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A Double Regression Method for Graphical
Modeling of High-dimensional Nonlinear and
Non-Gaussian Data

Siqi Liang, Faming Liang∗

Graphical models have long been studied in statistics as
a tool for inferring conditional independence relationships
among a large set of random variables. The most existing
works in graphical modeling focus on the cases that the data
are Gaussian or mixed and the variables are linearly depen-
dent. In this paper, we propose a double regression method
for learning graphical models under the high-dimensional
nonlinear and non-Gaussian setting, and prove that the pro-
posed method is consistent under mild conditions. The pro-
posed method works by performing a series of nonparamet-
ric conditional independence tests. The conditioning set of
each test is reduced via a double regression procedure where
a model-free sure independence screening procedure or a
sparse deep neural network can be employed. The numeri-
cal results indicate that the proposed method works well for
high-dimensional nonlinear and non-Gaussian data.
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1. INTRODUCTION

Graphical models, which generally refer to undirected
Markov networks, have proven to be a useful tool for in-
ferring conditional independence relationships for a large
set of random variables. They are particularly useful un-
der the high-dimensional scenario, i.e., when the number
of random variables is greater than the number of observa-
tions. In this scenario, with the aid of the sparse graphical
model learned for the explanatory variables, the inference for
high-dimensional regression is reduced to the inference for a
series of low-dimensional regression, for which the t-test can
be used for inference of the significance and associated confi-
dence interval for each explanatory variable. See [32] for the
details. As an alternative to undirected Markov networks,
Bayesian networks can also serve the purpose of inference for
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the conditional independence relationships for a large set of
random variables. However, Bayesian networks are directed
and focus more on data generating mechanisms. It is worth
noting that the Bayesian network can be constructed from
its moral graph, which is an undirected Markov network,
using a collider set algorithm [40] or local neighborhood al-
gorithm [34] to have the edge directions added. Therefore,
learning undirected Markov networks is fundamental, which
is the focus of this paper.

In practice, the random variables can be Gaussian or
non-Gaussian, and the dependence between different ran-
dom variables can be linear or nonlinear. However, most of
the existing works in graphical modeling focus on Gaussian
data with linear dependence. Under the Gaussian and linear
assumptions, various methods have been developed based on
the properties of partial correlation coefficients, concentra-
tion matrix, and regression coefficients of Gaussian graphi-
cal models (GGMs), see e.g., graphical Lasso [56, 17], node-
wise regression [36], ψ-learning [31], and structural equation
modeling [61]. To be more detailed, let {X1, X2, . . . , Xp}
denote a set of zero-mean Gaussian random variables, let
V = {1, 2, . . . , p} denote its index set, let Σ denote the co-
variance matrix of the random variables, let C = Σ−1 denote

the concentration matrix, and let β
(j)
i denote a coefficient

of the normal linear regression

(1) Xj = β
(j)
i Xi +

∑
r∈V \{i,j}

β(j)
r Xr + εj , j = 1, 2, . . . , p,

where εj is a zero-mean Gaussian random error. By the stan-
dard theory on normal linear regression, see e.g. chapter 13
of [5], the following relation holds:

(2) ρij|V \{i,j} 6= 0⇐⇒ Cij 6= 0⇐⇒ β
(j)
i 6= 0,

where ρij|V \{i,j} denotes the partial correlation coefficient
of Xi and Xj conditioned on all other variables, and Cij
denotes the (i, j)th element of the concentration matrix C.
Based on this relation, the graphical Lasso method [56, 17]
infers the GGM by directly estimating the concentration
matrix via a regularization approach; the nodewise regres-
sion method [36] infers the GGM by computing the coeffi-

cient β
(j)
i for each pair of variables (Xj , Xi) via a regularized
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regression; the graphical regression method [39, 58] regresses
both the mean and the precision matrix of a GGM on co-
variates, which enables estimation of subject-specific graph-
ical models; the ψ-learning method [31] infers the GGM by
an equivalent measure of the partial correlation coefficient
ρij|V \{i,j}, which can be computed based on a reduced con-
ditioning set; and the structural equation modeling method
[61] infers a directed acyclic graph (DAG) for the GGM
by directly solving the structure equations formed by the
nodewise regression (1), where the problem was formulated
as a continuous optimization problem with a structural con-
straint [21] for ensuring acyclicity of the graph.

Many authors have tried to extend the methods devel-
oped for GGMs to non-Gaussian data or mixed data un-
der the assumption that the random variables are still lin-
early dependent. For example, [41] extends the nodewise
regression method to binary data; [28], [8] and [54] extends
the nodewise regression method to mixed data; [52] extends
the ψ-learning method to mixed data; and [16] extends the
graphical Lasso method to mixed data by introducing some
latent variables for the observed discrete variables. How-
ever, as pointed out in [16], the latent variable method does
not necessarily lead to correct graphical models, as the con-
ditional independence relationship between the latent vari-
ables does not imply the conditional independence relation-
ship between the observed discrete variables. The copula PC
method [11] suffers from the same issue. Quite recently, [62]
extends the structural equation modeling method to certain
types of nonlinear models defined in the Sobolev space. How-
ever, it is unclear whether the method can lead to consistent
estimation of the underlying graphical models under the
high-dimensional scenario. Some other methods, e.g. [55],
infer the model in an approximate sense using variational
autoencoder, and it is unclear whether it can lead to the
conditional independence relationships pursued in graphical
modeling.

Up to our knowledge, none of the works has been done
for inference of graphical models under the general high-
dimensional nonlinear and non-Gaussian setting. To tackle
this problem, we proposed a double regression method. The
proposed method works by performing a series of nonpara-
metric conditional independence tests, for each of which the
conditioning set is reduced by a double regression procedure.
The proposed method is shown to be consistent under mild
conditions. The numerical results indicate that the proposed
method works well for high-dimensional nonlinear and non-
Gaussian data.

Statistical learning for nonlinear and non-Gaussian mod-
els is important, as in modern data science nonlinear de-
pendency is common and the data may not tend towards
Gaussian distributions, such as biological data and financial
data. Researchers have found that although the accuracy of
the partial correlation test-based GGM methods are not sig-
nificantly affected by violations of the Gaussian assumption,
they are significantly affected by violations of the linear de-
pendency assumption, see e.g. [50] for more discussions on

this issue. Researchers have also found that nonlinearity and
non-Gaussianity can actually be a blessing, and nonlinear
non-Gaussian modeling can reveal more accurate informa-
tion about the true data generating process than the lin-
ear and Gaussian approximation. For example, [43] and [24]
found that non-Gaussianity is helpful in predicting causal
relationships among the variables.

The remaining part of this article is organized as follows.
Section 2 describes the proposed method and establishes its
consistency. Section 3 illustrates the proposed method us-
ing simulated data. Section 4 applies the proposed method
to identification of drug-sensitive genes with the cancer cell
line encyclopedia (CCLE) data. Section 5 analyzes the com-
putational complexity of the proposed method. Section 6
concludes the paper with a brief discussion.

2. DOUBLE REGRESSION METHOD

2.1 The Algorithm

Notations: Consider a set of random variables
{X1, X2, . . . , Xp}, where each variable can be non-Gaussian
and the dependence between different variables can be
nonlinear. The dimension p is assumed to grow with the
sample size n. To indicate this dependence, we rewrite p
as pn in what follows. Let V = {1, 2, . . . , pn} be the index
set of the variables, let A ⊂ V be a subset of V , and let
XA = {Xk : k ∈ A}.

As our goal is to construct a graphical model for
the variables, the conditional independence test (CIT)
Xi |= Xj |XV \{i,j} needs to be conducted for each pair of the
variables (Xi, Xj). Since the functional form of the depen-
dence between different variables is unknown, a nonpara-
metric CIT can be applied here. An abundance of non-
parametric CITs have been developed in the literature. A
non-exhaustive list includes permutation-based tests [13, 3],
kernel-based tests [59, 45], classification or regression-based
tests [42, 60], knockoff-based tests [7], and generative ad-
versarial network (GAN)-based tests [2]. Refer to [29] for a
comprehensive overview.

As pointed out in [29], the existing nonparametric CITs
often suffer from the curse of dimensionality in the confound-
ing set; that is, the tests may be ineffective when the sample
size is small, since the accumulation of spurious correlations
from a large number of confounding variables makes them
difficult to discriminate between the hypotheses. To tackle
this issue, we consider the following simple mathematical
fact of conditional probability distributions:

P (Xi, Xj |XV \{i,j})

= P (Xi|Xj ,XV \{i,j})P (Xj |XV \{i,j})

= P (Xi|Xj ,XSi\{j})P (Xj |XSj\i)

= P (Xi, Xj |XSi\{j},XSj\i)

= P (Xi, Xj |XSi∪Sj\i\{j}),

(3)
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where XSi denotes the set of true variables of the nonlinear
regression Xi ∼ XV \{i}, and XSj\i denotes the set of true
variables of the nonlinear regression Xj ∼ XV \{i,j}. Based
on this property of conditional probability distributions, we
propose the double regression method which is summarized
in Algorithm 1 and can be used for reducing the conditioning
sets of the CITs.

Algorithm 1: Double Regression

for each variable Xi, i = 1, 2, . . . , pn do
(i) Variable selection: conduct
nonlinear/non-Gaussian regression

(4) Xi ∼XV \{i},

and select a subset of variables. Denote the index
set of the selected variables by Ŝi, which can be
viewed as an estimate of Si.

end
for each pair of variables (Xi, Xj), 1 ≤ j < i ≤ pn do

(ii) Variable selection: conduct
nonlinear/non-Gaussian regression

(5) Xj ∼XV \{i,j},

and select a subset of variables. Denote the index
set of the selected variables by Ŝj\i, which can be
viewed as an estimate of Sj\i.

(iii) Conditional independence test: perform
nonparametric conditional independence test

(6) Xi |= Xj |XŜi∪Ŝj\i\{j}
,

and denote the p-value of the test by qij .
end
(iv) Multiple hypothesis test: perform a multiple
hypothesis test for all pairs of variables based on the
p-values {qij : 1 ≤ j < i ≤ pn}, and identify the pairs for
which the p-values are significantly smaller than others.

The proposed method is called double regression, as for
each conditional independence test two regression tasks need
to be performed in order to reduce the size of the condition-
ing set. Regarding this method, we have three remarks:

Remark 1. When Xi’s are Gaussian and linearly depen-
dent, the double regression method is reduced to the ψ-
learning method [31], for which it can be shown that the
p-value of the conditional independence test (6) provides
an equivalent measure for the partial correlation coefficient
ρij|V \{i,j} in determining the structure of the GGM. Note
that, for GGMs, the conditioning set used in (6) can be fur-
ther reduced based on the Markov and faithfulness properties
as shown in [31].

Remark 2. In addition to consistent variable selection pro-
cedures, (3) also holds for variable sure screening procedures.
In practice, variable screening for high-dimensional nonlin-
ear regression can be done using Bayesian sparse neural net-

works [30, 47], which are shown to have the sure screen-
ing property for both normal and multinomial logistic re-
gression. For other continuous variables, a nonparanormal
transformation [33] can be applied before the application of
Bayesian sparse neural networks. One can also replace the
Bayesian sparse neural network by a model-free sure inde-
pendence screening (SIS) procedure, say, the Henze-Zirkler
sure independence screening (HZ-SIS) procedure proposed by
[53] for nonlinear regression with continuous variables, and
the sure independence screening procedure proposed by [10]
for nonlinear regression with a categorical response variable.
When a sure independence screening procedure is used, we
recommend to select n/(c log(n)) variables for each regres-
sion task, where c may slightly vary from 1 for different
problems. More interestingly, the above two types of variable
screening procedures can be used in a combined manner; that
is, one can first perform a SIS procedure to reduce the di-
mension of the conditioning set, and then perform Bayesian
sparse neural networks to have the dimension of the reduced
conditioning set reduced further.

Remark 3. Our recommendations for the variable sure
screening methods and nonparametric conditional indepen-
dence tests (CIT) are summarized in Table 1.

2.2 Consistency

This section establishes the consistency of the proposed
double regression method for learning graphical models with
high-dimensional nonlinear and/or non-Gaussian data. Let
Tij denote the test statistic used in the conditional inde-

pendence test (6). Let Ên denote the resulting network by
Algorithm 1. To study the consistency of Ên, we make the
following assumptions.

Assumption 1. (Markov and faithfulness properties) The
generative distribution of the data is Markov and faithful to
a directed acyclic graph.

Assumption 2. (High dimensionality) The dimension pn
increases in a polynomial of the sample size n.

Assumption 3. (Uniform sure screening property) The
variable screening procedure satisfies the uniform sure
screening property, i.e., min1≤i≤pn P (Si ⊂ Ŝi) → 1 and

min1≤j<i≤pn P (Sj\i ⊂ Ŝj\i) → 1 hold as the sample size
n→∞.

Assumption 4. (Separation) mini,j(µij,1 − µij,0) > ηn,
where ηn = c0n

−κ for some constant c0 > 0 and κ > 0, and
µij,0 and µij,1 denote the mean values of the test statistic
Tij under the null (conditionally independent) and alterna-
tive (conditionally dependent) hypotheses, respectively.

Assumption 5. (Tail probability)

sup
i,j

P (|Tij − µij | >
1

2
ηn) = exp

{
−O(nδ(κ))

}
,
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Table 1. Methods recommended for variable sure screening and nonparametric conditional independence tests.

Procedure Recommended Methods

Variable Sure
Screening

Methods collected in Model-free SIS Procedures [9],
Henze-Zirkler SIS [53],
Sparse BNN [30, 47]

Nonparametric Conditional
Independence Test (CIT)

Kernel CIT [59],
Conditional Distance Independence Test [51],
Permutation-based Kernel CIT [14],
Generative CIT [2]

where µij = E(Tij) denotes the expectation of Tij, and δ(κ)
is positive number depending on κ.

Regarding these assumptions, we have the following com-
ments. Assumptions 1 and 2 are regular for high-dimensional
graphical models. Similar assumptions have been used in
the study of Gaussian graphical models, see e.g. [31]. As-
sumption 3 ensures asymptotic validity of the conditional
independence tests on reduced conditioning sets. Under As-
sumption 2, it is easy to verify that the uniform sure screen-
ing property is satisfied by many existing sure independence
screening procedures such as those proposed in [53] and [10].
This property also holds for Bayesian sparse neural networks
under Assumption 2. Assumptions 4 and 5 are on the distri-
bution of the test statistics. Assumptions 4 is like the β-min
condition used in high-dimensional variable selection, see
e.g. [12] and [49]. This condition basically requires that the
gap between the mean values of the test statistics under the
null and alternative hypotheses are sufficiently large to sep-
arate, which seems necessary for proving the consistency of
Algorithm 1. Assumption 5 constrains the tail probability
of the distribution. Without loss of generality, we can as-
sume that Tij is an average-type test statistic and follows
a sub-Gaussian distribution. Then, by the concentration in-
equality, it is easy to show that Assumption 5 holds provided
that 0 < κ < 1/2 and 0 < δ(κ) < 1− 2κ.

Let Aij denote that an error event occurs when testing
the hypotheses H0 : eij = 0 versus H1 : eij = 1, where
eij = 0 and eij = 1 denote that the variables Xi and Xj

are conditionally independent and dependent, respectively.
Thus,
(7)
P{an error occurs in Ên} = P (∪i>jAij) ≤ O(p2n) sup

i>j
P (Aij).

Then based on the Assumption 1 - 5, we have the following
theorem.

Theorem 1. Suppose Assumptions 1-5 hold. For each pair
of variables (Xi, Xj), let µij,0+ηn/2 denote the critical value
of the conditional independence test (6). Then the network
estimate is consistent, i.e., P{an error occurs in Ên} → 0
as n→∞.

Theorem 1 establishes consistency of the double regres-
sion method. In other words, it shows that if constructing
the network with the double regression method, the proba-
bility of mistakenly adding or removing one edge converges
to 0 as the sample size goes to infinity. The proof is presented
in the Appendix.

3. SYNTHETIC EXAMPLES

Example 1 We generated 100 datasets from the following
nonlinear and non-Gaussian model

X1 ∼ Unif [−1, 1],

X2 = 6 cos(X1) + ε2, ε2 ∼ Unif [−1, 1],

X3 = 5 sin(X1) +X2 + ε3, ε3 ∼ N(0, 1),

X4 = 5 cos(X3X6) + 3X3 + 3X6 + ε4, ε4 ∼ N(0, 1),

X5 = 0.05(X2 +X6)3 + ε5, ε5 ∼ N(0, 1),

X6 ∼ Unif [−1, 1],

X7 = 6 cos(0.2(X3 + log(|5X5|+ 1))) + ε7, ε7 ∼ Unif [−1, 1],

Xi ∼ N(0, 1), i = 8, 9, . . . , pn.

(8)

In this example, we set the dimension pn = 30 and the
sample size n = 400. To goal of this example is to compare
the proposed method with the existing methods, such as
notears and DAG-GNN, under their ideal setting. Note that
both the methods notears and DAG-GNN are developed
under the low-dimensional scenario.

Algorithm 1 was applied to this example with HZ-SIS [53]
used in variable screening and the randomized conditional
correlation test (RCoT) [45] used in nonparametric condi-
tional independence test. The network edges in step (c) of
Algorithm 1 are identified based on the adjusted p-values
[23]. We use the averaged Areas Under the precision-recall
Curves (AUC) as the metric to evaluate the performance of
different methods. Refer to Appendix A.2 for the definitions
of precision and recall. The numerical results are summa-
rized in Figure 1 and Table 2.

The left plot of Figure 1 shows the Markov network iden-
tified by Algorithm 1 for one simulated dataset at a signifi-
cance level of α = 0.01 based on the adjusted p-values, where
we set the neighborhood size ns = 5 in variable screening,
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Figure 1. Markov networks identified by Algorithm 1 for one
simulated dataset of the model (8) at a significance level of

0.01 based on adjusted p-values: (left plot) full network;
(right plot) subnetwork of the nodes X1 −X7, where the red
lines indicate parents/children relationships and the blue lines

indicate spouse relationships.

i.e., Ŝi and Ŝj\i consist of top 5 variables which are most re-
lated to Xi and Xj , respectively. For HZ-SIS, the relatedness
of two variables is measured in the Henze-Zirkler test statis-
tic [22]. The right plot of Figure 1 shows the subnetwork of
the nodes X1–X7, which is identical to its true Markov net-
work of the model (8). By the standard graph theory, the
undirected Markov network (also known as moral graph)
corresponding to a DAG consists of all parents/children re-
lations and spouse relations. The performance of the algo-
rithm is quite robust to the choice of α. For example, if we
set α = 0.05 for this dataset, only three false links, X16-
X23, X16-X24 and X19-X27, are added to the full network,
and the same subnetwork shown in Figure 1 can still be
identified.

Table 2 explores the effect of neighborhood size ns used
in variable screening on the performance of the algorithm,
where the AUC values were calculated. The precision-recall
curve is often used in information retrieval for comparison of
performances of different binary decision algorithms. Table
2 indicates that an excessively large conditioning set can de-
teriorate the power of the nonparametric CIT. This further
implies that a direct application of a nonparametric CIT to
a high-dimensional dataset for learning the Markov network
is not efficient. An appropriate variable selection/screening
procedure is crucial to the performance of Algorithm 1. For
such a low-dimensional problem, we generally recommend a
variable selection method to be used in steps (i) and (ii) of
Algorithm 1, provided the variable selection method is not
too expensive.

For comparison, we have applied the methods developed
by [62] (denoted by “notears” 1) and [55] (denoted by “DAG-

1We use the program code available from https://github.com/
xunzheng/notears.

GNN” 2), as the baseline methods, to this example. The
results are summarized in Table 2. The method notears in-
clude three options, “linear”, “MLP” and “Sob”, which are
to approximate each regression (4) by a linear regression,
multilayer perceptron, and Sobolev basis function, respec-
tively. The “linear” corresponds to the Gaussian graphical
model. The comparison indicates that the double regression
method can outperform the baseline methods significantly.

For a thorough comparison, we have also applied the
methods developed for GGMs, such as Gaussian-Lasso
(GLASSO) 3 and Graphical-SCAD (GSCAD) 4 to this ex-
ample, although the data are not Gaussian. The numerical
results summarized in Table 2 show that the proposed dou-
ble regression method also significantly outperforms these
GGM methods for this example.

Example 2 We generated 100 datasets from the following
high-dimensional nonlinear and non-Gaussian model:

X1 ∼ Unif [−1, 1], X2 = g(X1) + ε2, ε2 ∼ N(0, 1)

Xi = f(Xi−2) + g(Xi−1) + εi, i = 3, 4, . . . , pn,
(9)

where εi was drawn with an equal probability from N(0, 1)
or Unif [−0.5, 0.5] for i = 3, 4, . . . , pn, and both f(z)
and g(z) were randomly drawn from the set of functions
{|z| cos(z), tanh(z), log(|z|+ 1)} for i = 2, 3, . . . , pn. In this
example, we set the dimension pn = 1000 and the sample
size n = 400, which represents a small-n-large-p problem.

Algorithm 1 was applied to this example, where variable
screening was done using the HZ-SIS procedure [53], the
nonparametric CIT was done using the RCoT [45], and the
network edges in step (c) were identified based on the ad-
justed p-values [23] of the conditional independence tests.
The numerical results are summarized in Table 3.

Table 3 shows that Algorithm 1 is not sensitive to neigh-
borhood size ns under the high-dimensional setting. For this
example, Algorithm 1 can perform reasonably well for a
neighborhood size between 20 and 50. Intuitively, ns can-
not be too small or too large. An excessively small value
of ns increases the risk of missing important conditioning
variables, while an excessively large value of ns can cause
the issue of “curse of dimensionality”. They both reduces
the power of the tests. For such a small-n-large-p problem,
we generally recommend a variable sure screening method
to be used in steps (i) and (ii) of Algorithm 1.

For comparison, the baseline methods, notears, DAG-
GNN, GLASSO and GSCAD, have also been applied to
this example. The results are summarized in Table 3. For
“notears”, we tried all three options, linear, MLP and Sob,

2We use the program code available from https://github.com/
fishmoon1234/DAG-GNN.
3We use the ggmncv() function with “lasso” penalty in GGMncv pack-
age available at https://cran.r-project.org/web/packages/GGMncv/
index.html.
4We use the ggmncv() function with “scad” penalty in GGMncv pack-
age available at https://cran.r-project.org/web/packages/GGMncv/
index.html.
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Table 2. Averaged areas under the precision-recall curves (AUC) produced by Algorithm 1 and baseline methods for
discovering the undirected Markov network of model (8), where “SD” represents the standard deviation of the averaged AUC

over 100 datasets.

Method
double regression notears DAG-GNN GLASSO GSCAD

5 10 15 linear MLP Sob – – –

AUC 0.9543 0.8767 0.8096 0.7935 0.7990 0.7746 0.7527 0.6346 0.6975
SD 0.0008 0.0027 0.0029 0.0023 0.0018 0.0032 0.0035 0.0019 0.0022

Table 3. Averaged areas under the precision-recall (PR) curves (AUC) produced by Algorithm 1 for recovering the undirected
Markov network of the model (9), where “SD” represents the standard deviation of the averaged AUC over 100 datasets.

Method
double regression notears DAG-GNN GLASSO GSCAD

20 30 40 50 Linear MLP Sob – – –

AUC 0.7564 0.7567 0.7556 0.7547 – 0.0808 0.3028 0.3296 0.6953 0.7136
SD 0.0007 0.0008 0.0008 0.0008 – 0.0024 0.0026 0.0037 0.0071 0.0073

but the linear option caused to slow computing and did not
produce any results. The comparison indicates again the su-
periority of the double regression method. Under the high-
dimensional setting, the double regression method makes a
drastic improvement over notears and DAG-GNN, the state-
of-the-art nonlinear and non-Gaussian methods.

4. CAUSAL STRUCTURE DISCOVERY FOR
HIGH-DIMENSIONAL REGRESSION

4.1 The Algorithm

The causal relationship for a pair or more variables refers
to a persistent association which is expected to exist in all
situations without being affected by the values of other vari-
ables. The causal relationship discovery has been an essen-
tial task in many disciplines. In statistics, the causal rela-
tionship can be determined using conditional independence
tests. For a large set of variables, a pair of variables are
considered to have no direct causal relationship if a sub-
set of the remaining variables can be found such that the
two variables are independent conditioned on this subset
of variables. Based on conditional independence tests, [44]
proposed the famous PC algorithm for learning the struc-
ture of causal Bayesian networks. Later, [4] extended the
PC algorithm to variable selection for high-dimensional lin-
ear regression. The extension is called the PC-simple algo-
rithm which can be used to search for the causal structure
around the response variable. Note that the causal struc-
ture includes all the possible direct causes and effects of the
response variable, i.e., all the parents and children in the
terminology of DAGs. For certain problems, we may be able
to determine in logic which are for parents and which are for
children, although PC-simple cannot tell. In the same vein,
[32] and [46] proposed the Markov neighborhood regression
(MNR) approach for high-dimensional inference and applied
it to causal structure discovery around the response variable.

Like the PC-simple algorithm, MNR works based on a series

of conditional independence tests.

In the same logic as MNR and the PC-simple algorithm,

Algorithm 1 can be extended to find the causal structure

around the response variable for the high-dimensional re-

gression:

(10) Y = f(X1, X2, . . . , Xpn , ε),

where f denotes a general nonlinear function,

X1, X2, . . . , Xpn are explanatory variables, and ε de-

notes random error. To identify the causal variables around

the response variable Y , the extended algorithm can be

described as follows.

Algorithm 2: Causal Structure Discovery

(i) Variable selection: Conduct the regression Y ∼X
to obtain a reduced feature set. Denote the reduced
feature set by Ŝ ⊆ {1, . . . , pn} as an estimate of the set of
true variables of the regression Y ∼X.
for each feature Xj ∈ Ŝ do

(ii) Variable selection: conduct the regression
Xj ∼XV \{j} to obtain a reduced neighborhood

ξ̂j ⊆ {1, . . . , pn}.
(iii) Conditional independence test: conduct
nonparametric conditional independence test

(11) Xj |= Y |XŜ∪ξ̂j\{j},

and denote the p-value of the test by qj .
end
(iv) Multiple hypothesis test: conduct a multiple
hypothesis test to identify the causal features based on
the p-values calculated above.
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4.2 Drug Sensitive Gene Selection

Disease heterogeneity is often observed in complex dis-
eases such as cancer. For example, molecularly targeted can-
cer drugs are only effective for patients with tumors express-
ing targets [19, 6]. The disease heterogeneity has directly
motivated the development of precision medicine, aiming to
improve patient care by tailoring optimal therapies to an in-
dividual patient according to his/her molecular profile and
clinical characteristics. Identifying sensitive genes to differ-
ent drugs is an important step toward the goal of precision
medicine.

To illustrate the proposed method, we considered
the CCLE dataset, which is publicly available at
www.broadinstitute.org/ccle. The dataset consists of 8-point
dose-response curves for 24 chemical compounds across over
400 cell lines. For different chemical compounds, the num-
bers of cell lines are slightly different. For each cell line,
it consists of the expression values of pn = 18, 988 genes.
We used the area under the dose-response curve, which was
termed as activity area in [1], to measure the sensitivity of
a drug to each cell line. Compared to other measurements,
such as IC50 and EC50, the activity area could capture the
efficacy and potency of the drug simultaneously.

Algorithm 2 was applied to the dataset collected for each
drug to identify the drug-sensitive genes, where variable
screening was done in two steps. First, we applied HZ-SIS
[53] to reduce the number of features for each regression to
80 (≈ n/ log(n)). Next, we applied the sparse Bayesian neu-
ral network (BNN) method developed by [30] to reduce the
number of features of each regression further. By [30], the
sparse BNN also possesses the sure screening property and
thus can be used here. As a result, the sizes of Ŝ and ξ̂j ’s can
be very small, which are around 10 or less for each drug of
this example. With the reduced conditioning set, the accu-
racy of the conditional independence test (11) can be much
improved. The drug sensitive genes can then be identified
based on the adjusted p-values [23] of the conditional inde-
pendence tests. We set the significance level of the multiple
hypothesis test at 0.05. Note that for the drug response re-
gression, i.e., those performed in step (a) of Algorithm 2,
the target gene of the drug will be added to the regression
as an additional feature if it is not selected by HZ-SIS.

Table 4 summarizes the results of this example,
where we validate the “association” between the drug
and each gene by the number of PubMed articles
(https://www.ncbi.nlm.nih.gov/pmc/) which cite both the
drug and the gene. As shown in Table 4, for many drugs, the
gene selection results by Algorithm 2 are strongly supported
by relevant PubMed articles.

For comparison, the baseline methods, notears [62] and
DAG-GNN [55], and some linear model-based methods such
as desparsified Lasso [48, 25, 57], ridge projection, multi
sample-splitting [35] and MNR [32], were applied to this
example. For the linear model-based methods, since they
are test-based, we selected for each drug the genes with

the adjusted p-values less than 0.05 as significant; and if
there were no genes selected at this significance level, we
just reported one gene with the smallest adjusted p-value.
For each drug, desparsified Lasso is simply inapplicable due
to the ultra-high dimensionality of the dataset; the package
hdi [35] aborted due to the excess of memory limit. Due to
the same issue, hdi also aborted for some drugs when per-
forming ridge regression. Multi sample-splitting and MNR
work reasonably well for this example, with results partially
overlapped with those by double regression.

For notears (with the MLP option) and DAG-GNN, we
applied them to the reduced dataset by HZ-SIS [53] as those
used by double regression. Since the two methods are not
test-based, it is possible that no gene is selected for some
drugs.

Table 4 summarizes the results of all the above methods.
It shows that the double regression and its competitors can
produce similar or overlapped results for some drugs, while,
in general, the gene selection results by double regression
are more supported by the existing literature. For example,
for the drugs Topotecan and Irinotecan, double regression,
notears, DAG-GNN, multi-split and MNR all selected the
gene SLFN11 as a drug sensitive gene. In the literature, [1]
and [63] reported that SLFN11 is predictive of treatment re-
sponse for Topotecan and Irinotecan. For the drug 17-AAG,
five methods selected NQO1 as a drug sensitive gene. In the
literature, [20] and [1] reported NQO1 as the top predictive
biomarker for 17-AAG. For the drug Paclitaxel, double re-
gression, MNR and DAG-GNN selected BCL2L1 as a drug
sensitive gene. In the literature, many publications, such as
[27] and [15], reported that the gene BCL2L1 is predictive of
treatment response for Paclitaxel. For the drug PF2341066,
[26] reported that HGF, which was selected by double re-
gression, MNR and notears as the drug sensitive gene, is po-
tentially responsible for the effect of PF2341066. For drug
LBW242, RIPK1 was selected by double regression, MNR
and notears. In [18] and [37], it was stated that RIPK1 is
one of the presumed target of LBW242, which is involved in
increasing death of cells.

For many other drugs, double regression produced more
accurate gene selection results than its competitors. For ex-
ample, for the drug Erlotinib whose target gene is EGFR,
double regression selected its target gene as the drug-
sensitive gene while its competitors did not. For the drug
Lapatinib, double regression selected GRB7, while its com-
petitors did not. [38] reported that the removal of GRB7 by
RNA-interference reduces breast cancer cell viability and
increases the activity of Lapatinib, and they further con-
cluded that GRB7 upregulation is a potentially adverse
consequence of HER2 signaling inhibition, and preventing
GRB7 accumulation and/or its interaction with receptor ty-
rosine kinases may increase the benefit of HER2-targeting
drugs.

In summary, this example shows that the double regres-
sion method can lead to more accurate discoveries for gene
regulatory relationships than the existing methods.
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Table 4. Drug sensitive genes selected by double regression, ridge projection, multi sample-splitting (multi-split) and MNR for
24 anti-cancer drugs, where the superscripts ∗, † and ‡ denote that the numbers of relevant PubMed articles are in the ranges

“1–9”, “10–99” and “100 and above”, respectively. For double regression, the number in the parentheses represents the
adjusted p-value of the selected gene. The gene selection results of ridge projection, multi-split and MNR were taken from [32].

Drug Double Regression Ridge Multi-Split MNR notears DAG-GNN

17-AAG
NQO1‡ (2.16e-6)
ZFP30∗ (8.80e-4)

– NQO1‡ NQO1‡ NQO1‡
NQO1‡

ATP6V0E1

AEW541
IGF1R‡(8.02e-5)
SGPP1∗(6.58e-4)

SP1†(1.76e-2)
F3† SP1† TMEM229B IGF1R‡ PUM2

AZD0530
DDAH2(2.16e-2)
FGFBP1(2.23e-2)

PPY2 SYN3 DDAH2 – –

AZD6244
CSF1†(6.39e-3)

SPRY2†(1.64e-2)
CAPNS2(1.64e-2)

OSBPL3
SPRY2†

LYZ∗

RNF125∗

LYZ∗

SPRY2†
SPRY2†

SPRY2†

LYZ∗

RNF125∗

Erlotinib
MGC4294(2.18e-3)

EGFR‡(2.35e-3)
LRRN1∗ PCDHGC3∗ ENPP1† – –

Irinotecan
SLFN11‡(4.50e-11)

CD63‡(1.19e-6)
SLFN11‡

ARHGAP19

SLFN11‡
ARHGAP19

SLFN11‡
ARHGAP19

SLFN11‡

SLFN11‡

CD63‡

(+5 insensitive genes)

L-685458
GSS(2.81e-2)

CTSL1(3.78e-2)
– MSL2 FAM129B RGS18 RGS7BP

Lapatinib
GRB7‡(1.56e-3)
SYTL1(8.40e-3)

WDFY4 ERBB2‡ SYTL1 – –

LBW242
RIPK1†(3.78e-3)

TMEM177(3.14e-2)
RXFP3 LOC100009676 RIPK1† RIPK1† –

Nilotinib
RHOC†(1.56e-2)

ARID1B∗(1.56e-2)
– RAB37∗ RHOC†

ABL1‡

CNOT7
RABL5

–

Nutlin-3
CCDC30(4.63e-3)

LOC285548(4.30e-2)

ZMAT3†(4.30e-2)
TTC7B LOC100009676 DNAJB14 – –

Paclitaxel

BCL2L1‡(4.39e-4)

SSRP1†(1.27e-2)
SLC35F5∗(2.89e-2)

ZNRD1†(3.35e-2)

ABCB1‡ ABCB1‡ BCL2L1‡ ABCB1‡
BCL2L1‡

SSRP1†

(+8 insensitive genes)

Panobinostat

EIF4EBP2∗(2.94e-3)
LARP6(2.94e-3)

AXL‡(2.41e-2)

TGFB2†(3.76e-2)

C17orf105 PUM2 TGFB2† –

EIF4EBP2∗

AXL‡,
MYB∗

PARP1∗

(+4 insensitive genes)

PD-0325901
SPRY2†(3.95e-3)
KLF3∗(1.60e-2)

ZNF646
LYZ*

RNF125
DBN1 SPRY2†

ETV4
CRIM1
CYR61

PD-0332991
COX18(6.97e-4)
NTN4∗(4.03e-2)

GRM6 LOC100506972 PUM2 – LOC100506779

PF2341066
HGF‡(7.06e-3)

ENAH∗(7.27e-3)
LRMP∗(1.53e-2)

WDFY4∗ SPN†
HGF‡

ENAH*
GHRLOS2

HGF‡

CBFA2T3
–

PHA-665752 INHBB∗(1.00e-2) – LAIR1 INHBB∗ – –

PLX4720
PLEKHH3(8.08e-5)

MEX3C(1.78e-4)
ADAMTS13 SPRYD5 PLEKHH3

PLEKHH3
PSORS1C1

GYPC

RAF265
SYT7(5.63e-3)

PIK3CD∗(2.12e-2)
LOC100507235 SIGLEC9 SEPT11 – –

Sorafenib RPL22†(4.34e-2) – SBNO1
RPL22†

LAIR1∗
– –

TAE684
SP1†(1.42e-3)

MBNL3(1.99e-2)
– ARID3A ARID3A

ALK†

LAIR1

ALK†

TNFRSF12A
MYOF

TKI258
MYO5B(4/49e-4)
FECH(4.74e-2)

– SPN∗ KHDRBS1 –
C4orf46
ORC1

Topotecan
SLFN11‡(3.73e-11)

CD63†(9.46e-5)
HSPB8∗(3.59e-2)

– SLFN11‡ SLFN11‡ SLFN11‡
SLFN11‡

HSPB8∗

DSP

ZD-6474
APOO(9.87e-4)
KLF2∗(4.59e-3)

MID1IP1 NOD1 PXK – –
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5. COMPUTATIONAL COMPLEXITY
ANALYSIS

The computation of Algorithm 1 can be greatly simpli-
fied. In practice, we can construct a DAG based on the re-
sult of step (i)-(iii) by treating Ŝi as the set of parent nodes
of Xi, and then establish a moral graph for the DAG. De-
note the moral graph by Ĝn and the true one by En. It is
easy to show by the variable sure screening property that
P (En ⊂ Ĝn) → 1 as n → ∞. Therefore, the conditional in-
dependence test (6) can only be performed on the links of
Ĝn instead of all possible links as prescribed in Algorithm 1.
Let ln,pn denote the number of links contained in the true
sparse graph. Then the computational complexity of Algo-
rithm 1 is O((pn + ln,pn)T (n, pn)), where T (pn, n) denotes
the computational complexity of a single regression task,
and the factors pn and ln,pn are for the computational com-
plexities of steps (i) and (ii), respectively. It is reasonable to
assume that the true graph has a sparsity of ln,pn = O(pn).
Therefore, Algorithm 1 has a computational complexity of
O(pnT (n, pn)).

We note that for both baseline methods [62] and [55], they
also need to perform pn nonlinear regression essentially as
implied by their loss functions. That is, all three methods
have about the same computational complexity. However,
this comparison is somewhat unfair to the proposed algo-
rithm, as both baseline methods require the learned non-
linear regression for each node to be consistent such that
the subsequent inference for conditional independence rela-
tionships can be made. Under their current setting, consis-
tency might not hold for the small-n-large-p problems, while
the proposed algorithm is particularly designed for small-n-
large-p problems. This is consistent with our numerical re-
sults, see Tables 2 and 3 for the low- and high-dimensional
cases, respectively.

If the computational complexity T (n, pn) for a single re-
gression task is considered high for some problems, the dou-
ble regression for each conditional tests can be avoided. In
this case, steps (ii) and (iii) of Algorithm 1 can be replaced
by the following steps:
(ii′) For each node Xi, find the spouse nodes, i.e., finding the

set Ai = {j : ∃ k ∈ Ŝi ∩ Ŝj} for i = 1, . . . , pn, where Xj

is a node not connected but sharing a common neighbor
with Xi. Let M̃i = Ŝi ∪Ai.

(iii′) For each pair of variables (Xi, Xj), perform nonpara-
metric conditional independence test

(12) Xi |= Xj |XM̃ij\{i,j},

where M̃ij = M̃i if |M̃i \ {i, j}| ≤ |M̃j \ {i, j}| and

M̃ij = M̃j otherwise. Denote the p-value of the test by
qij.

The modified algorithm can be justified based on the the-
ory of DAG. For each node Xi, step (i) of Algorithm 1 is to
find the set of parents and children nodes, step (ii′) is to find

the set of spouse nodes, and then M̃i forms a super Markov
blanket of Xi. Recall that the Markov blanket of a node
in a DAG is the union of its parents, children, and spouse
nodes. Then, in a similar way to Theorem 1 of [52], we will
be able to show that the tests (6) and (12) are equivalent in
determining the Markov network in the sense

φij = 1⇐⇒ φ̃ij = 1,

where φij ∈ {0, 1} and φ̃ij ∈ {0, 1} denote the outputs of the
conditional independence tests (6) and (12), respectively.
Again, as argued earlier, the conditional independence test
(12) can only be performed for the links of Ĝn only, which
can have the number of tests reduced significantly.

6. DISCUSSION

In this paper, we have proposed an effective method for
learning graphical models for high-dimensional nonlinear
and/or non-Gaussian data. The proposed method works by
performing a series of nonparametric conditional indepen-
dence tests, for each of which the conditioning set is reduced
by a double regression procedure. Since variable screening
is usually much cheaper in computation than variable se-
lection for high-dimensional regression, variable screening
is recommended in general. Moreover, when a sure indepen-
dence variable screening procedure is employed in Algorithm
1, the procedure only needs to be applied to each variable
once as the results of (5) can be directly derived from those
of (4) in this case.

Finally, we note that despite its simplicity, the conditional
distribution property (3) provides an alternative justifica-
tion for Markov neighborhood regression [32, 46] and has
many potential applications in high-dimensional statistical
statistics.

APPENDIX A. APPENDIX

A.1 Proof of Theorem 1

Proof. Let AIij and AIIij denote the false positive and false
negative errors, respectively. Then,

(13) Aij = AIij ∪AIIij ,

where{
False positive error AIij , Tij > µij,0 + ηn/2 and eij = 0,

False negative error AIIij , Tij ≤ µij,0 + ηn/2 and eij = 1.

Then there exists a constant C > 0 such that

sup
i,j

P (AIij) = sup
i,j

P (Tij > µij,0 + ηn/2)

≤ sup
i,j

P (|Tij − µij,0| > ηn/2)

≤ e−c1n
δ(c0,κ)

,

(14)

9



for some positive constant c1. Further, under the alternative
hypothesis H1 : eij = 1,

sup
i,j

P (AIIij ) = sup
i,j

P (Tij ≤ µij,0 + ηn/2)

≤ sup
i,j

P (|Tij − µij,1| > ηn/2)

≤ e−c1n
δ(c0,κ)

.

(15)

Summarizing equations (7) and (13)-(15), we have
P{an error occurs in Ên} → 0 as n → ∞ under Assump-
tion 2. This concludes the proof.

A.2 Definition of Precision and Recall

Let us define an experiment from P positive instances
and N negative instances under some conditions. The four
outcomes can be summarized in Table 5.

Table 5. Outcomes of a binary decision

Actual positive (P) Actual negative (N)

Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

Then the precision and recall are defined by

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

and TP , FP and FN denote true positives, false positives
and false negatives, respectively.
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