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Abstract:

The Generative Adversarial Network (GAN) was recently introduced in the liter-
ature as a novel machine learning method for training generative models. It has
many applications in statistics such as nonparametric clustering and nonparamet-
ric conditional independence tests. However, training the GAN is notoriously dif-
ficult due to the issue of mode collapse, which refers to the lack of diversity among
generated data. In this paper, we identify the reasons why the GAN suffers from
this issue, and to address it, we propose a new formulation for the GAN based on
randomized decision rules. In the new formulation, the discriminator converges
to a fixed point while the generator converges to a distribution at the Nash equi-
librium. We propose to train the GAN by an empirical Bayes-like method by
treating the discriminator as a hyper-parameter of the posterior distribution of
the generator. Specifically, we simulate generators from its posterior distribution
conditioned on the discriminator using a stochastic gradient Markov chain Monte
Carlo (MCMC) algorithm, and update the discriminator using stochastic gradi-

ent descent along with simulations of the generators. We establish convergence



of the proposed method to the Nash equilibrium. Apart from image generation,
we apply the proposed method to nonparametric clustering and nonparametric
conditional independence tests. A portion of the numerical results is presented

in the supplementary material.

Key words and phrases: Generative Model, Minimax Game, Stochastic Approx-

imation, Stochastic Gradient Markov Chain Monte Carlo.

1. Introduction

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) pro-
vides a novel way for training generative models which seek to generate
new data with the same statistics as the training data. Other than im-
age generation, the GAN has been used in many nonparametric statistical
tasks, such as clustering (Mukherjee et al., 2019), conditional independent
test (Bellot and van der Schaar, 2019), and density estimation (Singh et al.,
2018; Liu et al., 2021). In this paper, we call the training data real samples,
and those generated by the GAN fake samples.

In its original design, the GAN is trained by competing two neural
networks, namely generator and discriminator, in a game. However, due to
the instability issues such as mode collapse (i.e., lack of diversity among fake
samples), non-convergence, and vanishing or exploding gradients, the GAN

is notoriously hard to train (Wiatrak and Albrecht, 2019). In this paper, we



identify the reasons why the GAN suffers from the mode collapse issue: (i)
The GAN evaluates fake samples at an individual level, lacking a mechanism
for enhancing the diversity of fake samples; and (ii) the GAN tends to get
trapped into a sub-optimal solution, lacking a mechanism for escaping from
local traps (see Remark 1 for more explanations). To address this issue,
we propose a new formulation for the GAN based on randomized decision
rules. In this formulation, the similarity between the fake and real samples
can be evaluated at the population level; and the generator is simulated
from its posterior distribution conditioned on the discriminator using a
stochastic gradient MCMC algorithm, thereby mitigating the difficulty of
getting trapped in local optima.

Our contribution. The main contribution of this paper is three-fold:
(i) we have provided a new formulation for the GAN based on statistical
randomized decision theory, which allows the mode collapse issue to be fully
addressed; (ii) we have proposed a training algorithm associated with the
new formulation, and shown that its convergence to the Nash equilibrium
is asymptotically guaranteed, or said differently, the proposed algorithm is
immune to mode collapse as the number of iterations becomes large; (iii)
we have developed a Kullback-Leibler divergence-based prior for the gener-

ator, which enhances the diversity of fake samples and further strengthens



the effectiveness of the proposed method in overcoming the issue of mode
collapse. The proposed method is tested on image generation, nonparamet-
ric clustering, and nonparametric conditional independence tests (in the
supplementary material). Our numerical results suggest that the proposed
method significantly outperforms the existing ones in overcoming the mode
collapse issue.

Related Works. To tackle the mode collapse issue, a variety of meth-
ods have been proposed in the literature, see Wiatrak and Albrecht (2019)
for a recent survey. These methods can be roughly grouped to two cate-
gories, namely, metric-based methods and mixture generator methods.

The methods in the first category strive to find a more stable and
informative metric to guide the training process of the GAN. For exam-
ple, Nowozin et al. (2016) suggested f-divergence, Mao et al. (2017) sug-
gested y2-divergence, Arjovsky et al. (2017) suggested Wasserstein distance,
Binkowski et al. (2018) suggested maximum mean discrepancy, and Che
et al. (2017) and Zhou et al. (2019) suggested some regularized objective
functions. As mentioned previously, the GAN evaluates fake samples at the
individual level and tends to get trapped to a sub-optimal solution. There-
fore, the mode collapse issue is hard to resolve by employing a different

metric unless (i) the objective function is modified such that the similarity



between the fake and real samples can be enhanced at the population level,
and (ii) a local-trap free optimization algorithm is employed for training.
Recently, there has been a growing trend in the literature to incorporate
gradient flow into the training of generative models, as explored by Gao
et al. (2019). However, achieving this objective is generally considered a
challenging task.

The methods in the second category are to learn a mixture of gen-
erators under a probabilistic framework with a similar motivation to this
work. A non-exhaustive list of such types of methods include ensemble
GAN (Wang et al., 2016), Mix+GAN (Arora et al., 2017), AdaGAN (Tol-
stikhin et al., 2017), MAD-GAN (Ghosh et al., 2018), MGAN (Hoang et al.,
2018), Bayesian GAN (Saatci and Wilson, 2017), and ProbGAN (He et al.,
2019). However, many of the methods are not defined in a proper prob-
abilistic framework and, in consequence, the mode collapse issue cannot
be overcome with a theoretical guarantee. In ensemble GAN, AdaGAN,
MAD-GAN, Mix+GAN, and MGAN, only a finite mixture of generators
is learned and thus the mode collapse issue cannot be overcome in theory.
Bayesian GAN aims to overcome this obstacle by simulating the discrimina-
tor and generator from their respective conditional posterior distributions;

however, the two conditional posterior distributions are incompatible and



can lead unpredictable behavior (Arnold and Press, 1989). ProbGAN im-
poses an adaptive prior on the generator and updates the prior by succes-
sively multiplying the likelihood function at each iteration; consequently,
the generator converges to a fixed point instead of a distribution.

The remaining part of this paper is organized as follows. Section 2
describes the new formulation for the GAN based on randomized decision
rules. Section 3 proposes a training method and proves its convergence to
the Nash equilibrium. Section 4 illustrates the performance of the proposed
method using synthetic and real data examples. Section 5 concludes the

paper with a brief discussion.

2. A New Formulation for GAN based on Randomized Decision

Rules

2.1 Pure Strategy Minimax Game

In the original work Goodfellow et al. (2014), the GAN is trained by com-
peting the discriminator and generator neural networks in a game. Let 6,
denote the parameters of the discriminator neural network, and let Dy, ()
denote its output function which gives a score for discriminating whether
or not the input sample x is generated from the data distribution pgq:,. Let

Gy, () denote the generator neural network with parameter ,, whose input



z follows a given distribution ¢(z), e.g., uniform or Gaussian, and whose

output distribution is denoted by py,. Define

Ta(04;09) = Eanpna©1(Do, (%)) + Banpy, d2(Do, (), 21)

T5(0g;0a) = —Eirpyea91(Doy (7)) + By, @3( Do, (7)),
where ¢1(D) = log(D), ¢2(D) = log(1 — D), and ¢3(D) = —log(l — D) or
log(D) are as defined in Goodfellow et al. (2014). The general form of the

game introduced by Goodfellow et al. (2014) is given as follows:

(7) r%axjd(Hd;Hg), (i7) r%axjg(eg;ed). (2.2)
d g
If ¢3 = —¢9, the objective of (2.2) represents a pure strategy minimax
game, i.e.,
min max Jy(0g, 04), (2.3)
0, 0g

which is called minimax GAN. If ¢5(D) = log(D), the objective is said to
be non-saturating, which results in the same fixed point of the dynamics as
the minimax GAN but addresses the issue of vanishing gradient suffered by
the latter. Quite recently, Zhou et al. (2019) proposed to penalize J;(6q;6,)
by a quadratic function of the Lipschitz constant of 6,;, which addresses the
gradient uninformativeness issue suffered by minimax GAN and improves

its convergence.



2.2 Mixed Strategy Minimax Game

Let 7,(6,) denote a distribution of generators. Based on the randomized

decision theory, we define a mixed strategy minimax game:

min max Er  Jq(04;0,), (2.4)

To B4
where J;(04;0,) is as defined in (2.1), and the expectation is taken with
respect to m,(f,). That is, the game is to iteratively search for an op-
timal discriminator 6; by maximizing E, Ju(04;0,) for a given generator
distribution 7, and an optimal generator distribution 7, by minimizing
maxy, Eﬁgjd(ed; g,) for a given discriminator ;. In its Nash equilibrium,
the discriminator is fixed and the generator is randomly drawn from the
optimal generator distribution m,, so the equilibrium is a mixed strategy
Nash equilibrium. This is different from the pure strategy Nash equilibrium
achieved by the minimax GAN, where both the discriminator and generator
are fixed at equilibrium.

From the viewpoint of statistical decision theory, (2.4) is a minimax
randomized decision problem, where 7, can be viewed as a randomized
decision rule and E, Ji(04;0,) can be viewed as a risk function. Compared
to the deterministic decision formulation (2.3), such a randomized decision

formulation naturally accounts for the uncertainty of the generator and thus



helps to address the mode collapse issue. Note that a deterministic decision
rule is a special case of a randomized decision rule where one decision or
action has probability 1. Further, Young and Smith (2005) (p.11) pointed
out that a minimax randomized decision rule might perform better than all
other deterministic decision rules under certain situations.

Let pr, denote the distribution of the fake samples produced by the
generators drawn from 7y, i.e., pr, () = [ po, (2)my(0,)d,. Lemma 1 studies
the basic property of the mixed strategy minimax game (2.4). The proof of
this lemma, along with the proofs of other theoretical results in this paper,

is provided in the supplement.

Lemma 1. Suppose the discriminator and generator have enough capac-
ity, »1(D) = log(D), and ¢o(D) = log(l — D). For the game (2.4),
min,, maxg, B Ja(0a;04) = —log(4). Further, iféd = argmaxy, Bz, Jq(04;04)
for some 7y, then (04, 7g) is a Nash equilibrium point if and only ifE;rgjd(éd; 6,)
= —log(4); at any Nash equilibrium point (éd,frg), P, = Pdata holds and
Dy

() = 1/2 for any x ~ paata, where pz, = fpggﬁg(eg)deg and T ~ Pdata

d

means x 1§ distributed according to pgaia-

Lemma 1 can be generalized to other choices of ¢; and ¢s. In general,
if ¢1 and ¢9 satisfy that (i) ¢} > 0, ¢}, <0, ¢7 <0, ¢4 < 0, where ¢; and ¢
denote the first and second derivatives of ¢; (i = 1,2), respectively; and (ii)

9



there exists some value a such that ¢/ (a) + ¢5(a) = 0, then the conclusion

of the lemma still holds except that Dj = a in this case.

2.3 Mixed Strategy Nash Equilibrium

Let ¢,(6,) denote the prior distribution of 6, and let N denote the training

sample size. Define

W(ngcbp) X eXP{Jg(Hg§9d)}QQ(99), (2.5)

where
Jg(0g:0a) = N Ty(04; 0a) = N(—Eorpyr, @1 (Do, () + Eanpy, ¢3(Dy, (1)),

and ¢3 is an appropriately defined function, e.g., ¢3(D) = —log(1 — D) or
log(D) as in Goodfellow et al. (2014). For the game (2.4), we propose to

solve for 6, by setting
0, = arg n%ax/Jd(Gd; 04)7 (04|04, D)dby, (2.6)
d

where J4(04;0,) is as defined in (2.1) and then, with a slight abuse of
notation, setting

7y = (0404, D). (2.7)

Theorem 1 shows that (6, 7,) defined in (2.6)-(2.7) is a Nash equilib-

rium point for the game (2.4) as N — co.
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Theorem 1. Suppose that the discriminator and generator have enough
capacity, ¢1(D) = log(D), ¢2(D) = log(1 — D), ¢35 = —log(1 — D), and
the following conditions hold: (i) dim(6,), the dimension of the generator,
grows with N at a rate of O(N®) for some 0 < ¢ < 1; and (ii) the prior
density function q,(0,) is upper bounded on the parameter space O, of the
generator. Then (04,7%,) defined in (2.6)-(2.7) is a Nash equilibrium point

for the game (2.4) as N — 0.

Condition (ii) can be satisfied by many prior distributions, e.g., the
uninformative prior ¢,(6,) o« 1 and the Gaussian prior. In addition, we
consider an extra type of prior, namely, KL-prior, in this paper. The KL-
prior is given by

qg(0g) o< exp{—=ADkL(PdatalPs,)} (2.8)

where A is a pre-specified constant, and the KL-divergence Dy (pata|ps,)
can be estimated by a k-nearest-neighbor density estimation method (Pérez-
Cruz, 2008; Wang et al., 2009) based on the real and fake samples. The
motivation of this prior is to introduce to the proposed method a mechanism
for enhancing the similarity between pg, and pg., at the density level. For
the Gaussian prior, we generally suggest to set 6, ~ N (0, O'JQV[dim(gg)), where
0% > 1/(27) and increases with the training sample size N in such a way

that the prior approaches uniformity asymptotically as N — oo.
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There are ways other than (2.5)-(2.7) to define (64, 7,) and still have
Theorem 1 be valid. For example, one can define m(6,|04, D) o exp{J,(0,;64)/7}
qy(0,) or (0,04, D) ox exp{I,(0,;0a)/7}(q,(0,))/™ for some temperature
7 > 0. That is, instead of the exact conditional posterior w(99|éd,D), one
can sample from its tempered version. In the extreme case, one may employ
the proposed method to find the Nash equilibrium point for the minimax

GAN in a manner of simulated annealing (Kirkpatrick et al., 1983).

Corollary 1. The conclusion of Theorem 1 still holds if the function ¢5(D) =

—log(1 — D) is replaced with ¢3(D) = log(D).

To make a more general formulation for the game (2.4), we can include

a penalty term in J;(64;6,) such that
Ja(0a;0g) = Ernpyor, @1(Doy(2)) + Eznpy, #2(De, () — A(D,), (2.9)

where [(Dy,) > 0 denotes an appropriate penalty function on the discrimi-
nator. For example, one can set [(Dy,) = || Dy, ||¢,, for some a > 1, where
| Do, || Lip denotes the Lipschitz constant of the discriminator. As explained
in Zhou et al. (2019), including this penalty term enables the minimax GAN
to overcome the gradient uninformativeness issue and improve its conver-
gence. As implied by the proof of Lemma 1, where the mixture generator

proposed in the paper can be represented as a single super generator, the
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arguments in Zhou et al. (2019) still apply and thus [|Dj,_||zi» = 0 holds at
the optimal discriminator 6, = arg maxy o Eoymr, Ja(0a; 04). This further im-
plies that the extra penalty term —\||Dy,[|;, does not affect the definition

of w(0,|04, D) and, therefore, Theorem 1 still holds with (2.9).

3. Training Algorithm and Its Convergence

This section proposes an algorithm for solving the integral optimization

problem (2.6) and studies its convergence to the Nash equilibrium.

3.1 The Training Algorithm

A straightforward calculation shows that
Vo, [ Tul6u: 076,164, D)6, = Bn,,(V0,Tu(636,)

+ Covr, ,(Ja(0a; 0g), Vo, Jg(0g: 0a)),
where E;_,(-) and Cov,_,(-) denote the mean and covariance operators with
respect to m(6,]04, D), respectively. By Lemma 1, at any Nash equilibrium
point we have pz, = paate and Dy, =1 /2. Then, following the arguments
given in the proof of Theorem 1, it is easy to show by Laplace approximation
that at the Nash equilibrium point Covwgld(jd(éd;ﬁg),ngJg(Hg;éd)) — 0
as N — oo. Therefore, when N is sufficiently large, the target equation

Vo, | Ta(04;04)7(0,4|04, D)db, = 0 can be solved by solving the mean field
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equation

h(@d) = /H(Qd, 99)71'(9g|9d, D) = 0, (31)

using a stochastic approximation algorithm, where H(64,6,) denotes an
unbiased estimator of Vg, J4(04;6,). The convergence of the solution to
the Nash equilibrium can be assessed by examining the plots described in
Section 4. By the standard theory of stochastic approximation MCMC,
see e.g., Benveniste et al. (1990); Andrieu et al. (2005); Deng et al. (2019);
Dong et al. (2023), equation (3.1) can be solved by iterating between the
following two steps, where Gc(lt) denotes the estimate of the discriminator
obtained at iteration ¢, and Qét) denotes a generic sample of the generator

simulated at iteration t:

(i) Simulate Gét) by a Markov transition kernel which leaves the condi-

tional posterior 77(09]9((;71), D) o exp{Jy(0y,; 9[(;71))}%(99) invariant.

(ii) Update the estimate of 6, by setting 9((;) = 96(;71) + th(Q((f*l), Hét)),

where w,; denotes the step size used at iteration ¢.

Stochastic gradient MCMC algorithms, such as stochastic gradient Langevin
dynamics (SGLD) (Welling and Teh, 2011), stochastic gradient Hamilto-
nian Monte Carlo (SGHMC) (Chen et al., 2014) and momentum stochastic

gradient Langevin dynamics (MSGLD) (Kim et al., 2022), can be used in

14



step (i). Under appropriate conditions, we will show in Section 3.2 that
|9§}) — 04 5 0 and Qét) A 7(0,04, D) as t — oo, where 2 and < denote
convergences in probability and distribution, respectively. That is, the pro-
posed algorithm converges to the Nash equilibrium of the mixed strategy
minimax game (2.4).

The proposed algorithm can also be viewed as an empirical Bayes-like
method (Morris, 1983). For the case ¢35 = —¢o, the posterior 7(6,|04, D)

can be expressed as

N
7(05164, D) ox exp { = 3 61(Day () = N # Earvgb2(Do,(Go, (2))) pay(0), (32)
=1

where 6; can be viewed as a hyperparameter of the posterior; and the

proposed algorithm is to determine 6, by solving the equation

N
N O Vo [61(D0,(20) + B, Barg2(Day(Go, ()] = 0. (33
i=1

In terms of the computational procedure, solving (3.3) is equivalent to max-
imizing the expected log-marginal posterior of 6;, which can be derived from
(3.2) by imposing on §; an improper prior 7(6;) o< 1. To distinguish the
proposed computational procedure from Bayesian GAN (Saatci and Wilson,
2017), we call it an empirical Bayes-like GAN (or EBGAN in short).
Algorithm 1 summarizes the proposed algorithm as a solver for (2.6),

where k, generators are simulated using MSGLD (Kim et al., 2022) at each
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iteration, and the gradients are estimated with a mini-batch data of size n

at each iteration. More precisely, we have

Vo, L(0g,04) = Z Vo, 03(Do,(Go,(2:))) + Vo, log qe(0g),
T (3.4)
0 0) = L§ S, (61D, (7)) + 62Dy Gy ()]
] 114=1
where {z}}" | denotes a set of mini-batch data and {z;}?_, denotes indepen-

dent inputs for the generator. As illustrated by Kim et al. (2022), MSGLD
tends to converge faster than SGLD, where the momentum bias term can
help the sampler to escape from saddle points and accelerate its convergence

in simulations on the energy landscape with pathological curvatures.

Algorithm 1 Empirical Bayesian GAN

Input: Full data set D = {z;}¥,, number of generators k,, mini-batch
size n, momentum smoothing factor a, momentum biasing factor se-
quence {p;}°,, learning rate sequence {¢}{2,, and step size sequence
{weti2s.
Initialization: 6, from an appropriate distribution, set mqo = 0;
fort=1,2,...,do

(i) Sampling step:

for j=1,2,...,k,do

Draw a mini- batch data {xf}, and set

8; = 8; (t=1) —|—€t {V@gL(@é (t=1) ,9((;_1)) + pt,lmj’(t_l)}—i—./\/(o, 2T€t),

mj,(t) — O{mj,(tfl) + (1 . a)vegi(eg(t—l)’ec(lt—l))‘

end for
(ii) Parameter estimating step: Hg) = (96(;71) +w H (65;71), fo)), where
o = (95", . .. ,959’(t)).

end for

Regarding hyperparameter settings, we have the following suggestions.
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In general, we set w; = cl(t + 02)*41 for some constants ¢; > 0, ¢ >
0 and ¢; € (0,1], which satisfies Assumption S1. In this paper, we set
(1 = 0.75 in all computations. Both the learning rate sequence and the
momentum biasing factor sequence are required to converge to 0 as t — oo,
ie., lim; .6 = 0 and lim; ,o, p; = 0. For example, one might set ¢, =
O(1/t%2) and p; = O(1/t%) for some (s, (3 € (0,1). In the extreme case,
one might set them to small constants for certain problems, however, under
this setting, the convergence of Hét) to the target posterior distribution will
hold approximately even when ¢ — oo. In this paper, we set £, = 10 and

the momentum smoothing factor a = 0.9 as the default.

3.2 Convergence Analysis

Lemma 2 establishes the convergence of the discriminator estimator, and
Lemma 3 shows how to construct the mixture generator desired for gener-
ating fake samples mimicking the real ones. For simplicity, we present the

lemmas under the setting &, = 1.

Lemma 2 (Convergence of discriminator). Suppose Assumptions S1-S6
(given in the supplement) hold. If the learning rate €, is sufficiently small,

then there exist a constant v, an iteration number ty and an optimum O, =

17



argmaxg, [ Ju(0q;0,)m(04|04, D)d0, such that for any t > t,
E|j65” = 0all® < o

where t indexes iterations, w, is the step size satisfying Assumption S1, and

an explicit formula of 7 is given in (S1.20).

As shown in (S1.20), the expression of 7 consists of two terms. The
first term 7o depends only on the sequence {w;} and the stability constant
of the mean field function h(6;), while the second term characterizes the
effects of the learning rate sequence {¢;} and other constants (given in the
assumptions) on the convergence of {QS)}. In particular, {¢;} affects the

'|I2. See Lemma S1 for

convergence of {Hc(lt)} via the upper bound of EHfo

the definition of the upper bound.

Lemma 3 (Ergodicity of generator). Suppose Assumptions S1-S7 (given
in the supplement) hold. For a smooth test function 1(0,) with ||(8,)| <
C(1+ ||6,|) for some constant C, define

&T _ ZtT:1 €t1/)(95(;t))
Zthl €t

where T is the total number of iterations. Let ¢ = fw(ég)w(ﬁg\éd,l))d%,

, (3.5)

St = Zthl €, and AV, = Vggf,(@ét), efit)) N V%L(Qf(’t)’ 0‘(;))'

(i) Suppose the following conditions are satisfied: the momentum bias-

ing factor sequence {p; : t = 1,2,...} decays to 0, the learning
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rate sequence {e, : t = 1,2,...} decays to 0, > ;2 ¢ = 0o, and

T
limp_, o %?%:f = 0. Then there exists a constant C such that

T e T  2\2
o X -
El¢r — ¢r|* < C (E %EHA%H%r o M) '
T

2
t=1 ST

(i1) Suppose a constant learning rate of € and a constant momentum bi-

asing factor of p are used. Then there exists a constant C' such that

T
o L EAV 1
—_ a2 < thl L 2 2|
E|lr — || _O( T2 +T€—I—e +p

The estimator (3.5) provides us a convenient way to construct Pz,; that
is, as T' — 00, the corresponding mixture generator can contain all the
generators simulated by Algorithm 1 in a run. We note that, by Theorem
1 of Song et al. (2020), the estimator (3.5) can be simplified to the simple
path average ﬁ’T = % ZL z/J(Hét)) provided that ¢, < % holds, where a; < b,
means 3¢ — 0 as ¢ — oo. In practice, we can use only the generators

simulated after the algorithm has converged or those simulated at the last

iteration. For the latter, we may require k, to be reasonably large.

Remark 1. While the mixture generator produced by Algorithm 1 can
overcome the mode collapse issue, a single generator might not, especially
when an uninformative or Gaussian prior is used. Suppose that the uninfor-

mative prior g,(6,) o 1 is used, ¢3(D) = —log(1l — D), and a discriminator
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6, with Dy, (x) = 1/2 for & € pyaa has been obtained. With such a discrim-
inator, there are many 9,’s maximizing J,(,; éd) as long as py, C Pdata;
because the GAN evaluates the fake samples at the individual level. Here
we use the notation py, C Pgare to denote that the fake samples generated
from py, resemble only a subset of the real samples. At such a point (0~d, V),
we have Jy(04;9,) = —log4 and —J,(94;0,) = —N log4. The latter means
that the generator has attained its minimum energy, although py, C paata
is still sub-optimal; in other words, such a generator is trapped to a sub-
optimal solution. However, if Algorithm 1 is run for sufficiently long time
and the generators from different iterations are used for estimation, we
can still have T%q S S [p a0 W(ﬁgﬂég), D)dﬁgz A Pdata Dy assembling
many sub-optimal generators (provided the learning rate ¢, < 1/t), where
19;2 denotes the 1th generator at iteration ¢ and éc(f) denotes the discrim-
inator at iteration t. That is, using mixture generator is a valid way for
overcoming the mode collapse issue. For the case of ¢3(D) = log(D) and
the case of the Gaussian prior, this is similar. The KL-prior provides a
stronger force to drive é Zfi Sp o0 W(ﬁg‘éc(zt)’ D)dﬁ‘(gfz t0 Pdata a8 t — 00,

while the choice of k; is not crucial.
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4. Numerical Studies

We illustrate the performance of the EBGAN using various examples. Due

to the space limit, some of the examples are presented in the supplement.

4.1 A Gaussian Example

Consider a 2-D Gaussian example, where the real samples are generated in
the following procedure (Saatci and Wilson, 2017): (i) generate the cluster
mean: p ~ N (0, I3), where I denotes a 2-dimensional identity matrix; (ii)
generate a mapping matrix M € R**? with each element independently
drawn from N(0,1); (iii) generate 10,000 observations: x; ~ (N(0, 1) +
p) x MT, for i = 1,2,...,10,000. The code used for data generation is
available at https://github.com/andrewgordonwilson/bayesgan/blob/
master/bgan_util.py. Both the discriminator and generators used for
this example are fully connected neural networks with ReLU activation.
The discriminator has a structure of 2 — 1000 — 1, and the generator has a
structure of 10 — 1000 — 2.

The original GAN (Goodfellow et al., 2014) was first applied to this
example with the parameter settings given in the supplement. Figure 1(a)
shows the empirical means of Dgg)(x) and Deg“ () along with iterations,

where x represents a real sample and ¥ represents a fake sample simulated
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by the generator. For the given choices of ¢; and ¢, as implied by Lemma 1,
we should have E(Degt) () = E(Degﬂ (Z)) = 0.5 at the Nash equilibrium. As
shown by Figure 1(a), the GAN did reach the 0.5-0.5 convergence. However,
as shown by Figure 1(b), the generator still suffers from the mode collapse
issue at this solution, where the fake samples resemble only a subset of the
real samples. As mentioned previously, this is due to the reasons: The GAN
evaluates the fake samples at the individual level, lacking a mechanism for
enhancing the diversity of fake samples, and tends to get trapped at a sub-
optimal solution for which pg, C pgata holds while the ideal objective value
—log4 can still be attained.

The mode collapse issue can be tackled by EBGAN, for which we con-

sider both the KL-prior and Gaussian prior.

4.1.1 KL-prior

The KL-prior is given in (2.8), which enhances the similarity between py,
and pgare at the density level. For this example, we set A = 100, set k =1
for k-nearest-neighbor density estimation (see Pérez-Cruz (2008) for the es-
timator), and used the auto-differentiation method to evaluate the gradient
Vo, log q4(6,). Figure 1(c)&(d) summarize the results of EBGAN for this

example with ¢3(D) = log(D) and k, = 10. The settings for the other pa-

22



rameters can be found in the supplement. For EBGAN, Figure 1(c) shows
that it converges to the Nash equilibrium very fast, and Figure 1(d) shows
that the fake samples simulated by a single generator match the real samples
almost perfectly.

In summary, this example shows that EBGAN can overcome the mode
collapse issue by employing a KL-prior that enhances the similarity between

Po, and pgatq at the density level.

(a)

Expectation value: GAN

e
oo
N
o

fffff GAN real
—— GAN fake

Expectation of
Discriminator Valu
[cNoNoRoNeoNoNe]
Wk oo
o uocuou

0 500 1000150020002500
No. of iterations

()
Expectation value:
KL divergence prior
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EBGAN fake

» 0.70
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CooQCco000
W pdhUuO O
agououou

0-30 0 500 1000150020002500

No. of iterations

Figure 1: Illustration of the mode collapse issue: (a) empirical means of
D (x;) and D (Z;) produced by GAN; (b) coverage plot of the real (dots)
d d

and fake samples (‘+’) generated by GAN; (c) empirical means of D« (;)
d
and D (7;) produced by EBGAN; (d) coverage plot of the real (dots) and
d
fake samples (‘+’) generated by a single generator of EBGAN.
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4.1.2 Gaussian prior

We have also tried the simple Gaussian prior 6, ~ N (0, I) for this example.
Compared to the KL-divergence prior, the Gaussian prior lacks the ability
to enhance the similarity between pg, and pgase, but it is much cheaper
in computation. For this example, we have run EBGAN with ¢3(D) =
log(D) and k, = 10. The settings for other parameters can be found in
the supplement. To examine the performance of EBGAN with this cheap
prior, we made a long run of 30,000 iterations. For comparison, the GAN
was also applied to this example with ¢3(D) = log(D). Figure S1 (in the
supplement) shows the empirical means of Deg) () and Deé‘) () produced by
the two methods along with iterations, which indicates that both methods
can reach the 0.5-0.5 convergence very fast. Figure 2 shows the evolution of
the coverage plot of fake samples. Figure 2(a) indicates that the GAN has
not reached the Nash equilibrium even with 25,000 iterations. In contrast,
Figure 2(b) shows that even with the cheap Gaussian prior, the EBGAN can
approximately reach the Nash equilibrium with 25,000 iterations, although
it also suffers from the mode collapse issue in the early stage of the run.
Figure 2(c) shows that for the EBGAN, the mode collapse issue can be
easily overcome by integrating multiple generators.

Finally, we note that the convergence of the GAN and EBGAN should

24



(a) Evolution of coverage by GAN
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(b) Evolution of coverage by one generator from EBGAN
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(c) Evolution of coverage by integration of 10 generators from EBGAN
iter 2500 iter 5000 iter 7500 iter 10000 iter 12500 iter 15000 iter 17500 iter 20000 iter 22500 iter 25000

¥

Figure 2: Coverage plots produced by (a) GAN, (b) a single generator of
EBGAN, and (c) all 10 generators of EBGAN, where the generators for
the plots from left to right are collected at iterations 2500, 5000, . . ., 25000,
respectively. The dot points (in blue) represent real samples; and ‘4’ points
represent fake samples produced by GAN (in red) or EBGAN (in yellow).

be checked in two types of plots, namely, empirical convergence plot of
EDG? () and IEDeg) (7), and coverage plot of the fake and real samples. The
former measures how well an individual fake sample fits into the population
of real samples, while the latter measures the diversity of fake samples, i.e.,

whether a wide range of fake samples is generated.

4.2 A Mixture Gaussian Example

To further illustrate the performance of the EBGAN, we consider a more
complex example which was taken from Saatci and Wilson (2017). The
dataset was generated from a 10-component mixture Gaussian distribution

in the following procedure: (i) generate 10 cluster means: u() ~ A(0,2515),
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j=1,2,...,10, where I, denotes a 2-dimensional identity matrix; (ii) gen-
erate 10 mapping matrices: M) e R190%2 for j = 1,2,...,10, with each
element of the matrices independently drawn from A(0,25). (iii) generate
1000 observations of ) for each (@, M@): 19 ~ (N(0, I,) 0.5+ @) x
(MUNT for j =1,2,...,10,i=1,2,...,1000.

For this example, the EBGAN was run with the prior ¢, = N(0,1), k, =
10, and ¢3(D) = —log(1—D) and log(D). The discriminator has a structure
of 100 —1000—1 and the generator has a structure of 10— 1000 — 100, which
are the same as those used in Saatci and Wilson (2017). The results with
¢3(D) = —log(1 — D) are presented below and those with ¢3(D) = log(D)
are presented in the supplement.

For comparison, the minimax GAN (Goodfellow et al., 2014), Bayesian
GAN (Saatci and Wilson, 2017), ProbGAN (He et al., 2019), and Lipschitz
GAN (Zhou et al., 2019) were applied to this example with the parameter
settings given in the supplement. For all the four methods, we employed the
same settings of ¢1, ¢ and ¢3 and the same discriminator and generator
as the EBGAN. For a thorough comparison, we have tried to train the
EBGAN with a Lipschitz penalty.

Figure 3 examines the convergence of E(D

(x)) and E(DQ((;) (7). It

t
o\

indicates that except for the EBGAN, none of the four methods, minimax
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Figure 3: Nash equilibrium convergence plots with ¢3(D) = —log(1 — D),
which compare the empirical means of D (x;) and D ) (Z;) produced by
d

o'
different methods along with iterations: (a) EBGAN, ( ) minimax GAN,
(c) Bayesian GAN, (d) ProbGAN, (e) Lipschitz-GAN, (f) EBGAN with a
Lipschitz penalty.

GAN, Bayesian GAN, ProbGAN and Lipschitz-GAN, has reached the 0.5-
0.5 convergence. Compared to Figure 3(a), Figure 3(f) shows that the
Lipschitz penalty improves the convergence of the EBGAN slightly.

Other than the convergence plots of E(Del(it) (x)) and E(Dgg)(fc)), we
checked whether the fake samples recover all 10 components of the mixture
distribution, where the principal component analysis (PCA) was used for
high-dimensional data visualization. For EBGAN, we used only the gener-
ators obtained at the last iteration: we simulated 1000 fake samples from

each of k, = 10 generators. As shown in Figure 4, EBGAN recovered all
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10 components in both cases with or without the penalty term, while the
other four methods failed to do so. The minimax GAN and Lipschitz GAN,
both working with a single generator, failed for this example. The BGAN
and ProbGAN worked better than minimax GAN, but still missed a few
components. In the supplement, we compared the performance of different
methods with ¢3 = log(D). The results are similar to Figures 3 and 4.

For the EBGAN, we have also tried to use generators simulated at
multiple iterations, e.g., those in the last 2000 iterations. We found that
the component recovery plot can be further improved. For simplicity, we
used only the generators obtained at the last iteration. If the EBGAN is run
with a larger value of k,, the overlapping area can also be further improved.

In summary, EBGAN performs very well for this mixture example:
the fake samples generated by it exhibit both good quality and diversity.
The comparison with existing methods indicates that integrating multiple
generators is essential for overcoming the mode collapse issue, particularly
when the objective function lacks a mechanism to enhance the similarity

between pg, and pgat, at the density level.

4.3 Image Generation

Fashion-MNIST is a dataset of 60,000 training images and 10,000 test im-

ages. Each image is of size 28 x 28 and has a label from 10 classes: T-shirt,
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Figure 4: Component recovery plots with ¢3(D) = —log(l — D): (a)

EBGAN with A = 0, (b) minimax GAN, (¢) BGAN, (d) ProbGAN, (e)
Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.

Trouser, ..., Ankle boot. The full description for the dataset can be found
at https://github.com/zalandoresearch/fashion-mnist.

For this example, we compared EBGAN with GAN, BGAN and Prob-
GAN with parameter settings given in the supplement. The results are
summarized in Figure 5 and Table 1. Figure 5 shows that for this ex-
ample, the EBGAN can approximately achieve the 0.5-0.5 convergence for
E(Defﬁ (x;)) and E(Defﬁ (Z;)); that is, the EBGAN can produce high quality
images which are almost indistinguishable from real ones. However, none
of the existing three methods can achieve such good convergence.

We further assess the quality of images generated by different meth-
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https://github.com/zalandoresearch/fashion-mnist

Figure 5: Convergence plots and images produced by (a) GAN, (b) Bayesian
GAN, (c¢) ProbGAN, (d) EBGAN with a KL-divergence prior, and (e)
EBGAN with a Gaussian prior. For each of the convergence plots, x-axis
represents iterations, ranging from 0 to 40,000; and y-axis represents the
empirical mean of discriminator values, ranging from 0 to 1.0, where dotted
and solid lines are for real and fake samples, respectively.

ods using three metrics: inception scores (IS) (Salimans et al., 2016), first
moment Wasserstein distance (1-WD), and maximum mean discrepancy
(MMD). Refer to Section S2 of the supplement for their definitions and cal-
culation procedures. The results are summarized in Table 1, which indicates

the superiority of the EBGAN in image generation.

Table 1: Average IS, 1-WD, and MMD values produced by different meth-
ods for Fashion MNIST, where the averages and standard deviations (given
in the parentheses) were calculated based on 5 independent runs.

Method GAN Bayesian GAN  ProbGAN  EBGAN(KL) EBGAN(Gaussian)

IS 7525 (0.011) 7.450 (0.044) 7.384 (0.056) 7.606 (0.035)  7.712 (0.024)
1-WD  6.360 (0.012)  6.363 (0.015)  6.367 (0.024) 6.356 (0.015)  6.287 (0.025)
MMD  0.276 (0.002)  0.277 (0.002)  0.276 (0.002) 0.257 (0.001)  0.275 (0.003)
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4.4 Nonparametric Clustering

Clustering has been extensively studied in unsupervised learning with clas-
sical methods such as expectation-maximization (EM) (Dempster et al.,
1977) and K-means. Although its main focus is to group data into different
classes, it would be even more beneficial if clustering was done along with
dimension reduction, as it enhances the interpretability of clusters. This
simultaneous goal of clustering and dimension reduction can be achieved
through generative clustering methods such as Cluster GAN (Mukherjee
et al., 2019) and GAN-EM (Zhao et al., 2019).

Since the cluster structure is generally not retained in the latent space
of the GAN, Cluster GAN modifies the structure of the GAN to include
an encoder network, which enforces precise recovery of the latent vector so
that it can be used for clustering. Let the encoder be parameterized by 6,.

Cluster GAN works with the following two objective functions:

Ja(0d;09) = Ezrpyara 91(Do, (%)) + Banpy, d2(Doy (1)),
Tge(0g.06100) = ~Barpyp 81 (Do, () + Eanpy, 03(Do, (x)) (4.1)
~ BuBar, 120 = €5 @)1 = BeEary, H(ze: &5 (@),
where z = (z,, z.) is used as the latent vector to generate data, z, denotes
a random noise vector, and z. denotes an one-hot vector representing the

index of clusters; H(+, ) is the cross-entropy loss; and 5, > 0 and 5. > 0 are
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regularization parameters. The choice of 3, and 3. should balance the two
ends: large values of (3, and . will delay the convergence of the generator,
while small values of 3, and (. will delay the convergence of the encoder.
In general, we set 3, = o(1) and . = o(1). In this setup, the encoder is the
inverse of the generator so that it recovers from data to the low-dimensional
latent vector by &, (z) = (Eél)(x),ﬁg(j)(x)) R — > = (2,,%.), where
S(Sf) (x) can be used for clustering.

Cluster EBGAN extends the structure of Cluster GAN by allowing mul-
tiple generators to be trained simultaneously. Similar to (2.6)-(2.7), cluster

EBGAN works by solving the following integral optimization problem
0, = arg max / Ta(04; 0,)7(8,, 6,04, D)db,,db., (4.2)
d

and then simulate (6, 6.) from the distribution
77(097 96|§d7 D) X eXp{w]]g,e(ega Oc; éd)}pg,e(egv 06)7 (4'3)

where Jg.(0y,0c;:04) = NJge(0y,0:05) and py(0,,0.) denotes the prior
density function of (6,,60,). Let 7.(0,|04,D) = [ m(0,,0.|04, D)df. be the
marginal conditional density function of 6,. Then, by Theorem 1 and
Corollary 1, (64, 7.(8,|04, D)) is an asymptotic solution to the game (2.4)

as N — oo. Note that for m.(8,|0s, D), we can simply treat q,(6,) o
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J exp{=N BBy, 10— E30 (2) 2 = N BBy, Hlzer E57 (2)) }Pg.e (0, 0c)
as the prior of 6. Therefore, Theorem 1 and Corollary 1 still apply.

The equations (4.2)-(4.3) provide a general formulation for extended
applications of the EBGAN. In particular, the embedded decoder (latent
variable — fake data) and encoder (fake data — latent variable) enable
the EBGAN to be used in many nonparametric unsupervised statistical
tasks. Other than clustering, it can also be used for tasks such as dimension
reduction and image compression.

Classical clustering methods can be roughly grouped into three cate-
gories, namely, partitional clustering, hierarchical clustering, and density-
based clustering. The K-means clustering, agglomerative clustering, and
density-based spatial clustering of applications with noise (DBSCAN) are
well known representatives of the three categories, respectively. In what
follows, Cluster-EBGAN is compared with the representative clustering
methods as well as Cluster GAN on four different datasets. For MNIST, we
used a deep convolutional GAN (DCGAN) with conv-deconv layers, batch
normalization and leaky relu activations. For other datasets, simple feed
forward neural networks were used. The results are summarized in Table
2, which indicates the superiority of the Cluster-EBGAN in nonparametric

clustering. Refer to the supplement for the details of the experiments.

33



Table 2: Comparison of Cluster EBGAN and other methods on different
datasets, where average purity, adjusted rand index (ARI) and their stan-
dard errors (in parentheses) were computed based on five independent runs.

Data  Metric K-means Agglomerative DBSCAN Cluster-GAN  Cluster-EBGAN

~ Pumity  0.8933 0.8933 0.8867  0.8973(0.041) 0.9333(0.023)

s ART 0.7302 0.7312 0.5206  0.5694(0.169) 0.8294(0.050)
Purity  0.8905 0.8714 - 0.7686(0.049)  0.9105(0.005)

Seeds AT 0.7049 0.6752 - 0.4875(0.090)  0.7550(0.011)
Purity  0.5776 0.7787 - 0.7217(0.02)  0.8826(0.02)

MNIST - aR1 03607 0.5965 - 0.5634(0.02)  0.7780(0.03)

5. Conclusion

This paper has identified the reasons why the GAN suffers from the mode
collapse issue and proposed a new formulation to address this issue. Ad-
ditionally, an empirical Bayes-like method is proposed for training GAN
under the new formulation. The new formulation is general, allowing for
easy reformulation and training of various GAN variants such as Lipschitz
GAN and cluster GAN using the proposed empirical Bayes-like method.
The proposed empirical Bayes-like method can be extended in various
ways. For example, the generator can be simulated using other stochas-
tic gradient MCMC algorithms such as SGHMC (Chen et al., 2014); and
the discriminator can be trained using an advanced SGD algorithm such as
Adam (Kingma and Ba, 2015) and AdaMax (Kingma and Ba, 2015). More-

over, the proposed method can be easily extended to learn sparse generators
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by imposing an appropriate prior distribution on the generator. Refer to
Sun et al. (2022) for prior settings for consistent sparse deep learning.

In summary, this paper has presented a new formulation for the GANs
as randomized decision problems, and proposed an effective method to solve
them. From the perspective of statistical decision theory, further inves-
tigation into the application of the proposed method to other classes of
risk functions would be of great interest. We anticipate that the proposed

method will find wide applications in the field of statistical decision science.

Supplementary Materials

The supplementary material contains the proofs of the theoretical results

and provides additional numerical examples
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