSeg(S) ⊂ Fun(∆op, S)

through complete Segal spaces. Taking left adjoints and looping, we obtain an
equivalence of E1-spaces

(Kpart(C))gp $ Hom|CSS(S•(C)')|(∗, ∗) $ Ω|CSS(S•(C)()| $ Ω|S•(C)(| $ K(C).

We have seen that the relevant left adjoints commute with finite products, so this
is in fact an equivalence of E∞-spaces. $

As in the case of ordinary K-theory, one can explicitly describe Kpart
0 (C):

Proposition 4.10. Let C be a Waldhausen ∞-category. Then the monoid

Kpart
0 (C) := π0K

part(C)

is freely generated by the objects of C modulo the relation [A] + [C] = [B] for every
short exact sequence 0 → A → B → C → 0.
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Proof. Let Mon(Set) denote the category of monoids in sets and let

B0 : Mon(Set) → Fun(∆op, Set)

denote the functor which sends a monoid to its bar construction. Then, B0 factors
through the functor

i∗ : Fun(∆op
≤2, Set) → Fun(∆op, Set)

given by right Kan extension along the inclusion i : ∆op
≤2 → ∆op of the full subcat-

egory spanned by the objects [0], [1], and [2]. We obtain a commutative diagram
of right adjoints

Mon(S) Fun(∆op, S)

Mon(Set) Fun(∆op, Set)

Fun(∆op
≤2, Set).

B

B0

B0

i∗

All of the functors in the diagram have left adjoints; the left adjoint of the upper
vertical arrows is by taking π0, the left adjoint of i∗ is the restriction i∗, and we let
L0 denote the left adjoint to B0. Using the commutative diagram of left adjoints,
we deduce that for a simplicial space X, there is an isomorphism

π0LX ∼= L0i
∗π0X.

We would like to compute this monoid in the case that X = S•(C)( and show that
it has the proposed description of Kpart

0 (C).
Let M0 be a monoid in sets, and let us unwind the data of a map

f : i∗π0(S•(C)() → B0(M0)

in Fun(∆op
≤2, Set). The map f is determined by three maps

f[0] : π0(S0(C)() → ∗,
f[1] : π0(S1(C)() → M0,

f[2] : π0(S2(C)() → M0 × M0,

corresponding to the objects of ∆op
≤2. The map f[0] is no data because S0(C) = ∗, and

the map f[1] can be thought of as assigning an object of M0 to each equivalence class
of object in C. In order for these maps f[i] to determine a natural transformation
f in Fun(∆op

≤2, Set), they must satisfy the following conditions:

(1) Using the compatibilities coming from maps between [0] and [1] in ∆op, one
deduces that f[1] must send the equivalence class of 0 ∈ C to 0 ∈ M0.

(2) Using the compatibilities coming from maps between [1] and [2] in ∆op,
one first deduces that f[2] sends the equivalence class of an exact sequence
0 → A → B → C → 0 to (f[1](A), f[1](C)) ∈ M0×M0. Then, compatibility
with the face map corresponding to the multiplication M0 × M0 → M0

imposes the relation f[1](A) + f[1](C) = f[1](B).

Thus, the data of f is exactly the data of an object in M0 for each nonzero equiva-
lence class of object in C satisfying the usual additivity condition in exact sequences.
By the Yoneda lemma, we conclude that L0i∗π0(S•(C)() has the proposed descrip-
tion. $
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Remark 4.11. In a stable setting, partial K-theory does not produce anything
new. For instance, if C is a stable ∞-category, one has for every X ∈ C a cofiber
sequence X → 0 → ΣX. It follows from Proposition 4.10 that in Kpart

0 (C), [X]
has an inverse given by [ΣX]. Consequently, Kpart

0 (C) is group complete and the
natural map Kpart(C) → K(C) is an equivalence by Corollary 4.9.2.

4.2. Partial K-theory via the Q-construction. Throughout this section, let C
be an exact ∞-category in the sense of [5, Definition 1.3]. Then, one can form an
∞-category QC known as the Q-construction on C [5, Definition 3.8].

Example 4.12. When C = VectFp is the category of finite dimensional Fp-vector
spaces, QC is equivalent to (the nerve of) the ordinary category whose objects are
finite dimensional Fp-vector spaces V and where HomQVectFp

(U, V ) is the set of
isomorphism classes of spans U " W ↪→ V where the backward arrow is surjective
and the forward arrow is injective [5, Proposition 3.11]. Composition is given by
the usual composition of spans.

Quillen [46] defined the K-theory space of C as Ω|QC|. On the other hand, C can
be regarded as a Waldhausen ∞-category and one can consider its K-theory in the
sense of Definition 4.1. Theorem 4.13 asserts that these constructions agree:

Theorem 4.13 ([53, §1.9], [5, Proposition 3.7]). There is an equivalence of spaces

|QC| $ |S•(C)(|.

We now describe how to make a pre-group-completed variant of this construction.
Thinking of the space |QC| as an ∞-category, the natural map QC !→ |QC| can be
thought of as formally inverting all the morphisms. On the other hand, the K-
theory of C arises as the endomorphisms of the unit object in |QC|. Accordingly,
to create a version of K-theory which is not group complete, one could instead
contemplate inverting only some of the morphisms of QC. Let L ⊂ Mor(QC)
denote the backward (left-pointing) arrows, i.e., those of the form X " Y → Y .
The localization QC[L−1] is a symmetric monoidal ∞-category which comes with
a canonical point represented by 0 ∈ C. The endomorphism of 0 in QC[L−1] is
then a monoid in spaces which group completes to K(C). The main theorem of this
section is that this monoid coincides with the partial K-theory of C:

Theorem 4.14. Let C be an exact ∞-category. Then, regarding C as a Waldhausen
∞-category as in [6, Corollary 4.8.1], there is an equivalence of E1-spaces

Kpart(C) $ HomQC[L−1](0, 0).

This is a categorified analog of the theorems of Waldhausen and Barwick relating
K-theory via the S•-construction to K-theory via the Q-construction. We will prove
Theorem 4.14 in a more precise form as Corollary 4.23.1. We begin by reviewing
the notion of edgewise subdivision.

Definition 4.15. Let ε : ∆ → ∆ be the functor which takes a linearly ordered set I
to the join Iop/I. Given an ∞-category D and a simplicial object T ∈ Fun(∆op, D),
one can form a new simplicial object ε∗T by precomposition with ε, which we will
refer to as the edgewise subdivision of T . This construction comes equipped with
two natural maps induced by the inclusions I ⊂ Iop / I and Iop ⊂ Iop / I, which we
denote by ηT : ε∗T → T and ηop

T : ε∗T → T op, respectively.
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Example 4.16. When D = Set and T is a quasicategory, ε∗T is also a quasicategory
and presents the twisted arrow category of T ([33, Proposition 5.2.1.3], beware the
opposite convention for morphism direction).

We will be particularly interested in Example 4.17, which says roughly that
Quillen’s Q-construction arises from Waldhausen’s S•-construction by edgewise
subdivision:

Example 4.17. When D = S and T = S•(C)( for an exact ∞-category C, there
is an equivalence of ∞-categories

QC $ CSS(ε∗S•(C)().

This follows from combining [5, Proposition 3.4] and [5, Proposition 3.7].

Recall that Kpart(C) is defined as the endomorphisms of the unit object in
CSS(S•(C)(); accordingly, Theorem 4.14 asserts a relationship between the sim-
plicial spaces S•(C)( and ε∗S•(C)(. In the setting of ordinary K-theory (Theorem
4.13), one needs to compare these simplicial spaces at the level of geometric realiza-
tion; this boils down to the classical fact that for any simplicial space T , the map ηT

becomes an equivalence after passing to underlying spaces [49, A.1]. The proof of
Theorem 4.14 refines this to a statement about underlying ∞-categories. Namely,
instead of passing all the way to underlying spaces, one can study the functor ηT

after applying CSS. The main technical result of this section is that while the re-
sulting functor CSS(ηT ) : CSS(ε∗T ) → CSS(T ) is not generally an equivalence, it
can be described as a localization at a particular collection of morphisms.

Remark 4.18. Let K be a simplicial set which is a quasicategory (i.e., fibrant in the
Joyal model structure), and let KS ∈ Fun(∆op, S) denote K regarded as a discrete
simplicial space. Then one can consider the ∞-category CSS(KS) obtained by
applying the localization CSS : Fun(∆op, S) → Cat∞. It follows from [26, Theorem
4.11] that there is a natural equivalence of ∞-categories K $ CSS(KS).

We first study the case of when T is a standard simplex.

Example 4.19. By Example 4.16 and Remark 4.18, the ∞-category CSS(ε∗∆n
S)

is the twisted arrow category of ∆n:

(5)

nn

. .
. ...

22 · · · 2n

11 12 · · · 1n

00 01 02 · · · 0n.

With reference to diagram (5), the functor

CSS(η∆n
S
) : CSS(ε∗∆n

S) → CSS(∆n
S) $ ∆n

projects down to the horizontal axis.
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Definition 4.20. Let L(∆n
S) denote the subset of the morphisms of CSS(ε∗∆n

S)
whose images under CSS(η∆n

S
) are homotopic to identity morphisms. These corre-

spond to vertical maps in diagram (5).

Lemma 4.21. The functor

CSS(η∆n
S
) : CSS(ε∗∆n

S) → CSS(∆n
S) $ ∆n

exhibits ∆n as the localization of CSS(ε∗∆n
S) at the collection of morphisms L(∆n

S).

Proof. We will refer to diagram (5) of Example 4.19. By Remark 4.18, the functor of
the lemma is identified with the natural functor of ∞-categories η∆n : ε∗∆n → ∆n.
Regarding ε∗∆n as a marked simplicial set by marking the morphisms in L(∆n

S), it
suffices to show that η∆n : ε∗∆n → (∆n)& is a weak equivalence in the marked model
structure, where (∆n)& denotes the simplicial set ∆n with only the degenerate edges
marked (cf. [34, Proposition 3.1.3.7], [24, 1.1.3]). Consider the sequence of maps

(∆n)&
i−→ ε∗∆n η∆n−−−→ (∆n)&,

where i includes the bottom edge 00 → 01 → 02 → · · · → 0n of (5). The composite
is the identity, so the lemma would be a consequence of knowing that the inclusion
i is a marked anodyne extension (and thus a Cartesian equivalence, by [34, Remark
3.1.3.4]). This follows by using the criterion (2”) of [34, Proposition 3.1.1.5] and
stability of marked anodyne morphisms under pushouts [34, Definition 3.1.1.1]. $
Definition 4.22. Let T be a simplicial space. With reference to Definition 4.20,
define the subset L(T ) of the 1-simplices of the ∞-category CSS(ε∗T ) by

L(T ) := {γ | γ = CSS(ε∗f)γ′ for some morphism f : ∆n
S → T and edge γ′ ∈ L(∆n

S)}.

We can now state and prove the main technical result.

Proposition 4.23. Let T be a simplicial space. Then the functor

CSS(ε∗ηT ) : CSS(ε∗T ) → CSS(T )

exhibits CSS(T ) as the localization of CSS(ε∗T ) at the morphisms in L(T ).

Proof. We would like to show that for any ∞-category D, the induced map

Fun(CSS(T ), D) → Fun(CSS(ε∗T ), D)

is the inclusion of the full subcategory of functors which send the morphisms in
L(T ) to equivalences in D.

Write the simplicial space T as a colimit of representables:

T = colim
∆n

S→T
∆n

S .

Then, since ε∗ and CSS preserve colimits, we have the commutative square

Fun(CSS(T ), D) Fun(CSS(ε∗T ), D)

lim
∆n

S→T
Fun(CSS(∆n

S), D) lim
∆n

S→T
Fun(CSS(ε∗∆n

S), D).

∼ ∼

By Lemma 4.21, the bottom horizontal arrow is the inclusion of precisely the sub-
category of functors which invert L(∆n

S) for each ∆n
S → T , and the proposition

follows. $
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We apply Proposition 4.23 in the situation of Example 4.17. Under the equiva-
lence

QC $ CSS(ε∗S•(C)(),

the subset L(S•(C)() of morphisms corresponds to the collection L of backward
arrows of QC (i.e., those of the form X " Y → Y ). We therefore have Corollary
4.23.1 of Proposition 4.23, which completes the proof of Theorem 4.14:

Corollary 4.23.1. There is a functor QC → CSS(S•(C)() which extends to an
equivalence of ∞-categories

QC[L−1] $ CSS(S•(C)(),

where L denotes the collection of backward morphisms. Taking endomorphisms of
the zero object on both sides and applying Proposition 4.8, we obtain an equivalence
of E1-spaces

Kpart(C) $ HomQC[L−1](0, 0).

5. The partial K-theory of Fp

We will see in §6 that the monoidal ∞-category BKpart(Fp) acts on the ∞-
category CAlgF

p of Fp-stable E∞-rings. Our goal in this section is to give a compu-
tation of Kpart(Fp) up to p-completion. To motivate the result, recall the following
theorem of Quillen:

Theorem 5.1 (Quillen [45]). The natural map

K(Fp) → π0K(Fp) ∼= Z

induces an isomorphism in Fp-homology.

In particular, the Fp-homology of K(Fp) is trivial in positive degrees. The main
result of this section is the analog of Quillen’s theorem for partial K-theory:

Theorem 5.2. The natural map

Kpart(Fp) → π0K
part(Fp) ∼= Z≥0

induces an isomorphism in Fp-homology.

In §5.1, we provide a formula for partial K-theory in terms of a colimit of spaces
in the S•-construction. Then in §5.2, we specialize to the case of Kpart(Fp) and
evaluate this formula up to Fp-homology equivalence.

5.1. Computing partial K-theory. In this section, we give a formula for the
functor L of Definition 4.4 in terms of a certain colimit. To do so, we show that
E1-spaces can be presented via an ∞-categorical Lawvere theory (Proposition 5.6).
We then reinterpret B as a certain restriction map and L as the corresponding left
Kan extension.

Definition 5.3. Let TA denote the opposite category of the full subcategory of
(discrete, associative) monoids spanned by those which are free and finitely gener-
ated. For a finite set S, we will denote the free monoid on S by Free(S). We will
refer to TA as the theory of associative monoids.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTEGRAL MODELS FOR SPACES 143

Notation 5.4. For a linearly ordered set S, let S± denote the linearly ordered set
{−∞}∪S ∪ {∞}. It will be convenient to think of ∆op as the category of (possibly
empty) linearly ordered sets S, where morphisms from S to T are order preserving
maps S± → T± preserving ±∞. This description arises by associating to a finite
linearly ordered set in ∆ its corresponding linearly ordered set of “gaps,” or pairs
of adjacent elements. We will denote the linearly ordered set of gaps in [n] ∈ ∆ by
(n) ∈ ∆op, so that (n) has n elements, which we call 1, 2, · · · , n, and (n) is always
implicitly regarded as an object in ∆op.

Definition 5.5. Define a functor

F : ∆op → TA

by (n) !→ Free((n)) on objects, and by sending the morphism f : (n) → (m) in ∆op

to the morphism
F (f) : Free((m)) → Free((n))

which sends the generator corresponding to i ∈ (m) to the product of the generators
corresponding to f−1(i), using the order from (n).

We now show the Lawvere theory presentation of monoids suggested by Defini-
tion 5.3 coincides with the notion of monoid from Definition/Proposition 4.3.

Proposition 5.6. The restriction functor F ∗ : Fun(TA, S) → Fun(∆op, S) sends
the full subcategory Fun×(TA, S) ⊂ Fun(TA, S) of product preserving functors to
the full subcategory Mon(S) ⊂ Fun(∆op, S) of monoids in spaces. Moreover, the
restricted functor

F ∗ : Fun×(TA, S) → Mon(S)

is an equivalence of ∞-categories.

Proof. The first statement is clear so we focus on the second. Let M : ∆op → S be
a monoid. We shall compute the right Kan extension along the functor F and see
that it determines an inverse equivalence.

The right Kan extension at Free((n)) ∈ TA is indexed by the category ∆op ×TA

(TA)Free((n))/ whose objects are pairs ((m), f) where (m) ∈ ∆op and d : Free((m)) →
Free((n)) is a map of monoids. We will show that the value of the right Kan
extension at Free((n)) is Mn.

We first describe in detail the special case n = 1. In this case, the map d :
Free((m)) → Free((1)) $ Z≥0 assigns a nonnegative integer, which we can think of
as a “degree,” to each of the generators of Free((m)). The morphisms in ∆op ×TA

(TA)Free((n))/ from ((m1), d1) to ((m2), d2) are maps f : (m1) → (m2) in ∆op such
that F (f) preserves the degree.

Observation. Consider the full subcategory J1 ⊂ ∆op ×TA (TA)Free((1))/ spanned
by those ((m), d) with the property that d sends every generator of Free((m)) to
1. Then the inclusion of J1 admits a right adjoint. Explicitly, let x1, x2, · · · , xm ∈
Free((m)) denote the generators and d : Free((m)) → Z≥0 be any map of monoids;
then the right adjoint sends ((m), d) to the unique object in J1 whose underlying
monoid is Free((d(x1) + d(x2) + · · · + d(xm))).

It follows that the subcategory J1 is coinitial. One can (and we will) view J1

in an alternate way, as the wide subcategory of ∆op whose morphisms from (m1)
to (m2) are those determined by maps of linearly ordered sets (m1)± → (m2)±
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which are isomorphisms when restricted to the preimage of (m2) ⊂ (m2)±. With
this notation, the value of the desired right Kan extension is computed as

lim
(m)∈J1

Mm.

This diagram of spaces is right Kan extended from the full subcategory of J1

spanned by the object (1) ∈ J1, and so the limit is given simply by M , as desired.
For a general n, one can think of the function d : Free((m)) → Free((n)) as

assigning a “generalized degree” which takes values in Free((n)) instead of just
Z≥0 = Free((1)). One then extracts the coinitial subcategory Jm determined by
those d which assign to each generator an element of “generalized degree one” in
the sense that they send generators of Free((m)) to generators of Free((n)). The
resulting diagram is right Kan extended from the full subcategory of Jm spanned by
objects whose underlying monoid is free on one generator; there are n of these (one
for each generator of Free((n))) and no maps between them, so the value of the limit
is Mn, as desired. It follows from the above calculation that the resulting functor
is product preserving and that the unit and counit maps induce equivalences. $

Under the identification of Proposition 5.6, the composite

Mon(S) $ Fun×(TA, S) → Fun(∆op, S)

is exactly the functor B of Definition/Proposition 4.3. But the target of B also
admits a description as an ∞-category of product preserving functors.

Notation 5.7. Let (∆op)× denote the free product completion of ∆op. It has the
universal property that for any ∞-category C which has finite products, restric-
tion along the inclusion ∆op → (∆op)× induces an equivalence of ∞-categories
Fun×((∆op)×, C) $ Fun(∆op, C).

Explicitly, the objects of (∆op)× are finite sets S together with a collection
{(ns)}s∈S of finite linearly ordered sets indexed by S. A morphism from {(ns)}s∈S

to {(mt)}t∈T is the data of a function φ : T → S together with a morphism
(nφ(t)) → (mt) in ∆op for each t ∈ T .

Since the category TA admits finite products, the functor F : ∆op → TA ex-
tends uniquely to a product preserving functor F× : (∆op)× → TA. Under this
identification, B is given by restriction along F×:

B = (F×)∗ : Fun×((∆op)×, S) → Fun×(TA, S).

Its left adjoint L will be given by left Kan extension, and will be computed by a
colimit over a certain indexing category that we now discuss:

Definition 5.8. We define a category I as follows. The objects of I are tuples
(I, J, f) where I and J are (possibly empty) finite linearly ordered sets and f : I #
J is an order preserving surjection. We think of f as partitioning I into convex
subsets indexed by J . As such, if we denote the elements of J by j1 < j2 < · · · < jm,
then we will refer to a typical element (I, J, f) ∈ I by (f−1j1)(f−1j2) · · · (f−1jm),
or more informally by (|f−1(j1)|)(|f−1(j2)|) · · · (|f−1(jm)|).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTEGRAL MODELS FOR SPACES 145

The morphisms in I from (I, J, f) to (I ′, J ′, f ′) are given by commuting squares
of order preserving maps:

I I ′

J J ′,

f f ′

which we think of as a map of linearly ordered sets I → I ′ that refines the partitions.

As promised, I indexes a colimit which computes L.

Construction 5.9. Note that I admits a functor I → (∆op)× sending
(n1)(n2) · · · (nk) ∈ I to {(n1), (n2), · · · , (nk)} ∈ (∆op)×. We associate to each
simplicial space X• the functor X× : I → S given by the composite

I → (∆op)×
X×

•−−→ S,

where X×
• : (∆op)× → S denotes the functor induced by X•.

Proposition 5.10. Let X• be a simplicial space. Then the underlying space of the
monoid LX• is given by the formula

LX• $ colim
I

X× $ colim
(n1)···(ni)∈I

Xn1 × · · · × Xni .

Proof. Since B is restriction along the functor F× : (∆op)× → TA, it suffices to show
that left Kan extension along F× takes product preserving functors (∆op)× → S
to product preserving functors TA → S, and that the Kan extension is given by the
desired formula.

We first compute the value of the left Kan extension at Z≥0 ∈ TA, which is
indexed by the category K := (∆op)× ×TA (TA)/Z≥0

. Unwinding the definitions, an
object of K is a pair (

{(n1), (n2), · · · , (nk)}, x
)
,

where {(n1), (n2), · · · , (nk)} ∈ (∆op)× and x is a chosen element in Free(
∐

i(ni)).
The morphisms in K are maps in (∆op)× preserving this element.

Notation. Inside Free(
∐

i(ni)), we will denote by x(i)
1 , x(i)

2 , · · · , x(i)
ni the generators

corresponding to (ni).

We define a functor G : I → K as follows. On objects, it sends (n1)(n2) · · · (nk) ∈
I to {(n1), (n2), · · · , (nk)} ∈ (∆op)× together with the element given by the product

(x(1)
1 x(1)

2 · · ·x(1)
n1

)(x(2)
1 x(2)

2 · · ·x(2)
n2

) · · · (x(k)
1 x(k)

2 · · ·x(k)
nk

).

A morphism
(n1) · · · (nk) → (m1) · · · (mj)

in I determines a canonical morphism

{(n1), · · · , (nk)} → {(m1), · · · , (mj)}
in (∆op)× and it preserves the chosen elements of the corresponding free monoids
because the morphisms in I are assumed to be order preserving.

Lemma 5.11. The functor G admits a left adjoint H : K → I and therefore G is
cofinal.
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Proof. We begin by defining H. Consider an object
(
{(n1), (n2), · · · , (nk)}, x

)
∈ K.

The element x is given by some word in the generators x(i)
j . We call a convex sub-

string of x (i.e., set of adjacent letters) snug if it is of the form x(i)
j x(i)

j+1 · · · x(i)
j+m−1

for some positive integers (i, j, m). A snug substring of x is called maximal if it is
not a proper substring of a larger snug substring. Consider the unique partition of
x into maximal snug substrings

(x(i1)
j1

x(i1)
j1+1 · · ·x(i1)

j1+m1−1)(x
(i2)
j2

x(i2)
j2+1 · · · x(i2)

j2+m2−1) · · · (x(il)
jl

x(il)
jl+1 · · ·x(il)

jl+ml−1).

We regard this partition as an object xI ∈ I (which is isomorphic to
(m1)(m2) · · · (ml) ∈ I), and define H on objects by

H
(
{(n1), (n2), · · · , (nk)}, x

)
= xI .

Example. If x = x(2)
1 x(1)

2 x(1)
3 x(1)

4 x(3)
2 x(3)

1 x(3)
2 , then the partition into maximal snug

substrings is x = (x(2)
1 )(x(1)

2 x(1)
3 x(1)

4 )(x(3)
2 )(x(3)

1 x(3)
2 ), and H would send this to the

object (1)(3)(1)(2) ∈ I.

We now describe the effect of H on morphisms. Consider a morphism
(
{(n1), (n2), · · · , (ns)}, x

)
→

(
{(m1), (m2), · · · , (mt)}, y

)

in K, and suppose x and y are written as a union of maximal snug substrings as
follows:

x = (x(i1)
j1

x(i1)
j1+1 · · ·x(i1)

j1+h1−1)(x
(i2)
j2

x(i2)
j2+1 · · ·x(i2)

j2+h2−1) · · · (x(il)
jl

x(il)
jl+1 · · ·x(il)

jl+hl−1),

y = (y(e1)
g1

y(e1)
g1+1 · · · y(e1)

g1+f1−1)(y
(e2)
g2

y(e2)
g2+1 · · · y(e2)

g2+f2−1) · · · (y(er)
gr

y(er)
gr+1 · · · y(er)

gr+fr−1)

(where the generators y(•)
• are defined analogously to the generators x(•)

• ). Such
a morphism is determined by a map of sets γ : {1, · · · , t} → {1, · · · , s} together
with maps (nγ(α)) → (mα) in ∆op for each 1 ≤ α ≤ t such that the resulting map
θ : Free(

∐
α(mα)) → Free(

∐
β(nβ)) sends y to x. We define the corresponding map

xI → yI by sending the element of xI corresponding to x(i)
j to the element y(e)

g of

yI that hits it under θ. This refines the partitions because under θ, each maximal
snug substring of y is sent to a (possibly empty, but not necessarily maximal) snug
substring of x.

It suffices now to exhibit appropriate unit and counit transformations. It is
immediate that H ◦ G is naturally the identity, so we will define the unit transfor-
mation. Consider the object ({(n1), (n2), · · · , (nk)}, x) ∈ K, where

x = (x(i1)
j1

x(i1)
j1+1 · · ·x(i1)

j1+m1−1)(x
(i2)
j2

x(i2)
j2+1 · · ·x(i2)

j2+m2−1) · · · (x(il)
jl

x(il)
jl+1 · · ·x(il)

jl+ml−1)

is a partition into maximal snug substrings. The functor G ◦ H sends this to the
object

(
{(m1), (m2), · · · , (ml)}, y

)
∈ K where

y = (y(1)
1 y(1)

2 · · · y(1)
m1

)(y(2)
1 y(2)

2 · · · y(2)
m2

) · · · (y(l)
1 y(l)

2 · · · y(l)
ml

)

(y(•)
• as above). We then define the unit natural transformation on this object,

which is the data of a map
(
{(n1), (n2), · · · , (ns)}, x

)
→

(
{(m1), (m2), · · · , (mt)}, y

)
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in K, by sending r ∈ {1, · · · , t} to ir ∈ {1, · · · , s} and mapping (nir) to (mr) in the

unique way such that the generators y(r)
1 , · · · , y(r)

mr are sent to x(ir)
jr

, · · · , x(ir)
jr+mr−1,

respectively. It is easy to check that the triangle identities are satisfied and thus
we have produced the adjoint. $

This lemma implies that the value of the left Kan extension on Z≥0 is given by
the desired formula. It suffices to show that the resulting Kan extended functor is
product preserving. However, the argument above generalizes in a straightforward
way to show that for any finite set S, there is a cofinal functor IS → (∆op)× ×TA

(TA)/Free(S). This implies the Kan extended functor is product preserving because

colim
I×I

(Xn1 × Xn2 × · · · × Xnj ) × (Xm1 × Xm2 × · · · × Xmk)

$ (colim
I

Xn1 × Xn2 × · · · × Xnj ) × (colim
I

Xm1 × Xm2 × · · · × Xmk),

where ((n1)(n2) · · · (nj), (m1)(m2) · · · (mk)) ∈ I × I, where we have used that col-
imits are universal in spaces. $

5.2. The partial K-theory of Fp. We now turn to the proof of Theorem 5.2.

Notation. In the course of this proof, we set S• = S•(VectfdFp
). All vector spaces

will implicitly be over Fp.

The proof will proceed by applying the formula of Proposition 5.10 in the case
X• = S•. We aim to compute the colimit

(6) colim
(n1)···(nj)∈I

Sn1 × Sn2 × · · · × Snj

of the functor S× : I → S (cf. Construction 5.9). Let Z → S denote the universal
left fibration, and let Z0 → S denote the left fibration classifying the functor
π0 : S → S. The natural transformation idS → π0 induces a map p : Z → Z0 of
fibrations. Define ∞-categories X and F and functors G and H so that the squares
in the following diagram are Cartesian:

X F I

Z Z0 S.

G H

S×

p

The composite H ◦ G is a left fibration because it arises as the pullback of the
universal left fibration. It follows from [34, Corollary 3.3.4.6] that the colimit of S×

is homotopy equivalent to |X |. On the other hand, the map p is also a left fibration;
explicitly, an object of Z0 is a space X together with an element a ∈ π0(X), and p
classifies the functor that sends this object to the component of X containing a. It
follows that G is itself a left fibration. Let S : F → S be the functor that classifies
G (the reason for this notation will soon be clear). Applying [34, Corollary 3.3.4.6]
again, we see that the colimit of S is also homotopy equivalent to |X |, and so we are
reduced to computing the colimit of S. We turn to analyzing this colimit, starting
with obtaining a more explicit description of F .

Definition 5.12. Define a filtered dimension to be a nonempty sequence d =
〈d1, d2, · · · , dk〉 of nonnegative integers. We will soon think of d as keeping track
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of the dimensions of the successive quotients in the isomorphism class of filtered
vector spaces determined by

∗ ⊂ Fd1
p ⊂ Fd1+d2

p ⊂ · · · ⊂ Fd1+···+dk
p .

As such, we define its length to be l(d) = k and its dimension to be |d| = d1 +d2 +
· · · + dk.

By definition, an object of F is an object (n1)(n2) · · · (nk) ∈ I together with
a choice of element of π0(Sn1 × Sn2 × · · · Snk). Unwinding the definitions, we
see that this is the data of a (possibly empty) sequence D = (d(1), d(2), · · · ,
d(j)) of filtered dimensions; we call such a sequence a filtered dimension sequence
and define l(D) := Σil(d(i)) and |D| := Σi|d(i)|. Explicitly, this correspondence
between filtered dimension sequences and objects of F sends the filtered dimension
sequence D to (l(d(1)))(l(d(2))) · · · (l(d(j))) ∈ I together with the unique point in
π0(Sl(d(1)) × · · · × Sl(d(j))) whose image in π0(Sl(d(i))) is the isomorphism class of

filtered vector space determined by d(i) for all i. We can then express the functor
S : F → S classifying the fibration G by the formula

S(D) = Sl(d(1)) × · · · × Sl(d(j)).

Next, we simplify the calculation of colim
F

S by extracting a cofinal subcategory of

F :

Definition 5.13. Let F red ⊂ F be the full subcategory of filtered dimension se-
quences which are reduced in the sense that each filtered dimension d =
〈d1, d2, · · · , dk〉 in the sequence satisfies d1, d2, · · · , dk ≥ 1.

Lemma 5.14. The inclusion F red ⊂ F admits a left adjoint, and is therefore
cofinal.

Proof. The left adjoint is given by the functor red : F → Fred which takes a
filtered dimension sequence and removes all zeros (and any resulting empty filtered
dimensions). $

We are reduced to computing the colimit of the functor S : F red → S which, we
remind the reader, has the following two properties:

(1) A filtered dimension sequence consisting of a single filtered dimension d =
〈d1, d2, · · · , dk〉 is sent to the groupoid S((d)) of filtered vector spaces with
filtered dimension d.

(2) The functor S takes concatenation of filtered dimension sequences to prod-
ucts of spaces; in other words, for D = (d(1),d(2), · · · ,d(j)) ∈ F red,

S(D) =
∏

i

S((d(i))).

Observation 5.15. The category F red is a poset. The maps in F red are generated
under concatenation of filtered dimension sequences by the following two operations:

(1) For a filtered dimension d of length k and an integer 1 ≤ i < k, there is a
collapse map

〈d1, d2, · · · , dk〉 → 〈d1, · · · di−1, di + di+1, di+2, · · · dk〉.
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(2) For a filtered dimension d of length k and an integer 0 < i < k, there is a
splitting map

〈d1, d2, · · · , dk〉 → (〈d1, d2, · · · , di〉, 〈di+1, di+2, · · · , dk〉).

Since these maps preserve the total dimension |D|, we may write F red as a
disjoint union of posets

F red =
∐

m

F red
m ,

where F red
m ⊂ F red is the subset spanned by filtered dimension sequences D such

that |D| = m. This induces an equivalence:

colim
D∈Fred

S(D) =
∐

m

colim
D∈Fred

m

S(D)

such that the mth component corresponds to m ∈ Z≥0 under the isomorphism
π0(Kpart(Fp)) $ Z≥0. It remains to show that each colimFred

m
S(D) has trivial Fp-

homology above degree zero. We proceed by induction on m. The case m = 0 is
trivial. When m = 1, the category F red

m has a single element (〈1〉) which is sent
to BGL1(Fp), which has vanishing Fp-homology. Now, fix m ≥ 2 and assume the
statement for all m′ < m. We analyze the diagram S : F red

m → S in detail, starting
with a particular subset of it:

Proposition 5.16. Let C+
m ⊂ F red

m be the subset of filtered dimension sequences of
the form (d) for a single filtered dimension d, and let Cm ⊂ C+

m be the complement
of the object (〈m〉). Then the map

colim
D∈Cm

S(D) → colim
D∈C+

m

S(D)

induces an isomorphism in Fp-homology. Equivalently, since (〈m〉) ∈ C+
m is a final

object, the natural map

colim
D∈Cm

S(D) → S(〈m〉)

induces an isomorphism on Fp-homology.

Proof. Let Tm denote the poset of nontrivial proper subspaces of the vector space
Fm

p and let D denote the category of nondegenerate simplices of Tm. There is
a canonical inclusion Tm ↪→ D which is equivariant for the natural action of
G = GLm(Fp). It therefore induces a homotopy equivalence |Tm // G| $ |D // G|.

On the other hand, note that an object of D is a flag of strict inclusions of
nontrivial proper subspaces of Fm

p , so there is a natural map D → Cm which is G-
equivariant (for the trivial action on Cm). Moreover, the induced map D //G → Cm

is precisely the Grothendieck construction applied to the functor S|Cm : Cm → S
whose colimit we aim to compute. Therefore, we have equivalences

colim
D∈Cm

S(D) $ |D // G| $ |Tm // G| $ |Tm|hG.

By the Solomon-Tits theorem [50], the G-space |Tm| is a wedge of (m − 2)-di-
mensional spheres. Moreover, its top cohomology Hm−2(|Tm|, Fp) is the Steinberg
representation of G over Fp, which is irreducible and projective and therefore has
vanishing homology in all degrees [25]. It follows from the homotopy orbit spectral
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sequence that the natural map |Tm|hG → (∗)hG induces an equivalence in Fp-
homology, and so the natural map

colim
D∈Cm

S(D) → S(〈m〉)

induces an isomorphism in Fp-homology as desired. $

To analyze the rest of the diagram, we define a filtration on F red
m .

(1) Let Ai ⊂ F red
m be the subset which are sequences of filtered dimensions

d = 〈d1, d2, · · · , dk〉 such that d1, d2, · · · , dk ≤ i.
(2) Let A′

i ⊂ Ai be the subset which are sequences of filtered dimensions
d = 〈d1, d2, · · · , dk〉 such that either k = 1 and d1 = i, or k ≥ 1 and
d1, d2, · · · , dk ≤ i − 1.

Note that there are also natural inclusions δi : Ai ↪→ A′
i+1 for i ≥ 1 and that for

i ≥ m, A′
i = Ai = F red

m . Hence, the sequence

A′
1 ⊂ A1 ⊂ A′

2 ⊂ A2 ⊂ · · · Fred
m

provides an exhaustive and finite filtration of F red
m . In Lemmas 5.17 and 5.18, we

show that the Fp-homology of the colimit of the functor S is unchanged as we move
up this filtration.

Lemma 5.17. For all i ≥ 1, the inclusion A′
i ⊂ Ai is cofinal. Thus, the natural

map

colim
D∈A′

i

S(D) → colim
D∈Ai

S(D)

is an equivalence.

Proof. This follows from the fact that the inclusion A′
i ⊂ Ai admits a left adjoint,

which takes all instances of i and splits them off (i.e., the string “,i,” is replaced by
“〉〈i〉〈”). $

Lemma 5.18. For i ≥ 1, let (δi)! : Fun(Ai, S) → Fun(A′
i+1, S) denote left Kan ex-

tension along the inclusion δi : Ai ↪→ A′
i+1. Then the natural map (δi)!(S|Ai)(D) →

S|A′
i+1

(D) induces an isomorphism on Fp-homology for all D ∈ A′
i+1. Thus, the

natural map

colim
D∈Ai

S(D) → colim
D∈A′

i+1

S(D)

induces an equivalence in Fp-homology.

Proof. Consider some D ∈ A′
i+1 − Ai which we may write in the form

D = (d1,d2, · · · ,dj).

We need to show that the map

colim
D′∈(Ai)/D

S(D′) → S(D)

induces an equivalence in Fp-homology. Consider the subset of M ⊂ (Ai)/D con-
sisting of filtered dimension sequences D′ = (d′

1, d
′
2, · · · , d′

j) satisfying the following
conditions for 1 ≤ r ≤ j (recall the notation from Definition 5.12):

(1) |d′
r| = |dr|.

(2) If l(dr) > 1, then dr = d′
r.
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In particular, D must be obtained from D′ via some sequence of collapse maps.
It is easy to see that the inclusion of posets M ⊂ (Ai)/D is cofinal. But the poset
M splits as a product

M = C1 × C2 × · · · × Cj

of posets Cr ⊂ F red
|dr |, where Cr = {(dr)} if l(dr) > 1 and Cr = C|dr | (as defined in

Proposition 5.16) if l(dr) = 1. Thus, we have:

colim
D′∈(Ai)/D

S(D′) $ colim
D′∈M

S(D′)

$ colim
D′

1∈C1

S(D′
1) × · · · × colim

D′
j∈Cj

S(D′
j)

$p S((d1)) × · · · × S((dj))

$ S(D),

where $p denotes Fp-homology equivalence, and we have used Proposition 5.16 for
this equivalence. $

We can now finish the proof of Theorem 5.2. Combining Lemmas 5.17 and 5.18,
we conclude that the natural map

colim
D∈A′

1

S(D) → colim
D∈A′

m

S(D) = colim
D∈Fred

m

S(D)

induces an equivalence in Fp-homology. But A′
1 is a one element set containing only

the filtered dimension sequence (〈1〉, · · · , 〈1〉) (with m 〈1〉’s). Since S((〈1〉, · · · , 〈1〉))
= S((〈1〉))m $ BGL1(Fp)m has no Fp-homology in positive degrees, as desired.

6. The p-complete Frobenius and the action of BZ≥0

In this section, we combine the work of the previous sections to prove Theorem A,
which appears as Theorem 6.8. Throughout, we fix a prime p and restrict attention
to Frobenius maps corresponding to elementary abelian p-groups.

Notation. Let QVectFp ⊂ Q be the full subcategory spanned by elementary
abelian p-groups (i.e., finite dimensional Fp-vector spaces).

In §6.1, we introduce the subcategory CAlgF
p ⊂ CAlg of Fp-stable E∞-rings,

which are roughly defined to be the p-complete E∞-rings for which all the general-
ized Frobenius maps (cf. §3.2) can be regarded as endomorphisms. In §6.2, we turn
to the proof of Theorem A. The oplax action of Q on CAlg from Theorem 3.15 re-
stricts to an action of QVectFp on CAlgF

p . Essentially by definition, this extends to
an action of the ∞-category QVectFp [L−1], which is identified with BKpart(Fp) by
Corollary 4.23.1. To finish, we use the Fp-homology equivalence Kpart(Fp) → Z≥0

of Theorem 5.2 to pass from an action of BKpart(Fp) to an action of BZ≥0. We
conclude §6.2 by recording Theorem 6.9, which describes the action of Frobenius
on global algebras via partial K-theory. While we do not apply this theorem later
in the paper, we feel that it may be of independent interest. Finally, in §6.3, we in-
clude a brief discussion of p-perfect E∞-rings, which are the Fp-stable E∞-rings for
which the Frobenius is an equivalence. In particular, we note that the ∞-category
of p-perfect E∞-rings admits an action of S1 by Frobenius (Corollary 6.15.1).
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6.1. Fp-stable E∞-rings.

Definition 6.1. We say that a spectrum X is Fp-stable if X is p-complete and for
every finite dimensional Fp-vector space V , the canonical map (Construction 3.11)

canV : X → XτV

is an equivalence. Let CAlgF
p ⊂ CAlg denote the full subcategory of E∞-rings

whose underlying spectrum is Fp-stable.

Remark 6.2. If X is Fp-stable and V # W is a surjection of Fp-vector spaces, then
by examining the commutative diagram

XτW

X XτV ,

canV
WcanW

canV

we see that the generalized canonical map canV
W is also an equivalence.

Warning 6.3. A discrete Fp-algebra is generally not Fp-stable when regarded as
a spectrum. For example, the Eilenberg-MacLane spectrum Fp is not Fp-stable

because FtCp
p has nontrivial homotopy groups in every degree.

We saw in Example 1.4 that the canonical map S∧
p → (S∧

p )tCp is an equivalence
by work of Lin and Gunawardena. This admits the following extension, which is
essentially the Segal conjecture for elementary abelian p-groups, due to work of
Adams, Gunawardena, and Miller:

Theorem 6.4 (Adams-Gunawardena-Miller [1]). Let V be a finite dimensional
Fp-vector space. Then the canonical map

canV : S∧
p → (S∧

p )τV

is an equivalence.

In fact, the statement holds with V replaced by any p-group G, as a consequence
of the Segal conjecture, which is a theorem of Carlsson [16]. To see this, note that
by [40, Proposition B], the Segal conjecture for a p-group G implies that (S∧

p )G, the
p-complete genuine G-equivariant sphere, is Borel. Hence, the natural Borelification
map (S∧

p )G → β(S∧
p )G is an equivalence, and applying ΦG to both sides yields the

result (cf. Construction 3.11).

Corollary 6.4.1. The p-complete sphere is Fp-stable. Since the proper Tate con-
struction commutes with finite colimits, it follows that any spectrum which is finite
over the p-complete sphere is also Fp-stable.

Another family of Fp-stable spectra will be important for us in §7.

Example 6.5 ([35, Example 5.2.7]). Let R be a (discrete) perfect Fp-algebra. Then
there is an essentially unique flat E∞-algebra W+(R) over S∧

p with the following
properties:

(1) W+(R) is p-complete.
(2) The map induced on π0 by the unit map S∧

p → W+(R) is the natural map
Zp → W (R).
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(3) For any connective p-complete E∞-algebra A over S∧
p , the canonical map

MapCAlgS∧p
(W+(R), A) → HomFp(R,π0(A)/p)

is an equivalence. In particular, these spaces are discrete.

We will refer to W+(R) as the spherical Witt vectors of R.

Proposition 6.6. Let R be a (discrete) perfect Fp-algebra. Then the spectrum
W+(R) is Fp-stable.

Note that Fp-stability is a condition only on the underlying spectrum of W+(R),
which is the p-completion of a direct sum of copies of S∧

p . When R is finite dimen-
sional as an Fp-vector space, the proposition is immediate because (−)τV commutes
with finite colimits. The content of the proposition is that the p-completion of an
arbitrary direct sum of copies of S∧

p remains Fp-stable. We will need Lemma 6.7.

Lemma 6.7. Let I be a set and let V be a finite dimensional Fp-vector space. Then
the following statements hold:

(1) The natural map
⊕

α∈I

(S∧
p )tV →

(⊕

α∈I

S∧
p

)tV

is p-completion.
(2) The natural map

(⊕

α∈I

S∧
p

)tV →
(
(
⊕

α∈I

S∧
p

)∧
p
)tV

is an equivalence.

Proof. By [42, Lemma I.2.9], the target of (1) and both spectra in (2) are p-
complete. Therefore, it suffices to show that the two maps are equivalences after
smashing with the Moore spectrum S/p. This is clear for (2), so we address (1).
The statement is clear with (−)tV replaced by (−)hV , so we may replace (−)tV by
(−)hV . Since (−)hV commutes with inverse limits, we have that

(7) lim
n

(τ≤n(S/p))hV $ (S/p)hV .

However, we can make a stronger statement about the convergence of this inverse
limit. Note that by the Segal conjecture, ShV is a finite wedge sum of spectra of the
form Σ∞

+ BG for finite groups G; thus, all the homotopy groups of (S/p)hV are finite.
Moreover, for each n, τ≤n(S/p) has a finite number of nonzero homotopy groups,
each of which is finite; thus, by the homotopy fixed point spectral sequence, each
term in the limit (7) also has finite homotopy groups. It follows from [42, Lemma
III.1.8] that the pro-system πi(τ≤nS/p)hV is pro-constant with value πi(S/p)hV .

It follows that the pro-system limn πi
⊕

(τ≤n(S/p))hV is pro-constant with limit
πi

⊕
(S/p)hV . On the other hand, by the Milnor exact sequence, this pro-constancy

(for πi and πi+1) implies that limn πi
⊕

(τ≤n(S/p))hV $ πi limn
⊕

(τ≤n(S/p))hV .
We relate this latter object to πi(

⊕
S/p)hV via a sequence of equivalences: because

homotopy fixed points commutes with filtered colimits of bounded above spectra,
we have

πi lim
n

⊕(
τ≤n(S/p)

)hV $ πi lim
n

(⊕
τ≤n(S/p)

)hV
.
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Since homotopy groups commute with infinite direct sums, we have

πi lim
n

(⊕
τ≤n(S/p)

)hV $ πi lim
n

(
τ≤n

⊕
S/p

)hV
.

To finish, we note once again that (−)hV commutes with inverse limits. $

Corollary 6.7.1. Let I be a set and let V be a finite dimensional Fp-vector space.
Then the following statements hold:

(1) The natural map
⊕

α∈I

(S∧
p )τV →

(⊕

α∈I

S∧
p

)τV

is p-completion.
(2) The natural map

(⊕

α∈I

S∧
p

)τV →
(
(
⊕

α∈I

S∧
p

)∧
p
)τV

is an equivalence.

Proof. We recall from Remark 2.27 that the proper Tate construction for V is the
cofiber of a map C → (−)hV where C is a finite colimit of functors of the form
((−)hW )hV/W for subgroups W ⊂ V . Letting F denote the cofiber of the natural
map (−)hV → C, we consider the diagram of functors

(−)hV (−)hV (−)tV

C (−)hV (−)τV

F ∗ ΣF

where the rows and columns are cofiber sequences. By the above remarks, F is a
finite colimit of functors of the form ((−)tW )hV/W for proper subgroups W ⊂ V .
It follows from Lemma 6.7 that the functors (−)tV and ΣF both have the property
that they send the p-completion map

⊕
S∧

p → (
⊕

S∧
p

)∧
p

to an equivalence. Thus, (−)τV also has this property and part (2) is proved.

To prove part (1), we first claim that
(⊕

S∧
p

)τV
is p-complete. We have seen

above that
(⊕

S∧
p

)tV
is p-complete, so it suffices to see that F (

⊕
S∧

p ) is as well.
For this, we show that

((⊕
S∧

p

)tW )
hV/W

$
(⊕

S∧
p

)tW ⊗ B(V/W )

is p-complete for any subgroup W ⊂ V . This amounts to checking that the inverse
limit of the system

· · · p−→
(⊕

S∧
p

)tW ⊗B(V/W )
p−→

(⊕
S∧

p

)tW ⊗B(V/W )
p−→

(⊕
S∧

p

)tW ⊗B(V/W )
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is zero. Since
(⊕

S∧
p

)tW
is bounded below, each homotopy group of this inverse

limit only depends on a finite skeleton of B(V/W ). Thus, the statement follows

because the tensor product of the p-complete spectrum
(⊕

S∧
p

)tW
with any finite

complex is certainly p-complete.
To finish, we claim that the natural map of (1) is an equivalence after tensor-

ing with the Moore spectrum S/p. Similarly to part (2), it suffices to prove the
analogous statement for each functor ((−)tW )hV/W in place of (−)τV . But this
follows by Lemma 6.7 and the fact that homotopy orbits commute with infinite
direct sums. $
Proof of Proposition 6.6. Choose a basis {xα}α∈I for R as an Fp-vector space. This
determines a map

⊕
α∈I S∧

p → W+(R) which exhibits W+(R) as the p-completion
of

⊕
α∈I S∧

p . The proposition then follows by combining Theorem 6.4 with Corollary
6.7.1. $
6.2. The action of BZ≥0 on Fp-stable E∞-rings. We now prove our main the-
orem.

Theorem 6.8 (Theorem A). There is an action of BZ≥0 on the ∞-category CAlgF
p

of Fp-stable E∞-rings for which n ∈ Z≥0 acts by the natural transformation ϕn :
id → id.

Proof. The oplax monoidal functor of Theorem 3.15 restricts to an oplax monoidal
functor

QVectFp → Fun(CAlg, CAlg).

By definition, the functor (−)τV fixes any Fp-stable E∞-ring, so we obtain an oplax
monoidal functor

Θp : QVectFp → Fun(CAlgF
p , CAlgF

p ).

In fact, for Fp-vector spaces U, V and an E∞-ring A, the oplax structure map
AτU⊕V → (AτU )τV fits into a square

A AτV

AτU⊕V (AτU )τV .

canV

canU⊕V (canU )τV

When A is Fp-stable, the three labeled maps are equivalences, and thus the bottom
map is an equivalence as well. It follows that the functor Θp is (strong) monoidal,
rather than just oplax monoidal. Moreover, by the definition of Fp-stable, Θp

has the property that the backward morphisms L ⊂ Mor(QVectFp) are sent to
equivalences. Thus, by [33, Proposition 4.1.7.4], Θp extends to a functor of monoidal
∞-categories

QVectFp [L−1] → Fun(CAlgF
p , CAlgF

p ).

By Corollary 4.23.1 and Proposition 4.8, we have an equivalence of ∞-categories
BKpart(Fp) $ QVectFp [L−1]. The natural map Kpart(Fp) → π0(Kpart(Fp)) $ Z≥0

induces the diagram of monoidal ∞-categories given by the solid arrows:

BKpart(Fp) Fun(CAlgF
p , CAlgF

p ).

BZ≥0
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It suffices to exhibit a monoidal functor filling in the dotted arrow. By Remark
4.7, this is equivalent to providing a lift in the diagram of E2-spaces

Kpart(Fp) End(idCAlgF
p
)

Z≥0

where End(idCAlgF
p
) denotes the E2-monoidal space of endomorphisms of the iden-

tity functor on the ∞-category CAlgF
p . By Theorem 5.2, the vertical map Kpart(Fp)

→ Z≥0 induces an isomorphism in Fp-homology. We would like to use this to show
that the restriction map

HomAlgE2 (S)(Z≥0, End(idCAlgF
p
)) → HomAlgE2 (S)(K

part(Fp), End(idCAlgF
p
))

is an equivalence. Note that for E2-spaces X and Y , the space of E2-maps X → Y
is computed as a limit of mapping spaces from products of copies of X to Y . Since
products of Fp-homology isomorphisms are Fp-homology isomorphisms, it suffices
to show that End(idCAlgF

p
) is a p-complete space.

But End(idCAlgF
p
) can be written as a limit of spaces of the form HomCAlgF

p
(A, B)

for p-complete E∞-rings A, B (cf. [17, Proposition 5.1] or [18, Proposition 2.3]).
These spaces, in turn, are each the limit of mapping spaces between p-complete
spectra, which are p-complete. Since the full subcategory of p-complete spaces is
closed under limits, we conclude that End(idCAlgF

p
) is p-complete and the proof is

complete. $

One can also prove a variant of this theorem for general global algebras:

Theorem 6.9.

(1) The ∞-category CAlgGlo of global algebras admits an action of the monoidal
∞-category BKpart(Z) for which an abelian group G acts by the Frobenius
ϕG : id → id.

(2) The full subcategory CAlgGlo
p ⊂ CAlgGlo of global algebras with p-complete

underlying E∞-ring admits an action of BZ≥0 for which 1 ∈ Z≥0 acts by
the Frobenius (for the group Cp).

Proof. To see the first part, restrict the action of Theorem 3.23 to the full subcat-
egory of Q spanned by the abelian groups (cf. Remark 3.14). This inverts the left
morphisms and thus, by Corollary 4.23.1, gives an action of BKpart(Z). The proof
of the second part is exactly analogous to the proof of Theorem 6.8. $

6.3. Perfect E∞-rings and the action of S1.

Definition 6.10. An E∞-ring A is p-perfect if A is Fp-stable and the Frobenius
map ϕ : A → AtCp is an equivalence. We will denote the ∞-category of p-perfect
E∞-rings by CAlgperf

p .

Proposition 6.11. Let A be a p-perfect E∞-ring. Then for all finite dimensional
Fp-vector spaces V , the Frobenius map for V (Construction 3.9)

ϕV : A → AτV

is an equivalence.
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Proof. It suffices to show that ϕC×n
p : A → AτC×n

p is an equivalence for all n. Note
that inside QVectFp , the span (∗ ← C×n

p → C×n
p ) is the n-fold sum of (∗ ← Cp →

Cp), and similarly (∗ ← ∗ → C×n
p ) = (∗ ← ∗ → Cp)×n. It follows from Theorem

3.15 that there is a commutative diagram

((AtCp)···)tCp

A AτC×n
p A.

ϕ◦n

ϕ
C×n

p can
C×n

p

can◦n

But all the outer arrows except for ϕC×n
p are assumed to be equivalences, so that

one is as well. $
Example 6.12. The p-complete sphere S∧

p is p-perfect. This is because the Frobe-
nius is a map of E∞-rings, and since S∧

p is the initial p-complete E∞-ring, the
Frobenius must be the unit map for (S∧

p )tCp , which we have seen is an equivalence
(e.g. Example 1.4).

Example 6.13. Let A ∈ CAlgperf
p and X be a finite or p-complete finite space.

Then the mapping spectrum AX is also a p-perfect E∞-ring. First, since any space
is canonically an E∞-coalgebra in spaces, the construction X !→ AX takes values in
E∞-rings, and takes colimits of spaces to limits of E∞-rings (which are computed in
spectra). Since the proper Tate construction commutes with finite limits and any
(p-complete) finite space is built out of a finite number of (p-complete) spheres, the
general case follows from the case when X is a point, which is true by assumption.
In particular, for any (p-complete) finite space X, the cochain algebra (S∧

p )X is a
p-perfect E∞-ring.

Example 6.14. Let R be a (discrete) perfect Fp-algebra. Then the E∞-ring
W+(R) of spherical Witt vectors is p-perfect. Since it is Fp-stable by Propo-
sition 6.6, it suffices to check that the Frobenius map is an equivalence. Since
W+(R) is Fp-stable, we may identify the Frobenius map with an endomorphism
ϕ̃ : W+(R) → W+(R) of E∞-rings. Such an endomorphism is determined on
π0 by the defining properties of spherical Witt vectors. By comparing with the
E∞-Frobenius map for π0(W+(R)), we see that ϕ̃ is in fact the map induced by
the Frobenius on R, and is therefore an equivalence because R was assumed to be
perfect.

Example 6.15. The inclusion CAlgF
p ⊂ CAlgperf

p is proper. For instance, consider
S∧

p ⊕ M , the trivial square zero extension of S∧
p by a nonzero spectrum M which

is finite over S∧
p . While this ring is Fp-stable by Corollary 6.4.1, we claim that it

is not p-perfect. By definition, the multiplication map (S∧
p ⊕ M)⊗p → S∧

p ⊕ M is
Cp-equivariantly null on the M⊗p summand in the source. After applying (−)tCp

and using that (−)tCp kills free orbits of Cp, the multiplication map becomes a map

(S∧
p
⊗p

)tCp ⊕ (M⊗p)tCp $ ((S∧
p ⊕ M)⊗p)tCp → (S∧

p ⊕ M)tCp ,

which must then factor through S∧
p

tCp by the first observation. Consequently, the

E∞-Frobenius on S∧
p ⊕ M factors through S∧

p
tCp $ S∧

p , and therefore cannot be an
equivalence.
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The Frobenius action further simplifies when restricted to p-perfect algebras. By
Theorem 6.8, we obtain a monoidal functor

BZ≥0 → Fun(CAlgperf
p , CAlgperf

p ).

By the definition of p-perfect, this restricted functor has the property that every
morphism in BZ≥0 is sent to an equivalence. It therefore factors through the group
completion map BZ≥0 → BZ $ S1, and so we have:

Corollary 6.15.1 (Theorem A◦). The ∞-category CAlgperf
p of p-perfect E∞-rings

admits an action of S1 whose monodromy induces the Frobenius automorphism on
each object.

Remark 6.16. Corollary 6.15.1 can also be deduced directly from Theorem 3.15
using Quillen’s computation of K(Fp) (Theorem 5.1), and thus does not logically
depend on the results of §4 and §5. It does not, however, imply Theorem 6.8, which
applies to the larger class of Fp-stable E∞-rings.

7. Integral models for the unstable homotopy category

In this final section, we apply our results on the Frobenius action to obtain models
for spaces in terms of E∞-rings. We reiterate that the idea for this application is
due to Thomas Nikolaus, and many of the key ideas are due to Mandell’s work [37].
In §7.1, we deduce the fully faithfulness statement of Theorem B from Theorem A.
In §7.2, we complete the proof of Theorem B by determining the essential image.
Then, in §7.3, we deduce Theorem C from Theorem B. Finally, in §7.4, we discuss
some open questions and possible extensions of this work.

7.1. p-adic homotopy theory over the sphere. Recall from §1 that S fsc
p ⊂ S

denotes the full subcategory of spaces X which simply connected and p-complete
finite, and CAlgϕ=1

p := (CAlgperf
p )hS1

denotes the ∞-category of p-Frobenius fixed
E∞-rings. Here we prove half of Theorem B:

Theorem 7.1. The functor (S fsc
p )op → CAlgS∧

p
given by X !→ (S∧

p )X lifts to a fully

faithful functor

(S∧
p )(−)

ϕ=1 : (S fsc
p )op → CAlgϕ=1

p .

The proof begins by noting that for any p-perfect E∞-ring A, one can extract
a p-Frobenius fixed algebra of “Frobenius fixed points” (Lemma 7.2). Compos-
ing this procedure with the functor X !→ W+(Fp)X (cf. Example 6.5), we con-

struct the functor (S∧
p )(−)

ϕ=1 in the statement of Theorem B (Construction 7.5).
By construction, this latter functor is fully faithful if and only if the functor
W+(Fp)(−) : (S fsc

p )op → CAlgW+(Fp) is fully faithful. We verify this by realiz-

ing an unpublished observation of Mandell which relates cochains with W+(Fp)
coefficients to the previously understood case of Fp cochains (Corollary 7.6.1).

Lemma 7.2. There is an adjunction

i∗ : (CAlgperf
p )hS1 −−⇀↽−− CAlgperf

p : i∗

such that

• The left adjoint i∗ sends a p-Frobenius fixed algebra to its underlying p-
perfect E∞-ring.
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• Any p-perfect algebra A acquires an action of Z by Frobenius and the counit
map i∗i∗A → A is homotopic to the natural map AhZ → A.

Remark 7.3. The E∞-ring AhZ is computed by the procedure

AhZ $ lim
S1

A $ fib(idA −ϕA).

Thus, the above lemma says that given a p-perfect E∞-ring A, one can take its
“Frobenius fixed points” by taking a limit over its S1 orbit, and this procedure
determines a p-Frobenius fixed algebra.

Proof. Let us consider BS1 as a pointed space, and denote the inclusion of the

basepoint by {∗} i−→ BS1. The S1 action of Corollary 6.15.1 determines a pullback
square

CAlgperf
p D

{∗} BS1

q f

i

where f is a coCartesian (and Cartesian) fibration. Let sect◦(f) ⊂ sect(f) be the
full subcategory of sections which send any morphism in BS1 to a coCartesian
morphism in D. We have an equivalence sect◦(f) $ (CAlgperf

p )hS1
, and the functor

i∗ of the lemma statement is the restriction of a section of f along i.
The adjoint will be given by f -right Kan extension along i [43, Definition 2.8].

By [43, Corollary 2.11], this exists as long as for any A ∈ CAlgperf
p , the induced

diagram

S1 $ ∗ ×BS1 BS1
∗/ → D

has an f -limit. Since f is a Cartesian fibration, this relative limit reduces to taking
a limit over a diagram S1 → CAlgperf

p , which exists because CAlgperf
p has finite

limits. Moreover, the limit is computed as the fiber of 1 − ϕ and the resulting
section of f is in the full subcategory sect◦(f). $

Notation. By analogy to the equivalence S∧
p $ W+(Fp), we will hereafter use the

more compact notation S∧
p := W+(Fp) to denote the spherical Witt vectors of Fp

(cf. Example 6.5).

In Example 6.14, we saw that S∧
p is a p-perfect E∞-ring and ϕS∧

p
is the unique

ring endomorphism of S∧
p which induces the Witt vector Frobenius on π0.

Lemma 7.4. There is an equivalence of E∞-rings i∗i∗S
∧
p $ S∧

p under which the

counit map ε : i∗i∗S
∧
p → S∧

p is homotopic to the unit map S∧
p → S∧

p for the ring S∧
p .

Proof. Since S∧
p is the unit in CAlgperf

p and the counit map ε : i∗i∗S∧
p → S∧

p is a ring

map, the unit map for the ring S∧
p factors canonically through ε as the composite

S∧
p → i∗i∗S

∧
p

ε−→ S∧
p . The unit map S∧

p → S∧
p is given on homotopy groups by the

inclusion

(8) π∗(S∧
p ) → π∗(S

∧
p ) ∼= W (Fp) ⊗Zp π∗(S∧

p )
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induced by the natural inclusion Zp → W (Fp). Thus, by the initial remarks, it

suffices to show that the counit map ε : i∗i∗S
∧
p → S∧

p admits the same description
on homotopy groups. This follows directly by the fiber sequence

i∗i∗S
∧
p

ε−→ S∧
p

1−ϕS∧p−−−−→ S∧
p

of Remark 7.3 and the fact that the map 1 − ϕS∧
p

on homotopy groups is the map

induced by
1 − ϕW (Fp) : W (Fp) → W (Fp)

on the first tensor factor of (8), where ϕW (Fp) is the usual Witt vector Frobenius. $

Construction 7.5. We now construct the functor

(S∧
p )(−)

ϕ=1 : (S fsc
p )op → (CAlgperf

p )hS1

appearing in the statement of Theorem B. Consider the functor (S∧
p )(−) : Sop →

CAlg. By Example 6.13, this functor takes p-complete finite spaces to p-perfect
E∞-rings, so it restricts to a functor

(S∧
p )(−) : (S fsc

p )op → CAlgperf
p .

Define the desired functor by the formula

(S∧
p )(−)

ϕ=1 := i∗(S
∧
p )(−) : (S fsc

p )op → (CAlgperf
p )hS1

.

By Lemma 7.4, the functor i∗(i∗(S
∧
p )(−)) agrees with (S∧

p )(−) as required by the
theorem statement.

The proof of Theorem 7.1 requires one additional fact:

Proposition 7.6 (Mandell, Lurie). Let X be a space. Then, the E∞-algebra FX
p

is formally étale over Fp, i.e. the cotangent complex LFX
p /Fp

is contractible.

Proof. This follows from the results of [32]: namely, the E∞-algebra FX
p is equivalent

to the algebra of Fp cochains on the p-profinite completion of X [32, Notation
3.3.14]. This is a (filtered) colimit of algebras of the form FY

p for p-finite Y , which
are formally étale over Fp by [32, Theorem 2.4.9], and so the result follows because
formally étale Fp-algebras are closed under colimits. $
Corollary 7.6.1. Let X ∈ S fsc

p and let Y ∈ S be any space. Then the natural map

CAlgS∧
p
((S∧

p )X , (S∧
p )Y ) → CAlgFp

(FX
p , FY

p )

is an equivalence.

Proof. Both sides send colimits in Y to limits in mapping spaces, so it suffices to
consider the case Y = ∗. Since X is assumed to be p-complete finite, the natural
map

(S∧
p )X ⊗S∧

p
Fp → Fp

X

is an equivalence, and so there is an equivalence

CAlgFp
(FX

p , Fp) $ CAlgS∧
p
((S∧

p )X , Fp).

Thus, it suffices to see that the natural map

CAlgS∧
p
((S∧

p )X , S∧
p ) → CAlgS∧

p
((S∧

p )X , Fp)
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is an equivalence. This follows from Claims 1 and 2:

Claim 1. For each n, the natural map

CAlgS∧
p
((S∧

p )X , Wn(Fp)) → CAlgS∧
p
((S∧

p )X , Fp)

is an equivalence.

Claim 2. The natural map

CAlgS∧
p
((S∧

p )X , S∧
p ) → CAlgS∧

p
((S∧

p )X , W (Fp))

is an equivalence.

Proof of Claim 1. The proof is by induction. The base case n = 1 is a tautology.
Assume the statement has been proven for n and consider the map

γ∗ : CAlgS∧
p
((S∧

p )X , Wn+1(Fp)) → CAlgS∧
p
((S∧

p )X , Wn(Fp))

induced by the projection γ : Wn+1(Fp) → Wn(Fp). The map γ : Wn+1(Fp) →
Wn(Fp) is a square zero extension of Wn(Fp) by Fp (in the sense of [33, §7.4.1]);

thus, for any map (S∧
p )X → Wn(Fp) (which we now fix), by [33, Remark 7.4.1.8],

the fibers of γ∗ are equivalent to the spaces of paths between certain pairs of points
in the mapping space Mod(S∧

p )X (L(S∧
p )X/S∧

p
,Σ−1Fp).

We will finish by showing that, in fact, the mapping spectrum

Mod(S∧
p )X (L(S∧

p )X/S∧
p
, Fp)

is contractible. Recall that since X is p-complete finite, we have an equivalence

(S∧
p )X ⊗S∧

p
Fp $ FX

p

of Fp-algebras. By the base change properties of the cotangent complex, this yields
an equivalence

Mod(S∧
p )X (L(S∧

p )X/S∧
p
, Fp) $ Mod(Fp)X (L(S∧

p )X/S∧
p
⊗(S∧

p )X FX
p , Fp)

$ ModFX
p

(LFX
p /Fp

, Fp).

This space is contractible because

LFX
p /Fp

$ FX
p ⊗FX

p
LFX

p /Fp
$ 0

by Proposition 7.6.
$

The proof of Claim 2 is similar, as S∧
p → W (Fp) factors as a sequence of square

zero extensions by shifted copies of Fp. It follows that the composite

CAlgS∧
p
((S∧

p )X , S∧
p ) → CAlgS∧

p
((S∧

p )X , W (Fp)) → CAlgS∧
p
((S∧

p )X , Fp)

is an equivalence, which concludes the proof of Corollary 7.6.1. $

Theorem 7.1 now follows:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

162 ALLEN YUAN

Proof of Theorem 7.1. Let X, Y ∈ S fsc
p . We would like to show that the natural

map
S fsc

p (Y, X) → CAlgϕ=1
p ((S∧

p )X
ϕ=1, (S∧

p )Y
ϕ=1)

is an equivalence. Unwinding the definitions, we have

CAlgϕ=1
p ((S∧

p )X
ϕ=1, (S∧

p )Y
ϕ=1) $ CAlgϕ=1

p (i∗(S
∧
p )X , i∗(S

∧
p )Y )

$ CAlgS∧
p
(i∗i∗(S

∧
p )X , (S∧

p )Y )

$ CAlgS∧
p
((S∧

p )X , (S∧
p )Y )

$ CAlgS∧
p
((S∧

p )X , (S∧
p )Y )

$ CAlgFp
(FX

p , FY
p ) (Corollary 7.6.1)

$ S fsc
p (Y, X), (Theorem 1.2)

as desired. $
7.2. The essential image. In this section, we will determine the essential image
of the p-Frobenius fixed cochain functor, thus finishing the proof of Theorem B.
We first need some helpful terminology.

Definition 7.7. Let R be a (discrete) commutative ring and let A be an E∞-
algebra over R. We will say A is simply connected over R if the unit map R → A
induces an isomorphism in πk for k ≥ −1.

Our goal is to show:

Theorem 7.8. Let A ∈ CAlgϕ=1
p be a p-Frobenius fixed E∞-ring whose underlying

E∞-ring is finite over S∧
p , and assume that A ⊗ Fp is simply connected over Fp.

Then there is a simply connected p-complete finite space X such that A $ (S∧
p )X

ϕ=1.

The main ingredient is a theorem of Mandell, which characterizes the essential
image of the Fp-cochain functor (on p-complete spaces of finite type). The charac-
terization is in terms of a certain power operation denoted Sq0 for p = 2 and P 0

for p odd (which we will refer to as P 0 at all primes for the sake of uniformity)
which acts on the homotopy groups of any E∞-algebra over Fp; we refer the reader
to [36, §11] or [32, §2.2] for background on P 0.

Theorem 7.9 (Mandell [36]). The following conditions are equivalent for an E∞-
algebra R over Fp:

(1) There exists a simply connected p-complete space X of finite type and an

equivalence of E∞-algebras Fp
X $ R.

(2) The E∞-algebra R is simply connected over Fp and each πi(R) is a finite
dimensional Fp-vector space which is generated over Fp by classes fixed by
the operation P 0.

Proposition 7.10. Let A ∈ CAlgϕ=1
p be a p-Frobenius fixed E∞-ring whose under-

lying spectrum is finite over S∧
p . Then the power operation P 0 acts as the identity

on π∗(A ⊗ Fp).

Proof. Because (−)tCp is a lax symmetric monoidal functor, there is a natural map
of E∞-rings

ν : AtCp ⊗ FtCp
p → (A ⊗ Fp)

tCp .
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Since can : id → (−)tCp is a lax symmetric monoidal natural transformation, ν fits
into a commutative diagram of E∞-rings

(9)

A ⊗ Fp (A ⊗ Fp)tCp

AtCp ⊗ FtCp
p .

canA⊗Fp

canA ⊗ canFp

ν

Moreover, let can∗
Fp

(A⊗Fp) denote (A⊗Fp)⊗Fp FtCp
p , where FtCp

p is regarded as an

Fp-algebra via can. Then, since ν is a FtCp
p -algebra map, (9) induces a commutative

triangle

(10)

can∗(A ⊗ Fp) (A ⊗ Fp)tCp

AtCp ⊗ FtCp
p .

canA⊗Fp

canA ⊗ canFp

ν

Observe that all the morphisms in (10) are equivalences in the special case when
A = S∧

p : this is clear for canA⊗Fp and is the case for canA ⊗ canFp by the Segal
conjecture (Example 3.8); hence, it follows for ν by commutativity of the diagram.
As a consequence, it follows that all the maps in (10) are equivalences for any A
which is finite over S∧

p , as in the statement of the proposition.
Since ϕ : id → (−)tCp is a lax symmetric monoidal natural transformation

(of endofunctors on E∞-rings), one also has a commutative triangle analogous to
(9) with ϕ replacing can. Pasting this triangle together with (10), we obtain a
commutative diagram

(11)

A ⊗ Fp (A ⊗ Fp)tCp can∗(A ⊗ Fp)

AtCp ⊗ FtCp
p

ϕA⊗Fp

ϕA⊗ϕFp

∼
canA⊗Fp

canA ⊗ canFp

∼
ν ∼

of E∞-rings.
To complete the proof, we compare the upper and lower composite maps A ⊗

Fp → can∗(A⊗Fp) := (A⊗Fp)⊗Fp FtCp
p in this diagram. In fact, we will compare,

on homotopy groups, their composites with the Fp-module map µ : can∗(A⊗Fp) →
A ⊗ Fp, induced by the canonical map (of Fp-modules) FtCp

p → Fp which projects
onto the unit copy of Fp.

(1) The first map is the upper composite

µ ◦ (canA⊗Fp)−1 ◦ ϕA⊗Fp : A ⊗ Fp → A ⊗ Fp.

We note that by the formula of Example 3.7, this map is given on homotopy
groups by the formula x !→ P 0(x) (the projection µ exactly projects away

from the components of FtCp
p involving t or e).

(2) The second map is the lower composite

µ ◦ (canA ⊗ canFp)−1 ◦ (ϕA ⊗ ϕFp) : A ⊗ Fp → A ⊗ Fp.
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Since A is assumed to be p-Frobenius fixed, the maps canA : A → AtCp and
ϕA : A → AtCp are homotopic, and are both equivalences. One deduces
that the map (canA ⊗ canFp)−1(ϕA⊗ϕFp) is homotopic to the map id⊗ϕFp :

A⊗Fp → A⊗FtCp
p . By Example 3.5, the degree 0 component of ϕFp is the

identity; it follows that the (spectrum) map µ◦(canA ⊗ canFp)−1◦(ϕA⊗ϕFp)
is homotopic to the identity.

Since the diagram (11) commutes, these two composites are homotopic, and thus
we conclude that P 0 acts as the identity on π∗(A ⊗ Fp). $

Corollary 7.10.1. Let A ∈ CAlgϕ=1
p be a p-Frobenius fixed E∞-ring whose under-

lying spectrum is finite over S∧
p and such that A ⊗ Fp is simply connected over Fp.

Then there exists a simply connected p-complete finite space X and an equivalence

A ⊗ Fp $ Fp
X

of E∞-algebras over Fp.

Proof. We have πi(A ⊗ Fp) $ πi(A ⊗ Fp) ⊗Fp Fp for all i. Since the natural map

A ⊗ Fp → A ⊗ Fp is a map of E∞-algebras over Fp, it commutes with P 0; hence,
by Proposition 7.10, we conclude that each πi(A⊗ Fp) is generated by fixed points
of P 0 as an Fp vector space. Moreover, since A is assumed to be finite over S∧

p ,

each πi(A) is a finite dimensional Fp-vector space. Hence, by Mandell’s theorem
(Theorem 7.9), we conclude that there is a simply connected p-complete space X

of finite type and an equivalence Fp
X $ A⊗Fp of Fp-algebras. Furthermore, again

because A is finite over S∧
p , the p-complete space X is necessarily p-complete finite

(and not just of finite type). $

Finally, we are ready to prove the main theorem of the section.

Proof of Theorem 7.8. By Corollary 7.10.1, there exists a simply connected p-comp-

lete finite space X and an equivalence η : A ⊗ Fp $ Fp
X

. We will consider a
composite:

CAlgϕ=1
p (A, (S∧

p )ϕ=1)
f1−→ CAlg(A, S∧

p )
f2−→ CAlg(A, Fp) $ CAlgFp

(A ⊗ Fp, Fp)

(12)

$ CAlgFp
(Fp

X
, Fp),

where the final equivalence is the inverse of restriction along η.
The map f1 is given by forgetting the p-Frobenius-fixed structure and composing

with the natural map S∧
p → S∧

p . By Lemma 7.4, this admits another description
in terms of the (i∗, i∗)-adjunction of Lemma 7.2; namely, since A is assumed to be
p-Frobenius fixed (i.e., we have written A for i∗A in the target of f1), one has an
equivalence

CAlgϕ=1
p (A, i∗S

∧
p ) $ CAlgperf

p (i∗A, S∧
p )

and i∗S∧
p is identified with (S∧

p )ϕ=1 by Lemma 7.4 (and the fact that (S∧
p )ϕ=1 is

the initial object). This equivalence can be identified with f1, which is therefore an
equivalence.

The map f2 is obtained by composing with the natural map S∧
p → Fp. Note that

f2 can also be identified with the natural map

CAlgS∧
p
(A ⊗ S∧

p , S∧
p ) → CAlgS∧

p
(A ⊗ S∧

p , Fp)
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induced by S∧
p → Fp. We may now apply the argument of Corollary 7.6.1 with

(S∧
p )X replaced by A ⊗ S∧

p : the only fact used about (S∧
p )X in that argument was

that (S∧
p )X ⊗S∧

p
Fp $ Fp

X
(which has vanishing cotangent complex over Fp), and

this fact is also satisfied by A⊗S∧
p by the initial remarks of this proof. The argument

implies f2 is also an equivalence.
We now return to the composite (12), which we have now shown is an equivalence.

By Mandell’s theorem (Theorem 1.2), one has an equivalence X $ CAlgFp
(Fp

X
, Fp).

Going backwards along the composite (12), we obtain an equivalence (and in par-

ticular a map) X
∼−→ CAlg(A, S∧

p ), which determines a map of E∞-rings A → S∧
p

X
.

This induces a map of p-Frobenius-fixed E∞-rings A → (S∧
p )X

ϕ=1; by construction,

the tensor product of this map (on underlying E∞-rings) with Fp is the equivalence

of E∞-rings η : A ⊗ Fp $ Fp
X

. Thus, since A and S∧
p

X are finite over S∧
p , we

conclude that the map A → (S∧
p )X

ϕ=1 is an equivalence. $

7.3. Integral models for spaces. Here, we assemble Sullivan’s rational homotopy
theory with Theorem B to prove (see Definition 1.12 for notation):

Theorem C. The functor

S(−)
ϕ=1 : (S f)op → CAlgϕ=1

is fully faithful on the full subcategory S fsc ⊂ S f of simply connected finite com-
plexes.

Proof. As in the proof of Theorem B, it suffices to show that for any X ∈ S fsc, the
natural map

X → CAlgϕ=1(SX
ϕ=1, Sϕ=1)

is an equivalence. By definition of the ∞-category CAlgϕ=1, this amounts to show-
ing that the square

(13)

X
∏

p CAlgϕ=1
p ((S∧

p )X
ϕ=1, (S∧

p )ϕ=1)

CAlg(SX , S)
∏

p CAlg((S∧
p )X , S∧

p )

is Cartesian.

Notation. Let S∧ :=
∏

p S∧
p , Z∧ :=

∏
p Zp, X∧ :=

∏
p X∧

p , and Q∧ := Z∧ ⊗ Q $
S∧ ⊗ Q.

Using the equivalence
∏

p CAlg((S∧
p )X , S∧

p ) $ CAlg(SX , S∧), we may realize (13)
as the top square in the following larger diagram:
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(14)

X
∏

p CAlgϕ=1
p ((S∧

p )X
ϕ=1, (S∧

p )ϕ=1)

CAlg(SX , S) CAlg(SX , S∧)

CAlg(SX , Q) CAlg(SX , Q∧),

where the bottom square is the Cartesian square coming from considering maps of
E∞-rings from SX into the Cartesian square

S S∧

Q Q∧.

It therefore suffices to show that the large outer rectangle in (14) is Cartesian.
We do this by showing that it is equivalent to the square

(15)

X X∧

XQ (X∧)Q,

which is Cartesian by work of Sullivan [52, Proposition 3.20]. Since the space X is
assumed to be a finite complex, we have equivalences

CAlg(SX , Q) $ CAlgQ((SX)Q, Q) $ CAlgQ(QX , Q).

Combining this with Sullivan’s theorem on rational homotopy theory (Theorem
1.1), we conclude that the left vertical composite in (14) is equivalent to the ra-
tionalization map X → XQ. On the other hand, by Theorem B, the top map in
(14) can be identified with the natural map X →

∏
p X∧

p . Hence, by the universal
property of rationalization, it suffices to show that the right vertical maps in (14)
and (15) agree.

This follows from work of Mandell [37]: the right vertical composite in (14) can
be factored as a composite

∏

p

CAlgϕ=1
p ((S∧

p )X
ϕ=1, (S∧

p )ϕ=1) → CAlg(SX , S∧) → CAlg(SX , Z∧) → CAlg(SX , Q∧).

We have seen that the first map can be identified with the natural map X∧ →
LX∧ given by taking the constant free loop (cf. Lemma 7.2), and the second map
is canonically an equivalence (by the product over primes p of the Fp analog of
Corollary 7.6.1). Then, a theorem of Mandell [37, Theorem 1.11] asserts that the
final map can be identified with the composite

LX∧ → X∧ → (X∧)Q.

Combining these, we conclude that the right vertical composite in (14) is homotopic
to the rationalization map X∧ → (X∧)Q. $
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As remarked in §1, we have not determined the essential image of the Frobenius

fixed cochain functor S(−)
ϕ=1, though such a statement may well be within reach. We

formulate our guess as a question:

Question 7.11. Let A ∈ CAlgϕ=1 be a Frobenius fixed E∞-ring which is finite
over S and such that A ⊗ Z is simply connected over Z. Then does there exist a
simply connected finite complex X and an equivalence of Frobenius fixed E∞-rings
A $ SX

ϕ=1?

7.4. Further extensions and questions. We include here a series of remarks
highlighting additional questions which are not addressed in this paper.

(1) Mandell’s theorem (Theorem 1.2) applies to finite type p-complete spaces
which are not necessarily finite. The author does not know if there is a version of
Theorem B which works in this generality. For example, Mandell’s theorem applies
to the space BCp, providing an identification

HomCAlgFp
(FBCp

p , Fp) $ LBCp.

On the other hand, Observation 7.12 shows that the E∞-algebra (S∧
p )BCp fails to

be Fp-stable, so our results do not apply.

Observation 7.12. Letting $p denote equivalence after p-completion, one articula-
tion of the Segal conjecture for an abelian p-group G is that

(S∧
p )BG $p

⊕

H⊂G

Σ∞
+ B(G/H),

where the sum ranges over subgroups H ⊂ G (cf. [39, Chapter XX] for an ex-
position). Thus, we have (S∧

p )BCp $p S∧
p ⊕ Σ∞

+ BCp, whereas ((S∧
p )BCp)tCp is the

cofiber of a map from

((S∧
p )BCp)hCp $p (S∧

p ⊕ Σ∞
+ BCp)hCp $p Σ∞

+ BCp ⊕ Σ∞
+ B(Cp × Cp)

to
((S∧

p )BCp)hCp = (S∧
p )BCp×Cp $p S∧

p ⊕ (Σ∞
+ BCp)

⊕p+1 ⊕ B(Cp × Cp).

By inspection, one concludes the spectrum (S∧
p )BCp is not Fp-stable.

Nevertheless, one can wonder whether one can recover the space BCp from the
algebra (S∧

p )BCp :

Question 7.13. What is the space of E∞-ring maps HomCAlg((S∧
p )BCp , S∧

p )?

(2) Recall the 2-category Q̃ from Remark 3.35, and let Q̃VectFp denote the
full subcategory on groupoids of the form BV where V is an Fp-vector space.

Our methods show that in fact the E∞-space |Q̃VectFp | acts on CAlgperf
p (and the

analogous statement in the non-group-complete setting).

Question 7.14. What is the homotopy type of |Q̃VectFp |? For instance, is it
p-adically discrete? What about the corresponding partial K-theory?

(3) In §3, we defined a notion of global algebra which has genuine equivariant
multiplication maps corresponding to all finite covers of groupoids. It is natu-
ral to consider the analogous object with multiplicative transfers for all maps of
groupoids:
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Definition 7.15. An extended global algebra is a section of the fibration Ψ+ :

Glo+Sp → Glo+ which is coCartesian over the left morphisms. Let CAlgGlo+

denote the ∞-category of extended global algebras.

One can show that the functor S(−) : (S fsc)op → CAlg refines to a functor S(−)
Glo+ :

(S fsc)op → CAlgGlo+

. The additional functorialities corresponding to geometric
fixed points can be seen as giving trivializations of the Frobenius maps. We therefore
conjecture that a space can be recovered from its cochains as an extended global
algebra:

Conjecture 7.16. The functor S(−)
Glo+ : (S fsc)op → CAlgGlo+

is fully faithful.

Appendix A. Generalities on producing actions

In this appendix, we will provide the technical details necessary for producing
the integral Frobenius action of Theorem A# (Theorem 3.15). Let us first describe,
informally, a simpler case of the setup. Let q : E → S be a coCartesian fibration
of ∞-categories. There is a monoidal ∞-category Fun(S, S)/ id whose objects can
be thought of as pairs (ϕ, η) where ϕ ∈ Fun(S, S) and η : ϕ → id is a natural
transformation. The monoidal structure is described on objects by the formula

(ϕ1, η1) ◦ (ϕ2, η2) = (ϕ1 ◦ ϕ2,ϕ1 ◦ ϕ2
η1(ϕ2(−))−−−−−−→ ϕ2

η2−→ id).

In this situation, we will show (Lemma A.3) that the sections of q admit a natural
action of the monoidal ∞-category Fun(S, S)/ id. Concretely, the action of (ϕ, η)
on a section σ : S → E produces a new section which takes s to (ηs)∗σ(ϕ(s)).

We work with an extension of this situation: for the remainder of this appendix,
fix a pullback square of ∞-categories

E E+

S S+

q q+

i

where the vertical arrows are coCartesian fibrations and i is the inclusion of a (not
necessarily full) subcategory. We will see that the extension of q to q+ : E+ → S+

describes additional symmetries on the sections of q beyond those coming from
Fun(S, S)/ id as above. In particular, we produce an action of the ∞-category
Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i. Its objects are the data of a functor ϕ : S → S
together with a natural transformation η : iϕ → i. The monoidal structure can be
described informally by the formula

(ϕ1, η1) ◦ (ϕ2, η2) = (ϕ1 ◦ ϕ2, iϕ1 ◦ ϕ2
η1(ϕ2(−))−−−−−−→ iϕ2

η2−→ i).

Before we construct the monoidal structure formally, we need some preliminary
lemmas.

Lemma A.1. Let C, D be ∞-categories and

F : C −−⇀↽−− D : G
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be functors such that F is left adjoint to G and G is fully faithful (so F is a local-
ization in the sense of [34, Section 5.2.7]). Then there is a natural oplax monoidal
functor

Fun(C, C) → Fun(D, D)

which sends a functor ϕ : C → C to FϕG : D → D.

Proof. This is (the opposite of) [14, Lemma 3.10]. $

Remark A.2. In fact, the hypotheses of Lemma A.1 are stronger than should be
necessary – it should be sufficient that F and G be functors together with a natural
transformation id → GF . We would be happy to see a proof of this stronger
statement.

Lemma A.3. Let B be an ∞-category and q : E → B be a Cartesian fibration.
Then:

(1) The ∞-category End(B)/ id has a monoidal structure which is given on
objects by the formula

(ϕ1
η1−→ id) ◦ (ϕ2

η2−→ id) = (ϕ1 ◦ ϕ2
η2◦η1(ϕ2(−))−−−−−−−−→ id).

(2) The total space E acquires a natural action of the monoidal ∞-category
End(B)/ id where the action of (η : φ → id) ∈ End(B)/ id takes (b ∈ B, x ∈
Eb) ∈ E to (φ(b), η∗xx ∈ Eφ(b)).

Proof. The monoidal structure on End(B)/ id can be modeled explicitly by a sim-
plicial monoid (which we will also denote by End(B)/ id) characterized as follows:
for any finite nonempty linearly ordered set J , let J+ denote J ∪ {+} where {+}
is a new maximal element; then, the set of maps ∆J → End(B)/ id is given by the

set of maps ∆J+ × B → B with the property that the restriction to {+} ⊂ ∆J+

is the identity. The monoid structure takes two maps f, g : ∆J+ × B → B to the
composite

g ◦ f : ∆J+

× B → ∆J+

×∆J+

× B
id×g−−−→ ∆J+

× B
f−→ B,

where the first map is induced by the diagonal on ∆J+
.

The simplicial monoid End(B)/ id left acts on the underlying simplicial set of
the arrow category Arr(B) = Fun(∆1, B) of B. On objects, the action of (η : φ →
id) ∈ End(B)/ id on an arrow (b → c) ∈ Arr(B) produces an arrow representing the

composite φ(b)
ηb−→ b → c.

In general, we describe this action directly on J-simplices; let f : ∆J+ ×B → B
determine a J-simplex of End(B)/ id and γ : ∆J × ∆1 → B be a J-simplex of

Arr(B). There is a map ψJ : ∆J ×∆1 → ∆J+
which sends (j, 0) to j and (j, 1) to

+ for all j ∈ J . The action on J-simplices produces from f and γ a new J-simplex
of Arr(B) defined by the composite

fγ : ∆J ×∆1 ψJ×id−−−−→ ∆J+

× (∆J ×∆1)
id×γ−−−→ ∆J+

× B
f−→ B.

It is immediate that this defines a left action, and so we have an action at the level
of ∞-categories of the monoidal ∞-category End(B)/ id on Arr(B).

Moreover, the action fixes the target of the arrow; thus, if we consider Arr(B)
as lying over B via the target map, End(B)/ id acts on Arr(B) as an object over
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B. Thus, for any functor q : E → B, the fiber product Arr(B) ×B E acquires a left
action of End(B)/ id.

One has a fully faithful functor E → Arr(B) ×B E given by sending x ∈ E to
x together with the identity arrow q(x) → q(x). When q is a Cartesian fibration,
this functor admits a right adjoint which takes x ∈ E together with an arrow
f : y → q(x) to the pullback f∗x. By (the opposite of) Lemma A.1, we obtain a
lax action of End(B)/ id on E . Explicitly, the action of (η : φ → id) ∈ End(B)/ id

takes (b ∈ B, x ∈ Eb) ∈ E to (φ(b), η∗xx ∈ Eφ(b)). We immediately see that the lax
structure map is an equivalence, and so we have produced the desired action. $

Our strategy for producing and understanding the monoidal structure on
Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i is to construct an ∞-category M which is ten-
sored over Cat∞ and such that Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i arises as the
endomorphism ∞-category of an object of M in the sense of [33, Section 4.7.1].

Construction A.4. Let M → Cat∞ denote the Cartesian fibration classified
by the functor Cat∞ → Catop∞ sending an ∞-category C to the functor category
Fun(C, S+)op. One thinks of the objects of M as pairs (C,ϕ), where C is an ∞-
category together with a functor ϕ : C → S+. By Lemma A.3, the ∞-category
M acquires an action of End(Cat∞)/ id. Since Cat∞ is a Cartesian monoidal
∞-category, there is a monoidal functor (Cat∞)/∗ → End(Cat∞)/ id where ∗ de-
notes the terminal ∞-category. Since ∗ is terminal, the natural monoidal functor
(Cat∞)/∗ → Cat∞ is an equivalence. We conclude that the ∞-category M is natu-
rally left tensored over Cat∞ in the sense of [33, Definition 4.2.1.19]; explicitly, for
D ∈ Cat∞, the tensor is described by the formula

D ⊗ (C,ϕ) = (D × C, D × C → C ϕ−→ S+).

It therefore makes sense to discuss endomorphism ∞-categories of objects of M .

Lemma A.5. The object (S, i) ∈ M admits an endomorphism ∞-category which
is equivalent to Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i.

Proof. Unwinding the definitions, there is a natural map in M:

ev : Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i ⊗ (S, i) → (S, i).

We would like to check that this exhibits Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i as an
endomorphism object for (S, i) ∈ M in the sense that for any ∞-category K, the
map ev induces a homotopy equivalence of spaces

HomCat∞(K, Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i)
∼−→ HomM(K ⊗ (S, i), (S, i)).

To verify this, we note that both sides admit compatible maps to HomCat∞(K ×
S, S). It suffices to choose a particular functor ψ : K × S → S and check the claim
fiberwise over ψ. On the left hand side, this fiber is the fiber of the natural map
Fun(K, Fun(S, S+)/i) → Fun(K, Fun(S, S+)) over the map i ◦ ψ : K × S → S+.
This can be identified as the space of natural transformations filling in the diagram

K × S S

S S+

ψ

i

i
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where the left vertical arrow is projection onto the second coordinate. This is
evidently also the fiber on the right hand side and ev induces the desired equivalence.

$
By [33, Section 4.7.1], this endows Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i with the

structure of a monoidal ∞-category. Moreover, this description as an endomor-
phism object allows us to construct actions of the monoidal ∞-category
Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i on other ∞-categories. We will construct the
right action of Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i on sect(q) by first producing an
action on a closely related ∞-category.

Definition A.6. Let sect+(q) denote the ∞-category

Fun(S, E+) ×Fun(S,S+) Fun(S, S+)/i.

Observation A.7. The ∞-category sect+(q) can be identified as the ∞-category of
maps in M from (S, i) to (E+, q+). The verification is identical to Lemma A.5 so
we omit it. As a result, sect+(q) admits a canonical right action of EndM((S, i)) $
Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i.

Remark A.8. Concretely, an object of sect+(q) is a pair (f, η) where f : S → E+

is a functor together with a natural transformation ν : q+ ◦ f → i. The action of
(ϕ, η) ∈ Fun(S, S)×Fun(S,S+) Fun(S, S+)/i on (f, ν) produces (f ◦ ϕ, ν′) ∈ sect+(q)
where ν′ denotes the composite

q+fϕ
ν(ϕ(−))−−−−−→ iϕ

η−→ i.

Note that Fun(S, S+)/i has a final object given by i $ i. The inclusion of this
final object induces a fully faithful embedding {∗} → Fun(S, S+)/i, from which one
obtains a fully faithful embedding j via the diagram

(16)

sect(q) sect+(q)

Fun(S, E+) ×Fun(S,S+) {∗} Fun(S, E+) ×Fun(S,S+) Fun(S, S+)/i.

j

Proposition A.9. The inclusion j : sect(q) → sect+(q) admits a left adjoint.

Proof. We will apply the theory of marked simplicial sets as developed in [34,
Section 3.1] and freely use the notation therein.

Let (f, η) ∈ sect+(q). We will start by defining a section f ′ ∈ sect(q) together
with a map θ : (f, η) → j(f ′) in sect+(q). Concretely, f ′ will be given by the
formula f ′(s) = (ηs)∗f(s) for s ∈ S.

Consider the diagram of marked simplicial sets

S& × {0} (E+)#

S& × (∆1)/ (S+)/

q+

where the bottom arrow encodes the natural transformation η : q+ ◦ f → id and
the top arrow is defined by f . The opposite of the left vertical arrow is marked
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anodyne, and q+ is a coCartesian fibration, so we obtain a lift S×∆1 → E+, which
determines a map θ from (f, η) to its restriction to S × {1}, which we define to be
the desired section f ′.

To show that j has an left adjoint, it suffices to check that for any section
σ ∈ sect(q), θ induces an equivalence

Homsect(q)(f
′,σ) $ Homsect+(q)((f, η), j(σ)).

We can compute these mapping spaces by expressing sect+(q) and sect(q) as pull-
backs as in diagram (16). In what follows, we will abuse notation by regarding the
section σ as a map σ : S → E+ together with an identification of q+σ with i, and
similarly with f ′. Unwinding the definitions, one needs to show that θ induces an
equivalence between the following two spaces:

(1) The fiber of the map of spaces HomFun(S,E+)(f
′,σ) → HomFun(S,S+)(q

+ ◦
f ′, q+ ◦σ) over the canonical element (corresponding to the fact that f ′ and
σ are sections) which we will call ν0 : q+ ◦ f ′ → q+ ◦ σ.

(2) The fiber of the map of spaces HomFun(S,E+)(f,σ) → HomFun(S,S+)(q
+ ◦

f, q+ ◦ σ) over the natural transformation ν1 : q+ ◦ f → q+ ◦ σ given by
precomposition of ν0 with the natural transformation ν2 : q+ ◦ f → q+ ◦ f ′

determined by θ.

The natural transformations ν0, ν1, ν2 determine a 2-simplex ν : ∆2 → Fun(S, S+)

by sending the edge opposite k to νk. We will consider the following subsets of ∆2

as marked simplicial sets where the edge [0, 1] is marked:

(17)

[0, 1]
∐

{2} Λ2
1

Λ2
0 ∆2.

i1

i0 j1

j0

We have a commutative diagram

(18)

[0, 1]
∐

{2} Fun(S, E+)

∆2 Fun(S, S+)

q+
∗

where the top horizontal map sends [0, 1] to the map f → f ′ induced by θ and
sends {2} to σ, and q+

∗ is a coCartesian fibration by [34, Proposition 3.1.2.1].
The space (1) above is the space of dotted lifts in the diagram

[0, 1]
∐

{2} Fun(S, E+)

Λ2
1 Fun(S, S+).

i1 q+
∗

Analogously, the space (2) is the space of dotted lifts in the diagram

[0, 1]
∐

{2} Fun(S, E+)

Λ2
0 Fun(S, S+).

i0 q+
∗



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTEGRAL MODELS FOR SPACES 173

However, note that the opposites of the inclusions j0 and j1 (from Diagram (17))
are marked anodyne. Hence, by [34, Proposition 3.1.3.3], both spaces are equivalent
to the space of lifts in Diagram (18) and thus are equivalent, as desired. $

Applying Lemma A.1 to the adjunction of Proposition A.9, we find that there is
an oplax monoidal functor

Fun(sect+(q), sect+(q)) → Fun(sect(q), sect(q)).

Composing with the right action of Observation A.7, we obtain an oplax monoidal
functor

(Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i)
op → Fun(sect(q), sect(q)).

In fact, the oplax structure maps are equivalences, and so we have shown:

Proposition A.10. Let q+ : E+ → S+ be a coCartesian fibration of ∞-categories,
let i : S → S+ be a subcategory, and let q denote the restriction of q+ along i.
Then there is a natural right action of Fun(S, S)×Fun(S,S+) Fun(S, S+)/i on sect(q)

which, for σ ∈ sect(q) and (ϕ
η−→ id) ∈ Fun(S, S) ×Fun(S,S+) Fun(S, S+)/i, can be

described on objects by the formula

σ(ϕ
η−→ id) = (s !→ ηs∗σ(ϕ(s))) ∈ sect(q).
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