IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

On the Benefits of Traffic “Reprofiling”
The Multiple Hops Case — Part 1

Jiaming Qiu, Member, IEEE, Jiayi Song, Roch Guérin, Fellow, ACM, IEEE, and Henry Sariowan, Member, IEEE

Abstract—This paper considers networks where user traffic
is regulated through deterministic traffic profiles, e.g., token
buckets, and requires hard delay bounds. The network’s goal
is to minimize the resources it needs to meet those bounds. The
paper explores how reprofiling, i.e., proactively modifying how
user traffic enters the network, can be of benefit. Reprofiling
produces “smoother” flows but introduces an up-front access
delay that forces tighter network delays. The paper explores
this trade-off and demonstrates that, unlike what holds in the
single-hop case, reprofiling can be of benefit even when “optimal”
schedulers are available at each hop.

Index Terms—latency, bandwidth, optimization, shaping, net-
work calculus.

I. INTRODUCTION

Networks in domains as diverse as automotive, avionics,
manufacturing, smart grids, and datacenters [1]-[7]] serve
users/applications with known traffic profiles and with expec-
tations for delay guarantees, often in the form of hard end-to-
end delay bounds. This has been reflected in standardization
efforts such as the Time Sensitive Networking (TSN) and
Deterministic Networking standards [8[|]—[|11]] that target hard
delay bounds for deterministic traffic profiles under various
schedulers. This is the environment this paper assumes.

Specifically, we consider networks where user flows are
characterized using a foken bucket, a common traffic regu-
lator [12] that limits long-term transmission rates and flows’
burstiness, and where performance guarantees are in the form
of deterministic end-to-end delay bounds. The problem we
target is that of meeting those bounds while using the least
amount of overall network bandwidt For ease of presenta-
tion, the results are derived under a fluid model. They hold
with minor adjustments in a packet setting. Network topology
and routing are assumed fixed.

The paper’s focuses on whether reprofiling flows, i.e., modi-
fying on ingress the traffic profiles specified by users, can help
reduce the bandwidth needed to meet delay bounds, inclusive
of any reprofiling delay this introduces. The answer obviously

J. Qiu and R. Guérin are with the Computer Science and Engineering
department at Washington University in St. Louis, Saint Louis, MO 63130,
USA, e-mail: {giujiaming, guerin}@wustl.edu.

J. Song was with the Computer Science and Engineering department at
Washington University in St. Louis and is now with ByteDance Inc., San
Jose, CA 95110, USA, e-mail: jiayisong@wustl.edu.

H. Sariowan is with Google, Mountain View, CA 94043, USA, e-mail
hsariowan@google.com.

This work was supported by NSF grant CNS 2006530 and a gift from
Google.

The formulation minimizes fotal bandwidth, but other objectives such as
maximum or weighted sum of link bandwidth are possible. It can also be
applied to the dual problem of maximizing the admitted traffic.

depends on the type of scheduler used in the network. The
base one-hop case was investigated in [[13]] that established
the benefits of reprofiling with First-In-First-Out (FIFO) and
static priority schedulers, and confirmed the known result [|14]],
[15] that reprofiling is unnecessary when an (optimal) Earliest
Deadline-First (EDF) scheduler is used. This paper explores
the extent to which this latter result remains true in a multi-
hop network setting, with an extension considering the simpler
FIFO and static priority schedulers left to a sequel (Part II).

We show that, in a multi-hop setting, reprofiling can help
even with EDF-based schedulers. The intuition is that, while
reprofiling has a cost (delay), it is incurred once (on ingress),
but its benefits (from smoother traffic) accrue at every hop a
flow traverses. Of note is the fact that the optimal solution
often lies between the two extremes of “No Reprofiling”
(NR) and “Full Reprofiling” (FR). NR keeps the traffic profile
unchanged and allocates the entire delay budget to the network
for maximum scheduling flexibility. Conversely, FR spends
as much as possible of the delay budget on making flows
smoother on ingress, at the cost of much tighter network delay
budgets and, consequently, more limited scheduling flexibility.

The paper develops approaches for determining the best
reprofiling solutions under a general service curve scheduler,
SCED [16], and makes the following contributions:

(1) Demonstrates the benefit of ingress reprofiling in meeting
network delay bounds with less bandwidth;

(i) Develops and evaluates exact and approximate solutions
for several scenarios.

Those contributions notwithstanding, the aspect of most inter-
est is establishing that reprofiling can help even in the presence
of powerful schedulers such as SCED.

The paper is structured as follows. Section reviews
network calculus and scheduling results we rely on. Section [ITI]
presents our optimization framework. An exact but high com-
plexity algorithm is introduced in Section followed by a
simpler yet effective approximate algorithm in Section [V] The
performance and run time of the two algorithms are compared
in Section [Vl Section [VII]illustrates the bandwidth benefits of
reprofiling for several scenarios. Section reviews related
work. Finally, Section [[X]summarizes the paper’s contributions
and discusses extensions. For clarity of presentation, proofs
and ancillary results are relegated to appendices. For ease of
reproducibility, both the reprofiling algorithms derived in the
paper and the scenarios used to evaluate them are available
at https://github.com/qiujiaming315/traffic-reprofiling.

https://github.com/qiujiaming315/traffic-reprofiling

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

II. BACKGROUND

This section reviews relevant concepts from Network Cal-
culus [17] (NC) and several results we rely on. Although
the NC framework applies to packet and fluid models, for
ease of exposition, we use a fluid model in the paper. The
results can be extended to a packet model through standard
approaches [17, Section 1.7], but do not yield further insighﬂ

A. Network Calculus

1) Arrival Curves: They constrain the amount of traffic a
flow is allowed to transmit over time. A flow with a cumulative
arrival function A(t) (i.e., the traffic sent between 0 and ¢)
conforms to the arrival curve « if:

Alt+71) — A(t) < a(r), V7,t>0.

In other words, o upper bounds the data sent in any time
interval. The foken bucket is such an arrival curve that bounds
a flow’s long-term rate r and burst size b:

0 t=0,
at) =
b+rt t>0.

We assume that, the traffic of every flow ¢ is initially regulated
by a token bucket a; = (r;,b;) as it enters the network.
We explore how modifying this original token bucket profile
o; can allow a network to offer given end-to-end latency
guarantees to flows, and do so with less bandwidth.

2) Service Curves: They specify minimum service guar-
antees to flows, namely, if a flow with arrival function A
is guaranteed a service curve [, then under relatively mild
condition that we assume hold, the amount of service S(t)
received by the flow by time ¢ is such that there always exists
a time ¢t — 7,7 > 0 such that [17, Section 1.3]:

S(t) > At — 1)+ B(7).

3) Delay and Buffer Bounds: Given a flow with arrival and
service curves « and (3, its delay can be shown [17, Section
1.4] to be upper-bounded by the maximum horizontal distance
A(a, B) between o and 3, where:

Ala, B) = il;}(i)){inf{T >0:at) <Bt+7)}} D)

Conversely, the maximum vertical distance ©(a,) yields
buffer bounds:
O(a, B) = sup{a(t) — B(1)}. 2)
t>0
Another important result, known as Pay Burst Only Once
(PBOO), that derives from those concepts is that the end-
to-end delay of a flow traversing n hops and provided with

service curve (; at hop j can be upper-bounded using a
concatenated service curve of the form [|17, Section 3.1]:

QB =1L @ ® B,
j=1

2See Appendix B-A for a detailed discussion.
38 is continuous, 8 (0) =0, and A is left-continuous.

where ® is the min-plus convolution operator defined as:
(B ® Ba)(t) = oigfq {B1(7) + B2t = 7)}, 3)

with A(q, ®;’:1 B;) the end-to-end delay upper-bound.

Note that this upper-bound needs not be tighﬂ A service
curve is a lower bound for the service a flow is guaranteed
to receive, and its realization by the scheduler can deviate
from it. This affects the flow’s departure curve from the
scheduler. In a multi-hop setting, this departure curve is the
flow’s arrival curve at the next hop and affects its delay there.
Accurately characterizing departure curves is challenging for
most schedulers, and hence so is tightening the upper bound.

4) Traffic Shaping and Greedy Shaper: A traffic shaper
o enforces conformance of incoming traffic with the arrival
curve specified by o. Shapers are typically realized as greedy
shapers [17, Section 1.5.3] that release traffic at the earliest
possible time that guarantees conformance with o. Because
the term shaper implies a non-work-conserving behavior, we
opt to use the more general term “profiler” to account for the
fact that, at least with sophisticated schedulers such as SCED,
reprofiling can also be realized in a work-conserving manne
We use the notation o to indicate a flow’s new (re)profile, with
« denoting its original token bucket profile.

The goal of reprofiling is to make flows “smoother”, and a
flow with initial token bucket profile « is reprofiled to o < «.
Recall that a profiler/shaper enforces an arrival curve, so that
a smaller profile imposes a corresponding reprofiling delayﬁ]
Given « and o, this delay is given by D = A(«, o), where
A(-,-) is as per Eg. . Ensuring that the flow’s end-to-
end deadline d is still met, inclusive of this reprofiling delay,
therefore, calls for reducing the flow’s network delay by a
commensurate amount, i.e., from d down to d — D.

We note that, as articulated in [[17, Corollary 1.5.1] and in
the use of Eq. (I) to compute D, there is a close relation
between greedy (re)profilers and service curves. The former
upper bound the traffic a flow can transmit, while the latter
give a lower bound on the service (transmission opportunities)
the flow can receive. Hence, when, at a given hop, a flow
is assigned a service curve equal to its profile, the flow
experiences a delay of O (under a fluid model) at this hop.

In this paper, we explore whether making flows smoother
outweighs the tighter network delays this forces. We also
note that once a flow has been reprofiled according to o, the
same reprofiling can be applied at every hop without causing
additional delays [17, Section 1.5.3]. This ensures that the
benefits of reprofiling remain present at every hop.

5) SCED Scheduling Policy: Service Curve Earliest Dead-
line first (SCED) [16] is a scheduling policy that extends EDF
and that, when schedulable (see Lemma E]), provides service
curve guarantees to flows. SCED operates as follows: Given
m flows with flow ¢ = 1,...,m, having arrival curve A;(t)
and service curve (3;(t), a bit arriving at time ¢ is assigned

4See [18l Section 1.2.3] for a pertinent discussion of this issue.

SUnder SCED, the (reprofiling) “delay” of a work-conserving reprofiler is
simply integrated in the deadline SCED uses for the flow’s transmissions.

%Under work-conserving operation, this delay is not necessarily incurred.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

deadline t', where ¢’ is the latest possible time that meets the
flow’s service curve guarantee and is computed as follows:

Ai(t) = (4; @ Bi)(t).

Bits are scheduled for transmission in order of their deadlines.
Given a set of service curves, the link bandwidth C* that
ensures SCED’s schedulability is characterized in Lemma

Lemma 1. Given a set of service curves B;(t),1 =1,...,m,
any scheduling mechanism requires a link bandwidth of at
least: m g
O* = sup ZZ /BZ()’
>0 t
to guarantee those service curves. SCED realizes those service
curves with a link bandwidth of exactly C*.

The proof is in Appendix B-B. We note that Y ;" /3;(¢) rep-
resents an aggregate service curve that captures the minimum
amount of service SCED needs to provide to guarantee service
curves (3;(t) to all flows i =1,...,m.

The flexibility of EDF schedulers (and therefore SCED)
notwithstanding, they are complex even if efficient imple-
mentations are increasingly available [[19]], [20]. However,
they are optimal when it comes to minimizing bandwidth on
individual links [13]-[15]], and therefore represent a baseline
when evaluating the potential benefits of reprofiling. To that
end, we assume the availability of SCED schedulers capable
of allocating dedicated service curves to flows at every hop.

B. Two-Slope Rate-Latency Service Curve

Although SCED can accommodate arbitrary service curves,
for tractability we limit our investigation to a subset of piece-
wise-linear service curves we term two-slope rate-latency ser-
vice curves (2SRLSC). Fig. [Ia]illustrates the generic structure

bits

time time

T

(b) DESC § (c) 2SRC o

(a) 2SRLSC B

Fig. 1: 2SRLSC and its two components.

of the 2SRLSC g8 = (T, R, B, r) allocated to a flow at a given
hop. It consists of three segments and can be decomposed
into the concatenation of a Delay Element Service Curve
(DESC) 6, and a Two-Slope Reprofiling Curve (2SRC) o, i.e.,
B = § ®o. There are two primary motivations for our choice.
(1) The use of separate latency and rate components (DESC
& 2SRC) acknowledges the efficacy of decoupling delay

and rate guarantees, as embodied in the rate-latency ser-
vice curves behind most practical schedulers [17, p. 21];

(i1) The use of a 2SRC stems from our reliance on reprofiling.
As each flow is reprofiled, assigning it a 2SRC equal

to its profile ensures that its delay at each hop is just

the delay 7' of the delay element. Further, as shown in
Section restricting reprofiling to only two slopes is

not restrictive and can minimize the required bandwidth.

1) Delay Element Service Curve: A DESC ¢ is shown
in Fig. It ensures that arriving traffic is transmitted before
a deadline T. Operationally, it maps to an EDF scheduler
(assuming schedulability), and enforces local deadlines for
flows at every hop.

2) Two-Slope Reprofiling Curve: A 2SRC ¢ = (R, B,r),
is defined by three parameters: a short-term rate R > r, a
parameter B that determines the duration ¢ = B/(R —r) of
transmission at R, and a long-term rate . We note that o can
be realized through the concatenation of two token buckets
o = (R,0) and o3 (r, B), i.e., 0 = of @ a5. The next lemma
formalizes the extent to which this is not a limitation.

Lemma 2. Consider a flow with token bucket profile o =
(r,b) that is reprofiled using o = ®?:1 «;, where o =
(rj,b5),5 = 1,...,n, are two-parameters token buckets, and
o is such that A(a,0) = D. Let 0* = o ® ab, where o
and o are token buckets with profiles af = (R* = b/D,0)
and o = (r,B* = b —rD), then Ala,0*) = D and
o(t) > o*(t),vt > 0.

The proof is in Appendix B-C, and the lemma establishes
that, among all concatenations of token buckets that realize
the (reprofiling) delay target D, o* does so while being the
most frugal when it comes to bandwidth, i.e., c*(t) < o(%).

Combining Lemma [2| with Lemma [1| establishes that, when
using SCED to realize a delay target of D for an arrival
curve «, the 2SRC ¢* requires the least amount of band-
width among all concave, piece-wise-linear service curves, i.e.,
service curves realized by a concatenation of token buckets
and an EDF scheduler. Hence, o* is optimal among this
family of service curves. Fig. [2] illustrates how o* realizes
the (reprofiling) delay D for an arrival curve a.

Fig. 2: Optimal reprofiler given reprofiling delay.

III. PROBLEM FORMULATION
A. Problem Setting

Consider a network with n links identified by their index
7,1 < 7 < n, and carrying m flows, as illustrated in Fig. E}
Flow 4,1 < i < m, is characterized as follows:

o The path of flow ¢ from source to destination is assumed
acyclic and specified by an ordered set of distinct link indices
Pi = {Jiys Jizs-- -, Jip for a k hops path. The directed graph
resulting from the union of the flow paths is allowed a general
structure, i.e., either acyclic or cyclic.

o Traffic from flow ¢ conforms to token bucket «v; = (r;, b;),
and has an end-to-end packet-level latency target[] d;. Together,
«; and d; define the flow’s profile (r;, b;, d;).

7Exclusive of propagation and processing delays.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

Deadline d;

Network with n Links

Deadline d,,,

Fig. 3: Network with m flows and n links.

Flows connect to the network through dedicated, high-speed
access links and at each hop are assigned a 2SRLSC as defined
in Section Further, network buffers are assumed large
enough to ensure lossless operation. Buffer bounds can be
readily derived from basic network calculus, and are presented
in Section for a non-work-conserving setting.

B. Optimization Framework

1) Inputs: They consist of the vector triplet (r,b,d)
and the path matrix P = (P1,Pa,...,Pn), where
r = (r,r2,...,"m), b = (b1,b2,...,bp), and d =
(d1,da,...,dy) specify the flows’ token rates, burst sizes,
and deadlines, respectively.

2) Variables: Given our reliance on SCED, link bandwidths
depend on the 2SRLSCs assigned to the flows sharing a link,
with their parameters the variables that capture our bandwidth
minimization goal. Given a link j and denoting as F; the set
of flows whose path traverses link 7, the 2SRLSC §;; of a flow
in F; is specified through four parameters (T5;, R;;, Bij, i),
where we have taken advantage of the fact that flows are
regulated with a token rate that can, therefore, be assigned
as the long-term rate of their 2SRLSCs. Hence, in addition
to satisfying the stability condition C; > 3. 7, Tor the band-
width C; needed on link j to accommodate the 2SRLSCs of
the ﬂows in F; depends only on the variables (T};, R;;, B;j).

In general, the 2SRLSCs of flow ¢ are captured in three vec-
tors T;, R;, and B; that specify the variables (T;;, R;j, Bij)
for the links of path P;. The vectors for all m flows are then
the variables®| that determine the vector of link bandwidths
C = (C41,C4,...,C,) the flows” 2SRLSCs require.

3) Constraints: The end-to-end latency bounds are the
constraints of our optimization, which, recalling the results

of Section can be expressed as:
Aoy, Q) Bij) < diy Y1<i<m,)
JEP:

In other words, for all flows, the sum over all hops of
their reprofiling and scheduling delays (ingress reprofiling is
assumed done at the first hop) is no larger than their end-to-
end latency target.

8Sectlon Al shows how the number of variables can be reduced.

4) Objective Function: Our goal is to meet latency targets
while minimizing total bandwidth (again, other wide-sense
increasing functions such as maximum link bandwidth or
weighted sum of link bandwidth can be used). Formally, the
optimization objective function (OPT) is:

OPT : Cj, (%)

subject to the constraints of Eq. ().

C. Discussion

We note that OPT relies on the upper-bounds of Sec-
tion through Eq. (@). This has implications when it
comes to attributing causes to the bandwidth improvements its
solutions afford. Specifically, improvements come from three
possible sources: (i) reprofiling; (ii) the assignments of distinct
per-hop deadlines; and (iii) the tighter delay bounds that are
themselves a consequence of reprofiling.

Our focus is on reprofiling, but local deadline assignments
can also reduce bandwidth by leveraging heterogeneity across
hops. Further, making flows smoother, as reprofiling does,
reduces the possible “gap” between arrival and service curves.
This allows tighter end-to-end bounds (see Section as
it restricts deviations between departure curves and service
curveﬂ As a result, accurately quantifying how much of
the improvements we observe come from reprofiling alone is
challenging. Nevertheless, the results we present in Section|[VI]|
provide evidence of the benefits of reprofiling, even if precisely
assessing their relative contribution remains elusive.

IV. SOLVING PROBLEM OPT

The main challenge in solving OPT comes from the
large number of variables associated with having individual
2SRLSCs for each flow at each hop. Next, We introduce
steps to decrease this complexity by reducing the number of
variables involved while preserving the solution’s optimality.

A. OPT Reduction

We first establish that, for each flow, it is enough to consider
the same 2SRC at each hop. We term this 2SRC the flow’s
minimum reprofiler, and show that for any optimal solution
of OPT, it can be specified through a single parameter, the
flow’s reprofiling delay.

1) Minimum Reprofiler: This first lemma is a direct con-
sequence of applying NC’s concatenation result [17, Section
1.4.3] to 2SRLSCs, and will allow us (using Lemma E]) to
reduce the number of variables of OPT by assuming that a
flow is assigned the same 2SRC at every hop.

Lemma 3. Consider flow i assigned token bucket (r;,b;)
and assigned on link j € P; a 2SRLSC B;; with parameters

Note that under the linear service curve of full reprofiling, departure and
service curves are identical and the bound is tight.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

T, Rij, Bij, and r;j = r;. The concatenation of the flow’s
2SRLSCs is readily found to be another 2SRLSC of the form:

) 8= 15

JEP;

@T_%;TbR._mmeB._F%me}
J

- 6Ti ® Ti,

where Or, is a delay element with parameter T; and o, is a
2SRC with parameters R;, B;, and ;.

The proof is in Appendix B-D. We term o; the flow’s
minimum reprofiler, and from Section the flow’s end-
to-end delay upper bound is then of the form:

(0[2, ® ﬂzg = Z ﬂj + A(Oél',O'i),

JEP; JEP;

V1<i<m, (6)

which is the sum of all the local deadlines plus the reprofiling
delay from the minimum reprofiler Uﬂ

The next lemma formalizes that assigning flow ¢ the same
2SRC as part of its 2SRLSC at each hop does not affect the
optimal solution of OPT.

Lemma 4. Given an optimal solution to OPT, the 2SRC of
the 2SRLSC of every flow i,1 < i < m, on link j € P;, can
be set to its minimum reprofiler ;.

This is consistent with results from [[17, Section 1.5.3]. The
proof derives directly from Eq. (6), which states that given
flow ¢’s local deadline assignments T';, ensuring that its end-
to-end latency target d; is met depends only on the values R;
and B; of its minimum reprofiler. Further, as per Lemma
the link bandwidth required to accommodate a set of 2SRLSCs
is a non-decreasing function of the R;; and B;; of the flows
sharing the link. Given an optimal solution to OPT, changing
the parameters I;; and B;; of flow 4 on link j to R; and B;
(their minima) can, therefore, never increase the required link
bandwidth. Hence an optimal solution exists where all flows
are assigned their minimum reprofiler.

2) Reprofiling Delay: We next establish that for any given
flow 7,1 < ¢ < m, the variables R; and B; can be reduced
to a single variable, namely, the flow’s reprofiling delay D;,
using the optimal reprofiler o} introduced in Lemma [2]

Lemma 5. Given an optimal solution to OPT, the minimum
reprofiler o; of every flow 1,1 < m, can be set to its optimal
reprofiler o .

According to Lemma [2] the optimal reprofiler o ensures
oi(t) > of(t),vt > 0 among all reprofilers o; with a
reprofiling delay of D,. Hence, setting R; = b;/D; and
B; = b; — r;D; for all flows does not affect the optimality
of the solution. Consequently, we have:

Proposition 6. Solving OPT is equivalent to solving OPT~

OPT™ : (7

10This is consistent with an earlier similar finding in [21].

subject to the constraints

Y Ty+Di<di, Vi<i<m,
JEP;

) (8)
D;<—=, V1<i<m,

T
where the second set of constraints ensure R; > r; for all
minimum reprofilers.

bits

3
Zﬁii(TB,j)
i=1

aggregate
service curve

== B

== By

ieem By

time

Ty Ty Ty Ty T3y
Fig. 4: Aggregate service curve and minimum required band-
width.

B. Non-Linear Programs Formulation

Eq. shows that solving OPT™ calls for computing
the link bandwidths C;,1 < j < n, given the variables
T;,D;,;1 < i < m. Fig. {] illustrates for a given link j
with three flows, the minimum bandwidth C';-‘ that satisfies
the constraints imposed by the service curves f3;;’s of the
flows traversing link j. The figure also hints at how C7 can
be determme(E-] from the resulting aggregate service curve
(the solid, dark-blue line in the figure). This aggregate service
curve is a composite piece-wise linear function constructed
from the three segments of all the individual 8;;’s, namely,

0 O<t<T‘ij7
Bij(t) = q 7 (t = T5) T <t <Tj, ©)
b + it _Ti/j) t> Tllj7

with the notation T}; = T;; 4+ D; used in Eq. @) and Fig. [4
Combining Lemma [:IJ with the expressions in Eq. () gives

Cy= suptZO , which, as per the next lemma, can
be further simpllﬁed into Eq. (10).

Lemma 7. Given a set of flows F; sharing link j and assigned
service curves in the form of 2SRLSCs as given in Eq. (9), the
minimum bandwidth C3 required to meet the service curves
is equal to:

O — max Ze]—'J /.7(k])
keF; Tkj

E Ti,

1€ F;

(10)

Eq. (I0) derives directly from the proof of Proposition 1
in [[13]. Solving OPT ", therefore, conceptually calls for using
Egs. and @) to evaluate Z;;l C; for all combinations of

"Note that C ¥ can only be realized at points associated with bandwidth
decreases, and those correspond to the T =T;; + Dy’s.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

the variables T;; and D; that meet the constraints of Eq. (@)
As alluded to, Fig. |4| suggests a more efficient approach.

From Eq. , we see that C’; has a closed-form functional
expression as long as the set of linear segments making up the
aggregate service curve remains unchanged (condition ORD).
In other words, their slope and length can vary, but their
number and respective positions should not. When this holds
and given the functional expression of this aggregate service
curve on each link, OPT™ can then be formulated as a set of
non-linear programs{]z] (NLPs).

Those NLPs can be solved using standard solvers. Finalizing
a solution to OPT™ then calls for exploring how the problem’s
variables and constraints affect condition ORD. Specifically,
ORD depends on the relative positions (ordering, hence the
condition’s name) of the inflection points of the link’s aggre-
gate service curve. For link j, these map to the variables T;;
and Tilj = TL‘j + D;,i € ‘/—"j.

The number of feasible orderings of these variables is
combinatorial in nature (it grows super-exponentially in m
and n), and likely intractable even for a single hop. As a
result, we rely on a standard randomized combinatorial search
strategy to explore the space of feasible orderingﬂ and for
each such ordering solve the associated NLP. Appendix B-E
offers additional details on how we generate feasible orderings,
and illustrates it with a simple three flows example.

C. Buffer Bounds

Given a solution to OPT ™, Eq. can be used to obtain
buffer upper bounds. We do so for a non-work-conserving
setting'*| where buffer requirements are split into (i) per flow
ingress reprofiling buffers, (ii) per flow reprofiling buffers at
each hop/link, and (iii) a per link scheduling buffer.

Under non-work-conserving operation, a flow’s reprofiling
buffer, at both ingress and at each hop, receives data from
the upstream link or source, stores it until it conforms to the
flow’s (re)profile, before releasing it to the link/scheduler for
transmission. The (link) scheduling buffer holds data from
all flows waiting for transmission on the link. Bounds can
be obtained separately for each flow’s reprofiling buffer and
for the link scheduling buffer. With those bounds in hand,
an upper bound can be derived for a link’s total buffer
requirements simply by adding the reprofiling buffer bounds
of the flows sharing the link and the link’s scheduling buffer
bound. Expressions for those individual bounds are given
next.

The scheduling buffer bound for link j is given by:

5, = o,
J Sgg{za it}

20 e F,

Y

where . F, 0 represents the aggregate arrival curve of all
flows sharing link j as they leave their respective reprofiler,

12The variables D;’s and T;; + D;’s are in the denominator of Egs. @)
and (T0), respectively.

13We explore a logarithmic number of feasible orderings to achieve a
reasonable trade-off between solution quality and computational efficiency.

4In a work-conserving setting buffer bounds are more challenging as tight
departure curves from the upstream SCED schedulers are difficult to derive.

i.e., the flow’s 2SRC. Conversely, C;t represents the link’s
service curve given its bandwidth C}.

Similarly, we show in Appendix B-F that the reprofiling
buffer of flow ¢ at hop (link) 5 can be bounded based on the
worst-case burst that can accumulate because of scheduling
delays at the previous hop ;' on its path P;:

O = sup{o; — iy}, (12)
>0

Finally, we note that flow ¢’s ingress reprofiling buffer is

readily bounded by its original token bucket burst size b;.

D. A Representative Example

To showcase the operation of our NLP approach and the
type of solutions to OPT ™ it produces, we introduce next a few
representative examples. In spite of their limited scope, they
highlight the diversity of possible outcomes, and consequently
the challenges in generating insight into how individual param-
eters affect solutions.

For clarity of exposition, we focus on the minimalist config-
uration of Fig. [5| with just 2 hops and 2 flows. Flow 1 traverses
links 1 and 2, while flow 2 is limited to link 2. The optimal
solution, therefore, only requires determining how to reprofile
flow 1 and split its residual deadline (after subtracting its
reprofiling delay) across the two links. This is because flow 1
is reprofiled prior to reaching link 2, which, when combined
with the optimality of EDF in the one-hop scenario [13],
implies that minimizing the bandwidth of link 2 can be realized
without reprofiling flow 2 (or further reprofiling flow 1).

Link 1 Link 2
VR 7 7\ Flowl
/) \ 7‘\j_>Flow 2

Fig. 5: Network with 2 hops and 2 flows.

Table [I| reports the structure (reprofiling delay and local
deadline assignments) of optimal solutions for 5 experiments
associated with different combinations of flow profiles. Be-
cause the focus is on the structure of the solution, we do not
report the resulting bandwidth values, nor do we compare them
to that of alternative approaches. This discussion is deferred
to the investigation of Section

Returning to Table (Il the columns labeled “flow 1” and
“flow 2 report the (r;,b;,d;), i = 1,2, profiles of the two
flows, with rates, burst sizes, and deadlines taking different
values in each of the 5 experiments. The second group of
columns labeled “Flow 1 Reprofiling and Deadlines” reports
the reprofiling delay D; of flow 1 and its local deadlines
Ty1,T12, on links 1 and 2, res ectiAvely. We also report D,
relative to its maximum valu dy = min(dy,by/r) to
demonstrate how much reprofiling is applied to flow 1.

As alluded to, no clear trends emerge from the data, e.g.,
tighter deadlines imply neither smaller nor larger relative
reprofiling delays. Nevertheless, the optimal solutions share
a few characteristics: (1) Optimal reprofiling delays can be

I5The reprofiling rate R cannot be less than 77.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

TABLE I: Optimal Solutions for the 2-hop, 2-flow Network of Fig.

Profile (r;,b;,d;),i = 1,2 Flow 1 Reprofiling and Deadlines
flow 1 flow 2 Dq T11 T Dy /dy
Expt 1 | (98.75, 88.18, 0.20) | (87.63, 33.56, 0.01) | 0.10 | 0.09 | 0.01 50.68%
Expt 2 | (16.84, 21.88, 2.00) | (57.37, 70.14, 1.00) | 1.27 0 0.73 98.07%
Expt 3 | (28.26, 71.05, 2.00) | (81.47, 48.07, 0.10) | 0.93 | 0.97 | 0.10 46.29%
Expt 4 (60.39, 4.88, 0.20) (86.24, 61.55, 0.10) | 0.05 | 0.04 | 0.11 57.15%
Expt 5 (33.11, 6.19, 0.20) (25.32, 88.41, 0.01) | 0.08 | 0.11 | 0.01 44.56%

anywhere between full reprofiling (D; = ci) and no reprofil-
ing (D; = 0), and (2) Local deadlines can vary significantly
across hops, i.e., they are typically not equal.

V. A GREEDY REPROFILING ALGORITHM

The NLP formulation’s ability to find an “optimal” solu-
tion to OPT™ notwithstanding, its complexity motivates the
development of a heuristic that we describe next. It relies on
a simple greedy algorithm (Greedy) that, at least on the small
topologies the NLP formulation can handle, performs nearly
as well, but at a much lower computational cost.

As just mentioned, optimal solutions often have reprofiling
delays D; anywhere in [0,d;], where d; = min(d;,b;/r;) is
flow ¢’s maximum reprofiling delay, and per hop deadlines
that vary across hops. In other words, those solutions select
intermediate reprofiling configurations, i.e., strictly between
“no reprofiling” and “full reprofiling”, and distribute the
remaining delay budget unevenly across hops.

A. Overview

| initialization

l OPT inputs

exploration

update D;

adjustment

initial reprofiling
delay D;

total bandwidth W

best W*,
reprofiling solution

Fig. 6: Overview of Greedy.

The algorithm we present next captures both above aspects.
It proceeds in two nested phases as shown in Fig. [6]

(1) An iterative exploration of reprofiling configurations,
with initial flows’ reprofiling delays spanning values
between 0 and their maximum value d;.

(ii) For each reprofiling configuration, adjustments of local
deadlines and reprofiling solutions at hops where flows’
delay guarantees are strictly better than their target.

B. Exploration Phase

As its name indicates, this phase explores reprofiling config-
urations that span the range of possible reprofiling delays. The
intent is to find the combination that yields the smallest overall

Algorithm 1 Exploration

Inputs: flow profiles r = (r1,72,...,7m),
b = (b1,ba,...,bp), d=(d1,da,...,dp)
path matrix P = (P1,Pa, ..., Pm)

exploration parameters L, K
adjustment threshold e
Qutput: minimum total bandwidth W*

optimal reprofiling delays D*
local deadline assignments T*

1: d; = min(d;, b;/r;),V1 <i<m

2 lr=0hr=1

3: for{=1to L do

4. fork=0to K+1do

5: Ve = lr + };?;llr -k

6: Di:'yk-c@ﬁlgigm

7 T;; = (d; — D;)/|Pi|,V1 <i<m,j€P;

3

9

W = adjustment((r,b,d),P,D, T,¢)
: if W < W* then
10: W* =W, k* =

11: D*=D,T*=T
12: end if

13: end for

14: Ir = Ymax(k*—1,0)s hr = Ymin(k*+1,K41)
15: end for

16: return W* D*, T*

bandwidth. It is detailed in Algorithm [I] where we refer to the
line numbers on the left when describing the algorithm.

In considering possible reprofiling configurations, the choice
of reprofiling delays can vary across flows, and each flow ¢
boasts a different range [0, d;]. Exploring all possible combi-
nations is clearly intractable. Our exploration seeks a trade-off
between coverage and tractability. It proceeds iteratively, and,
in iteration z, applies the same reprofiling ratio v, to all flows,
and sets the reprofiling delay of flow i to D;(x) = v,d;. This
allows flows with different reprofiling ranges to be assigned
different reprofiling delays, while enabling a systematic ex-
ploration of the underlying space, i.e., from D;(x) = 0 when
vz =0 to D;(x) = d; when ~, = 1.

The relative simplicity of this approach notwithstanding,
its coverage depends on the number of distinct values -,
takes; with a fine-grain exploration requiring a large number
of values. To bound the resulting computational cost, we rely
on an iterative approach that progressively refines the range
of reprofiling ratios it explores. It is illustrated in Fig.

Turning next to the details of Algorithm (I} each iteration

explores K + 2 reprofiling ratios v, = KL_H, 0<k<K+1,

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

uniformly distributed in that iteration’s range (line 4). The first
iteration (line 2) is shown in Fig.@ and spans the full range
from D;(0) = 0to D;(K+1) = d;. Subsequent iterations, for
a total of L, explore increasingly narrower ranges of reprofiling
ratios to progressively refine and improve the best result.

Specifically, Algorithm [1]iterates (line 3) by exploring new
ranges centered at the reprofiling ratio that produced the small-
est network bandwidth in the previous iteration (lines 9 — 10),
and with lower and upper bounds set to the two adjacent values
(line 13). As discussed next, given a reprofiling ratio, the
required network bandwidth is obtained (line 8) following an
adjustment phaseEG] that, when feasible, shifts delay allocations
between initial reprofiling delays and local deadlines.

We note that implicit in the iterative approach of Algo-
rithm |1} is the assumption that, in any iteration, the region
where the minimum of the objective function (network band-
width) is located can be bracketed with few samples. Fig. 27 of
Appendix B-G offers evidence in support of this assumption.

bits a; = 02(0) o} (0)~a(0) of(0) a; o (D~at(1)

reprofiling reprofiling

ul
reprofiling

| |
R = max(r, bi/d) 1 = max(r, by/d) 1
i 1
| |

time time

min(d;, bi/7;) min(d;, bi/7;)

(a) initial partition (b) intermediate partition

Fig. 7: Reprofiling exploration for K = 4. ¥ (1) specifies the
kth 2SRC of flow i at iteration [. 02(0) is assumed to yield
the best outcome in the first iteration.

C. Adjustment Phase

As shown in Fig.[6] the adjustment phase is invoked in each
iteration of the exploration phase. For an initial assignment
of reprofiling delays and local deadlines, it checks every link
to, when possible, greedily adjust (increase) the reprofiling
delays of flows with better deadlines than needed on that link.
The adjustment is bandwidth-neutral for the link, but, because
increasing reprofiling makes flows smoother, it can reduce
bandwidth requirements on other links. Algorithm [2] details
those adjustments, with Fig. [§] illustrating them on link j.

Recall that according to Eq. (I0), the minimum required
bandwidth C'¥ on link j depends on the values of the aggregate
service curve at the inflection points 7,’s. As illustrated in
Fig.|8al only one of those inflection points is typically involved
in determining C. This indicates the presence of “slack,” i.e.,
more bandwidth than necessary, at the other inflection points.
We denote the slack at inflection point Ti’j as s;;, with:

sij = O T = D Bry(T))-
kEF;

13)

The purpose of the adjustment phase is to leverage this slack to
increase the reprofiling delay of flows that can tolerate it. For a
given flow ¢, this means increasing its reprofiling delay while
correspondingly decreasing T;; (to keep 7 ; constant). The

16See Algorithm

Algorithm 2 Adjustment

Input: flow profiles r = (11,72, ...,7m)s
b= (bi,ba,....bn), d = (dr,da,...,dn)
path matrix P = (P1,Pa, ..., Pn)
initial reprofiling delays D = (Dy, Do, ..., Dy,)

initial local deadlines T = {T}; : V1 <i <m,j € P;}
improvement threshold e
Output: total bandwidth W after adjustment
I W=o00,W =00
2: sort links in decreasing order of |(J,. 7 Pl
3: while (W' — W)/W’ > € do

4. for j=1tondo

5: TZJZ/TU-FD“V’LEJ—"J

6: compute C} according to Eq.

7: sort flows in F; in decreasing order of 7},

8 for i € F; do

9: /* varies Tj; in Eq. to find T7; that depletes
slack at first preceding inflection point */

10: T{;- = maxkefj’kN{Tij) 0}

11: Tij = maX(Tf}, 0, Ti/j — bl/ﬁ)

12: D, = T’i/j — nj

13: end for

14: end for

15: update C7,V1 < j <n according to Eq.
16 W =WWwW=5%_.0C;

17: end while

18: return W

resulting impact and how slack is consumed in the process,
is shown in Fig. [8b| for flow 3. We note that increasing the
reprofiling delay D3 “raises” the aggregate service curve link j
prior to Téj. Hence, the increase in D3 can proceed until either
one of the following three conditions is met (lines 9 — 10):
(@) sp; is deplete at some Ty ;, k € F; and Ty, < T7,.
(b) The flow’s own local deadline T;; decreases to 0.

(c) The reprofiling delay D; reaches its maximum value b; /7;.
Once adjustments have been finalized on a link, the updated
profiles (2SRCs) are propagated to all the hops traversed by
the affected flows. The resulting smoother profiles translate in
potentially lower bandwidth requirements on those links.

We note that, except for the flow with the smallest Ti’j
that can always be fully reprofiled, reprofiling a flow affects
slack at other Ti’j’s. Hence, the order in which flows are
examined influences reprofiling. We chose to reprofile flows in
decreasing order of the Ti’j’s (line 7). This is because a larger
T}/; minimizes how many other flows are affecte

The other ordering affecting the adjustment phase is the one
in which links are visited. We visit links in decreasing order
of [U;e 7 Pi| (line 2) to prioritize links whose flows affect
the most other links. This ordering notwithstanding, changes
in a flow’s profile affect slack on all the links it traverses,
including previously visited links. Hence, irrespective of the
ordering chosen, new reprofiling opportunities may emerge.
Realizing them requires revisiting links. To that end, we

7This is the case in Fig. where Dj is increased until sg; = 0.
1$Because reprofiling only affects slack at smaller T! j’s.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

repeat the adjustment process (visiting all network links) until
improvements fall below a threshold € (line 3). As the required
network bandwidth is lower-bounded, this process converges.
Across all our experiments with a threshold of € = 0.1%, it
terminated in 4 iterations or less 90% of the time.

S} bits Lo bits
() VI
3 service curve 3 service curve
G > ()
C,‘
L= By]
/ 5
. et By , = By
Z“U(TW S Eiee- By Z”"(T"J i By
H time time
Ty Tay T3T3

5 nyo 1 Fasd Ty

(a) flow slack at 17, (b) increase D; by A;;

Fig. 8: Greedy flow reprofiling adjustment.

D. Discussion

Recall that each iteration of the exploration phase starts
with the same reprofiling ratio -y, for all flows, and splits any
remaining delay equally among links. We experimented with
alternatives, including assigning different initial reprofiling
delays to flows and heterogeneous initial local deadlines across
hops. The results were almost statistically identical (slightly
worse), and had a longer run time.

Running Greedy calls for selecting L (exploration iterations)
and K (reprofiling configurations). The algorithm terminates
after L iterations or when an iteration yields an improvement
below a configured threshold. In practice, choosing L = 2
and K = 4 seems to realize a reasonable performance
vs. computations compromise. Fig. 28 of Appendix B-G offers
evidence in support of this conclusion. We also note that
because flows from the same traffic class (same end-to-end
deadline) and following the same path can be aggregated,
Greedy’s run time complexity is O(N¢ x Np), where N¢ and
Np are the number of traffic classes and paths, respectively.

Finally, while Greedy, like the NLP formulation, combines
reprofiling and unequal deadlines across hops, its primary
driver is reprofiling, with unequal deadline assignments a side
effect. Hence, its close approximation of the NLP formulation,
as shown next, hints that reprofiling is the dominant factor
in decreasing bandwidth. Fig. 29 of Appendix B-G offers
evidence in support of this claim. We also acknowledge that
the evidence of Greedy’s close approximation of NLP is
only empirical. Deriving tight approximation bounds remains
elusive, in part because the “optimal” solution to OPT ™ relies
on the combination of multiple locally optimal solutions for
each NLP instance under consideration. This makes applying
traditional approximation techniques challenging.

VI. NLP FORMULATION VS. GREEDY

In this section, we compare the cost and performance
(bandwidth reduction) of NLP and Greedy. As NLP’s com-
plexity grows rapidly with the number of links and flows, our
comparison is limited to the simple tandem topology of Fig. [0}

Link n

Y 7 Y 1 Y 1 ,\\
T LN 7 { T L T m flows

-
o
-

Fig. 9: tandem topology

In comparing the two algorithms, we vary the number
m of flows and the number n of hops each flow traverses
in the topology of Fig. [} We also select from a range of
traffic profiles, and use different values of targer per-hop
deadlines to construct end-to-end deadlines. The latter means
that, as n increases, so do end-to-end deadlines. Figs. 35 and
36 in Appendix B-I investigate an alternative where end-to-
end deadlines are fixed, with target per-hop deadlines then
decreasing as n increases. Results were qualitatively similar.

Specifically, we consider three per-hop deadlines with a
dynamic range of 100, i.e., dj, € {0.01,0.1, 1}, so that end-to-
end deadlines are of the form d = n-dj, as the number of hops
vary. The value dj, of a flow is randomly chosen from these
three values, and its traffic profile (r,b) is set by randomly
selecting values in the range [1,100] for both 7 and b.

In our first set of experiments, we fix the number of flows
to m = 3 and vary the number of links n from 2 to 10. The
results are shown in Fig. [I0] where each data point is based on
150 samples. We use Octerac as our NLP solver. Fig.
reports the average relative reduction in overall bandwidth
that the NLP formulation affords over Greedy, while Fig.
gives the corresponding average run times on an Intel(R)
Xeon(R) CPU E5-1620 v3 @ 3.50GHz server. The error bars
report the 95% confidence interval for both over a set of
150 experiments. As expected from its “optimality,” the NLP
formulation outperforms Greedy across all our experiments,
but the gap was small (below 3%), and differences in run time
quickly exceeded three orders of magnitude as m increased.

—3— NLP Formulation
—3— Greedy Algorithm

3.00% 5000-

N
0
2

4000-

3000

°
8

2 =

in second

2000

(NLP over Greedy)
sy
g
Algorithm Run Time

o
8
®®

1000

Relative Improvement
°
&
g

0.00% o
2 3 4 5 6 1 8 & 10 2 3 4 5 6 7 8 9 10
Number of Links n Number of Links n

(a) NLP over Greedy
Fig. 10: NLP vs. Greedy (m = 3 flows, # links, n, varies).

(b) run time

Fig.[10a]also highlights that while the gap between NLP and
Greedy first increases with n, it eventually drops to 0. This is
expected and an artifact of keeping per-hop deadlines fixed.
Specifically, as n grows, so do end-to-end deadlines until they
reach a value for which reprofiling all flows to their average
rate (a reprofiling delay of D = b/r) becomes feasible. Both
NLP and Greedy readily discover this solution.

Our next set of experiments uses a similar setup as the first,
but varies the number of flows m from 2 to 5 while keeping
the number of hops at n = 2. The smaller range of the latter is
because the complexity of the NLP formulation grows faster

19 Accessible at https://octeract.gg/.

https://octeract.gg/

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

0.80% 25000/ £~ NLP Formulation
—3- Greedy Algorithm

= 0.70%
20000

0.60%

0.50% 15000

=
]
2

in second)

£ c 10000

(NLP over Greedy!

o o
Algorithm Run Time

@
8
*

5000

Relative Improvement

°
N
3
2

0.10% o
2

3 7 3 7
Number of Flows m Number of Flows m

(a) NLP over Greedy
Fig. 11: NLP vs. Greedy (n = 2 links, # flows, m, varies).

(b) run time

(factorial) in the number of flows than links. The results are
reported in Fig. that parallels Fig. with mostly similar
conclusions. Greedy remains within about 0.5% of NLP on
average across experiments, and it achieves this with even
greater savings in run time, namely, improvements of more
than six orders of magnitude over NLP when m is just 5.

For calibration purposes, we also compare in Appendix B-
H the NLP-based solution with two baselines. The first, “Full
Reprofiling” or FR, reprofiles flows as much as possible with
a reprofiling delay set to D = d = min(d,b/r). When the
deadline d is small, i.e., d < b/r, it is fully dedicated to
reprofiling and the network delay is zerﬂ When the deadline
is larger, i.e., d > b/r, the residual delay budget, d — b/r,
is split evenly across hops. The second, “No Reprofiling” or
NR, forfeits reprofiling altogether, i.e., sets D = 0, and splits
the full d evenly across hops. As Greedy includes FR and
NR among its initial solutions, it never performs worse than
either, and often does better because of its ability to explore
intermediate reprofiling configurations.

The conclusion from our two sets of experiments is that
while the NLP formulation generates better solutions, its com-
putational complexity makes it impractical for anything but
very small configurations. In contrast, Greedy scales well and
produces solution that perform nearly as well. From examining
the solutions produced by the two approaches, we note though
that they usually differ significantly in the configurations they
produce. As pointed out in Section [V-D] this is not unexpected
given their structural differences, and hints at a relatively “flat”
solution space around optimal solutions.

VII. EVALUATION

In Appendix B-I we conduct a comprehensive evaluation of
the benefits of reprofiling using synthetic topologies and flow
profiles whose parameters we vary systematically. The investi-
gation shows that reprofiling yields consistent improvements,
often in the double digits in relative bandwidth decreases.
However, except for a few intuitive findings, e.g., that full
reprofiling is increasingly the best solution as the number
of hops a flow traverses increaseﬂ it does not offer much
insight into the structure of optimal reprofiling decisions. As
a result, we concentrate on reporting the benefits of reprofiling
(Greedy) for two more realistic configurations.

20Recall that we are assuming a fluid model.

21 As discussed in Appendix B-I this is true for both fixed hop-by-hop and
end-to-end deadlines, albeit for different reasons.

The first configuration is a vehicle network operating ac-
cording to the TSN standard. The second mimics a network
connecting multiple datacenters and the traffic flows between
them. For both, the benefits of Greedy’s reprofiling decisions
are compared to the two baselines, FR and NR.

In reporting results, the focus is on the bandwidth improve-
ments that Greedy yields over both baselines, with, as before,
error bars giving the 95% confidence intervals. Of interest is
that Greedy’s outcome often falls between the two extremes
of NR and FR. This demonstrates not only the benefits of
reprofiling, but more importantly that they involve a trade-
off between making flows smoother and preserving scheduling
flexibility in the network. Because of space constraints, results
on buffer bounds are relegated to Appendices B-J and B-K.

A. Application-Derived Topologies and Flow Profiles

Exploring how reprofiling performs in a more realistic set-
ting calls for identifying representative network topologies and
creating a traffic mix composed of flows with profiles derived
from actual application traffic. We consider two application
scenarios; one reflective of a TSN deployment, and the other
that arises in an inter-datacenter network setting.

1) Time Sensitive Networking (TSN):

a) Representative Network Topology: We first consider
a TSN-inspired network setting. The Orion Crew Exploration
Vehicle (CEV) network [22] is the instantiation we use for our
evaluation. Fig. 3 of [23] illustrates the network that consists of
31 end devices and 13 switches connected by 47 bidirectional
links, each viewed as two independent unidirectional links for
bandwidth accounting. Every end device is a possible source
or destination for traffic flows. We note that SCED is not a
scheduler included in the TSN standard, so that our focus is on
evaluating the benefits of reprofiling (for SCED) in a setting
where hard delay bounds are relevant.

Paths between sources and destinations (S-D pairs) are
minimum hop paths. When multiple choices exist, one is
randomly selected as the default. In addition, when generating
a set of paths, we omit all instances of single hop paths. This
is to avoid bias and noise when comparing Greedy to FR and
NR, respectivel

b) Flow Profiles: The TSN standard specifies several
traffic classes, including a Control-Data Traffic (CDT) class
with stringent latency requirements, and classes A and B with
looser latency targets. The traffic characteristics of those three
classes are given in Table 2 of [24] through their maximum
frame size, minimum frame inter-arrival time and maximum
end-to-end delay target. We use that information to create
traffic profiles (r,b,d) for flows from all three classes.

End-to-end deadlines d for classes CDT, A, and B are set to
0.1, 2, and 50ms, respectively, directly from Table 2 of [24].

Specifying the tuples (r,b) requires some intermediate
steps. We first specify average flow rates for all three classes.
We do so by relying on the frame sizes of Table 2 of [24]
(128,256, and 256 bytes for classes CDT, A, and B respec-
tively), and selecting frame inter-arrival times randomly from
among a discrete set of values that range from the minimum

22Recall that the EDF policy of SCED is optimal on a single link.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

values of [24] (500us, 125us and 250us for classes CDT, A,
and B respectively) up to maximum values a couple of orders
of magnitudes larger. Once a flow’s average rate is set, we rely
on the approach of [25] to determine suitable token bucket
parameters (r,b). We assume that frames arrive according to
a Poisson process, and choose the flow’s token rate r to be
10% higher than the average flow rate, with b then set equal
to 25 frame sizes. This combination ensures a 99" percentile
of the token bucket access delay of approximately zero.

c) Scenarios: Following again the setup of [24], we
sample applications and their associated flow profiles from
a mixture of the three traffic classes, CDT, A, and B, using
a sampling ratio of 1:4:4. Further, because in a TSN setting
flows can be either unicast, multicast, or broadcast, we select
each transmission mode equally for each flow. A flow’s source
is first chosen randomly from the 31 end devices in the Orion
CEV network. In the case of unicast and multicast, the desti-
nations are also selected randomly from the remaining nodes,
with, in the multicast case, the number of distinct destinations
itself random between 2 and 29. Hence, an application maps
to, on average, 15.5 traffic flows or distinct S-D pairs.

Each experiment consists of 1000 instances of a given
scenario. Results are reported across experiments involving
an increasing number of applications (from 10 to 200 in steps
of 10), and therefore a correspondingly increasing expected
number of flows (S-D pairs). For scalability, traffic flows from
the same class and S-D pair are aggregated.

16.0% 73.00%
14.0% 72.50%

72.00%

71.50%

5 8
S 3
R 2 R

71.00%

o
S
2

70.50%

Greedy over FR)
®
5
=2

Greedy over NR

Relative Improvement
(
S
°
g
2

Relative Improvement

(
NS
5 3
2 2

69.50%

400 800 1200 1600 2000 2400 2800 3200
Expected Number of Flows

(a) Greedy over FR

400 800 1200 1600 2000 2400 2800 3200
Expected Number of Flows

(b) Greedy over NR
Fig. 12: Greedy’s bandwidth improvements for Orion CEV.

d) Results: Figs. [I2a] and [I2b] report, as a function of
the expected number of flows, the bandwidth improvements
of Greedy over the two baselines, FR and NR, respectively.
The figures show that on the Orion CEV network, Greedy
yields bandwidth improvements of up to 16% over FR and
73% over NR.

Having significantly larger improvements over NR than FR
is consistent with our intuition from small configurations.
Consider a simple scenario with a single flow crossing two
hops. In this basic configuration, both FR and Greedy produce
the same solution, while NR requires twice as much band-
widtlﬁ Hence, in this single flow setting, Greedy generates
an improvement of 0% over FR and of 50% over NR.

We also note that Greedy’s improvements over FR increase
with the number of flows. This is again intuitive, as more
flows means more deadline combinations, and correspondingly

23Each hop receives only half the total delay budget, and the original flow
profile is assumed at both. Note that avoiding this penalty was the motivation
behind the RCSD policies of [21] that essentially emulate FR.

scheduling flexibility that Greedy can leverage as it seeks to
balance the benefits of smoother flows and scheduling flexibil-
ity. In contrast, FR largely forfeits this option by allocating the
full delay budget to making flows smoother. Hence, Greedy
outperforms FR as its ability to leverage scheduling flexibility
increases with the number flows.

Analyzing the improvements of Greedy over NR as the
number of flows varies is more challenging. It involves a
complex trade-off between how the number of flows affects
the “error” of NR’s end-to-end delay bounds and its ability
to leverage greater scheduling flexibility, all of which depend
on the exact combinations of flow profiles. Hence, the main
conclusion of Fig.[I2b]is that Greedy consistently outperforms
NR, irrespective of the number of flows.

Finally, as the number of flows increases, the improvements
of Greedy over both FR and NR eventually stabilize. This is
because flows associated with the same S-D pair (and therefore
path) and from the deadline class can be aggregated. Hence,
given that the number of S-D pairs is bounded, once the
number of flows is large enough, traffic mixes on all links
converge to a steady-state configuration that in turn yields a
certain level of improvements.

20.0% 300%

17.5%
250%
15.0% 4

12.5% 200%
150%

100%

(Greedy over FR)
(Greedy over NR

Relative Improvement
«
2

Relative Improvement

H
NN o
h o o o
2 2 8 2

°
3
R R RS
°

8 16 24 32 40 48 56 8 16 24 32 40 48 56
Total Bandwidth (Gbps) Total Bandwidth (Gbps)

(a) Greedy over FR (b) Greedy over NR

Fig. 13: Greedy’s improvements in number of flows accom-
modated for Orion CEV.

Fig. [[3] demonstrates the benefit of reprofiling from a dif-
ferent perspective. It shows Greedy’s improvements in number
of flows accommodated compared to FR and NR, assuming
that the network bandwidth is fixed. In other words, it captures
the additional traffic (number of flows) a given network can
carry from relying on Greedy’s reprofiling solution. The figure
shows that reprofiling allows about 20% more flows than FR
and 300% more flows than NR, which is consistent with the
bandwidth improvements results from Fig. Specifically,
when the number of flows across classes is large enough, the
bandwidth required by an “average” flow can be approximated
by dividing the total network bandwidth by the number of
flows it carries. Under such an assumption, a relative band-
width improvement of x can then be showﬂ to yield a relative
improvement of %— in the number of flows carried.

Fig. (14| offers additional insight into how Greedy’s improve-
ments are realized. It plots for a 3100 flows configuration, the
distribution (over the 1000 instances of the experiment) of the
relative per link improvements of Greedy over FR across the
47 directional links of the Orion CEV network. It shows that
while most links have a lower bandwidth than under FR, this
is not true for all links. This is because differences in traffic

24See Appendix B-L for details.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

0.035

0.030

0.025

0.020

0.015

0.010

Probability Density

0.005

0.000 -20% —10% 0% 10% 20% 30% 40% 50%

Relative Improvement
(Greedy over FR)

Fig. 14: Distribution of Greedy’s bandwidth improvements
over FR across the links of Orion CEV (3100 flows).

mix at each hop can affect how much the relative benefits of
greater scheduling flexibility matter. In some cases, a (locally)
sub-optimal performance on a given link affords larger savings
on other links, or savings on multiple links.

0.30

0.25

Probability Density
s o
[
G 3
I A I

0.0% 85.0%
Percentage of d Allocated to D

o
o
a

o
o
S

90.0% 95.0% 100.0%

Fig. 15: Distribution of Greedy’s reprofiling ratio D/c? on
Orion CEV (3100 flows).

Fig. [13] offers another perspective. It reports the distribution
across flows of the fraction of the maximum reprofiling delay
d used. The figure shows that, while some flows are fully
reprofiled (the mode at 100%), Greedy also uses intermediate
solutions that preserve some scheduling flexibility, which helps
it outperform FR. This confirms the existence of a “sweet spot”
in the trade-off between tighter network delays (because of the
added reprofiling delay), and the benefits of smoother traffic.

100.0%

17.5%
98.0%
15.0%

96.0%

2.5% 94.0%

0.0% 92.0%

~
=2

90.0%

(Greedy over FR)
Percentage of d
Allocated to D

«
3
2

88.0%

Relative Improvement

—3- Class CDT
-3 Class A

Class B

&
2

86.0%

84.0%

°
3
2

-320-15-10-05 00 05 1.0 15 20 25
Logiow

=20 -15-10 -05 00 05 10 15 20 25
Logiow

(a) Greedy over FR

Fig. 16: Reprofiling’s behavior on Orion CEV (3100 flows) as
a function of deadline scaling (w).

(b) reprofiling ratio D/ d

Although our choice of deadlines was inspired by Table 2
of [24], it is of interest to explore the sensitivity of the results
to different choices. We do so using again the 3100 flows
configuration but scaling the deadlines of the three traffic
classes by a common factor w € [1072,102:5].

Fig. [I6a] reports the relative improvements in bandwidth of
Greedy over FR as deadlines vary (the comparison to NR is
omitted as it consistently under-performs FR). The y-axis is

the relative bandwidth reduction of Greedy over FR, while the
z-axis is the log;, of the deadlines’ scaling factor w. The figure
shows that, as deadlines increase, Greedy’s improvements over
FR eventually decrease. This is expected since large deadlines
allow all flows to be reprofiled at their token rate, i.e., R =r,
in which case Greedy and FR converge to the same solution.
In contrast, tighter deadlines result in increasing improvements
that, for the Orion CEV network, stabilizﬂ at about 17%.

Fig. [I6b] investigates possible causes for those improve-
ments. It plots the reprofiling ratio D/d for the three traffic
classes, CDT, A, and B, as w varies. As expected, class
CDT has a consistently high reprofiling ratio. This is because
it has the smallest deadline target and, as mentioned in
Section the flow with the smallest 7;; (sum of local
deadline and reprofiling delay) can always be fully reprofiled
during Greedy’s adjustment phase. A similar phenomenon is
observed for class B, albeit for a different reason. Since class
CDT and class A have smaller deadlines and burst sizes no
larger than those of class B, class B can keep trading local
deadlines for reprofiling without depleting the slack of the
other two classes in the adjustment phas

The situation is different for class A. When w is large,
CDT’s reprofiling rate is set to R = r, which eliminates all
burstiness. This changes as w decreases. R gets larger and
CDT’s burstiness starts to increase. It then becomes possible
for class A to use CDT’s bandwidth once CDT’s initial
burst subsides. Realizing this opportunity calls for a smaller
reprofiling ratio to reintroduce local deadlines that allow class
A to wait for CDT’s additional bandwidth to become available.

Algorithm Run Time
(in second)
S 8 5 8

=
)

400 800 1200 1600 2000 2400 2800 3200
Expected Number of Flows

Fig. 17: Greedy’s run time on Orion CEV.

Finally, Fig.[T7is intended to demonstrate the scalability of
Greedy. Recall that, as mentioned in Section flows
sharing the same path and traffic class are aggregated. As
a result, the number of (aggregate) flow combinations that
Greedy needs to consider is upper-bounded by the number
of distinct paths in the network times the number of traffic
classes (end-to-end deadline classes). Although this upper-
bound is not reached with the largest (3100) number of flows
we consider, the corresponding run time of about 50 secs
obtained for the Orion CEV network is reasonable especially
in light of the low-end server on which the computations run.

2) Inter-Datacenter Network:

a) Representative Network Topology: This scenario tar-
gets a topology representative of networks connecting large

25Note though that once deadlines reach 0, the required bandwidth is
infinite, so that no improvements are then possible.
26Recall that the adjustment phase considers the largest deadline flows first.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

datacenters, and mimics the North-American network connect-
ing the (edge) datacenters of a major cloud provider [26].
The resulting topology (US-Topo) is shown in Fig. and
consists of 11 nodes and 23 bidirectional links. Sources and
destinations are selected from the 11 nodes and, as with the
Orion CEV network, we use minimum hop routing and only
multi-hop paths are considered.

O Edge Point
— Bidirectional Link

Fig. 18: US-Topo network topology (from [26]).

b) Flow Profiles: Creating realistic traffic mixes is chal-
lenging and few studies provide the necessary information.
Other works targeting datacenter network optimization [27]-
[29] have faced a similar problem, and [29] introduced a set of
candidate flow profiles in its own evaluation. Those profiles
unfortunately focus on intra datacenter traffic, so that most
deadlines can be met by guaranteeing a flow its long-term
rate, i.e., flows can be reprofiled down to their average rate.
This does not affect the evaluation of [29] that is focuses on
the benefits of fine-grained routing, but is a poor fit for our
investigation of the benefits of reprofiling. As a result, we
opt to extract profiles from a study of the traffic traversing
segments of a large network connecting datacenters [30].

We selected three applications from [30]: Web (W), Cache
read and replacement (C), and Hadoop (H). Fig. 4 of [30]
reports their traffic contributions to inter-datacenter links, with
Figs. 6 and 7 reporting the distributions of their flow sizes and
durations. Because those distributions are reported separately,
additional assumptions are needed to create complete profiles.
Specifically, we assumed perfectly positively correlated flow
sizes and durations, i.e., larger flows last longer than smaller
flows, and sample flow size and duration pairs jointly from
their respective distributions. This then readily yields cumula-
tive distribution functions (CDFs) for the average (token) rates
r of the three applications (see Fig. [T9).

1.0} — web
—— Cache
0.8 Hadoop

Cumulative Distribution

10~ 10T 10° 10T 10
Flow Rate (Kbps)

Fig. 19: CDF of flow rate r for Web, Cache, and Hadoop
applications derived from [30].

In choosing bucket sizes, we assume that the smallest flow
sizes of each application, Sy = 0.15Kbytes, Sc = 0.4Kbytes,
and Sy = 0.3Kbytes, correspond to the transmission of an
isolated burst. In determining overall burstiness, we rely on

the statement from [30] that flows from these applications
tend to be internally bursty, with Cache significantly burstier
than Hadoop, and Web somewhere in between. To limit access
delay, token bucket sizes are configured to accommodate
multiple successive bursts. Specifically, b is drawn randomly
from [0,20S5¢], [0,10Sw], and [0, 2Sy], for Cache, Web, and
Hadoop, respectively.

Finally, we set the end-to-end deadlines of Web, Cache,
and Hadoop to 10ms, 50ms, and 200ms, respectively. This is
motivated by discussions in [30] regarding the services relying
on them, i.e., Web search, user data query, and offline analysis
(e.g., data mining).

c) Scenarios: We specify possible traffic matrices by
selecting a traffic mix of Web, Cache, and Hadoop in the
ratio 3:9:1, which seeks to capture their relative usage across
services”’] The number of flows is then varied from 50 to 3000
in steps of 50, with again, for a given experiment (number
of flows), 1000 random instances generated for each result.
Traffic from the same application and S-D pair is again
aggregated for scalability.

8.00%
46.00%

— 7.00% 5.50%

PO

5.00%
6.00%

44.50%

5.00% 44.00%

Relative Improvement

(Greedy over FR
Relative Improvement

(Greedy over NR

&
oy
g
2

4.00%

43.00%

o 400 800 1200 1600 2000 2400 2800 [
Expected Number of Flows

(a) Greedy over FR

400 800 1200 1600 2000 2400 2800
Expected Number of Flows

(b) Greedy over NR

Fig. 20: Greedy’s bandwidth improvements for US-Topo.

(Greedy over NR)
8
K

Relative Improvement
(Greedy over FR)
IS
5
R

Relative Improvement

0 50 100 150 200 250 300 350 400 450
Total Bandwidth (Mbps)

(a) Greedy over FR

0 50 100 150 200 250 300 350 400 450
Total Bandwidth (Mbps)

(b) Greedy over NR

Fig. 21: Greedy’s improvements in number of flows accom-
modated for US-Topo.

d) Results: Fig. [20] mirrors Fig. [I2] and reports the
relative bandwidth improvements of Greedy over FR and NR.
The results are qualitatively similar to those of the Orion
CEV network. Bandwidth improvements are a little smaller
but still meaningful (about 8% over FR and 46% over NR).
Similarly, Fig. [21] evaluates the number of flows the network
can accommodate, and Greedy can allows 8% and 90% more
flows than FR and NR, respectively.

Fig. 22] duplicates Fig. [14] for US-Topo and plots the dis-
tribution of link bandwidth improvements of Greedy over FR
for a 3000 flows configuration. The shape of the distribution
differs from that of the Orion CEV network, but the results

2TLoosely inspired from Table 4 of [30].

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

0.16

E 0.14 IL{

@ 0.12

8 o010 .l

2 0.08 '..

=0 |

)
00 Fl [
0.00

Y -810%-4.0% 0.0% 4.0% 8.0% 12.0% 16.0% 20.0% 24.0%
Relative Improvement
(Greedy over FR)

Fig. 22: Distribution of Greedy’s bandwidth improvements
over FR across the links of US-Topo (3000 flows).

confirm that some links see bandwidth increases (negative
improvements) in exchange for larger decreases on other links.
How those improvements are realized is reported in Fig. 23]
that parallels Fig. [I3] and plots the distribution of reprofiling
ratios for the 3000 flows configuration. As with the Orion CEV
network, intermediate reprofiling solutions are common.

05 =
> I
o4
C
[
E
= I
2
=
=R
Q
8 I
gy —_— [|

0-050.0% 85.0% 90.0% 95.0% 100.0%

Percentage of d Allocated to D

Fig. 23: Distribution of Greedy’s reprofiling ratio D/ d on US-
Topo (3000 flows).

100.0% —

98.0%
96.0%

%
8.0 94.0%

92.0%

(Greedy over FR)
o
3
g
Percentage of d
Allocated to D

90.0%

Relative Improvement

-3 Web
-3— Cache

Hadoop

o 88.0%
2.0% Py

86.0%

-3.0 -25 -2.0 -15 -1.0 =05 00 05 1.0
Logiow

=30 -25 -20 -15 -10 -05 00 05 10
Logiow

(a) Greedy over FR (b) reprofiling ratio D/ d

Fig. 24: Reprofiling’s behavior on US-Topo (3000 flows) as a
function of deadline scaling (w).

Fig. [24] explores the impact of reprofiling as deadlines
vary. As before the deadlines from each class are scaled by
a factor w now spanning the range [0.001, 10]. The relative
bandwidth improvement of Greedy over FR and the reprofiling
ratios of the three applications are reported in Figs. 243
and [24b] respectively, with results largely consistent with those
of Fig. @ A minor difference is that, unlike Clas B in Orion
CEV, the reprofiling ratio of the largest deadline application,
Hadoop, drops to about 86% as w decreases. This is because,
unlike Orion CEV classes CDT and A, Web and Cache have
larger burst sizes relative to Hadoop. Hence, as w decreases
so that Hadoop full reprofiling rate exceeds its token rate r, it
can start exploiting scheduling flexibility to lower its required
bandwidth by taking advantage of bandwidth that becomes

available when the initial bursts of Web and Cache clear. This
is similar to what happens to class A in Orion CEV.

0.55

(in second)
o o o
= 0 O
s & &

Algorithm Run Time

o
W
=)

0.25

0 4060 800 1200 1600 2000 2400 2800
Expected Number of Flows

Fig. 25: Greedy’s run time on US-Topo.

Finally, Fig. 23] duplicates Fig. [I7] in reporting Greedy’s
average run time as we increase the expected number of flows
on the US-Topo network. As with Orion CEV, since flows are
aggregated the run time converges to an upper-bound once all
paths have been sampled with a stable mix of applications.
This happens quickly in the small configuration of US-Topo.

VIII. RELATED WORK
A. Time Sensitive Networking (TSN)

As alluded to, the TSN (and DetNet) standard targets hard
delay guarantees for traffic with deterministic traffic profiles.
Recent surveys [31]], [32] offer comprehensive reviews of both
the standard and various scheduling and shaping solutions
developed under its guise.

The optimization framework that underlies many of those
studies have connections to the problem we address. Their
objective function is typically in the form of either minimizing
delay or maximizing the amount of traffic that can be accom-
modated given network resources. In contrast, we primarily
target the dual problem of minimizing network resources given
a set of flows. More importantly, like most prior scheduling
work, traffic profiles are assumed fixed and the impact of
reprofiling is not considered.

B. Packet-level shaping and scheduling

Delay guarantees in packet networks have received much
attention, and we only sample a few directly relevant works.

An early work [33]] introduced latency-two-rates (L2R)
service curves similar to the 2SRLSC of this paper. However,
it focused on minimizing the resources allocated to individual
flows [33| Section IV.A], rather than the network-wide, multi-
flow perspective of this paper. More importantly, the aspect of
flow reprofiling was altogether absent.

Another early example closer to this paper is [21], [34]
that relied on rate-controlled service disciplines (RCSDs) [35]].
The papers demonstrated that by selecting shaping param-
eters derived from the service curves of rate proportional
processor sharing (RPPS) disciplines [36], [37], RCSDs could
outperform those disciplines and afford a larger schedulability
region. The papers, however, explored neither the reprofiling
(reshaping) of flows, nor how to allocate per-hop deadlines.

[38]] investigated splitting a delay budget between shaping
and network delays to minimize bandwidth. The focus was,
however, on a single flow and single link.

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

Finally, [39], and [40] relied on linear programming (LP)
and mixed-integer linear programming (MILP) to compute
tight worst-case delay bounds under blind and FIFO schedul-
ing, respectively. Flow reprofiling was again absent.

C. Datacenter solutions

Several papers [27[]-[29]], [41] proposed solutions for pre-
dictable and differentiated performance in datacenters. They
vary in their type of schedulers and traffic profile models, but
typically ignore the potential impact of reprofiling.

WorkloadCompactor [41]] is the exception, and while it
relies on static priority schedulers, it comes closest to this
paper in exploring reprofiling. It investigates how to adjust
token bucket parameters to guarantee tail latency while mini-
mizing the number of servers required by a set of workloads.
Its reprofiling is, however, limited to a family of feasible
regulator@ that do not delay workload requests. In contrast,
the reprofiling options we consider can result in added access
delays that must then be offset by lower network delays.

D. (Re)shaping bulk transfers

Bulk data transfers must often complete by a deadline, and
various approaches [42]-[48]] have been proposed to meet this
goal while minimizing bandwidth costs. The main difference
with this paper is the focus on transfer rather than packet
deadlines. The latter are relevant to real-time or interactive
applications. The two perspectives are, however, complemen-
tary, as tight packet deadlines often result in relatively low link
bandwidth utilization that can then accommodate the coarser
bandwidth shaping schedules of bulk data transfers.

E. Deadline assignments

Another set of relevant works [49[]-[51]] considered how to
split end-to-end deadlines across hops, albeit under very differ-
ent models from ours. In [49], local deadlines are dynamically
adjusted based on actual delays incurred at upstream hops.
Statically partitioning end-to-end deadlines across hops, as in
this paper, is explored in [50], [51]. However, as the notion of
arrival curves is absent from both, their solutions are neither
applicable nor do they address reprofiling.

IX. CONCLUSION

The paper demonstrated that reprofiling flows can help a
network offer delay guarantees with less bandwidth. This
highlighted the existence of a trade-off between the added
delay this reprofiling entails and the benefits it affords the
network from smoother traffic. This trade-off exists in part
because the reprofiling delay penalty is incurred once, while
its benefits accrue at every hops the flows traverse.

There are many directions in which to extend the work.
Simpler schedulers, e.g., static priority or FIFO, are clearly of
interest, as they are known to benefit from reprofiling even in
the single hop case [13]]. Such an extension would, however,
likely also include reliance on TSN’s inter-leaved shapers [|12]]

28Regulators above the r-b curve using the terminology of [41].

rather than per-flow greedy shapers to minimize in-network
complexity. Another natural extension is to consider statistical
guarantees. Hard delay bounds are arguably extreme statistics
that may not be suitable for all environments. In particular,
while they are appropriate in the context of the Orion CEV
network, the inter-datacenter networks of Section
may benefit from instead considering lower order statistics.
Exploring the extent to which reprofiling can still be beneficial
when focusing on such metrics is, therefore, also of interest.

REFERENCES

[1] M. Ashjaei, L. L. Bello, M. Daneshtalab, G. Patti, S. Saponara,
and S. Mubeen, “Time-sensitive networking in automotive embedded
systems: State of the art and research opportunities,” Journal of
Systems Architecture, vol. 117, p. 102137, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762121001028

[2] Avionics Full Duplex Switched Ethernet (AFDX) Network, Airlines Elec-
tronic Engineering Committee, Aircraft Data Network Part 7, ARINC
Specification 664, Aeronautical Radio, Annapolis, MD, USA, 2002.

[3] C. Zunino, A. Valenzano, R. Obermaisser, and S. Petersen, “Factory
communications at the dawn of the fourth industrial revolution,”
Computer Standards & Interfaces, vol. 71, p. 103433, 2020.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
50920548919300868

[4] T. Docquier, Y.-Q. Song, V. Chevrier, L. Pontnau, and
A. Ahmed-Nacer, “Performance evaluation methodologies for smart
grid substation communication networks: A survey,” Computer
Communications, vol. 198, pp. 228-246, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366422004285

[5] (2022) AWS global network. [Online]. Available: |https:
/laws.amazon.com/about-aws/global-infrastructure/global_network/

[6] (2022) Google cloud networking overview. [On-
line]. Available: https://cloud.google.com/blog/topics/developers-
practitioners/google-cloud-networking-overview

[7]1 (2021, January) Microsoft global network. [Online]. Available: https:
//docs.microsoft.com/en-us/azure/networking/microsoft- global-network

[8] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking
standards,” IEEE Communications Standards Magazine, vol. 2, no. 2,
2018.

[91 G. Parsons, “The rise of time-sensitive networking (TSN) in

automobiles, industrial automation, and aviation,” In Compliance

- Electronic Design, Testing & Standards, January 2022,

https://incompliancemag.com/article/the-rise-of-time-sensitive-

networking-tsn-in-automobiles-industrial-automation-and-aviation/.

Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely survey of time-

sensitive networking: Past and future directions,” IEEE Access, vol. 9,

pp. 142506-142527, 2021.

N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic

Networking Architecture,” RFC 8655, October 2019. [Online].

Available: https://www.rfc-editor.org/info/rfc8655

[12] J.-Y. Le Boudec, “A theory of traffic regulators for deterministic net-
works with application to interleaved regulators,” IEEE/ACM Transac-
tions on Networking, vol. 26, no. 6, 2018.

[13] J. Song, J. Qiu, R. Guérin, and H. Sariowan, “On the benefits of

traffic “reprofiling” the single hop case,” IEEE/ACM Transactions on

Networking, vol. TBD, no. TBD, Feburary 2024, extended version

available at https://arxiv.org/abs/2104.02222,

L. Georgiadis, R. Guérin, and A. K. Parekh, “Optimal multiplexing on

a single link: delay and buffer requirements,” IEEE Transactions on

Information Theory, vol. 43, no. 5, 1997.

[15] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control for

networks with a bounded delay service,” IEEE/ACM Transactions on

Networking, vol. 4, no. 6, 1996.

H. Sariowan, R. L. Cruz, and G. C. Polyzos, “SCED: A general-

ized scheduling policy for guaranteeing quality-of-service,” IEEE/ACM

Transactions on Networking, vol. 7, no. 5, 1999.

[17] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2001, available at
https://leboudec.github.io/netcal/.

[10]

[11]

[14]

[16]

https://www.sciencedirect.com/science/article/pii/S1383762121001028
https://www.sciencedirect.com/science/article/pii/S0920548919300868
https://www.sciencedirect.com/science/article/pii/S0920548919300868
https://www.sciencedirect.com/science/article/pii/S0140366422004285
https://aws.amazon.com/about-aws/global-infrastructure/global_network/
https://aws.amazon.com/about-aws/global-infrastructure/global_network/
https://cloud.google.com/blog/topics/developers-practitioners/google-cloud-networking-overview
https://cloud.google.com/blog/topics/developers-practitioners/google-cloud-networking-overview
https://docs.microsoft.com/en-us/azure/networking/microsoft-global-network
https://docs.microsoft.com/en-us/azure/networking/microsoft-global-network
https://www.rfc-editor.org/info/rfc8655
https://arxiv.org/abs/2104.02222
https://leboudec.github.io/netcal/

IEEE/ACM TRANSACTION ON NETWORKING, VOL. XX, NO. X, APRIL 2024

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Bouillard and G. Stea, “Worst-case analysis of tandem queueing
systems using network calculus,” in Quantitative Assessments of
Distributed Systems, ser. Book Series on Performability Engineering,
D. Bruneo and S. Distefano, Eds. John Wiley & Sons, 2016, ch. 15.
[Online]. Available: https://hal.inria.fr/hal-01272090

N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishna-
murthy, and A. Sivaraman, “Programmable calendar queues for high-
speed packet scheduling,” in Proc. USENIX NSDI, 2020.

A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proc. ACM SIG-
COMM, 2016.

L. Georgiadis, R. Guérin, V. Peris, and K. N. Sivarajan, “Efficient net-
work QoS provisioning based on per node traffic shaping,” IEEE/ACM
Transactions on Networking, vol. 4, no. 4, 1996.

M. Paulitsch, E. Schmidt, B. Gstottenbauer, C. Scherrer, and
H. Kantz, “Time-triggered communication (industrial applications),”
Time-Triggered Communication, 2011.

D. Tamas-Selicean and P. Pop, “Optimization of TTEthernet networks
to support best-effort traffic,” in Proc. IEEE ETFA, 2014.

S. Thangamuthu, N. Concer, P. J. Cuijpers, and J. J. Lukkien, “Analysis
of ethernet-switch traffic shapers for in-vehicle networking applications,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015.

C.Li, J. Liu, C. Lu, R. Guérin, and C. D. Gill, “Impact of distributed rate
limiting on load distribution in a latency-sensitive messaging service,”
in Proc. CLOUD, 2021.

(2022) Google cloud global locations. [Online]. Available: https:
/lcloud.google.com/about/locations#network

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues Don’t matter when you can
JUMP them!” in Proc. USENIX NSDI, 2015.

K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in Proc. ACM SIGCOMM, 2015.

A. Van Bemten, N. Deri¢, A. Varasteh, S. Schmid, C. Mas-Machuca,
A. Blenk, and W. Kellerer, “Chameleon: Predictable latency and high
utilization with queue-aware and adaptive source routing,” in Proc. ACM
CoNEXT, 2020.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM, 2015.
T. Stiiber, L. Osswald, S. Lindner, and M. Menth, “A survey
of scheduling in time-sensitive networking (TSN),” 2022. [Online].
Available: https://arxiv.org/abs/2211.10954

J. Walrand, “A concise tutorial on traffic shaping and scheduling in
time-sensitive networks,” IEEE Communications Surveys & Tutorials,
pp. 1-1, May 2023.

J. B. Schmitt, “On the allocation of network service curves for
bandwidth/delay-decoupled scheduling disciplines,” in Proc. IEEE
GLOBECOM, 2002.

L. Georgiadis, R. Guérin, V. Peris, and K. N. Sivarajan, “The effect of
traffic shaping in efficiently providing end-to-end performance guaran-
tees,” Telecommunications Systems, vol. 5, no. 1, 1996.

H. Zhang, “Providing end-to-end performance guarantees using non-
work-conserving disciplines,” Computer Communications, vol. 18,
no. 10, 1995.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, 1993.

, “A generalized processor sharing approach to flow control in
integrated services networks: the multiple node case,” IEEE/ACM Trans-
actions on Networking, vol. 2, no. 2, 1994.

P. Giacomazzi, L. Musumeci, G. Saddemi, and G. Verticale, “Optimal
selection of token bucket parameters for the admission of aggregate
flows in IP networks.” in Proc. IEEE GLOBECOM, 2006.

A. Bouillard, L. Jouhet, and E. Thierry, “Tight performance bounds
in the worst-case analysis of feed-forward networks,” in Proc. IEEE
INFOCOM. IEEE, 2010, pp. 1-9.

A. Bouillard and G. Stea, “Exact worst-case delay in fifo-multiplexing
feed-forward networks,” IEEE/ACM Transactions on Networking,
vol. 23, no. 5, pp. 1387-1400, 2014.

T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “WorkloadCompactor:
Reducing datacenter cost while providing tail latency SLO guarantees,”
in Proc. SoCC, 2017.

M. Marcon, M. Dischinger, K. P. Gummadi, and A. Vahdat, “The
local and global effects of traffic shaping in the internet,” in Proc.
COMSNETS, 2011.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

T. Nandagopal and K. P. Puttaswamy, “Lowering inter-datacenter band-
width costs via bulk data scheduling,” in Proc. CCGRID, 2012.

H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing deadlines for inter-datacenter transfers,” in
Proc. EuroSys, 2015.

V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” in Proc. ACM SIGCOMM, 2016.

W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “TrafficShaper: Shaping
inter-datacenter traffic to reduce the transmission cost,” IEEE/ACM
Transactions on Networking, vol. 26, no. 3, 2018.

Z. Yang, Y. Cui, X. Wang, Y. Liu, M. Li, S. Xiao, and C. Li,
“Cost-efficient scheduling of bulk transfers in inter-datacenter WANS,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, 2019.

R. Singh, S. Agarwal, M. Calder, and P. Bahl, “Cost-effective cloud
edge traffic engineering with cascara,” in Proc. USENIX NSDI, 2021.
C. Li and E. W. Knightly, “Coordinated multihop scheduling: A frame-
work for end-to-end services,” IEEE/ACM Transactions on Networking,
vol. 10, no. 6, 2002.

D. Marinca, P. Minet, and L. George, “Analysis of deadline assignment
methods in distributed real-time systems,” Computer Communications,
vol. 27, no. 15, 2004.

S. Hong, T. Chantem, and X. S. Hu, “Meeting end-to-end deadlines
through distributed local deadline assignments,” in Proc. IEEE RTSS,
2011.

Jiaming Qiu received his B.S. in 2020 and is cur-
rently a Ph.D candidate, both in Computer Science
from Washington University in St. Louis. His re-
search interests include network performance evalua-
tion and optimization, edge computing, and machine
learning.

Jiayi Song received her Ph.D. in computer science
from Washington University in St. Louis. Prior to her
doctoral studies, she obtained her bachelor’s degree
from Wuhan University, majoring in both applied
mathematics and economics. Currently, she is with
Bytedance Inc.’s Technical Infrastructures team.

Roch Guérin (F IEEE °01 / F ACM ’06) received
his Ph.D. from Caltech, worked at the IBM T. J. Wat-
son Research Center and then the University of
Pennsylvania. He is currently with the Department
of Comp. Sci. & Eng. of Washington University in
St. Louis, as the Harold B. and Adelaide G. Welge
Professor and department chair. Dr. Guérin was
the Editor-in-Chief for the IEEE/ACM Transactions
on Networking from 2009 till 2013 and served as
chair of ACM SIGCOMM. In 2010 he received the
IEEE INFOCOM Achievement Award for “Pioneer-

ing Contributions to the Theory and Practice of QoS in Networks”.

Henry Sariowan (SM IEEE, ’03) received his Ph.D.
from the University of California, San Diego, M.S.
from Columbia University, New York, and B.S.
from Sepuluh Nopember Institute of Technology,
Surabaya, Indonesia, all in electrical engineering.
He is currently with Google’s Global Networking
team, part of Google Cloud. Dr. Sariowan previously
worked with several technology companies in San
Diego, CA and published papers in the areas of
network quality of service and video transmission.

https://hal.inria.fr/hal-01272090
https://cloud.google.com/about/locations#network
https://cloud.google.com/about/locations#network
https://arxiv.org/abs/2211.10954

	Introduction
	Background
	Network Calculus
	Arrival Curves
	Service Curves
	Delay and Buffer Bounds
	Traffic Shaping and Greedy Shaper
	SCED Scheduling Policy

	Two-Slope Rate-Latency Service Curve
	Delay Element Service Curve
	Two-Slope Reprofiling Curve

	Problem Formulation
	Problem Setting
	Optimization Framework
	Inputs
	Variables
	Constraints
	Objective Function

	Discussion

	Solving Problem OPT
	OPT Reduction
	Minimum Reprofiler
	Reprofiling Delay

	Non-Linear Programs Formulation
	Buffer Bounds
	A Representative Example

	A Greedy Reprofiling Algorithm
	Overview
	Exploration Phase
	Adjustment Phase
	Discussion

	NLP Formulation vs. Greedy
	Evaluation
	Application-Derived Topologies and Flow Profiles
	Time Sensitive Networking (TSN)
	Inter-Datacenter Network

	Related Work
	Time Sensitive Networking (TSN)
	Packet-level shaping and scheduling
	Datacenter solutions
	(Re)shaping bulk transfers
	Deadline assignments

	Conclusion
	References
	Biographies
	Jiaming Qiu
	Jiayi Song
	Roch Guérin
	Henry Sariowan

