
A New Paradigm for Generative Adversarial Networks

Based on Randomized Decision Rules

Sehwan Kim, Qifan Song and Faming Liang

Purdue University

Abstract:

The Generative Adversarial Network (GAN) was recently introduced in the liter-

ature as a novel machine learning method for training generative models. It has

many applications in statistics such as nonparametric clustering and nonparamet-

ric conditional independence tests. However, training the GAN is notoriously dif-

ficult due to the issue of mode collapse, which refers to the lack of diversity among

generated data. In this paper, we identify the reasons why the GAN suffers from

this issue, and to address it, we propose a new formulation for the GAN based on

randomized decision rules. In the new formulation, the discriminator converges

to a fixed point while the generator converges to a distribution at the Nash equi-

librium. We propose to train the GAN by an empirical Bayes-like method by

treating the discriminator as a hyper-parameter of the posterior distribution of

the generator. Specifically, we simulate generators from its posterior distribution

conditioned on the discriminator using a stochastic gradient Markov chain Monte

Carlo (MCMC) algorithm, and update the discriminator using stochastic gradi-

ent descent along with simulations of the generators. We establish convergence

1

of the proposed method to the Nash equilibrium. Apart from image generation,

we apply the proposed method to nonparametric clustering and nonparametric

conditional independence tests. A portion of the numerical results is presented

in the supplementary material.

Key words and phrases: Generative Model, Minimax Game, Stochastic Approx-

imation, Stochastic Gradient Markov Chain Monte Carlo.

1. Introduction

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) pro-

vides a novel way for training generative models which seek to generate

new data with the same statistics as the training data. Other than im-

age generation, the GAN has been used in many nonparametric statistical

tasks, such as clustering (Mukherjee et al., 2019), conditional independent

test (Bellot and van der Schaar, 2019), and density estimation (Singh et al.,

2018; Liu et al., 2021). In this paper, we call the training data real samples,

and those generated by the GAN fake samples.

In its original design, the GAN is trained by competing two neural

networks, namely generator and discriminator, in a game. However, due to

the instability issues such as mode collapse (i.e., lack of diversity among fake

samples), non-convergence, and vanishing or exploding gradients, the GAN

is notoriously hard to train (Wiatrak and Albrecht, 2019). In this paper, we

2

identify the reasons why the GAN suffers from the mode collapse issue: (i)

The GAN evaluates fake samples at an individual level, lacking a mechanism

for enhancing the diversity of fake samples; and (ii) the GAN tends to get

trapped into a sub-optimal solution, lacking a mechanism for escaping from

local traps (see Remark 1 for more explanations). To address this issue,

we propose a new formulation for the GAN based on randomized decision

rules. In this formulation, the similarity between the fake and real samples

can be evaluated at the population level; and the generator is simulated

from its posterior distribution conditioned on the discriminator using a

stochastic gradient MCMC algorithm, thereby mitigating the difficulty of

getting trapped in local optima.

Our contribution. The main contribution of this paper is three-fold:

(i) we have provided a new formulation for the GAN based on statistical

randomized decision theory, which allows the mode collapse issue to be fully

addressed; (ii) we have proposed a training algorithm associated with the

new formulation, and shown that its convergence to the Nash equilibrium

is asymptotically guaranteed, or said differently, the proposed algorithm is

immune to mode collapse as the number of iterations becomes large; (iii)

we have developed a Kullback-Leibler divergence-based prior for the gener-

ator, which enhances the diversity of fake samples and further strengthens

3

the effectiveness of the proposed method in overcoming the issue of mode

collapse. The proposed method is tested on image generation, nonparamet-

ric clustering, and nonparametric conditional independence tests (in the

supplementary material). Our numerical results suggest that the proposed

method significantly outperforms the existing ones in overcoming the mode

collapse issue.

Related Works. To tackle the mode collapse issue, a variety of meth-

ods have been proposed in the literature, see Wiatrak and Albrecht (2019)

for a recent survey. These methods can be roughly grouped to two cate-

gories, namely, metric-based methods and mixture generator methods.

The methods in the first category strive to find a more stable and

informative metric to guide the training process of the GAN. For exam-

ple, Nowozin et al. (2016) suggested f -divergence, Mao et al. (2017) sug-

gested χ2-divergence, Arjovsky et al. (2017) suggested Wasserstein distance,

Binkowski et al. (2018) suggested maximum mean discrepancy, and Che

et al. (2017) and Zhou et al. (2019) suggested some regularized objective

functions. As mentioned previously, the GAN evaluates fake samples at the

individual level and tends to get trapped to a sub-optimal solution. There-

fore, the mode collapse issue is hard to resolve by employing a different

metric unless (i) the objective function is modified such that the similarity

4

between the fake and real samples can be enhanced at the population level,

and (ii) a local-trap free optimization algorithm is employed for training.

Recently, there has been a growing trend in the literature to incorporate

gradient flow into the training of generative models, as explored by Gao

et al. (2019). However, achieving this objective is generally considered a

challenging task.

The methods in the second category are to learn a mixture of gen-

erators under a probabilistic framework with a similar motivation to this

work. A non-exhaustive list of such types of methods include ensemble

GAN (Wang et al., 2016), Mix+GAN (Arora et al., 2017), AdaGAN (Tol-

stikhin et al., 2017), MAD-GAN (Ghosh et al., 2018), MGAN (Hoang et al.,

2018), Bayesian GAN (Saatci and Wilson, 2017), and ProbGAN (He et al.,

2019). However, many of the methods are not defined in a proper prob-

abilistic framework and, in consequence, the mode collapse issue cannot

be overcome with a theoretical guarantee. In ensemble GAN, AdaGAN,

MAD-GAN, Mix+GAN, and MGAN, only a finite mixture of generators

is learned and thus the mode collapse issue cannot be overcome in theory.

Bayesian GAN aims to overcome this obstacle by simulating the discrimina-

tor and generator from their respective conditional posterior distributions;

however, the two conditional posterior distributions are incompatible and

5

can lead unpredictable behavior (Arnold and Press, 1989). ProbGAN im-

poses an adaptive prior on the generator and updates the prior by succes-

sively multiplying the likelihood function at each iteration; consequently,

the generator converges to a fixed point instead of a distribution.

The remaining part of this paper is organized as follows. Section 2

describes the new formulation for the GAN based on randomized decision

rules. Section 3 proposes a training method and proves its convergence to

the Nash equilibrium. Section 4 illustrates the performance of the proposed

method using synthetic and real data examples. Section 5 concludes the

paper with a brief discussion.

2. A New Formulation for GAN based on Randomized Decision

Rules

2.1 Pure Strategy Minimax Game

In the original work Goodfellow et al. (2014), the GAN is trained by com-

peting the discriminator and generator neural networks in a game. Let θd

denote the parameters of the discriminator neural network, and let Dθd(x)

denote its output function which gives a score for discriminating whether

or not the input sample x is generated from the data distribution pdata. Let

Gθg(z) denote the generator neural network with parameter θg, whose input

6

z follows a given distribution q(z), e.g., uniform or Gaussian, and whose

output distribution is denoted by pθg . Define

Jd(θd; θg) = Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ2(Dθd(x)),

Jg(θg; θd) = −Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ3(Dθd(x)),

(2.1)

where φ1(D) = log(D), φ2(D) = log(1−D), and φ3(D) = − log(1−D) or

log(D) are as defined in Goodfellow et al. (2014). The general form of the

game introduced by Goodfellow et al. (2014) is given as follows:

(i) max
θd
Jd(θd; θg), (ii) max

θg
Jg(θg; θd). (2.2)

If φ3 = −φ2, the objective of (2.2) represents a pure strategy minimax

game, i.e.,

min
θg

max
θd
Jd(θg, θd), (2.3)

which is called minimax GAN. If φ3(D) = log(D), the objective is said to

be non-saturating, which results in the same fixed point of the dynamics as

the minimax GAN but addresses the issue of vanishing gradient suffered by

the latter. Quite recently, Zhou et al. (2019) proposed to penalize Jd(θd; θg)

by a quadratic function of the Lipschitz constant of θd, which addresses the

gradient uninformativeness issue suffered by minimax GAN and improves

its convergence.

7

2.2 Mixed Strategy Minimax Game

Let πg(θg) denote a distribution of generators. Based on the randomized

decision theory, we define a mixed strategy minimax game:

min
πg

max
θd

EπgJd(θd; θg), (2.4)

where Jd(θd; θg) is as defined in (2.1), and the expectation is taken with

respect to πg(θg). That is, the game is to iteratively search for an op-

timal discriminator θd by maximizing EπgJd(θd; θg) for a given generator

distribution πg and an optimal generator distribution πg by minimizing

maxθd EπgJd(θd; θg) for a given discriminator θd. In its Nash equilibrium,

the discriminator is fixed and the generator is randomly drawn from the

optimal generator distribution πg, so the equilibrium is a mixed strategy

Nash equilibrium. This is different from the pure strategy Nash equilibrium

achieved by the minimax GAN, where both the discriminator and generator

are fixed at equilibrium.

From the viewpoint of statistical decision theory, (2.4) is a minimax

randomized decision problem, where πg can be viewed as a randomized

decision rule and EπgJd(θd; θg) can be viewed as a risk function. Compared

to the deterministic decision formulation (2.3), such a randomized decision

formulation naturally accounts for the uncertainty of the generator and thus

8

helps to address the mode collapse issue. Note that a deterministic decision

rule is a special case of a randomized decision rule where one decision or

action has probability 1. Further, Young and Smith (2005) (p.11) pointed

out that a minimax randomized decision rule might perform better than all

other deterministic decision rules under certain situations.

Let pπg denote the distribution of the fake samples produced by the

generators drawn from πg, i.e., pπg(x) =
∫
pθg(x)πg(θg)dθg. Lemma 1 studies

the basic property of the mixed strategy minimax game (2.4). The proof of

this lemma, along with the proofs of other theoretical results in this paper,

is provided in the supplement.

Lemma 1. Suppose the discriminator and generator have enough capac-

ity, φ1(D) = log(D), and φ2(D) = log(1 − D). For the game (2.4),

minπg maxθd EπgJd(θd; θg) = − log(4). Further, if θ̃d = arg maxθd Eπ̃gJd(θd; θg)

for some π̃g, then (θ̃d, π̃g) is a Nash equilibrium point if and only if Eπ̃gJd(θ̃d; θg)

= − log(4); at any Nash equilibrium point (θ̃d, π̃g), pπ̃g = pdata holds and

Dθ̃d
(x) = 1/2 for any x ∼ pdata, where pπ̃g =

∫
pθg π̃g(θg)dθg and x ∼ pdata

means x is distributed according to pdata.

Lemma 1 can be generalized to other choices of φ1 and φ2. In general,

if φ1 and φ2 satisfy that (i) φ′1 > 0, φ′2 < 0, φ′′1 ≤ 0, φ′′2 ≤ 0, where φ′i and φ′′i

denote the first and second derivatives of φi (i = 1, 2), respectively; and (ii)

9

there exists some value a such that φ′1(a) + φ′2(a) = 0, then the conclusion

of the lemma still holds except that Dθ̃d
≡ a in this case.

2.3 Mixed Strategy Nash Equilibrium

Let qg(θg) denote the prior distribution of θg, and let N denote the training

sample size. Define

π(θg|θd,D) ∝ exp{Jg(θg; θd)}qg(θg), (2.5)

where

Jg(θg; θd) = NJg(θg; θd) = N(−Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ3(Dθd(x)),

and φ3 is an appropriately defined function, e.g., φ3(D) = − log(1−D) or

log(D) as in Goodfellow et al. (2014). For the game (2.4), we propose to

solve for θd by setting

θ̃d = argmax
θd

∫
Jd(θd; θg)π(θg|θd,D)dθg, (2.6)

where Jd(θd; θg) is as defined in (2.1) and then, with a slight abuse of

notation, setting

π̃g = π(θg|θ̃d,D). (2.7)

Theorem 1 shows that (θ̃d, π̃g) defined in (2.6)-(2.7) is a Nash equilib-

rium point for the game (2.4) as N →∞.

10

Theorem 1. Suppose that the discriminator and generator have enough

capacity, φ1(D) = log(D), φ2(D) = log(1 − D), φ3 = − log(1 − D), and

the following conditions hold: (i) dim(θg), the dimension of the generator,

grows with N at a rate of O(N ζ) for some 0 ≤ ζ < 1; and (ii) the prior

density function qg(θg) is upper bounded on the parameter space Θg of the

generator. Then (θ̃d, π̃g) defined in (2.6)-(2.7) is a Nash equilibrium point

for the game (2.4) as N →∞.

Condition (ii) can be satisfied by many prior distributions, e.g., the

uninformative prior qg(θg) ∝ 1 and the Gaussian prior. In addition, we

consider an extra type of prior, namely, KL-prior, in this paper. The KL-

prior is given by

qg(θg) ∝ exp{−λDKL(pdata|pθg)}, (2.8)

where λ is a pre-specified constant, and the KL-divergence DKL(pdata|pθg)

can be estimated by a k-nearest-neighbor density estimation method (Pérez-

Cruz, 2008; Wang et al., 2009) based on the real and fake samples. The

motivation of this prior is to introduce to the proposed method a mechanism

for enhancing the similarity between pθg and pdata at the density level. For

the Gaussian prior, we generally suggest to set θg ∼ N (0, σ2
NIdim(θg)), where

σ2
N ≥ 1/(2π) and increases with the training sample size N in such a way

that the prior approaches uniformity asymptotically as N →∞.

11

There are ways other than (2.5)-(2.7) to define (θ̃d, π̃g) and still have

Theorem 1 be valid. For example, one can define π(θg|θd,D) ∝ exp{Jg(θg; θd)/τ}

qg(θg) or π(θg|θd,D) ∝ exp{Jg(θg; θd)/τ}(qg(θg))1/τ for some temperature

τ > 0. That is, instead of the exact conditional posterior π(θg|θ̃d,D), one

can sample from its tempered version. In the extreme case, one may employ

the proposed method to find the Nash equilibrium point for the minimax

GAN in a manner of simulated annealing (Kirkpatrick et al., 1983).

Corollary 1. The conclusion of Theorem 1 still holds if the function φ3(D) =

− log(1−D) is replaced with φ3(D) = log(D).

To make a more general formulation for the game (2.4), we can include

a penalty term in Jd(θd; θg) such that

Jd(θd; θg) = Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ2(Dθd(x))− λl(Dθd), (2.9)

where l(Dθd) ≥ 0 denotes an appropriate penalty function on the discrimi-

nator. For example, one can set l(Dθd) = ‖Dθd‖αLip for some α > 1, where

‖Dθd‖Lip denotes the Lipschitz constant of the discriminator. As explained

in Zhou et al. (2019), including this penalty term enables the minimax GAN

to overcome the gradient uninformativeness issue and improve its conver-

gence. As implied by the proof of Lemma 1, where the mixture generator

proposed in the paper can be represented as a single super generator, the

12

arguments in Zhou et al. (2019) still apply and thus ‖Dθ̃d
‖Lip = 0 holds at

the optimal discriminator θ̃d = arg maxθd Eθg∼πgJd(θd; θg). This further im-

plies that the extra penalty term −λ‖Dθd‖αLip does not affect the definition

of π(θg|θ̃d,D) and, therefore, Theorem 1 still holds with (2.9).

3. Training Algorithm and Its Convergence

This section proposes an algorithm for solving the integral optimization

problem (2.6) and studies its convergence to the Nash equilibrium.

3.1 The Training Algorithm

A straightforward calculation shows that

∇θd
∫
Jd(θd; θg)π(θg|θd,D)dθg = Eπg|d(∇θdJd(θd; θg))

+ Covπg|d(Jd(θd; θg),∇θdJg(θg; θd)),

where Eπg|d(·) and Covπg|d(·) denote the mean and covariance operators with

respect to π(θg|θd,D), respectively. By Lemma 1, at any Nash equilibrium

point we have pπ̃g = pdata and Dθ̃d
= 1/2. Then, following the arguments

given in the proof of Theorem 1, it is easy to show by Laplace approximation

that at the Nash equilibrium point Covπg|d(Jd(θ̃d; θg),∇θdJg(θg; θ̃d)) → 0

as N → ∞. Therefore, when N is sufficiently large, the target equation

∇θd

∫
Jd(θd; θg)π(θg|θd,D)dθg = 0 can be solved by solving the mean field

13

equation

h(θd) =

∫
H(θd, θg)π(θg|θd,D) = 0, (3.1)

using a stochastic approximation algorithm, where H(θd, θg) denotes an

unbiased estimator of ∇θdJd(θd; θg). The convergence of the solution to

the Nash equilibrium can be assessed by examining the plots described in

Section 4. By the standard theory of stochastic approximation MCMC,

see e.g., Benveniste et al. (1990); Andrieu et al. (2005); Deng et al. (2019);

Dong et al. (2023), equation (3.1) can be solved by iterating between the

following two steps, where θ
(t)
d denotes the estimate of the discriminator

obtained at iteration t, and θ
(t)
g denotes a generic sample of the generator

simulated at iteration t:

(i) Simulate θ
(t)
g by a Markov transition kernel which leaves the condi-

tional posterior π(θg|θ(t−1)d ,D) ∝ exp{Jg(θg; θ(t−1)d)}qg(θg) invariant.

(ii) Update the estimate of θd by setting θ
(t)
d = θ

(t−1)
d + wtH(θ

(t−1)
d , θ

(t)
g),

where wt denotes the step size used at iteration t.

Stochastic gradient MCMC algorithms, such as stochastic gradient Langevin

dynamics (SGLD) (Welling and Teh, 2011), stochastic gradient Hamilto-

nian Monte Carlo (SGHMC) (Chen et al., 2014) and momentum stochastic

gradient Langevin dynamics (MSGLD) (Kim et al., 2022), can be used in

14

step (i). Under appropriate conditions, we will show in Section 3.2 that

|θ(t)d − θ̃d|
p→ 0 and θ

(t)
g

d→ π(θg|θ̃d,D) as t → ∞, where
p→ and

d→ denote

convergences in probability and distribution, respectively. That is, the pro-

posed algorithm converges to the Nash equilibrium of the mixed strategy

minimax game (2.4).

The proposed algorithm can also be viewed as an empirical Bayes-like

method (Morris, 1983). For the case φ3 = −φ2, the posterior π(θg|θd,D)

can be expressed as

π(θg|θd,D) ∝ exp
{
−

N∑
i=1

φ1(Dθd(xi))−N ∗Ez∼qφ2(Dθd(Gθg(z)))
}
qg(θg), (3.2)

where θd can be viewed as a hyperparameter of the posterior; and the

proposed algorithm is to determine θd by solving the equation

1

N

N∑
i=1

∇θd
[
φ1(Dθd(xi)) + EπgEz∼qφ2(Dθd(Gθg(zi)))

]
= 0. (3.3)

In terms of the computational procedure, solving (3.3) is equivalent to max-

imizing the expected log-marginal posterior of θd, which can be derived from

(3.2) by imposing on θd an improper prior π(θd) ∝ 1. To distinguish the

proposed computational procedure from Bayesian GAN (Saatci and Wilson,

2017), we call it an empirical Bayes-like GAN (or EBGAN in short).

Algorithm 1 summarizes the proposed algorithm as a solver for (2.6),

where kg generators are simulated using MSGLD (Kim et al., 2022) at each

15

iteration, and the gradients are estimated with a mini-batch data of size n

at each iteration. More precisely, we have

∇θg L̃(θg, θd) =
N

n

n∑
i=1

∇θgφ3(Dθd(Gθg(zi))) +∇θg log qg(θg),

H(θd, θ
(t)
g) =

1

nkg

kg∑
j=1

n∑
i=1

∇θd
[
φ1(Dθd(x

∗
i)) + φ2(Dθd(Gθj,(t)g

(zi)))
]
,

(3.4)

where {x∗i }ni=1 denotes a set of mini-batch data and {zi}ni=1 denotes indepen-

dent inputs for the generator. As illustrated by Kim et al. (2022), MSGLD

tends to converge faster than SGLD, where the momentum bias term can

help the sampler to escape from saddle points and accelerate its convergence

in simulations on the energy landscape with pathological curvatures.

Algorithm 1 Empirical Bayesian GAN

Input: Full data set D = {xi}Ni=1, number of generators kg, mini-batch
size n, momentum smoothing factor α, momentum biasing factor se-
quence {ρt}∞t=1, learning rate sequence {εt}∞t=1, and step size sequence
{wt}∞t=1.
Initialization: θ0 from an appropriate distribution, set m0 = 0;
for t = 1, 2, . . . , do

(i) Sampling step:
for j = 1, 2, . . . , kg do

Draw a mini-batch data {x∗i }ni=1, and set

θ
j,(t)
g = θ

j,(t−1)
g +εt

{
∇θg L̃(θ

j,(t−1)
g , θ

(t−1)
d) + ρt−1m

j,(t−1)
}

+N (0, 2τεt),

mj,(t) = αmj,(t−1) + (1− α)∇θg L̃(θ
j,(t−1)
g , θ

(t−1)
d).

end for
(ii) Parameter estimating step: θ

(t)
d = θ

(t−1)
d + wtH(θ

(t−1)
d , θ

(t)
g), where

θ
(t)
g = (θ

1,(t)
g , . . . , θ

kg ,(t)
g).

end for

Regarding hyperparameter settings, we have the following suggestions.

16

In general, we set wt = c1(t + c2)
−ζ1 for some constants c1 > 0, c2 ≥

0 and ζ1 ∈ (0, 1], which satisfies Assumption S1. In this paper, we set

ζ1 = 0.75 in all computations. Both the learning rate sequence and the

momentum biasing factor sequence are required to converge to 0 as t→∞,

i.e., limt→∞ εt = 0 and limt→∞ ρt = 0. For example, one might set εt =

O(1/tζ2) and ρt = O(1/tζ3) for some ζ2, ζ3 ∈ (0, 1). In the extreme case,

one might set them to small constants for certain problems, however, under

this setting, the convergence of θ
(t)
g to the target posterior distribution will

hold approximately even when t → ∞. In this paper, we set kg = 10 and

the momentum smoothing factor α = 0.9 as the default.

3.2 Convergence Analysis

Lemma 2 establishes the convergence of the discriminator estimator, and

Lemma 3 shows how to construct the mixture generator desired for gener-

ating fake samples mimicking the real ones. For simplicity, we present the

lemmas under the setting kg = 1.

Lemma 2 (Convergence of discriminator). Suppose Assumptions S1-S6

(given in the supplement) hold. If the learning rate εt is sufficiently small,

then there exist a constant γ, an iteration number t0 and an optimum θ̃d =

17

arg maxθd
∫
Jd(θd; θg)π(θg|θd,D)dθg such that for any t ≥ t0,

E‖θ(t)d − θ̃d‖
2 ≤ γwt,

where t indexes iterations, wt is the step size satisfying Assumption S1, and

an explicit formula of γ is given in (S1.20).

As shown in (S1.20), the expression of γ consists of two terms. The

first term γ0 depends only on the sequence {ωt} and the stability constant

of the mean field function h(θd), while the second term characterizes the

effects of the learning rate sequence {εt} and other constants (given in the

assumptions) on the convergence of {θ(t)d }. In particular, {εt} affects the

convergence of {θ(t)d } via the upper bound of E‖θ(t)g ‖2. See Lemma S1 for

the definition of the upper bound.

Lemma 3 (Ergodicity of generator). Suppose Assumptions S1-S7 (given

in the supplement) hold. For a smooth test function ψ(θg) with ‖ψ(θg)‖ ≤

C(1 + ‖θg‖) for some constant C, define

ψ̂T =

∑T
t=1 εtψ(θ

(t)
g)∑T

t=1 εt
, (3.5)

where T is the total number of iterations. Let ψ̄ =
∫
ψ(θg)π(θg|θ̃d,D)dθg,

ST =
∑T

t=1 εt, and ∆Vt = ∇θg L̃(θ
(t)
g , θ

(t)
d)−∇θgL(θ

(t)
g , θ

(t)
d).

(i) Suppose the following conditions are satisfied: the momentum bias-

ing factor sequence {ρt : t = 1, 2, . . .} decays to 0, the learning

18

rate sequence {εt : t = 1, 2, . . .} decays to 0,
∑∞

t=1 εt = ∞, and

limT→∞

∑T
t=1 ε

2
t∑T

t=1 εt
= 0. Then there exists a constant C such that

E‖ψ̂T − ψ̄T‖2 ≤ C

(
T∑
t=1

ε2t
S2
T

E‖∆Vt‖2 +
1

ST
+

(
∑T

t=1 ε
2
t)

2

S2
T

)
.

(ii) Suppose a constant learning rate of ε and a constant momentum bi-

asing factor of ρ are used. Then there exists a constant C such that

E‖ψ̂T − ψ̄‖2 ≤ C

(∑T
t=1 E‖∆Vt‖2

T 2
+

1

Tε
+ ε2 + ρ2

)
.

The estimator (3.5) provides us a convenient way to construct pπ̃g ; that

is, as T → ∞, the corresponding mixture generator can contain all the

generators simulated by Algorithm 1 in a run. We note that, by Theorem

1 of Song et al. (2020), the estimator (3.5) can be simplified to the simple

path average ψ̂′T = 1
T

∑T
t=1 ψ(θ

(t)
g) provided that εt ≺ 1

t
holds, where at ≺ bt

means at
bt
→ 0 as t → ∞. In practice, we can use only the generators

simulated after the algorithm has converged or those simulated at the last

iteration. For the latter, we may require kg to be reasonably large.

Remark 1. While the mixture generator produced by Algorithm 1 can

overcome the mode collapse issue, a single generator might not, especially

when an uninformative or Gaussian prior is used. Suppose that the uninfor-

mative prior qg(θg) ∝ 1 is used, φ3(D) = − log(1−D), and a discriminator

19

θ̃d with Dθ̃d
(x) = 1/2 for x ∈ pdata has been obtained. With such a discrim-

inator, there are many ϑg’s maximizing Jg(ϑg; θ̃d) as long as pϑg ⊂ pdata,

because the GAN evaluates the fake samples at the individual level. Here

we use the notation pϑg ⊂ pdata to denote that the fake samples generated

from pϑg resemble only a subset of the real samples. At such a point (θ̃d, ϑg),

we have Jd(θ̃d;ϑg) = − log 4 and −Jg(ϑg; θ̃d) = −N log 4. The latter means

that the generator has attained its minimum energy, although pϑg ⊂ pdata

is still sub-optimal; in other words, such a generator is trapped to a sub-

optimal solution. However, if Algorithm 1 is run for sufficiently long time

and the generators from different iterations are used for estimation, we

can still have 1
Tkg

∑T
t=1

∑kg
i=1

∫
p
ϑ
(t)
g,i
π(ϑ

(t)
g,i|θ̃

(t)
d ,D)dϑ

(t)
g,i ≈ pdata by assembling

many sub-optimal generators (provided the learning rate εt ≺ 1/t), where

ϑ
(t)
g,i denotes the ith generator at iteration t and θ̃

(t)
d denotes the discrim-

inator at iteration t. That is, using mixture generator is a valid way for

overcoming the mode collapse issue. For the case of φ3(D) = log(D) and

the case of the Gaussian prior, this is similar. The KL-prior provides a

stronger force to drive 1
kg

∑kg
i=1

∫
p
ϑ
(t)
g,i
π(ϑ

(t)
g,i|θ̃

(t)
d ,D)dϑ

(t)
g,i to pdata as t → ∞,

while the choice of kg is not crucial.

20

4. Numerical Studies

We illustrate the performance of the EBGAN using various examples. Due

to the space limit, some of the examples are presented in the supplement.

4.1 A Gaussian Example

Consider a 2-D Gaussian example, where the real samples are generated in

the following procedure (Saatci and Wilson, 2017): (i) generate the cluster

mean: µ ∼ N (0, I2), where I2 denotes a 2-dimensional identity matrix; (ii)

generate a mapping matrix M ∈ R2×2 with each element independently

drawn from N (0, 1); (iii) generate 10,000 observations: xi ∼ (N (0, I2) +

µ) × MT , for i = 1, 2, . . . , 10, 000. The code used for data generation is

available at https://github.com/andrewgordonwilson/bayesgan/blob/

master/bgan_util.py. Both the discriminator and generators used for

this example are fully connected neural networks with ReLU activation.

The discriminator has a structure of 2− 1000− 1, and the generator has a

structure of 10− 1000− 2.

The original GAN (Goodfellow et al., 2014) was first applied to this

example with the parameter settings given in the supplement. Figure 1(a)

shows the empirical means of D
θ
(t)
d

(x) and D
θ
(t)
d

(x̃) along with iterations,

where x represents a real sample and x̃ represents a fake sample simulated

21

https://github.com/andrewgordonwilson/bayesgan/blob/master/bgan_util.py
https://github.com/andrewgordonwilson/bayesgan/blob/master/bgan_util.py

by the generator. For the given choices of φ1 and φ2, as implied by Lemma 1,

we should have E(D
θ
(t)
d

(x)) = E(D
θ
(t)
d

(x̃)) = 0.5 at the Nash equilibrium. As

shown by Figure 1(a), the GAN did reach the 0.5-0.5 convergence. However,

as shown by Figure 1(b), the generator still suffers from the mode collapse

issue at this solution, where the fake samples resemble only a subset of the

real samples. As mentioned previously, this is due to the reasons: The GAN

evaluates the fake samples at the individual level, lacking a mechanism for

enhancing the diversity of fake samples, and tends to get trapped at a sub-

optimal solution for which pθg ⊂ pdata holds while the ideal objective value

− log 4 can still be attained.

The mode collapse issue can be tackled by EBGAN, for which we con-

sider both the KL-prior and Gaussian prior.

4.1.1 KL-prior

The KL-prior is given in (2.8), which enhances the similarity between pθg

and pdata at the density level. For this example, we set λ = 100, set k = 1

for k-nearest-neighbor density estimation (see Pérez-Cruz (2008) for the es-

timator), and used the auto-differentiation method to evaluate the gradient

∇θg log qg(θg). Figure 1(c)&(d) summarize the results of EBGAN for this

example with φ3(D) = log(D) and kg = 10. The settings for the other pa-

22

rameters can be found in the supplement. For EBGAN, Figure 1(c) shows

that it converges to the Nash equilibrium very fast, and Figure 1(d) shows

that the fake samples simulated by a single generator match the real samples

almost perfectly.

In summary, this example shows that EBGAN can overcome the mode

collapse issue by employing a KL-prior that enhances the similarity between

pθg and pdata at the density level.

(a) (b)

(c) (d)

Figure 1: Illustration of the mode collapse issue: (a) empirical means of
D
θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by GAN; (b) coverage plot of the real (dots)

and fake samples (‘+’) generated by GAN; (c) empirical means of D
θ
(t)
d

(xi)

and D
θ
(t)
d

(x̃i) produced by EBGAN; (d) coverage plot of the real (dots) and

fake samples (‘+’) generated by a single generator of EBGAN.

23

4.1.2 Gaussian prior

We have also tried the simple Gaussian prior θg ∼ N(0, Id) for this example.

Compared to the KL-divergence prior, the Gaussian prior lacks the ability

to enhance the similarity between pθg and pdata, but it is much cheaper

in computation. For this example, we have run EBGAN with φ3(D) =

log(D) and kg = 10. The settings for other parameters can be found in

the supplement. To examine the performance of EBGAN with this cheap

prior, we made a long run of 30,000 iterations. For comparison, the GAN

was also applied to this example with φ3(D) = log(D). Figure S1 (in the

supplement) shows the empirical means of D
θ
(t)
d

(x) and D
θ
(t)
d

(x̃) produced by

the two methods along with iterations, which indicates that both methods

can reach the 0.5-0.5 convergence very fast. Figure 2 shows the evolution of

the coverage plot of fake samples. Figure 2(a) indicates that the GAN has

not reached the Nash equilibrium even with 25,000 iterations. In contrast,

Figure 2(b) shows that even with the cheap Gaussian prior, the EBGAN can

approximately reach the Nash equilibrium with 25,000 iterations, although

it also suffers from the mode collapse issue in the early stage of the run.

Figure 2(c) shows that for the EBGAN, the mode collapse issue can be

easily overcome by integrating multiple generators.

Finally, we note that the convergence of the GAN and EBGAN should

24

(a) Evolution of coverage by GAN

(b) Evolution of coverage by one generator from EBGAN

(c) Evolution of coverage by integration of 10 generators from EBGAN

Figure 2: Coverage plots produced by (a) GAN, (b) a single generator of
EBGAN, and (c) all 10 generators of EBGAN, where the generators for
the plots from left to right are collected at iterations 2500, 5000, . . ., 25000,
respectively. The dot points (in blue) represent real samples; and ‘+’ points
represent fake samples produced by GAN (in red) or EBGAN (in yellow).

be checked in two types of plots, namely, empirical convergence plot of

ED
θ
(t)
d

(x) and ED
θ
(t)
d

(x̃), and coverage plot of the fake and real samples. The

former measures how well an individual fake sample fits into the population

of real samples, while the latter measures the diversity of fake samples, i.e.,

whether a wide range of fake samples is generated.

4.2 A Mixture Gaussian Example

To further illustrate the performance of the EBGAN, we consider a more

complex example which was taken from Saatci and Wilson (2017). The

dataset was generated from a 10-component mixture Gaussian distribution

in the following procedure: (i) generate 10 cluster means: µ(j) ∼ N (0, 25I2),

25

j = 1, 2, . . . , 10, where I2 denotes a 2-dimensional identity matrix; (ii) gen-

erate 10 mapping matrices: M (j) ∈ R100×2 for j = 1, 2, . . . , 10, with each

element of the matrices independently drawn from N (0, 25). (iii) generate

1000 observations of x(j) for each (µ(j),M (j)): x
(j)
i ∼ (N (0, I2)∗0.5+µ(j))×

(M (j))T , for j = 1, 2, . . . , 10, i = 1, 2, . . . , 1000.

For this example, the EBGAN was run with the prior qg = N (0, I), kg =

10, and φ3(D) = − log(1−D) and log(D). The discriminator has a structure

of 100−1000−1 and the generator has a structure of 10−1000−100, which

are the same as those used in Saatci and Wilson (2017). The results with

φ3(D) = − log(1−D) are presented below and those with φ3(D) = log(D)

are presented in the supplement.

For comparison, the minimax GAN (Goodfellow et al., 2014), Bayesian

GAN (Saatci and Wilson, 2017), ProbGAN (He et al., 2019), and Lipschitz

GAN (Zhou et al., 2019) were applied to this example with the parameter

settings given in the supplement. For all the four methods, we employed the

same settings of φ1, φ2 and φ3 and the same discriminator and generator

as the EBGAN. For a thorough comparison, we have tried to train the

EBGAN with a Lipschitz penalty.

Figure 3 examines the convergence of E(D
θ
(t)
d

(x)) and E(D
θ
(t)
d

(x̃)). It

indicates that except for the EBGAN, none of the four methods, minimax

26

(a) (b) (c)

(d) (e) (f)

Figure 3: Nash equilibrium convergence plots with φ3(D) = − log(1−D),
which compare the empirical means of D

θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by

different methods along with iterations: (a) EBGAN, (b) minimax GAN,
(c) Bayesian GAN, (d) ProbGAN, (e) Lipschitz-GAN, (f) EBGAN with a
Lipschitz penalty.

GAN, Bayesian GAN, ProbGAN and Lipschitz-GAN, has reached the 0.5-

0.5 convergence. Compared to Figure 3(a), Figure 3(f) shows that the

Lipschitz penalty improves the convergence of the EBGAN slightly.

Other than the convergence plots of E(D
θ
(t)
d

(x)) and E(D
θ
(t)
d

(x̃)), we

checked whether the fake samples recover all 10 components of the mixture

distribution, where the principal component analysis (PCA) was used for

high-dimensional data visualization. For EBGAN, we used only the gener-

ators obtained at the last iteration: we simulated 1000 fake samples from

each of kg = 10 generators. As shown in Figure 4, EBGAN recovered all

27

10 components in both cases with or without the penalty term, while the

other four methods failed to do so. The minimax GAN and Lipschitz GAN,

both working with a single generator, failed for this example. The BGAN

and ProbGAN worked better than minimax GAN, but still missed a few

components. In the supplement, we compared the performance of different

methods with φ3 = log(D). The results are similar to Figures 3 and 4.

For the EBGAN, we have also tried to use generators simulated at

multiple iterations, e.g., those in the last 2000 iterations. We found that

the component recovery plot can be further improved. For simplicity, we

used only the generators obtained at the last iteration. If the EBGAN is run

with a larger value of kg, the overlapping area can also be further improved.

In summary, EBGAN performs very well for this mixture example:

the fake samples generated by it exhibit both good quality and diversity.

The comparison with existing methods indicates that integrating multiple

generators is essential for overcoming the mode collapse issue, particularly

when the objective function lacks a mechanism to enhance the similarity

between pθg and pdata at the density level.

4.3 Image Generation

Fashion-MNIST is a dataset of 60,000 training images and 10,000 test im-

ages. Each image is of size 28× 28 and has a label from 10 classes: T-shirt,

28

(a) (b) (c)

(d) (e) (f)

Figure 4: Component recovery plots with φ3(D) = − log(1 − D): (a)
EBGAN with λ = 0, (b) minimax GAN, (c) BGAN, (d) ProbGAN, (e)
Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.

Trouser, . . ., Ankle boot. The full description for the dataset can be found

at https://github.com/zalandoresearch/fashion-mnist.

For this example, we compared EBGAN with GAN, BGAN and Prob-

GAN with parameter settings given in the supplement. The results are

summarized in Figure 5 and Table 1. Figure 5 shows that for this ex-

ample, the EBGAN can approximately achieve the 0.5-0.5 convergence for

E(D
θ
(t)
d

(xi)) and E(D
θ
(t)
d

(x̃i)); that is, the EBGAN can produce high quality

images which are almost indistinguishable from real ones. However, none

of the existing three methods can achieve such good convergence.

We further assess the quality of images generated by different meth-

29

https://github.com/zalandoresearch/fashion-mnist

(a) (b) (c) (d) (e)

Figure 5: Convergence plots and images produced by (a) GAN, (b) Bayesian
GAN, (c) ProbGAN, (d) EBGAN with a KL-divergence prior, and (e)
EBGAN with a Gaussian prior. For each of the convergence plots, x-axis
represents iterations, ranging from 0 to 40,000; and y-axis represents the
empirical mean of discriminator values, ranging from 0 to 1.0, where dotted
and solid lines are for real and fake samples, respectively.

ods using three metrics: inception scores (IS) (Salimans et al., 2016), first

moment Wasserstein distance (1-WD), and maximum mean discrepancy

(MMD). Refer to Section S2 of the supplement for their definitions and cal-

culation procedures. The results are summarized in Table 1, which indicates

the superiority of the EBGAN in image generation.

Table 1: Average IS, 1-WD, and MMD values produced by different meth-
ods for Fashion MNIST, where the averages and standard deviations (given
in the parentheses) were calculated based on 5 independent runs.

Method GAN Bayesian GAN ProbGAN EBGAN(KL) EBGAN(Gaussian)

IS 7.525 (0.011) 7.450 (0.044) 7.384 (0.056) 7.606 (0.035) 7.712 (0.024)
1-WD 6.360 (0.012) 6.363 (0.015) 6.367 (0.024) 6.356 (0.015) 6.287 (0.025)
MMD 0.276 (0.002) 0.277 (0.002) 0.276 (0.002) 0.257 (0.001) 0.275 (0.003)

30

4.4 Nonparametric Clustering

Clustering has been extensively studied in unsupervised learning with clas-

sical methods such as expectation-maximization (EM) (Dempster et al.,

1977) and K-means. Although its main focus is to group data into different

classes, it would be even more beneficial if clustering was done along with

dimension reduction, as it enhances the interpretability of clusters. This

simultaneous goal of clustering and dimension reduction can be achieved

through generative clustering methods such as Cluster GAN (Mukherjee

et al., 2019) and GAN-EM (Zhao et al., 2019).

Since the cluster structure is generally not retained in the latent space

of the GAN, Cluster GAN modifies the structure of the GAN to include

an encoder network, which enforces precise recovery of the latent vector so

that it can be used for clustering. Let the encoder be parameterized by θe.

Cluster GAN works with the following two objective functions:

Jd(θd; θg) = Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ2(Dθd(x)),

Jg,e(θg, θe; θd) = −Ex∼pdataφ1(Dθd(x)) + Ex∼pθgφ3(Dθd(x))

− βnEx∼pθg ‖zn − E
(1)
θe

(x)‖2 − βcEx∼pθgH(zc, E
(2)
θe

(x)),

(4.1)

where z = (zn, zc) is used as the latent vector to generate data, zn denotes

a random noise vector, and zc denotes an one-hot vector representing the

index of clusters; H(·, ·) is the cross-entropy loss; and βn ≥ 0 and βc ≥ 0 are

31

regularization parameters. The choice of βn and βc should balance the two

ends: large values of βn and βc will delay the convergence of the generator,

while small values of βn and βc will delay the convergence of the encoder.

In general, we set βn = o(1) and βc = o(1). In this setup, the encoder is the

inverse of the generator so that it recovers from data to the low-dimensional

latent vector by Eθe(x) = (E (1)θe
(x), E (2)θe

(x)) : Rd×d → z = (ẑn, ẑc), where

E (2)θe
(x) can be used for clustering.

Cluster EBGAN extends the structure of Cluster GAN by allowing mul-

tiple generators to be trained simultaneously. Similar to (2.6)-(2.7), cluster

EBGAN works by solving the following integral optimization problem

θ̃d = arg max
θd

∫
Jd(θd; θg)π(θg, θe|θd,D)dθgdθe, (4.2)

and then simulate (θg, θe) from the distribution

π(θg, θe|θ̃d,D) ∝ exp{Jg,e(θg, θe; θ̃d)}pg,e(θg, θe), (4.3)

where Jg,e(θg, θe; θd) = NJg,e(θg, θe; θd) and pg,e(θg, θe) denotes the prior

density function of (θg, θe). Let πc(θg|θ̃d,D) =
∫
π(θg, θe|θ̃d,D)dθe be the

marginal conditional density function of θg. Then, by Theorem 1 and

Corollary 1, (θ̃d, πc(θg|θ̃d,D)) is an asymptotic solution to the game (2.4)

as N → ∞. Note that for πc(θg|θ̃d,D), we can simply treat qg(θg) ∝

32

∫
exp{−NβnEx∼pθg‖zn−E

(1)
θe

(x)‖2−NβcEx∼pθgH(zc, E (2)θe
(x))}pg,e(θg, θe)dθe

as the prior of θg. Therefore, Theorem 1 and Corollary 1 still apply.

The equations (4.2)-(4.3) provide a general formulation for extended

applications of the EBGAN. In particular, the embedded decoder (latent

variable → fake data) and encoder (fake data → latent variable) enable

the EBGAN to be used in many nonparametric unsupervised statistical

tasks. Other than clustering, it can also be used for tasks such as dimension

reduction and image compression.

Classical clustering methods can be roughly grouped into three cate-

gories, namely, partitional clustering, hierarchical clustering, and density-

based clustering. The K-means clustering, agglomerative clustering, and

density-based spatial clustering of applications with noise (DBSCAN) are

well known representatives of the three categories, respectively. In what

follows, Cluster-EBGAN is compared with the representative clustering

methods as well as Cluster GAN on four different datasets. For MNIST, we

used a deep convolutional GAN (DCGAN) with conv-deconv layers, batch

normalization and leaky relu activations. For other datasets, simple feed

forward neural networks were used. The results are summarized in Table

2, which indicates the superiority of the Cluster-EBGAN in nonparametric

clustering. Refer to the supplement for the details of the experiments.

33

Table 2: Comparison of Cluster EBGAN and other methods on different
datasets, where average purity, adjusted rand index (ARI) and their stan-
dard errors (in parentheses) were computed based on five independent runs.

Data Metric K-means Agglomerative DBSCAN Cluster-GAN Cluster-EBGAN

Purity 0.8933 0.8933 0.8867 0.8973(0.041) 0.9333(0.023)
Iris

ARI 0.7302 0.7312 0.5206 0.5694(0.169) 0.8294(0.050)

Purity 0.8905 0.8714 - 0.7686(0.049) 0.9105(0.005)
Seeds

ARI 0.7049 0.6752 - 0.4875(0.090) 0.7550(0.011)

Purity 0.5776 0.7787 - 0.7217(0.02) 0.8826(0.02)
MNIST

ARI 0.3607 0.5965 - 0.5634(0.02) 0.7780(0.03)

5. Conclusion

This paper has identified the reasons why the GAN suffers from the mode

collapse issue and proposed a new formulation to address this issue. Ad-

ditionally, an empirical Bayes-like method is proposed for training GAN

under the new formulation. The new formulation is general, allowing for

easy reformulation and training of various GAN variants such as Lipschitz

GAN and cluster GAN using the proposed empirical Bayes-like method.

The proposed empirical Bayes-like method can be extended in various

ways. For example, the generator can be simulated using other stochas-

tic gradient MCMC algorithms such as SGHMC (Chen et al., 2014); and

the discriminator can be trained using an advanced SGD algorithm such as

Adam (Kingma and Ba, 2015) and AdaMax (Kingma and Ba, 2015). More-

over, the proposed method can be easily extended to learn sparse generators

34

by imposing an appropriate prior distribution on the generator. Refer to

Sun et al. (2022) for prior settings for consistent sparse deep learning.

In summary, this paper has presented a new formulation for the GANs

as randomized decision problems, and proposed an effective method to solve

them. From the perspective of statistical decision theory, further inves-

tigation into the application of the proposed method to other classes of

risk functions would be of great interest. We anticipate that the proposed

method will find wide applications in the field of statistical decision science.

Supplementary Materials

The supplementary material contains the proofs of the theoretical results

and provides additional numerical examples

Acknowledgements

This research is supported in part by the NSF grants DMS-1811812 (Song)

and DMS-2015498 (Liang) and the NIH grant R01-GM126089 (Liang). The

authors thank the reviewers for their insightful and helpful comments.

References

Andrieu, C., E. Moulines, and P. Priouret (2005). Stability of stochastic approximation under

verifiable conditions. SIAM Journal on Control and Optimization 44 (1), 283–312.

35

Arjovsky, M., S. Chintala, and L. Bottou (2017, 06–11 Aug). Wasserstein generative adversarial

networks. In D. Precup and Y. W. Teh (Eds.), Proceedings of the 34 th International

Conference on Machine Learning (ICML), Volume 70 of PMLR, International Convention

Centre, Sydney, Australia, pp. 214–223.

Arnold, B. C. and S. J. Press (1989). Compatible conditional distributions. Journal of the

American Statistical Association 84 (405), 152–156.

Arora, S., R. Ge, Y. Liang, T. Ma, and Y. Zhang (2017). Generalization and equilibrium in

generative adversarial nets (GANs). In ICML, pp. 224–232.

Bellot, A. and M. van der Schaar (2019). Conditional independence testing using generative

adversarial networks. In NeurIPS, pp. 2202–2211.

Benveniste, A., M. Métivier, and P. Priouret (1990). Adaptive Algorithms and Stochastic Ap-

proximations. Springer.

Binkowski, M., D. J. Sutherland, M. Arbel, and A. Gretton (2018). Demystifying MMD GANs.

In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Che, T., Y. Li, A. P. Jacob, Y. Bengio, and W. Li (2017). Mode regularized generative adver-

sarial networks. In 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Chen, T., E. B. Fox, and C. Guestrin (2014). Stochastic gradient hamiltonian monte carlo.

In Proceedings of the 31th International Conference on Machine Learning, ICML 2014,

36

Volume 32 of JMLR Workshop and Conference Proceedings, pp. 1683–1691. JMLR.org.

Dempster, A., N. Laird, and D. Rubin (1977). Maximum likelihood from incomplete data via

the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38.

Deng, W., X. Zhang, F. Liang, and G. Lin (2019). An adaptive empirical bayesian method for

sparse deep learning. NeurIPS 2019, 5563–5573.

Dong, T., P. Zhang, and F. Liang (2023). A stochastic approximation-langevinized ensemble

kalman filter for state space models with unknown parameters. Journal of Computational

and Graphical Statistics 32 (2), 448–469.

Gao, Y., Y. Jiao, Y. Wang, Y. Wang, C. Yang, and S. Zhang (2019). Deep generative learning

via variational gradient flow. In ICML, pp. 2093–2101.

Ghosh, A., V. Kulharia, V. Namboodiri, P. Torr, and P. Dokania (2018, 06). Multi-agent diverse

generative adversarial networks. In CVPR, pp. 8513–8521.

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,

and Y. Bengio (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.), Advances in Neural Information

Processing Systems 27, December 8-13 2014, Montreal, Quebec, Canada, pp. 2672–2680.

He, H., H. Wang, G. Lee, and Y. Tian (2019). Probgan: Towards probabilistic GAN with

theoretical guarantees. In 7th International Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

37

Hoang, Q., T. D. Nguyen, T. Le, and D. Q. Phung (2018). MGAN: training generative ad-

versarial nets with multiple generators. In 6th International Conference on Learning Rep-

resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings. OpenReview.net.

Kim, S., Q. Song, and F. Liang (2022). Stochastic gradient langevin dynamics with adaptive

drifts. Journal of Statistical Computation and Simulation 92 (2), 318–336.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization. In Y. Bengio

and Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kirkpatrick, S., C. Gelatt, and M. Vecchi (1983). Optimization by simulated annealing. Sci-

ence 220, 671–680.

Liu, Q., J. Xu, R. Jiang, and W. H. Wong (2021). Density estimation using deep generative

neural networks. Proceedings of the National Academy of Sciences 118 (15), e2101344118.

Mao, X., Q. Li, H. Xie, R. Lau, W. Zhen, and S. Smolley (2017). Least squares generative

adversarial networks. In ICCV, pp. 2813–2821.

Morris, C. N. (1983). Parametric empirical bayes inference: Theory and applications. Journal

of the American Statistical Association 78 (381), 47–55.

Mukherjee, S., H. Asnani, E. Lin, and S. Kannan (2019). Clustergan: Latent space clustering

in generative adversarial networks. In AAAI, pp. 4610–4617. AAAI Press.

38

Nowozin, S., B. Cseke, and R. Tomioka (2016). f-gan: training generative neural samplers using

variational divergence minimization. In Proceedings of the 30th International Conference

on Neural Information Processing Systems, pp. 271–279.

Pérez-Cruz, F. (2008). Kullback-leibler divergence estimation of continuous distributions. In

F. R. Kschischang and E. Yang (Eds.), 2008 IEEE International Symposium on Informa-

tion Theory, ISIT 2008, Toronto, ON, Canada, July 6-11, 2008, pp. 1666–1670. IEEE.

Saatci, Y. and A. G. Wilson (2017). Bayesian gan. In NIPS, pp. 3622–3631.

Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen (2016). Im-

proved techniques for training gans. In NIPS, pp. 2234–2232.

Singh, S., A. Uppal, B. Li, C.-L. Li, M. Zaheer, and B. Póczos (2018). Nonparametric density

estimation under adversarial losses. In Proceedings of the 32nd International Conference

on Neural Information Processing Systems, pp. 10246–10257.

Song, Q., Y. Sun, M. Ye, and F. Liang (2020). Extended stochastic gradient mcmc for large-scale

bayesian variable selection. Biometrika 107 (4), 997–1004.

Sun, Y., Q. Song, and F. Liang (2022). Consistent sparse deep learning: Theory and computa-

tion. Journal of the American Statistical Association 117 (540), 1981–1995.

Tolstikhin, I., S. Gelly, O. Bousquet, C. J. Simon-Gabriel, and B. Schölkopf (2017). Adagan:

Boosting generative models. In NIPS, pp. 5424–5433.

Wang, Q., S. R. Kulkarni, and S. Verdú (2009). Divergence estimation for multidimensional den-

39

sities via k-nearest-neighbor distances. IEEE Transactions on Information Theory 55,

2392–2405.

Wang, Y., L. Zhang, and J. van de Weijer (2016). Ensembles of generative adversarial networks.

ArXiv abs/1612.00991.

Welling, M. and Y. W. Teh (2011). Bayesian learning via stochastic gradient Langevin dynam-

ics. In Proceedings of the 28th International Conference on International Conference on

Machine Learning, pp. 681–688.

Wiatrak, M. and S. V. Albrecht (2019). Stabilizing generative adversarial network training: A

survey. ArXiv abs/1910.00927.

Young, G. and R. Smith (2005). Essentials of Statistical Inference. London: Cambridge Uni-

versity Press.

Zhao, W., S. Wang, Z. Xie, J. Shi, and C. Xu (2019). GAN-EM: GAN based EM learning

framework. In IJCAI, pp. 4404–4411.

Zhou, Z., J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang, Y. Yu, and Z. Zhang (2019). Lipschitz

generative adversarial nets. In ICML, pp. 7584–7593.

Sehwan Kim, Purdue University, West Lafayette, IN 47907

E-mail: kim3009@purdue.edu

Qifan Song, Purdue University, West Lafayette, IN 47907

E-mail: qfsong@purdue.edu

40

Faming Liang, Purdue University, West Lafayette, IN 47907

E-mail: fmliang@purdue.edu

41

	Introduction
	A New Formulation for GAN based on Randomized Decision Rules
	Pure Strategy Minimax Game
	Mixed Strategy Minimax Game
	Mixed Strategy Nash Equilibrium

	Training Algorithm and Its Convergence
	The Training Algorithm
	Convergence Analysis

	Numerical Studies
	A Gaussian Example
	KL-prior
	Gaussian prior

	A Mixture Gaussian Example
	Image Generation
	Nonparametric Clustering

	Conclusion

