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Abstract—The need to guarantee hard delay bounds to traffic
flows with deterministic traffic profiles, e.g., token buckets, arises
in several network settings. It is of interest to offer such guaran-
tees while minimizing network bandwidth. The paper explores a
basic building block, namely, a single hop configuration, towards
realizing such a goal. The main results are in the form of
optimal solutions for meeting local deadlines under schedulers of
varying complexity and therefore cost. The results demonstrate
how judiciously modifying flows’ traffic profiles, i.e., reprofiling
them, can help simple schedulers reduce the bandwidth they
require, often performing nearly as well as more complex ones.

Index Terms—latency, bandwidth, optimization, token bucket,
scheduling.

I. INTRODUCTION

The provision of deterministic delay guarantees to traffic
flows is emerging as an important requirement in increasingly
diverse settings. They include automotive, avionics, and man-
ufacturing applications, smart grids, and datacenters [1]-[7].
This is reflected in standards such as Time Sensitive Network-
ing (TSN) and Deterministic Networking (DetNet) [8]-[11]
and in the Service Level Objectives/Agreements (SLOs/SLAs)
[12] of many service provider networks that are increasingly
including latency targets, motivated in part by the rapid growth
of edge computing offerings [13].

In such settings, the traffic eligible for latency guarantees is
commonly controlled using a traffic regulator [14] in the form
of a token bucket (r,b) that limits both the flow’s long-term
rate, r, and burstiness, b. A flow’s token bucket parameters
are typically determined using traces, and selected to ensure
zero access delay [15]. The network’s goal is then to ensure
that the latency guarantees of all such rate-controlled flows are
met, preferably with as little bandwidth as possible.

This is the environment this paper assumes, with a fo-
cus on a basic building block, namely, delivering latency
guarantees on a single link (hop) with the least amount
of bandwidth. The answer obviously depends on the type
of scheduler controlling access to the link, and the paper
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considers schedulers of different levels of complexity. Of
greater interest is whether, what the paper terms reprofiling,
can be beneficial. Reprofiling amounts to modifying a flow’s
original (chosen by the user) token bucket parameters to make
the flow “easier” to accommodate. This concept was explored
in WorkloadCompactor [15] with one important difference,
namely, the constraint that reprofiling should not introduce any
delay. In contrast, our reprofiling solutions impose an added
delay in exchange for smoother flows. This in turn calls for
tighter network latency bounds to ensure that the original delay
targets are still met. The outcome of this trade-off depends on
the level of reprofiling applied as well as the type of scheduler
in use. Investigating when and how it is positive in a single
hop setting is the focus of this paper.

Specifically, the paper considers reprofiling of the form
(r,b) Ieprofling, (r,b"), where & < b. In other words, we
reduce the flow’s burstiness to make it easier to handle. We
note that more complex reprofiling solutions are possible.
Our motivations for focusing on burst reduction are two-fold.
First, we want to minimize any added complexity, and this
reprofiling can be realized simply by modifying the burst
parameter of the existing token bucket. Second, As shown
in [16, Appendix F], in simple configurations involving only
two flows and a static priority scheduler, adjusting the burst
size is sufficient to minimize the required bandwidth. These
motivations notwithstanding, more complex reprofilers, e.g.,
adding a second token bucket that controls the peak rate,
can be of benefit in more general settings. We explore this
extension in [17] in the multiple hops setting.

We note that the notion of reprofiling is closely tied to the
definition of greedy shapers of [18, Section 1.5], with one
important difference. Specifically, depending on the sched-
uler, a reprofiler can be either non-work-conserving, i.e., as
a (greedy) shaper, or work-conserving. The latter is only
applicable when relying on dynamic priority schedulers such
as earliest deadline first (edf) that can combine the local link
deadline and the reprofiling delay when determining the order
in which to send packets.

The paper makes the following contributions when it comes
to meeting latency targets in the single-hop case with traffic
profiles in the form of token buckets:

o Characterize the optimal (minimum bandwidth) solution,
and show that a dynamic priority (edf) scheduler can
realize it. The solution readily establishes that reprofiling
yields no benefit with such a scheduler.

o Identify optimal reprofiling solutions for static priority
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and fifo schedulers, and demonstrate how they allow those
schedulers to closely approximate the performance of the
more complex edf scheduler across a range of scenarios.

For ease of exposition, the results are derived and presented
assuming a fluid model, which, therefore, implies a preemptive
behavior. As the discussion of [18, Section 1.1.1] highlights,
extending the results to a packet setting is readily achiev-
able from standard network calculus results. For illustration
purposes, Appendix F of [16] derives a solution for a static
priority scheduler under a packet-based model, but the results
do not contribute further insight.

The paper is structured as follows. Section II introduces
our traffic model and optimization framework. The next three
sections present optimal solutions for schedulers of different
complexity. Section III considers a general, dynamic priority
scheduler, while Sections IV and V assume simpler static
priority and fifo schedulers. For the latter two, the benefits
of reprofiling flows are also explored. Section VI quantifies
performance for each scheduler, starting with two-flow con-
figurations that help build intuition for the results, before
considering more general multi-flow scenarios. Section VII
reviews related works, while Section VIII summarizes the
paper’s findings and their relevance to the multi-hop extension
of [17]. Proofs and ancillary results are relegated to appendices
available in an online version of the paper [16].

II. MODEL FORMULATION

Consider the configuration of Fig. 1 with n flows sharing a
common link! of rate R. The traffic generated by flow i is rate-
controlled using a two-parameter token bucket (r;,b;) [14],
its traffic profile, where r; is the token rate and b; the bucket
size. Flow ¢ also has a local packet-level deadline d;, where
w.l.o.g. we assume d; > dy > ... > d, with d; < oco. Our
goal is to meet the deadlines of all n flows with the lowest
possible link bandwidth R. In doing so, we further assume
greedy sources [18, Proposition 1.2.5] that fully realize the
arrival curve associated with their token bucket.

deadline d,

MULTIPLEXER & ‘ LINK

TE

1
1
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deadline d, :

Fig. 1: A typical one-hop configuration with n flows.

In this setting, let » = (r1,72,...,7,), b = (b1,ba,...,by),
and d = (dy,ds,...,d,) be the vectors of rates, burst sizes,
and deadlines of the flows sharing the link, respectively,

!For simplicity, we assume that enough buffering is available and that the
link capacity is such that the system is stable and lossless.

and let D} (r,b, R) denote flow i’s worst-case delay (queue-
ing+transmission). Our bandwidth minimization problem can
then be formulated as an optimization of the form:

OPT_ minR

s.t Df(r,b,R) <d;, Vi,1<i<n

where R is the optimization variable and [d denotes the sched-
uler type, which for notational simplicity has been omitted in
the expression of D (r, b, R). As mentioned in Section I, one
of our goals is to evaluate the trade-off between (bandwidth)
efficiency and complexity across different schedulers.

Another goal is to investigate the potential benefits of
reprofiling flows prior to forwarding their traffic to the sched-
uler. Reprofiling amounts to applying a different, typically
“smaller”, traffic profile to each flow before forwarding them
to the scheduler. This can® introduce an up-front reprofiling
delay, but may lower the bandwidth required to meet overall
latency goals if it makes flows “easier” to handle.

More formally, given a scheduler “l0” and n flows sharing
a link, where flow 4,1 < ¢ < n, has traffic profile (r;,b;) and
deadline d;, the goal of reprofiling is to identify smaller burst
sizes bg < b;,1 < i < n, that minimize the link bandwidth R
needed to meet the flows’ deadlines, inclusive of any resulting
reprofiling del/ay (the smaller burst b} introduces a reprofiling
2) We note that we restrict reprofiling options

delay of ——
to only redlfcing the burst size, rather than also considering
adding a “peak rate” shaper. This is in part to simplify
the resulting optimization OPT_RM, and also because, as
shown in Appendix F of [16], this is sufficient in simple
configurations with only two flows. This translates into a
modified optimization problem OPT_RU of the form

OPT_RO
s.t Di(r,b,b',R)<d;, Vi,1<i<n

min R
bl

where R and b’ are the optimization variables. The latter
denotes the vectors of updated (reprofiled) burst sizes of the
n flows, and D} (r,b,b’, R),1 < i < n, are the worst case
delays, accounting for reprofiling delays, of the n flows under
scheduler (d and a link bandwidth of R. The optimization
explores the extent to which making flows smoother (smaller
bursts) can facilitate meeting their delay targets with less
bandwidth in spite of the access delay that reprofiling adds.
The next three sections explore solutions to OPT_[d (and
OPT_RO0) for different schedulers, namely, dynamic priority,
static priority, and fifo (OPT_DP, OPT_SP, and OPT_F).

III. DYNAMIC PRIORITIES

We start with the most powerful but most complex sched-
uler, dynamic priorities, with priorities derived from service
curves assigned to flows as a function of their profile (deadline
and traffic envelope). We first solve OPT_DP by characteriz-
ing the service curves that achieve the lowest bandwidth while
meeting all deadlines in the absence of any reprofiling.

To derive the result, we first specify a service-curve assign-
ment ['g. that satisfies all deadlines, identify the minimum

2When the reprofiler operates in a non-work-conserving manner.
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link bandwidth R* required to realize I's., and show that any
scheduler requires at least R*. We then show that an earliest
deadline first scheduler realizes I'y. and, therefore, meets all
the flow deadlines under R*. e note that this then implies that
reprofiling is of no benefit when an edf scheduler is available.

Proposition 1. Consider a link shared by n token bucket
controlled flows, where flow i,1 < ¢ < n, has a traffic
profile (r;,b;) and a deadline d;, with d; > dy > ... > d,
and dy < oo. Consider a service-curve assignment I's. that
allocates flow i a service curve of

0 when t < d;,

b; + Ti(t — di) M

SCy(t) = {

otherwise.

Then

1) For any flow i,1 < i < n, SC;(t) ensures a worst-case
end-to-end delay no larger than d;.
2) Realizing Ts. requires a link bandwidth of at least

i bi Fri(dn — di) } )

dh
3) Any scheduling mechanism capable of meeting all the
flows’ deadlines requires a bandwidth of at least R*.

The proof of Proposition 1 is in Appendix B-A of [16].
The optimality of I, is intuitive. Recall that a service curve
is a lower bound on the service received by a flow. Eq. (1)
assigns service to a flow at a rate exactly equal to its input
rate, but delayed by its deadline, i.e., proviged at the latest
possible time. Conversely, any mechanism I' that meets all
flows’ deadlines must by time ¢ have provided flow ¢ a
cumulative service at least equal to the amount of data that
flow ¢ may have generated by time ¢ — d;, which is exactly
SCi(t). Hence the mechanism must offer flow i a service curve
SC;(t) > SC;(t), Vt.

Next, we identify at least one mechanism capable of realiz-
ing the services curves of Eq. (1) under R*, and consequently
providing a solution to OPT_DP for schedulers that support
dynamic priorities.

Proposition 2. Consider a link shared by n token bucket
controlled flows, where flow 1,1 < i < n, has traffic profile
(r4,b;) and deadline d;, with d; > dy > ... > d,, and dy < oc.
The earliest deadline first (edf) scheduler realizes I's. under
a link bandwidth of R*.

The proof of Proposition 2 is in Appendix B-B of [16].
We note that the optimality of edf is intuitive, as minimizing
the required bandwidth is the dual problem to maximizing the
schedulable region for which edf’s optimality is known [19].

As previously mentioned and as the next proposition for-
mally states, reprofiling does not reduce the minimum required
bandwidth R* of Eq. (2). Consequently, it affords no benefits
with edf schedulers capable of meeting the deadlines under
R*. This is expected given the optimality of edf schedulers.

Proposition 3. Consider a link shared by n token bucket
controlled flows, where flow 1,1 < i < n, has traffic profile
(r4,b;) and deadline d;, with d; > dy > ... > d,, and d; < 0.

Reprofiling flows will not decrease the minimum bandwidth
required to meet the flows’ deadlines.

The proof is in Appendix B-C of [16].

Note that 'y, specifies a non-linear (piece-wise-linear) ser-
vice curve for each flow. Given the popularity and simplicity of
linear service curves, i.e., rate-based schedulers, it is tempting
to investigate whether such schedulers, e.g., GPS [20], could
be used instead. Unfortunately, it is easy to find scenarios
where linear service curves perform worse.

Consider a link shared by two flows with traffic profiles
(r1,b1) = (1,45) and (r2,b2) = (1,5), and deadlines d; = 10
and dy = 1. A rate-based scheduler must allocate a bandwidth
of max {4, r} to a flow with traffic profile (r,b) to meet its
deadline d of. Applying this to flow 2 that has the tighter
deadline calls for a bandwidth of 5 to meet its deadline.
After 1.25 units of time (the time to clear the initial burst
of 5 and the additional data that accumulated during its
transmission), flow 2’s bandwidth usage drops down to ry = 1.
The remaining 4 units then become available to flow 1. This
means that the initial dedicated bandwidth needed by flow 1
to meet its deadline of 10 given its burst size of b; = 45 is
simply its token rate r; = 13, for a total network bandwidth
of 6 units. In contrast, Eq. (2) tells us that I';., only requires
a bandwidth of R* = 5.9.

The next two sections consider simpler static priority and
fifo schedulers, and quantify the bandwidth they require to
meet flows’ deadlines. Both schedulers are considered either
alone or with “reprofilers” that first modify the flows’ traffic
profiles before they are allowed to access the scheduler.

IV. STATIC PRIORITIES

Though edf schedulers are efficient and increasingly realiz-
able [21]-[23], they are expensive and may not be practical in
all environments. It is, therefore, of interest to explore simpler
alternatives while quantifying the trade-off they entail between
efficacy and complexity. For that purpose, we consider next a
static priority scheduler where each flow is assigned a fixed
priority as a function of its deadline.

As before, we consider n flows with traffic profiles (r;, b;)
and deadlines d;,1 < ¢ < n, sharing a common link. The
question we first address is how to assign (static) priorities to
each flow given their deadlines and OPT_SP’s goal of mini-
mizing link bandwidth? The next proposition offers a partial
and somewhat intuitive answer to this question by establishing
that the minimum link bandwidth can be achieved by giving
flows with shorter deadlines a higher priority. Formally,

Proposition 4. Consider a link shared by n token bucket
controlled flows, where flow 1,1 < i < n, has traffic profile
(r4,b;) and deadline d;, with d; > dy > ... > d,, and dy < oc.
Under a static-priority scheduler, there exists an assignment of
flows to priorities that minimizes link bandwidth while meeting
all flows deadlines such that flow i is assigned a priority
strictly greater than that of flow j only if d; < d;.

3Clearing the burst of flow 1 by its deadline d; = 10 calls for a bandwidth
x such that 45 — %x —(z+4) (10— %) < 0, which yields > 1.
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The proof is in Appendix C-A of [16]. We note that while
Proposition 4 states that link bandwidth can be minimized by
assigning flows to priorities in the order of their deadline, it
neither rules out other mappings nor does it imply that flows
with different deadlines should always be mapped to distinct
priorities. For example, large enough deadlines can all be met
by a link bandwidth equal to the sum of the flows’ average
rates, i.e., R* = Z?:l r;. In this case, priorities and their
ordering are irrelevant. More generally, grouping flows with
different deadlines in the same priority class can often result
in a lower bandwidth than mapping them to distinct priority
classes*. Nevertheless, motivated by Proposition 4, we propose
a simple assignment rule that strictly maps lower deadline
flows to higher priorities, and evaluate its performance.

A. Static Priorities without Reprofiling

From [18, Proposition 1.3.4] we know that when n flows
with traffic profiles (r;,0;),1 < i < n, share a link of
bandwidth R > Z?:l r; with flow ¢ assigned to priority
(priority n is the highest), then, under a static-priority sched-
uler, the worst case delay of flow h is upper-bounded by

% (recall that under our notation, priority n is the
R=3 1T

highest). As a result, the minimum link bandwidth R* to
ensure that flow h’s deadline dj, is met for all h, i.e., solving
OPT_SP, is given by:

R* = I<n}ax {E T4, 1 h
1<h<n

Towards evaluating the performance of a static priority
scheduler versus that of an edf scheduler, we compare R* with

R* through their relative difference, i.e., R*};R*

comparison, we rewrite R* as
(-}

Zz h
1211?2(71{271“ +l;1’f’7
Comparing Egs. (3) and (4) shows that R* = R* iff R* =
Yo i e, < 2?21 r;,¥ 1 < h < n. In other
words, static priority and edf schedulers perform equally well
(yield the same minimum bandwidth), when flow bursts are
small and deadlines relatively large so that they can be met
with a link bandwidth equal to the sum of the token rates.
However, when R* # Y | r;, a static priority scheduler can
require a much larger bandwidth.
Consider a scenario where R* is achieved at h*, ie.,

R* = %—FZZ ey Ti (1 ) Though R* may not
be reallzed at the same h* value, thls still provides a lower

bound for R*, namely, R* > Zldh’“f L4 > i peqq T Thus,

the relative difference between R* and R* is no less than

L+ Z n} 3)

i=h+1

. For ease of

i=h %
d

b
ZZJ:; + Z;L:h“rl i 1
Doipx bi d;
=gt Dimheg1Ti (1 - dm)
_ 2izpe 41 diTi )
Z?:h* bi + Z?:h*+1 T (dh* - dl)

4We illustrate this in Appendix E of [16] for the case of two flows sharing
a static priority scheduler.

As the right-hand-side of Eq. (5) increases with d; for all ¢ >
h*, it is maximized for d; = dp~ — €;, Vi > h*, for arbitrarily
smflll €p+41 < ... < €p, so that its supremum is equal to
% Note that this is intuitive, as when flows have
arbltrarlly close deadlines, they should receive equal service
shares, which is in direct conflict with a strict priority ordering.

Under certain flow profiles, the above supremum can be
large. In a two-flow scenario, basic algebraic manipulations
give a supremum of — +T , which is achieved at do = d; =
f}’ii’} Since - +T — 1as 7t — 0, the optimal static priority
scheduler in the two-flow case could require twice as much

bandwidth as the optimal edf scheduler.

B. Static Priorities with Reprofiling

Static priorities can require significantly more bandwidth
than R* mostly because they are a rather blunt instrument
when it comes to fine-tuning the allocation of transmission
opportunities as a function of packet deadlines. In particular,
they often result in some flows experiencing a delay much
lower than their target deadline.

This is intrinsic to the static structure of the scheduler and
to our choice of an assignment that maps distinct deadlines to
different priorities, but can be mitigated by anticipating and
leveraging the “slack” in the delay of some flows. One such
option is to use this slack towards reprofiling those flows, i.e.,
make them “smoother”. Of interest then, is how to reprofile
flows to maximize any resulting link bandwidth reduction?

Consider the trivial example of a single link shared by two
flows with traffic profiles (r1,b1) = (1,5) and (re,b2) =
(4,5) and deadlines d; = 1.4,dy = 1.25. A strict static-
priority scheduler requires a bandwidth R* = 11.14. Assume
next that we reprofile flow 2 to (12, b,) = (4, 0) before it enters
the scheduler. The added reprofiling delay of (by — b})/re =
1.25 reduces the scheduling delay budget down to 0, but
eliminates all burstiness. As a result, we only need a bandwidth
of 7.57 (under a fluid model) to meet both flows’ deadlines
(a bandwidth of 4 = ry is still consumed by flow 2, but
the remaining 3.57 is sufficient to allow flow 1 to meet its
deadline). In other words, reprofiling flow 2 yields a bandwidth
decrease of more than 30%. This simple example illustrates
the benefits that judicious reprofiling can afford.

The next few propositions characterize the optimal repro-
filing solution and the resulting bandwidth gains for a static
priority scheduler and a set of flows and deadlines. We first
derive expressions for flows’ reprofiling and scheduling delays
under static priorities, before obtaining the optimal reprofiling
solution and the resulting minimum link bandwidth R%.

Specifically, given n flows with initial traffic profiles
(riyb;),1 < i < n, deadlines d; > dy > ... > dg, a
reprofiling solution (r;,d}),1 < i < n, and a link of bandwidth
R, Proposition 5 characterizes the worst case delay (reprofiling
plus scheduling) of each flow, when a static priority scheduler
assigns flow ¢ priority ¢ (shorter deadlines have higher prior-
ity). The result is used to formulate an optimization problem,
OPT_RSP, that seeks to minimize the link bandwidth required
to meet individual flows’ deadlines. The variables of the op-
timization are the reprofiling solution and the link bandwidth.
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Proposition 7 characterizes the minimum bandwidth INE}‘? that
OPT_RSP can achieve, while Proposition 8 provides the
optimal reprofiling solution.

Let b’ = (b}, 05,04, ...,b.,) be the vector of reprofiled flow
bursts, with B{ P i b and R; = Z;.L:i r;, the sum of the
reprofiled bursts and rates of flows with priority greater than
or equal to 7,1 < ¢ < n, where B,Lf:OandRi:Ofori>n.
Flow i’s worst-case end-to-end delay is characterized next.

Proposition 5. Consider a link shared by n token bucket
controlled flows, where flow 1,1 < i < n, has traffic profile
(r4,b;). Assume a static priority scheduler that assigns flow
i a priority of i, where priority n is the highest priority, and
reprofiles flow i to (r;,b;), where 0 < b, < b;. Given a link
bandwidth of R > Z;’:l 1, the worst-case delay for flow i is

bi+ Bl bV, B!
+ + 3 '; } (©6)
— 141

R— Rz+1 T

The proof is in Appendix C-B of [16]. Note that Eq. (6)
states that flow ¢’s worst-case delay is realized by the last bit
of its burst. The two terms of Eq. (6) capture the cases when
this bit arrives before or after the end of flow i’s last busy
period at the link, respectively, as this determines the extent
to which it is affected by the reprofiling delay.

Observe also that D} is independent of by for 2 < i <
n, and decreases with b] when ¢ = 1. This is intuitive as
flow 1 has the lowest priority so that reprofiling it can neither
decrease the worst-case end-to-end delay of other flows, nor
consequently reduce the minimum link bandwidth required to
meet specific deadlines for each flow. Formally,

D} = max{

Corollary 6. Consider a link shared by n token bucket
controlled flows, where flow 1,1 < i < n, has traffic profile
(r4,b;) and deadline d;, with d; > dy > ... > d,, and dy < oc.
Assume a static priority scheduler that assigns flow i a priority
of 1, where priority n is the highest priority, and reprofiles flow
i to (r;,b}), where 0 < b; < b;. Given a link bandwidth of
R> E?Zl r;, reprofiling flow 1 cannot reduce the minimum
required bandwidth.

Combining Proposition 5 and Corollary 6 with OPT_SP
gives the following optimization OPT_RSP for a link shared
by n flows and relying on a static priority scheduler preceded
by reprofiling. Note that since the minimum link bandwidth
needs to satisfy R > > | r;, combining this condition with
R;’s definition gives Y ., r; = Ry < R.

OPT_RSP rrllji,nR s.t

o J b Bl b
max

R—Riyi’ 1
RlSRa

Bi
R— R4
0<b, <b,V2<i<n.

}gdi,v1§z‘§n,
b'lzbl,

The solution of OPT_RSP is characterized in Propositions 7
and 8 whose proofs are in Appendix C-C of [16]. Proposition 7
gives the optimal bandwidth RY, based only on flow profiles,
and while it is too complex to yield a closed-form expression,
it offers a feasible numerical procedure to compute ;.

Proposition 7. For 1 < i < n, denote H; = b; —
diti, Hi(R) = 7r’+ljRR”l and Vi(R) = di(R —
RiJr]_) — Z‘. Deﬁne Sl( ) = {Vl( }, and SZ(R) =

ABUERIU s | sesa@}ora<i<n
Then we have R}, = max {Rl, inf{R | Vs € S, (R),s > 0}}.

Computing E}% requires solving polynomial inequalities of
degree (n—1), so that a closed-form expression is not feasible
except for small n. However, as S;(R) relies only on flow
profiles and S;(R), Vj < i, we can recursively construct
S, (R) from S;(R). Hence, since By < R}, < R*, we can
use a binary search to compute RR from the relation RR =
max {Ry,inf{R | Vs € S,,(R),s > 0}} in Proposition 7.

Next, Proposition 8 gives a constructive procedure to obtain
the optimal reprofiling burst sizes b* given R}, and the
original flow profiles.

Proposition 8. The optimal reprofiling solution b’ satisfies

max{0, b, — r,d,}, 1 =n;
! Inax{O,bi—ridi+~H'l}, 2<i<n-—1.
Ry — Riq
@)
where we recall that b}* = b; and B/* = Z;”_Z by

Note that the optlmal reprofiling burst size b;" of flow i,1 <
1 < n relies only on the optimal link bandwidth R % and the
reprofiling burst sizes of higher priority flows. Hence, we can
recursively characterize b}* from b)* given R},

V. BAsic FIFO WITH REPROFILING

In this section, we consider a simple first-in-first-out (fifo)
scheduler that serves data in the order in which it arrives. For
conciseness and given the benefits of reprofiling demonstrated
in Section IV-B, we directly assume that flows are reprofiled
prior to being scheduled. Considering again a link shared by
n flows with traffic profiles (r;,b;),1 < i < n, and deadlines
di > ds > ...>d,, our goal is to find a reprofiling solution
(ri, b)), 1 < i < n, to minimize the link bandwidth required
to meet the flows’ deadlines.

Towards answering this question, we first proceed to char-
acterize the worst case delay across n flows sharing a link
of bandwidth R equipped with a fifo scheduler when the
flows have initial traffic profiles (r;,b;),1 < ¢ < n, and are
reprofiled to (r;,b;),1 < i < n, prior to being scheduled.
Using this result, we then identify the reprofiled burst sizes
b;,1 < i < n, that minimize the link bandwidth required to
ensure that all deadlines dy > dy > ... > d,, and d; < ©
are met. As with other configurations, we only state the results
with proofs relegated to Appendix D of [16].

Proposition 9. Consider a system with n token bucket con-
trolled flows with traffic profiles (r;,b;),1 < i < n, sharing
a fifo link with bandwidth R > R = Z;L 1 7. Assume that
the system reprofiles flow i to (r;,b;). The worst-case delay

for flow i is then
D — maxd 0L 2izib = b L b m bR
! R ' R iR '
®)

i
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The proof of Proposition 9 is in Appendix D-A of [16].

With the result of Proposition 9 in hand, we can formulate a
corresponding optimization problem, OPT_RF, for computing
the optimal reprofiling solution that minimizes the link band-
width required to meet the deadlines d; > ds > ... > d,, and
dy < oo of the n flows. Specifically, combining Proposition 9
with OPT_F gives the following optimization OPT_RF for
a link shared by n flows when relying on a fifo scheduler

preceded by reprofiling. As before, > ; 7, = R < R.
OPT_RF Hll,i,nR st V1I<i<n
b — by | 2yl il (bi— bRy
7 7 < dia
max{ n TR R TR (T

Ry <R, 0<b,<b,V1<i<n.

)
The solution of OPT_REF is characterized in Propositions 10
and 11 with proofs in Appendix D-B of [16]. As with a static
priority scheduler, Proposition 10 gives a numerical proce-
dure to compute the optimal bandwidth R7, given the flows’
profiles, while Proposition 11 gives the optimal reprofiling

solution b’ given R} and the original flows’ profiles.

Proposition 10. For 1 < i < n, define H; = b;
B; = > =1 by, and Zi = {1 < j <i| j € Z}. Denote

rid; R
ZzGPl R+r +Zz€P2 (b T Ry )

— d;ry,

Xr(R) = max
Y
and
Yp(R) = min <{ B,,Rd,,
1<i<n—1
5 RH, rid;R
, Bi =Y jep Trr; ~ 2jeps (b - JT)
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Then the optimal solution for OPT_RF is

B, Ry
Zz 1 Tid'i ’

As max{Rl, Zn } < RR < R* = maX{Rh . }

where R* is the minimum required bandwidth achieved by a
base (no reprofiling) fifo system, we can use Proposition 10
and a binary search to compute R}. Once R} is known,
Proposition 11 gives the optimal reprofiling solution.

Proposition 11. For 1 < i < n, define T;(B!,,R) =
max{(), T (H + T‘B’) b; +”(371Rd)} The optimal

R} = max {Rl, min{R | Xp(R) < YF(R)}} .

reprofiling solution b'* of OPT RF’s is given by v = Bi*,
and b’* = B’* B’* 1 2 <4< n, where B/* satisfy
By = Xp(Ryp),
i
E;* = Imax Z Tj (é;z*’ EE), éz/*-&-l - bi+1 y (10)

j=1
when 1 <i<n—1.

Note that B’* relies only on R* and flows” profiles.
Whereas when 1 < 1 < n — 1, B’* relies only on R*,
B*, B i+1 and flows’ profiles. Hence, we can recursively
characterize B’ * from B’ * given R*

VI. EVALUATION

In this section, we explore the relative benefits of the
solutions developed in the previous three sections. Of interest
is assessing the “cost of simplicity,” namely, the amount of
additional bandwidth required by simpler schedulers such as
static priority or fifo compared to an edf scheduler. Also of
interest is the magnitude of the improvements that reprofiling
affords with static priority and fifo schedulers. To that end, the
evaluation proceeds with a number of pairwise comparisons
to quantify the relative (bandwidth) cost of each alternative.

The evaluation first focuses (Section VI-A) on scenarios
with just two flows. Closed-form expressions are then available
for the minimum bandwidth of each configuration, which
make formal comparisons possible. Section VI-B extends this
to more ‘“general” scenarios involving multiple flows with
different combinations of deadlines and traffic profiles.

In the initial two-flow comparisons of Section VI-A, we first
select a pair of representative traffic profiles (token buckets),
and then vary the flows’ respective deadlines over a wide range
of values. For each such combination, we explicitly compute
the relative differences in bandwidth required by the different
schedulers (with and without reprofiling, as applicable) using
expressions derived from the propositions obtained in the
previous sections. The results are presented in the form of
“heat-maps” across the range of deadline combinations.

For the more general scenarios involving multiple flows
(Section VI-B), we first generate a set of flow profiles, i.e.,
token buckets and deadlines, by randomly selecting them
from within specified ranges. For each such combination, the
amount of bandwidth required to meet the flows’ deadlines
are then computed using again results from the propositions
derived in the previous sections. Finally, for each pair of
schedulers, we report statistics (means, standard deviations
and the 95% confidence intervals of the means) of the relative
bandwidth differences across those random selections.

A. Basic Two-Flow Configurations

Recalling our earlier notation for the minimum bandwidth
in each configuration, i.e., R* (edf) R (static prlorlty)
% (static priority w/ reprofiling); R* (fifo); and RR (fifo

w/ reprofiling), and specializing Eq. (2) to a configuration
with two flows, (r1,b1) and (r2,b2), the absolute minimum
bandwidth to meet the flows’ deadlines d; and ds is given by

ba by 4+ b — rads
dy’ di
which is then also the bandwidth required by the edf scheduler.
Similarly, if we consider a static_priority scheduler, from
Eq. (3), its bandwidth requirement R* (in the absence of any
reprofiling) for the same two-flow configuration is of the form

~ by b1 +b
R*:max{rl—l-rg, jz, 1;—1 2

R*:max{rl + 79, +r2}, (11

+T2}; (12)
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If (optimal) reprofiling is introduced, specializing Proposi-
tion 7 to two flows, the minimum bandwidth RY, reduces to

by by + by —rad by _ b
max § 71+ 72, 2,71+2 T22+T2 ,when—>—1
do dq T2 1
by b —
max § 11 + 7o, 2,] +an{® Md%o} 20,
ds dy
otherwise;

(13)
Finally, specializing the results of Propositions 10 and 11 to
two flows, we find that the minimum required bandwidth R*
under fifo without reprofiling is
b1 + ba } )

do

~

R* = max {rl + 79, (14)

and that when (optimal) reprofiling is used, ]%E is given by
Eq. (15). With these expressions in hand, we can now assess
the relative benefits of each option in this two-flow scenario.

Specifically, we consider next combinations consisting
of two flows with representative token bucket parameters
(r1,b1) = (4,10) and (r2,b2) = (10, 18), and systematically
vary their respective deadlines d; > d over a range of
values. The bandwidth required to meet the deadlines is
then compared for different pairs of schedulers using the
expressions reported in Eq. (11), Eq. (13), and Eq. (15).

1) The Impact of Scheduler Complexity: We first
evaluate the impact of relying on schedulers of decreasing
complexity, when those schedulers are coupled with an
optimal reprofiling solution. In other words, we compare
the bandwidth requirements of an edf scheduler to those
of static priority and fifo schedulers combined with an
optimal reprofiler. The comparison is in the form of relative

differences (improvements realizable from~ more complex
R—R" Rj—R* _and Ba=fiR

schedulers), i.e. L
R =

edf vs. static priority w/ optimal reprofiling.

We start with comparing an edf scheduler with a static
priority scheduler plus optimal reprofiling. Egs. (11) and (13)
then state that R* < Rj, iff 22 < dp <dy < 2

The results are reported in Fig. 2a, and, as mentioned,
are in the form of a heat-map of the relative bandwidth
differences as the flows’ respective deadlines vary. As shown
in the figure, a static priority scheduler, when combined with
reprofiling, performs as well as an edf scheduler, except for a
relatively small (triangular) region where d; and dy are close
to each other and both of intermediate values®. Towards better

characterizing this range i e., do > b—z and d; < b—i, we see
that the supremum of £ is achieved at d; = dy = fiii’é s

R,

5(i) When dg and d; are close and small, the bandwidth required to meet
the deadlines is very large under either edf or static priority schedulers. This
ensures that both produce similar transmissions’ orders. Consider, for example,
a low-priority (larger deadline) burst that arrives (d1 — d2) before a high-
priority (smaller deadline) one. It has higher priority under edf, and the speed
of the link ensures it is transmitted before the arrival of the high-priority burst,
which ensures no difference between edf and a static priority scheduler.

(ii) When d2 and d; are close but large, both schedulers meet their deadlines
with the same bandwidth, i.e., the sum of the flows’ average rates.

with EE = 2—11 419, and R* = r1 4+ ro. The relative difference
in bandwidth between the two schemes is then of the form
Ry —R* . 1
D - T ro
R}% b1+b2 + r1+r2

which can be shown to be upper-bounded by 0.5. In other
words, in the two-flow case, the (optimal) edf scheduler can
result in a bandwidth saving of at most 50% when compared
to a static priority scheduler with (optimal) reprofiling. This
happens when the deadlines of the two flows are very close
to each other, a scenario unlikely in practice.

edf vs. fifo w/ optimal reprofiling
Next, we compare an edf scheduler and a fifo scheduler plus
optimal reprofiling. Egs. (11) and (15) state that Ry, > R* i
di — 2 <dy < M We illustrate the correspondlng
relatwe differences in Flg 2b using the same two-flow combi-
nation as before. From the figure, we see that fifo + reprofiling
performs poorly relative to an edf scheduler when neither d;
nor dsy are large. As with static priorities, such configurations
may not be common in practice. R
R —R"

We note that the supremum of is achieved

R
when 0 < d2 < b1+b2+’l“2d17\/(b12<:‘:2+7‘2d1)2747“2b2d1’ with
Eq. (11) defaulting to R* = b2 and Eq. (15) to Ry =

bi+ba—diry +\/(b1 +bo—di71)2+4r, dzbz

. Hence, the relative dif-

2d2
ference becomes
R:, — R*
|
Ry
2by

b1 + b2 — d17’1 + \/(bl + bQ — d1T1)2 -+ 4’["1d2b27
which increases with do. Thus, its supremum is
achieved as do — dy. Similarly, one easily shows that

_ 2b2
b1+b2—d17‘1+\/(b1+b2—d1T1)2+47:1d2b2. . ]
Hence, the supremum of the relative difference is achieved

as di — 0, and is of the form blbﬁ, which goes to 1 as
g—; — 0. In other words, an edf scheduler can yield a 100%
improvement over a fifo scheduler with optimal reprofiling.

decreases with dj.

Fifo vs. static priority both w/ optimal reprofiling
Finally, we compare fifo and static priority schedulers when
both rely on optimal reprofiling. Egs. (13) and (15) give that

R, > Ry iff max {2, Cogfntrad < gy < b Fig. 2c
illustrates the difference, again relying on a heat-map for the
same two-flow combination as the two previous scenarios.

The figure shows that the benefits of priority are maximum
when ds is small and d; is not too large. This is intuitive
in that a small dy calls for affording maximum protection to
flow 2, which a priority structure offers more readily than a
fifo. Conversely, when d; is large, flow 1 can be reprofiled
to eliminate all burstiness, which limits its impact on flow 2
even when both flows compete in a fifo scheduler.

The figure also reveals that a small region exists (when d;
and dy are close to each other and both are of intermediate
value) where fifo outperforms static priority. As alluded to
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Fig. 2: Relative bandwidth increases for (r1,b1) = (4,10)
and (7o, b2) = (10, 18), as a function of d; and dy < d;. The
figure is in the form of a heat-map. Darker colors (purple)
correspond to smaller increases than lighter ones (yellow).

in the discussion following Proposition 4 and as expanded
in Appendix E of [16], this is because a strict priority
ordering of flows as a function of their deadlines needs not
always be optimal. For instance, it is easy to see that two
otherwise identical flows that only differ infinitesimally in their
deadlines should be treated “identically.” This is more readily
accomplished by having them share a common fifo queue than
assigned to two distinct priorities.

To better understand differences in performance between

the two schemes, we characterize the supremum and the
REp—Ry

infimum of . Basic algebraic manipulations show that

*

the supremum is achieved as d; = dy — 0, where Eq. (15)

5 by +b2—d17“1+\/(b1 +bo—dir1)244r1d2bs
*
defaults to Ry, = 5 and

Eq. (13) to EE = Z—z, so that their relative difference is

2ds

by (bl + bQ)(?“l + 7”2) b1 + by —dyry + \/(bl + by — d17"1)2 + 47“1de2} (15)

ultimately of the form
Ry — Ry b
R, by + by’

which goes to 1 as Z—; — 00, i.e., a maximum penalty of 100%
for fifo with reprofiling over static priorities with reprofiling.
Conversely, the infimum is achieved at d; = do = b1 4ba

~ r1+re’
with Egs. (13) and (15) defaulting to Ry = % + ro and
ITZ}‘% =11 + 79, and a relative difference of the form
}/ij‘? - E’fg S b1
R%, ri+re b +by

which increases with 1 and decreases with 2—;. When L — 0
and Z—; — 00, it achieves an infimum of —1, i.e., a maximum
penalty of 100% but now for static priorities with reprofiling
over fifo with reprofiling. In other words, when used with
reprofiling, both fifo and static priority can require twice as
much bandwidth as the other.

Ensuring that static priority always outperforms fifo calls for
determining when flows should be grouped in the same priority
class rather than assigned to separate classes. Such grouping
can be identified in simple scenarios with two or three flows,
e.g., see Appendix E of [16], but a general solution appears
challenging. However, as we shall see in Section VI-B, the
simple strict priority assignment on which we rely performs
well in practice across a broad range of flow configurations.

2) The Benefits of Reprofiling: In this section, we evaluate
the benefits afforded by (optimally) reprofiling flows with
static priority and fifo schedulers. This is done by computing
for both schedulers the minimum bandwidth required to meet
flows’ deadlines without and with reprofiling, and evaluating
the resulting relative differences, i.e., R*:*R; nd R*};R;‘.

For a static priority scheduler, Egs. (1}3) and (13) indicate
that R}, < R* iff R* = 2% 4 7y > max {m . bZ},

do

i.e., for a static priority scheduler, reprofiling® decreases the
required bandwidth only when d;, the larger deadline, is not
too large and ds, the smaller deadline, is not too small. This
is intuitive. When d; is large, the low-priority flow 1 can
meet its deadline even without any mitigation of the impact of
flow 2. Conversely, a small dy offers little to no opportunity for
reprofiling flow 2 as the added delay it introduces would need
to be compensated by an even higher link bandwidth. This is
illustrated in Fig. 3a for the same two-flow combination as
in Fig. 2, i.e, (r1,b1) = (4,10) and (rq,b2) = (10, 18). The
intermediate region where “d; is not too large and ds is not
too small” corresponds to the yellow triangular region where
the benefits of reprofiling can reach 40%. R R

Similarly, Eqs. (14) and (15) indicate that Ry, < R* iff

dy < lr’iii’z, i.e.,, for a fifo scheduler, reprofiling decreases

6Recall from Corollary 6 that the flow with the largest deadline, flow 1 in
the two-flow case, is never reprofiled.
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Fig. 3: Relative bandwidth increases for (r1,b1) = (4, 10) and
(ra,b2) = (10,18) as a function of dq and dy < d;. The figure
is in the form of a heat-map. Darker colors (purple) correspond
to smaller increases than lighter ones (yellow).

the required bandwidth only when ds, the smaller deadline,
is small. This is again intuitive as a large d, means that the
deadline can be met even without reprofiling flow 17. Fig. 3b
presents the relative gain in bandwidth for again the same
2-flow combination. As in the static priority case, the figure
shows that for a fifo scheduler the benefits of reprofiling can
reach about 40% in the example under consideration.

The next section explores scenarios involving combinations
of multiple flow profiles. Based on those results it appears
that, unsurprisingly, a fifo scheduler stands to generally benefit
more from reprofiling than a static priority one.

B. Relative Performance — Multiple Flows

In this section, we extend the investigation to configurations
with more than two flows, using both synthetic flow profiles
and profiles derived from datacenter traffic traces. The eval-
uation relies on generating a set of flow profiles, i.e.,, token
buckets plus deadlines, and for each combination compute the
bandwidth required to meet the deadlines using the results
derived in the paper. The main difference with the 2-flow
configurations of Section VI-A is that, as described next, we

7Note that under static priority the smaller deadline flow is reprofiled, while
in the fifo case it is the larger deadline flow that is reprofiled to minimize its
impact on the one with the tighter deadline.

now consider a wider range of token bucket parameters with
different possible combinations of deadlines. Additionally,
unlike the 2-flow configurations for which the amount of band-
width required could be obtained from explicit expressions,
i.e.,, Eq. (11), Eq. (13), and Eq. (15), computing the required
bandwidth now typically involves numerical procedures, as
documented in the propositions derived in the paper.

1) Synthetic Flow Profiles: We assign flows to ten different
deadline classes with a dynamic range of 10, i.e., with mini-
mum and maximum deadlines of 0.1 and 1, respectively, and
consider different spreads in that range for the 10 deadlines
classes. Specifically, we select three different possible types
of spreads for deadline classes, namely,

Even deadline spread:

1) dy; =(1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1);
Bi-modal deadline spread:

2) d21 = (1,0.95,0.9,0.85,0.8|/0.3,0.25,0.2,0.15,0.1),

3) ds2 = (1,0.96,0.93,0.9,0.86,0.83,0.8//0.2,0.15,0.1),

4) do3 = (1,0.95,0.9]|0.3,0.26,0.23,0.2,0.16,0.13,0.1);
Tri-modal deadline spread:

5) ds1 = (1,0.95,0.9]|0.6,0.55,0.5,0.45||0.2,0.15,0.1),

6) ds2 = (1]0.68,0.65,0.62,0.6,0.57,0.55,0.53,0.5]|0.1),

7) ds3 = (1/|0.6]|0.28,0.25,0.23,0.2,0.17,0.15,0.12,0.1),

8) dss = (1,0.97,0.95,0.93,0.9,0.88,0.85,0.82]|0.6]/0.1).

Those three types of spreads translate into different group-
ings of deadlines, which affect the relative numbers of dead-
lines in close proximity to each others.

Each of the above eight groupings is used across 1,000 ex-
periments, where an experiment consists of randomly selecting
a “flow’s” traffic profile for each of the ten deadline classes.
Note that what we denote by a flow, in practice maps to the
aggregate of all individual flows assigned to the corresponding
deadline class (individual flow profiles add up). Flow profiles
are generated by independently drawing ten (aggregate) flow
burst sizes by to byg from U(1,10), and ten (aggregate) rates
r1 to 719 from U(0, 7max ). The upper bound 7,5 corresponds
to a rate value beyond which a fifo scheduler always performs
as well as the optimal solution even without reprofiling®.

The primary purpose of those synthetic experiments is to
allow a systematic exploration of the performance of the
different schemes across a broad range of configurations. The
results can then be used to assess the expected performance of
each scheme for individual configurations of practical interest.

The results of the experiments are summarized in Table I,
which gives the mean, standard deviation, and the mean’s 95%
confidence interval for the relative savings in link bandwidth,
first for edf over static priority with reprofiling, followed by
edf over fifo with reprofiling, and then static priority over
fifo both with reprofiling. As mentioned, bandwidth values
are computed numerically for each configuration using results
from the previously derived propositions.

The first conclusion one can draw from Table I is that while
an edf scheduler affords some benefits, they are on average
smaller than the maximum values of Section VI-A. Average
improvements over static priority with reprofiling hover around

8This happens when the sum of the rates is large enough to alone clear the
Tiybi

aggregate burst before the smallest deadline, i.e., 10rmax = =%
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TABLE I: Bandwidth savings from scheduler choice.
Synthetic flow profiles.

Comparisons Scenario | Mean | Std. Dev. 95% Conf.
di 2% 2.3% 1.02%, 1.31%

da1 5% 27% 1.35%, 1.69%

odf vs. d22 T1% 2.7% T.01%, 1.28%
static+reprofiling das 2.9% 4.2% 2.59%, 3.12%

o vs, B ds1 4% 2.5% 2%, 1.51%

LR ds2 T.0% 2.1% 0.84%, 1.1%
(M) dz3 6.2% 6.5% [5.76%, 6.58%)]
R das 0.7% 7% [0.6%, 0.81%]

di1 1.7% 6.5% 1.13%,2.11%

da 3.2% 8.7% 2.68%, 3.76%

edf vs. da2 7% 6.2% 1.26%, 2.03%
ﬁfo+reproﬁ1jng das 8.0% 12.8% 7.24%, 8.82%
R vs. B ds1 2.5% 7.8% 2.06%, 3.03%
., R ds32 0.8% 4.6% 0.54%, 1.11%]]
(RR:*R ) ds3 12.0% | 14.1% | [11.15%, 12.9%)]

Br dss 0.4% 3.2% [0.2%, 0.6%)]

di 0.6% 6.5% 0.16%, 0.95%

da 8% 8.3% 1.26%, 2.28%

statie vs. fifo da2 0.5% 6.1% 0.12%, 0.88%
oth . da3 55% | 11.3% 1.84%, 6.24%

v repmﬁlmg ds1 2% 75% 0.76%, 1.69%
R VS. Ry dss 0.2% 45% [-0.43%, 0.13%]
Ry, -RY ds3 6.6% | 11.2% [5.92%, 7.3%]
Ry, dss 03% 33% | [-0.53%, -0.12%]

1% and did not exceed about 6%. Improvements are a little
higher when considering fifo with reprofiling, where they reach
12%, but those values are still significantly less than the worst
case scenarios of Section VI-A.

Table I also reveals that, somewhat surprisingly, static
priority and fifo perform similarly when both are afforded the
benefit of reprofiling (the largest difference observed in the
experiments is 5.5%). Static priority has an edge on average
even if, as discussed in Section VI-A, a few scenarios exist
where a fifo scheduler outperforms static priority when both
are combined with reprofiling, e.g., d32 and ds4. Recall that
this is because we strictly map smaller deadlines to higher
priority. The differences are, however, small, i.e., 0.2% and
0.3%, respectively, for the two scenarios where fifo outper-
forms static priority on average.

TABLE II: Benefits of reprofiling for static priority & fifo.
Synthetic flow profiles.

Comparisons | Scenario Mean Std. Dev. 95% Contf.
dy 8.43% 4.50% 8.15%, 8.71%]
da1 811% 119% 7.85%,8.37%

static dao 8.42% 4.52% 8.14%,8.71%
rVgI/) rtf;ﬁﬁfrfl% da3 9.38% | 4.80% 9.08%,9.67%
B B ds1 8.24% 1.33% 7.97%,8.51%
Ry VS. R” d32 9.49% 5.07% 9.18%, 9.81%
R*—R} d33 15.97% | 4.78% | [15.67%,16.27%)]
R~ ds. 8.83% 4.94% [8.53%, 9.14%]
d; 49.52% | 8.17% 49.01%, 50.03%
do1 871% | 7.62% 48.24%, 49.18%
/fgo . da22 1953% | 8.27% 49.02%, 50.05%
w/ & wio das 45.78% | 6.52% 45.37%, 46.18%
reprofiling ds1 | 49.08% | 7-88% | [4859%,49.57%
Rp Vs. R ds2 49.95% | 8.59% 49.42%, 50.49%
R*—Rp ds3 247% | 6.19% 42.08%, 42.85%
R d34 50.13% | 8.84% 49.59%, 50.68%

Towards gaining a better understanding of reprofiling and
the extent to which it is behind the somewhat unexpected

good performance of fifo, Table II reports its impact for both
static priority and fifo. As Table I, it gives the mean, standard
deviation, and the mean’s 95% confidence interval, but now
of the relative gains in bandwidth that reprofiling affords over
no reprofiling for both fifo and static priority schedulers.

The data from Table II highlights that while both static
priority and fifo benefit from reprofiling, the magnitude of
the improvements is significantly higher for fifo. Specifically,
improvements from reprofiling are systematically above 40%
and often close to 50% for fifo, while they exceed 10% only
once for static priority (at 15% for scenario ds3) and are
typically around 8%. As alluded to earlier, this is not surprising
given that static priority offers some ability to discriminate
flows based on their deadlines, while fifo does not.

2) Application Derived Flow Profiles: The benefits of
synthetic flow profiles in allowing a systematic investigation
notwithstanding, it is also of interest to target configurations
more directly representative of traffic mixes as they arise in
practice. To that end, we rely on a methodology similar to
that used in [17, Section VIII-B2], and construct a set of flow
profiles derived from traffic data reported in [24].

Specifically, [24] investigates the traffic flowing through the
network of one of Facebook’s large datacenter, and reports,
among other things, the distribution of flow sizes and durations
(Figs. 6 & 7 of [24]) for three representative applications: Web
(W), Cache read and replacement (C), and Hadoop (H). We
rely on these data to generate sample traffic profiles (r,b) for
flows from those three applications as follows:

1) For a given application, we generate flow size+duration
tuples by sampling the corresponding distributions as-
suming they are perfectly positively correlated. In other
words, we assume that larger flows last longer.

2) A flow’s token rate r is then obtained by dividing the flow
size by its duration. Fig. 4 shows the resulting cumulative
distributions of flow rates for all three applications.

3) Generating token bucket sizes b involves an additional
step and associated assumption:

a) The smallest flow sizes from Fig. 6 of [24] are assumed
representative of a single transmission burst. This
yields burst sizes Sy = 0.15Kbytes, S = 0.4Kbytes,
and Sy = 0.3Kbytes for our three sample applications.

b) As bucket sizes are typically chosen to accommodate
consecutive bursts, we leverage the claim in [24]
that all three applications are “internally bursty”
with Cache significantly burstier than Hadoop, and
Web in between, to randomly select bucket sizes in
[0,205¢], [0,10Sw] and [0,2Sp], respectively. We
note that these values yield relatively small buckets,
and, therefore, maximum burst sizes.

The resulting profiles have relatively low rates and bursti-
ness, at least when it comes to individual flows, with Hadoop’s
profile typical of bandwidth hungry applications, and Web
and Cache representative of more interactive applications.
This maps to the types of services that [24] mentions as
relying on those three applications, i.e., Web search, user data
query, and offline analysis (e.g., data mining). As a result, we
assign deadlines to each application that broadly reflect those
services, with three deadline classes set to 10ms, 50ms, and
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Fig. 4: CDF of flow rates for Web, Cache, & Hadoop applica-
tions from [24] assuming correlated flow durations and sizes.

200ms for Web, Cache, and Hadoop respectively.

In evaluating performance, we consider four “traffic mixes”
that differ in their relative proportion of flows from each appli-
cation. Specifically, the corresponding four scenarios sample
our W, C, H applications in the proportions: 1:1:1, 3:9:1, 9:3:1,
and 9:9:1, respectively. For each scenario, we randomly sample
100 flow profiles in those proportions. The 100 flows are then
grouped according to their deadline class, which yields a set
of three aggregates to schedule on the shared link according
to their deadlines. This procedure is repeated 1000 times, and
the relative link bandwidth requirements across schedulers and
reprofiling options are given in Table III.

TABLE III: Bandwidth savings & benefits of reprofiling.
Application-derived flow profiles.

Comparisons | Scenario Mean Std. Dev. 95% Contf.
R* vs. Bt 1:1:1 0.0% 0.0% 0%, 0%
L5 ER 3:0:1 0.0% 0.0% 0%, 0%
(RRN;R) 931 0.0% 0.0% 0%, 0%
R 9:0:1 0.0% 0.0% 0%, 0%
o vs. A T1:1 | 41.82% | 17.04% | [40.76%, 42.88%
LR 3:0:1 72.36% | 3.43% | [72.15%, 72.58%
(RR:*R ) 93:1 | 56.84% | 8.43% | [56.32%,57.37%
R 9:9:1 | 69.70% | 4.10% | [69.45%,69.96%
R vs. ﬁ*R See above
= vs B 101 0.01% | 0.22% 0.00%, 0.03%
RV 301 1.74% | 0.73% 1.70%, 1.79%
(R ~*R ) 931 1.02% | 2.34% 0.87%, 1.16%
R 9:0:1 1.06% | 1.19% 3.98%, 4.13%
o vs B- 11 | 22.74% | 9.17% | [22.17%, 23.31%
R VS 3:0:1 | 21.61% | 8.48% | [21.09%,22.14%
B :f‘R) 931 | 14.93% | 8.93% | [14.37%, 15.48%
R 9:9:1 1955% | 8.62% | [19.02%,20.08%

The first conclusion from Table III is that static priority
with reprofiling performs just as well as edf for all four
scenarios (top four rows). This is not surprising. The large
gaps between the deadlines of the three classes of applications
ensure that once high-priority bursts are cleared, the residual
bandwidth is sufficient to transmit lower priority bursts be-
fore their deadline. As with synthetic profiles, reprofiling is
instrumental in realizing this outcome, even if the wide gaps
between deadlines together with the limited burstiness of the
applications produce a smaller gain (R -k VS. R* ).

The benefits of reprofiling are again more apparent with
fifo, even if it significantly under-performs both edf and
static priority. The lack of discrimination across flows that

fifo suffers from is exacerbated by the large gaps between
deadlines, and compensating for it calls for an average of
about 50% more bandwidth across all four scenarios. However,
without reprofiling this bandwidth increase (RR VvS. R*) is
around 20% larger. This again demonstrates the extent to
which reprofiling can help simpler schedulers.

C. Summary Discussion

Several common themes emerge between the evaluations
of Sections VI-B1 and VI-B2. The first is that reprofiling
can help a static priority scheduler perform nearly as well
as an edf scheduler. Second, while its inability to discriminate
between flows puts fifo at a clear disadvantage, reprofiling
is again capable of partially mitigating its handicap. Finally,
while with static priority the benefits of reprofiling are realized
by reprofiling high-priority flows to limit their impact on low-
priority ones, the opposite holds for fifo.

The differences between the results of Sections VI-Bl
and VI-B2 also revealed a number of intuitive findings brought
about by the differences in deadline spreads in the two sce-
narios. In particular, the large gaps between deadlines present
in Section VI-B2 make it easier for a static priority scheduler
to perform nearly as well as an edf scheduler. This holds with
and without reprofiling, even if reprofiling remains useful.
Conversely, more closely packed deadlines offer additional
opportunities for reprofiling to be useful, as closer deadlines
amplify the need for fine tuning of a flow’s profile relative to
its deadline and impact on other flows.

VII. RELATED WORKS

The question of meeting deadlines for a set of rate-limited
flows is one that has received much attention in the scheduling
literature. It is not our intent to provide an exhaustive review of
those works. Instead, we limit ourselves to highlighting works
whose results are closest to ours or that offered early insight
into the problem, including the benefits of adjusting flows’
profiles (reprofiling) that is one of the foci of this paper.

a) Packet-level shaping and scheduling: Scheduling
flows with deterministic traffic profiles was investigated in [19]
that considered both buffer and delay requirements. In partic-
ular, the paper established’ the optimality of the edf policy
in terms of maximizing the schedulable region. This is the
“dual” of the bandwidth minimization problem investigated in
this paper, and the result parallels that of Proposition 2. Static
priority and fifo schedulers were, however, not investigated,
and neither was the impact of reprofiling flows.

The aspect of minimizing the resources required to meet the
latency targets of token bucket-controlled flows was explored
in [26]. The paper relied on service curves with high and
low rates and sought to identify the earliest possible time
for switching to the lower rate. The focus was, however, on
minimizing resources required by each flow individually rather
than in aggregate, as in this paper. In addition, the potential
impact of reprofiling flows was not addressed.

9A similar result was reported in [25].
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b) Shaping bulk data transfers: Minimizing bandwidth
(cost) through reprofiling (reshaping) flows has been investi-
gated for bulk data transfers where transfer completion times
rather than packet-level deadlines are the targets [27]-[32].
The problem stems from non-linear bandwidth costs, e.g.,
based on the 95" percentile, so that judiciously adjusting
(shaping) the transmission rates of bulk transfers can yield sig-
nificant savings. Rate shaping is, however, at a time-granularity
of minutes rather than at the packet-level. The optimization
frameworks of those papers are, therefore, not applicable to
our problem. Their solutions, can, however, complement ours
by leveraging the fluctuations in link utilization inherent in
delivering hard, packet-level delay bounds, as we do.

c) Deterministic networking: The deterministic traffic
profiles and delay bounds of the TSN and DetNet standards
have also given rise to related investigations as documented in
recent surveys [33], [34]. In particular, the optimization frame-
work that underlies many of those studies have connections
to the problem we address. However, like most prior similar
works, traffic profiles are assumed fixed and the impact of
reprofiling is not considered.

d) Datacenter solutions: The emergence of traffic pro-
files and latency targets in datacenter networks motivated [35].
It targets a multi-hop network, but calls on topological prop-
erties of typical datacenter networks to collapse its model to
a single hop, thereby aligning with the scope of this paper.
Similarities extend to considering a static priority scheduler,
but traffic profiles differ. Rather than a token bucket, [35] relies
on the notion of network “epochs” to bound packet bursts.
Delay bounds are then expressed as a function of the network
fan-in and a “throughput factor” that reflects the number
of transmission opportunities sources can have per network
epoch. Also absent from the paper are exploring bandwidth
minimization and the potential benefits of reprofiling flows.

e) Reprofiling investigations: Meeting packet-level la-
tency constraints with a static priority scheduler while min-
imizing costs through reprofiling of flows is the focus of
WorkloadCompactor [15]. The reprofiling decisions of [15]
are, however, focused on selecting token bucket parameters
from among a family of feasible regulators!'® that do not
introduce additional delay. In contrast, our reprofiling allows
for an added delay that the scheduler must then compensate
for. Exploring when and how this trade-off is of benefit is our
main contribution and what makes this work complementary
to the approach from WorkloadCompactor.

Specifically, WorkloadCompactor considers traffic/workload
traces for which it seeks to first identify feasible token bucket
parameter pairs (r, b) that result in zero access delay for those
traces. WorkloadCompactor’s main contribution is in realizing
that multiple such (r,b) pairs are possible (the r-b curve
of [15]), and that “jointly optimizing the choice of (r,b) rate
limit parameters for each workload to better compact work-
loads onto servers” can reduce the required server capacity.
This is where the contribution of WorkloadCompactor ends,
and where that of this paper actually starts.

10Regulators above the r-b curve using the terminology of [15].

More precisely, once the optimization of WorkloadCom-
pactor completes, the set of (r, b) pairs it produces can be used,
together with the associated target latency bounds, as inputs
to Proposition 8. Proposition 8 explores, for a static priority
scheduler, how to best reprofile token bucket-controlled flows
to meet their deadlines with the least bandwidth. This repro-
filing is beyond that suggested by WorkloadCompactor'!, and
explores how trading-off access delay to further smooth flows
can yield additional benefits. In other words, the approach pro-
posed in the paper complements that of WorkloadCompactor,
in that it can be applied to any set of token bucket profiles
produced by WorkloadCompactor, and modify them to yield
further reductions in system resources (bandwidth or server
capacity) while still meeting latency targets.

We also note that, because WorkloadCompactor considers
the problem of selecting token bucket parameters for traffic
traces (to ensure zero access delay), it addresses an aspect
that this paper does not consider since we assume that token
bucket profiles are given. This is yet another aspect in which
the two papers are complementary.

f) Early works: Finally, we note that exploring the trade-
off between making traffic smoother and end-to-end perfor-
mance is not unique to packet networks. It is present in the
early “fluctuation smoothing” scheduling policies of [36] that
sought to reduce processing time in manufacturing plants, and
more recently in the reshaping of parallel /O requests to
improve the scalability of database systems [37].

VIII. CONCLUSION AND FUTURE WORK

The paper investigated the question of minimizing the band-
width needed to guarantee worst case latencies to a set of token
bucket-controlled flows sharing a single link. The investigation
was carried for schedulers of different complexity.

The paper first characterized the minimum required band-
width independent of schedulers, and showed that an edf
scheduler could realize all flows’ deadlines under such band-
width. Motivated by the need for lower complexity solutions,
the paper then explored simpler static priority and fifo sched-
ulers. It derived the minimum required bandwidth for both,
but more interestingly established how to optimally reprofile
flows to reduce the bandwidth needed while still meeting all
deadlines. The relative benefits of such an approach were
illustrated numerically for a number of different flow com-
binations, which showed how reprofiling can enable simpler
schedulers to perform nearly as well a more complex ones
across a range of configurations.

The obvious direction in which to extend the paper is
to a multi-hop setting. In [17], we build on the results of
Proposition 1 and provide initial results for the multi-hop case
under the assumption that (service curve) edf schedulers are
available at each hop. Extending the investigation to static
priority and fifo schedulers is under way.

Another aspect of interest with static priority schedulers is
relaxing the assumption that flows with different deadlines
map to distinct priority classes, and allow multiple deadlines

11 Again [15] focuses on regulators that ensure zero access delay for a given
trace, while we investigate how a non-zero access delay can be of benefit.
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to be assigned to the same class. Not only does it enhance
scalability, but it can also improve performance!?. Last but not
least, extensions to statistical rather than deterministic delay
guarantees are also of practical relevance.
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