
Progressive Neural Compression for Adaptive
Image Offloading under Timing Constraints

Ruiqi Wang, Hanyang Liu, Jiaming Qiu, Moran Xu, Roch Guérin, Chenyang Lu
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri, USA

Email: {ruiqi.w, hanyang.liu, qiujiaming, moranxu, guerin, lu}@wustl.edu

Abstract—IoT devices are increasingly the source of data for
machine learning (ML) applications running on edge servers.
Data transmissions from devices to servers are often over local
wireless networks whose bandwidth is not just limited but, more
importantly, variable. Furthermore, in cyber-physical systems
interacting with the physical environment, image offloading is
also commonly subject to timing constraints. It is, therefore,
important to develop an adaptive approach that maximizes the
inference performance of ML applications under timing con-
straints and the resource constraints of IoT devices. In this paper,
we use image classification as our target application and propose
progressive neural compression (PNC) as an efficient solution to
this problem. Although neural compression has been used to
compress images for different ML applications, existing solutions
often produce fixed-size outputs that are unsuitable for timing-
constrained offloading over variable bandwidth. To address this
limitation, we train a multi-objective rateless autoencoder that
optimizes for multiple compression rates via stochastic taildrop
to create a compression solution that produces features ordered
according to their importance to inference performance. Features
are then transmitted in that order based on available bandwidth,
with classification ultimately performed using the (sub)set of
features received by the deadline. We demonstrate the benefits
of PNC over state-of-the-art neural compression approaches and
traditional compression methods on a testbed comprising an IoT
device and an edge server connected over a wireless network
with varying bandwidth.

Index Terms—neural compression, edge offloading, image clas-
sification, real-time transmission

I. INTRODUCTION

There is no denying the emergence of deep learning (DL)
models broadens the scope of potential solutions for a variety
of inference tasks in applications such as computer vision
(CV) [1]–[3] and natural language processing (NLP) [4], [5].
However, while much progress has been made in reducing the
computational footprint of those models [6], [7], they remain
beyond the capabilities of most embedded systems, particu-
larly low-end devices such as sensors. As a result, bringing
the capabilities of DL models to bear on tasks that arise in
many Internet-of-Things (IoT) deployments has typically been
realized through edge computing solutions. This setting is the
focus of this paper that targets an image classification task
performed in an edge server based on data acquired through
a set of distributed sensors.

Although an advantage of edge computing is the relative
proximity of compute resources with data sources (sensors),

there is still a need for delivering the data from where they
are captured to the edge servers. When dealing with images,
as we do in this paper, the sheer size of each data unit
commonly calls for some form of compression due to the
limited bandwidth of low-power networks such as Zigbee and
LoRa.

Traditional image compression schemes are, however, de-
signed with perceptual quality [8] as their target, and, as we
shall see, may perform poorly when the metric of interest is
instead classification accuracy as in this paper. This has led to
much recent interest in compression schemes that are instead
optimized for a given inference task. In particular, a number
of solutions based on deep neural networks (DNNs) have
been proposed [9]–[13] that explicitly incorporate inference
accuracy in their design.

These solutions, while effective, are limited by their inabil-
ity to meet the timing constraint for image offloading under
variable bandwidth. As real-time systems incorporate ML,
inference tasks often need to complete by a certain deadline,
e.g., the arrival of the next image or to allow actuation to
be performed in time. For example, consider a warehouse
using image classification to automatically distribute packages
to different lines. It is important for the image classification
task to be completed before the arrival of the next package.
The deadline for image classification in turn bounds the time
available for image offloading. To meet offloading deadlines, it
is essential for the system to adapt to the bandwidth variations
common to wireless networks [14], [15]. Under the varying
bandwidth, the amount of data transmitted by the deadline
varies. The implication for any compression and inference
scheme is, therefore, that it must be able to classify an
image using only the amount of data actually received by the
deadline. More generally, the goal is to maximize classification
accuracy given any amount of data received by the deadline.
Unfortunately, most prior approaches to neural compression
generate a fixed amount of data, which must all be received
for inference to be performed with sufficient accuracy.

Towards addressing this limitation, we propose a framework
called Progressive Neural Compression (PNC). Our approach
tackles the problem of progressive offloading by training a
rateless compressive autoencoder (AE) that serves multiple
objectives. Each objective focuses on optimizing the inference
performance based on a different amount of data (partially)

1

received, which corresponds to a different compression rate.
In our methodology, we leverage the “taildrop” technique [16]
in recent advances of neural dimensionality reduction to train
the multi-objective AE that facilitates progressive image trans-
missions for classification. Specifically, classification can be
performed at any time based only on the data received up
to that point, with the receipt of more data translating into
progressively more accurate classification decisions. This “pro-
gressive” property allows the system to adapt to variations in
link bandwidth by continuously offloading data until reaching
its offloading deadline. This property is realized by training the
AE to ensure that the latent features at its bottleneck layer are
sorted in the order of their importance for the classification
task, e.g., earlier features have higher contributions towards
accurate classification. Features are then transmitted in the
order of their importance till the deadline. Classification can
be performed on the edge server based on the subset of
received features, with the classification accuracy improving
as more features are received. The progressive nature of PNC
allows it to handle different deadlines and varying bandwidth
effectively.

The main contributions of this paper are as follows:
• We propose PNC1, an efficient progressive neural compres-

sion framework tailored for IoT devices that need to offload
images to edge servers for classification within a deadline
despite varying network bandwidth.

• We designed and implemented an end-to-end image classi-
fication system integrating time-bounded progressive image
offloading and edge-based classification on an edge com-
puting testbed.

• We demonstrated empirically that PNC outperformed both
traditional and neural compression solutions in classification
accuracy under timing constraints and external wireless
interference while realizing a much smaller computational
footprint than the latter.

II. BACKGROUND AND MOTIVATION

IoT devices are usually connected to edge servers by low-
power wireless sensor networks (e.g., IEEE 802.15.4 or LoRa)
with limited bandwidth. Before offloading an image from the
device to the server, the image needs to be compressed while
still allowing the edge server to classify it accurately. More-
over, these networks typically experience significant fluctua-
tions in available bandwidth due to environmental factors and
interference in the wireless channel [17]–[19]. Furthermore,
image classification in such settings is often subject to timing
constraints. For example, a quality control camera needs to
catch a defective item before the arrival of the next item, or
a face recognition camera needs to react quickly to prevent
unauthorized entry.

The combination of variable and limited bandwidth and
time constraints has important implications for image offload-
ing. It impacts the amount of data that can be transmitted

1The source code and testbed setup instructions for PNC are available at:
https://github.com/rickywrq/Progressive-Neural-Compression.

before classification has to be made. As a result, any edge-
based image classification system must be able to adapt to
fluctuations in the available bandwidth. One option is to rely
on a feedback mechanism that detects bandwidth variations
and responds by adjusting compression ratios accordingly.
The main disadvantage is the inherent latency associated with
having to detect variations before being able to react to
them. As a result, we focus on “open-loop” solutions that
optimize classification performance given the amount of data
transmissions the network allows by the deadline.

We identify the following requirements for an image of-
floading framework for such image classification:
• Classification accuracy: In contrast to traditional image

compression approaches optimized for image reconstruction,
an offloading framework designed for image classification
should target classification accuracy as the primary objective
of interest to the application.

• Encoding efficiency: Given the stringent resource con-
straints of IoT devices, the encoding process of the compres-
sion approach should incur minimal computation overhead
on the devices.

• Adaptation to different deadlines and varying band-
width: Classification accuracy should improve the more data
are received by the deadline while achieving graceful per-
formance degradation in the face of decreasing bandwidth.

III. RELATED WORK

Image compression aims at minimizing the size of image
representation by removing redundant and irrelevant informa-
tion [8]. In this section, we review related works on image
compression, with a focus on the requirements introduced in
Section II.

A. Traditional Image Compression

Traditional compression techniques aim to minimize the
amount of data needed to reconstruct an image. For example,
JPEG [20], [21], one of the most widely used image compres-
sion standards, works by performing discrete cosine transform
(DCT) on the original image and then entropy coding the
quantized DCT coefficients. WebP [22] is a more recent image
compression standard commonly used on the web. Both the
basic JPEG standard and WebP are non-progressive in that
they require the reception of an entire compressed image to
reconstruct it effectively. In contrast, to handle unpredictable
bandwidth, JPEG also provides a progressive mode based on
spectral selection and successive approximation in the entropy
coding procedure. It allows images to be reconstructed based
on an arbitrary amount of encoded data, with more data
resulting in more accurate reconstruction.

B. Neural Compression for Image Reconstruction

Recent works in image compression explored deep learning
approaches using AEs to learn latent representations of images.
Early efforts on such neural compression techniques [23]–[25]
are non-progressive because their neural network architecture
cannot handle partially received data. Recent efforts are to

2

https://github.com/rickywrq/Progressive-Neural-Compression

support progressive encoding in neural compression. Lu et
al. [26] propose nested quantization with multiple scaling
levels that refines all latents progressively. Toderici et al. [27],
[28] exploit recurrent neural networks (RNN) to support
progressive image compression, where a multi-iteration com-
pression architecture is proposed to iteratively compress the
residual signals between the input and reconstructed image
patch. While neural compression has shown advantages over
traditional compression approaches in compression ratio, a
disadvantage of existing deep models for image compression
is their complexity and computation cost, often prohibitive
for resource-constrained IoT devices. It is also important to
note that the aforementioned neural compression approaches
are designed to optimize image reconstruction quality instead
of application-specific inference performance such as image
classification accuracy.

C. Neural Compression for Inference

Recent advances in neural compression target optimizing
inference performance. In the context of edge computing, sev-
eral works propose approaches where the device and the edge
server work collaboratively to complete the inference task [29],
[30]. In this paradigm, a DNN model for inference is split
into two separate parts, a head model and a tail model, which
are deployed at the device and the edge server, respectively.
To compress the intermediate features transmitted from the
device to the edge server, BottleNet and its extensions [9],
[12] inject a bottleneck AE at the split point of the original
model. To improve encoding efficiency, Yao et al. [10] propose
an asymmetric AE structure to lower the encoding overhead
at the local device. To further reduce redundant computation,
Matsubara et al. [11], [31] apply knowledge distillation to
train a lightweight head model with an embedded bottleneck
that compresses the input image while performing part of
the inference. In subsequent work [13], this head distillation
framework was extended to achieve an explicit learnable trade-
off between compression ratio and reconstruction distortion by
combining neural image compression techniques [24], [32],
[33]. However, despite the significant advances in neural
compression for inference, none of these solutions support
progressive compression, which is essential in adapting to
variable bandwidth, as is common in wireless sensor networks.

A recent neural compression approach, Starfish (Hu et
al.) [34], accounts for data loss during transmission by intro-
ducing random dropouts at the bottleneck of their proposed AE
to foster resiliency against such losses. However, as Starfish
does not differentiate or prioritize features in terms of their
contributions to inference accuracy, it is not designed to
optimize classification performance under different deadlines
and available bandwidth.

Our proposed solution, PNC, is specifically designed to
optimize image classification accuracy in the context of edge
offloading under timing constraints. In contrast to existing
solutions, PNC can adapt to variable bandwidth through pro-
gressive encoding. It lets the edge server perform effective
image classification based on the subset of encoded features

that have been received by the offloading deadline. In addition,
to minimize computational load on IoT devices, PNC employs
a lightweight rateless AE and does not require inference to be
partially executed on the devices.

IV. PROBLEM FORMULATION

We consider an edge image classification task where images
are captured in a local device and must be transmitted to an
edge server for classification purposes. Because of bandwidth
limitations, images are encoded (compressed) before trans-
mission and subsequently decoded at the edge server before
classification. Our goal is to achieve the highest classification
accuracy possible at the edge server, given the bandwidth
constraints of the network and the image offloading deadline.
We focus on the timing constraint for image offloading subject
to variable bandwidth.

Assume a sequence of images, xi, i = 1, 2, 3, . . . , captured
by the local device at fixed time intervals of period T . Assume
the first image is captured at t1, then xi will be captured at
ti = t1 + (i − 1)T . In this work, we consider a common
scenario where the image offloading must be completed before
the next image is encoded, i.e., the deadline for offloading an
image xi is the arrival of the encoded features of the next
image xi+1.

Specifically, we split the process into three steps: On-
device encoding and network offloading, and subsequently
edge decoding and classification.

On-device Encoding. Upon the arrival of an image xi, the
device encodes and sends the data to a remote server for image
classification. Given an encoder, fθ, the encoded data for each
image is in the form of a byte array that can be expressed as,
zi = fθ(xi). The encoding latency for xi is denoted as tfi .

Network Offloading. We assume that the transmission of
image xi can continue until the next image xi+1 is encoded
and ready for transmission, so that its deadline is td = ti +
T + tfi+1. As the network bandwidth, b(t), varies with time,
the encoded data size Si that can be transmitted for image xi

by its deadline is given by Si =
∫ ti+T+tfi+1

ti+tfi
b(t)dt.

Denote truncate(zi, Si) as the data when truncat-
ing the end of byte array zi to size Si, such that
size (truncate(zi, Si)) ≤ Si (note that when size(zi) ≤
Si, truncate(zi, Si) = zi). The actual data, z̃i, that the client
can send within the deadline is,

z̃i =

{
zi, if size(zi) ≤ Si,
truncate (zi, Si) , otherwise. (1)

Decoding and Classification. When the edge server re-
ceives the (potentially truncated) encoded data, z̃i, the decoder,
gϕ, will decode the data, yi = gϕ(z̃i), Assume that h is
some image classifier and ai is the output of the image
classifier, i.e., the probability distributions among the possible
classes with input yi, ai = h(yi) = h (gϕ(z̃i)). We can
evaluate the accuracy of the prediction with the commonly
used performance metric top-n accuracy, R, of the image
classification task on image xi with ground-truth class of gti
as,

3

Offline Training Phase

Online Runtime Phase
Client Server

M
 fe

at
ur

es

Ra
nd

om

D
~

Pr
(D

)

Dr
op

ou
t r

at
e

Encoder Decoder Intelligent service
(image classifier)

Stochastic Tail Drop

…
Compressed

features
Received
features

Encoder Decoder
Progressive
transmission

Intelligent service
(image classifier)

Ze
ro

 fi
llin

g

Trainable NN

Fixed NN

Device Edge Server

L
~

Pr
(L

)

Figure 1: System overview of our PNC offloading framework.

R(ai, gti) =

{
1, if gti ∈{n most likely predictions},
0, if gti /∈{n most likely predictions}. (2)

Our goal is to design a flexible configuration for edge
offloading and optimize the learnable parameters of the image
encoder and decoder, θ and ϕ, that maximize the accuracy of
the image classification task, under variable bandwidth b(t)
and the constraint of the deadline imposed by Td.

In summary, our goal is to design an offloading solution
that can achieve high accuracy with various combinations
of time-varying bandwidth and deadline, i.e., an unknown
amount of transmitted data in an adaptive fashion. The encoder
should capture important features for classification and help
the client progressively transmit the most important features
first, followed by other, less important features. The decoder
should handle incomplete data arriving at the edge server and
decode an input for the image classifier to achieve the best
classification accuracy given the amount of data received.

V. DESIGN OF PNC

This section introduces the design of our PNC framework
for progressive neural compression and adaptive offloading.
We target a typical real-time edge computing architecture com-
prising embedded IoT devices and an edge server connected by
a wireless sensor network, where image offloading is regulated
by a deadline constraint. The key idea of our framework is to
formulate the problem of progressive offloading as training a
rateless compressive AE that serves multiple objectives, where
each objective corresponds to optimizing the inference perfor-
mance using a certain amount of data partially received during
transmission. We exploit recent advances in dimensionality
reduction for multi-rate image compression and extend such a

concept to support progressive offloading of inputs for edge-
assisted image classification, thereby allowing the system to
adapt to varying network bandwidth under timing constraints.

A. System Overview

Fig. 1 illustrates the offline training process and the end-
to-end image classification pipeline featured by the PNC
framework. During the offline training phase, the PNC trains
a rateless compressive AE by dropping a random number of
encoded features (by filling these features with zeros) at the
tail of its bottleneck during each training iteration to emulate
the reception of incomplete image data (Section V-B and V-C).
When the PNC is later deployed at runtime, the device encodes
the image into a fixed number of features and transmits to
the edge server as many features as possible within the time
limit. With the features that failed to be transmitted in time
replaced with zeros, the edge server decodes the received data
and predicts the class of the input image (Section V-D).

B. Multi-objective Neural Compression

1) AE-based Fixed-rate Compression: A vanilla compres-
sive AE consists of an encoder and decoder. The encoder,
denoted as z = fθ(x), maps the input image x ∈ RH×W×C

(H, W, and C define the size and number of channels of the
input. For RGB images, C = 3.) to a lower-dimensional latent
representation z ∈ Rh×w×M (h and w define the size of the
latent feature map for each channel, M is the number of latent
channels). θ is the parameters of the encoder. The decoder,
denoted as x̂ = gϕ(z), aims to reconstruct the original image
x by mapping the latent representations back to the data space.
ϕ is the parameters of the decoder. The aim is to find θ, ϕ that
jointly minimize a loss:

θ, ϕ = argmin
θ,ϕ

L (θ, ϕ) (3)

4

with L(θ, ϕ) = Ex∼X ∥x−gϕ (fθ(x)) ∥2 optimizing the AE to
reconstruct the input images and minimize the distortion [23]–
[25]. In compressive offloading [10], [11], however, the AE is
often trained to optimize inference performance (e.g., clas-
sification accuracy). Here the loss L can be generalized to
inference losses (e.g., cross entropy) to meet the needs of
applications. The natural property of dimensionality reduction
of AE enables its potential of being used in compressive
offloading for edge computing [10], [11], [13] where z is
transmitted as compressed data to improve efficiency.

2) Multi-objective Optimization for Rateless Compression:
The problem with using a standard AE for compressive
offloading is that the compression rate remains fixed due to
the fixed-sized bottleneck z. In wireless sensor networks with
varying bandwidths and offloading deadlines, the bottleneck
features may not be fully received. This leads to significant
distortion and performance decline for the target deep learning
service, as the bottleneck features are always complete during
training.

To reduce the distortion and optimize classification per-
formance under the situation where only a subset of the
bottleneck features are successfully received by the edge, i.e.,
the first K features (K ≤ M), we can incorporate the objective
w.r.t. reconstructing data using the top K channels,

L(θ, ϕ,K) = l
(
x, gϕ

(
Concat

[
z[1:K];0

]))
(4)

where l represents the choice of objective function to optimize
during the two-stage offline training process, which we will
discuss in Section V-C, Concat([;]) denotes tensor concatena-
tion, and z[1:K] denotes the first K latent feature channels of z.
To consider all possible K values under different bandwidth,
we can train a AE (fθ, gϕ) by optimizing the following multi-
objective problem:

min
θ,ϕ

E
x∼X

[L(θ, ϕ; 1),L(θ, ϕ; 2), ...,L(θ, ϕ;M)] (5)

However, there are no close-form solutions to Eq. (5). Since
each objective is not independent of each other (i.e., sharing
the model parameters θ and ϕ), the rateless AE must account
for the trade-off among various bottleneck dimensionality to
reach the Pareto frontier solutions as close as possible.

Recent work [16] proposed the stochastic taildrop regular-
ization as an iterative approximation to the solutions of Eq. (5)
for flexible neural dimensionality reduction. As illustrated
in the “Offline Training Phase” diagram in Fig. 1, in each
training step, we randomly drop the last L latent channels
(L = M − K) of the bottleneck by replacing them with 0
during training. Intuitively, this is equivalent to alternatively
optimizing each of the objectives with different K at different
iterations. On top of stochastic taildrop, we added additional
gradient control over the iterations for more stable training.
The iterative joint optimization is shown in Algorithm 1. At
each training iteration (the innermost for loop), we randomly
draw the length of dropped tail L from a distribution [16] (e.g.,
uniform) and calculate the gradient g(m)

θ ,g
(m)
ϕ following the

objective L. After every M iterations, the training process

Algorithm 1: Iterative optimization of Eq. (5) with stochas-
tic taildrop.

Data: Number of epochs Ne, number of batches Nb, mini-batch
image set Xtrain =

{
X1,X2, ...,XNb

}
, predefined

distribution Pr(L), bottleneck width of the AE M
Result: Learnable parameters of the encoder, θ, and the decoder,

ϕ.
for 1 ≤ ne ≤ Ne do

for 1 ≤ nb ≤ Nb do
for 1 ≤ m ≤M do

L ∼ Pr(L) ; /* Length of dropped tail. */

K ←M − L;
Gradient g(m)

θ ,g
(m)
ϕ ← ∇θ,ϕ E

x∼Xnb

L(θ, ϕ;K);

end
ḡθ, ḡϕ ← 1

M

∑M
m=1 g

(m)
θ , 1

M

∑M
m=1 g

(m)
ϕ ;

Update θ, ϕ using gradient ḡθ , ḡϕ on batch Xnb .
end

end

will calculate the average gradient and update the learnable
parameters, θ and ϕ.

C. Two-stage Offline Training

In this section, we introduce how to optimize our rateless
AE for downstream inference tasks (e.g., image classification)
via a two-stage training method.

1) Unsupervised Pretraining for Image Reconstruction:
We first pre-train the rateless AE by optimizing Eq. (5) via
Algorithm 1 on reconstructing input images x ∼ X , in which

L(θ, ϕ,K) =
∣∣∣∣∣∣x− gϕ

(
Concat

[
fθ(x)[1:K];0

])∣∣∣∣∣∣2 (6)

The unsupervised pretraining helps prepare the AE parameters
θ, ϕ to a generalizable state that adapts to any potential target
machine learning (ML) service.

2) Knowledge Distillation for Inference: The parameters θ,
ϕ trained by the above unsupervised stage are not optimized
for inference performance (e.g., classification accuracy). In
order to achieve a better performance-efficiency tradeoff for
inference, the pretrained rateless AE needs to further distill
knowledge from the target inference task. Knowledge distil-
lation (KD) was first proposed in [35] and widely used by
[10], [13], [31] and showed improved inference performance
than training from scratch. In KD, a (usually smaller) student
model is trained to produce similar inference output as the
(usually much larger) target teacher model. In this paper, we
consider a deep image classifier to instantiate h(x) and extend
the scope of stochastic taildrop from image compression and
reconstruction to image classification. Assume the deep model
of the target inference task is h(x). We use KD to fine-
tune the rateless AE to reconstruct input data that optimize
the inference performance with the new objective function
specifically for the classification task,

L(θ, ϕ,K) = CE
(
h(x), h

(
gϕ

(
Concat

[
fθ(x)[1:K];0

])))
(7)

5

Here CE(·, ·) denotes cross-entropy loss as used in [35].
During the KD training, the target model h(x) is treated as
a black box with the parameters frozen, and only the AE
parameters, θ and ϕ, are updated.

D. Progressive Compression for Adaptive Offloading

With the stochastic taildrop regularization and iterative
optimization (Algorithm 1) during training, the pth feature z[p]
is preserved and used for reconstruction more often than any
succeeding feature z[q](1 ≤ p < q ≤ M). Intuitively, the AE
will be more robust to the absence of z[q], so features z[1:M]

are given decreasing importance to the target inference task
performance.

As shown in the diagram of “Online Runtime Phase” in
Fig. 1, we design an end-to-end image classification system to
support progressive neural compression and image offloading
over wireless sensor networks. After encoding original images
into a set of compressed features, we progressively transmit
the features from the most important z[1] to the least important
z[M] in descending order to the edge server for further
reconstruction and inference. Given limited current bandwidth
and a time constraint, the network may be able to transmit
only a subset of the features (i.e., top K ′) to the edge server
before the deadline. Then the received most important K ′

features will be used for data reconstruction and inference
(remaining features filled with 0). These received features
are exactly the optimal set of features that maximizes the
inference performance of the image under the constraint of
sending only K ′ features. In this manner, the trained rateless
AE achieves progressively better inference performance with
more features offloaded. This progressive neural compression
framework enables our compressive AE to adapt flexibly to
variable network bandwidth while achieving better average
inference performance.

E. Quantization and Huffman Coding

To further reduce the data size of intermediate features z that
need to be transmitted to the edge server, we apply additional
optimizations, including model and feature quantization and
Huffman coding [36] before data transmission.

Model Quantization. Model quantization [37], [38] con-
verts floating point operations and data in ML models to
quantized ones, usually in the form of 8-bit integers. We use
the automated TensorFlow Lite (TFLite) converter, an official
tool by TensorFlow, for such a purpose. The conversion speeds
up the encoding on resource-constrained IoT devices and helps
reduce the output data size of the ML model.

Feature Quantization. We empirically find that even after
model quantization to 8-bit integers (0-255), there is still abun-
dant room for more aggressive quantization. After encoding,
we further quantize the data to 64 values, represented by 6
bits, spaced evenly between 0 and 255. We select the number
64 because it has a relatively small impact on the classification
accuracy while directly reducing the data size by 25% if we
use 6-bit binary coding.

1 2 3 4 5
Data Size Limits (KB)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

PNC

K=10
K=8

K=6
K=4

K=2

Figure 2: Classification accuracy vs data size limits of PNC
and various fixed rate AEs. PNC is in red. For fixed-rate AEs,
a label with the number of latent channels, K, is next to each
curve with the corresponding color.

Feature-wise Huffman Coding. We find that the data
distributions within each feature are different. For the best
compression result, we train M different Huffman tables for
features at different positions. During the online runtime phase,
each quantized feature will be further compressed individually
with the corresponding Huffman table.

F. Progressive Property of PNC

In this section, we provide insights into how the design
of PNC facilitates its progressiveness and adaptability to
bandwidth variations with little impact on its classification
performance. To better demonstrate the effect of taildrop
on multi-objective rateless compression, we remove tail-drop
regularization from PNC and vary the number of latent chan-
nels, M , in the model to create multiple fixed-rate AEs. The
bottleneck sizes of these fixed-rate AEs are 32×32×K, where
K ∈ {2, 4, 6, 8, 10} represents the latent channel numbers and
can effectively translate to various encoding rates. All fixed-
rate AEs are trained and optimized following the same strategy
as PNC, as discussed in Section V-C and Section V-D. As a
result, each latent channel will be of size 1KB after model
quantization and become 0.75KB after feature quantization.
Huffman coding will further improve coding efficiency and
reduce the average channel size. We utilize the ImageNet
validation set with 35,000 images for training, 5,000 for
validation, and 10,000 for the following simulation evaluation.

Fig. 2 shows, as a function of data size limitation, the
classification accuracy of PNC and those fixed-rate AEs. First,
we note that PNC consistently delivers classification accuracy
close to the best performance of each fixed-rate AE (even
though the fixed-rate AE is optimized for the target size of
latent features). The slight drop in performance in comparison
to the best fixed-rate AE at each data size is attributed to
the constraints imposed by stochastic taildrop during training
(e.g., the accuracy for K = 2 is 69.62%, just slightly higher
than PNC’s 67.51% at 1.5KB. The accuracy for K = 8 is

6

86.79%, barely above PNC’s 86.46% at 5.5KB.). Overall, the
multi-objective design enabled by stochastic taildrop during
training allows PNC to balance the inference performance
under multiple compression rates during inference. PNC is
therefore able to achieve progressive encoding at a negligible
cost in classification accuracy across a wide range of data
sizes. In other words, the accuracy of PNC gracefully degrades
as the number of offloaded features decreases.

In contrast, the performance of fixed-rate AEs decreases
rapidly as the data size limit drops substantially from their
respective design targets, indicating a failure of the decoder
to receive the complete set of features. Without stochastic
taildrop, each feature in a fixed-rate AE will be equally im-
portant and indispensable for decoding and classification. This
becomes a serious problem for DNNs-based image encoders
with fixed rates when the amount of data sent to the server
is unknown or varies. Similarly, selecting the best model that
guarantees the transmission of all encoded data within a time
limit becomes challenging. Therefore, a significant advantage
of PNC lies in its progressive encoding that enables the system
to adapt to unpredictable bandwidth and different offloading
deadlines while maintaining classification accuracy.

G. Image Offloading Architecture

We design a distributed system architecture (Fig. 3) for end-
to-end image classification comprising multiple stages: image
encoding and offloading on the IoT device (client), followed
by decoding and classification on the edge server. Recall our
design targets a common application scenario where the image
classification task is triggered by images captured periodically.
We focus on the latency of the image offloading stage subject
to varying bandwidth. In our design, the image offloading
stage has a time constraint that the transmission of features
belonging to an image must end before features of the next
image are generated.

To improve resource utilization, our system employs multi-
ple threads to pipeline the stages of the end-to-end processing.
Specifically, image encoding is released in response to the
arrival of a new image. Thread TH encode first fetches and
encodes the image into compressed features. Thread TH send

then sends the features to the edge server over the network.
To provide fine-grained control, TH send divides the features
of an image into small, 64-byte data blocks and sends them
sequentially. Before sending each block, TH send will check
whether the encoded data of the next image are ready. If the
transmission of imgn features is not finished before the first
feature of imgn+1 is encoded, TH send terminates the transmis-
sion, appends a stop signal to the data stream indicating the
termination of transmission for imgn, and proceeds to transmit
imgn+1.

PNC uses Huffman encoding as the final optimization step
after an image is compressed into features. To reduce the
latency overhead caused by the Huffman encoding, TH send

is invoked to offload the first feature once it is encoded, while
the remaining features are encoded with the Huffman table in
parallel using a third thread (not shown in the figure).

imgn

Decode &

Classify

Decode &

Classify

Receiving

Features of

imgn

Sending

Features of

imgn

Sending

Features of

imgn+1

Receiving

Features of

imgn+1

Stop Signal

Stop Signal

THencode

Client Server

Encode

imgn

Feature 1

Feature 1

Feature 2

Feature 2

...

......

Feature K(n)

Feature K(n+1)

Encode

imgn+1

. .
 .

. .
 .

THsend THrecv THinference

imgn+1

imgn+2

P
er

io
d

ic
P

er
io

d
ic

Figure 3: The image offloading architecture in our end-to-end
image classification system.

The edge server runs two threads: Thread TH recv receives
the bytes from the network interface until it receives a com-
plete image or the stop signal. Then thread TH inference decodes
and classifies imgn using the received data. Our architecture
is implemented in Linux-based OSs on both the device and
the server, although, in principle, it may be implemented in
other OSs supporting multiple threads.

VI. IMPLEMENTATION

We implement an end-to-end image classification system
comprising an IoT device and an edge server. The system
employs PNC for image offloading over a low-power wireless
sensor network.

A. Hardware Platform

We use a Raspberry Pi 4 Model B with Quad core Cortex-
A72 (ARM v8) 64-bit SoC @ 1.5GHz, 8GB RAM, and Rasp-
berry Pi OS 10 (Kernel version: 5.10.63) as the embedded IoT
device and a desktop with Intel(R) Core(TM) i7-10700K CPU
@ 3.80GHz, Nvidia GeForce RTX 3090 GPU, 64GB RAM
and Ubuntu 20.04.1 (Kernel version: 5.15.0-69-generic) as the
edge server. The device and the server communicate with each
other using IEEE 802.15.4 radios (nRF52840 development kits
“nRF52840 DK” produced by Nordic Semiconductor). The kit
offers a serial port interface that allows the client and the server
to transmit and receive data streams with the IEEE 802.15.4
radio at the application level. The MAC layer of the radio
uses re-transmissions to overcome transmission failures. As a
result, the available network bandwidth drops in the presence
of external inference and packet losses.

B. Design Choice of Autoencoder

We implement the AE in PNC with TensorFlow2. The
details of our compressive AE are shown in Fig. 4. Inspired
by Yao et al. [10], we adopt an asymmetric design of the AE

2https://www.tensorflow.org

7

https://www.tensorflow.org

Tail

Drop

Decoder

Image
Classifier224×224×3

Conv2D

Transpose

channel=64,

kernel=9×9,

stride=7,

padding=Same,

Activation=ReLU

Conv2D

channel=64,

kernel=5×5,

stride=1

padding=Same,

Activation=ReLU

Conv2D

channel=64,

kernel=5×5,

stride=1,

padding=Same,

Activation=ReLU

Conv2D

channel=64,

kernel=5×5,

stride=1,

padding=Same,

Activation=ReLU

224×224
×64

224×224
×64 224×224

×64
224×224

×64

+ +
Conv2D

channel=3,

kernel=3×3,

stride=1,

padding=Same,

Activation=clip_b

y_value

Conv2D

channel=16,

kernel=9×9,

stride=7,

padding=Same,

Activation=ReLU

Conv2D

channel=10,

kernel=3×3,

stride=1,

padding=Same,

Activation=ReLU

EncoderImput X

224×224×3 32×32×16 32×32×10 32×32×10

Figure 4: The AE architecture used in PNC. The encoder contains two 2D convolution layers. The decoder contains five layers.
The input/output size of each layer is labeled between layers.

to reduce the encoding overhead at the device. The encoder
and decoder contain two and five layers, respectively. The
encoder compresses the input image into 10 features of size
32×32. We make the encoder lightweight, i.e., with only two
2D-Convolution (Conv2D) layers to match the computational
capacity of the embedded device. We use clip-by-value as
the activation function in the last layer to limit the AE
output within a reasonable range. Empirically, we find that
PNC trained with clip-by-value achieves higher classification
performance than using the common sigmoid or tanh activa-
tion functions. For tail length selection, we use the uniform
distribution following [16], i.e., L ∼ Uniform(0,M − 1),
and zero out the last L channels during training.

We train the AE in PNC following the steps in Section V-C.
We use a learning rate of 0.001 for the first stage and 0.005
for the second. We set the batch size to 4 and the number of
epochs to 70, and use the Adam optimizer during both training
stages.

We use ImageNet3 for model training and system evaluation.
We use the off-the-shelf EfficientNet-B0 [39] pre-trained on
the ImageNet training set as our image classifier. Since the
training set is already used to optimize the image classifier, we
extract additional training data from the ImageNet validation
set to train PNC’s AE. We assigned 35,000 images for training,
5,000 for validation, and 2,000 for testbed experiments. We
also resize all the images to 224× 224× 3 to match the input
size of the classifier.

VII. EVALUATION

In this section, we compare the encoding efficiency and
classification performance of PNC against a set of traditional
and state-of-the-art baselines under different timing constraints
(deadlines) and network conditions.

A. Baselines for Comparison

We compare PNC against a wide range of baselines, includ-
ing traditional and neural compression approaches, as well as

3https://www.image-net.org/.

non-progressive and progressive encoding schemes of different
levels of encoding complexity.

• WebP: WebP is a state-of-the-art, non-progressive, tradi-
tional encoder. In addition to the quality factor, q, that
controls the reconstruction quality of the image, WebP has
another parameter, method, which is an integer ranging from
0 to 6, indicating the quality-speed trade-off. Method 0 has
the fastest encoding and method 6 has the best quality and
larger encoding overhead. We select method = 6 to show the
best compression performance and select a range of quality
factors to evaluate its performance.

• Progressive JPEG: Progressive JPEG is a progressive vari-
ant of JPEG that supports image decoding with partial image
data. We explore the quality factor empirically and report the
results with q = 30, which balances classification accuracy
and compression ratio.

• RNN-TFLite: We include a recurrent neural network (RNN)
method [28] as a state-of-the-art method for progressive
neural compression. The model is trained with the same
set of training images as our model. We benchmark the
encoding latency of RNN TFLite, a quantized version of
the original RNN model in TensorFlow Lite. With an image
of size 224 × 224, this method generates 784 bytes of
data during each iteration. Note that the original work
proposes multiple network implementations. We adopt a
representative one with long short-term memory (LSTM)
as the recurrent unit and “additive reconstruction” as the
image reconstruction approach from our decoder’s output.
We select the implementation without entropy coding to
mitigate the complexity of the model. Regardless, as shown
in Section VII-B, RNN methods remain prohibitively ex-
pensive for embedded devices.

• Starfish [34]: Starfish is a state-of-the-art AE-based ap-
proach designed to tolerate data loss. During training,
Starfish utilizes a dropout layer located at the bottleneck
of the AE to make the system resilient to data loss. Since
the original Starfish was evaluated on different datasets, we
retrained Starfish with our training dataset and optimized the

8

https://www.image-net.org/

Table I: Comparison of encoding overhead. For different WebP
methods, m represents the method. For all applicable methods,
q represents the quality factor.

Method Configuration Average Encoding Overhead (ms)

PNC #thread = 1 11.8
#thread = 2 11.4

WebP

m = 0, q = 0 6.0
m = 0, q = 20 6.7
m = 6, q = 0 32.5
m = 6, q = 20 48.6

Prog. JPEG q = 30 5.8
Starfish One Patch 62.9

RNN-TFLite One Iteration 1900

model with quantization and Huffman coding. Note that,
to reduce AE complexity and encoding latency, Starfish
evenly divide images into four patches and encode them
individually.

B. Encoding Overhead

For each image compression method, we measure the image
encoding overhead on the embedded device (Raspberry Pi
4). As shown in Table I, PNC takes on average 9.8ms to
encode the image into features of sorted importance. Addi-
tional “feature quantization” and “Huffman encoding” take
an additional 2.0ms. The average encoding overhead is hence
9.8 + 2.0 = 11.8ms4. WebP encodes an image in 6.0ms with
method = 0, but the overhead grows significantly to over
32.5ms for method = 6, much longer than PNC. Progressive
JPEG incurs an average overhead of 5.8ms.

In contrast, the neural compression baselines have much
higher overheads than PNC and the traditional compression
methods. Starfish takes an AE with larger numbers of inter-
mediate layers and channels than PNC, resulting in a higher
encoding overhead of 62.9ms for only the first image patch
(out of a total of four), 51.1ms longer than PNC. The TFLite-
optimized RNN baseline (RNN-TFLite) takes on average 1.9s
to encode an image for one iteration when executing with
4 threads and takes 3.0s with only 1 thread. Hence, the
prohibitively high complexity of RNN models makes them
unsuitable for embedded devices.

C. Performance under Different Deadlines and Bandwidth

1) Experimental Setups: We deploy our image classifica-
tion system in a multi-room indoor space as shown in Fig. 5.
The system comprises the embedded device, the jammer, and
the edge server described in Section VI-A. The server and
the device are placed in Room 1 and Room 2, respectively,
as shown in Fig. 5. The device offloads encoded images
to the server over an IEEE 802.15.4 wireless link. The
jammer (a Raspberry Pi 3 Model B) is placed close to the
client and generates traffic at different rates using iperf3.

4The average encoding overhead can be reduced to 11.4ms if two threads
are used to run the TFLite inference for the encoder. However, since the JPEG
and WebP implementations in the Python image library, Pillow, used in our
experiments, only support single-threaded encoding/decoding, for fairness of
comparison, we also kept PNC single-threaded in our experiments.

Edge
Server

Room 2

Room 1Room 3 Open Workspace

Doors

Wi-Fi
Router

13 ft 32.5 ft

16
.5

 ft
8.

7
ft

Embedded
Device and

Jammer

Figure 5: Layout of the indoor space used for the experiments.
To minimize interferences from other environmental factors,
all experiments are conducted at night when no one is present.

It communicates with a Wi-Fi router on a 2.4GHz Wi-Fi
channel that overlaps with the IEEE 802.15.4 channel used for
image offloading. Jamming intensity is varied by controlling
iperf3’s transmission rate.

We conduct the experiments under (1) different network
scenarios and (2) different timing constraints. We create three
network scenarios with different levels of wireless interference
and, consequently, different bandwidths between the device
and the server:
• Scenario 1 (No Jamming): There is no jamming traffic.
• Scenario 2 (Light Jamming): iperf3 on the jammer

generates traffic at a rate of 10 Mbps.
• Scenario 3 (Heavy Jamming): iperf3 on the jammer

generates traffic at a rate of 20 Mbps.
For each network scenario, we repeat the experiments with
different image arrival periods (T) of 300, 500, and 700 ms
(and hence image offloading deadlines of approximately the
same values).

We conduct experiments on our testbed with a fixed set
of 2,000 images drawn from the ImageNet validation set. As
our system terminates the offloading of an image upon the
arrival of the first feature of the next image, all the timing
constraints for image offloading are met in the experiments.
Henceforth, we evaluate the classification performance of PNC
and the baselines under different network scenarios and timing
constraints. We use a standard metric, top-n accuracy, which is
commonly used in previous edge computing works [10], [40],
[41], to quantify classification performance. Specifically, as per
Eq. (2) for n = 5, top-5 accuracy assigns a score (reward) of 1
for the received image if its ground-truth class is among the 5
most likely classes produced by the classifier and 0 otherwise.

Fig. 6 shows the top-5 accuracy of PNC and the baselines
including the non-progressive baseline, WebP (method = 6),
the progressive baseline, Progressive JPEG (with the best
configuration, q = 30), and the neural-compression baseline,
Starfish. We leave RNN out due to its prohibitive encoding
overhead on embedded devices (see Section VII-B). To further
analyze the behavior of different solutions, we also show the

9

No Jamming Light Jamming Heavy Jamming
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

(a) T = 300ms

No Jamming Light Jamming Heavy Jamming
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

(b) T = 500ms

No Jamming Light Jamming Heavy Jamming
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

(c) T = 700ms

Scenario 2 Scenario 3 Scenario 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

PNC (Ours)
Starfish
Progressive JPEG
WebP (q=0)
WebP (q=10)
WebP (q=20)

Figure 6: Classification accuracy. Each subfigure shows the results in a network scenario with different image arrival periods.

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

lly
Tr

an
sm

itt
ed

 Im
ag

es

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

(a) T = 300ms

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 Fu
lly

Tr
an

sm
itt

ed
 Im

ag
es

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(F

ul
ly

 Tr
an

sm
itt

ed
)

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(P

ar
tia

lly
 Tr

an
sm

itt
ed

)(b) T = 500ms

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

lly
Tr

an
sm

itt
ed

 Im
ag

es

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(F

ul
ly

 Tr
an

sm
itt

ed
)

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(P

ar
tia

lly
 Tr

an
sm

itt
ed

)(c) T = 700ms

Scenario 2 Scenario 3 Scenario 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

PNC (Ours)
Starfish
Progressive JPEG
WebP (q=0)
WebP (q=10)
WebP (q=20)

Figure 7: Fraction of images completely offloaded within the time limit. Each subfigure shows the results in a network scenario
with different image arrival periods.

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

lly
Tr

an
sm

itt
ed

 Im
ag

es

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

(a) T = 300ms

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

lly
Tr

an
sm

itt
ed

 Im
ag

es

 1.0 1.0 0.998 1.0 0.9965

0.194

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(F

ul
ly

 Tr
an

sm
itt

ed
)

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0
To

p-
5

Ac
cu

ra
cy

(P
ar

tia
lly

 Tr
an

sm
itt

ed
)

(b) T = 500ms

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

lly
Tr

an
sm

itt
ed

 Im
ag

es

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(F

ul
ly

 Tr
an

sm
itt

ed
)

No Jamming Light Jamming Heavy Jamming
0

20

40

60

Th
ro

ug
hp

ut
 (k

bp
s)

No Jamming Light Jamming Heavy Jamming
0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy
(P

ar
tia

lly
 Tr

an
sm

itt
ed

)

(c) T = 700ms

Scenario 2 Scenario 3 Scenario 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

PNC (Ours)
Starfish
Progressive JPEG
WebP (q=0)
WebP (q=10)
WebP (q=20)

Figure 8: Network throughput during image offloading. Each subfigure shows the results in a network scenario with different
image arrival periods.

fractions of images fully offloaded within the time constraints
(Fig. 7) and the network throughput during image offloading
(Fig. 8).

2) Classification Performance: As expected, the image
arrival period (T) and the available network bandwidth both
affect the amount of data that can be transmitted to the server
and, therefore, the methods’ classification accuracy, i.e., lower
accuracy when T decreases, or network jamming worsens.

We first look at the performance of WebP with different
quality levels (q = 0, 10, 20). As a traditional compression
approach not optimized for inference, WebP generally de-
livered poor classification performance. Moreover, as a non-
progressive approach, WebP cannot adapt to different dead-
lines and network conditions. For instance, WebP with the
highest quality (q = 20) achieved the highest classification
accuracy among the WebP variants with T=700ms and no
jamming (Fig. 6c). In contrast, WebP with the lowest quality
(q = 0) achieved the highest classification accuracy among
WebP variants with T=300ms and heavy jamming (Fig. 6a).
This is consistent with the fact that WebP (q = 20) is able

to offload most of the high-quality images fully in the former
case, as allowed by the longer deadline and high bandwidth.
In contrast, WebP (q = 20) can offload only about 10% of the
images fully in the latter case. On the other hand, while WebP
(q = 0) is able to fully offload almost all the images in all
the testing scenarios, its low quality limits the classification
accuracy. This is consistent with the low throughput of WebP
(q = 0) in all the experiments (Fig. 8), which shows WebP
(q = 0) is not able to utilize the bandwidth available due
to its aggressive compression at the cost of quality. We note
that all variants of WebP generally achieve low throughput in
comparison to PNC and the other baselines due to the small
data sizes produced by WebP encoding.

We then analyze the progressive baseline, Progressive
JPEG. In contrast to WebP, Progressive JPEG can effectively
adapt to deadlines and network conditions. As shown in
Fig. 6, with Progressive JPEG, classification accuracy im-
proves with longer deadlines and less network interference,
which allows Progressive JPEG to offload more data. This
is consistent with Fig. 8, which shows the system achieves

10

higher throughout with Progressive JPEG in the presence
of lower interference. Interestingly, the system achieves its
classification performance even though only small fractions
of the images are fully offloaded with Progressive JPEG (Fig.
7), thanks to its progressive encoding. However, Progressive
JPEG consistently underperforms compared to PNC, which
suggests the strength of neural compression optimized for
inference. The only scenario when Progressive JPEG and PNC
achieve similar classification accuracy is when T=700ms with
no jamming. Given the long deadline and large bandwidth
in this scenario, PNC successfully transmits all the features
associated with each image by the deadline, while Progressive
JPEG manages to refine many of the images to the point
where the reconstructed image is sufficient for accurate image
classification (Fig. 8).

The neural compression baseline, Starfish, is designed to
tolerate data loss or incomplete data. As a result, it deliv-
ers relatively robust performance across different scenarios.
However, Starfish has two limitations. First, it does not dif-
ferentiate features when generating and transmitting them.
When the deadline and bandwidth are severely limited, e.g.,
T=300ms with heavy jamming, it suffers a significant loss
in accuracy as the features offloaded are not sufficient for
classification. In contrast, through its tail-drop strategy, PNC
generates features with different importance for classification
and sends the features in order of importance. As a result,
PNC manages to offload the most important features within the
timing constraint, even in the presence of heavy jamming. This
ensures that PNC consistently outperforms Starfish including
in scenarios with tight timing constraints and low bandwidth.
In addition, Starfish cannot take advantage of situations when
a larger amount of data are allowed to be transmitted to
the server, i.e., with T=700ms. This is because the Starfish
encoder produces a relatively small amount of data (on average
2.53KB) after compression, which in turn upper-bounds the
amount of data that can be offloaded. This is consistent in the
fact Starfish offloads most of the images fully with T=700ms
(Fig. 7c) while showing low network throughput (Fig. 8c)
because it does not generate enough data to fully utilize the
bandwidth available.

PNC consistently outperforms all the baselines across all
the scenarios in our experiments. Like Progressive JPEG,
PNC maintains robust classification performance (Fig. 6)
while offloading only small fractions of images fully to the
server (Fig. 8). The consistent performance is attributed to its
novel strategy of progressively transmitting the most important
features first. Furthermore, it is able to increase throughput by
exploiting available bandwidth when there is less inference
(Fig. 8).

D. Performance in Changing Scenarios

This subsection further examines PNC’s ability to adapt to
bandwidth variations by switching among different network
scenarios dynamically during each experiment. Fig. 9 shows
a consecutive sequence of 60 offloaded images with an image
arrival period of T = 500ms and decreasing network band-

0 10 20 30 40 50 60Image Index
20

40

60

80

Th
ro

ug
hp

ut
 (k

bp
s)

0

1

2

3

4

5

Da
ta

 S
ize

 (K
B)

8777
89

9
787

988
88

77877
556

4
6

55
6

55665
5566565

334333333
4

333333
4

333

No Jamming Light Jamming Heavy Jamming

Figure 9: A typical run of the offloading process under varying
network bandwidth. The red curve shows the throughput of
offloading traffic. The gray bars represent the data size of the
fully offloaded features. The black number above each bar
represents the number of features fully offloaded to the edge
server. Note that Huffman encoding encodes each feature into
unequal sizes so that the number of features and data size are
not always proportional to each other.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

5
Ac

cu
ra

cy

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (k

bp
s) PNC (Ours)

Starfish
Prog. JPEG
WebP (q=0)
WebP (q=10)
WebP (q=20)

Figure 10: Image classification accuracy and offloading
throughput under varying scenarios.

width. We use iperf3 to create varying levels of interference
according to the No, Light, and Heavy Jamming network
scenarios in sequence, each lasting for 10 seconds. As the
level of interference increases, the throughput of PNC drops
along with the data size and the number of features offloaded
to the server, which illustrates PNC adapting to the variations
in network bandwidth by delivering a different number of
features for classification.

We then conduct a set of experiments under varying band-
width, where we switch between “No Jamming” and “Heavy
Jamming” every 10s to create significant changes to available
bandwidth. The performance of PNC and the baselines are
shown in Fig. 10. Consistent with Fig. 6 and the corresponding
analysis, PNC achieves the best classification performance,
followed by Starfish and Progressive JPEG. This confirms that
PNC can maintain high levels of classification accuracy by pri-
oritizing important features in the presence of low bandwidth.
Like PNC, Progressive JPEG also fully utilizes bandwidth but
its encoding is optimized for reconstruction quality instead
of classification accuracy. Starfish underutilizes the network
and has a lower throughput, especially when no network
jamming exists, but still outperforms Progressive JPEG in this
experiment due to its advantage in neural encoding. The WebP
baselines again perform the worst because of the impact of
partially received images in the presence of heavy network
jamming.

11

In summary, the experiments demonstrate that PNC (1) runs
efficiently on resource-constrained IoT or embedded devices,
(2) achieves superior classification accuracy in comparison
to both standard compression methods and state-of-the-art
neural compression approaches under bandwidth and deadline
constraints, and (3) can adapt to bandwidth variations while
maintaining high levels of classification accuracy.

VIII. CONCLUSION

In this paper, we proposed a progressive neural compression
framework, PNC, for offloading images under timing con-
straints for edge-assisted classification. In contrast to neural
compression solutions that usually encode inputs into fixed
sizes, PNC is inherently designed to support progressive
encoding optimized for image classification. As a result, PNC
can classify images at high accuracy even when the encoded
image is partially received, thereby allowing the system to
adapt to different timing constraints and unpredictable band-
width fluctuations often experienced on wireless sensor net-
works. Empirical evaluation of PNC on a testbed demonstrates
its superior classification performance over state-of-the-art
compression solutions under varying wireless conditions and
timing constraints, as well as its high encoding efficiency
on IoT devices. In the future, the idea of progressive neural
compression may be extended to other real-time applications,
i.e., automatic speech recognition and object detection, that
involve compression with DNNs.

ACKNOWLEDGMENT

This research was supported by the Fullgraf Foundation and
in part by NSF Grant CNS-2006530.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[5] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[8] A. J. Hussain, A. Al-Fayadh, and N. Radi, “Image compression tech-
niques: A survey in lossless and lossy algorithms,” Neurocomputing, vol.
300, pp. 44–69, 2018.

[9] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 2019, pp. 1–6.

[10] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: Speeding up neural network inference
by trading edge computation for network latency,” in Proceedings of
the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 476–488.

[11] Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, vol. 8, pp.
212 177–212 193, 2020.

[12] J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[13] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “Supervised com-
pression for resource-constrained edge computing systems,” in Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022, pp. 2685–2695.

[14] A. Kulkarni, A. Seetharam, A. Ramesh, and J. Herath, “Deepchannel:
Wireless channel quality prediction using deep learning,” IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 1, pp. 443–456, January
2020.

[15] P. J. Mateo, C. Fiandrino, and J. Widmer, “Analysis of tcp performance
in 5g mm-wave mobile networks,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[16] T. Koike-Akino and Y. Wang, “Stochastic bottleneck: Rateless auto-
encoder for flexible dimensionality reduction,” in 2020 IEEE Interna-
tional Symposium on Information Theory (ISIT). IEEE, 2020, pp. 2735–
2740.

[17] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal properties
of low power wireless links: Modeling and implications on multi-hop
routing,” in Proceedings of the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
414–425. [Online]. Available: https://doi.org/10.1145/1062689.1062741

[18] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study
of low-power wireless,” ACM Trans. Sen. Netw., vol. 6, no. 2, mar
2010. [Online]. Available: https://doi.org/10.1145/1689239.1689246

[19] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems,
ser. SenSys ’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 1–13. [Online]. Available: https://doi.org/10.1145/
958491.958493

[20] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[21] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compres-
sion standard. Springer Science & Business Media, 1992.

[22] Google, “WebP compression technique,” https://developers.google.com/
speed/webp, 2010, accessed: 2022-03-15.

[23] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compres-
sion with compressive autoencoders,” arXiv preprint arXiv:1703.00395,
2017.

[24] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Vari-
ational image compression with a scale hyperprior,” arXiv preprint
arXiv:1802.01436, 2018.

[25] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” Advances in neural
information processing systems, vol. 31, 2018.

[26] Y. Lu, Y. Zhu, Y. Yang, A. Said, and T. S. Cohen, “Progressive
neural image compression with nested quantization and latent ordering,”
in 2021 IEEE International Conference on Image Processing (ICIP).
IEEE, 2021, pp. 539–543.

[27] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compres-
sion with recurrent neural networks,” arXiv preprint arXiv:1511.06085,
2015.

[28] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2017, pp. 5306–5314.

[29] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud

12

https://doi.org/10.1145/1062689.1062741
https://doi.org/10.1145/1689239.1689246
https://doi.org/10.1145/958491.958493
https://doi.org/10.1145/958491.958493
https://developers.google.com/speed/webp
https://developers.google.com/speed/webp

and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[30] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp.
565–576, 2019.

[31] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in
Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges, 2019, pp. 21–26.

[32] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” arXiv preprint arXiv:1612.00410, 2016.

[33] S. Singh, S. Abu-El-Haija, N. Johnston, J. Ballé, A. Shrivastava, and
G. Toderici, “End-to-end learning of compressible features,” in 2020
IEEE International Conference on Image Processing (ICIP). IEEE,
2020, pp. 3349–3353.

[34] P. Hu, J. Im, Z. Asgar, and S. Katti, Starfish: Resilient Image
Compression for AIoT Cameras. New York, NY, USA: Association
for Computing Machinery, 2020, p. 395–408. [Online]. Available:
https://doi.org/10.1145/3384419.3430769

[35] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[36] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[37] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[38] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[39] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[40] A. Chakrabarti, R. Guérin, C. Lu, and J. Liu, “Real-time edge classi-
fication: Optimal offloading under token bucket constraints,” in Proc.
IEEE/ACM Symposium on Edge Computing (SEC), 2021.

[41] J. Qiu, R. Wang, A. Chakrabarti, R. Guérin, and C. Lu, “Adaptive edge
offloading for image classification under rate limit,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.

13

https://doi.org/10.1145/3384419.3430769

	Introduction
	Background and Motivation
	Related Work
	Traditional Image Compression
	Neural Compression for Image Reconstruction
	Neural Compression for Inference

	Problem Formulation
	Design of PNC
	System Overview
	Multi-objective Neural Compression
	AE-based Fixed-rate Compression
	Multi-objective Optimization for Rateless Compression

	Two-stage Offline Training
	Unsupervised Pretraining for Image Reconstruction
	Knowledge Distillation for Inference

	Progressive Compression for Adaptive Offloading
	Quantization and Huffman Coding
	Progressive Property of PNC
	Image Offloading Architecture

	Implementation
	Hardware Platform
	Design Choice of Autoencoder

	Evaluation
	Baselines for Comparison
	Encoding Overhead
	Performance under Different Deadlines and Bandwidth
	Experimental Setups
	Classification Performance

	Performance in Changing Scenarios

	Conclusion
	References

