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AbstractÐThe need to guarantee hard delay bounds to traffic
flows with deterministic traffic profiles, e.g., token buckets, arises
in several network settings. It is of interest to offer such guaran-
tees while minimizing network bandwidth. The paper explores a
basic building block, namely, a single hop configuration, towards
realizing such a goal. The main results are in the form of
optimal solutions for meeting local deadlines under schedulers of
varying complexity and therefore cost. The results demonstrate
how judiciously modifying flows’ traffic profiles, i.e., reprofiling
them, can help simple schedulers reduce the bandwidth they
require, often performing nearly as well as more complex ones.
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I. INTRODUCTION

The provision of deterministic delay guarantees to traffic

flows is emerging as an important requirement in increasingly

diverse settings. They include automotive, avionics, and man-

ufacturing applications, smart grids, and datacenters [1]±[7].

This is reflected in standards such as Time Sensitive Network-

ing (TSN) and Deterministic Networking (DetNet) [8]±[11]

and in the Service Level Objectives/Agreements (SLOs/SLAs)

[12] of many service provider networks that are increasingly

including latency targets, motivated in part by the rapid growth

of edge computing offerings [13].

In such settings, the traffic eligible for latency guarantees is

commonly controlled using a traffic regulator [14] in the form

of a token bucket (r, b) that limits both the flow’s long-term

rate, r, and burstiness, b. A flow’s token bucket parameters

are typically determined using traces, and selected to ensure

zero access delay [15]. The network’s goal is then to ensure

that the latency guarantees of all such rate-controlled flows are

met, preferably with as little bandwidth as possible.

This is the environment this paper assumes, with a fo-

cus on a basic building block, namely, delivering latency

guarantees on a single link (hop) with the least amount

of bandwidth. The answer obviously depends on the type

of scheduler controlling access to the link, and the paper
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considers schedulers of different levels of complexity. Of

greater interest is whether, what the paper terms reprofiling,

can be beneficial. Reprofiling amounts to modifying a flow’s

original (chosen by the user) token bucket parameters to make

the flow ªeasierº to accommodate. This concept was explored

in WorkloadCompactor [15] with one important difference,

namely, the constraint that reprofiling should not introduce any

delay. In contrast, our reprofiling solutions impose an added

delay in exchange for smoother flows. This in turn calls for

tighter network latency bounds to ensure that the original delay

targets are still met. The outcome of this trade-off depends on

the level of reprofiling applied as well as the type of scheduler

in use. Investigating when and how it is positive in a single

hop setting is the focus of this paper.

Specifically, the paper considers reprofiling of the form

(r, b)
reprofiling−−−−−→ (r, b′), where b′ ≤ b. In other words, we

reduce the flow’s burstiness to make it easier to handle. We

note that more complex reprofiling solutions are possible.

Our motivations for focusing on burst reduction are two-fold.

First, we want to minimize any added complexity, and this

reprofiling can be realized simply by modifying the burst

parameter of the existing token bucket. Second, As shown

in [16, Appendix F], in simple configurations involving only

two flows and a static priority scheduler, adjusting the burst

size is sufficient to minimize the required bandwidth. These

motivations notwithstanding, more complex reprofilers, e.g.,

adding a second token bucket that controls the peak rate,

can be of benefit in more general settings. We explore this

extension in [17] in the multiple hops setting.

We note that the notion of reprofiling is closely tied to the

definition of greedy shapers of [18, Section 1.5], with one

important difference. Specifically, depending on the sched-

uler, a reprofiler can be either non-work-conserving, i.e., as

a (greedy) shaper, or work-conserving. The latter is only

applicable when relying on dynamic priority schedulers such

as earliest deadline first (edf) that can combine the local link

deadline and the reprofiling delay when determining the order

in which to send packets.

The paper makes the following contributions when it comes

to meeting latency targets in the single-hop case with traffic

profiles in the form of token buckets:

• Characterize the optimal (minimum bandwidth) solution,

and show that a dynamic priority (edf) scheduler can

realize it. The solution readily establishes that reprofiling

yields no benefit with such a scheduler.

• Identify optimal reprofiling solutions for static priority
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and fifo schedulers, and demonstrate how they allow those

schedulers to closely approximate the performance of the

more complex edf scheduler across a range of scenarios.

For ease of exposition, the results are derived and presented

assuming a fluid model, which, therefore, implies a preemptive

behavior. As the discussion of [18, Section 1.1.1] highlights,

extending the results to a packet setting is readily achiev-

able from standard network calculus results. For illustration

purposes, Appendix F of [16] derives a solution for a static

priority scheduler under a packet-based model, but the results

do not contribute further insight.

The paper is structured as follows. Section II introduces

our traffic model and optimization framework. The next three

sections present optimal solutions for schedulers of different

complexity. Section III considers a general, dynamic priority

scheduler, while Sections IV and V assume simpler static

priority and fifo schedulers. For the latter two, the benefits

of reprofiling flows are also explored. Section VI quantifies

performance for each scheduler, starting with two-flow con-

figurations that help build intuition for the results, before

considering more general multi-flow scenarios. Section VII

reviews related works, while Section VIII summarizes the

paper’s findings and their relevance to the multi-hop extension

of [17]. Proofs and ancillary results are relegated to appendices

available in an online version of the paper [16].

II. MODEL FORMULATION

Consider the configuration of Fig. 1 with n flows sharing a

common link1 of rate R. The traffic generated by flow i is rate-

controlled using a two-parameter token bucket (ri, bi) [14],

its traffic profile, where ri is the token rate and bi the bucket

size. Flow i also has a local packet-level deadline di, where

w.l.o.g. we assume d1 > d2 > . . . > dn with d1 < ∞. Our

goal is to meet the deadlines of all n flows with the lowest

possible link bandwidth R. In doing so, we further assume

greedy sources [18, Proposition 1.2.5] that fully realize the

arrival curve associated with their token bucket.

Fig. 1: A typical one-hop configuration with n flows.

In this setting, let r = (r1, r2, . . . , rn), b = (b1, b2, . . . , bn),
and d = (d1, d2, . . . , dn) be the vectors of rates, burst sizes,

and deadlines of the flows sharing the link, respectively,

1For simplicity, we assume that enough buffering is available and that the
link capacity is such that the system is stable and lossless.

and let D∗
i (r, b, R) denote flow i’s worst-case delay (queue-

ing+transmission). Our bandwidth minimization problem can

then be formulated as an optimization of the form:

OPT ❏ minR

s.t D∗
i (r, b, R) ≤ di, ∀i, 1 ≤ i ≤ n

where R is the optimization variable and ❏ denotes the sched-

uler type, which for notational simplicity has been omitted in

the expression of D∗
i (r, b, R). As mentioned in Section I, one

of our goals is to evaluate the trade-off between (bandwidth)

efficiency and complexity across different schedulers.

Another goal is to investigate the potential benefits of

reprofiling flows prior to forwarding their traffic to the sched-

uler. Reprofiling amounts to applying a different, typically

ªsmallerº, traffic profile to each flow before forwarding them

to the scheduler. This can2 introduce an up-front reprofiling

delay, but may lower the bandwidth required to meet overall

latency goals if it makes flows ªeasierº to handle.

More formally, given a scheduler ª❏º and n flows sharing

a link, where flow i, 1 ≤ i ≤ n, has traffic profile (ri, bi) and

deadline di, the goal of reprofiling is to identify smaller burst

sizes b′i ≤ bi, 1 ≤ i ≤ n, that minimize the link bandwidth R
needed to meet the flows’ deadlines, inclusive of any resulting

reprofiling delay (the smaller burst b′i introduces a reprofiling

delay of
bi−b′i
ri

). We note that we restrict reprofiling options

to only reducing the burst size, rather than also considering

adding a ªpeak rateº shaper. This is in part to simplify

the resulting optimization OPT R❏, and also because, as

shown in Appendix F of [16], this is sufficient in simple

configurations with only two flows. This translates into a

modified optimization problem OPT R❏ of the form

OPT R❏ min
b′

R

s.t D∗
i (r, b, b

′, R) ≤ di, ∀i, 1 ≤ i ≤ n

where R and b
′ are the optimization variables. The latter

denotes the vectors of updated (reprofiled) burst sizes of the

n flows, and D∗
i (r, b, b

′, R), 1 ≤ i ≤ n, are the worst case

delays, accounting for reprofiling delays, of the n flows under

scheduler ❏ and a link bandwidth of R. The optimization

explores the extent to which making flows smoother (smaller

bursts) can facilitate meeting their delay targets with less

bandwidth in spite of the access delay that reprofiling adds.

The next three sections explore solutions to OPT ❏ (and

OPT R❏) for different schedulers, namely, dynamic priority,

static priority, and fifo (OPT DP, OPT SP, and OPT F).

III. DYNAMIC PRIORITIES

We start with the most powerful but most complex sched-

uler, dynamic priorities, with priorities derived from service

curves assigned to flows as a function of their profile (deadline

and traffic envelope). We first solve OPT DP by characteriz-

ing the service curves that achieve the lowest bandwidth while

meeting all deadlines in the absence of any reprofiling.

To derive the result, we first specify a service-curve assign-

ment Γsc that satisfies all deadlines, identify the minimum

2When the reprofiler operates in a non-work-conserving manner.
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link bandwidth R∗ required to realize Γsc, and show that any

scheduler requires at least R∗. We then show that an earliest

deadline first scheduler realizes Γsc and, therefore, meets all

the flow deadlines under R∗. e note that this then implies that

reprofiling is of no benefit when an edf scheduler is available.

Proposition 1. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has a traffic

profile (ri, bi) and a deadline di, with d1 > d2 > ... > dn
and d1 < ∞. Consider a service-curve assignment Γsc that

allocates flow i a service curve of

SCi(t) =

{
0 when t < di,

bi + ri(t− di) otherwise.
(1)

Then

1) For any flow i, 1 ≤ i ≤ n, SCi(t) ensures a worst-case

end-to-end delay no larger than di.
2) Realizing Γsc requires a link bandwidth of at least

R∗ = max
1≤h≤n

{
n∑

i=1

ri,

∑n
i=h bi + ri(dh − di)

dh

}
. (2)

3) Any scheduling mechanism capable of meeting all the

flows’ deadlines requires a bandwidth of at least R∗.

The proof of Proposition 1 is in Appendix B-A of [16].

The optimality of Γsc is intuitive. Recall that a service curve

is a lower bound on the service received by a flow. Eq. (1)

assigns service to a flow at a rate exactly equal to its input

rate, but delayed by its deadline, i.e., provided at the latest

possible time. Conversely, any mechanism Γ̂ that meets all

flows’ deadlines must by time t have provided flow i a

cumulative service at least equal to the amount of data that

flow i may have generated by time t − di, which is exactly

SCi(t). Hence the mechanism must offer flow i a service curve

ŜCi(t) ≥ SCi(t), ∀t.
Next, we identify at least one mechanism capable of realiz-

ing the services curves of Eq. (1) under R∗, and consequently

providing a solution to OPT DP for schedulers that support

dynamic priorities.

Proposition 2. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has traffic profile

(ri, bi) and deadline di, with d1 > d2 > ... > dn and d1 < ∞.

The earliest deadline first (edf) scheduler realizes Γsc under

a link bandwidth of R∗.

The proof of Proposition 2 is in Appendix B-B of [16].

We note that the optimality of edf is intuitive, as minimizing

the required bandwidth is the dual problem to maximizing the

schedulable region for which edf’s optimality is known [19].

As previously mentioned and as the next proposition for-

mally states, reprofiling does not reduce the minimum required

bandwidth R∗ of Eq. (2). Consequently, it affords no benefits

with edf schedulers capable of meeting the deadlines under

R∗. This is expected given the optimality of edf schedulers.

Proposition 3. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has traffic profile

(ri, bi) and deadline di, with d1 > d2 > ... > dn and d1 < ∞.

Reprofiling flows will not decrease the minimum bandwidth

required to meet the flows’ deadlines.

The proof is in Appendix B-C of [16].

Note that Γsc specifies a non-linear (piece-wise-linear) ser-

vice curve for each flow. Given the popularity and simplicity of

linear service curves, i.e., rate-based schedulers, it is tempting

to investigate whether such schedulers, e.g., GPS [20], could

be used instead. Unfortunately, it is easy to find scenarios

where linear service curves perform worse.

Consider a link shared by two flows with traffic profiles

(r1, b1) = (1, 45) and (r2, b2) = (1, 5), and deadlines d1 = 10
and d2 = 1. A rate-based scheduler must allocate a bandwidth

of max
{

b
d , r

}
to a flow with traffic profile (r, b) to meet its

deadline d of. Applying this to flow 2 that has the tighter

deadline calls for a bandwidth of 5 to meet its deadline.

After 1.25 units of time (the time to clear the initial burst

of 5 and the additional data that accumulated during its

transmission), flow 2’s bandwidth usage drops down to r2 = 1.

The remaining 4 units then become available to flow 1. This

means that the initial dedicated bandwidth needed by flow 1
to meet its deadline of 10 given its burst size of b1 = 45 is

simply its token rate r1 = 13, for a total network bandwidth

of 6 units. In contrast, Eq. (2) tells us that Γsc, only requires

a bandwidth of R∗ = 5.9.

The next two sections consider simpler static priority and

fifo schedulers, and quantify the bandwidth they require to

meet flows’ deadlines. Both schedulers are considered either

alone or with ªreprofilersº that first modify the flows’ traffic

profiles before they are allowed to access the scheduler.

IV. STATIC PRIORITIES

Though edf schedulers are efficient and increasingly realiz-

able [21]±[23], they are expensive and may not be practical in

all environments. It is, therefore, of interest to explore simpler

alternatives while quantifying the trade-off they entail between

efficacy and complexity. For that purpose, we consider next a

static priority scheduler where each flow is assigned a fixed

priority as a function of its deadline.

As before, we consider n flows with traffic profiles (ri, bi)
and deadlines di, 1 ≤ i ≤ n, sharing a common link. The

question we first address is how to assign (static) priorities to

each flow given their deadlines and OPT SP’s goal of mini-

mizing link bandwidth? The next proposition offers a partial

and somewhat intuitive answer to this question by establishing

that the minimum link bandwidth can be achieved by giving

flows with shorter deadlines a higher priority. Formally,

Proposition 4. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has traffic profile

(ri, bi) and deadline di, with d1 > d2 > ... > dn and d1 < ∞.

Under a static-priority scheduler, there exists an assignment of

flows to priorities that minimizes link bandwidth while meeting

all flows deadlines such that flow i is assigned a priority

strictly greater than that of flow j only if di < dj .

3Clearing the burst of flow 1 by its deadline d1 = 10 calls for a bandwidth
x such that 45− 5

4
x− (x+ 4)

(
10− 5

4

)
≤ 0, which yields x ≥ 1.
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The proof is in Appendix C-A of [16]. We note that while

Proposition 4 states that link bandwidth can be minimized by

assigning flows to priorities in the order of their deadline, it

neither rules out other mappings nor does it imply that flows

with different deadlines should always be mapped to distinct

priorities. For example, large enough deadlines can all be met

by a link bandwidth equal to the sum of the flows’ average

rates, i.e., R∗ =
∑n

i=1 ri. In this case, priorities and their

ordering are irrelevant. More generally, grouping flows with

different deadlines in the same priority class can often result

in a lower bandwidth than mapping them to distinct priority

classes4. Nevertheless, motivated by Proposition 4, we propose

a simple assignment rule that strictly maps lower deadline

flows to higher priorities, and evaluate its performance.

A. Static Priorities without Reprofiling

From [18, Proposition 1.3.4] we know that when n flows

with traffic profiles (ri, bi), 1 ≤ i ≤ n, share a link of

bandwidth R ≥
∑n

i=1 ri with flow i assigned to priority i
(priority n is the highest), then, under a static-priority sched-

uler, the worst case delay of flow h is upper-bounded by∑n
i=h

bi
R−

∑
n
i=h+1

ri
(recall that under our notation, priority n is the

highest). As a result, the minimum link bandwidth R̃∗ to

ensure that flow h’s deadline dh is met for all h, i.e., solving

OPT SP, is given by:

R̃∗ = max
1≤h≤n

{
n∑

i=1

ri,

∑n
i=h bi
dh

+

n∑

i=h+1

ri

}
(3)

Towards evaluating the performance of a static priority

scheduler versus that of an edf scheduler, we compare R̃∗ with

R∗ through their relative difference, i.e., R̃∗−R∗

R∗
. For ease of

comparison, we rewrite R∗ as

R∗ = max
1≤h≤n

{
n∑

i=1

ri,

∑n
i=h bi
dh

+
n∑

i=h+1

ri

(
1− di

dh

)}
(4)

Comparing Eqs. (3) and (4) shows that R∗ = R̃∗ iff R̃∗ =∑n
i=1 ri, i.e.,

∑n
i=h

bi
dh

≤
∑h

i=1 ri, ∀ 1 ≤ h ≤ n. In other

words, static priority and edf schedulers perform equally well

(yield the same minimum bandwidth), when flow bursts are

small and deadlines relatively large so that they can be met

with a link bandwidth equal to the sum of the token rates.

However, when R̃∗ ̸= ∑n
i=1 ri, a static priority scheduler can

require a much larger bandwidth.

Consider a scenario where R∗ is achieved at h∗, i.e.,

R∗ =
∑n

i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri

(
1− di

dh∗

)
. Though R̃∗ may not

be realized at the same h∗ value, this still provides a lower

bound for R̃∗, namely, R̃∗ ≥
∑n

i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri. Thus,

the relative difference between R̃∗ and R∗ is no less than
∑n

i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri
∑

n
i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri

(
1− di

dh∗

) − 1

=

∑n
i=h∗+1 diri∑n

i=h∗ bi +
∑n

i=h∗+1 ri (dh∗ − di)
(5)

4We illustrate this in Appendix E of [16] for the case of two flows sharing
a static priority scheduler.

As the right-hand-side of Eq. (5) increases with di for all i ≥
h∗, it is maximized for di = dh∗ − ϵi, ∀i > h∗, for arbitrarily

small ϵh∗+1 < . . . < ϵn, so that its supremum is equal to∑n
i=h∗+1

ridh∗∑
n
i=h∗ bi

. Note that this is intuitive, as when flows have

arbitrarily close deadlines, they should receive equal service

shares, which is in direct conflict with a strict priority ordering.

Under certain flow profiles, the above supremum can be

large. In a two-flow scenario, basic algebraic manipulations

give a supremum of r2
r1+r2

, which is achieved at d2 = d1 =
b2+b1
r1+r2

. Since r2
r1+r2

→ 1 as r1
r2

→ 0, the optimal static priority

scheduler in the two-flow case could require twice as much

bandwidth as the optimal edf scheduler.

B. Static Priorities with Reprofiling

Static priorities can require significantly more bandwidth

than R∗ mostly because they are a rather blunt instrument

when it comes to fine-tuning the allocation of transmission

opportunities as a function of packet deadlines. In particular,

they often result in some flows experiencing a delay much

lower than their target deadline.

This is intrinsic to the static structure of the scheduler and

to our choice of an assignment that maps distinct deadlines to

different priorities, but can be mitigated by anticipating and

leveraging the ªslackº in the delay of some flows. One such

option is to use this slack towards reprofiling those flows, i.e.,

make them ªsmootherº. Of interest then, is how to reprofile

flows to maximize any resulting link bandwidth reduction?

Consider the trivial example of a single link shared by two

flows with traffic profiles (r1, b1) = (1, 5) and (r2, b2) =
(4, 5) and deadlines d1 = 1.4, d2 = 1.25. A strict static-

priority scheduler requires a bandwidth R̃∗ = 11.14. Assume

next that we reprofile flow 2 to (r2, b
′
2) = (4, 0) before it enters

the scheduler. The added reprofiling delay of (b2 − b′2)/r2 =
1.25 reduces the scheduling delay budget down to 0, but

eliminates all burstiness. As a result, we only need a bandwidth

of 7.57 (under a fluid model) to meet both flows’ deadlines

(a bandwidth of 4 = r2 is still consumed by flow 2, but

the remaining 3.57 is sufficient to allow flow 1 to meet its

deadline). In other words, reprofiling flow 2 yields a bandwidth

decrease of more than 30%. This simple example illustrates

the benefits that judicious reprofiling can afford.

The next few propositions characterize the optimal repro-

filing solution and the resulting bandwidth gains for a static

priority scheduler and a set of flows and deadlines. We first

derive expressions for flows’ reprofiling and scheduling delays

under static priorities, before obtaining the optimal reprofiling

solution and the resulting minimum link bandwidth R̃∗
R.

Specifically, given n flows with initial traffic profiles

(ri, bi), 1 ≤ i ≤ n, deadlines d1 > d2 > . . . > dn, a

reprofiling solution (ri, b
′
i), 1 ≤ i ≤ n, and a link of bandwidth

R, Proposition 5 characterizes the worst case delay (reprofiling

plus scheduling) of each flow, when a static priority scheduler

assigns flow i priority i (shorter deadlines have higher prior-

ity). The result is used to formulate an optimization problem,

OPT RSP, that seeks to minimize the link bandwidth required

to meet individual flows’ deadlines. The variables of the op-

timization are the reprofiling solution and the link bandwidth.
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Proposition 7 characterizes the minimum bandwidth R̃∗
R that

OPT RSP can achieve, while Proposition 8 provides the

optimal reprofiling solution.

Let b′ = (b′1, b
′
2, b

′
3, ..., b

′
n) be the vector of reprofiled flow

bursts, with B′
i =

∑n
j=i b

′
j and Ri =

∑n
j=i rj , the sum of the

reprofiled bursts and rates of flows with priority greater than

or equal to i, 1 ≤ i ≤ n, where B′
i = 0 and Ri = 0 for i > n.

Flow i’s worst-case end-to-end delay is characterized next.

Proposition 5. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has traffic profile

(ri, bi). Assume a static priority scheduler that assigns flow

i a priority of i, where priority n is the highest priority, and

reprofiles flow i to (ri, b
′
i), where 0 ≤ b′i ≤ bi. Given a link

bandwidth of R ≥
∑n

j=1 rj , the worst-case delay for flow i is

D∗
i = max

{
bi +B′

i+1

R−Ri+1
,
bi − b′i
ri

+
B′

i+1

R−Ri+1

}
. (6)

The proof is in Appendix C-B of [16]. Note that Eq. (6)

states that flow i’s worst-case delay is realized by the last bit

of its burst. The two terms of Eq. (6) capture the cases when

this bit arrives before or after the end of flow i’s last busy

period at the link, respectively, as this determines the extent

to which it is affected by the reprofiling delay.

Observe also that D∗
i is independent of b′1 for 2 ≤ i ≤

n, and decreases with b′1 when i = 1. This is intuitive as

flow 1 has the lowest priority so that reprofiling it can neither

decrease the worst-case end-to-end delay of other flows, nor

consequently reduce the minimum link bandwidth required to

meet specific deadlines for each flow. Formally,

Corollary 6. Consider a link shared by n token bucket

controlled flows, where flow i, 1 ≤ i ≤ n, has traffic profile

(ri, bi) and deadline di, with d1 > d2 > ... > dn and d1 < ∞.

Assume a static priority scheduler that assigns flow i a priority

of i, where priority n is the highest priority, and reprofiles flow

i to (ri, b
′
i), where 0 ≤ b′i ≤ bi. Given a link bandwidth of

R ≥
∑n

j=1 rj , reprofiling flow 1 cannot reduce the minimum

required bandwidth.

Combining Proposition 5 and Corollary 6 with OPT SP

gives the following optimization OPT RSP for a link shared

by n flows and relying on a static priority scheduler preceded

by reprofiling. Note that since the minimum link bandwidth

needs to satisfy R ≥
∑n

i=1 ri, combining this condition with

Ri’s definition gives
∑n

i=1 ri = R1 ≤ R.

OPT RSP min
b′

R s.t

max

{
bi +B′

i+1

R−Ri+1
,
bi − b′i
ri

+
B′

i+1

R−Ri+1

}
≤ di, ∀ 1 ≤ i ≤ n,

R1 ≤ R, b′1 = b1, 0 ≤ b′i ≤ bi, ∀ 2 ≤ i ≤ n.

The solution of OPT RSP is characterized in Propositions 7

and 8 whose proofs are in Appendix C-C of [16]. Proposition 7

gives the optimal bandwidth R̃∗
R based only on flow profiles,

and while it is too complex to yield a closed-form expression,

it offers a feasible numerical procedure to compute R̃∗
R.

Proposition 7. For 1 ≤ i ≤ n, denote Hi = bi −
diri, Πi(R) = ri+R−Ri+1

R−Ri+1
and Vi(R) = di(R −

Ri+1) − bi. Define S1(R) = {V1(R)}, and Si(R) =

Si−1(R)
⋃ {Vi(R)}⋃

{
s−Hi

Πi(R) | s ∈ Si−1(R)
}

for 2 ≤ i ≤ n.

Then we have R̃∗
R = max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

Computing R̃∗
R requires solving polynomial inequalities of

degree (n−1), so that a closed-form expression is not feasible

except for small n. However, as Si(R) relies only on flow

profiles and Sj(R), ∀j < i, we can recursively construct

Sn(R) from S1(R). Hence, since R1 ≤ R̃∗
R ≤ R̃∗, we can

use a binary search to compute R̃∗
R from the relation R̃∗

R =
max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}} in Proposition 7.

Next, Proposition 8 gives a constructive procedure to obtain

the optimal reprofiling burst sizes b
′∗ given R̃∗

R and the

original flow profiles.

Proposition 8. The optimal reprofiling solution b
′∗ satisfies

b′∗i =





max{0, bn − rndn}, i = n;

max

{
0, bi − ridi +

riB
′∗
i+1

R̃∗
R −Ri+1

}
, 2 ≤ i ≤ n− 1.

(7)

where we recall that b′∗1 = b1 and B′∗
i =

∑n
j=i b

′∗
j .

Note that the optimal reprofiling burst size b′∗i of flow i, 1 <
i < n relies only on the optimal link bandwidth R̃∗

R and the

reprofiling burst sizes of higher priority flows. Hence, we can

recursively characterize b′∗i from b′∗n given R̃∗
R.

V. BASIC FIFO WITH REPROFILING

In this section, we consider a simple first-in-first-out (fifo)

scheduler that serves data in the order in which it arrives. For

conciseness and given the benefits of reprofiling demonstrated

in Section IV-B, we directly assume that flows are reprofiled

prior to being scheduled. Considering again a link shared by

n flows with traffic profiles (ri, bi), 1 ≤ i ≤ n, and deadlines

d1 > d2 > . . . > dn, our goal is to find a reprofiling solution

(ri, b
′
i), 1 ≤ i ≤ n, to minimize the link bandwidth required

to meet the flows’ deadlines.

Towards answering this question, we first proceed to char-

acterize the worst case delay across n flows sharing a link

of bandwidth R equipped with a fifo scheduler when the

flows have initial traffic profiles (ri, bi), 1 ≤ i ≤ n, and are

reprofiled to (ri, b
′
i), 1 ≤ i ≤ n, prior to being scheduled.

Using this result, we then identify the reprofiled burst sizes

b′i, 1 ≤ i ≤ n, that minimize the link bandwidth required to

ensure that all deadlines d1 > d2 > . . . > dn, and d1 < ∞
are met. As with other configurations, we only state the results

with proofs relegated to Appendix D of [16].

Proposition 9. Consider a system with n token bucket con-

trolled flows with traffic profiles (ri, bi), 1 ≤ i ≤ n, sharing

a fifo link with bandwidth R ≥ R1 =
∑n

j=1 rj . Assume that

the system reprofiles flow i to (ri, b
′
i). The worst-case delay

for flow i is then

D̂∗
i = max

{
bi − b′i
ri

+

∑
j ̸=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
.

(8)
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The proof of Proposition 9 is in Appendix D-A of [16].

With the result of Proposition 9 in hand, we can formulate a

corresponding optimization problem, OPT RF, for computing

the optimal reprofiling solution that minimizes the link band-

width required to meet the deadlines d1 > d2 > . . . > dn, and

d1 < ∞ of the n flows. Specifically, combining Proposition 9

with OPT F gives the following optimization OPT RF for

a link shared by n flows when relying on a fifo scheduler

preceded by reprofiling. As before,
∑n

i=1 ri = R1 ≤ R.

OPT RF min
b′

R s.t ∀ 1 ≤ i ≤ n

max

{
bi − b′i
ri

+

∑
j ̸=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
≤ di,

R1 ≤ R, 0 ≤ b′i ≤ bi, ∀ 1 ≤ i ≤ n.
(9)

The solution of OPT RF is characterized in Propositions 10

and 11 with proofs in Appendix D-B of [16]. As with a static

priority scheduler, Proposition 10 gives a numerical proce-

dure to compute the optimal bandwidth R̂∗
R given the flows’

profiles, while Proposition 11 gives the optimal reprofiling

solution b̂
′∗ given R̂∗

R and the original flows’ profiles.

Proposition 10. For 1 ≤ i ≤ n, define Hi = bi − diri,
B̂i =

∑i
j=1 bj , and Zi = {1 ≤ j ≤ i | j ∈ Z}. Denote

XF (R) = max
P1,P2⊆Zn,

P2 ̸=Zn,P1

⋂
P2=∅

∑
i∈P1

RHi

R+ri
+
∑

i∈P2

(
bi − ridiR

R1

)

1−∑
i∈P1

ri
R+ri

−∑
i∈P2

ri
R1

and

YF (R) = min
1≤i≤n−1



B̂n, Rdn,

min
P1,P2⊆Zi,
P1

⋂
P2=∅,

P1

⋃
P2 ̸=∅





B̂i −
∑

j∈P1

RHj

R+rj
−∑

j∈P2

(
bj − rjdjR

R1

)

∑
j∈P1

rj
R+rj

+
∑

j∈P2

rj
R1







 .

Then the optimal solution for OPT RF is

R̂∗
R = max

{
R1,

B̂nR1∑n
i=1 ridi

,min{R | XF (R) ≤ YF (R)}
}
.

As max
{
R1,

B̂nR1∑
n
i=1

ridi

}
≤ R̂∗

R ≤ R̂∗ = max
{
R1,

B̂n

dn

}
,

where R̂∗ is the minimum required bandwidth achieved by a

base (no reprofiling) fifo system, we can use Proposition 10

and a binary search to compute R̂∗
R. Once R̂∗

R is known,

Proposition 11 gives the optimal reprofiling solution.

Proposition 11. For 1 ≤ i ≤ n, define Ti(B̂
′
n, R) =

max
{
0, R

R+ri

(
Hi +

ri
R B̂′

n

)
, bi +

ri(B̂
′

n−Rdi)
R1

}
. The optimal

reprofiling solution b̂
′∗ of OPT RF’s is given by b̂′∗1 = B̂′∗

1 ,

and b̂′∗i = B̂′∗
i − B̂′∗

i−1, 2 ≤ i ≤ n, where B̂
′∗
i satisfy





B̂′∗
n = XF (R̂

∗
R),

B̂′∗
i = max





i∑

j=1

Tj(B̂
′∗
n , R̂∗

R), B̂
′∗
i+1 − bi+1



 ,

when 1 ≤ i ≤ n− 1.

(10)

Note that B̂′∗
n relies only on R̂∗

R and flows’ profiles.

Whereas when 1 ≤ i ≤ n − 1, B̂′∗
i relies only on R̂∗

R,

B̂′∗
n , B̂′∗

i+1 and flows’ profiles. Hence, we can recursively

characterize B̂′∗
i from B̂′∗

n given R̂∗
R.

VI. EVALUATION

In this section, we explore the relative benefits of the

solutions developed in the previous three sections. Of interest

is assessing the ªcost of simplicity,º namely, the amount of

additional bandwidth required by simpler schedulers such as

static priority or fifo compared to an edf scheduler. Also of

interest is the magnitude of the improvements that reprofiling

affords with static priority and fifo schedulers. To that end, the

evaluation proceeds with a number of pairwise comparisons

to quantify the relative (bandwidth) cost of each alternative.

The evaluation first focuses (Section VI-A) on scenarios

with just two flows. Closed-form expressions are then available

for the minimum bandwidth of each configuration, which

make formal comparisons possible. Section VI-B extends this

to more ªgeneralº scenarios involving multiple flows with

different combinations of deadlines and traffic profiles.

In the initial two-flow comparisons of Section VI-A, we first

select a pair of representative traffic profiles (token buckets),

and then vary the flows’ respective deadlines over a wide range

of values. For each such combination, we explicitly compute

the relative differences in bandwidth required by the different

schedulers (with and without reprofiling, as applicable) using

expressions derived from the propositions obtained in the

previous sections. The results are presented in the form of

ªheat-mapsº across the range of deadline combinations.

For the more general scenarios involving multiple flows

(Section VI-B), we first generate a set of flow profiles, i.e.,

token buckets and deadlines, by randomly selecting them

from within specified ranges. For each such combination, the

amount of bandwidth required to meet the flows’ deadlines

are then computed using again results from the propositions

derived in the previous sections. Finally, for each pair of

schedulers, we report statistics (means, standard deviations

and the 95% confidence intervals of the means) of the relative

bandwidth differences across those random selections.

A. Basic Two-Flow Configurations

Recalling our earlier notation for the minimum bandwidth

in each configuration, i.e., R∗ (edf); R̃∗ (static priority);

R̃∗
R (static priority w/ reprofiling); R̂∗ (fifo); and R̂∗

R (fifo

w/ reprofiling), and specializing Eq. (2) to a configuration

with two flows, (r1, b1) and (r2, b2), the absolute minimum

bandwidth to meet the flows’ deadlines d1 and d2 is given by

R∗ = max

{
r1 + r2,

b2
d2

,
b1 + b2 − r2d2

d1
+ r2

}
, (11)

which is then also the bandwidth required by the edf scheduler.

Similarly, if we consider a static priority scheduler, from

Eq. (3), its bandwidth requirement R̃∗ (in the absence of any

reprofiling) for the same two-flow configuration is of the form

R̃∗ = max

{
r1 + r2,

b2
d2

,
b1 + b2

d1
+ r2

}
; (12)
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If (optimal) reprofiling is introduced, specializing Proposi-

tion 7 to two flows, the minimum bandwidth R̃∗
R reduces to

max

{
r1 + r2,

b2
d2

,
b1 + b2 − r2d2

d1
+ r2

}
, when

b2
r2

≥ b1
r1

max

{
r1 + r2,

b2
d2

,
b1 +max {b2 − r2d2, 0}

d1
+ r2

}
,

otherwise;
(13)

Finally, specializing the results of Propositions 10 and 11 to

two flows, we find that the minimum required bandwidth R̂∗

under fifo without reprofiling is

R̂∗ = max

{
r1 + r2,

b1 + b2
d2

}
; (14)

and that when (optimal) reprofiling is used, R̂∗
R is given by

Eq. (15). With these expressions in hand, we can now assess

the relative benefits of each option in this two-flow scenario.

Specifically, we consider next combinations consisting

of two flows with representative token bucket parameters

(r1, b1) = (4, 10) and (r2, b2) = (10, 18), and systematically

vary their respective deadlines d1 ≥ d2 over a range of

values. The bandwidth required to meet the deadlines is

then compared for different pairs of schedulers using the

expressions reported in Eq. (11), Eq. (13), and Eq. (15).

1) The Impact of Scheduler Complexity: We first

evaluate the impact of relying on schedulers of decreasing

complexity, when those schedulers are coupled with an

optimal reprofiling solution. In other words, we compare

the bandwidth requirements of an edf scheduler to those

of static priority and fifo schedulers combined with an

optimal reprofiler. The comparison is in the form of relative

differences (improvements realizable from more complex

schedulers), i.e.,
R̃∗

R−R∗

R̃∗

R

,
R̂∗

R−R∗

R̂∗

R

, and
R̂∗

R−R̃∗

R

R̂∗
.

edf vs. static priority w/ optimal reprofiling.

We start with comparing an edf scheduler with a static

priority scheduler plus optimal reprofiling. Eqs. (11) and (13)

then state that R∗ < R̃∗
R iff b2

r2
< d2 ≤ d1 < b1

r1
.

The results are reported in Fig. 2a, and, as mentioned,

are in the form of a heat-map of the relative bandwidth

differences as the flows’ respective deadlines vary. As shown

in the figure, a static priority scheduler, when combined with

reprofiling, performs as well as an edf scheduler, except for a

relatively small (triangular) region where d1 and d2 are close

to each other and both of intermediate values5. Towards better

characterizing this range, i.e., d2 > b2
r2

and d1 < b1
r1

, we see

that the supremum of
R̃∗

R−R∗

R̃∗

R

is achieved at d1 = d2 = b1+b2
r1+r2

,

5(i) When d2 and d1 are close and small, the bandwidth required to meet
the deadlines is very large under either edf or static priority schedulers. This
ensures that both produce similar transmissions’ orders. Consider, for example,
a low-priority (larger deadline) burst that arrives (d1 − d2) before a high-
priority (smaller deadline) one. It has higher priority under edf, and the speed
of the link ensures it is transmitted before the arrival of the high-priority burst,
which ensures no difference between edf and a static priority scheduler.
(ii) When d2 and d1 are close but large, both schedulers meet their deadlines
with the same bandwidth, i.e., the sum of the flows’ average rates.

with R̃∗
R = b1

d1
+r2, and R∗ = r1+r2. The relative difference

in bandwidth between the two schemes is then of the form

R̃∗
R −R∗

R̃∗
R

= 1− 1
b1

b1+b2
+ r2

r1+r2

,

which can be shown to be upper-bounded by 0.5. In other

words, in the two-flow case, the (optimal) edf scheduler can

result in a bandwidth saving of at most 50% when compared

to a static priority scheduler with (optimal) reprofiling. This

happens when the deadlines of the two flows are very close

to each other, a scenario unlikely in practice.

edf vs. fifo w/ optimal reprofiling

Next, we compare an edf scheduler and a fifo scheduler plus

optimal reprofiling. Eqs. (11) and (15) state that R̂∗
R > R∗ iff

d1 − b1
r1

< d2 < b1+b2−d1r1
r2

. We illustrate the corresponding

relative differences in Fig. 2b using the same two-flow combi-

nation as before. From the figure, we see that fifo + reprofiling

performs poorly relative to an edf scheduler when neither d1
nor d2 are large. As with static priorities, such configurations

may not be common in practice.

We note that the supremum of
R̂∗

R−R∗

R̂∗

R

is achieved

when 0 < d2 <
b1+b2+r2d1−

√
(b1+b2+r2d1)2−4r2b2d1

2r2
, with

Eq. (11) defaulting to R∗ = b2
d2

and Eq. (15) to R̂∗
R =

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2
2d2

. Hence, the relative dif-

ference becomes

R̂∗
R −R∗

R̂∗
R

= 1

− 2b2

b1 + b2 − d1r1 +
√
(b1 + b2 − d1r1)2 + 4r1d2b2

,

which increases with d2. Thus, its supremum is

achieved as d2 → d1. Similarly, one easily shows that

1 − 2b2

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2
decreases with d1.

Hence, the supremum of the relative difference is achieved

as d1 → 0, and is of the form b1
b1+b2

, which goes to 1 as
b1
b2

→ ∞. In other words, an edf scheduler can yield a 100%
improvement over a fifo scheduler with optimal reprofiling.

Fifo vs. static priority both w/ optimal reprofiling

Finally, we compare fifo and static priority schedulers when

both rely on optimal reprofiling. Eqs. (13) and (15) give that

R̂∗
R > R̃∗

R iff max
{

b2
r2
, (b1+b2)(r1+r2)

r2(b1/d1+r2)

}
< d1 < b1

r1
. Fig. 2c

illustrates the difference, again relying on a heat-map for the

same two-flow combination as the two previous scenarios.

The figure shows that the benefits of priority are maximum

when d2 is small and d1 is not too large. This is intuitive

in that a small d2 calls for affording maximum protection to

flow 2, which a priority structure offers more readily than a

fifo. Conversely, when d1 is large, flow 1 can be reprofiled

to eliminate all burstiness, which limits its impact on flow 2
even when both flows compete in a fifo scheduler.

The figure also reveals that a small region exists (when d1
and d2 are close to each other and both are of intermediate

value) where fifo outperforms static priority. As alluded to
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R̂∗
R = max

{
r1 + r2,

b2
d2

,
(b1 + b2)(r1 + r2)

d1r1 + d2r2
,
b1 + b2 − d1r1 +

√
(b1 + b2 − d1r1)2 + 4r1d2b2

2d2

}
. (15)

(a) Dyn. prio. vs. stat. prio. + reprofiling

(b) Dyn. prio. vs. fifo + reprofiling

(c) fifo + reprofiling vs. stat. prio. + reprofil-
ing

Fig. 2: Relative bandwidth increases for (r1, b1) = (4, 10)
and (r2, b2) = (10, 18), as a function of d1 and d2 < d1. The

figure is in the form of a heat-map. Darker colors (purple)

correspond to smaller increases than lighter ones (yellow).

in the discussion following Proposition 4 and as expanded

in Appendix E of [16], this is because a strict priority

ordering of flows as a function of their deadlines needs not

always be optimal. For instance, it is easy to see that two

otherwise identical flows that only differ infinitesimally in their

deadlines should be treated ªidentically.º This is more readily

accomplished by having them share a common fifo queue than

assigned to two distinct priorities.

To better understand differences in performance between

the two schemes, we characterize the supremum and the

infimum of
R̂∗

R−R̃∗

R

R̂∗

R

. Basic algebraic manipulations show that

the supremum is achieved as d1 = d2 → 0, where Eq. (15)

defaults to R̂∗
R =

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2
2d2

and

Eq. (13) to R̃∗
R = b2

d2
, so that their relative difference is

ultimately of the form

R̂∗
R − R̃∗

R

R̂∗
R

=
b1

b1 + b2
,

which goes to 1 as b1
b2

→ ∞, i.e., a maximum penalty of 100%
for fifo with reprofiling over static priorities with reprofiling.

Conversely, the infimum is achieved at d1 = d2 = b1+b2
r1+r2

,

with Eqs. (13) and (15) defaulting to R̃∗
R = b1

d1
+ r2 and

R̂∗
R = r1 + r2, and a relative difference of the form

R̂∗
R − R̃∗

R

R̂∗
R

=
r1

r1 + r2
− b1

b1 + b2
,

which increases with r1
r2

and decreases with b1
b2

. When r1
r2

→ 0

and b1
b2

→ ∞, it achieves an infimum of −1, i.e., a maximum

penalty of 100% but now for static priorities with reprofiling

over fifo with reprofiling. In other words, when used with

reprofiling, both fifo and static priority can require twice as

much bandwidth as the other.

Ensuring that static priority always outperforms fifo calls for

determining when flows should be grouped in the same priority

class rather than assigned to separate classes. Such grouping

can be identified in simple scenarios with two or three flows,

e.g., see Appendix E of [16], but a general solution appears

challenging. However, as we shall see in Section VI-B, the

simple strict priority assignment on which we rely performs

well in practice across a broad range of flow configurations.

2) The Benefits of Reprofiling: In this section, we evaluate

the benefits afforded by (optimally) reprofiling flows with

static priority and fifo schedulers. This is done by computing

for both schedulers the minimum bandwidth required to meet

flows’ deadlines without and with reprofiling, and evaluating

the resulting relative differences, i.e.,
R̃∗−R̃∗

R

R̃∗
and

R̂∗−R̂∗

R

R̂∗
.

For a static priority scheduler, Eqs. (12) and (13) indicate

that R̃∗
R < R̃∗ iff R̃∗ = b1+b2

d1
+ r2 > max

{
r1 + r2,

b2
d2

}
,

i.e., for a static priority scheduler, reprofiling6 decreases the

required bandwidth only when d1, the larger deadline, is not

too large and d2, the smaller deadline, is not too small. This

is intuitive. When d1 is large, the low-priority flow 1 can

meet its deadline even without any mitigation of the impact of

flow 2. Conversely, a small d2 offers little to no opportunity for

reprofiling flow 2 as the added delay it introduces would need

to be compensated by an even higher link bandwidth. This is

illustrated in Fig. 3a for the same two-flow combination as

in Fig. 2, i.e., (r1, b1) = (4, 10) and (r2, b2) = (10, 18). The

intermediate region where ªd1 is not too large and d2 is not

too smallº corresponds to the yellow triangular region where

the benefits of reprofiling can reach 40%.

Similarly, Eqs. (14) and (15) indicate that R̂∗
R < R̂∗ iff

d2 < b1+b2
r1+r2

, i.e., for a fifo scheduler, reprofiling decreases

6Recall from Corollary 6 that the flow with the largest deadline, flow 1 in
the two-flow case, is never reprofiled.
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(a) Stat. prio. without vs. with reprofiling

(b) fifo without vs. with reprofiling

Fig. 3: Relative bandwidth increases for (r1, b1) = (4, 10) and

(r2, b2) = (10, 18) as a function of d1 and d2 < d1. The figure

is in the form of a heat-map. Darker colors (purple) correspond

to smaller increases than lighter ones (yellow).

the required bandwidth only when d2, the smaller deadline,

is small. This is again intuitive as a large d2 means that the

deadline can be met even without reprofiling flow 17. Fig. 3b

presents the relative gain in bandwidth for again the same

2-flow combination. As in the static priority case, the figure

shows that for a fifo scheduler the benefits of reprofiling can

reach about 40% in the example under consideration.

The next section explores scenarios involving combinations

of multiple flow profiles. Based on those results it appears

that, unsurprisingly, a fifo scheduler stands to generally benefit

more from reprofiling than a static priority one.

B. Relative Performance ± Multiple Flows

In this section, we extend the investigation to configurations

with more than two flows, using both synthetic flow profiles

and profiles derived from datacenter traffic traces. The eval-

uation relies on generating a set of flow profiles, i.e., token

buckets plus deadlines, and for each combination compute the

bandwidth required to meet the deadlines using the results

derived in the paper. The main difference with the 2-flow

configurations of Section VI-A is that, as described next, we

7Note that under static priority the smaller deadline flow is reprofiled, while
in the fifo case it is the larger deadline flow that is reprofiled to minimize its
impact on the one with the tighter deadline.

now consider a wider range of token bucket parameters with

different possible combinations of deadlines. Additionally,

unlike the 2-flow configurations for which the amount of band-

width required could be obtained from explicit expressions,

i.e., Eq. (11), Eq. (13), and Eq. (15), computing the required

bandwidth now typically involves numerical procedures, as

documented in the propositions derived in the paper.

1) Synthetic Flow Profiles: We assign flows to ten different

deadline classes with a dynamic range of 10, i.e., with mini-

mum and maximum deadlines of 0.1 and 1, respectively, and

consider different spreads in that range for the 10 deadlines

classes. Specifically, we select three different possible types

of spreads for deadline classes, namely,

Even deadline spread:

1) d11 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1);
Bi-modal deadline spread:

2) d21 = (1, 0.95, 0.9, 0.85, 0.8∥0.3, 0.25, 0.2, 0.15, 0.1),
3) d22 = (1, 0.96, 0.93, 0.9, 0.86, 0.83, 0.8∥0.2, 0.15, 0.1),
4) d23 = (1, 0.95, 0.9∥0.3, 0.26, 0.23, 0.2, 0.16, 0.13, 0.1);

Tri-modal deadline spread:

5) d31 = (1, 0.95, 0.9∥0.6, 0.55, 0.5, 0.45∥0.2, 0.15, 0.1),
6) d32 = (1∥0.68, 0.65, 0.62, 0.6, 0.57, 0.55, 0.53, 0.5∥0.1),
7) d33 = (1∥0.6∥0.28, 0.25, 0.23, 0.2, 0.17, 0.15, 0.12, 0.1),
8) d34 = (1, 0.97, 0.95, 0.93, 0.9, 0.88, 0.85, 0.82∥0.6∥0.1).
Those three types of spreads translate into different group-

ings of deadlines, which affect the relative numbers of dead-

lines in close proximity to each others.

Each of the above eight groupings is used across 1, 000 ex-

periments, where an experiment consists of randomly selecting

a ªflow’sº traffic profile for each of the ten deadline classes.

Note that what we denote by a flow, in practice maps to the

aggregate of all individual flows assigned to the corresponding

deadline class (individual flow profiles add up). Flow profiles

are generated by independently drawing ten (aggregate) flow

burst sizes b1 to b10 from U(1, 10), and ten (aggregate) rates

r1 to r10 from U(0, rmax). The upper bound rmax corresponds

to a rate value beyond which a fifo scheduler always performs

as well as the optimal solution even without reprofiling8.

The primary purpose of those synthetic experiments is to

allow a systematic exploration of the performance of the

different schemes across a broad range of configurations. The

results can then be used to assess the expected performance of

each scheme for individual configurations of practical interest.

The results of the experiments are summarized in Table I,

which gives the mean, standard deviation, and the mean’s 95%
confidence interval for the relative savings in link bandwidth,

first for edf over static priority with reprofiling, followed by

edf over fifo with reprofiling, and then static priority over

fifo both with reprofiling. As mentioned, bandwidth values

are computed numerically for each configuration using results

from the previously derived propositions.

The first conclusion one can draw from Table I is that while

an edf scheduler affords some benefits, they are on average

smaller than the maximum values of Section VI-A. Average

improvements over static priority with reprofiling hover around

8This happens when the sum of the rates is large enough to alone clear the

aggregate burst before the smallest deadline, i.e., 10rmax =
∑10

i=1 bi

0.1
.
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TABLE I: Bandwidth savings from scheduler choice.

Synthetic flow profiles.

Comparisons Scenario Mean Std. Dev. 95% Conf.

edf vs.
static+reprofiling

R
∗ vs. R̃

∗

R(
R̃

∗

R−R
∗

R̃∗

R

)

d11 1.2% 2.3% [1.02%, 1.31%]
d21 1.5% 2.7% [1.35%, 1.69%]
d22 1.1% 2.7% [1.01%, 1.28%]
d23 2.9% 4.2% [2.59%, 3.12%]
d31 1.4% 2.5% [1.2%, 1.51%]
d32 1.0% 2.1% [0.84%, 1.1%]
d33 6.2% 6.5% [5.76%, 6.58%]
d34 0.7% 1.7% [0.6%, 0.81%]

edf vs.
fifo+reprofiling

R
∗ vs. R̂

∗

R(
R̂

∗

R−R
∗

R̂∗

R

)

d11 1.7% 6.5% [1.13%, 2.11%]
d21 3.2% 8.7% [2.68%, 3.76%]
d22 1.7% 6.2% [1.26%, 2.03%]
d23 8.0% 12.8% [7.24%, 8.82%]
d31 2.5% 7.8% [2.06%, 3.03%]
d32 0.8% 4.6% [0.54%, 1.11%]]
d33 12.0% 14.1% [11.15%, 12.9%]
d34 0.4% 3.2% [0.2%, 0.6%]

static vs. fifo
both

w/ reprofiling

R̃
∗

R vs. R̂
∗

R(
R̂

∗

R−R̃
∗

R

R̂∗

R

)

d11 0.6% 6.5% [0.16%, 0.95%]
d21 1.8% 8.3% [1.26%, 2.28%]
d22 0.5% 6.1% [0.12%, 0.88%]
d23 5.5% 11.3% [4.84%, 6.24%]
d31 1.2% 7.5% [0.76%, 1.69%]
d32 -0.2% 4.5% [-0.43%, 0.13%]
d33 6.6% 11.2% [5.92%, 7.3%]
d34 -0.3% 3.3% [-0.53%, -0.12%]

1% and did not exceed about 6%. Improvements are a little

higher when considering fifo with reprofiling, where they reach

12%, but those values are still significantly less than the worst

case scenarios of Section VI-A.

Table I also reveals that, somewhat surprisingly, static

priority and fifo perform similarly when both are afforded the

benefit of reprofiling (the largest difference observed in the

experiments is 5.5%). Static priority has an edge on average

even if, as discussed in Section VI-A, a few scenarios exist

where a fifo scheduler outperforms static priority when both

are combined with reprofiling, e.g., d32 and d34. Recall that

this is because we strictly map smaller deadlines to higher

priority. The differences are, however, small, i.e., 0.2% and

0.3%, respectively, for the two scenarios where fifo outper-

forms static priority on average.

TABLE II: Benefits of reprofiling for static priority & fifo.

Synthetic flow profiles.

Comparisons Scenario Mean Std. Dev. 95% Conf.

static
w/ & w/o
reprofiling

R̃
∗

R vs. R̃
∗

(
R̃

∗
−R̃

∗

R

R̃∗

)

d1 8.43% 4.50% [8.15%, 8.71%]
d21 8.11% 4.19% [7.85%, 8.37%]
d22 8.42% 4.52% [8.14%, 8.71%]
d23 9.38% 4.80% [9.08%, 9.67%]
d31 8.24% 4.33% [7.97%, 8.51%]
d32 9.49% 5.07% [9.18%, 9.81%]
d33 15.97% 4.78% [15.67%, 16.27%]
d34 8.83% 4.94% [8.53%, 9.14%]

fifo
w/ & w/o
reprofiling

R̂
∗

R vs. R̂
∗

(
R̂

∗
−R̂

∗

R

R̂∗

)

d1 49.52% 8.17% [49.01%, 50.03%]
d21 48.71% 7.62% [48.24%, 49.18%]
d22 49.53% 8.27% [49.02%, 50.05%]
d23 45.78% 6.52% [45.37%, 46.18%]
d31 49.08% 7.88% [48.59%, 49.57%]
d32 49.95% 8.59% [49.42%, 50.49%]
d33 42.47% 6.19% [42.08%, 42.85%]
d34 50.13% 8.84% [49.59%, 50.68%]

Towards gaining a better understanding of reprofiling and

the extent to which it is behind the somewhat unexpected

good performance of fifo, Table II reports its impact for both

static priority and fifo. As Table I, it gives the mean, standard

deviation, and the mean’s 95% confidence interval, but now

of the relative gains in bandwidth that reprofiling affords over

no reprofiling for both fifo and static priority schedulers.

The data from Table II highlights that while both static

priority and fifo benefit from reprofiling, the magnitude of

the improvements is significantly higher for fifo. Specifically,

improvements from reprofiling are systematically above 40%
and often close to 50% for fifo, while they exceed 10% only

once for static priority (at 15% for scenario d33) and are

typically around 8%. As alluded to earlier, this is not surprising

given that static priority offers some ability to discriminate

flows based on their deadlines, while fifo does not.

2) Application Derived Flow Profiles: The benefits of

synthetic flow profiles in allowing a systematic investigation

notwithstanding, it is also of interest to target configurations

more directly representative of traffic mixes as they arise in

practice. To that end, we rely on a methodology similar to

that used in [17, Section VIII-B2], and construct a set of flow

profiles derived from traffic data reported in [24].

Specifically, [24] investigates the traffic flowing through the

network of one of Facebook’s large datacenter, and reports,

among other things, the distribution of flow sizes and durations

(Figs. 6 & 7 of [24]) for three representative applications: Web

(W), Cache read and replacement (C), and Hadoop (H). We

rely on these data to generate sample traffic profiles (r, b) for

flows from those three applications as follows:

1) For a given application, we generate flow size+duration

tuples by sampling the corresponding distributions as-

suming they are perfectly positively correlated. In other

words, we assume that larger flows last longer.

2) A flow’s token rate r is then obtained by dividing the flow

size by its duration. Fig. 4 shows the resulting cumulative

distributions of flow rates for all three applications.

3) Generating token bucket sizes b involves an additional

step and associated assumption:

a) The smallest flow sizes from Fig. 6 of [24] are assumed

representative of a single transmission burst. This

yields burst sizes SW = 0.15Kbytes, SC = 0.4Kbytes,

and SH = 0.3Kbytes for our three sample applications.

b) As bucket sizes are typically chosen to accommodate

consecutive bursts, we leverage the claim in [24]

that all three applications are ªinternally burstyº

with Cache significantly burstier than Hadoop, and

Web in between, to randomly select bucket sizes in

[0, 20SC ], [0, 10SW ] and [0, 2SH ], respectively. We

note that these values yield relatively small buckets,

and, therefore, maximum burst sizes.

The resulting profiles have relatively low rates and bursti-

ness, at least when it comes to individual flows, with Hadoop’s

profile typical of bandwidth hungry applications, and Web

and Cache representative of more interactive applications.

This maps to the types of services that [24] mentions as

relying on those three applications, i.e., Web search, user data

query, and offline analysis (e.g., data mining). As a result, we

assign deadlines to each application that broadly reflect those

services, with three deadline classes set to 10ms, 50ms, and
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Fig. 4: CDF of flow rates for Web, Cache, & Hadoop applica-

tions from [24] assuming correlated flow durations and sizes.

200ms for Web, Cache, and Hadoop respectively.

In evaluating performance, we consider four ªtraffic mixesº

that differ in their relative proportion of flows from each appli-

cation. Specifically, the corresponding four scenarios sample

our W, C, H applications in the proportions: 1:1:1, 3:9:1, 9:3:1,

and 9:9:1, respectively. For each scenario, we randomly sample

100 flow profiles in those proportions. The 100 flows are then

grouped according to their deadline class, which yields a set

of three aggregates to schedule on the shared link according

to their deadlines. This procedure is repeated 1000 times, and

the relative link bandwidth requirements across schedulers and

reprofiling options are given in Table III.

TABLE III: Bandwidth savings & benefits of reprofiling.

Application-derived flow profiles.

Comparisons Scenario Mean Std. Dev. 95% Conf.

R
∗ vs. R̃

∗

R(
R̃

∗

R−R
∗

R̃∗

R

)
1:1:1 0.0% 0.0% [0%, 0%]
3:9:1 0.0% 0.0% [0%, 0%]
9:3:1 0.0% 0.0% [0%, 0%]
9:9:1 0.0% 0.0% [0%, 0%]

R
∗ vs. R̂

∗

R(
R̂

∗

R−R
∗

R̂∗

R

)
1:1:1 41.82% 17.04% [40.76%, 42.88%]
3:9:1 72.36% 3.43% [72.15%, 72.58%]
9:3:1 56.84% 8.43% [56.32%, 57.37%]
9:9:1 69.70% 4.10% [69.45%, 69.96%]

R̃∗

R
vs. R̂∗

R
See above

R̃
∗

R vs. R̃
∗

(
R̃

∗
−R̃

∗

R

R̃∗

)
1:1:1 0.01% 0.22% [0.00%, 0.03%]
3:9:1 1.74% 0.73% [1.70%, 1.79%]
9:3:1 1.02% 2.34% [0.87%, 1.16%]
9:9:1 4.06% 1.19% [3.98%, 4.13%]

R̂
∗

R vs. R̂
∗

(
R̂

∗
−R̂

∗

R

R̂∗

)
1:1:1 22.74% 9.17% [22.17%, 23.31%]
3:9:1 21.61% 8.48% [21.09%, 22.14%]
9:3:1 14.93% 8.93% [14.37%, 15.48%]
9:9:1 19.55% 8.62% [19.02%, 20.08%]

The first conclusion from Table III is that static priority

with reprofiling performs just as well as edf for all four

scenarios (top four rows). This is not surprising. The large

gaps between the deadlines of the three classes of applications

ensure that once high-priority bursts are cleared, the residual

bandwidth is sufficient to transmit lower priority bursts be-

fore their deadline. As with synthetic profiles, reprofiling is

instrumental in realizing this outcome, even if the wide gaps

between deadlines together with the limited burstiness of the

applications produce a smaller gain (R̃∗
R vs. R̃∗).

The benefits of reprofiling are again more apparent with

fifo, even if it significantly under-performs both edf and

static priority. The lack of discrimination across flows that

fifo suffers from is exacerbated by the large gaps between

deadlines, and compensating for it calls for an average of

about 50% more bandwidth across all four scenarios. However,

without reprofiling this bandwidth increase (R̂∗
R vs. R̂∗) is

around 20% larger. This again demonstrates the extent to

which reprofiling can help simpler schedulers.

C. Summary Discussion

Several common themes emerge between the evaluations

of Sections VI-B1 and VI-B2. The first is that reprofiling

can help a static priority scheduler perform nearly as well

as an edf scheduler. Second, while its inability to discriminate

between flows puts fifo at a clear disadvantage, reprofiling

is again capable of partially mitigating its handicap. Finally,

while with static priority the benefits of reprofiling are realized

by reprofiling high-priority flows to limit their impact on low-

priority ones, the opposite holds for fifo.

The differences between the results of Sections VI-B1

and VI-B2 also revealed a number of intuitive findings brought

about by the differences in deadline spreads in the two sce-

narios. In particular, the large gaps between deadlines present

in Section VI-B2 make it easier for a static priority scheduler

to perform nearly as well as an edf scheduler. This holds with

and without reprofiling, even if reprofiling remains useful.

Conversely, more closely packed deadlines offer additional

opportunities for reprofiling to be useful, as closer deadlines

amplify the need for fine tuning of a flow’s profile relative to

its deadline and impact on other flows.

VII. RELATED WORKS

The question of meeting deadlines for a set of rate-limited

flows is one that has received much attention in the scheduling

literature. It is not our intent to provide an exhaustive review of

those works. Instead, we limit ourselves to highlighting works

whose results are closest to ours or that offered early insight

into the problem, including the benefits of adjusting flows’

profiles (reprofiling) that is one of the foci of this paper.

a) Packet-level shaping and scheduling: Scheduling

flows with deterministic traffic profiles was investigated in [19]

that considered both buffer and delay requirements. In partic-

ular, the paper established9 the optimality of the edf policy

in terms of maximizing the schedulable region. This is the

ªdualº of the bandwidth minimization problem investigated in

this paper, and the result parallels that of Proposition 2. Static

priority and fifo schedulers were, however, not investigated,

and neither was the impact of reprofiling flows.

The aspect of minimizing the resources required to meet the

latency targets of token bucket-controlled flows was explored

in [26]. The paper relied on service curves with high and

low rates and sought to identify the earliest possible time

for switching to the lower rate. The focus was, however, on

minimizing resources required by each flow individually rather

than in aggregate, as in this paper. In addition, the potential

impact of reprofiling flows was not addressed.

9A similar result was reported in [25].
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b) Shaping bulk data transfers: Minimizing bandwidth

(cost) through reprofiling (reshaping) flows has been investi-

gated for bulk data transfers where transfer completion times

rather than packet-level deadlines are the targets [27]±[32].

The problem stems from non-linear bandwidth costs, e.g.,

based on the 95th percentile, so that judiciously adjusting

(shaping) the transmission rates of bulk transfers can yield sig-

nificant savings. Rate shaping is, however, at a time-granularity

of minutes rather than at the packet-level. The optimization

frameworks of those papers are, therefore, not applicable to

our problem. Their solutions, can, however, complement ours

by leveraging the fluctuations in link utilization inherent in

delivering hard, packet-level delay bounds, as we do.

c) Deterministic networking: The deterministic traffic

profiles and delay bounds of the TSN and DetNet standards

have also given rise to related investigations as documented in

recent surveys [33], [34]. In particular, the optimization frame-

work that underlies many of those studies have connections

to the problem we address. However, like most prior similar

works, traffic profiles are assumed fixed and the impact of

reprofiling is not considered.

d) Datacenter solutions: The emergence of traffic pro-

files and latency targets in datacenter networks motivated [35].

It targets a multi-hop network, but calls on topological prop-

erties of typical datacenter networks to collapse its model to

a single hop, thereby aligning with the scope of this paper.

Similarities extend to considering a static priority scheduler,

but traffic profiles differ. Rather than a token bucket, [35] relies

on the notion of network ªepochsº to bound packet bursts.

Delay bounds are then expressed as a function of the network

fan-in and a ªthroughput factorº that reflects the number

of transmission opportunities sources can have per network

epoch. Also absent from the paper are exploring bandwidth

minimization and the potential benefits of reprofiling flows.

e) Reprofiling investigations: Meeting packet-level la-

tency constraints with a static priority scheduler while min-

imizing costs through reprofiling of flows is the focus of

WorkloadCompactor [15]. The reprofiling decisions of [15]

are, however, focused on selecting token bucket parameters

from among a family of feasible regulators10 that do not

introduce additional delay. In contrast, our reprofiling allows

for an added delay that the scheduler must then compensate

for. Exploring when and how this trade-off is of benefit is our

main contribution and what makes this work complementary

to the approach from WorkloadCompactor.

Specifically, WorkloadCompactor considers traffic/workload

traces for which it seeks to first identify feasible token bucket

parameter pairs ⟨r, b⟩ that result in zero access delay for those

traces. WorkloadCompactor’s main contribution is in realizing

that multiple such ⟨r, b⟩ pairs are possible (the r-b curve

of [15]), and that ªjointly optimizing the choice of ⟨r, b⟩ rate

limit parameters for each workload to better compact work-

loads onto serversº can reduce the required server capacity.

This is where the contribution of WorkloadCompactor ends,

and where that of this paper actually starts.

10Regulators above the r-b curve using the terminology of [15].

More precisely, once the optimization of WorkloadCom-

pactor completes, the set of ⟨r, b⟩ pairs it produces can be used,

together with the associated target latency bounds, as inputs

to Proposition 8. Proposition 8 explores, for a static priority

scheduler, how to best reprofile token bucket-controlled flows

to meet their deadlines with the least bandwidth. This repro-

filing is beyond that suggested by WorkloadCompactor11, and

explores how trading-off access delay to further smooth flows

can yield additional benefits. In other words, the approach pro-

posed in the paper complements that of WorkloadCompactor,

in that it can be applied to any set of token bucket profiles

produced by WorkloadCompactor, and modify them to yield

further reductions in system resources (bandwidth or server

capacity) while still meeting latency targets.

We also note that, because WorkloadCompactor considers

the problem of selecting token bucket parameters for traffic

traces (to ensure zero access delay), it addresses an aspect

that this paper does not consider since we assume that token

bucket profiles are given. This is yet another aspect in which

the two papers are complementary.

f) Early works: Finally, we note that exploring the trade-

off between making traffic smoother and end-to-end perfor-

mance is not unique to packet networks. It is present in the

early ªfluctuation smoothingº scheduling policies of [36] that

sought to reduce processing time in manufacturing plants, and

more recently in the reshaping of parallel I/O requests to

improve the scalability of database systems [37].

VIII. CONCLUSION AND FUTURE WORK

The paper investigated the question of minimizing the band-

width needed to guarantee worst case latencies to a set of token

bucket-controlled flows sharing a single link. The investigation

was carried for schedulers of different complexity.

The paper first characterized the minimum required band-

width independent of schedulers, and showed that an edf

scheduler could realize all flows’ deadlines under such band-

width. Motivated by the need for lower complexity solutions,

the paper then explored simpler static priority and fifo sched-

ulers. It derived the minimum required bandwidth for both,

but more interestingly established how to optimally reprofile

flows to reduce the bandwidth needed while still meeting all

deadlines. The relative benefits of such an approach were

illustrated numerically for a number of different flow com-

binations, which showed how reprofiling can enable simpler

schedulers to perform nearly as well a more complex ones

across a range of configurations.

The obvious direction in which to extend the paper is

to a multi-hop setting. In [17], we build on the results of

Proposition 1 and provide initial results for the multi-hop case

under the assumption that (service curve) edf schedulers are

available at each hop. Extending the investigation to static

priority and fifo schedulers is under way.

Another aspect of interest with static priority schedulers is

relaxing the assumption that flows with different deadlines

map to distinct priority classes, and allow multiple deadlines

11Again [15] focuses on regulators that ensure zero access delay for a given
trace, while we investigate how a non-zero access delay can be of benefit.
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to be assigned to the same class. Not only does it enhance

scalability, but it can also improve performance12. Last but not

least, extensions to statistical rather than deterministic delay

guarantees are also of practical relevance.
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