

Island biogeography of the megadiverse plant family Asteraceae

Lizzie Roeble^{1,2}, Koen J. van Benthem², Patrick Weigelt^{3,4,5}, Holger Kreft^{3,4,5},
Matthew L. Knope⁶, Jennifer R. Mandel⁷, Pablo Vargas⁸,
Rampal S. Etienne^{2*}, Luis Valente^{1,2*}

April 19, 2024

¹ *Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands*

² *Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands*

³ *Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany*

⁴ *Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany*

⁵ *Campus Institute Data Science, Göttingen, Germany*

⁶ *University of Hawai'i at Hilo, Dept. of Biology, 200 W. Kawili St., Hilo, HI 96720, USA*

⁷ *Department of Biological Sciences, University of Memphis, Memphis, TN, USA*

⁸ *Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain*

* Joint senior authors

Corresponding author: Lizzie Roeble (lizzie.roeble@naturalis.nl)

Abstract

1

2 The hyperdiverse plant family Asteraceae, with over 32,000 species globally, forms an
3 iconic component of island floras, including many spectacular radiations, but a global pic-
4 ture of their insular diversity is lacking. Here, we uncover the global biogeographical and
5 evolutionary patterns of Asteraceae on islands to reveal the magnitude and potential causes
6 of their evolutionary success. We compile a global checklist of Asteraceae species native and
7 endemic to islands and combine it with macroecological analyses and a phylogenetic review of
8 island radiations. Asteraceae have a global distribution on islands, comprising approximately
9 6,000 native island species, with 58% endemics. Yet, diversity of the family on islands is lower
10 than expected given its overall diversity. However, Asteraceae are the most diverse family on
11 oceanic islands, suggesting an exceptional ability to thrive in isolation. In agreement with
12 island biogeography predictions, native Asteraceae diversity increases with area and decreases
13 with isolation, and endemism increases with both island area and isolation. The hotspots for
14 insular diversity and endemism are Madagascar and the Caribbean, both being regions we
15 identify as most lacking phylogenetic studies. We identify 39 confirmed island radiations, and
16 69 putative radiations that remain to be phylogenetically investigated, exceeding numbers for
17 other iconic insular groups, such as birds. Our results reveal Asteraceae offer immense poten-
18 tial for research in ecology and evolution, due to their close tracking of island biogeography
19 expectations, large sample sizes (species and radiations), cosmopolitan distribution, and high
20 number of potentially undiscovered radiations.

21

22 **Introduction**

23 The top ten most diverse plant families make up 43% of Angiosperm species (Govaerts et al.,
24 2021). Understanding the distribution and drivers of diversity of these large families is thus a
25 crucial step towards explaining the success of flowering plants in general. Key biogeographical set-
26 tings for exploring the patterns and processes that shape angiosperm diversity are islands. Due to
27 their distinct boundaries, global distribution, and replication, island systems have played a crucial
28 role in the development of key evolutionary and ecological theories (MacArthur and Wilson, 1967;
29 Carlquist, 1974; Losos and Ricklefs, 2010; Whittaker et al., 2008; Warren et al., 2015; Whittaker
30 et al., 2017; Gillespie et al., 2020). The geographic isolation and unique habitats found on islands
31 have given rise to remarkable angiosperm biodiversity that is often characterized by high levels
32 of endemism (Kier et al., 2009; Cai et al., 2023), adaptive radiations (Kim et al., 2008; Givnish
33 et al., 2008), paleoendemism (Fernández-Palacios et al., 2011; Veron et al., 2019), and repeated
34 evolution of convergent traits (Carlquist, 1965; Burns, 2019).

35
36 While islands are valuable natural laboratories for studying plant diversity, global-scale data
37 on the distribution of major plant families on islands are only starting to emerge. Recent global
38 studies have explored biodiversity patterns for a few major families and lineages on islands (Taylor
39 et al., 2021; Veron et al., 2021), factors impacting the assembly of island floras (Kreft et al., 2008;
40 Weigelt et al., 2015; Carvajal-Endara et al., 2017; König et al., 2021), and traits associated with
41 insular diversity (Grossenbacher et al., 2017; Nürk et al., 2019; Zizka et al., 2022; Barajas-Barbosa
42 et al., 2023). These studies reveal how links between island features (e.g. area, isolation, age),
43 functional traits (e.g. insular woodiness), and biogeographical rates (e.g. colonization, speciation,
44 extinction) are important determinants of the number of native and endemic species of flowering
45 plants on islands, whilst suggesting that evolutionary success on islands may not necessarily mirror
46 that found on continents (Fernández-Palacios et al., 2021).

47
48 Out of all plant families, arguably the one most often associated with evolutionary success on
49 islands is the most diverse family of all - Asteraceae. Asteraceae (Compositae), commonly known
50 as the daisy or sunflower family, boast the greatest species number of any plant family in the world,
51 with an estimated 32,000 - 34,000 species (“The Plant List (Version 1.1)”, 2013; Gostel and Boni-
52 facino, 2020; Govaerts et al., 2021). Species of this family occur natively on every continent except
53 Antarctica and are found in a wide range of habitats, but are most abundant in dry and semi-arid
54 habitats and in Mediterranean-type ecosystems, deserts, grasslands, and mountains (Funk et al.,
55 2009). Members of the family exhibit great variation in growth habit: from small annual herbs to
56 woody perennial shrubs, lianas, and trees; cushion forms and succulents; and even rarely epiphytic
57 and aquatic plants.

58
59 On islands, Asteraceae are thought to be remarkably diverse, and often form an iconic compo-
60 nent of insular floras of both continental and oceanic origin. For instance, it is the most species-rich
61 family on the remote Juan Fernández Archipelago (Bernardello et al., 2006) with 30 native species
62 and four genera endemic to the islands, and is among the top five most diverse families on the
63 large continental island of Madagascar (Antonelli et al., 2022). Additionally, the family has high
64 levels of endemism on oceanic islands: a study by Lenzner et al., 2017 compiled diversity data
65 on major plant families across 14 oceanic archipelagos and found that Asteraceae had the highest
66 number of single-island endemics for the oceanic islands considered in the study. Their success in
67 dispersal, establishment, and diversification on islands has been suggested to result from a combi-

68 nation of intrinsic factors (Carlquist, 1974; Crawford et al., 2009; Jeffrey, 2009): Asteraceae possess
69 unique fruit morphology that aids in long-distance dispersal (Carlquist, 1966; Heleno and Vargas,
70 2015); the head-like inflorescence (capitulum) often attracts generalist pollinators; and are capable
71 of several breeding systems that favor establishment on islands. Many species are self-compatible
72 (Grossenbacher et al., 2017) and species in several island lineages are functionally self-incompatible
73 with the capacity to self-seed and a genetic system (i.e. sporophytic self-incompatibility) which
74 aids in both the establishment of small populations from a single or few colonizing individuals and
75 retention of genetic diversity after arrival (Crawford et al., 2024).

76

77 In addition to a high native and endemic species richness on islands, Asteraceae are known
78 for their presumed propensity to radiate (that is, to undergo cladogenesis in-situ on islands at
79 relatively fast rates). Two recent studies, one reviewing adaptive radiations across flowering plants
80 (Schenk, 2021) and another focused on adaptive radiations on oceanic islands across all taxonomic
81 groups (Cerca et al., 2023), both found Asteraceae to be overrepresented in terms of adaptive
82 radiations compared to other clades. Indeed, the family provides numerous examples of spectac-
83 ular island radiations: *Scalesia* on the Galápagos Islands (Fernández-Mazuecos et al., 2020), the
84 woody *Sonchus* alliance on the Canary Islands (Kim et al., 1996), *Dendrosenecio* on the Juan Fer-
85 nandez Islands (Sang et al., 1994; Cho et al., 2020). One of the textbook examples of adaptive
86 radiation on islands is the Asteraceae silversword alliance of Hawai‘i, a clade of 33 species in three
87 endemic genera (*Argyroxiphium*, *Dubaautia*, *Wilkesia*), which evolved from a common ancestor that
88 colonized Hawai‘i by a long-distance dispersal event from North America around 5 million years
89 ago (Mya), and which exhibit high diversity in morphology and ecological adaptation (Baldwin
90 and Sanderson, 1998; Carlquist et al., 2003; Landis et al., 2018). Another notable example is the
91 Hawaiian *Bidens*. The monophyletic 20 species of *Bidens* endemic to Hawai‘i originated from a
92 single colonization event c. 1.8 Mya, having thereafter radiated across the archipelago, occupying
93 a wide variety of different habitats including sand dunes, lava fields, rainforests, and wetland bogs,
94 and have the highest rates of speciation per unit area documented for any island plant radiation
95 to date (Knope et al., 2012; Knope et al., 2020a).

96

97 An increasing number of phylogenetic studies focusing on selected island clades of Asteraceae
98 from specific islands or archipelagos (Strijk et al., 2012; Vitales et al., 2014; Landis et al., 2018;
99 White et al., 2020; Fernández-Mazuecos et al., 2020) are providing insight into the potential drivers
100 of diversification in those Asteraceae groups. One hypothesis is that the high diversity of Aster-
101 aceae on islands results from a combination of high continental diversity, high rates of long-distance
102 dispersal, and overall high rates of in-situ speciation that well exceed extinction rates (consistent
103 with the high net diversification rates observed in continental Asteraceae) (Katinas et al., 2013;
104 Mandel et al., 2019; Magallón and Castillo, 2009, Panero and Crozier, 2016).

105

106 While it is assumed from the above examples that Asteraceae are highly diverse on islands and
107 have a propensity to radiate, in fact, a complete global picture of the diversity and distribution of
108 the family is yet to be assembled. Furthermore, an assessment of Asteraceae’s potential to radiate
109 across islands globally is still lacking, because previous studies focused solely on adaptive radia-
110 tions and/or on oceanic islands, and thus the magnitude of island radiations within the family is
111 unknown.

112

113 To address these issues, we compiled a global checklist of island Asteraceae and used this to
114 answer four key questions: 1) How does the island species richness of Asteraceae compare with that

115 of other families? 2) How is island Asteraceae diversity distributed across space and major clades
116 of the family? 3) What are the environmental and biogeographical drivers of native and endemic
117 insular diversity on islands? 4) How many island radiations have occurred within Asteraceae and
118 are there commonalities between radiations?

119

120 Methods

121 Data collection

122 Island Asteraceae checklist

123 We compiled a global checklist of Asteraceae native and endemic to islands. The foundation of
124 the island Asteraceae checklist was the Global Inventory of Floras and Traits (GIFT) database
125 (version 3.0; Weigelt et al., 2020; Denelle et al., 2023). GIFT collates and leverages plant check-
126 lists and floras with regional-level data on distribution, environment, and functional traits and
127 has a particular strength in island floras. We started by extracting all Asteraceae checklists from
128 GIFT where there was at least one species native to an island. Species non-native or introduced
129 to islands were excluded. We did not consider islands with zero Asteraceae in the database be-
130 cause many of these may be false negatives, since GIFT relies on published floras disentangling
131 the true absence of Asteraceae on an island from a data gap is challenging. To facilitate com-
132 parison across regions and sources, the GIFT database records the original species names and
133 endemicity status from the primary floras and checklists and standardizes the taxonomy against
134 the World Checklist of Vascular Plants (WCVP, Govaerts et al., 2021). For the island Asteraceae
135 checklists we carried out additional curation. Because Asteraceae are a taxonomically complex
136 family, we matched WCVP standardized names against the Global Compositae Database (GCD,
137 <https://www.compositae.org/gcd>, Gostel and Bonifacino, 2020) and retrieved the name status (ac-
138 cepted, uncertain, unaccepted) and the tribe and subfamily classification. We further updated the
139 GCD taxonomy to the latest classification outlined in Susanna et al., 2020 based on the family-level
140 phylogeny in Mandel et al., 2019.

141

142 The final dataset is a global checklist of Asteraceae native to islands and is composed of 915
143 island checklists (SD1) and supported by 240 primary sources (SD2). The global checklist of in-
144 sular Asteraceae is structured by island geographic units. For each island in the data set, we have
145 a checklist of Asteraceae species, name standardization (original name, WCVP name, and GCD
146 name status), reference to the primary source, intrafamily taxonomic classification, the floristic
147 status of the species (native, endemic, non-endemic) to that geographic unit, distribution, and
148 conservation status.

149

150 Island features and environmental variables

151 For each island in the global checklist, we gathered abiotic data on island features and climatic
152 variables known to be important predictors of global diversity on islands (MacArthur and Wilson,
153 1967; Whittaker et al., 2008; Kreft et al., 2008). Environmental data were available from GIFT,
154 which includes information on abiotic variables for each island in the data set. We extracted the
155 following variables: latitude and longitude, area (km^2), distance to nearest mainland (distance,
156 km), surrounding landmass proportion (SLMP, sum of the proportions of landmass within 100,

1,000, and 10,000 km buffer distances (Weigelt and Kreft, 2013)), Last Glacial Maximum mainland connection (GMMC), Last Glacial Maximum area (LGM area), island age (Mya), mean and maximum elevation (m), terrain ruggedness index (TRI, m), botanical continent (level 1, standardized biogeographic scheme for recording plant distributions defined by the Biodiversity Information Standards (TDWG)), and biome (Ecoregions, Dinerstein et al., 2017)). We classified islands into two physical types based on past connectivity to the mainland: "continental" islands, those located on the continental shelf or continental fragments and previously connected to the mainland, and "oceanic" islands, built mainly by volcanic activity or sea-floor uplift or atolls and never connected to another landmass. This classification was initially based on the geology category in GIFT, but we manually adapted and assessed it for each island/archipelago. We also included a "mixed" category, for archipelagos composed of a mixture of continental and oceanic islands. We aggregated islands into "archipelago grouping", a refined and cleaned archipelago assessment based on the GIFT archipelago levels (arch_lvl_1, arch_lvl_2, arch_lvl_3) to capture shared biogeographic and geologic history. For example, all the islands in the Caribbean are grouped together in GIFT under the archipelago classification of the West Indies (GIFT arch_lvl_1), and for this study, we refined the West Indies archipelagos classification to include the Greater Antilles, Lesser Antilles, and the Bahamas as separate archipelagos. All cases in which the archipelago grouping differs from the one in GIFT are highlighted in the data. Additionally, we collected data on four climatic variables (CHELSA 2.1 (Karger et al., 2017)) for each island: annual mean temperature ($^{\circ}\text{C}$), mean annual precipitation (kg m^{-2}), temperature seasonality ($^{\circ}\text{C}/100$), and precipitation seasonality (kg m^{-2}). As a result, our global island Asteraceae checklist includes Asteraceae diversity data and associated island spatial and environmental data (SD1).

179

180 Comparison of island diversity among flowering plant families

181 To contextualize the insular diversity of Asteraceae, we compared it with other flowering plant families by gathering island diversity data for all angiosperm families that natively occur on islands following a similar procedure. From GIFT, we extracted every island checklist with at least one 182 native angiosperm species. Then for each family, we calculated the total number of species native 183 to islands and the total number of species endemic to islands. We calculated insular diversity for 184 each family across both (a) all island types (continental, oceanic, and mixed) and (b) only oceanic 185 islands. This provided us with a global assessment of island diversity across flowering plant 186 families, illustrating which families have the greatest diversity of native and endemic species on islands. 187

188

189 To determine whether island diversity was higher or lower than expected given the overall number 190 of species within each family, we ran binomial tests and simulated island communities. For 191 each angiosperm family, we performed a binomial test to compare the proportion of island species 192 to the proportion of total species of that family to angiosperms globally. The binomial test was 193 conducted using the `binom.test()` function in R, where "x" represents the number of native island 194 species (i.e. number of successes), "n" represents the total number of angiosperm species native to 195 islands (i.e. number of trials), and "p" represents the proportion of the family to angiosperms globally 196 (i.e. probability of success). The number of species within each family and the total number of 197 angiosperm species globally (333,799) were calculated with the World Checklist of Vascular Plants 198 (WCVP, Govaerts et al., 2021), and the number of island-native angiosperm species (99,659) and 199 oceanic-island native species (23,853) were calculated with GIFT. With the binomial test, the null 200 hypothesis is that the observed proportion of a family on islands is equal to its frequency globally

202 (p), and the alternative hypothesis is that the observed proportion on islands is not equal to this
203 global frequency.

204 Additionally, for visualization purposes, we ran simulations to estimate the null expectation
205 of island diversity and compare it to the observed diversity for the ten most diverse families on
206 both all island types and oceanic islands. For the top ten families, we created a global pool that
207 represents the total number of species in each family overall. We randomly sampled from the global
208 pool to create island communities with the same total number of species as the actual number of
209 native island species overall (10,000 iterations). This gives a null distribution of the island diversity
210 for each family given the overall diversity of the family. We then compared the observed island
211 diversity to the null distribution.

213

214 Modeling the biogeographical drivers of island diversity

215 We used generalized linear mixed models (GLMMs) to understand which island features and envi-
216 ronmental variables are linked to Asteraceae (1) native species richness (NSR) and (2) proportion
217 of single-island endemics (pSIE) across islands. Prior to modeling, we carried out a thorough explo-
218 ration of the data following a protocol described in Zuur et al., 2010. This included inspection and
219 checks for potential outliers, distribution of response variables, zero inflation, collinearity among re-
220 sponse variables, pair-wise relationships between response and predictor, and non-independence of
221 the response variable. Several predictor variables showed high collinearity, in particular, variables
222 found to be correlated to isolation (distance, SLMP, GMMC, LGM area, latitude) and topography
223 (mean elevation, maximum elevation, TRI). Hence, we dropped correlated variables to retain one
224 predictor for isolation (SLMP) and one for topography (maximum elevation). Because several
225 predictor variables were skewed, we log-transformed area, SLMP, maximum elevation, mean an-
226 nual precipitation, temperature seasonality, and precipitation seasonality. All continuous predictor
227 variables were centered and scaled. Additionally, we multiplied SLMP (surrounding landmass pro-
228 portion) by -1 to convert this variable to a more intuitive proxy for isolation; with this inverse
229 transformation of SLMP, a higher -SLMP refers to a more isolated island. We removed islands
230 smaller than 1 km² because diversity on these islets is influenced by different processes (i.e. the
231 small-island effect (Whitehead and Jones, 1969 Schrader et al., 2020)). The final data set included
232 510 islands, 272 oceanic and 238 continental islands (SD3).

233

234 We employed AIC model selection independently for the (1) NSR and (2) pSIE models, choos-
235 ing the best global model for each from a range of candidate models (19 for NSR and 15 for pSIE)
236 (see Table S1). The models (NSR and pSIE) are independent, with potentially different environ-
237 mental variables correlating best with the two measurements of diversity. In line with the current
238 literature recommendations, we fit the NSR models with a negative binomial and pSIE models
239 with a beta-binomial error distribution (Stoklosa et al., 2022).

240

241 In our global model for NSR, we fit a negative-binomial GLMM to predict total native species
242 with area, isolation (-SLMP), island type (categorical with two levels: oceanic and continental),
243 max elevation, and temperature seasonality, with archipelago included as a random effect. In our
244 global model for pSIE, we fit a GLMM using a beta-binomial and native species richness used as
245 weights to predict the pSIE with area, isolation (-SLMP), island type (categorical with two levels:
246 oceanic and continental), max elevation, and mean annual temperature, with archipelago included

247 as a random effect. All models were fit using the glmmTMB package in R (Brooks et al., 2017).

248

249 Island age is an important variable in island biogeography, correlated to species richness (Whit-
250 taker et al., 2008); however, island age is challenging to accurately estimate (Rijsdijk et al., 2020;
251 Price and Clague, 2002), and we do not have full coverage of age estimates for all islands in our
252 dataset. Therefore, we ran a model for both NSR and the pSIE that includes island age as an
253 additional fixed effect for the subset of oceanic islands where an age estimate was available (221
254 islands). We followed the General Dynamic Model of island biogeography (Whittaker et al., 2008)
255 and included island age as $\text{Age} + \text{Age}^2$.

256

257 To validate the fitted models, we assessed for collinearity in predictors via variance inflation fac-
258 tor scores (VIF, with a threshold of less than five) and checked the residuals with the DHARMA
259 package (Hartig, 2022), which simulates the standardized residuals from the fitted model and
260 also checks for overdispersion and zero inflation. DHARMA reports statistical evidence of non-
261 uniformity in the QQ plot. The plots themselves indicated that the effect size of these deviations
262 from the expected distribution is small, and the significance of the deviation may be caused by the
263 large number of data points (see Figure S2).

264

265 Island radiations within Asteraceae

266 We conducted a literature review of island radiations within Asteraceae to (1) synthesize our un-
267 derstanding of island radiations in Asteraceae, how many radiations there are and where they
268 occur, (2) identify common characteristics shared between radiations, and (3) highlight understud-
269 ied clades and regions that are promising for future research. Radiations are generally defined as
270 rapid increases in the diversity of a lineage (Linder, 2008). In the context of island biogeography,
271 a radiation is typically considered to be the differentiation of a significant number of species in a
272 short period of time through in-situ cladogenetic speciation (via lineage splitting) occurring within
273 an island region, from a single common ancestor that colonized an island or (meta-)archipelago.
274 Radiations are often categorized as adaptive or non-adaptive based on a series of criteria (e.g.
275 Schlüter, 2000). In this study, we were interested in both types of radiations, as together they
276 represent the diversity of cladogenetic mechanisms in the family, and we, therefore, include both
277 types and record radiation type strictly as assessed by the primary publication.

278

279 In our literature search, we considered an island radiation to include three or more endemic
280 species that are geographically restricted to an island or archipelago(s), and which result from
281 a single colonization event and thus share a common ancestor. While our primary goal was to
282 synthesize knowledge on the diversity of phylogenetically confirmed insular radiations within the
283 family, we also wanted to highlight potential understudied radiations that are promising groups
284 for future research. To this end, our review included both confirmed and putative radiations.
285 Confirmed radiations were backed up by a well-sampled published phylogeny of the island taxa
286 and mainland relatives, which has confirmed the island endemics to form a clade resulting from
287 a single colonization event, that is, they are not the product of multiple colonisations from the
288 mainland (Igea et al., 2015; Papadopoulos et al., 2011). Putative radiations were defined as having
289 at least three endemic species from a genus occurring on an island or archipelago but have not
290 yet been fully sampled in a phylogeny; this designation is based on taxonomy alone and indicates
291 the need for future phylogenetic research. By focusing on genera in our definition of radiation, we

run the risk of missing insular radiations that are composed of multiple genera (e.g., as is the case for the confirmed Hawaiian silversword alliance radiation) when they originated by a single colonization (i.e. single ancestry). For both confirmed and putative cases, radiating clades distributed across multiple archipelagos were considered as one insular radiation. For example, the Polynesian *Bidens*, which are distributed across the Hawaiian, Marquesas, Society, and Austral Islands all result from a single colonization of the Pacific islands and were considered a single insular radiation (Knope et al., 2020b). While delimiting radiations to their widest island range could conceal the subsequent inter-regional radiations (e.g. the 20 monophyletic *Bidens* on Hawai'i), we included the archipelago and island distribution in our review to retain this information. For summary and visibility purposes, we grouped radiations into wider regions composed of groups of islands and archipelagos, which are defined in Table SD4.

To identify insular radiations, we took a two-fold approach. First, we carried out a literature search in Google Scholar using the keywords (Asteraceae OR Compositae) AND Island AND Radiation. Second, we searched through the Island Asteraceae Checklist and filtered out genera with at least three endemic species on an island or archipelago. The checklist has a major advantage in helping to identify unknown or understudied potential radiations that would otherwise not be captured in the traditional literature search. With the list of candidate radiations, we manually assessed each potential case. If the radiation met our above criteria for "confirmed" radiation, we collected data on the geographic distribution, island type, taxonomy, number of species, type of radiation (i.e. adaptive or non-adaptive; as assessed by the original publication), traits often hypothesized to be associated with island radiations (breeding system, dispersal syndrome, ploidy level, hybridization), crown age, phylogenetic work done on the clade, and references. Characteristics and traits were collected at the radiation level. If species in a radiation had different traits, the radiation was marked as multi-state; for example, the *Lipochaeta-Melanthera* radiation on Hawai'i is made up of both diploids and polyploids, and so we listed the ploidy level of this radiation as mixed. When we could not confirm the radiation through a well-sampled phylogeny, but taxonomic evidence indicated the group of endemic species might be a radiation, we marked the group as 'putative radiation' and collected data on the geographic distribution, island type, taxonomy, potential number of species, and references.

Results and Discussion

Asteraceae are one of the most diverse families on islands

Asteraceae are the largest plant family in the world, with 33,994 currently accepted species globally (Govaerts et al., 2021). Our comprehensive checklist of insular Asteraceae shows that this family is also remarkably diverse on islands: we found 6,135 species of Asteraceae are native to islands, of which 3,535 (58%) are endemic to islands globally. On oceanic islands specifically, we found 1,833 native Asteraceae species and 955 (52%) endemic species.

As Asteraceae species are generally perceived to be good dispersers and excellent island colonizers (Carlquist, 1966; Carlquist, 1974), the proportion of island native and endemic species of the total Asteraceae species pool would be expected to be higher in Asteraceae than in other large families, and higher than expected by chance. Surprisingly, our comparison between the diversity of angiosperm families on islands showed that Asteraceae are not the most species-rich family

336 across all islands (Figure 1; Table S2) and that they are underrepresented in terms of island species
337 given its overall diversity (Figure 1; Table S3). These results align with a recent study focused on
338 island disharmony in plants (König et al., 2021), which found that while Asteraceae are generally
339 under-represented on islands given their species richness in mainland source pools, the family is
340 nonetheless pervasive on islands. Orchidaceae and Rubiaceae have the highest number of native
341 island species with 11,118 and 6,188 species respectively. The high insular diversity of Orchidaceae
342 and Rubiaceae is found disproportionately on large, tropical continental islands and archipelagos
343 (including New Guinea, Borneo, and the Philippines), which are not particularly rich in Asteraceae
344 species. On oceanic islands, Asteraceae are the most diverse family for both the number of native
345 and endemic species. Yet, despite high species richness compared to other families, Asteraceae
346 diversity on oceanic islands is lower than expected given their diversity globally (Figure 1B).

347

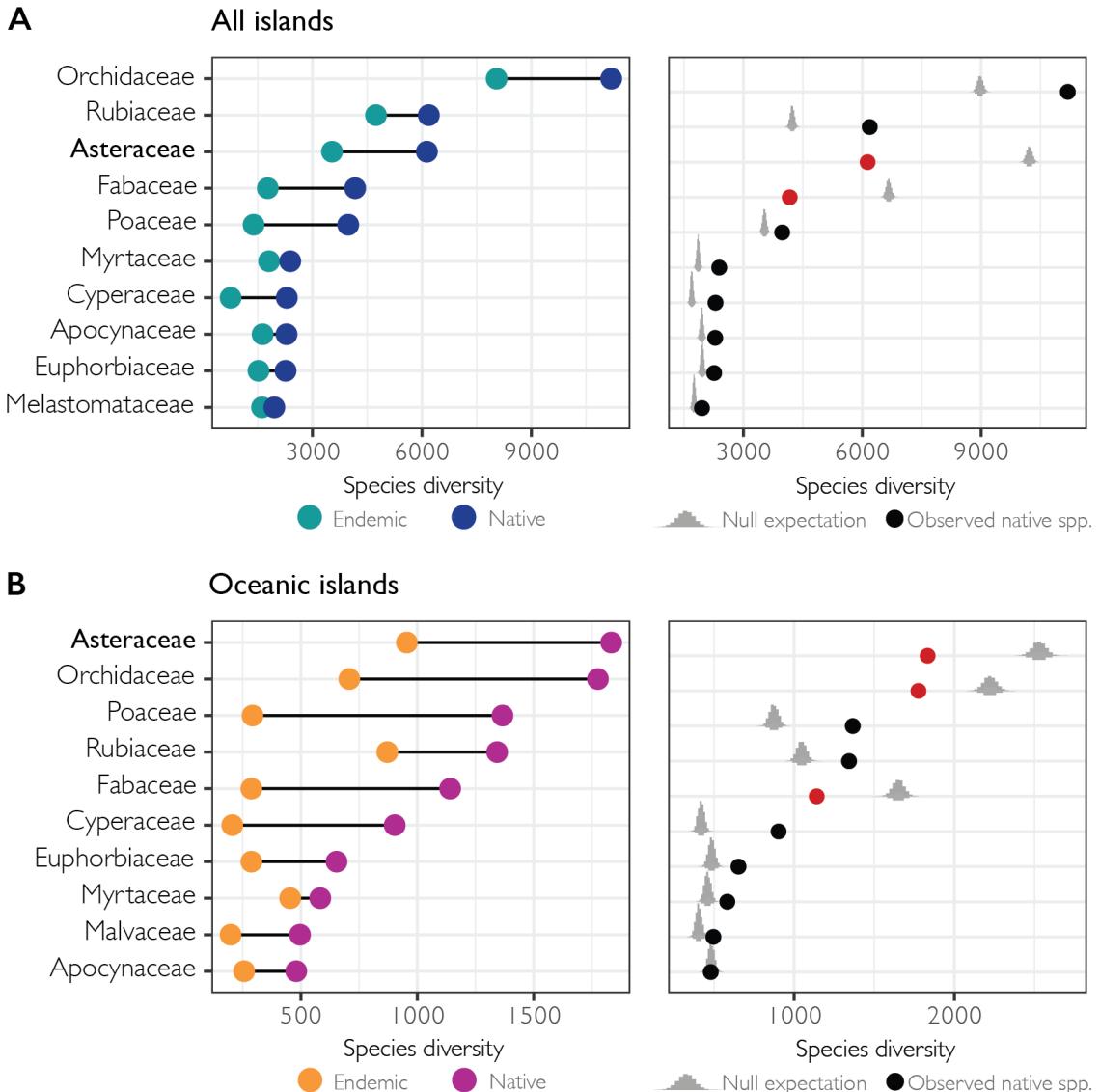


Figure 1: **The ten most diverse angiosperm families on (A) all islands and (B) oceanic islands, with the island diversity compared to the null expectation.** The left panel ranks the ten most diverse angiosperm families on all islands for native and endemic species. Families are ranked in descending order by the number of native species. The right panel compares the observed number of native island species per family (points) to the null expectation of island diversity (histogram). Families for which the observed number of species is lower than the null expectation are highlighted with a red point, and those above the null expectation in black. The global diversity of each family is listed in Table S2.

348 Island species account for 18% of the total species diversity of Asteraceae (Table S2). The
 349 results of the binomial test indicate that the observed number of Asteraceae species native to is-
 350 lands is significantly different than expected based on the proportion of Asteraceae to angiosperms
 351 globally (10%) and that the island proportion (6%) is significantly lower than expected under the
 352 null model (Table S3, Figure 1). Additionally, a comparison of the observed number of island
 353 Asteraceae species to the island community simulations confirms that the observed number of is-
 354 land species is lower than the null expectation across all islands and oceanic islands (Figure 1).

355
 356 While this result suggests Asteraceae may be poorer colonizers or have higher rates of extinc-
 357 tion on islands relative to the mainland than previously expected, this can only be confirmed by

358 estimating rates of colonization and diversification using species-level molecular phylogenies (Va-
359 lente et al., 2020), but given the enormous size of the family, this is yet to be realized. On the
360 other hand, family age could be a factor contributing to the under-representation of Asteraceae on
361 islands. We found that most plant families are much older than the islands in our dataset (Figure
362 S1) and, given that the key biogeographic determinants of diversity on islands are colonization and
363 diversification rates since island origin, this would suggest that family age is not an important de-
364 terminant. However, the diversity of the mainland species pool is a consequence of family age and
365 global diversification rates. Notably, among the ten most diverse families on islands, Asteraceae
366 are the youngest family (Table S2), which could potentially account for their under-representation
367 on islands, as older families may have been more diverse with larger mainland pools at the time
368 of emergence of the islands in our dataset thus giving them a colonization “advantage” earlier on.
369 Future research comparing mainland pools to island diversity through time is needed to test the
370 impact of family age and diversification rate on insular diversity.

371

372 Asteraceae have a global distribution across islands

373 Native species of Asteraceae have a truly global distribution across the world’s islands (Figure 2).
374 In our global checklists, Asteraceae occur natively on 791 islands including 308 oceanic islands, and
375 across 146 archipelagos. Their distribution reaches north to the Svalbard Islands and Greenland
376 (80°N and 75°N) and south to Macquarie Island and Heard Island (55°S and 53°S). Insular di-
377 versity ranged from one (minimum inclusion criterion) to 550 native species, with 29 islands (4%)
378 harboring more than 100 native species and 155 islands (20%) harboring only one native species
379 (our dataset only includes islands with at least one native Asteraceae species). Across all island
380 types, 128 islands (16%) have at least one endemic species.

381

382 While its distribution is global, the diversity of the family is not evenly distributed geographi-
383 cally, and several island regions are notable hotspots of diversity. Madagascar is the most diverse
384 island overall for both native (550) and endemic (487) species. The Caribbean, in particular the
385 Greater Antilles with 671 native and 430 endemic species, is another major center of island Aster-
386 aceae diversity. At the island level, the three large islands (Cuba, Hispaniola, Jamaica) are all in
387 the top ten most diverse islands globally for number of endemic species (196, 145, 58). This pat-
388 tern of the Caribbean as an important area of endemism for the family further supports a review
389 by Francisco-Ortega et al., 2008, who found that the region has the highest number of endemic
390 genera in Asteraceae globally. Across oceanic islands, Macaronesia, the Hawaiian Islands, and
391 the Mascarenes are hotspots of island diversity. The Canary Islands is the most diverse oceanic
392 archipelago with 299 native species, and seven of the ten most diverse oceanic islands for native
393 species are islands in the Canaries, with Tenerife being the most species-rich (159 species). The
394 Hawaiian Islands are the second most diverse oceanic archipelago with 102 native and 95 endemic
395 species, and have a remarkably high proportion of endemism (93%), followed by the Mascarenes
396 with 79 native and 64 endemic species.

397

398 In comparing hotspot regions, the British Isles (850 native species, 368 endemic species) and
399 Iceland (334 native species, 261 endemic species) stand out as diversity anomalies. While these two
400 regions appear as hotspots of island diversity, the majority of species in these two island regions
401 are apomictic (Richards, 2003). Apomixis, a mode of asexual reproduction via seeds, is a poorly
402 understood trait in Asteraceae (Noyes, 2007) and one that challenges taxonomic species concepts

403 and delimitation (Haveman, 2013). To investigate the impact of apomictic species on our results,
 404 we performed a sensitivity analysis with apomictic genera removed (see Figure S5), which revealed
 405 minor changes to the ranking of top island hotspots, but no effect on our findings otherwise (in-
 406 cluding the models).

407

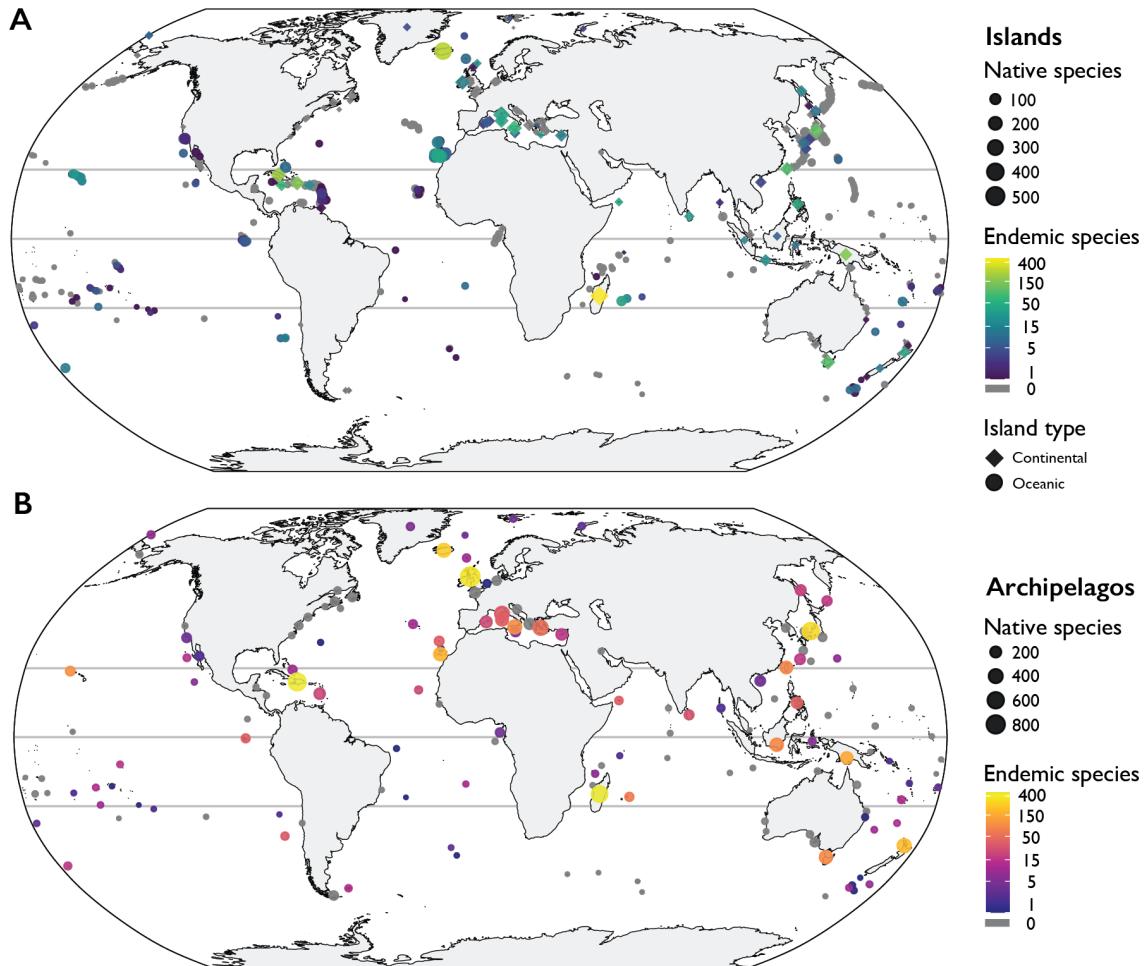


Figure 2: **Geographical diversity patterns of island Asteraceae.** (A) Global distribution of Asteraceae across all island types. The shape of the marker represents the island type (i.e. continental or oceanic), the size represents the number of species, and the color indicates the number of endemics, with grey meaning no island endemics. (B) Global distribution of Asteraceae on archipelagos.

408 The diversity of island species is also unevenly distributed across the major clades and taxo-
 409 nomic tribes of the family (Figure 3). The tribe with the highest number of native island species
 410 is Cichorieae (1660 spp.); while this tribe is an important component of island floras (e.g. *Tolpis*
 411 and the woody *Sonchus* alliance in Macaronesia, *Dendroseris* in the Juan Fernández Islands), its
 412 overall diversity is inflated due to the high number of apomictic species, well-known in this tribe
 413 (e.g. *Hieracium* on Iceland, *Taraxacum* on the British Isles). Aside from Cichorieae, the three most
 414 diverse tribes for both native and endemic island species are Astereae (793 native island species,
 415 465 endemic species), Senecioneae (653, 447), and Gnaphalieae (589, 339). Together, these four
 416 widespread tribes make up nearly 60% of all native insular Asteraceae species (Table S4, Fig-
 417 ure S3). While these tribes are also some of the largest tribes in the family, when we compare
 418 observed island diversity to expected diversity given the overall size of the tribe (Table S5), we

419 find that island species are over-represented in Cichorieae, Astereae, and Gnaphalieae and within
420 the expected range for Senecioneae. The two tribes with the highest proportion of native island
421 species compared to the total diversity are Feddeeeae (100%) and Distephaneae (86%). Feddeeeae
422 is a monotypic tribe with a single species, *Feddeea cubensis* endemic to Cuba (Figure S3). The
423 *Distephanus* clade is a group distributed across Africa, Madagascar, and the Mascarenes and has a
424 notable overrepresentation of island species relative to overall diversity (36 island species, 43 total
425 species) (Table S5).

426

427 The intra-family diversity patterns are influenced by both the global distribution of a tribe and
428 the presence of islands within that range. Asteraceae clades that have an overrepresentation of
429 island species despite limited islands available within their overall range likely have intrinsic traits
430 potentially well-adapted to islands. Additionally, several tribes with high island species richness
431 are well-known for having widespread weedy species (e.g. Gnaphalieae, Senecioneae). Future re-
432 search on these widespread native species could provide insight into traits that facilitate successful
433 colonization and establishment in novel habitats on islands.

434

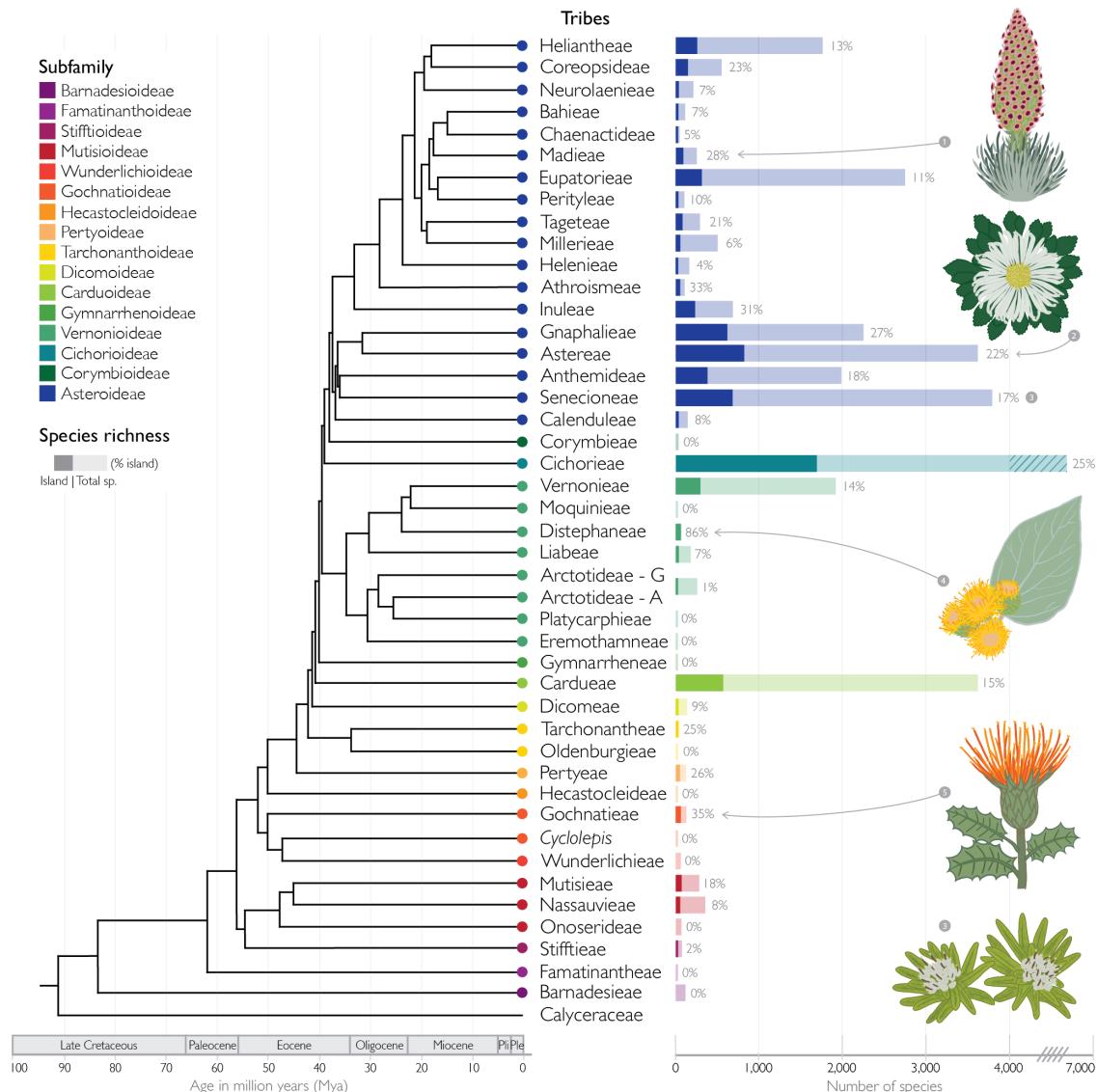


Figure 3: Island diversity within the subfamilies and tribes of Asteraceae. (A) Time-calibrated molecular phylogeny of the tribes and major clades within Asteraceae from Mandel et al., 2019. Tribes are colored by subfamily classification. (B) The number of species native to islands (dark bar) compared to the overall number of species globally (light bar) in each tribe. The percentage of native island species to total species globally is specified next to each tribe. Illustrations highlight clades with high island diversity: (1) *Argyroxiphium sandwicense* endemic to Hawai'i, Madieae; (2) *Commidendrum rugosum* endemic to Saint Helena, Astereae; (3) *Abrotanella inconspicua* endemic to New Zealand, Senecioneae; (4) *Distephanus populifolius* endemic to Mauritius, Distephaneae; (5) *Anastraphia ilicifolia* endemic to Cuba, Gochnatiaeae. Illustrations by Lizzie Roeble.

435 Drivers of island species richness and proportion endemism

436 Species richness in Asteraceae follows classic island biogeography theory, with area and isolation
 437 (-SLMP) being the strongest predictors of both NSR and pSIE (Figure 4). Area has a positive
 438 association with NSR ($\beta = 0.64$, CI 0.56-0.72) and the pSIE ($\beta = 1.55$, CI 1.17-1.94) (Table S6).
 439 This pattern of an increasing number of species with area conforms with both the species-area re-
 440 lationship (Matthews et al., 2021) and the *Theory of Island Biogeography* (MacArthur and Wilson,
 441 1967) and is well-supported across various island systems in other taxonomic groups (Kisel and
 442 Barraclough, 2010; Triantis et al., 2012; Valente et al., 2020; Ohyama et al., 2021). While isolation

443 is a strong predictor of both NSR and pSIE, it has an inverse relationship on the two measures
444 of diversity, having a negative effect on NSR ($\beta = -0.32$, CI -0.45 - -0.19) but a positive effect on
445 pSIE ($\beta = 0.48$, CI 0.09-0.88), with more isolated islands having a higher proportion of endemism.
446 The increase in endemism with isolation is also a prediction of island biogeography, as MacArthur
447 and Wilson proposed the existence of a zone of radiation, where diversification should outpace the
448 dispersal-mediated build-up of species on near islands, and islands change from a dispersal- to an
449 evolution-driven system as isolation increases (MacArthur and Wilson, 1967; Losos and Schluter,
450 2000; Heaney, 2000; Valente et al., 2020).

451
452 Island type (oceanic vs continental), represents the geological origin of islands and is a proxy for
453 connectivity over time, affects both NSR and pSIE. Oceanic islands have fewer native species ($\beta =$
454 -0.38, CI -0.57- -0.19), and a higher proportion of single-island endemics ($\beta = 1.36$, CI 0.48-2.23).
455 Maximum elevation has a positive effect on NSR ($\beta = 0.13$, CI 0.05-0.22), with higher islands hav-
456 ing more native species. Temperature seasonality is the best climatic predictor for NSR (positive
457 effect), whereas mean annual temperature is the best climatic predictor for pSIE (positive effect).
458 In the subset model that was filtered to oceanic islands and included Age+Age² as an additional
459 predictor, we did not observe an additional effect of island age on NSR nor pSIE (Table S7 and
460 Figure S4).

461
462 Both the NSR and pSIE models have substantial predictive power in explaining island Aster-
463 aceae diversity (see methods and Figure S2 for model diagnostics). The overall variance (condi-
464 tional R^2) explained in the NSR model is 90% and the variance explained by the fixed effects
465 alone (marginal R^2) is 56% (Table S6) (Nakagawa R^2 (Nakagawa et al., 2017)). In a separate
466 model, with data aggregated for each archipelago, without random effects, the marginal R^2 was
467 75.1%, with model coefficients all pointing in the same direction as our original model (Table S8),
468 indicating the robustness of our qualitative results to geographical scale. In the pSIE model, the
469 overall variance (conditional R^2) explained by the model is 69% and the variance explained by the
470 fixed effects alone (marginal R^2) is 40%. Comparing the marginal and conditional R^2 , we find that
471 the inclusion of archipelago as a random factor contributes to a large proportion of the variance
472 explained in both the NSR and pSIE models. This is likely due to the nature of the island dataset
473 and the common biogeographic history of the islands belonging to an archipelago that contribute
474 to the conditional variance. There are 49 archipelagos in the dataset that are represented by a
475 single island - often due to limited floristic data available, and in these archipelagos, the mod-
476 els have high predictive power. Additionally, the main model patterns and relationships with the
477 predictors are unaffected when apomictic species are removed (see sensitivity analysis in Figure S5).

478

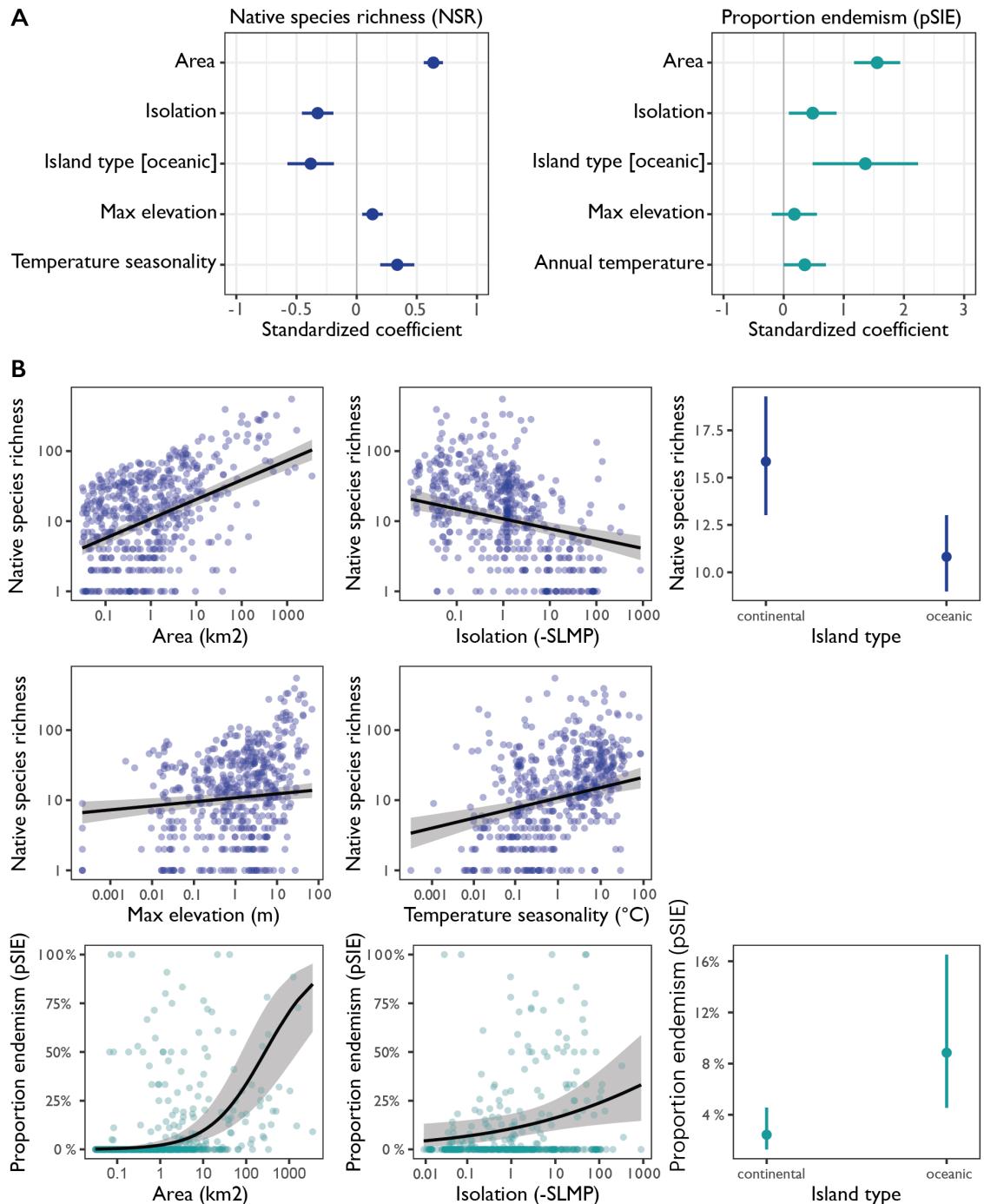


Figure 4: The relative importance of island features and climatic variables on native species richness (NSR) and proportion of single-island endemics (pSIE). (A) Coefficient estimates for the global models of native species richness (blue, top left) and the proportion of single-island endemics (green, top right). The bars around the coefficient estimates represent the standard error. The gray vertical line at 0 indicates no effect, and island variables with a positive coefficient estimate indicate an increase in NSR or pSIE, whereas a negative coefficient estimate indicates a decrease in the response variables. (B) Marginal effects for the significant island and environmental variables. Only significant effects ($p < 0.05$) are visualized. The black line represents the predicted response under the model and the gray band is the 95% confidence interval. The following predictor variables were log-transformed: area, isolation (-SLMP), maximum elevation, and temperature seasonality.

479 **Island Asteraceae radiations have occurred nearly everywhere**

480 Apart from passerine birds of the Galápagos and Hawai'i, the *Anolis* lizards of the Caribbean, or
481 the lemurs of Madagascar, few groups of organisms evoke evolutionary diversification on islands
482 as much as Asteraceae, with its several "flagship" radiations - most famously the Hawaiian silver-
483 swords. However, to date, the geographical extent and number of insular radiations in the family
484 have only been studied for a subset of cases (exclusively adaptive radiations from a subset of oceanic
485 islands). We identified 39 phylogenetically-confirmed insular radiations and 69 putative radiations
486 across continental and oceanic islands, totaling 108 island radiations within the family worldwide.
487 The 39 confirmed radiations range in size from three (the minimum threshold) to 160 species, with
488 an average of 18 species per radiation (median = 11) (Figure 5, Table SD4). New Zealand and
489 surrounding islands are home to the two largest radiations: the *Celmisia* group with c. 160 species
490 and the *Raoulia* alliance with 42 species. On oceanic islands, the largest radiations are the Poly-
491 nesian *Bidens*, with 42 species distributed across Hawai'i, Marquesas, Society, and Austral Islands,
492 followed by the Hawaiian Silversword alliance with 33 species and the woody *Sonchus* alliance with
493 c. 31 species radiating on Macaronesia. The mean crown age of the radiations ranges from 0.4 to
494 24.18 million years (Myr), but the majority of radiations for which a crown age is available are
495 younger than 5 Myr, confirming that they represent mostly recent diversification events.

496

497 Asteraceae have radiated across a wide geographic range of islands, with radiations found on
498 large continental islands (e.g. *Apodocephala-Lowryanthus* on Madagascar) to oceanic archipelagos
499 (e.g. *Scalesia* on the Galápagos) to archipelagos with mixed geologic origin (e.g. *Anastraphia* on
500 the Caribbean), and from tropical islands (e.g. *Hesperomannia* on Hawai'i) to sub-Antarctic islands
501 (e.g. *Pleurophyllum* across the Auckland, Campbell, and Antipodes Islands, which is nested in the
502 larger *Celmisia* group radiation). The majority of confirmed radiations have occurred on oceanic
503 islands (26/39 radiations, Figure 5), and while our mixed effects models support the strong, posi-
504 tive association of isolation on endemism, this could also be a reflection of previous island research
505 focusing on oceanic systems. While radiations have occurred worldwide, several regions are notably
506 rich in confirmed radiations. At least seven radiations with a total of 302 species have occurred
507 on New Zealand and outlying Subantarctic islands. Macaronesia and the Hawaiian Islands also
508 disproportionately support a high number of Asteraceae radiations, with at least ten radiations of
509 120 species total on Macaronesia, and six radiations comprising 90 species on Hawai'i. If we also
510 consider putative radiations, the number of radiation in these two regions increases to 15 and 8
511 respectively.

512

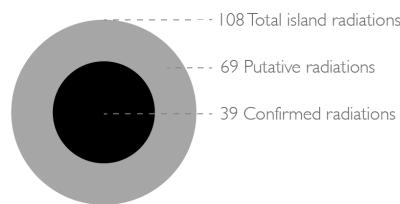
513 Despite the high number of confirmed radiations, it is only when surveying the putative radi-
514 ations that we begin to see the remarkable degree to which this family has, potentially, speciated
515 across islands. In our review, we identified 69 putative radiations, which range in size from three to
516 67 species (Table SD4). In general, many of the putative radiations are found within geologically-
517 complex regions or fall within large, taxonomically-complex clades. More specifically, several re-
518 gions have a high number of putative radiations. The Caribbean is a known hotspot of Asteraceae
519 diversity (Francisco-Ortega et al., 2008). We identified four confirmed radiations that were rep-
520 resented in a well-sampled phylogeny and 26 putative radiations with an overall total of c. 351
521 species. Madagascar is a hyper-diverse island with high endemism and Asteraceae are one of the
522 five most species-rich plant families composing the island's flora (Antonelli et al., 2022); we found
523 two confirmed radiations on Madagascar and identified 16 putative radiations that require future
524 phylogenetic work to investigate and delineate. Additionally, while several genera on Madagascar

525 (i.e. *Helichrysum*, c. 110 endemic species; *Senecio*, c. 50 endemic species; *Vernonia*, c. 70 endemic
526 species) meet our criteria of a putative radiation, they were not included in the putative radiation
527 list because these genera are known to be taxonomically complex (paraphyletic and polyphyletic)
528 and distinguishing the potential radiation from multiple colonization events, even tentatively, is
529 too challenging without a well-sampled phylogeny (Galbany-Casals et al., 2014; Pelser et al., 2010;
530 Keeley et al., 2007; Siniscalchi et al., 2019).

531

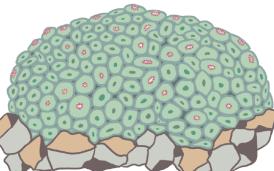
532 Basing the assessment of putative radiations on taxonomy alone has the potential to under-
533 and over-estimate the number of island radiations. On the one hand, an under-estimate of the
534 number of radiations can occur when numerous island endemics within a single large genus arise
535 from multiple independent colonization events and subsequent radiations. For example, phyloge-
536 netic work on *Psiadia* on the Indian Ocean islands supports two independent radiations on the
537 Mascarenes (Strijk et al., 2012). On the other hand, an over-estimation can occur when numerous
538 small island-endemic genera are actually part of one larger island radiation. This can lead to two
539 assessment errors: the small island endemic genera inflate the putative number of radiations if they
540 meet the threshold criteria of three endemic species or the size of the actual radiation is obscured
541 when the small endemic genera are segregated out based on the taxonomy. For example, the
542 woody *Sonchus* alliance on Macaronesia comprises six genera, but from a well-resolved phylogeny
543 (Kim et al., 1996) we know these genera all arose from a single colonization event and radiated
544 across Macaronesia. Notwithstanding these considerations, our assessment of putative radiations
545 not only shows the potential magnitude of radiations within the family but also provides direction
546 for future phylogenetic research on island diversification.

547


548 The combination of confirmed and putative radiations totals to 108 island radiations within the
549 family, indicating that Asteraceae have the remarkable capacity to radiate across a wide diversity
550 of islands, including oceanic islands and continental islands, islands and archipelagos with varying
551 degrees of area and isolation, and across a wide spectrum of island ecosystems and habitat types.
552 How the overall number of island radiations within Asteraceae compares to other flowering plant
553 families still remains unknown because a comparable analysis of island radiations has not been con-
554 ducted. However, recent reviews of radiations with different scopes or on wider taxonomic groups
555 shed light on the magnitude of Asteraceae radiations on islands revealed here. In a review (Cerca
556 et al., 2023) that was restricted to adaptive radiations on oceanic islands, Asteraceae stood out as
557 the family with the highest number of adaptive radiations (finding 19 radiations) compared to all
558 taxonomic groups (arthropods, birds, mollusks, plants, amphibians, and reptiles). Additionally, a
559 comprehensive review of island radiations in birds (Illera et al., 2024), using the same criteria as
560 used here, found 39 island radiations compared to Asteraceae's 108 radiations (confirmed and pu-
561 tative). Together, these studies indicate Asteraceae may be exceptionally rich in island radiations
562 compared not only to other flowering plant families but also to other broader taxonomic groups.
563 However, some of those groups are much less diverse than Asteraceae (e.g. birds 11,000 species
564 compared to the 33,000 Asteraceae), so whether the propensity to radiate is also exceptionally
565 higher in Asteraceae remains to be investigated.

566

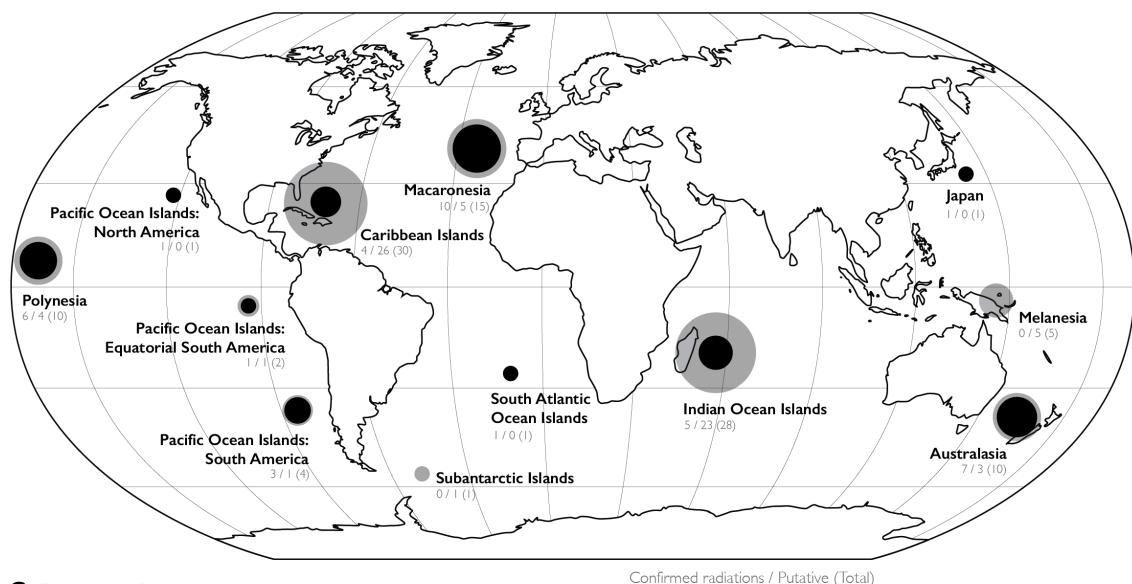
567 Ultimately, future research should aim to move from identifying radiations to understanding
568 the processes underlying plant diversification. To this end, for confirmed radiations, we examined
569 several different characteristics and traits that are often associated with plant diversification on
570 islands (Figure 5C, Table SD4). Out of all traits reviewed, the one trait that reveals a strong link
571 with radiations is woodiness. The majority of confirmed radiations have at least one woody species,


A Asteraceae island radiations

Confirmed radiations evidenced by robust phylogeny; putative radiations by taxonomy and species checklist.

3 Largest island radiations

1 *Celmisia* group: 160 species; New Zealand & Subantarctic Islands (*Pleurophyllum speciosum*)



3 *Bidens*: 42 species; Polynesian Islands (*Bidens cosmoides*)

B Geographic range of island radiations

Comparison of the number of island radiations per region.

C Radiation characteristics

Characteristics and traits of the 39 confirmed radiations.

Figure 5: Summary of island radiations within Asteraceae. (A) Overview of the number of total, confirmed, and putative insular radiations within Asteraceae. The confirmed radiations have been evidenced by robust phylogenetic work and are represented by the black circles, and the putative radiations have been identified based on taxonomy and the island Asteraceae checklist and are represented by the gray circles (see methods for details on assessment criteria). Illustrations of species within the three largest island radiations. (B) Map compares the number of radiations between regions (defined in SD4); in cases where a radiation is distributed across multiple regions, it is included in the region where the most species diversity is located. Several island regions had no radiations (Mediterranean Islands, Micronesia) and are not included on the map. (C) The waffle charts summarize characteristics and traits of the confirmed radiations, where a single radiation is represented by one square. Traits were scored at the radiation level, and if there are multi-states in the radiation it is captured with the "Mixed" category. Full review of island radiations in Table SD4. Illustrations by Lizzie Roeble.

572 which is in agreement with recent research that secondary (insular) woodiness is associated with
573 accelerated diversification rates and may be a key innovation for insular plants (Nürk et al., 2019).
574 A diversity of dispersal syndromes - a key trait in determining island colonization - are represented
575 in Asteraceae island radiations, with wind dispersal (anemochory) most common on less isolated
576 archipelagos (e.g. Macaronesia) and bird dispersal (endozoochory and epizoochory) more common
577 on isolated archipelagos (e.g. Polynesian islands). Hybridization and polyploidy are thought to
578 be common features of adaptive radiations and linked to plant diversification on islands (Marques
579 et al., 2019; Gillespie et al., 2020; Meudt et al., 2021; Cerca et al., 2023), and we found these
580 two traits are somehow associated with island radiations in Asteraceae: both hybridization and
581 polyploidy are documented in 40% of the confirmed radiations. While self-compatibility is often
582 cited to be over-represented in island plants (Grossenbacher et al., 2017; Pannell et al., 2015), in
583 our review of breeding systems (self-compatible, self-incompatible, or mixed), we found this trait
584 to be surprisingly data deficient, indicating fertile ground for more research.

585

586 Conclusion

587 Our analysis of the global patterns of diversity and distribution of Asteraceae on islands is an essen-
588 tial first step towards unlocking further research on Asteraceae on islands, moving beyond classic
589 well-studied oceanic islands (e.g., Canaries, Hawai‘i) to cover less well-studied but also Asteraceae-
590 rich regions such as the Caribbean, New Guinea, or the Mascarenes. Asteraceae diversity is
591 unevenly distributed both geographically and across major clades in the family. This opens up the
592 question of what intrinsic traits and external abiotic conditions are driving Asteraceae diversity on
593 islands. The fact that Asteraceae follow key theoretical expectations of island biogeography and
594 macroecology, suggests that they are not an outlier governed by their own biogeographical rules,
595 highlighting their value as models for biogeography. In comparison with other groups, the key
596 advantage of Asteraceae may lie in its unusually large sample sizes in terms of species and radi-
597 ations, which may allow for circumventing a common limitation of studies of insular assemblages
598 that are typically species-poor. Finally, the large number of potentially undiscovered radiations of
599 Asteraceae suggests that many years of exciting discoveries on the evolution of this family lie ahead.

600

601 References

602 Antonelli, A., Smith, R. J., Perrigo, A. L., Crottini, A., Hackel, J., Testo, W., Farooq, H., Jiménez,
603 M. F. T., Andela, N., Andermann, T., Andriamanohera, A. M., Andriambololona, S.,
604 Bachman, S. P., Bacon, C. D., Baker, W. J., Belluardo, F., Birkinshaw, C., Borrell, J. S.,
605 Cable, S., ... Ralimanana, H. (2022). Madagascar's extraordinary biodiversity: Evolution,
606 distribution, and use. *Science*, 378(6623). <https://doi.org/10.1126/science.abf0869>

607 Baldwin, B. G., & Sanderson, M. J. (1998). Age and rate of diversification of the Hawaiian sil-
608 versword alliance (Compositae). *Proceedings of the National Academy of Sciences*, 95(16),
609 9402–9406. <https://doi.org/10.1073/pnas.95.16.9402>

610 Barajas-Barbosa, M. P., Craven, D., Weigelt, P., Denelle, P., Otto, R., Díaz, S., Price, J., Fernández-
611 Palacios, J. M., & Kreft, H. (2023). Assembly of functional diversity in an oceanic island
612 flora. *Nature*, 619(7970), 545–550. <https://doi.org/10.1038/s41586-023-06305-z>

613 Bernardello, G., Anderson, G. J., Stuessy, T. F., & Crawford, D. J. (2006). The angiosperm flora of
614 the Archipelago Juan Fernandez (Chile): origin and dispersal. *Botany*, 84(8), 1266–1281.
615 <https://doi.org/10.1139/b06-092>

616 Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug,
617 H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB Balances Speed and Flexibility
618 Among Packages for Zero-inflated Generalized Linear Mixed Modeling. *The R Journal*,
619 9(2), 378. <https://doi.org/10.32614/rj-2017-066>

620 Burns, K. C. (2019). *Evolution in Isolation: The Search for an Island Syndrome in Plants*. Cam-
621 bridge University Press.

622 Cai, L., Kreft, H., Taylor, A., Schrader, J., Dawson, W., Essl, F., Kleunen, M. v., Pergl, J., Pyšek,
623 P., Winter, M., & Weigelt, P. (2023). Climatic stability and geological history shape global
624 centers of neo- and paleoendemism in seed plants. *Proceedings of the National Academy of
625 Sciences*, 120(30), e2300981120. <https://doi.org/10.1073/pnas.2300981120>

626 Carlquist, S. (1965). *Island Life: A Natural History of the Islands of the World*. Natural History
627 Press.

628 Carlquist, S. (1966). The Biota of Long-Distance Dispersal. II. Loss of Dispersibility in Pacific
629 Compositae. *Evolution*, 20(1), 30. <https://doi.org/10.2307/2406147>

630 Carlquist, S. (1974). *Island Biology*. Columbia University Press.

631 Carlquist, S., Baldwin, B., & Carr, G. (2003). *Tarweeds & Silverswords: Evolution of the Madiinae
632 (Asteraceae)*. Missouri Botanical Garden Press.

633 Carvajal-Endara, S., Hendry, A. P., Emery, N. C., & Davies, T. J. (2017). Habitat filtering
634 not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos
635 archipelago. *Ecology Letters*, 20(4), 495–504. <https://doi.org/10.1111/ele.12753>

636 Cerca, J., Cotoras, D. D., Bieker, V. C., De-Kayne, R., Vargas, P., Fernández-Mazuecos, M., López-
637 Delgado, J., White, O., Stervander, M., Geneva, A. J., Andino, J. E. G., Meier, J. I., Roeble,
638 L., Brée, B., Patiño, J., Guayasamin, J. M., Torres, M. d. L., Valdebenito, H., Castañeda,
639 M. d. R., ... Martin, M. D. (2023). Evolutionary genomics of oceanic island radiations.
640 *Trends in Ecology & Evolution*, 38(7), 631–642. <https://doi.org/10.1016/j.tree.2023.02.003>

641 Cho, M.-S., Kim, S.-H., Yang, J., Crawford, D. J., Stuessy, T. F., López-Sepúlveda, P., & Kim,
642 S.-C. (2020). Plastid Phylogenomics of *Dendroseris* (Cichorieae; Asteraceae): Insights Into
643 Structural Organization and Molecular Evolution of an Endemic Lineage From the Juan
644 Fernández Islands. *Frontiers in Plant Science*, 11, 594272. <https://doi.org/10.3389/fpls.2020.594272>

645 Crawford, D. J., Kelly, J. K., & Anderson, G. J. (2024). Reproductive Biology of Asteraceae on
646 Oceanic Islands. *The Botanical Review*, 90, 67–108. <https://doi.org/10.1007/s12229-023-09295-9>

647 Crawford, D. J., Lowrey, T. K., Anderson, G. J., Barnardello, G., Santos-Guerra, A., & Stuessy,
648 T. F. (2009). Genetic diversity in Asteraceae endemic to oceanic islands: Baker's Law and
649 polyploidy. In V. A. Funk, A. Susanna, T. F. Stuessy, & R. J. Bayer (Eds.), *Systematics,
650 evolution, and biogeography of compositae* (pp. 139–147). American Society of Plant
651 Taxonomists.

652 Denelle, P., Weigelt, P., & Kreft, H. (2023). GIFT—An R package to access the Global Inventory
653 of Floras and Traits. *Methods in Ecology and Evolution*, 14(11), 2738–2748. <https://doi.org/10.1111/2041-210x.14213>

654 Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N.,
655 Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber,
656 C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., ... Saleem, M. (2017). An Ecoregion-

660 Based Approach to Protecting Half the Terrestrial Realm. *Bioscience*, 67(6), 534–545.
661 <https://doi.org/10.1093/biosci/bix014>

662 Fernández-Mazuecos, M., Vargas, P., McCauley, R. A., Monjas, D., Otero, A., Chaves, J. A.,
663 Andino, J. E. G., & Rivas-Torres, G. (2020). The Radiation of Darwin's Giant Daisies in
664 the Galápagos Islands. *Current Biology*, 30(24), 4989–4998.e7. <https://doi.org/10.1016/j.cub.2020.09.019>

666 Fernández-Palacios, J. M., Nascimento, L. d., Otto, R., Delgado, J. D., García-del-Rey, E., Arévalo,
667 J. R., & Whittaker, R. J. (2011). A reconstruction of Palaeo-Macaronesia, with particular
668 reference to the long-term biogeography of the Atlantic island laurel forests. *Journal of
669 Biogeography*, 38(2), 226–246. <https://doi.org/10.1111/j.1365-2699.2010.02427.x>

670 Fernández-Palacios, J. M., Otto, R., Borregaard, M. K., Kreft, H., Price, J. P., Steinbauer, M. J.,
671 Weigelt, P., & Whittaker, R. J. (2021). Evolutionary winners are ecological losers among
672 oceanic island plants. *Journal of Biogeography*. <https://doi.org/10.1111/jbi.14143>

673 Francisco-Ortega, J., Ventosa, I., Oviedo, R., Jiménez, F., Herrera, P., Maunder, M., & Panero,
674 J. L. (2008). Caribbean Island Asteraceae: Systematics, Molecules, and Conservation on
675 a Biodiversity Hotspot. *The Botanical Review*, 74(1), 112–131. <https://doi.org/10.1007/s12229-008-9008-6>

677 Funk, V. A., Susanna, A., Stuessy, T. F., & Robinson, H. (2009). Classification of Compositae. In
678 V. A. Funk, A. Susanna, T. F. Stuessy, & R. J. Bayer (Eds.), *Systematics, evolution, and
679 biogeography of compositae* (pp. 171–189). International Association for Plant Taxonomy.

680 Galbany-Casals, M., Unwin, M., Garcia-Jacas, N., Smissen, R. D., Susanna, A., & Bayer, R. J.
681 (2014). Phylogenetic relationships in *Helichrysum* (Compositae: Gnaphalieae) and related
682 genera: Incongruence between nuclear and plastid phylogenies, biogeographic and mor-
683 phological patterns, and implications for generic delimitation. *TAXON*, 63(3), 608–624.
684 <https://doi.org/10.12705/633.8>

685 Gillespie, R. G., Bennett, G. M., Meester, L. D., Feder, J. L., Fleischer, R. C., Harmon, L. J.,
686 Hendry, A. P., Knope, M. L., Mallet, J., Martin, C., Parent, C. E., Patton, A. H., Pfennig,
687 K. S., Rubinoff, D., Schluter, D., Seehausen, O., Shaw, K. L., Stacy, E., Stervander, M.,
688 ... Wogan, G. O. U. (2020). Comparing Adaptive Radiations Across Space, Time, and
689 Taxa. *Journal of Heredity*, 111(1), 1–20. <https://doi.org/10.1093/jhered/esz064>

690 Givnish, T. J., Millam, K. C., Mast, A. R., Paterson, T. B., Theim, T. J., Hipp, A. L., Henss,
691 J. M., Smith, J. F., Wood, K. R., & Sytsma, K. J. (2008). Origin, adaptive radiation and
692 diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). *Proceedings of the
693 Royal Society B: Biological Sciences*, 276(1656), 407–416. <https://doi.org/10.1098/rspb.2008.1204>

695 Gostel, M., & Bonifacino, M. (2020). Global Compositae Database: A powerful new taxonomic
696 resource. *TAXON*, 69(5), 1137–1138. <https://doi.org/10.1002/tax.12326>

697 Govaerts, R., Lughadha, E. N., Black, N., Turner, R., & Paton, A. (2021). The World Checklist
698 of Vascular Plants, a continuously updated resource for exploring global plant diversity.
699 *Scientific Data*, 8(1), 215. <https://doi.org/10.1038/s41597-021-00997-6>

700 Grossenbacher, D. L., Brandvain, Y., Auld, J. R., Burd, M., Cheptou, P.-O., Conner, J. K., Grant,
701 A. G., Hovick, S. M., Pannell, J. R., Pauw, A., Petanidou, T., Randle, A. M., Casas,
702 R. R. d., Vamosi, J., Winn, A., Igic, B., Busch, J. W., Kalisz, S., & Goldberg, E. E.
703 (2017). Self-compatibility is over-represented on islands. *New Phytologist*, 215(1), 469–
704 478. <https://doi.org/10.1111/nph.14534>

705 Hartig, F. (2022). *Dharma: Residual diagnostics for hierarchical (multi-level / mixed) regression
706 models*. <https://CRAN.R-project.org/package=DHARMA>

707 Haveman, R. (2013). Freakish patterns – species and species concepts in apomicts. *Nordic Journal*
708 *of Botany*, 31(3), 257–269. <https://doi.org/10.1111/j.1756-1051.2013.00158.x>

709 Heaney, L. R. (2000). Dynamic disequilibrium: a long-term, large-scale perspective on the equilib-
710 rium model of island biogeography. *Global Ecology and Biogeography*, 9(1), 59–74. <https://doi.org/10.1046/j.1365-2699.2000.00163.x>

711 Heleno, R., & Vargas, P. (2015). How do islands become green? *Global Ecology and Biogeography*,
712 24(5), 518–526. <https://doi.org/10.1111/geb.12273>

713 Igea, J., Bogarín, D., Papadopoulos, A. S. T., & Savolainen, V. (2015). A comparative analysis of
714 island floras challenges taxonomy-based biogeographical models of speciation. *Evolution*,
715 69(2), 482–491. <https://doi.org/10.1111/evo.12587>

716 Illera, J. C., Rando, J. C., Melo, M., Valente, L., & Stervander, M. (2024). Avian island radiations
717 shed light on the dynamics of adaptive and nonadaptive radiation. *Cold Spring Harbor*
718 *Perspectives in Biology*, 1–29. <https://doi.org/10.1101/cshperspect.a041451>

719 Jeffrey, C. (2009). Evolution of Compositae flowers. In V. A. Funk, A. Susanna, T. F. Stuessy, &
720 R. J. Bayer (Eds.), *Systematics, evolution, and biogeography of compositae* (pp. 131–138).
721 American Society of Plant Taxonomists.

722 Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann,
723 N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's
724 land surface areas. *Scientific Data*, 4(1), 170122. <https://doi.org/10.1038/sdata.2017.122>

725 Katinas, L., Crisci, J. V., Hoch, P., Tellería, M. C., & Apodaca, M. J. (2013). Trans-oceanic
726 dispersal and evolution of early composites (Asteraceae). *Perspectives in Plant Ecology,
727 Evolution and Systematics*, 15(5), 269–280. <https://doi.org/10.1016/j.ppees.2013.07.003>

728 Keeley, S. C., Forsman, Z. H., & Chan, R. (2007). A phylogeny of the “evil tribe” (Vernonieae:
729 Compositae) reveals Old/New World long distance dispersal: Support from separate and
730 combined congruent datasets (trnL-F, ndhF, ITS). *Molecular Phylogenetics and Evolution*,
731 44(1), 89–103. <https://doi.org/10.1016/j.ympev.2006.12.024>

732 Kier, G., Kreft, H., Lee, T. M., Jetz, W., Jetz, W., Nowicki, C., Mutke, J., & Barthlott, W. (2009).
733 A global assessment of endemism and species richness across island and mainland regions.
734 *Proceedings of the National Academy of Sciences*, 106(23), 9322–9327. <https://doi.org/10.1073/pnas.0810306106>

735 Kim, S.-C., Crawford, D. J., Francisco-Ortega, J., & Santos-Guerra, A. (1996). A common origin
736 for woody *Sonchus* and five related genera in the Macaronesian islands: molecular evidence
737 for extensive radiation. *Proceedings of the National Academy of Sciences*, 93(15), 7743–
738 7748. <https://doi.org/10.1073/pnas.93.15.7743>

739 Kim, S.-C., McGowen, M. R., Lubinsky, P., Barber, J. C., Mort, M. E., & Santos-Guerra, A.
740 (2008). Timing and Tempo of Early and Successive Adaptive Radiations in Macaronesia.
741 *PLoS ONE*, 3(5), e2139. <https://doi.org/10.1371/journal.pone.0002139>

742 Kisel, Y., & Barraclough, T. G. (2010). Speciation Has a Spatial Scale That Depends on Levels of
743 Gene Flow. *The American Naturalist*, 175(3), 316–334. <https://doi.org/10.1086/650369>

744 Knope, M. L., Bellinger, M. R., Datlof, E. M., Gallaher, T. J., & Johnson, M. A. (2020a). Insights
745 into the Evolutionary History of the Hawaiian *Bidens* (Asteraceae) Adaptive Radiation
746 Revealed Through Phylogenomics. *Journal of Heredity*, 111(1), 119–137. <https://doi.org/10.1093/jhered/esz066>

747 Knope, M. L., Funk, V. A., Johnson, M. A., Wagner, W. L., Datlof, E. M., Johnson, G., Crawford,
748 D., Bonifacino, J. M., Morden, C. W., Lorence, D. H., Wood, K. R., Meyer, J.-Y., &
749 Carlquist, S. (2020b). Dispersal and adaptive radiation of *Bidens* (Compositae) across the

753 remote archipelagoes of Polynesia. *Journal of Systematics and Evolution*. <https://doi.org/10.1111/jse.12704>

754

755 Knope, M. L., Morden, C. W., Funk, V. A., & Fukami, T. (2012). Area and the rapid radiation
756 of Hawaiian *Bidens* (Asteraceae). *Journal of Biogeography*, 39(7), 1206–1216. <https://doi.org/10.1111/j.1365-2699.2012.02687.x>

757

758 König, C., Weigelt, P., Taylor, A., Stein, A., Dawson, W., Essl, F., Pergl, J., Pyšek, P., Kleunen,
759 M. v., Winter, M., Chatelain, C., Wieringa, J. J., Krestov, P., & Kreft, H. (2021). Source
760 pools and disharmony of the world's island floras. *Ecography*, 44(1), 44–55. <https://doi.org/10.1111/ecog.05174>

761

762 Kreft, H., Jetz, W., Mutke, J., Kier, G., & Barthlott, W. (2008). Global diversity of island floras
763 from a macroecological perspective. *Ecology Letters*, 11(2), 116–127. <https://doi.org/10.1111/j.1461-0248.2007.01129.x>

764

765 Landis, M. J., Freyman, W. A., & Baldwin, B. G. (2018). Retracing the Hawaiian silversword
766 radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. *Evolution*,
767 72(11), 2343–2359. <https://doi.org/10.1111/evo.13594>

768

769 Lenzner, B., Weigelt, P., Kreft, H., Beierkuhnlein, C., & Steinbauer, M. J. (2017). The general dy-
770 namic model of island biogeography revisited at the level of major flowering plant families.
Journal of Biogeography, 44(5), 1029–1040. <https://doi.org/10.1111/jbi.12906>

771

772 Linder, H. P. (2008). Plant species radiations: where, when, why? *Philosophical Transactions of
the Royal Society B: Biological Sciences*, 363(1506), 3097–3105. <https://doi.org/10.1098/rstb.2008.0075>

773

774 Losos, J. B., & Ricklefs, R. E. (Eds.). (2010). *The Theory of Island Biogeography Revisited*. Prince-
775 ton University Press.

776

777 Losos, J. B., & Schlüter, D. (2000). Analysis of an evolutionary species–area relationship. *Nature*,
408(6814), 847–850. <https://doi.org/10.1038/35048558>

778

779 MacArthur, R. H., & Wilson, E. O. (1967). *The Theory of Island Biogeography*. Princeton Univer-
sity Press.

780

781 Magallón, S., & Castillo, A. (2009). Angiosperm diversification through time. *American Journal
of Botany*, 96(1), 349–365. <https://doi.org/10.3732/ajb.0800060>

782

783 Mandel, J. R., Dikow, R. B., Siniscalchi, C. M., Thapa, R., Watson, L. E., & Funk, V. A. (2019).
784 A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversi-
785 fications throughout the history of Asteraceae. *Proceedings of the National Academy of
Sciences*, 116(28), 14083–14088. <https://doi.org/10.1073/pnas.1903871116>

786

787 Marques, D. A., Meier, J. I., & Seehausen, O. (2019). A combinatorial view on speciation and
adaptive radiation. *Trends in Ecology & Evolution*, 34(6), 531–544. <https://doi.org/10.1016/j.tree.2019.02.008>

788

789 Matthews, T. J., Triantis, K. A., & Whittaker, R. J. (Eds.). (2021). *The Species-Area Relationship:
Theory and Application*. Cambridge University Press.

790

791 Meudt, H. M., Albach, D. C., Tanentzap, A. J., Igea, J., Newmarch, S. C., Brandt, A. J., Lee,
792 W. G., & Tate, J. A. (2021). Polyploidy on Islands: Its Emergence and Importance for
793 Diversification. *Frontiers in Plant Science*, 12, 637214. <https://doi.org/10.3389/fpls.2021.637214>

794

795 Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R² and
796 intra-class correlation coefficient from generalized linear mixed-effects models revisited and
797 expanded. *Journal of The Royal Society Interface*, 14(134), 20170213. <https://doi.org/10.1098/rsif.2017.0213>

798

799 Noyes, R. D. (2007). Apomixis in the Asteraceae: Diamonds in the Rough. *Functional Plant Science
800 and Biotechnology*, 1(2), 207–222.

801 Nürk, N. M., Atchison, G. W., & Hughes, C. E. (2019). Island woodiness underpins accelerated
802 disparification in plant radiations. *New Phytologist*, 224(1), 518–531. <https://doi.org/10.1111/nph.15797>

804 Ohyama, L., Holt, R. D., Matthews, T. J., & Lucky, A. (2021). The species-area relationship in ant
805 ecology. *Journal of Biogeography*, 48(8), 1824–1841. <https://doi.org/10.1111/jbi.14149>

806 Panero, J. L., & Crozier, B. S. (2016). Macroevolutionary dynamics in the early diversification of
807 Asteraceae. *Molecular Phylogenetics and Evolution*, 99(Proc. Natl. Acad. Sci. USA 106
808 2009), 116–132. <https://doi.org/10.1016/j.ympev.2016.03.007>

809 Pannell, J. R., Auld, J. R., Brandvain, Y., Burd, M., Busch, J. W., Cheptou, P.-O., Conner, J. K.,
810 Goldberg, E. E., Grant, A.-G., Grossenbacher, D. L., Hovick, S. M., Igic, B., Kalisz, S.,
811 Petanidou, T., Randle, A. M., Casas, R. R., Pauw, A., Vamosi, J. C., & Winn, A. A.
812 (2015). The scope of Baker's law. *New Phytologist*, 208(3), 656–667. <https://doi.org/10.1111/nph.13539>

814 Papadopoulos, A. S. T., Baker, W. J., Crayn, D., Butlin, R. K., Kynast, R. G., Hutton, I., &
815 Savolainen, V. (2011). Speciation with gene flow on Lord Howe Island. *Proceedings of the
816 National Academy of Sciences*, 108(32), 13188–13193. <https://doi.org/10.1073/pnas.1106085108>

818 Pelser, P. B., Kennedy, A. H., Tepe, E. J., Shidler, J. B., Nordenstam, B., Kadereit, J. W., &
819 Watson, L. E. (2010). Patterns and causes of incongruence between plastid and nuclear
820 Senecioneae (Asteraceae) phylogenies. *American Journal of Botany*, 97(5), 856–873. <https://doi.org/10.3732/ajb.0900287>

822 Price, J. P., & Clague, D. A. (2002). How old is the Hawaiian biota? Geology and phylogeny
823 suggest recent divergence. *Proceedings of the Royal Society of London. Series B: Biological
824 Sciences*, 269(1508), 2429–2435. <https://doi.org/10.1098/rspb.2002.2175>

825 Ramírez-Barahona, S., Sauquet, H., & Magallón, S. (2020). The delayed and geographically het-
826 erogeneous diversification of flowering plant families. *Nature Ecology & Evolution*, 4(9),
827 1232–1238. <https://doi.org/10.1038/s41559-020-1241-3>

828 Richards, A. J. (2003). Apomixis in flowering plants: an overview. *Philosophical Transactions of
829 the Royal Society of London. Series B: Biological Sciences*, 358(1434), 1085–1093. <https://doi.org/10.1098/rstb.2003.1294>

831 Rijsdijk, K. F., Buijs, S., Quartau, R., Aguilée, R., Norder, S. J., Ávila, S. P., Medeiros, S. M. T. D.,
832 Nunes, J. C. C., Elias, R. B., Melo, C. S., Stocchi, P., Koene, E. F. M., Seijmonsbergen,
833 A. C., Boer, W. M. D., & Borges, P. A. V. (2020). Recent geospatial dynamics of Terceira
834 (Azores, Portugal) and the theoretical implications for the biogeography of active volcanic
835 islands. *Frontiers of Biogeography*, 12(3). <https://doi.org/10.21425/f5fbg45003>

836 Sang, T., Crawford, D. J., Kim, S.-C., & Stuessy, T. F. (1994). Radiation of the endemic genus
837 *Dendroseris* (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the
838 its regions of nuclear ribosomal DNA. *American Journal of Botany*, 81(11), 1494–1501.
839 <https://doi.org/10.1002/j.1537-2197.1994.tb15635.x>

840 Schenk, J. J. (2021). The Next Generation of Adaptive Radiation Studies in Plants. *International
841 Journal of Plant Sciences*, 000–000. <https://doi.org/10.1086/713445>

842 Schlüter, D. (2000). *The Ecology of Adaptive Radiation*. Oxford University Press.

843 Schrader, J., König, C., Triantis, K. A., Trigas, P., Kreft, H., & Weigelt, P. (2020). Species-area
844 relationships on small islands differ among plant growth forms. *Global Ecology and Bio-
845 geography*, 29(5), 814–829. <https://doi.org/10.1111/geb.13056>

846 Siniscalchi, C. M., Loeuille, B., Funk, V. A., Mandel, J. R., & Pirani, J. R. (2019). Phylogenomics
847 Yields New Insight Into Relationships Within Vernonieae (Asteraceae). *Frontiers in Plant*
848 *Science*, 10, 1224. <https://doi.org/10.3389/fpls.2019.01224>

849 Stoklosa, J., Blakey, R. V., & Hui, F. K. C. (2022). An Overview of Modern Applications of
850 Negative Binomial Modelling in Ecology and Biodiversity. *Diversity*, 14(5), 320. <https://doi.org/10.3390/d14050320>

852 Strijk, J. S., Noyes, R. D., Strasberg, D., Cruaud, C., Gavory, F., Chase, M. W., Abbott, R. J.,
853 & Thébaud, C. (2012). In and out of Madagascar: Dispersal to Peripheral Islands, Insular
854 Speciation and Diversification of Indian Ocean Daisy Trees (*Psiadia*, Asteraceae). *PLoS*
855 *ONE*, 7(8), e42932. <https://doi.org/10.1371/journal.pone.0042932>

856 Susanna, A., Baldwin, B. G., Bayer, R. J., Bonifacino, J. M., Garcia-Jacas, N., Keeley, S. C.,
857 Mandel, J. R., Ortiz, S., Robinson, H., & Stuessy, T. F. (2020). The classification of the
858 Compositae: A tribute to Vicki Ann Funk (1947–2019). *TAXON*. <https://doi.org/10.1002/tax.12235>

860 Taylor, A., Keppel, G., Weigelt, P., Zottz, G., & Kreft, H. (2021). Functional traits are key to
861 understanding orchid diversity on islands. *Ecography*. <https://doi.org/10.1111/ecog.05410>

862 The Plant List (Version 1.1). (2013). <http://www.theplantlist.org/>

863 Triantis, K. A., Guilhaumon, F., & Whittaker, R. J. (2012). The island species-area relationship:
864 biology and statistics. *Journal of Biogeography*, 39(2), 215–231. <https://doi.org/10.1111/j.1365-2699.2011.02652.x>

866 Valente, L., Phillimore, A. B., Melo, M., Warren, B. H., Clegg, S. M., Havenstein, K., Tiedemann,
867 R., Illera, J. C., Thébaud, C., Aschenbach, T., & Etienne, R. S. (2020). A simple dynamic
868 model explains the diversity of island birds worldwide. *Nature*, 579(7797), 1–5. <https://doi.org/10.1038/s41586-020-2022-5>

870 Veron, S., Haevermans, T., Govaerts, R., Mouchet, M., & Pellens, R. (2019). Distribution and
871 relative age of endemism across islands worldwide. *Scientific Reports*, 9(1), 11693. <https://doi.org/10.1038/s41598-019-47951-6>

873 Veron, S., Kondratyeva, A., Robuchon, M., Grandcolas, P., Govaerts, R., Haevermans, T., Pellens,
874 R., & Mouchet, M. (2021). High evolutionary and functional distinctiveness of endemic
875 monocots in world islands. *Biodiversity and Conservation*, 30(12), 3697–3715. <https://doi.org/10.1007/s10531-021-02272-x>

877 Vitales, D., Garnatje, T., Pellicer, J., Vallès, J., Santos-Guerra, A., & Sanmartín, I. (2014). The
878 explosive radiation of *Cheirolophus* (Asteraceae, Cardueae) in Macaronesia. *BMC Evolutionary
879 Biology*, 14(1), 118. <https://doi.org/10.1186/1471-2148-14-118>

880 Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., Morlon,
881 H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios,
882 J. M., Hengl, T., Norder, S. J., Rijssdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A.,
883 ... Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty
884 years after MacArthur-Wilson. *Ecology Letters*, 18(2), 200–217. <https://doi.org/10.1111/ele.12398>

886 Weigelt, P., Kissling, W. D., Kisel, Y., Fritz, S. A., Karger, D. N., Kessler, M., Lehtonen, S.,
887 Svenning, J.-C., & Kreft, H. (2015). Global patterns and drivers of phylogenetic structure
888 in island floras. *Scientific Reports*, 5(1), 12213. <https://doi.org/10.1038/srep12213>

889 Weigelt, P., König, C., & Kreft, H. (2020). GIFT – A Global Inventory of Floras and Traits for
890 macroecology and biogeography. *Journal of Biogeography*, 47(1), 16–43. <https://doi.org/10.1111/jbi.13623>

892 Weigelt, P., & Kreft, H. (2013). Quantifying island isolation – insights from global patterns of
893 insular plant species richness. *Ecography*, 36(4), 417–429. <https://doi.org/10.1111/j.1600-0587.2012.07669.x>

895 White, O. W., Reyes-Betancort, J. A., Chapman, M. A., & Carine, M. A. (2020). Geographical
896 isolation, habitat shifts and hybridisation in the diversification of the Macaronesian
897 endemic genus *Argyranthemum* (Asteraceae). *New Phytologist*, 228(6), 1953–1971. <https://doi.org/10.1111/nph.16980>

899 Whitehead, D. R., & Jones, C. E. (1969). Small islands and the equilibrium theory of insular
900 biogeography. *Evolution*, 23(1), 171–179. <https://doi.org/10.1111/j.1558-5646.1969.tb03503.x>

902 Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis,
903 K. A. (2017). Island biogeography: Taking the long view of nature's laboratories. *Science*,
904 357(6354), eaam8326. <https://doi.org/10.1126/science.aam8326>

905 Whittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general dynamic theory of oceanic island
906 biogeography. *Journal of Biogeography*, 35(6), 977–994. <https://doi.org/10.1111/j.1365-2699.2008.01892.x>

908 Zizka, A., Onstein, R. E., Rozzi, R., Weigelt, P., Kreft, H., Steinbauer, M. J., Bruelheide, H., &
909 Lens, F. (2022). The evolution of insular woodiness. *Proceedings of the National Academy
910 of Sciences*, 119(37), e2208629119. <https://doi.org/10.1073/pnas.2208629119>

911 Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common
912 statistical problems. *Methods in Ecology and Evolution*, 1(1), 3–14. <https://doi.org/10.1111/j.2041-210x.2009.00001.x>

₉₁₄ **Supplementary data**

Table SD1: **Global checklist of Asteraceae native and endemic to islands.** The global checklist of insular Asteraceae extracted from GIFT with subsequent manual curation is structured by island geographic units. For each island in the data set, we have a checklist of Asteraceae species, name standardization (original name, WCVP name, and GCD name status), reference to the primary source, intrafamily taxonomic classification, the floristic status of the species (native, endemic, non-endemic) to that geographic unit, distribution, and conservation status.

Table SD2: **References for the global island Asteraceae checklist.** References of the primary regional checklists and floras from the Global Inventory of Floras and Traits (GIFT) used to compile the global checklist of Asteraceae native and endemic to islands.

Table SD3: **Dataset of islands with the number of native and endemic Asteraceae species and associated abiotic variables used in the mixed effects models.**

Table SD4: **Review of confirmed and putative island radiations in Asteraceae.** The data includes (1) a literature review of the confirmed radiations with associated trait and characteristic data, (2) a literature review of the putative radiations with notes summarizing current phylogenetic work on the group and evidence supporting putative radiation status, (3) criteria for assigning radiation status (confirmed, putative) and key definitions, (4) references for both confirmed and putative radiations.

915 Supplementary material (Extended Data)

Table S1: **Comparison of candidate models for native species richness (NSR) and the proportion of single-island endemics (pSIE).** For both response variables (NSR and pSIE), we built a range of candidate models to evaluate the relationship between insular diversity and different island environmental parameter combinations. The final model for NSR and pSIE was selected based on the best AIC (Akaike information criterion), AICc (Akaike information criterion corrected for sample size), and BIC (Bayesian information criterion) scores and is highlighted in bold. In the model formulas, the abbreviations are defined as: dist = distance, SLMP = surrounding landmass proportion, itype = island type (oceanic or continental), mxelv = maximum elevation, TRI = terrain ruggedness index, anntemp = mean annual temperature, annprecip = mean annual precipitation, tempseas = temperature seasonality, precipseas = precipitation seasonality, arch = archipelago, zi = zero-inflation.

Model	Model type	AIC	AICc	BIC	R2 conditional	R2 marginal
1 NSR~area	glmmTMB	15935.7	15935.8	15944.2	NA	0.95
2 NSR~dist	glmmTMB	26378.8	26378.9	26387.3	NA	0.73
3 NSR~area+(1 arch)	glmmTMB	3773.7	3773.8	3790.7	0.91	0.25
4 NSR~area+(area arch)	glmmTMB	3721.6	3721.7	3742.8	0.92	0.26
5 NSR~area+(area arch); zi	glmmTMB	3723.6	3723.8	3749.1	0.60	0.17
6 NSR~area+dist+(area arch)+(dist arch)	glmmTMB	3709.8	3710	3743.7	0.88	0.52
7 NSR~area+dist+(area arch)+(dist arch); zi	glmmTMB	3711.8	3712.1	3749.9	0.48	0.29
8 NSR~area+dist+(1 arch)	glmmTMB	3771.1	3771.2	3792.3	0.90	0.27
9 NSR~area+SLMP+(1 arch)	glmmTMB	3701.8	3701.9	3723.0	0.89	0.45
10 NSR~area+SLMP+itype+(1 arch)	glmmTMB	3688.2	3688.4	3713.6	0.89	0.46
11 NSR~area+SLMP+itype+mxelv+(1 arch)	glmmTMB	3680.7	3680.9	3710.3	0.89	0.48
12 NSR~area+SLMP+itype+TRI+(1 arch)	glmmTMB	3683.2	3683.4	3712.8	0.89	0.48
13 NSR~area+SLMP+itype+mxelv+TRI+(1 arch)	glmmTMB	3682.5	3682.8	3716.4	0.89	0.48
14 NSR~area+SLMP+itype+mxelv+anntemp+(1 arch)	glmmTMB	3680.6	3680.9	3714.5	0.89	0.48
15 NSR~area+SLMP+itype+mxelv+annprecip+(1 arch)	glmmTMB	3682.0	3682.3	3715.9	0.89	0.48
16 NSR~area+SLMP+itype+mxelv+anntemp+annprecip+(1 arch)	glmmTMB	3682.1	3682.5	3720.3	0.89	0.47
17 NSR~area+SLMP+itype+mxelv+tempseas+(1 arch)	glmmTMB	3661.4	3661.7	3695.3	0.90	0.56
18 NSR~area+SLMP+itype+mxelv+precipseas+(1 arch)	glmmTMB	3682.6	3682.9	3716.5	0.89	0.48
19 NSR~area+SLMP+itype+mxelv+tempseas+precipseas+(1 arch)	glmmTMB	3662.5	3662.9	3700.7	0.90	0.56
1 pSIE~area	glmmTMB	250.5	250.6	259.0	NA	0.14
2 pSIE~dist	glmmTMB	265.2	265.2	273.7	NA	0.10
3 pSIE~area+(1 arch)	glmmTMB	1023.4	1023.5	1040.4	0.72	0.22
4 pSIE~area+dist+(1 arch)	glmmTMB	1013.9	1014.0	1035.1	0.70	0.29
5 pSIE~area+SLMP+(1 arch)	glmmTMB	994.6	994.8	1015.8	0.68	0.31
6 pSIE~area+SLMP+itype+(1 arch)	glmmTMB	987.3	987.5	1012.7	0.69	0.38
7 pSIE~area+SLMP+itype+mxelv+(1 arch)	glmmTMB	988.7	989.0	1018.4	0.69	0.39
8 pSIE~area+SLMP+itype+TRI+(1 arch)	glmmTMB	989.3	989.5	1018.9	0.69	0.38
9 pSIE~area+SLMP+itype+mxelv+TRI+(1 arch)	glmmTMB	989.3	989.6	1023.2	0.68	0.38
10 pSIE~area+SLMP+itype+mxelv+anntemp+(1 arch)	glmmTMB	986.9	987.2	1020.8	0.69	0.40
11 pSIE~area+SLMP+itype+mxelv+annprecip+(1 arch)	glmmTMB	990.7	991.0	1024.6	0.69	0.39
12 pSIE~area+SLMP+itype+mxelv+anntemp+annprecip+(1 arch)	glmmTMB	988.7	989.0	1026.8	0.68	0.41
13 pSIE~area+SLMP+itype+mxelv+tempseas+(1 arch)	glmmTMB	990.7	991.0	1024.6	0.69	0.39
14 pSIE~area+SLMP+itype+mxelv+precipseas+(1 arch)	glmmTMB	988.3	988.6	1022.2	0.68	0.40
15 pSIE~area+SLMP+itype+mxelv+tempseas+precipseas+(1 arch)	glmmTMB	990.3	990.6	1028.4	0.68	0.40

Table S2: **Summary of the island diversity data for the top ten angiosperm families across all islands (continental, oceanic, and mixed) and oceanic islands.** The total number of species native to islands and total number of species endemic to islands were calculated from the GIFT checklists and the overall number of species within each family is based on the World Checklist of Vascular Plants (WCVP). Proportion island refers to the number of species within each family that are native to islands. Stem ages for each family were extracted from the angiosperm dated phylogeny (relaxed calibration and complete fossil dataset) constructed in Ramírez-Barahona et al., 2020.

Family	Native island species	Endemic island species	Total species in family	Proportion island	Stem age (Mya)
<i>All islands</i>					
Orchidaceae	11,188	8,047	29,867	37%	133 (127-141)
Rubiaceae	6,188	4,740	14,083	44%	102 (90-115)
Asteraceae	6,135	3,535	33,994	18%	74 (72-78)
Fabaceae	4,169	1,773	22,187	19%	107 (93-119)
Poaceae	3,979	1,385	11,754	34%	94 (87-99)
Myrtaceae	2,389	1,808	6,186	39%	98 (84-112)
Cyperaceae	2,296	756	5,644	41%	85 (68-107)
Apocynaceae	2,288	1,633	6,487	35%	87 (70-104)
Euphorbiaceae	2,262	1,519	6,530	35%	80 (64-96)
Melastomataceae	1,954	1,617	5,844	33%	83 (65-102)
<i>Oceanic islands</i>					
Asteraceae	1,833	955	33,994	5%	74 (72-78)
Orchidaceae	1,776	708	29,867	6%	133 (127-141)
Poaceae	1,366	292	11,754	12%	94 (87-99)
Rubiaceae	1,343	871	14,083	10%	102 (90-115)
Fabaceae	1,141	287	22,187	5%	107 (93-119)
Cyperaceae	903	205	5,644	16%	85 (68-107)
Euphorbiaceae	653	287	6,530	10%	80 (64-96)
Myrtaceae	583	454	6,186	9%	98 (84-112)
Malvaceae	496	198	5,439	9%	92 (83-102)
Apocynaceae	480	256	6,487	7%	87 (70-104)

Table S3: **Binomial test for the ten most diverse angiosperm families on islands comparing the island proportion to the expected proportion of the family globally.** The total number of angiosperm species (n) on all islands is 99,659 species, and on oceanic islands 23,853 species. The sample estimate represents the estimated proportion of island species based on the observed data, and the 95% confidence interval is the range estimate for the true probability of success (i.e. the proportion of the family on islands). When the sample estimate is equal to the overall proportion of the family globally, the null hypothesis is accepted. The alternative hypothesis is accepted when the sample estimate is not equal to the overall proportion of the family globally, indicating a deviation from the expected proportion. If the sample estimate and 95% confidence interval are greater than the proportion of the family globally (p), then the family is more diverse on islands than expected, if they are lower than the proportion of the family globally, the family is less diverse on islands than expected given its global diversity.

Family	Binomial test parameters			Results	
	Native island species (x)	Proportion of family globally (p)	p-value	Sample estimate	95% confidence interval
<i>All islands</i>					
Orchidaceae	11,188	8.9	<0.001	11.23	11.03-11.42
Rubiaceae	6,188	4.2	<0.001	6.21	6.06-6.36
Asteraceae	6,135	10.2	<0.001	6.16	6.01-6.31
Fabaceae	4,169	6.6	<0.001	4.18	4.06-4.31
Poaceae	3,979	3.5	<0.001	3.99	3.87-4.12
Myrtaceae	2,389	1.9	<0.001	2.4	2.30-2.49
Cyperaceae	2,296	1.7	<0.001	2.3	2.21-2.40
Apocynaceae	2,288	1.9	<0.001	2.3	2.20-2.39
Euphorbiaceae	2,262	2.0	<0.001	2.27	2.18-2.36
Melastomataceae	1,954	1.8	<0.001	1.96	1.88-2.05
<i>Oceanic islands</i>					
Asteraceae	1,833	10.2	<0.001	7.68	7.35-8.03
Orchidaceae	1,776	8.9	<0.001	7.45	7.12-7.79
Poaceae	1,366	3.5	<0.001	5.73	5.44-6.03
Rubiaceae	1,343	4.2	<0.001	5.63	5.34-5.93
Fabaceae	1,141	6.6	<0.001	4.78	4.52-5.06
Cyperaceae	903	1.7	<0.001	3.79	3.55-4.04
Euphorbiaceae	653	2.0	<0.001	2.74	2.53-2.95
Myrtaceae	583	1.9	<0.001	2.44	2.25-2.65
Malvaceae	496	1.6	<0.001	2.08	1.90-2.27
Apocynaceae	480	1.9	0.439	2.01	1.84-2.20

Table S4: **Summary of island species diversity across Asteraceae subfamilies and tribes.**

The proportion of island species is calculated as the number of native island species / total number of species in the tribe. The overall number of species in each tribe is based on the accepted number of species in the Global Compositae Database (GCD).

Tribe	Subfamily	Total species in tribe	Native island species	Endemic island species	Proportion island species
Barnadesieae	Barnadesioideae	92	0	0	0%
Famatinantheae	Famatinanthoideae	1	0	0	0%
Hyalideae	Stifttioideae	6	0	0	0%
Stifttieae	Stifttioideae	45	1	1	2%
Onoserideae	Mutisioideae	41	0	0	0%
Mutisieae	Mutisioideae	255	45	32	18%
Nassauvicae	Mutisioideae	328	27	5	8%
Wunderlichiae	Wunderlichioideae	36	0	0	0%
Cyclolepis	Gochnatioideae	1	0	0	0%
Gochnatiae	Gochnatioideae	102	36	33	35%
Hecastocleideae	Hecastocleidoideae	1	0	0	0%
Pertyeae	Pertyoideae	99	26	16	26%
Oldenburgiae	Tarchonanthoideae	4	0	0	0%
Tarchonantheae	Tarchonanthoideae	20	5	5	25%
Dicomeae	Dicomoideae	112	10	9	9%
Cardueae	Carduoideae	3,586	542	313	15%
Gymnarrheneae	Gymnarrhenoideae	2	0	0	0%
Eremothamneae	Vernonioideae	1	0	0	0%
Moquiniae	Vernonioideae	2	0	0	0%
Platycarphaea	Vernonioideae	3	0	0	0%
Distephaneae	Vernonioideae	43	37	36	86%
Liabeae	Vernonioideae	154	11	11	7%
Arctotideae	Vernonioideae	233	2	0	1%
Vernonieae	Vernonioideae	1,888	270	202	14%
Cichorieae	Cichorioideae	6,673	1,660	905	25%
Corymbiae	Corymbioideae	9	0	0	0%
Feddeeeae	Asteroideae	1	1	1	100%
Polymnieae	Asteroideae	8	0	0	0%
Chaenactideae	Asteroideae	21	1	0	5%
Doronicaceae	Asteroideae	39	7	1	18%
Perityleae	Asteroideae	78	8	3	10%
Athroismiae	Asteroideae	82	27	15	33%
Bahieae	Asteroideae	87	6	3	7%
Calenduleae	Asteroideae	118	10	2	8%
Heleniae	Asteroideae	138	6	1	4%
Neurolaenaeae	Asteroideae	187	13	8	7%
Madieae	Asteroideae	227	63	38	28%
Tageteae	Asteroideae	266	56	22	21%
Millerieae	Asteroideae	477	29	8	6%
Coreopsidiae	Asteroideae	523	122	86	23%
Inuleae	Asteroideae	659	206	91	31%
Heliantheae	Asteroideae	1,730	231	103	13%
Anthemideae	Asteroideae	1,955	354	147	18%
Gnaphalieae	Asteroideae	2,218	589	339	27%
Eupatorieae	Asteroideae	2,720	288	187	11%
Astereae	Asteroideae	3,586	793	465	22%
Senecioneae	Asteroideae	3,760	653	447	17%

Table S5: Binomial test for the tribes in Asteraceae comparing the island proportion to the expected proportion of the tribe globally. The total number of Asteraceae species (n) on islands is 6,135 species. The sample estimate represents the estimated proportion of island species based on the observed data, and the 95% confidence interval is the range estimate for the true probability of success (i.e. the proportion of the tribe on islands). When the sample estimate is equal to the overall proportion of the tribe in Asteraceae (p), the null hypothesis is not rejected. The alternative hypothesis is accepted when the sample estimate is not equal to the overall proportion of the tribe globally, indicating a deviation from the expected proportion. If the sample estimate and 95% confidence interval are greater than the proportion of the tribe globally (p), then the tribe is more diverse on islands than expected, if they are lower than the proportion of the tribe globally, the tribe is less diverse on islands than expected given its global diversity. Significant deviations from the null expectation are highlighted in red (below expectation) and blue (above expectation).

Tribe	Binomial test parameters			Results		
	Native island species (x)	Proportion of tribe in Aster. (p)	p-value	Sample estimate	Confidence interval	Significant deviation from null
Stifftieae	1	0.1	0.005	0.0	0-0.09	
Nassauvieae	27	1.0	<0.001	0.4	0.29-0.64	
Mutisieae	45	0.8	0.941	0.7	0.54-0.98	
Gochnatieae	36	0.3	<0.001	0.6	0.41-0.81	
Pertyeae	26	0.3	0.058	0.4	0.28-0.62	
Tarchonantheae	5	0.1	0.42	0.1	0.03-0.19	
Dicomeae	10	0.3	0.019	0.2	0.08-0.3	
Cardueae	542	10.5	<0.001	8.8	8.14-9.57	
Arctotideae	2	0.7	<0.001	0.0	0-0.12	
Liabeae	11	0.5	<0.001	0.2	0.09-0.32	
Distephaneae	37	0.1	<0.001	0.6	0.42-0.83	
Vernonieae	270	5.6	<0.001	4.4	3.9-4.94	
Cichorieae	1,660	19.6	<0.001	27.1	25.95-28.19	
Chaenactideae	1	0.1	0.198	0.0	0-0.09	
Feddeeae	1	0.0	0.165	0.0	0-0.09	
Bahieae	6	0.3	0.011	0.1	0.04-0.21	
Helenieae	6	0.4	<0.001	0.1	0.04-0.21	
Doronicaceae	7	0.1	1	0.1	0.05-0.23	
Perityleae	8	0.2	0.109	0.1	0.06-0.26	
Calenduleae	10	0.3	0.012	0.2	0.08-0.3	
Neurolaenaeae	13	0.6	<0.001	0.2	0.11-0.36	
Athroismeae	27	0.2	0.004	0.4	0.29-0.64	
Millerieae	29	1.4	<0.001	0.5	0.32-0.68	
Tageteae	56	0.8	0.246	0.9	0.69-1.18	
Madieae	63	0.7	0.001	1.0	0.79-1.31	
Coreopsideae	122	1.5	0.006	2.0	1.65-2.37	
Inuleae	206	1.9	<0.001	3.4	2.92-3.84	
Heliantheae	231	5.1	<0.001	3.8	3.3-4.27	
Eupatorieae	288	8.0	<0.001	4.7	4.18-5.25	
Anthemideae	354	5.8	0.934	5.8	5.2-6.38	
Gnaphalieae	589	6.5	<0.001	9.6	8.87-10.37	
Senecioneae	653	11.1	0.309	10.6	9.88-11.44	
Astereae	793	10.5	<0.001	12.9	12.1-13.79	

Table S6: **Summary statistics of native species richness (NSR) and proportion of single-island endemic (pSIE) generalized mixed effect models.** The following predictor variables were log-transformed: area, isolation (-SLMP), maximum elevation, and temperature seasonality.

Predictors	Native species richness (NSR)			Proportion endemism (pSIE)		
	Log-Mean	CI	p	Log-Odds	CI	p
Intercept	2.76	2.57 – 2.96	<0.001	-4.97	-5.80 – -4.14	<0.001
Area	0.64	0.56 – 0.72	<0.001	1.55	1.17 – 1.94	<0.001
Isolation	-0.32	-0.45 – -0.19	<0.001	0.48	0.09 – 0.88	0.017
Island type [oceanic]	-0.38	-0.57 – -0.19	<0.001	1.36	0.48 – 2.23	0.002
Max elevation	0.13	0.05 – 0.22	0.002	0.18	-0.20 – 0.55	0.351
Temperature seasonality	0.34	0.20 – 0.48	<0.001			
Annual temperature				0.35	-0.00 – 0.70	0.051
Random Effects						
σ^2	0.18			3.09		
τ_{00}	0.60	archipelago		2.78	archipelago	
ICC	0.76			0.47		
N	110	archipelago		110	archipelago	
Observations	510			510		
Marginal R ² / Conditional R ²	0.562 / 0.897			0.403 / 0.685		

Table S7: **Summary statistics of the island age subset models.** Subsets of the global models were run for (1) native species richness and (2) the proportion of single-island endemics that filtered to only oceanic islands and included Age+Age² as an additional fixed effect. The following predictor variables were log-transformed: area, isolation (-SLMP), maximum elevation, and temperature seasonality.

Predictors	Native species richness (NSR)			Proportion endemism (pSIE)		
	Log-Mean	CI	p	Log-Odds	CI	p
Intercept	1.98	1.74 – 2.23	<0.001	-2.77	-3.51 – -2.04	<0.001
Area	0.46	0.36 – 0.55	<0.001	0.84	0.46 – 1.22	<0.001
Isolation	-0.38	-0.56 – -0.20	<0.001	0.65	0.16 – 1.13	0.009
Max elevation	0.27	0.15 – 0.39	<0.001	-0.08	-0.45 – 0.28	0.655
Temperature seasonality	0.29	0.10 – 0.49	0.003			
Age	0.03	-0.09 – 0.15	0.638	-0.08	-0.66 – 0.49	0.775
Age ²	-0.02	-0.04 – -0.00	0.045	-0.41	-0.87 – 0.06	0.087
Annual temperature				-0.05	-0.60 – 0.51	0.865
Random Effects						
σ^2	0.17			2.75		
τ_{00}	0.65	archipelago		3.23	archipelago	
ICC	0.79			0.54		
N	55	archipelago		55	archipelago	
Observations	221			221		
Marginal R ² / Conditional R ²	0.496 / 0.893			0.455 / 0.749		

Table S8: **Summary statistics for the native species richness on archipelagos generalized linear model.** In our global model for native species richness (Figure 4, Table S6), we found that the inclusion of archipelago as a random effect contributes substantially to the overall variance captured by the model (i.e. 0.56 marginal R^2 / 0.90 conditional R^2). To test the robustness of our general results, we aggregated the diversity and environmental data from the island level to the archipelago level and ran a generalized linear model. At the scale of the archipelago, the main model patterns do not change: area and isolation are the strongest predictors of native species richness, and the relationships between native species richness and environmental predictors remain the same. Notably for this model the marginal R^2 becomes 0.751, an increase from the 0.56 from the earlier model.

Native species richness (archipelago-level)			
Predictors	Log-Mean	CI	p
Intercept	3.49	3.21 – 3.76	<0.001
Area	0.85	0.60 – 1.09	<0.001
Isolation	-0.43	-0.62 – -0.24	<0.001
Island type [mixed]	-0.67	-1.83 – 0.50	0.262
Island type [oceanic]	-0.30	-0.70 – 0.10	0.141
Max elevation	0.27	0.03 – 0.51	0.026
Temperature seasonality	0.40	0.21 – 0.58	<0.001
Observations	139		
R2 conditional / R2 marginal	NA / 0.747		

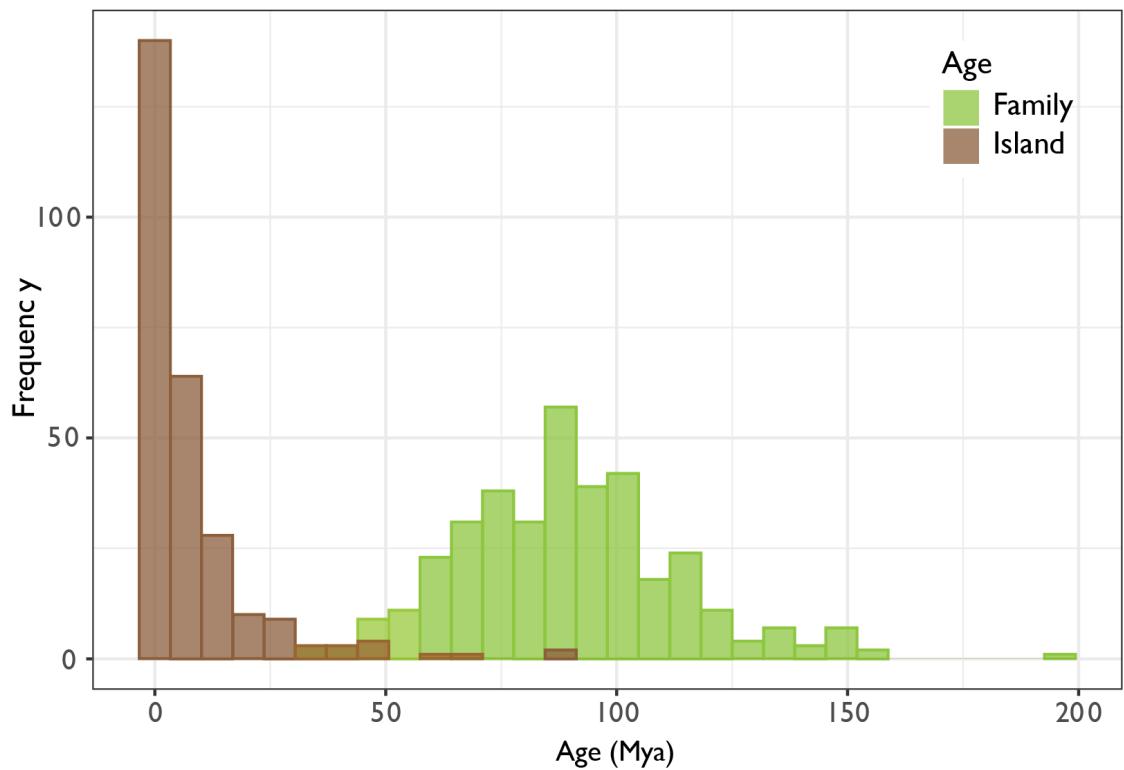
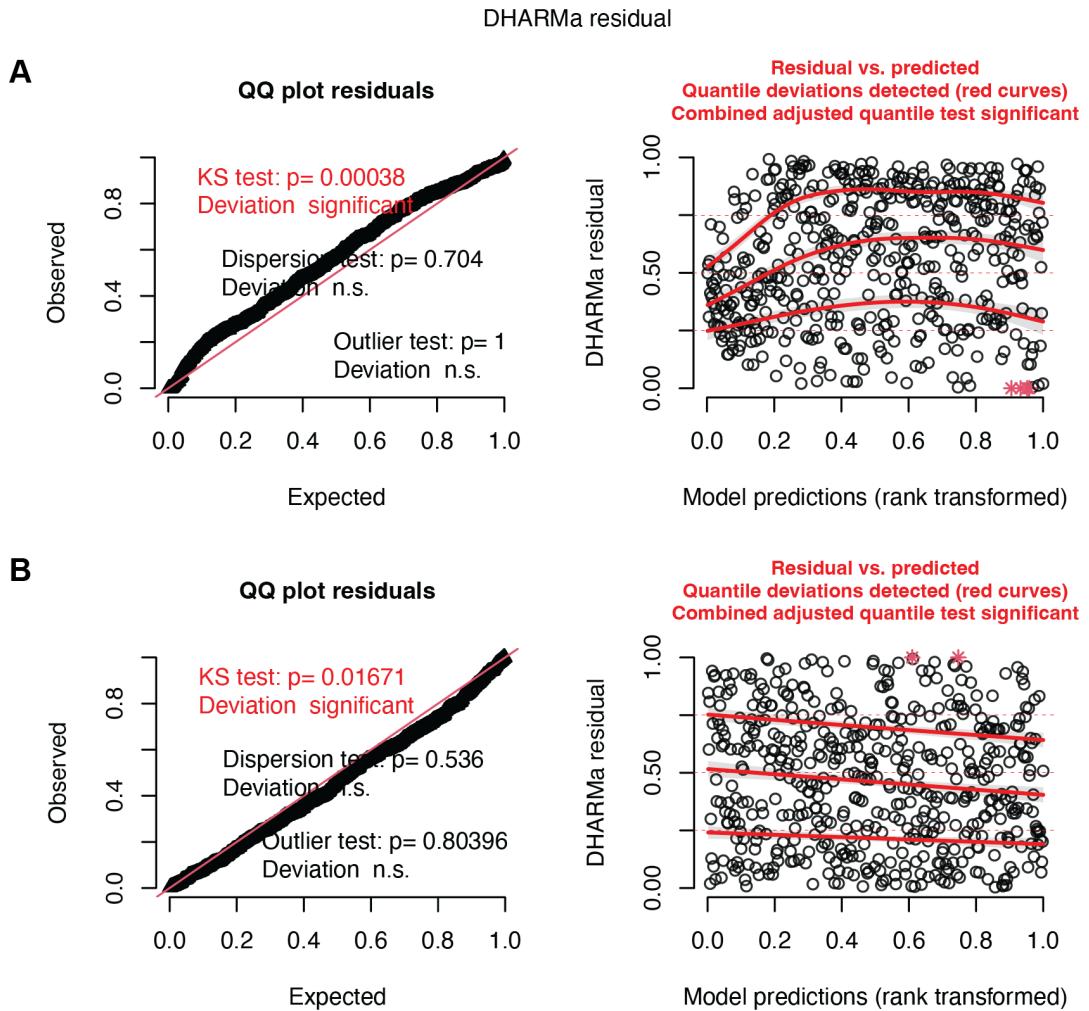



Figure S1: **Distribution of island and family ages.** The distribution of island ages (million years ago, Mya) is highlighted in brown. These are the islands in our dataset for which an age estimate is available. In green is the distribution of stem ages (Mya) for the plant families with native island species. Stem ages for each family were extracted from the angiosperm dated phylogeny (relaxed calibration and complete fossil dataset) constructed in Ramírez-Barahona et al., 2020.

Figure S2: Diagnostic plots of the scaled residuals for the fitted models for (A) Native species richness and (B) Proportion of single-island endemics. We assessed the scaled residuals with the DHARMA package (Hartig, 2022), which simulates standardized residuals from the fitted model and can check for overdispersion and zero inflation. The QQ plots (left panel) detect deviations from the expected distribution, dispersions, and outliers; the residuals plot (right panel) shows the simulated residuals against the predicted values. For the NSR model (A), no significant outliers or overdispersion were detected. The simulated residuals indicate that the NSR model has difficulties predicting native species numbers for islands with a low number of native species (1-3) well. In particular, the model tends to overestimate these numbers. This is likely a reflection of sampling bias, where islands without any native species presence were filtered out of the data set and islands with few species possibly being poorly sampled locations or capturing possibly native (e.g. introduced species) species. Although deviations are marked as significant, they do not appear to be large. Furthermore, adding quadratic terms, splines or additional interactions did not significantly change the observed patterns. For the pSIE model (B), no significant outliers or overdispersion were detected. The simulated residuals for pSIE indicate heteroscedasticity but the effect is mild.

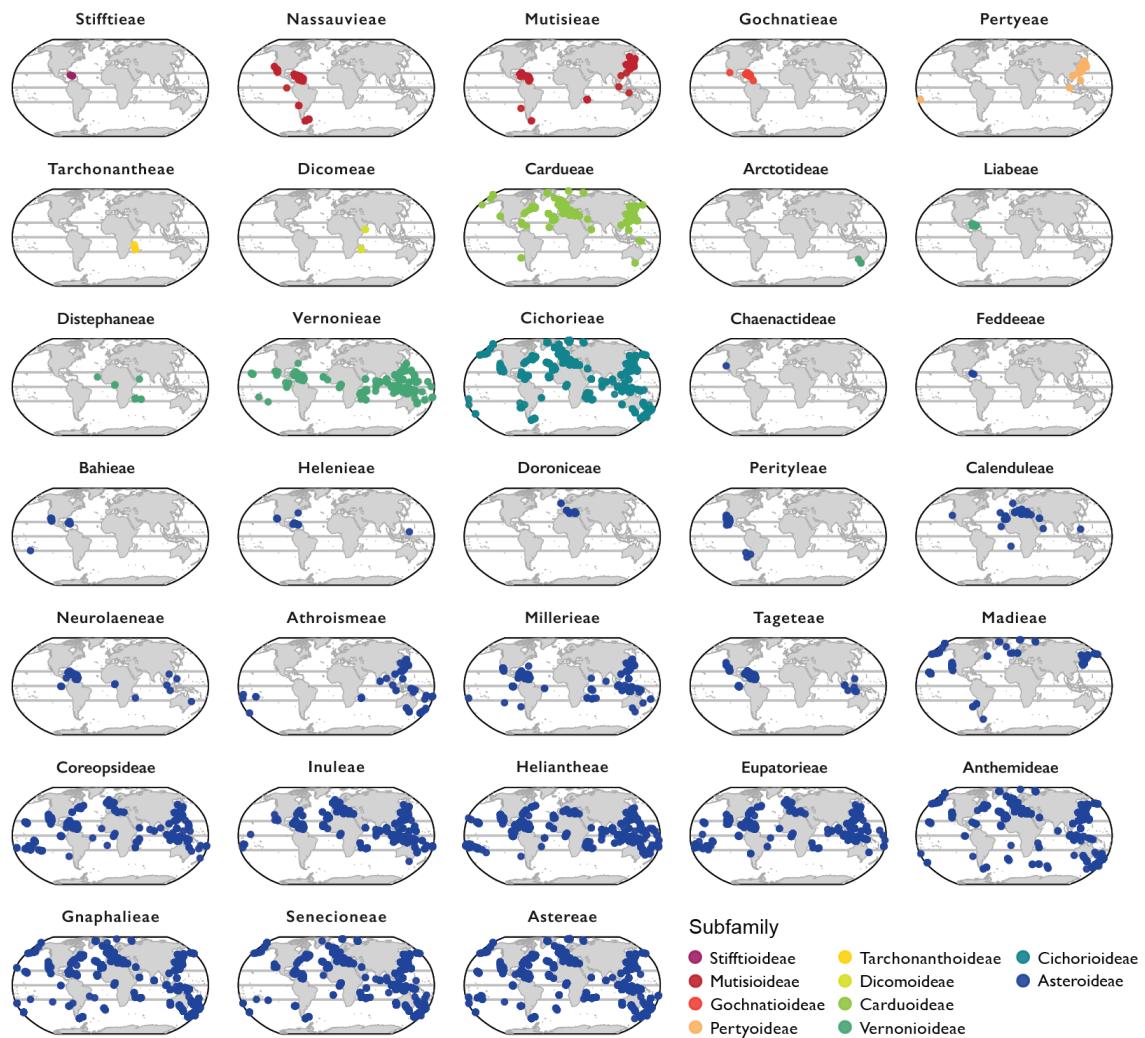
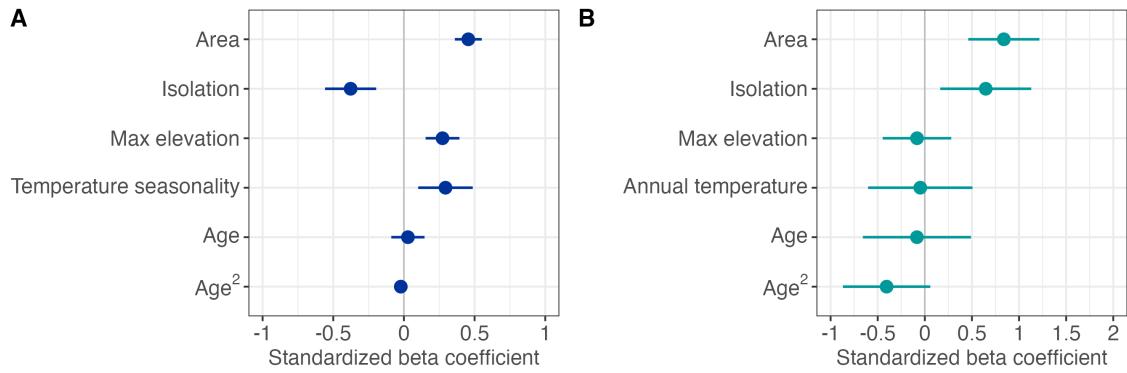
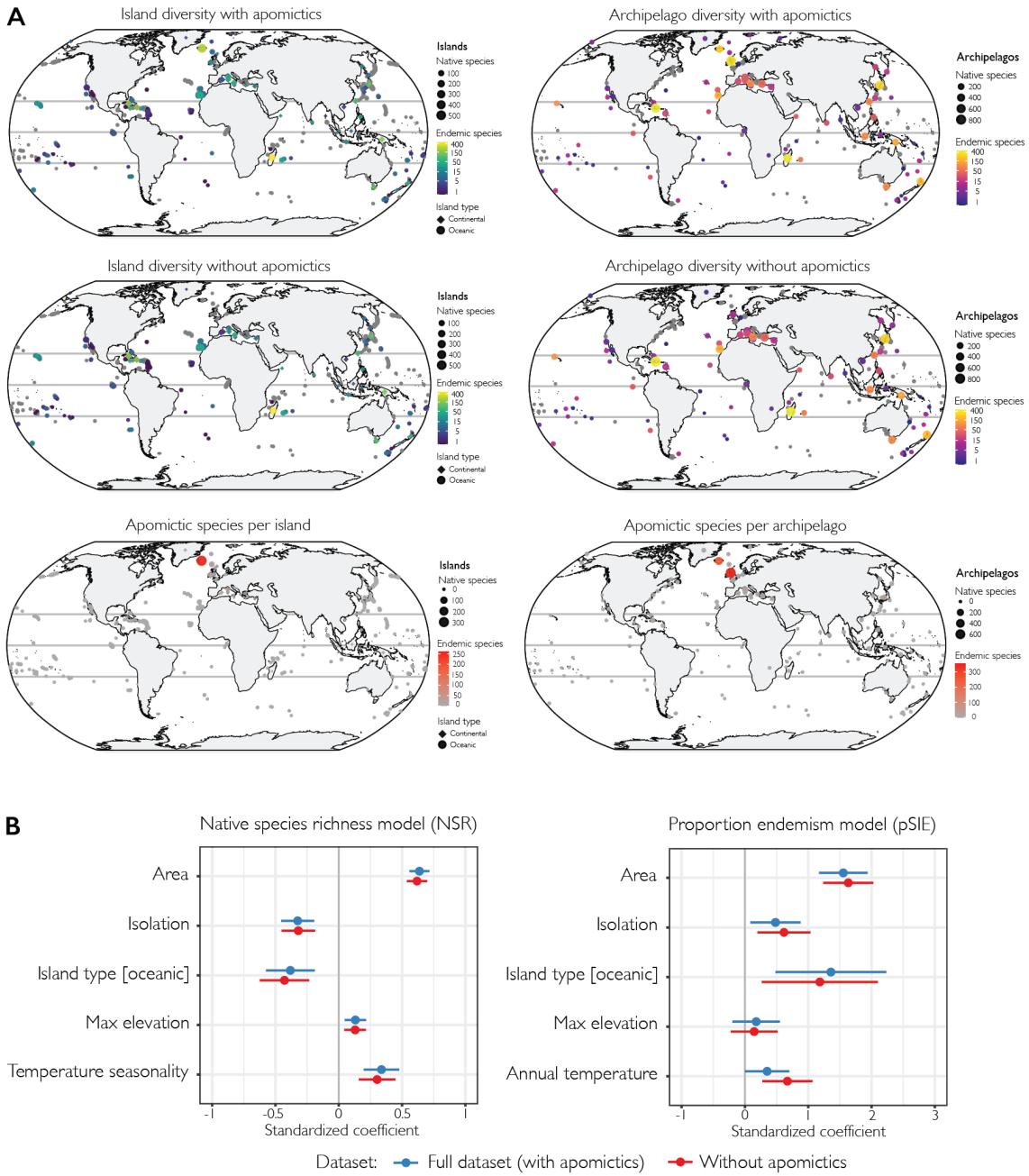




Figure S3: Geographical distribution of native species on islands per tribe. The tribes are colored and grouped by their subfamily.

Figure S4: Standardized coefficients for the island age subset models. Coefficient estimates for the subset of global models for (A) native species richness (blue) and (B) the proportion of single-island endemics (green) including $Age+Age^2$ as an additional fixed effect. The bars around the coefficient estimates represent the standard error. The dark gray vertical intercept at 0 indicates no significant effect, and island variables with a positive coefficient estimate indicate an increase in native species richness or proportion endemism, whereas a negative coefficient estimate indicates a decrease in the response variables.

Figure S5: Impact of apomictic species on family-level diversity analyses. (Caption next page.)

Figure S5: Impact of apomictic species on family-level diversity analyses. (Previous page.) Here we evaluate the influence of apomictic species on family-level diversity analyses, focusing on two aspects: (1) geographic distribution and hotspots, and (2) island biogeographic patterns. Apomictic genera were filtered based on the Apomixis Database (<https://www.uni-goettingen.de/de/apomixis+database/423360.html>), an online database containing information on apomixis at the genus level in angiosperms. We examine the difference in diversity pattern using two datasets: one including all genera even putative apomictics (full dataset), and another with apomictic genera removed. (A) Geographic distribution and hotspots: The top row of maps presents the distribution with the full dataset on islands (left) and archipelagos (right), the middle row shows the distribution with apomictics excluded, and the third row shows the number of putative apomictic species per insular unit (island or archipelago). Most islands have no change in diversity due to apomictics, but the largest differences are on Iceland and the British Isles. (B) Island biogeographic patterns: we ran and compared generalized linear mixed effects models with both the full dataset and filtered dataset with apomictic genera removed to test whether the same global model was selected for both. There was no change in the best global model with the filtering of apomictics. We fit the global model for both datasets, and (in B) compare the standardized coefficients for the full dataset (blue) and dataset with apomictics removed (red). There is no significant change in predictor relationships when apomictic genera are removed.