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1. Introduction

This paper is a sequel to [C]. In loc.cit. it was shown that a conjecture of
Braverman-Kazhdan on acyclicity of ρ-Bessel sheaves on reductive groups follows
from a certain vanishing conjecture. The goal of this paper is to give a proof of this
vanishing conjecture. In the introduction, we would like to recall the statement of
the vanishing conjecture, explain its applications to the conjectures of Braverman-
Kazhdan on acyclicity of ρ-Bessel sheaves and non-linear Fourier kernels for finite
reductive groups, and outline a proof of the vanishing conjecture.

1.1. The vanishing conjecture. Let k be an algebraic closure of a finite field Fq

with q-element of characteristic p > 0 or k = C. We fix a prime number ℓ different
from p. We set E = Qℓ in the case char k = p and E = C in the case k = C.
We will consider the following two geometric/sheaf-theoretic contexts: (1) ℓ-adic
sheaves on schemes over k of characteristic p, (2) holonomic D-modules on schemes
over k = C. We refer to context (1) as the ℓ-adic setting and context (2) as the de

Rham setting. We will fix a non-trivial character ψ : Fq → Q×
ℓ . Depending on the

setting, let Lψ be the Artin-Schreier sheaf on the additive group Ga associated to
ψ in the ℓ-adic setting or the exponential D-module in the de Rham setting.

The vanishing conjecture proposed in [C] is a generalization of the well-known
acyclicity

(1.1) H∗
c(Ga,Lψ) = 0

of Lψ to general reductive groups. The starting point is the observation that (1.1)
can be restated as acyclicity of a certain local system on SL2 over certain affine
subspaces. Namely, let tr : SL2 → Ga be the trace map and let U be the unipotent
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1172 TSAO-HSIEN CHEN

radical of the the standard Borel subgroup B of SL2. Then (1.1) is equivalent to
the following acyclicity of the local system Φ = tr∗Lψ over U -orbits on the open
Bruhat cell: for any x ∈ SL2 \B we have

(1.2) H∗
c(xU, i

∗Φ) = 0.

Here i : xU → SL2 is the embedding. Indeed, it follows from the fact that for any
x ∈ SL2 \ B, the trace map restricts to an isomorphism tr : xU ≃ Ga between the
U -orbit through x and Ga.

To state a generalization of (1.2) to general reductive groups, let me first recall
some notations and definitions. Let G be a connected reductive group over k.
Let T be a maximal torus of G and B be a Borel subgroup containing T with
unipotent radical U . Denote by W = NG(T )/T the Weyl group, where NG(T ) is
the normalizer of T in G. Depending on the setting, we denote by πt

1(T ) the tame
étale fundamental group of T if char k > 0 or the topological fundamental group
πt
1(T ) = π1(T (C)) of T (C) if k = C. We denote by C(T )(E) the set of continuous

E-valued characters of πt
1(T ).

For any character χ ∈ C(T )(E), we write Lχ for the corresponding rank one ℓ-
adic/de Rham local system on T . The Weyl group W acts naturally on C(T )(E) and
for any χ ∈ C(T )(E), we denote by W′

χ the stabilizer of χ in W and Wχ ⊂ W′
χ, the

subgroup of W′
χ generated by those reflections sα such that the pull-back (α̌)∗Lχ is

isomorphic to the trivial local system, where α̌ : Gm → T is the coroot associated
to α.1

Denote by DW(T ) the W-equivariant bounded derived category of sheaves on T .
For any F ∈ DW(T ) and χ ∈ C(T )(E), the W-equivariant structure on F together
with the natural W′

χ-equivariant structure on Lχ give rise to an action of W′
χ on

the cohomology groups H∗
c(T,F ⊗Lχ) (resp. H∗(T,F ⊗Lχ)). In particular, we get

an action of the subgroup Wχ ⊂ W′
χ on the cohomology groups above. Denote by

signW : W → {±1} the sign character of W.
The key in formulating the generalization of (1.2) to general G is the following

definition of central complexes on T introduced in [C, Definition 1.1]:

Definition 1.1. A W-equivariant complex F ∈ DW(T ) is called central (resp.
∗-central) if for any χ ∈ C(T )(E), the group Wχ acts on

H∗
c(T,F ⊗ Lχ) (resp. H∗(T,F ⊗ Lχ))

via the sign character signW. It is called strongly central (resp. strongly ∗-central)
if the stabilizer W′

χ acts on the cohomology groups above by the sign character.

Remark 1.1. If the center of G is connected, then it is known that Wχ = W′
χ for

all χ ∈ C(T )(E) (see, for example, [DL, Theorem 5.13]), thus the notions of central
complexes and strongly central complexes are the same. In general, the two notions
are different (see the example below).

Example 1.2. Consider the case G = SL2. The Weyl group W ≃ {±1} acts on
T ≃ Gm by the inverse map and it is straightforward to check that Wχ ̸= {1} if
and only if χ is trivial. Thus a W-equivariant complex F ∈ DW(T ) is central if and
only if W acts on H∗

c(T,F) by the sign character, equivalently, H∗
c(T,F)W = 0. Let

χ ∈ C(T )(Qℓ) be a character satisfying χ = χ−1. The corresponding local system

1The group Wχ plays an important role in the study of representations of finite reductive
groups and character sheaves (see, e.g., [Lu]).
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1173

Lχ has a canonical equivariant structure Lχ ≃ Lχ−1 ≃ (−1)∗Lχ. If χ is trivial then
H∗

c(T,Lχ)W ≃ H∗
c(T,Qℓ)

W ̸= 0, and hence Lχ ≃ Qℓ is not central. If χ is non-
trivial, then H∗

c(T,Lχ) = 0 and hence Lχ is central. Note that in the latter case we

have Wχ = {1} and W′
χ = {±1} and since H∗

c(T,Lχ ⊗ Lχ)
W′

χ ≃ H∗
c(T,Qℓ)

W ̸= 0
we see that Lχ is not strongly central.

Recall the Lusztig induction functor IndGT⊂B : D(T ) → D(G) between bounded
derived category of sheaves on T and G. It is given by pull-push IndGT⊂B :=

c̃∗ ◦ q̃∗[dimG − dimT ] along the correspondence G
c̃← G̃

q̃→ T , where G̃ is the
Grothendieck-Springer simultaneous resolution and c̃ and q̃ are the natural projec-
tion maps, see (3.1).

For F ∈ DW(T ), the W-equivariant structure on F defines a W-action on
IndGT⊂B(F) and we denote by

ΦF := IndGT⊂B(F)W

the W-invariant factor in IndGT⊂B(F). In [C, Conjecture 1.2], we proposed the
Conjecture 1.2 on acyclicity of ΦF over certain affine subspaces in G, called the
vanishing conjecture:

Conjecture 1.2. Assume F ∈ DW(T ) is central (resp. ∗-central). For any x ∈
G \B, we have the following cohomology vanishing

(1.3) H∗
c(xU, i

∗ΦF ) = 0 (resp. H∗(xU, i!ΦF ) = 0),

where i : xU → G is the natural inclusion map. Equivalently, the derived pushfor-
ward π!(ΦF) (resp. π∗(ΦF )) is supported on the closed subset T = B/U ⊂ G/U .
Here π : G → G/U is the quotient map.

Example 1.3. Assume G = SL2. Consider the trace map tr : SL2 → Ga and let
trT : T → Ga be its restriction to the maximal torus. The pullback F = tr∗TLψ

together with the canonical W-equivariant structure is central. Moreover, we have

ΦF ≃ tr∗Lψ[2]

(see, e.g., [C, Example 1.2 and 1.7]). It follows that Conjecture 1.2 (in this case)
is equivalent to (1.2), and hence is also equivalent to the acyclicity of the Artin-
Schreier sheaf (1.1).

1.2. Braverman-Kazhdan conjectures. Assume k = Fq and G is defined over
Fq. In [BK1, BK2], Braverman and Kazhdan associated to each representation
ρ : Ǧ → GL(Vρ) of the complex dual group, a Qℓ-valued function

(1.4) γG,ρ,ψ : Irr(G(Fq)) → Qℓ

on the set of irreducible representation of the finite group G(Fq), satisfying the
following remarkable properties:

(1) it is constant on Deligne-Lusztig packets, that is, we have γG,ρ,ψ(π) =
γG,ρ,ψ(π′) if π and π′ appear in the same Deligne-Lusztig representation
RT,θ,

(2) if π appears in RT,θ, then the value γG,ρ,ψ(π) is given by a certain explicit
Gauss-type sum associated to the character θ.
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1174 TSAO-HSIEN CHEN

They called γG,ρ,ψ the γ-function associated to ρ.
The function γG,ρ,ψ on Irr(G(Fq)) gives rise to a Qℓ-valued class function φG,ρ,ψ

on G(Fq) characterized by the property that the operator

Fρ : Func(G(Fq)) → Func(G(Fq))

on the space of functions on G(Fq) given by convolution with φG,ρ,ψ satisfies

Fρ(χπ) = γG,ρ,ψ(π)χπ,

where χπ is the character of π ∈ Irr(G(Fq)). In the case G = GLn and ρ = std is the
standard representation of Ǧ = GLn(C), the function φG,ρ,ψ is given by ψ◦tr (up to
some power of q) and the operator Fρ is the linear Fourier transform on the space
of functions on GLn(Fq) (or rather, the restriction of the linear Fourier transform
on Func(gln(Fq)) to the subspace Func(GLn(Fq)). Thus, one can view Fρ as a kind
of non-linear Fourier transform and φG,ρ,ψ as the corresponding Fourier kernel.

In loc. cit. Braverman and Kazhdan proposed a geometric construction of φG,ρ,ψ

using the theory of ℓ-adic sheaves. To explain their construction, let us fix a F-
stable maximal torus T ⊂ G where F : G → G is the geometric Frobenius morphism
and consider the restriction of ρ to the dual maximal torus Ť ⊂ Ǧ. Then there
exists a collection of weights

λ = {λ1, . . . ,λr} ⊂ X•(Ť ) := Hom(Ť ,C×)

such that there is an eigenspace decomposition Vρ =
⊕r

i=1 Vλi of Vρ, where Ť acts
on Vλi via the character λi. One can regard λ as collection of co-characters of T
using the the canonical isomorphism X•(Ť ) ≃ X•(T ) and define

ΦT,ρ,ψ = prλ,!tr
∗Lψ[r] Φ∗

T,ρ,ψ = prλ,∗tr
∗Lψ[r],

where

prλ :=
r∏

i=1

λi : Gr
m −→ T, tr : Gr

m −→ Ga, (x1, . . . , xr) →
r∑

i=1

xi.

It is shown in [BK2] that both ΦT,ρ,ψ and Φ∗
T,ρ,ψ carry natural W-equivariant

structures and the resulting objects in DW(T ), denoted again by ΦT,ρ,ψ and Φ∗
T,ρ,ψ,

are called the ρ-Bessel sheaves.2 The ρ-Bessel sheaves on G, denoted by ΦG,ρ,ψ and
Φ∗

G,ρ,ψ, are defined as

ΦG,ρ,ψ = IndGT⊂B(ΦT,ρ,ψ)
W, Φ∗

G,ρ,ψ = IndGT⊂B(Φ
∗
T,ρ,ψ)

W.

It is shown in [BK2, Theorem 4.2] and [CN, Appendix B] that, if ρ satisfies certain
positivity assumption (see [BK2, Section 1.4]), then the ρ-Bessel sheaves ΦT,ρ,ψ

and Φ∗
T,ρ,ψ on T are in fact local systems on the image of prλ, moreover, we have

ΦT,ρ,ψ ≃ Φ∗
T,ρ,ψ. This is a generalization of Deligne’s theorem on Kloosterman

sheaves [De1].
Braverman and Kazhdan showed that one can endow the ρ-Bessel sheaf ΦG,φ,ψ

with a Weil structure F∗ ΦG,φ,ψ ≃ ΦG,φ,ψ and they proposed Conjecture 1.3:

2In [BK1,BK2], the authors called ΦT,ρ,ψ γ-sheaves on T . However, based on the fact that
the classical γ-function is the Mellin transform of the Bessel function, we follow [Ng] and use the
term ρ-Bessel sheaves instead of γ-sheaves.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1175

Conjecture 1.3. Let Tr(ΦG,ρ,ψ) : G(Fq) → Qℓ be the function corresponding to
ΦG,ρ via the functions-sheaves correspondence. We have

Tr(ΦG,ρ,ψ) = φG,ρ,ψ

Conjecture 1.3 gives a geometric construction of the non-linear Fourier kernel
φG,ρ,ψ. They also showed that Conjecture 1.3 follows from Conjecture 1.4 on
acyclicity of ρ-Bessel sheaves:

Conjecture 1.4 ([BK1, Conjecture 9.12]). For any x ∈ G\B, we have the following
cohomology vanishing

H∗
c(xU, i

∗ΦG,ρ,ψ) = 0 (resp. H∗(xU, i!Φ∗
G,ρ,ψ) = 0),

where i : xU → G is the natural inclusion map. Equivalently, the derived pushfor-
ward π!(ΦG,ρ,ψ) (resp. π∗(Φ∗

G,ρ,ψ)) is supported on the closed subset T = B/U ⊂
G/U . Here π : G → G/U is the quotient map.

The goal of this paper is to give a proof of Conjecture 1.4, and hence Conjecture
1.3. Note that the construction of ρ-Bessel sheaves and Conjecture 1.4 are entirely
geometric and have obvious counterparts in the de Rham setting. Moreover, it
is shown in [C] that the ρ-Bessel sheaves on T are in fact strongly central (see
Definition 1.1). Thus the vanishing conjecture contains Conjecture 1.4 as a special
case and what we actually prove here is the vanishing conjecture.

Remark 1.4. Conjecture 1.3 and Conjecture 1.4 here are (slightly) generalized ver-
sions of the original conjectures of Braverman and Kazhdan. The original conjec-
tures require that the representation ρ satisfies the positivity assumption mentioned
earlier. In Corollary 1.6 and Corollary 1.7, we will prove that their conjecture holds
without any assumption on ρ.

1.3. The main result. Theorem 1.5 is the main result of the paper which confirms
the vanishing conjecture for almost all characteristics:

Theorem 1.5 (Theorem 7.1). There exists a positive integer N depending only on
the type of the group G such that the following holds. Assume k = C or char k = p
is not dividing Nℓ. Let F ∈ DW(T ) be a central complex (resp. ∗-central complex)
on T and let ΦF = IndGT⊂B(F)W ∈ D(G). Then for any x ∈ G \ B, we have the
following cohomology vanishing

(1.5) H∗
c(xU, i

∗ΦF ) = 0 (resp. H∗(xU, i!ΦF ) = 0).

Here i : xU → G is the embedding. Equivalently, the derived pushforward π!(ΦF )
(resp. π∗(ΦF )) is supported on the closed subset T = B/U ⊂ G/U . Here π : G →
G/U is the quotient map.

Remark 1.5. The assumption on the characteristic of k comes from a spreading out
argument used in the proof (see Section 1.5).

Remark 1.6. In [C], we proved the vanishing conjecture in the case G = GLn using
mirabolic subgroups. The argument in loc. cit. was inspired by the work of Cheng
and Ngô [CN] on Braverman-Kazhdan conjectures for G = GLn. The proof of
Theorem 1.5 for general G uses different methods (see Section 1.5).
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1176 TSAO-HSIEN CHEN

1.4. Applications. In this subsection we assume the characteristic of k is either
zero or not dividing Nℓ, where N is the positive integer in Theorem 1.5.

Corollary 1.6. Conjecture 1.4 holds.

Proof. It was shown in [C, Theorem 1.4] that Braverman-Kazhdan’s ρ-Bessel sheaf
ΦT,ρ,ψ (resp. Φ∗

T,ρ,ψ) on T is strongly central (resp. strongly ∗-central). Thus
Theorem 1.5 immediately implies the corollary. !
Corollary 1.7. Conjecture 1.3 holds.

Proof. It was shown in [BK2, Corollary 6.7] that Conjecture 1.4 implies Conjecture
1.3. Thus Corollary 1.6 implies Corollary 1.7. !

Conjecture 1.4 was proved by Braverman and Kazhdan [BK2, Theorem 6.9] in
the case when the semi-simple rank of G is less or equal to one, and by Cheng and
Ngô [CN, Theorem 2.4] in the case G = GLn.

Conjecture 1.3 was proved by Braverman and Kazhdan [BK2, Theorem 1.6] when
the semi-simple rank of G is less or equal to one or G = GLn under some assumption
on ρ. In a recent work, G. Laumon and E. Letellier established Conjecture 1.3 via a
different method [LL, Theorem 1.0.2]. It is interesting to note that in loc.cit. they
also made no assumption on the representation ρ.

Remark 1.7. In [LL, Theorem 1.0.1], Laumon-Letellier also proved a formula for
the non-linear Fourier kernel φG,ρ,ψ in terms of Deligne-Lusztig inductions. It will
be interesting to prove a similar result in the de Rham setting, that is, write down
an explicit formula for the ρ-Bessel D-module ΦG,ρ,ψ, or rather, the corresponding
system of differential equations on G. We expect applications of such a formulation
to the Braverman-Kazhdan-Ngô’s approach to functional equation of automorphic
L-functions [BK1,Ng].

1.5. Outline of the proof. The proof of Theorem 1.5 consists of three steps:

Step 1. We construct for each W-orbit θ in C(T )(E) a remarkable W-equivariant
local system Eθ on T and study the equivariant perverse sheaf or D-module Mθ =
IndGT⊂B(Eθ)W on G.3 A key observation is that to prove Theorem 1.5 it suffices to
prove the acyclicity of Mθ, that is, the cohomology vanishing properties in (1.5)
where ΦF is replaced by Mθ. This follows from a computation of the convolution
of Mθ with ΦF (Proposition 7.5), where F ∈ DW(T ) is a ∗-central complex, and a
result of Laumon on the conservativity of the Mellin transform (Lemma 7.7).

Step 2. We use the techniques developed in [BG,BFO] on Drinfeld center of Harish-
Chandra bimodules and character D-modules to prove acyclicity of Mθ in the de
Rham setting. An important point here is that the D-module Mθ associated to
Eθ is a character D-module and hence the results in loc. cit. are applicable. A
key step in the proof is to show that the Harish-Chandra bimodule corresponding
to Eθ, under the Beilinson-Bernstein localization theorem, has a canonical central
structure (Proposition 6.7).

Step 3. We construct a mixed characteristic lifting Mθ,A of Mθ over a strictly
henselian discrete valuation ring A with residue field k of characteristic not dividing
Nℓ, where N is a positive integer depending only on the type of G. We prove that

3The author learned the existence of Eθ from R. Bezrukavnikov.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1177

Mθ,A is universally locally acyclic with respect to the quotient map πA : GA →
GA/UA (here GA and UA are models of G and U over A). This allows us to deduce
acyclicity of Mθ in the ℓ-adic setting from the de Rham setting. This completes
the proof of Theorem 1.5.

Remark 1.8. The proof of acyclicity of Mθ in the de Rham setting makes use of
Harish-Chandra bimodules, and hence is algebraic. It would be interesting to have
a geometric proof which treats the cases of various ground fields and sheaf theories
uniformly. Presumably, such a proof will provide an explicit bound on the integer
N in Theorem 1.5.

1.6. Related work and further directions. We briefly explain the relationship
between the results of the paper and the work of Ginzburg [Gi2], Lonergan [Lo], and
Ben-Zvi-Gunningham [BZG] on Whittaker D-modules, Toda lattice, and nil-Hecke
algebras, and discuss some generalizations of the results of the paper.

We first recall the definition of Whittaker sheaves on G. Fix a non-degenerate
homomorphism χ : U → Ga, that is, the restriction of χ to each root subgroup
Uα ⊂ U is non-trivial for each simple root α. Depending on the setting, a Whittaker
sheaf on G is a perverse sheaf or a holonomic D-module F on G together with an
isomorphism a◦F ≃ χ◦Lψ "χ◦Lψ "F satisfying the usual cocycle condition. Here
a : U × U ×G → G, a(u1, u2, g) = u1gu

−1
2 . In the de Rham setting, Ginzburg and

Lonergan proved that the category of Whittaker D-modules on G is equivalent to
the category of holonomic modules over the quantum Toda lattice of G, and is also
equivalent to the category of holonomic modules over nil-Hecke algebra of G, see
[Gi2, Theorem 1.5.1] and [Lo, Theorem 1.2.2]. It turns out that the results in loc.
cit. and Theorem 4.2 of the present paper imply that the category of holonomic
modules over nil-Hecke algebra of G is equivalent to the category of central D-
modules on T . As a corollary, we obtain:

Theorem 1.8. The category of Whittaker D-modules on G is equivalent to the
category of central D-modules on T .

On the other hand, in the work [BZG], Ben-Zvi and Gunningham constructed
a functor from the category of Whittaker D-modules on G to the category of G-
conjugation equivariant D-module on G. They called it the Ngô functor and they
conjectured that the objects in the essential image of the Ngô functor satisfy the
cohomology vanishing property in (1.3), see [BZG, Conjecture 2.9 and 2.14]. We
propose the following ℓ-adic counterpart of the results and conjectures discussed
above:

Conjecture 1.9. The following categories are equivalent:

(1) The category of ℓ-adic Whittaker sheaves on G.
(2) The category of ℓ-adic central perverse sheaves on T .
(3) The full subcategory of the category G-conjugation equivariant ℓ-adic per-

verse sheaves on G whose object Φ satisfy H∗
c(xU, i

∗Φ) = 0 for all x ∈ G\B,
or equivalently, π!(Φ) is supported on the closed subset T = B/U ⊂ G/U .
Here π : G → G/U is the quotient map.

Remark 1.9. We expect the equivalence from (2) to (3) is given by the functor
sending a central perverse sheaf F on T to ΦF = IndGT⊂B(F)W. Note that this
functor is well-defined thanks to Theorem 1.5.
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1178 TSAO-HSIEN CHEN

Remark 1.10. It was mentioned in the introduction of [Gi2] that Drinfeld asked
the question of finding a description of an ℓ-adic counterpart of the category of
WhittakerD-modules on G in terms of W-equivariant sheaves on T . The conjecture
above provides a possible answer to Drinfeld’s question.

Remark 1.11. The conjecture above can be viewed as a finite group analogue of the
conjectural descriptions of the endomorphism ring of the Whittaker representation
of a (quasi-split) p-adic group G in terms of, on one hand, the ring of stable Bern-
stein center of G (viewed as stable distributions on the group) and, on the other
hand, the ring of functions on the moduli stack of Langlands parameters (see, e.g.,
[FS, Example X.1.6] and [Z2, Conjecture 4.5.1]).

1.7. Organization. We briefly summarize here the main goals of each section. In
Section 2 we collect standard notation on algebraic groups, ℓ-adic sheaves, and D-
modules. In Section 3 we study induction and restriction functors. In Section 4,
we study central and ∗-central complexes using the Mellin transforms. In Section 5
we study the local systems Eθ. In Section 6 we establish acyclicity of the character
sheaves Mθ, see Theorem 6.1. In Section 7 we prove the main result of the paper,
Theorem 1.5.

2. Notations

2.1. We denote by B = G/B the flag variety. We denote by g, b, t, n the Lie
algebras of G,B, T, U . We denote by Grs (resp. T rs) the open subset consisting of
regular semi-simple elements in G (resp. T ). We denote by Greg the open subset
consisting of regular elements in G. We denote by Ga the additive group and Gm

the multiplicative group. We denote by Ǧ the complex dual group of G and Ť the
dual maximal torus. We denote by Wex

a = W ! Λ the extended affine Weyl group
and Wa = W ! R the affine Weyl group of Ǧ. Here Λ = X•(Ť ) = Hom(Gm, Ť ) is
the co-character lattice and R ⊂ Λ is the set of co-roots of Ǧ.

2.2. For an algebraic stack X over k, we denote by D(X ) the bounded derived
category of ℓ-adic sheaves on X in the ℓ-adic setting or the bounded derived category
of holonomic D-modules on X in the de Rham setting.

For a smooth scheme X, we will write 1X ∈ D(X)♥ for the constant perverse
sheaf Qℓ[dimX] on X in the ℓ-adic setting or the structure sheaf OX in the de
Rham setting.

For a representable morphism f : X → Y , the six functors f∗, f∗, f!, g!,⊗,Hom
are understood in the derived sense. For a smooth map f : X → Y of relative
dimension d we write f◦ = f∗[d] = f ![−d].

For an algebraic group H over k acting on a k-scheme X, we denote by X/H
the corresponding quotient stack and X ! H the geometric invariant quotient (if
exists). We will write H/adH for the quotient stack of H with respect to the adjoint
action. Consider the case when H is a finite group. Then the pull-back along the
quotient map X → X/H induces an equivalence between D(X/H) and the (naive)
H-equivariant derived category on X, denoted by DH(X), whose objects consist
of pair (F ,φ), where F ∈ D(X) and φ : a∗F ≃ pr∗F is an isomorphism satisfying
the usual compatibility conditions (here a and pr are the action and projection
map from H × X to X respectively).4 We will call an object (F ,φ) in DH(X) a

4This holds in a more general situation when the neutral component of H is unipotent.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1179

H-equivariant complex and φ a H-equivariant structure on F . For simplicity, we
will write F = (F ,φ) for an object in DH(X).

We denote by τ≤n, τ≥n the truncation functors corresponding to the standard
t-structure on D(X ). For any F ∈ D(X ), we denote by H n(F) the n-th cohomol-
ogy sheaf. In the ℓ-adic setting, we denote by pτ≤n,p τ≥n the truncation functors
corresponding to the perverse t-structure. For any F ∈ D(X ), the n-th perverse
cohomology sheaf is defined as pH n(F) = pτ≥n

pτ≤n(F)[n].
Depending on the setting, we write D(X )♥ for the heart corresponding to the

perverse t-structure in the ℓ-adic setting and the heart corresponding to the stan-
dard t-structure in the de Rham setting.

For any stack X over k, we denote by Coh(X ) and QCoh(X ) the categories of
coherent and quasi-coherent sheaves on X , and Db

coh(X ) and Db
qcoh(X ) the corre-

sponding bounded derived categories.
Let F be a quasi-coherent sheaf or D-module on a scheme. We will write Γ(F)

and RΓ(F) for the global section and derived global section of F as an quasi-
coherent sheaf. For any scheme X we will write OX for the structure sheaf of X
and O(X) = Γ(OX) the ring of global functions on X.

Assume k = C. For any smooth scheme X we denote by DX the sheaf of
differential operators on X. Let f : X → Y be a principal T -bundle over a smooth
scheme Y . AD-module F onX is called T -monodromic if it is weakly T -equivariant
(see [BB, Section 2.5]). A object F ∈ D(X) is called T -monodromic if H i(F) is
T -monodromic for all i. Let F ∈ D(X) be a T -monodromic object. For any
µ ∈ ť ≃ t∗, we denote Γµ̂(F) (resp. RΓµ̂(F)) the maximal summand of Γ(F) (resp.
RΓ(F)) where t, acting as infinitesimal translations along the action of T , acts with
the generalized eigenvalue µ.

3. Induction and restriction functors

In this section we collect some known facts about induction and restriction func-
tors.

3.1. Recall the Grothendieck-Springer simultaneous resolution of the Steinberg map
c : G → T ! W :

(3.1) G̃
q̃

!!

c̃

""

T

q

""

G
c !! T ! W

where G̃ is the closed subvariety of G×G/B consisting of pairs (g, xB) such that
x−1gx ∈ B. The map c̃ is given by (g, xB) → g, and the map q̃ is given by
(g, xB) → x−1gx modU ∈ B/U = T . The induction functor IndGT⊂B : D(T ) →
D(G) is given by

IndGT⊂B(F) = c̃∗q̃
◦(F).

We have the following equivalent constructions of IndGT⊂B . Consider the fiber prod-
uct

Z = G×T!W T.
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1180 TSAO-HSIEN CHEN

It is known that the map h : G̃ → Z induced from (3.1) is a small map and it
follows that IC(Z) = h!1S ∈ D(Z)♥ is the IC-complex of Z. We have

(3.2) IndGT⊂B(F) ≃ (pG)∗(p
∗
T (F)⊗ IC(Z))[dimG− dimT ],

where pT : Z → T and pG : Z → G are the natural projection map. Let X be a
scheme acted on by an algebraic group H and let H ′ ⊂ H be a subgroup. There

is an averaging functor AvH/H′

∗ = π∗ : D(X/H ′) → D(X/H) (resp. AvH/H′

! = π! :
D(X/H ′) → D(X/H)) which is the right adjoint (resp. left adjoint) of the forgetful

functor oblvH/H′
: D(X/H) → D(X/H ′). Here π : X/H ′ → X/H is the natural

map. If H ′ = e is trivial we will omit H ′ and simply write AvH∗ = AvH/e
∗ (resp.

AvH! = AvH/e
∗ ) and oblvH = oblvH/e.

Note that, for any F ∈ D(T ), its ∗-pull back along B → T = B/U , denoted by
FB, can be regarded as an object in D(G/adB) and there is a canonical isomorphism

IndGT⊂B(F) ≃ oblvG/e ◦AvG/B
∗ (FB).

The functor IndGT⊂B admits a right adjoint ResGT⊂B : D(G) → D(T ), called the
restriction functor, and is given by

ResGT⊂B(F) = (qB)∗i
!
B(F),

where iB : B → G is the natural inclusion and qB : B → T = B/U is the quotient
map. More generally, one could define ResGL⊂P : D(G) → D(L), for any pair (L, P )
where L is a Levi subgroup of a parabolic subgroup P of G.

We have the following exactness properties of induction and restriction functors:

Proposition 3.1. (1) The functor IndGT⊂B maps perverse sheaves on T to perverse
sheaves on G. (2) The functor ResGL⊂P maps G-conjugation equivariant perverse
sheaves on G to L-conjugation equivariant perverse sheaves on L.

Proof. This is [BY, Theorem 5.4]. !

3.2. W-action. Let F ∈ DW(T ). Since the map pT : Z → T and the IC-complex
IC(Z) are W-equivariant, it follows from (3.2) that the W-equivariant structure on
F gives rise to a W-action on IndGT⊂B(F). We denote by

(3.3) ΦF := IndGT⊂B(F)W

the W-invariant factor of IndGT⊂B(F).
In the case when F is a W-equivariant perverse local system on T , we have the

following description of ΦF : Let qrs : T rs → T rs !W and crs : Grs → T rs !W be the
restriction of the maps in (3.1) to the regular semi-simple locus and let j : Grs → G
be the open embedding. Since qrs is an étale covering and c̃ : G̃ → G is a small
map, the restriction of F to T rs descends to a perverse local system F ′ on T rs !W
and

IndGT⊂B(F) ≃ j!∗j
∗IndGT⊂B(F)

is isomorphic to the intermediate extension of its restriction to Grs. As a direct
factor of IndGT⊂B(F), ΦF is also isomorphic to the intermediate extension of its
restriction to Grs and it follows that

(3.4) ΦF ≃ j!∗j
∗ΦF ≃ j!∗(c

rs)◦(F ′).
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1181

Let F ∈ DW(T )♥ and let E[W] → EndD(G)♥(Ind
G
T⊂B(F)) be the map coming

from the W-action. By adjunction, we get a map

E[W] → EndD(G)♥(Ind
G
T⊂B(F)) ≃ HomD(G)♥(F ,ResGT⊂B ◦ IndGT⊂B(F)),

which gives rise to

(3.5) E[W]⊗ F → ResGT⊂B ◦ IndGT⊂B(F).

We have the following generalization of [Gu, Theorem 4.6] to the group setting:

Proposition 3.2. Let F ∈ D(T )♥. (1) There is a canonical isomorphism⊕
w∈W w∗F ≃ ResGT⊂B ◦ IndGT⊂B(F). (2) Assume further that F ∈ DW(T )♥.

Then the composition

(3.6) E[W]⊗ F
φ
≃

⊕

w∈W

w∗F ≃ ResGT⊂B ◦ IndGT⊂B(F)

is equal to (3.5). Here φ is the W-equivariant structure of F .

Proof. We follow the argument in loc. cit.. We shall give a proof in the de Rham
setting. The same proof works for the ℓ-adic setting. Consider the product SG =
G̃×G B. There are two natural maps qS : SG → T and cS : SG → T coming from
q̃ : G̃ → T and c̃ : G̃ → T in (3.1). Let SG := H 0(qS × cS)∗(ωSG). Using base
changes formulas, it is easy to see that the functor ResGT⊂B ◦ IndGT⊂B(−) is given
by the kernel SG, that is, we have, ResGT⊂B ◦ IndGT⊂B(F) ≃ prl,∗(pr

◦
rF ⊗ SG), here

prl : prr : T ×T → T are the left and right projection maps. Now the same proof as
in [Gu, Section 4.3], replacing t by T , shows that there is a canonical isomorphism
of monads SG ≃

⊕
w∈W OΓw , here Γw = {x,wx|x ∈ T} ⊂ T × T . It follows

that ResGT⊂B ◦ IndGT⊂B(F) ≃ prl,∗(pr
◦
rF ⊗ SG) ≃

⊕
w∈W w∗F . This completes the

proof of (1). Assume F is W-equivariant. It follows from the construction that the
isomorphism in (1) intertwines the W-action on ResGT⊂B ◦ IndGT⊂B(F) with the one
on

⊕
w∈W w∗F given by the map

ar :
⊕

w∈W

w∗F w∗(φr)→
⊕

w∈W

w∗r∗F ≃
⊕

w∈W

(rw)∗F =
⊕

w∈W

w∗F ,

for any r ∈ W. Part (2) follows. !

We will need the following properties of induction functors. Let mG : G×G → G
and mT : T × T → T be the multiplication maps. For any M,M′ ∈ D(G), we
define M ∗ M′ := mG,∗(M " M′) ∈ D(G). Similarly, for any F ,F ′ ∈ D(T ), we
define F ∗ F ′ = mT,∗(F " F ′).

Proposition 3.3. Let M ∈ D(G/adG)♥ and F ∈ D(T ). Assume AvU∗ (M) is
supported on T = B/U ⊂ G/U . Then we have a natural isomorphism in D(G)

IndGT⊂B(F) ∗M ≃ IndGT⊂B(F ∗ ResGT⊂BM)

which is functorial with respect to F .

Proof. This is proved in [BK2, Proposition 2.9]. Let us recall the construction
in loc.cit.. For any H ∈ D(G/adB) and M ∈ D(G/adG)♥, there is a natural
isomorphism

AvG/B
∗ (H ∗ oblvG/B M) ≃ AvG/B

∗ (H) ∗M.
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When H = FB = q∗BF is the pull back of F along qB : B → T = B/U , the
assumption that AvU∗ (M) is supported on T implies that

FB ∗ oblvG/B M ≃ (F ∗ ResGT⊂B(M))B ∈ D(G/adB)

and it follows that

IndGT⊂B(F) ∗M ≃ oblvG/e ◦(AvG/B
∗ (FB) ∗M)

≃ oblvG/e ◦(AvG/B
∗ (FB ∗ oblvG/B M))

≃ oblvG/e ◦(AvG/B
∗ ((F ∗ ResGT⊂B(M))B)

≃ IndGT⊂B(F ∗ ResGT⊂B(M)).

!

4. Mellin transform, characterization, and functoriality

4.1. The scheme of tame characters. We review the construction of the scheme
C(T ) parametrizing tame characters of the fundamental group of T .

We first consider the de Rham setting. Let C[π1(T (C))] be the group algebra
of π1(T (C)) and we set C(T ) = Spec(C[π1(T (C))]) . Then the C-points of C(T )
are in bijection with characters of π1(T (C)). Note that, under the isomorphism
π1(T (C)) = X•(T ), characters of π1(T (C)) correspond to elements in the dual
torus Ť .

In the ℓ-adic setting, in [GL], a Qℓ-scheme C(T ) is defined, whose Qℓ-points are
in bijection with continuous characters of πt

1(T ). There is a decomposition

C(T ) =
⊔

χ∈C(T )f

{χ}× C(T )ℓ

into connected components, where C(T )f ⊂ C(T ) is the subset consisting of tame
characters of order prime to ℓ and C(T )ℓ is the connected component of C(T ) con-
taining the trivial character. It is shown in loc. cit. that C(T ) is Noetherian and
regular and there is an isomorphism

(4.1) C(T )ℓ ≃ Spec(Zℓ[[π1(T )ℓ]]⊗Zℓ Qℓ),

where Zℓ[[π1(T )ℓ]] is the completed group algebra of the pro-ℓ quotient π1(T )ℓ of
πt
1(T ). In addition, the Qℓ-points of C(T )ℓ are in bijection with characters of π1(T )ℓ.
For any χ ∈ C(T ), we denote by Lχ the corresponding rank one ℓ-adic/de Rham

local system on T .

4.2. Mellin transform. We give a review of Mellin transform in both de Rham
and ℓ-adic settings and establish some basic facts about them.

4.2.1. We first recall the Mellin transform of D-modules on T . Let xi ∈ Λ =
X•(Ť ) ≃ Hom(T,Gm) be a basis and consider the regular function O(T ) ≃ C[x±1

i ]
and the algebra of differential operators Γ(DT ) ≃ C[x±1

i ]⟨vi⟩/{vixj = xj(δij + vi)}
where vi = xi∂xi ∈ t are a basis for the T -invariant vector fields. Recall that for
any D-module F on T , the tensor product F ⊗ ωT with the canonical line bundle
ωT on T carries a natural right D-module structure. Note also that, if we consider
Γ(DT ) as the algebra of difference operators C[vi]⟨x±1

i ⟩/{vixj = xj(δij + vi)}, the
assignment N → Oť⊗O(̌t)N defines a canonical equivalence between the category of
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1183

right Γ(DT )-modules and the category QCoh(̌t/Λ) of Λ-equivariant quasi-coherent
sheaves on ť.5 The Mellin transform functor is defined as

M : D -mod(T ) → QCoh(̌t/Λ), N → Oť ⊗O(̌t) Γ(N ⊗ ωT ).

We have the following properties:

(1) The functor M is an equivalence.
(2) Let χ ∈ Ť (C) ≃ C(T )(C) and let λ ∈ ť(C) be a lift of χ along the universal

covering exp : ť → Ť . Then for any F ∈ D -mod(T ) we have

(4.2) H∗(T,F ⊗ Lχ) ≃ i∗λM(F)

here iλ : pt → ť is the embedding given by λ.
(3) Consider the bounded derived category Db

qcoh(̌t/Λ) of Λ-equivariant quasi-

coherent sheaves on ť with the monoidal structure given by the (derived)
tensor product. We have

M(F ∗ F ′) ≃ M(F)⊗Oť
M(F ′).

(4) Let F be a W-equivariantD-module F on T . Then W-equivariant structure
on F gives rise to a Wex

a = W ! Λ-equivariant structure on M(F). Let χ
and λ be as in (2) and let Wex

a,λ be the stabilizers of λ in Wex
a . Then

H∗(T,F ⊗Lχ) (resp. i∗λM(F)) carries a natural action of W′
χ (resp. Wex

a,λ)
such that, under the isomorphisms

(4.3) W′
χ ≃ Wex

a,λ w → (w,w−1λ− λ)

the isomorphism (4.2) intertwines those actions.

Remark 4.1. The restriction of the isomorphism in (4.3) to the subgroup Wχ ⊂ W′
χ

gives rise to an isomorphism

(4.4) Wχ ≃ Wa,λ w → (w,w−1λ− λ),

where Wa,λ be the stabilizers of λ in Wa. Since Wχ is generated by reflections,
it follows that Wa,λ is generated by affine reflections passing through λ (see, e.g.,
[Lo, Proposition 2.4.3]). This property of Wa,λ plays an important role in Section
4.3 when we study characterizations of ∗-central complexes.

Remark 4.2. A non-zero invariant section σ of ωT gives rise to an isomorphism

Γ(M(F)) = Γ(F⊗ωT )
σ≃ Γ(F), here vi acts on Γ(F) by the formula vi ·m = −vim.

Since the W-action on invariant sections of ωT is given by the sign character, we
obtain an isomorphism of O(̌t)-modules

Γ((−1)∗M(F ⊗ signW))) ≃ Γ(F)

compatible with the natural Wex
a -actions. Here −1 : ť → ť, x → −x.

4.2.2. We now consider the ℓ-adic setting. In [GL], the authors constructed the
Mellin transform6

M : D(T ) → Db
coh(C(T ))

with the following properties:

5For any right Γ(DT )-module N , the action of C[vi] = O(̌t) on N gives a Oť-module structure
on Oť ⊗O(̌t) N ∈ QCoh(̌t) and the action of xi ∈ Λ defines a Λ-equivariant structure.

6It is denoted by M∗ in loc.cit.
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(1) Let χ ∈ C(T )(Qℓ) and iχ : pt → C(T ) be the embedding given by χ. We
have

H∗(T,F ⊗ Lχ) ≃ i∗χM(F).

(2) For any χ ∈ C(T )(Qℓ) we have

M(F ⊗ Lχ) ≃ m∗
χM(F),

where mχ : C(T ) → C(T ) is the morphism of translation by χ.
(3) The functor M is t-exact with respect to the perverse t-structure on D(T )

and the standard t-structure on Db
coh(C(T )). Moreover, for any F ∈ D(T ),

F is perverse if and only if M(F) is a coherent complex in degree zero.
(4) We have

M(F ∗ F ′) ≃ M(F)⊗OC(T )
M(F ′).

(5) The Mellin transforms restricts to an equivalence

(4.5) M : D(T )mon ≃ Db
coh(C(T ))f

between the full subcategory D(T )mon of monodromic ℓ-adic complexes on
T and the full subcategory Db

coh(C(T ))f of coherent complexes on C(T )
with finite support.

(6) For F ∈ DW(T ), the W-equivariant structure on F gives rise to a W-
equivariant structure on M(F) such that for any χ ∈ C(T )(Qℓ) the isomor-
phism in (1) above is compatible with the natural W′

χ-actions.

4.2.3. The properties of the Mellin transforms above imply the following:

Lemma 4.1. Let F ∈ DW(T ). (1) Assume char k > 0. Then F is ∗-central (resp.
strongly ∗-central) if and only if , for any χ ∈ C(T )(Qℓ), the action of Wχ (resp.
W′

χ) on H n(i∗χM(F ⊗ signW)) for all n ∈ Z is trivial. (2) Assume k = C. Then
F is ∗-central (resp. strongly ∗-central) if and only if for any λ ∈ ť(C), the action
of Wa,λ (resp. Wex

a,λ) on H n(i∗λM(F ⊗ signW)) for all n ∈ Z is trivial.

4.3. Characterization. In [C, Proposition 4.2], we established several characteri-
zations of ∗-central complexes in the ℓ-adic setting. In this section we extend those
results to the de Rham setting.

We first consider the case of ∗-central D-modules:

Theorem 4.2. Let F be a W-equivariant holonomic D-module on T . The following
are equivalent

(1) F is ∗-central.
(2) for any λ ∈ ť(C), the action of Wa,λ on H n(i∗λM(F ⊗ signW)), n = 0,−1,

is trivial.
(3) for any λ ∈ ť(C), the Mellin transform M(F ⊗ signW), regarded as a Wa,λ-

equivariant quasi-coherent sheaf on ť, descends to ť ! Wa,λ.
(4) for any λ ∈ ť(C), the natural morphism O(̌t) ⊗O(̌t)Wa,λ Γ(F)Wa,λ → Γ(F)

is an isomorphism.

Remark 4.3. The definition of ∗-central D-modules makes sense for arbitrary W-
equivariant D-modules on T (not necessary holonomic) and the proof below shows
that Theorem 4.2 remains true in this more general setting. Very similar results
were proved in [Gi2,Lo].

We begin with Lemma 4.3.
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Lemma 4.3. Let Γ be a finite reflection group with reflection representation V
over C. Let F be a Γ-equivariant quasi-coherent sheaf on V . Then F descends to
V ! Γ if and only if for any λ ∈ V (C) the actions of the stabilizer Γλ of λ in Γ on
H 0(i∗λF) and H −1(i∗λF) are trivial. Here iλ : pt → V is the embedding given by
λ.

Proof. Assume F descends to V ! Γ. Then we have F ≃ π∗(π∗F)Γ where π : V →
V ! Γ is the quotient map and it implies i∗λF ≃ i∗

λ̄
(π∗F)Γ, where λ̄ = π(λ) and

iλ̄ : pt → V ! Γ is the inclusion. As Γ acts trivially on H n(i∗
λ̄
(π∗F)Γ) for all

n ∈ Z, it follows that Γ acts trivially on H n(i∗λF) for all n ∈ Z, in particular, for
n = 0,−1.

Assume Γ acts trivially on H n(i∗λF) for n = 0,−1. We would like to show that
F descends to V !Γ. By [Lo, Theorem 1.3.2], it suffices to show that F descends to
V !⟨σ⟩ for any simple reflection σ ∈ Γ. So we could assume Γ = ⟨σ⟩ is generated by
a reflection σ. Write F = Γ(F) for the global sections of F , viewed as a O(V )"Γ-
module, and let F σ = {h ∈ F |σ(h) = h} and F σ=−1 = {h ∈ F |σ(h) = −h}.
Choose a coordinate (x1, . . . , xn) of V such that σ(x1) = −x1 and σ(xi) = xi for
i ≥ 2. Let λ ∈ V (C) be the origin with coordinate xi = 0.

We claim that if Γ = Γλ acts trivially on H 0(i∗λF) ≃ F/(x1, . . . , xn)F then the
natural map

(4.6) O(V )⊗C F σ → F

is surjective.

Step 1. We first show that if Γ acts trivially on F/(x1)F then (4.6) is surjective. In-
deed, the assumption implies that the image of f ∈ F σ=−1 in the quotient F/(x1)F
is zero, that is, f ∈ (x1)F . Since σ(x1) = −x1 and F = F σ ⊕ F σ=−1, it follows
that f = x1f ′ for some f ′ ∈ F σ and it implies (4.6) is surjective.

Step 2. We show that if Γ acts trivially on H 0(i∗λF) then Γ acts trivially on
F/(x1)F . The case n = 1 is trivial as H 0(i∗λF) ≃ F/(x1)F . Assume n > 1.
Consider the exact sequence

(4.7) O(V )⊗C F σ → F → M → 0,

whereM is the cokernel. The quotient F ′ = F/(x2, . . . , xn)F is aO(V ′)"Γ-module,
V ′ = Spec(C[x1]), such that Γ acts trivially on F ′/(x1)F ′ = F/(x1, . . . , xn)F . Thus
Step 1 implies the natural map O(V ′) ⊗C (F ′)σ → F ′ is surjective. On the other
hand, we have an exact sequence

O(V ′)⊗C (F ′)σ → F ′ → M/(x2, . . . , xn)M → 0

induced from (4.7) and it follows that M/(x2, . . . , xn)M = 0. Thus M/(x1)M =
M/(x1, x2, . . . , xn)M , which is an quotient of H 0(i∗λF) = F/(x1, . . . , xn)F , and it
implies Γ acts trivially on M/(x1)M . Consider the exact sequence

(O(V )/(x1)O(V ))⊗C F σ → F/(x1)F → M/(x1)M → 0

induced from (4.7). As Γ acts both trivially on (O(V )/(x1)O(V )) ⊗C F σ and
M/(x1)M , it also acts trivially on F/(x1)F . This completes the proof of Step 2.
The desired claim follows.

To proceed, let us consider the short exact sequence

0 → N → O(V )⊗C F σ → F → 0,
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where N is the kernel of (4.6). It gives rise to an exact sequence

(4.8) H −1(i∗λF) → N/(x1, . . . , xn)N → (O(V )/(x1, . . . , xn)O(V ))⊗C F σ

→ F/(x1, . . . , xn)F → 0

Since Γ acts both trivially on H −1(i∗λF) (by assumption) and
(O(V )/(x1, . . . , xn)O(V ))⊗C F σ, (4.8) implies that Γ acts trivially on
N/(x1, . . . , xn)N , and the claim above implies that the natural map O(V )⊗CNσ →
N is surjective. All together, we obtain a Γ-equivariant presentation of F

O(V )⊗C Nσ → O(V )⊗C F σ → F → 0,

where F1 = O(V )⊗C Nσ and F0 = O(V )⊗C F σ are free O(V )-modules satisfying
Fi = O(V ) ⊗O(V !Γ) F

σ
i . By [Ne, Lemma 3.1], this implies F also satisfies F =

O(V ) ⊗O(V !Γ) F
σ and thus the corresponding Γ-equivariant quasi-coherent sheaf

F descends to V ! Γ. !
Proof of Theorem 4.2. (1) implies (2) is clear. (2) implies (3) follows from Lemma
4.3 and the fact that Γ = Wa,λ is generated by affine reflections passing through
λ ∈ ť(C) (see Remark 4.1) and, for any µ ∈ ť(C), the stabilizer Γµ = Wa,λ∩Wex

a,µ is
a subgroup of Wa,µ, and hence acts trivially on H j(i∗µM(F ⊗ signW)), j = 0,−1.
(3) implies (1) follows from the first paragraph of the proof of Lemma 4.3. The
equivalence between (3) and (4) follows from Remark 4.2 and the factM (F⊗signW)
descends to ť!Wa,v if and only if (−1)∗M (F ⊗ signW) descends to ť!Wa,−v. !

We now extend Theorem 4.2 to the case of ∗-central complexes.

Theorem 4.4. Let F ∈ DW(T ) be a W-equivariant complex of holonomic D-
modules on T . The following are equivalent

(1) F is ∗-central.
(2) for any λ ∈ ť(C), the Mellin transform M(F⊗signW), regarded as an object

in Db
qcoh(̌t/Wa,λ), descends to ť ! Wa,λ.

Proof. (2) implies (1) follows from the first paragraph of the proof of Lemma 4.3.
To show (1) implies (2) let F be a ∗-central complex and let b ∈ Z be the largest
integer such that H b(F) ̸= 0. We have the following distinguished triangle

(4.9) τ≤b−1F → F → H b(F)[−b] → τ≤b−1F [1].

We claim that both H b(F) and τ≤b−1F are ∗-central. Indeed, for any de Rham
local system Lχ on T associated to χ ∈ C(T )(C), the distinguished triangle above
gives rise to the following exact sequence
(4.10)
Hj(T,F⊗Lχ)→Hj−b(T,H b(F)⊗Lχ)→Hj+1(T, τ≤b−1F⊗Lχ)→Hj+1(T,F⊗Lχ).

By the exactness of the Mellin transform and the right-exactness of the tensor
product, we have

H≥b(T, τ≤b−1F ⊗ Lχ) ≃ H ≥b(i∗λM(τ≤b−1F)) = 0

(here λ ∈ ť is a lift of χ) and it follows that the first arrow in (4.10) is surjective
for j ≥ b− 1. In particular, for j = b, b− 1, we have the following surjections

Hb(T,F ⊗ Lχ) → H0(T,H b(F)⊗ Lχ) → 0

Hb−1(T,F ⊗ Lχ) → H−1(T,H b(F)⊗ Lχ) → 0.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1187

Since the group Wχ acts on H∗(T,F ⊗Lχ) by the sign character (as F is ∗-central
by assumption), the above surjections imply that Wχ acts on Hi(T,H b(F)⊗ Lχ)
by the sign character for i = 0,−1, and thus by Theorem 4.2 (2), we conclude
that H b(F) is ∗-central. Now the exact sequence (4.10) implies that Wχ acts
on H∗(T, τ≤b−1F ⊗ Lχ) by the sign character and hence, by definition, τ≤b−1F is
∗-central.

By induction on the (finite) number of non vanishing cohomology sheaves and
Theorem 4.2, we could assume both τ≤b−1F and H b(F) satisfy statement (2) of
the theorem. We shall prove that F also satisfies statement (2), that is, the Mellin
transform M := M(F ⊗ signW) ∈ Db

qcoh(̌t/Wa,λ) descends to ť ! Wa,λ along the

quotient map πλ : ť → ť ! Wa,λ. Recall the following descent criteria for quasi-
coherent complexes (see, e.g., [Ne, Corollary 2.6]): a complex M ∈ Db

qcoh(̌t/Wa,λ)

descends to ť ! Wa,λ if and only if the canonical morphism

(4.11) π∗
λ((πλ)∗(M)Wa,λ) → M

is an isomorphism.7

To proceed, let us consider the following distinguished triangle

M′ := M(τ≤b−1F ⊗ signW) → M := M(F ⊗ signW)

→ M′′ := M(H b(F)[−b]⊗ signW) → M′[1]

obtained by applying the functor M(− ⊗ signW) to (4.9). There is a morphism
between the following distinguished triangles

π∗
λ((πλ)∗(M′)Wa,λ) M′

π∗
λ((πλ)∗(M)Wa,λ) M

π∗
λ((πλ)∗(M′′)Wa,λ) M′′

π∗
λ((πλ)∗(M′)Wa,λ)[1] M′[1]

c′

c

c′′

c′[1]

where the horizontal arrows are the canonical morphisms in (4.11). By assumption
and the above descent criteria, both c′ and c′′ are isomorphisms. It follows that c
is also an isomorphism and, by the descent criteria again, we conclude that M =
M(F ⊗ signW) descends to ť ! Wa,λ. This completes the proof of (1) implies (2),
and hence the theorem.

!

Remark 4.4. The results of this sections were inspired by the work of T. Nevins
[Ne]. In loc. cit. the author proved similar descent criterions in the case when Γ is
a reductive algebraic group and F is a Γ-equivariant coherent sheaf or a complex
Γ-equivariant coherent sheaves. The argument in loc. cit. used the coherence
assumption of F and hence cannot be applied directly to the case of quasi-coherent
sheaves. The proof above uses some special features of finite reflection groups.

7Note that the map πλ is flat and affine and hence both functor π∗
λ and (πλ)∗ are exact.
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4.4. Functoriality. In this section we show that central complexes (resp. ∗-central
complexes) are stable under pushforward along central isogenies. This result will
be used later to reduce the proof the vanishing conjecture for a general connected
reductive group to the one with connected center.

We first review the notion of central isogenies between connected reductive
groups following [S, Section 2]. Let G and G1 be two connected reductive groups
and let T be a maximal torus of G. Let fG : G → G1 be a central isogeny, that is,
fG is a surjective map with finite kernel such that fG maps the root subgroup Uα

isomorphically onto its image, for all roots α. Denote by T1 := f(T ) the image of T
which is a maximal torus of G1. The resulting homomorphism fT := fG|T : T → T1

induces a map f∗
T : X•(T1) → X•(T ) (resp. (fT )∗ : X•(T ) → X•(T1)) between

character lattices (resp. co-character lattices), which maps the root lattice R1 iso-
morphically onto the root lattice R (resp. the coroot lattice R∨

1 isomorphically onto
the coroot lattice R∨). Moreover, we have an isomorphism of Weyl groups

(4.12) fW : W = NG1(T1)/T1 ≃ NG1(T1)/T1 = W1

such that the map fT : T → T1 is compatible with the W ≃ W1-action. Thus the
pushforward along fT induces a functor

(fT )! : DW(T ) → DW1(T1)

between the corresponding equivariant derived categories. Note that as fT is finite,
we have (fT )! ≃ (fT )∗.

Lemma 4.5. The functor (fT )! maps central complexes on T to central complexes
on T1. The same is true for ∗-central complexes.

Proof. Let F ∈ DW(T ) be a central complex and let F1 := (fT )!F ∈ DW1(T1).
We need to show that, for any χ1 ∈ C(T1)(E), the action of the subgroup Wχ1 of
the stabilizer of χ1 in W1 on H∗

c(T1,F1 ⊗ Lχ1) is given by the sign character (the
definition of Wχ1 will be recalled below). Let χ = f∗

Tχ1 ∈ C(T )(E). We claim
that the map fW in (4.12) maps Wχ isomorphically onto Wχ1 . Then, by projection
formula, we get an isomorphism

H∗
c(T1,F1 ⊗ Lχ1) ≃ H∗

c(T1, (fT )!F ⊗ Lχ1) ≃ H∗
c(T,F ⊗ f∗

TLχ1) ≃ H∗
c(T,F ⊗ Lχ)

compatible with the Wχ1

fW≃ Wχ-actions. Since F is central, the group Wχ acts on
H∗

c(T,F ⊗Lχ) via the sign character and the isomorphism above implies that Wχ1

also acts on H∗
c(T1,F1 ⊗ Lχ1) by the sign character and hence F1 is central. Since

the Verdier duality D maps central complexes to ∗-central complexes and vice versa,
and the functor (fT )! ≃ (fT )∗ commutes with D, the case of ∗-central complexes
follows from the case of central complexes. This finishes the proof of the lemma.

Proof of the claim. Recall that the map fT induces an isomorphism (fT )∗ : R∨ ≃
R∨

1 between coroot lattices, sending a coroot α∨ to α∨
1 := (fT )∗(α∨) = fT ◦ α∨.

Thus for any α∨ and α∨
1 as above, we have

(4.13) (α∨)∗Lχ ≃ (α∨)∗f∗
T (Lχ1) ≃ (fT ◦ α∨)∗(Lχ1) ≃ (α∨

1 )
∗Lχ1 .

Since the group Wχ (resp. Wχ1) is generated by those reflection sα (resp. sα1)
such that (α∨)∗Lχ is trivial (resp. (α∨

1 )
∗Lχ1), the isomorphism (4.13) implies that

fW : W → W1 maps Wχ isomorphically onto Wχ1 . The claim follows.
!
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Example 4.5. Consider the case G = SL2, G1 = PGL2 and the central isogeny
fG : SL2 → SL2/{±1} ≃ PGL2. We have W ≃ W1 ≃ {±1} acting on T ≃ T1 ≃ Gm

by the inverse map and fT : T → T1 is given by the square map Gm → Gm, x → x2.
It is straightforward to check that, in the case of PGL2, a complex F1 ∈ DW1(T1)
is central if and only if H∗

c(T1,F1 ⊗ Lχ1)
W1 = 0 for any χ1 ∈ C(T1)(E) such that

χ2
1 is trivial. Let F ∈ DW(T ) be a central complex for SL2 and let χ1 be as above.

We have H∗
c(T,F)W = 0 and f∗

TLχ1 ≃ L2
χ1

is trivial and it follows that

H∗
c(T1, (fT )!F ⊗ Lχ1)

W1 ≃ H∗
c(T,F ⊗ f∗

TLχ1)
W ≃ H∗

c(T,F)W = 0.

Thus (fT )!F is indeed a central complex for PGL2.

5. Local systems Eθ
5.1. Tame local systems Eθ. In this subsection we attach each W-orbit θ = Wχ
in C(T )(E) a W-equivariant tame local system Eθ on T .

We first consider the ℓ-adic setting. Recall the pro-ℓ quotient π1(T )ℓ of the tame
fundamental group πt

1(T ). Let RT = Sym(π1(T )ℓ⊗Zℓ Qℓ) be the symmetric algebra
of π1(T )ℓ ⊗Zℓ Qℓ and let RT,+ be the argumentation ideal. The Weyl group W,

and hence the subgroup Wχ, acts naturally on RT and we define Rχ = RT /⟨R
Wχ

T,+⟩,
where ⟨RWχ

T,+⟩ is the ideal generated by R
Wχ

T,+. Consider the representation Rχ of
π1(T )ℓ, on which an element γ ∈ π1(T )ℓ acts as multiplication by exp(γ). It is well-
defined since the multiplication action of π1(T )ℓ on Rχ is nilpotent. By pullback
along πt

1(T ) → π1(T )ℓ, we obtain a representation of πt
1(T ) and we denote by Euni

χ

the corresponding ℓ-adic local system on T . Since Wχ is normal in W′
χ, the natural

action of W′
χ on RT descends to the quotient Rχ which gives rise to a canonical W′

χ-
equivariant structure on Euni

χ . On the other hand, since w∗Lχ ≃ Lχ for w ∈ W′
χ, the

above W′
χ-equivariant structure on Euni

χ gives rise to a W′
χ-equivariant structure on

Eχ = Euni
χ ⊗Lχ. Finally, we define Eθ = IndWW′

χ
Eχ to be the induced W-equivariant

ℓ-adic local system on T .
The construction in the de Rham setting is similar to the ℓ-adic setting. Let

RT = Sym(π1(T (C)) ⊗Z C) and let Rχ = RT /⟨R
Wχ

T,+⟩, where ⟨RWχ

T,+⟩ is the ideal

generated by the Wχ-invariants R
Wχ

T,+ in the argumentation ideal RT,+. Define Euni
χ

to be the de Rham local system on T corresponding to the representation Rχ of
π1(T (C)), on which an element γ ∈ π1(T (C)) acts as multiplication by exp(γ). Let
Eχ = Euni

χ ⊗ Lχ. The same reasoning as in the ℓ-adic setting shows that both Euni
χ

and Eχ carry natural W′
χ-equivariant structures and we let Eθ = IndWW′

χ
Eχ to be the

induced W-equivariant de Rham local system on T .
The local systems Eχ and Euni

χ have rank |Wχ| and Eθ has rank |W||Wχ|/|W′
χ|.

Example 5.1. Let θ = Wχ be a W-orbit of a character χ. If the character χ is
regular, that is, W′

χ = e, then we have Eχ = Lχ and Eθ = IndWe Lχ ≃
⊕

w∈W Lwχ

is a local system of rank |W|. If χ is quasi-regular, that is, Wχ = e (e.g., the
quadratic character χ = χ−1 for SL2 in Example 1.2), then Eχ = Lχ and Eθ =
IndWW′

χ
Lχ =

⊕
w∈W/W′

χ
Lwγ which is a local system of rank |W|/|W′

χ|. If χ is the

trivial character, then Wχ = W′
χ = W and Eθ = Eχ = Euni

χ is the local system of
rank |W| corresponding to the unipotent representation Rχ = RT /⟨RW

T,+⟩ of πt
1(T ).
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5.2. Mellin transform of Eθ. In this subsection we study the Mellin transform
of Eθ.

We first consider the ℓ-adic setting. Let χ ∈ C(T )(Qℓ) be a tame character and
let θ = Wχ be its W-orbit in C(T )(Qℓ). Consider the quotient map πχ : C(T ) →
C(T ) !Wχ. Let 0 ∈ C(T )(Qℓ) be the trivial character and let Dχ = π−1

χ (πχ(0)) be
the scheme theoretic preimage of πχ(0) ∈ C(T ) ! Wχ for the map πχ. Introduce
the following coherent sheaves on C(T )

(5.1) Runi
χ = ODχ Rχ = m∗

χ(ODχ).

Since W′
χ stabilizes Dχ and χ, both Runi

χ and Rχ are canonically W′
χ-equivariant

and we let
Rθ = IndWW′

χ
Rχ

be the induced W-equivariant coherent sheaf on C(T ). Note that Rθ is set theoret-
ically supported on θ−1 = {χ−1|χ ∈ θ} ⊂ C(T )(Qℓ).

We now consider the de Rham setting. For any λ ∈ ť, let mλ : ť → ť be the map
of translation by λ. For any χ ∈ C(C), we write πχ : ť → ť!Wχ for the quotient map
and let Dχ = π−1

χ (πχ(0)) be the scheme theoretic preimage of πχ(0) for the map πχ.
Note that the natural identification RT ≃ Sym(π1(T (C)) ⊗Z C) ≃ Sym(t) ≃ O(̌t)
gives rise to an isomorphism

(5.2) Γ(ODχ) ≃ O(̌t)/⟨O(̌t)
Wχ

+ ⟩ ≃ RT /⟨R
Wχ

T,+⟩ ≃ Rχ.

Introduce the following Λ-equivariant quasi-coherent sheaves on ť

(5.3) Runi
χ =

⊕

λ∈Λ

m∗
λ(ODχ) Rχ =

⊕

λ∈ť,exp(λ)=χ

m∗
λ(ODχ).

Since Dχ, Λ, and the set {λ ∈ ť| exp(λ) = χ} are stable under the natural W′
χ-

action, both Runi
χ and Rχ are canonically W′

χ-equivariant and we define

(5.4) Rθ = IndWW′
χ
Rχ

to be the induced Wex
a = W ! Λ-equivariant sheaf on ť. Note that Rθ is set

theoretically supported on {−λ| exp(λ) ∈ θ} ⊂ ť.

Proposition 5.1. There is an isomorphism

M(Eθ ⊗ signW) ≃ Rθ

compatible with the W-equivariant structures in the ℓ-adic setting, and the Wex
a -

equivariant structures in the de Rham setting.

Proof. The ℓ-adic setting. Pick a χ ∈ θ. Since Eθ = IndWW′
χ
Eχ and Rθ = IndWW′

χ
Rχ,

it suffices to construct an isomorphism M(Eχ ⊗ signW) ≃ Rχ compatible with the
W′

χ-equivariant structures. Denote by R0̂ the completion of the symmetric algebra

RT = Sym(π1(T )ℓ ⊗Zℓ Qℓ) with respect to the argumentation ideal RT,+. The
ring of functions O(C(T )ℓ) of C(T )ℓ is isomorphic to the completed group algebra
Qℓ[[π1(T )ℓ]] and the logarithm defines a natural W-equivariant isomorphism

R0̂ ≃ Qℓ[[π1(T )ℓ]]

intertwining the action of multiplication by exp(γ) on R0̂, γ ∈ π1(T )ℓ, with the
action of multiplication by γ on Qℓ[[π1(T )ℓ]]. The isomorphism above gives rise to
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an isomorphism

Rχ ≃ R0̂/⟨R
Wχ

0̂,+
⟩ ≃ O(C(T )ℓ)/⟨O(C(T )ℓ)

Wχ

+ ⟩ ≃ O(Dχ) ≃ Γ(Runi
χ )

and it follows that the Qℓ[[π1(T )ℓ]]-module corresponding to Euni
χ is isomorphic to

Γ(Runi
χ ). Since Runi

χ ≃ inv∗ Runi
χ (here inv the inverse map on C(T )), by [GL,

Corollary 4.2.2.4], there is an isomorphism

M(Eχ) ≃ m∗
χM(Euni

χ ) ≃ m∗
χ(Runi

χ ⊗Zℓ ∧
top
Zℓ

(π1(T )ℓ)
∨) ≃ Rχ ⊗Zℓ ∧

top
Zℓ

(π1(T )ℓ)
∨,

compatible with the W′
χ-actions. By choosing a generator of ∧top

Zℓ
(π1(T )ℓ)∨, we

obtain a W-equivariant isomorphism ∧top
Zℓ

(π1(T )ℓ)∨ ≃ Zℓ ⊗ signW. The desired
claim follows.

The de Rham setting. It suffices to construct an isomorphism of W′
χ ! Λ-

equivariant quasi-coherent sheaves M(Eχ ⊗ signW) ≃ Rχ. Note that, any lift λ ∈ ť
of χ gives rise to canonical isomorphisms M(Eχ ⊗ signW) ≃ m∗

λM(Euni
χ ⊗ signW)

and Rχ ≃ m∗
λ(Runi

χ ). Thus we reduce to show that

(5.5) M(Euni
χ ⊗ signW) ≃ Runi

χ .

Since Euni
χ is a monodromic D-module on T with unipotent monodromy, the global

section Γ(Euni
χ ) (viewed as a Sym(t) ≃ O(̌t)-module) admits a unique decomposi-

tion Γ(Euni
χ ) =

⊕
λ∈Λ Γλ̂(Euni

χ ), where the summand Γλ̂(Euni
χ ) is supported at λ.

Moreover, there is a natural identification of Γ0̂(Euni
χ ) with the fiber Euni

χ |1 at the

identiy 1 ∈ T such that the action of π1(T (C)) on Γ0̂(Euni
χ ), viewed as an element

in t = π1(T (C))⊗ZC, becomes the logarithm of the monodromy action of π1(T (C))
on the fiber Euni

χ |1. It follows that Γ0̂(Euni
χ ) ≃ Euni

χ |1 ≃ RT /⟨RW
T,+⟩ ≃ Γ(ODχ) and,

by the Λ-equivariance, we obtain an isomorphism of O(̌t)-modules

(5.6) Γ(Euni
χ ) ≃

⊕

λ∈Λ

m∗
λΓ

0̂(Euni
χ ) ≃

⊕

λ∈Λ

m∗
λΓ(ODχ)

(5.3)
≃ Γ(Runi

χ ).

Since (−1)∗Runi
χ ≃ Runi

χ , Remark 4.2 implies that there is an isomorphism

Γ(M(Euni
χ ⊗ signW)) ≃ (−1)∗(Γ(Euni

χ ))
(5.6)
≃ (−1)∗Γ(Runi

χ ) ≃ Γ(Runi
χ )

intertwining the W′
χ !Λ-actions. The isomorphism (5.5) follows. The proof of the

proposition is complete. !
Corollary 5.2. Eθ is ∗-central.

Proof. It is proved in [C, Corollary 5.2] in the ℓ-adic setting. Consider the de
Rham setting. By Proposition 5.1, the fiber i∗λM(Eθ ⊗ signW) at λ ∈ ť is equal
to i∗λM(Eθ ⊗ signW) ≃ i∗λRθ ≃ i∗λ(m

∗
−λ(ODχ)) if χ = exp(−λ) ∈ θ and is zero

otherwise. We claim that m∗
−λ(ODχ), viewed as a Wa,λ-equivariant coherent sheaf

on ť, descends along the quotient map πλ : ť → ť ! Wa,λ. Indeed, the map m−λ :

ť → ť is Wa,λ

(4.4)
≃ Wχ-equivariant and we have the following cartesian diagram

ť
m−λ

!!

πλ

""

ť

πχ

""

ť ! Wa,λ
m̄−λ

!! ť ! Wχ
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where m̄−λ is the descent of m−λ. It follows that m∗
−λ(ODχ) ≃ m∗

−λ(π
∗
χOπχ(0)) ≃

π∗
λOπλ(λ). The claim implies that Wa,λ acts trivially on H n(i∗λM(Eθ ⊗ signW)) ≃

H n(i∗λ(π
∗
λOπλ(λ))) and Theorem 4.2 implies that Eθ is ∗-central. !

5.3. Convolution with Eθ.

Proposition 5.3. Assume G has connected center. Let F be a ∗-central complex
and let θ = Wχ be a W-orbit of a tame character χ. There is an isomorphism

F ∗ (Eθ ⊗ signW) ≃ H∗(T,F ⊗ Lχ−1)⊗ Eθ ∈ DW(T ).

Proof. We first consider the ℓ-adic setting. Since G has connected center, by Re-
mark 1.1, Wχ is equal to the stabilizer W′

χ of χ in W and it follows that

(5.7) M(Eθ ⊗ signW)
Lem5.1≃ Rθ ≃ IndWW′

χ
(m∗

χODχ) ≃ IndWWχ
(m∗

χODχ).

Thus there is an isomorphism

(5.8) M(F ∗ Eθ ⊗ signW) ≃ M(F)⊗M(Eθ ⊗ signW) ≃ IndWWχ
(M(F)|m−1

χ (Dχ)
).

On the other hand, since m−1
χ (Dχ) is equal to the inverse image m−1

χ (Dχ) =
π−1
χ (πχ(χ−1)) of πχ(χ−1) along πχ : C(T ) → C(T ) ! Wχ, the characterization of ℓ-

adic ∗-central complexes in [C, Proposition 4.2] implies that M(F⊗signW)|m−1
χ (Dχ)

descends to m−1
χ (Dχ) ! Wχ. It follows that there is an isomorphism

(5.9) M(F⊗signW)|m−1
χ (Dχ)

≃ M(F)|χ−1 ⊗m∗
χODχ ≃ H∗(T,F⊗Lχ−1)⊗m∗

χODχ

compatible with the Wχ-equivariant structure, which induces an isomorphism

(5.10)
IndWWχ

(M(F ⊗ signW)|m−1
χ (Dχ)

) ≃ H∗(T,F ⊗ Lχ−1)⊗ IndWWχ
(m∗

χODχ)

≃ H∗(T,F ⊗ Lχ−1)⊗Rθ.

All together, we obtain

M(F ∗ Eθ ⊗ signW)
(5.8)
≃ IndWWχ

(M(F)|m−1
χ (Dχ)

)

(5.10)
≃ H∗(T,F ⊗ Lχ−1)⊗Rθ ⊗ signW

(5.7)
≃ H∗(T,F ⊗ Lχ−1)⊗M(Eθ).

Since the Mellin transform restricts to an equivalence on monodromic sheaves (4.5),
the isomorphism above comes from an isomorphism

(5.11) F ∗ (Eθ ⊗ signW) ≃ H∗(T,F ⊗ Lχ−1)⊗ Eθ ∈ DW(T ).

The de Rham setting. By Theorem 4.4, the Mellin transfrom M(F ⊗ signW),
viewed as an object in Db

qcoh(̌t/Wa,λ), descends to ť !Wa,λ and it follows that the

restriction M(F ⊗ signW)|m−1
λ (Dλ)

descends to m−1
λ (Dλ) ! Wa,λ. Now the same

argument as in the ℓ-adic setting, replacing Dχ and Wχ by Dλ and Wa,λ, gives the
desired isomorphism (5.11).

!

Proposition 5.3 can be reformulated as follows:
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Proposition 5.4. Assume G has connected center. Let F be a ∗-central complex
and let θ = Wχ be a W-orbit of a tame character χ. For each w ∈ W, there is a
canonical isomorphism in D(T )

(5.12) aw : w∗F ∗ Eθ ≃ H∗(T,F ⊗ Lχ−1)⊗ w∗Eθ,

such that the following diagram is commutative

(5.13) w∗F ∗ Eθ
aw !!

""

H∗(T,F ⊗ Lχ−1)⊗ w∗Eθ

""

F ∗ Eθ
ae !! H∗(T,F ⊗ Lχ−1)⊗ Eθ

,

where the vertical arrows are the isomorphism induced from the W-equivariant
structures on F and Eθ.

6. Character sheaves Mθ and Drinfeld center of Harish-Chandra
bimodules

Let Eθ be the tame ∗-central local system in Section 5. Consider the character
sheaf Mθ := ΦEθ = IndGT⊂B(Eθ)W. Recall the averaging functor AvU∗ := π∗ :
D(G) → D(G/U), where π : G → G/U is the quotient map. Let ι : T = B/U →
G/U be the closed embedding. The goal of this section is to prove the following:

Theorem 6.1. There exists a positive integer N depending only on the type of the
group G such that the following holds. Assume k = C or char k = p is not dividing
Nℓ. We have

AvU∗ (Mθ) ≃ ι∗Eθ.

In particular, AvU∗ (Mθ) is supported on T = B/U .

We will first establish Theorem 6.1 in the case k = C using the techniques de-
veloped in [BFO] and [BG] on Drinfeld center of Harish-Chandra bimodules and
character D-modules. Then we construct a mixed characteristic lifting Mθ,A of
Mθ over a strictly henselian discrete valuation ring A with residue field k of char-
acteristic p not dividing Nℓ, which is universally locally acyclic with respect to the
quotient map GA → GA/UA. This allows us to use spreading out arguments to
prove Theorem 6.1 in the positive characteristic case.

We will assume k = C until Section 6.8.

6.1. Hecke categories. Consider the left G and right T×T actions on Y = G/U×
G/U . To every χ,χ′ ∈ Ť we denote by Mχ,χ′ the category of G-equivariant D-
modules on G/U×G/U which are T ×T -monodromic with generalized monodromy
(χ,χ′), that is, U(t)⊗U(t) (acting as infinitesimal translations along the right action
of T × T ) acts locally finite with generalized eigenvalues in (χ,χ′). Consider the
quotient Y/T where T acts diagonally from the right. The group T acts on Y/T via
the formula t(xU, yU)modT = (xtU, yU)modT . To every χ ∈ Ť we denote by Mχ

the category of G-equivariant T -monodromic D-modules on Y/T with generalized
monodromy χ. We write D(Mχ,χ′) and D(Mχ) for the corresponding G-equivariant
monodromic derived categories.
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The groups B and T × T act on X = G/U by the formula b(xU) = bxb−1U ,
(t, t′)(xU) = txt′U . For any (χ1,χ2) ∈ Ť × Ť we write Hχ1,χ2 for the cate-
gory of U -equivariant T × T -monodromic D-modules on X with generalized mon-
odromy (χ1,χ2). For any χ ∈ Ť we write Hχ for the category of B-equivariant
T -monodromic D-modules on X with generalized monodromy χ, where B acts on
X by the same formula as before and T acts on X by the formula t(xU) = txU .
We denote by D(Hχ) (resp. D(Hχ1,χ2)) the corresponding B-equivariant (resp.
U -equivariant) monodromic derived category.

6.2. The Harish-Chandra functor. Consider the following correspondence

G
p←− G×G/B

q−→ Y/T = (G/U ×G/U)/T,

where p(g, xB) = g and q(g, xB) = (gxU, xU)modT . The group G acts on G,
G × G/B and Y/T by the formulas a · g = aga−1, a · (g, xB) = (aga−1, axB),
a(xU, yU) = (axU, ayU). One can check that p and q are compatible with those
G-actions.

Following [Gi1,MV], we consider the functor

(6.1) HC = q∗p
◦ : D(G) → D(Y/T ).

The functor above admits a right adjoint CH = p∗q◦ : D(Y/T ) → D(G). We use
the same notations for the corresponding functors between G-equivariant derived
categories D(G/adG) and D(G\Y/T ).

Consider the embedding i : X → Y, gU → (gU, eU) and the projection map
π : G → X = G/U .

Lemma 6.2 ([MV,Gi1]). (1) The functor i0 = i![dimX] : D(G\Y ) → D(U\X) is
an equivalence of categories with the inverse givne by (i0)−1 := IndGT⊂B ◦i∗[dimG−
dimB]. (2) We have i0 ◦ HC ≃ π∗. (3) The identity functor is a direct summand
of CH ◦HC.

We have the convolution product D(G\Y ) × D(G\Y ) → D(G\Y ) given by
(F ,F ′) → (p13)∗(p∗12F ⊗ p∗23F ′). Here pij : G\(G/U × G/U × G/U) → G\Y =
G\(G/U × G/U) is the projection on the (i, j)-factors. The convolution product
on D(G\Y ) restricts to a convolution product on D(Mχ,χ−1). The equivalence
i0 : D(G\Y ) ≃ D(U\X) above induces convolution products on D(U\X) and
D(Hχ,χ). In addition, there is an action of D(U\X) on D(X) by right convolution.
The convolution operation will be denoted by ∗.

We will need Lemma 6.3. Let X be an algebraic variety with an action of an
affine algebraic group G. Denote the action map by a : G×X → X .

Lemma 6.3 ([BFO, Lemma 2.1]). For any A ∈ D(G), F ∈ D(X), we have a
canonical isomorphism

RΓ(a∗(A" F)) ≃ RΓ(A)⊗L
U(g) RΓ(F).

Example 6.1. Consider the action map a : G × G/U → G/U, a(x, gU) = xgU .
Let δ ∈ D(G/U) be the delta D-module supported at the base point eU ∈ G/U .
For any D-module F on G, there is a canonical isomorphism AvU∗ (F) ≃ a∗(F " δ)
and lemma above implies that

RΓ(AvU∗ (F)) ≃ RΓ(a∗(F " δ)) ≃ RΓ(F)⊗L
U(g) RΓ(δ).
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Note that RΓ(F) = Γ(F) (since G is affine) and RΓ(δ) ≃ U(g)/U(g)n, and it
follows that

RΓ(AvU∗ (F)) ≃ Γ(F)⊗L
U(g) U(g)/U(g)n.

6.3. Character D-modules. We denote by CS(G) the category of finitely gener-
ated G-equivariant D-modules on G such that the action of the center Z ⊂ U(g),
embedding as left invariant differential operators, is locally finite. To every W-orbit
θ ⊂ Ť , we denote by CS(G)θ the category of finitely generated G-equivariant D-
modules on G such that the action of the center Z(U(g)) ⊂ U(g) is locally finite and
has generalized eigenvalues in {λ ∈ ť| exp(λ) ∈ θ}. We denote by D(CS(G)) (resp.
D(CS(G)θ)) the minimal triangulated full subcategory of D(G/adG) containing all
objects M ∈ D(G/adG) such that H i(M) ∈ CS(G) (resp. H i(M) ∈ CS(G)θ ).
We call CS(G) and CS(G)θ (resp. D(CS(G)) and D(CS(G)θ)) the category (resp.
derived category) of character D-modules on G and character D-modules on G with
generalized central character θ.

Proposition 6.4. We have the following:

(1) Let G∈CS(G)θ. Then HC(G)∈
⊕

χ∈θ D(Mχ) and AvU∗ (G)∈
⊕

χ∈θ D(Hχ.)

(2) The functors IndGT⊂B and ResGT⊂B preserve the derived categories of charac-
ter D-modules. The resulting functors IndGT⊂B : D(CS(T )) → D(CS(G)),
ResGT⊂B : D(CS(G)) → D(CS(T )) are independent of the choice of the Borel
subgroup B and t-exact with respect to the natural t-structures on D(CS(G))
and D(CS(T )). Moreover, for any G ∈ CS(G) we have ResGT⊂B(G) ≃
(jT )!∗(G|T rs), here jT : T rs → T is the embedding.

(3) Let G∈CS(G). There is a canonical W-equivariant structure on ResGT⊂B(G).
Let j : Grs → G be the open embedding. If G = j!∗j∗G, then we have
G ≃ IndGT⊂B(Res

G
T⊂B(G))W.

Proof. Part (1) and (2) are proved in [Gi1, Lu]. We now prove part (3). We
first show that F = ResGT⊂B(G) is canonically W-equivariant. Let x ∈ N(T ) and
w ∈ N(T )/T = W be its image in the Weyl group. Denote Bx := AdxB. Consider
the following commutative diagram

T

w

""

B## !!

Adx

""

G

Adx

""

T Bx
## !! G

where w : T → T the natural action of w ∈ W on T and the horizontal arrows
are the natural inclusion and projection maps. The base change theorems and the
fact that the functors ResGT⊂B and ResGT⊂Bx

are canonical isomorphic (see part (2))
imply

(6.2) ResGT⊂B(Ad∗xG) ≃ w∗ResGT⊂Bx
(G) ≃ w∗ResGT⊂B(G).

Since G is G-conjugation equivariant, we have a canonical isomorphism cx : G ≃
Ad∗xG. Applying ResGT⊂B to cx and using (6.2) we get

(6.3) F = ResGT⊂B(G) ≃ ResGT⊂B(Ad∗xG) ≃ w∗ResGT⊂B(G) = w∗F .

We claim that the isomorphism above depends only the image w and we denote it
by

(6.4) cw : F ≃ w∗F .
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To prove the claim it is enough to check that for x ∈ T the restriction of the iso-
morphism (6.3) to T rs is equal to the identity map. By [Gi1], the restriction F|T rs

is canonically isomorphic to G|T rs and the map in (6.3) is equal to the restriction of
cx to T rs. Since the adjoint action Adx : G → G is trivial on T , the claim follows
from the fact that any T -equivariant structure of a local system on T is trivial. The
G-conjugation equivariant structure on G implies {cw}w∈W satisfies the required co-
cycle condition and hence the data (F , {cw}w∈W) defines a W-equivariant structure
on F = ResGT⊂B(G). We shall prove IndGT⊂B(F)W ≃ G. Let crs : Grs → T rs !W be
the restriction of the Chevalley map c : G → T !W to Grs. Since G ≃ j!∗(G|Grs) and
IndGT⊂B(F)W ≃ j!∗(crs)◦(F̃), where F̃ ∈ D(T rs !W)♥ is the descent of F|T rs along
the map qrs : T rs → T rs ! W, it suffices to show G|Grs ≃ (crs)◦(F̃) ∈ D(Grs/G)♥.
This follows again from the fact that G|T rs ≃ F|T rs ≃ (crs)◦(F̃)|T rs ∈ D(T rs/W)♥.

!

6.4. Drinfeld center of Harish-Chandra bimodules and character
D-modules. We give a review of the work [BFO,BG] on Drinfeld center of Harish-
Chandra bimodules and character D-modules.

Write U = U(g) for the universal enveloping algebra of g and Z = Z(U) for the
center of U. Consider the dot action w ·λ = w(λ+ρ)−ρ on ť where ρ is the half-sum
of positive roots. Denote by Ẇ the group W acting via the dot action ť. We have
the Harish-Chandra isomorphism hc : Z ≃ O(̌t)Ẇ such that for any λ ∈ ť the center
Z acts on the Verma module associated to λ via z → hc(z)(λ). For any λ ∈ ť we
write mλ for the corresponding maximal ideal and denote by Iλ the maximal ideal
of Z corresponding to mλ under the Harish-Chandra isomorphism. Consider the
extended universal enveloping algebra Ũ = U⊗ZO(̌t), where Z acts on O(̌t) via the
Harish-Chandra isomorphism. We denote by Uλ = U /U Iλ, Uλ̂ = lim←−(U /U Inλ ),

Ũλ = Ũ/Ũmλ, and Ũλ̂ = lim←−(Ũ/Ũmn
λ). The action of Ẇ on O(̌t) gives rise to an

action of Ẇ on Ũ such that Ũ
Ẇ

= U. In addition, the stabilizer Ẇλ of λ ∈ ť in
Ẇ acts naturally on Ũλ̂ and the natural inclusion U → Ũ induces an isomorphism

Uλ̂ ≃ Ũ
Ẇλ

λ̂ (see, e.g., [BG, Section 1]).
We denote by HCλ̂ the category of finitely generated Harish-Chandra bimodules

over Uλ̂, that is, finitely generated continuous Uλ̂-bimodules such that the diagonal
action of g is locally finite. We denote by D(HCλ̂) the corresponding derived
category. The tensor product M⊗UM′, M,M′ ∈ HCλ̂ (resp. M⊗L

UM′, M,M′ ∈
D(HCλ̂)) defines a monoidal structure on HCλ̂ (resp. D(HCλ̂)).

Recall that λ ∈ ť is called regular if Ẇλ = 0, that is, λ does not lie on any coroot
hyperplane shifted by −ρ, and it is called dominant if the value of λ at any positive
coroot is not a negative integer.

Proposition 6.5 ([BFO, Proposition 3.1]). Let χ ∈ Ť and λ ∈ ť be a dominant
regular lifting of χ. The functor

RΓλ̂,−̂λ−2ρ : (D(Mχ,χ−1), ∗) ≃ (D(HCλ̂),⊗
L
U)

is an equivalence of monoidal categories. Here RΓλ̂,−̂λ−2ρ is the functor of tak-
ing the maximal summand of RΓ(F),F ∈ D(Mχ,χ−1) where t × t acts with the
generalized eigenvalue (λ,−λ− 2ρ).

Licensed to Univ of Minnesota. Prepared on Tue Nov  1 07:28:00 EDT 2022 for download from IP 134.84.192.101.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1197

Let χ ∈ Ť and λ ∈ ť be as in Proposition 6.5 and consider the equivalence of
monoidal categories

(6.5) M : (D(Hχ,χ), ∗) ≃ (D(Mχ,χ−1), ∗) RΓλ̂,−̂λ−2ρ

≃ (D(HCλ̂),⊗
L
U).

We denote by HC the category of finitely generated Harish-Chandra bimodules
over U (no restriction on the action of the center Z). We denote byHCχ̂ the category
of finitely generated Harish-Chandra bimodules over the product

∏
µ∈λ+Λ/W′

χ
Uµ̂

(here W′
χ acts on µ ∈ λ + Λ via the dot action). We denote by Z(HCλ̂,⊗U)

(resp. Z(HC,⊗U), Z(HCχ̂,⊗U), Z(Ht
ξ,ξ, ∗t)) the Drinfeld center of the monoidal

category (HCλ̂,⊗U) (resp. (HC,⊗U), (HCχ̂,⊗U), (Ht
χ,χ, ∗t)). Recall an element in

Z(HCλ̂,⊗U) consists of an element M ∈ HCλ̂ together with family of compatible
isomorphisms bF : M⊗UF ≃ F⊗UM for F ∈ HCλ̂. Recall the notion of translation
functor θµλ : HCλ̂ → HCµ̂ where µ ∈ λ+ Λ (see, e.g., [BG]).

Theorem 6.6.
(1) [BFO, Lemma 3.7] There is a lifting θµλ : Z(HCλ̂,⊗U) → Z(HCµ̂,⊗U) such

that the functor F : Z(HCλ̂,⊗U) → Z(HCχ̂,⊗U), L →
⊕

µ∈λ+Λ/W′
χ
θµλ(L) define

an equivalence of braided monoidal categories.
(2) [BFO, Theorem 3.6, Lemma 3.8] For any M ∈ DG(G)♥, the global section

Γ(M) is naturally a Harish-Chandra bimodule, with a canonical central structure
and the resulting functor Γ : DG(G)♥ → Z(HC,⊗U) is an equivalence of abelian
categories. Moreover, the equivalence above restricts to an equivalence CS(G)θ ≃
Z(HCχ̂,⊗U) and the composed equivalence

CS(G)θ ≃ Z(HCχ̂,⊗U)
F−1

≃ Z(HCλ̂,⊗U)

is isomorphic to RΓλ̂,−̂λ−2ρ ◦ π◦
Y ◦HC. Here πY : Y → Y/T is the projection map.

6.5. Harish-Chandra bimodules Zλ. In this subsection we attach to each dom-
inant regular lift λ ∈ ť of χ ∈ Ť an element Zλ ∈ Z(HCλ̂,⊗U) in the Drinfeld
center of Harish-Chandra bimodules, and identify it with the local system Eχ in-
troduced in Section 5.1 under the equivalence in (6.5). We will use the notation
RT = Sym(π1(T (C))⊗ZC) in Section 5.1 and the identification RT ≃ Sym(t) ≃ O(̌t)
for the rest of the section.

Recall the identification Wa,λ ≃ Wχ in (4.4). We have a natural inclusion Ẇλ ⊂
Wa,λ sending ẇ to (w,w−1v−v) = (w, ρ−w−1ρ) and it is straightforward to check
that the identification above maps Ẇλ ⊂ Wa,λ isomorphically onto the subgroup
Wλ+ρ ⊂ Wχ. Since the map m−λ : ť → ť of translation by −λ intertwines the Wa,λ-

action with the Wχ-action, we have an isomorphism m∗
−λ : R

Wλ+ρ

0̂
≃ RẆλ

λ̂
, where

R
Wλ+ρ

0̂
(resp. RẆλ

λ̂
) is the Wλ+ρ-invariant of the completion R0̂ of RT ≃ O(̌t) at

the origin 0 (resp. Ẇλ-invariant of the completion Rλ̂ of RT at λ ). Consider the
following quotient

R
Wλ+ρ
χ = R

Wλ+ρ

0̂
/⟨RWχ

0̂,+
⟩,

where ⟨RWχ

0̂,+
⟩ is the ideal generated by the augmentation ideal R

Wχ

0̂,+
of R

Wχ

0̂
. We

introduce the following Harish-Chandra bimodule

(6.6) Zλ = Uλ̂ ⊗R
Wλ+ρ

0̂

R
Wλ+ρ
χ ∈ HCλ̂.
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Here R
Wλ+ρ

0̂
acts on Uλ̂ via the the map

(6.7) bλ : R
Wλ+ρ

0̂

m∗
−λ≃ RẆλ

λ̂
→ Z(Ũ

Ẇλ

λ̂ ) → Z(Uλ̂),

where the last map is induced from the isomorphism Ũ
Ẇλ

λ̂ ≃ Uλ̂. Equivalently,

consider the RẆλ

λ̂
-module

(6.8) RẆλ
χ = RẆλ

λ̂
/⟨RWa,λ

λ̂,+
⟩

here ⟨RWa,λ

λ̂,+
⟩ is the ideal generated by the augmentation ideal R

Wa,λ

λ̂,+
associated to

the evaluation morphism ϵλ : R
Wa,λ

λ̂
→ C at λ. Then we have

(6.9) Zλ ≃ U⊗ZR
Ẇλ
χ ,

where Z acts on RẆλ
χ via the Harish-Chandra isomorphism hc : Z ≃ O(̌t)Ẇ ≃ RẆ

T .

Proposition 6.7. Let λ ∈ ť be a dominant regular lift of χ ∈ Ť .

(1) To every M ∈ HCλ̂ there is a canonical isomorphism

bM : Zλ ⊗U M ≃ M⊗U Zλ

such that the data (Zλ, bM)M∈HCλ̂
defines an element in the Drinfeld center

Z(HCλ̂,⊗U).
(2) Let Eχ ∈ Hχ be the local system in Section 5.1, viewed as an object in Hχ,χ

via the natural embedding Hχ ⊂ Hχ,χ, and consider its image M(Eχ) ∈
D(HCλ̂). We have M(Eχ) ≃ Zλ.

Proof. Proof of (1). We have Wλ+ρ = Ẇλ = e since λ is regular. To every

M ∈ HCλ̂, the map bλ in (6.7) gives rise to an action of R0̂⊗CR0̂ = R
Wλ+ρ

0̂
⊗CR

Wλ+ρ

0̂
on M and it follows from [MS, Theorem 4.1] that this action factors through R0̂⊗C
R0̂ → R0̂⊗R

Wχ

0̂

R0̂. Indeed, it is shown in loc. cit. that for every finite dimensional

representation V of g, the action of R0̂⊗CR0̂ on the bimodule prλ̂(V ⊗CU /U Inλ ) ∈
HCλ̂, n ∈ Z≥0 factors through R0̂ ⊗R

Wχ

0̂

R0̂. Here prλ̂(−) is the projection of the

summand on which the action of Iλ is locally nilpotent.8 Since every object in
HCλ̂ is isomorphic to a quotient of prλ̂(V ⊗CU /U Inλ ) for some V and n, the claim
follows. Therefore, for every M ∈ HCλ̂, we have a canonical isomorphism

bM : Zλ ⊗U M ≃ R
0̂
/⟨RWχ

0̂,+
⟩ ⊗R0̂

M ≃ M⊗R0̂
R

0̂
/⟨RWχ

0̂,+
⟩ ≃ M⊗U Zλ.

It follows from the construction that those isomorphisms satisfy the required com-
patibility conditions and the data (Zλ, bM) defines an element in Z(HCλ̂,⊗U).

Proof of (2). Let Ẽχ ∈ Mχ be the image of Eχ under the equivalence (i0)−1 :

Hχ ≃ Mχ in Lemma 6.2. Then by definition we have M(Eχ) ≃ RΓλ̂,−̂λ−2ρ(π◦
Y Ẽχ),

where πY : Y → Y/T . Consider the map

a : T × (G/U ×G/U)/T → (G/U ×G/U)/T, (t, gU, g′U) → (gtU, g′U).

8In fact, it was shown in [MS, Theorem 4.1] that, for any λ ∈ ť(C) and any finite dimensional
representation V , the action of R0̂ ⊗C R0̂ on prλ̂(V ⊗U /U Inλ ) factors through R0̂ ⊗RW

0̂
R0̂. But

the proof in loc.cit. actually shows that, if we fix λ ∈ ť(C), the action factors through R0̂⊗R
Wχ

0̂

R0̂.

Licensed to Univ of Minnesota. Prepared on Tue Nov  1 07:28:00 EDT 2022 for download from IP 134.84.192.101.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1199

Then it follows from the definition of (i0)−1 that Ẽχ = a∗(Eχ " ∆∗OG/B), here
∆ : G/B → (G/U ×G/U)/T is the embedding gB → (gU, gU)mod T . It is shown
in [BFO, Proposition 3.1] that RΓ(∆∗OG/B ⊗ p∗2ωG/B) ≃ Ũ (here p2 is the right
projection map (G/U ×G/U)/T → G/B), hence by Lemma 6.3 we get

RΓλ̂,−̂λ−2ρ(π◦
Y Ẽχ) ≃ RΓλ̂(Ẽχ ⊗ p∗2ωG/B) = RΓλ̂(a∗(Eχ " (∆∗OG/B ⊗ p∗2ωG/B))

≃ RΓ(∆∗OG/B ⊗ p∗2ωG/B)⊗L
RT

RΓλ̂(Eχ) ≃ Ũ⊗RT Γλ̂(Eχ).
On the other hand, Proposition 5.1 implies that, as a O(̌t)-module, we have Γ(Eχ) ≃

Γ(Rχ) ≃
⊕

µ∈ť,exp(µ)=χ Γ(m
∗
µ(ODλ))

(5.2)
≃

⊕
µ∈ť,exp(µ)=χm

∗
µRχ. Thus Γλ̂(Eχ) ≃

m∗
−λRχ ≃ m∗

−λR
Wλ+ρ
χ

(6.8)
≃ RẆλ

χ (since λ is regular we have Wλ+ρ = e) and we
conclude that

M(Eχ) ≃ RΓλ̂,−̂λ−2ρ(π◦
Y Ẽχ) ≃ Ũ⊗RT Γλ̂(Eχ) ≃ Ũ⊗RT RẆλ

χ ≃ Zλ.

Part (2) follows. !
We finish this section with a lemma to be used in the next section.

Lemma 6.8. Let λ ∈ ť be regular dominant weight and let µ be a dominant weight
in λ+ Λ. We have θµλ(Zλ) ≃ Zµ.

Proof. Note that θµλ : HCλ̂ → HCµ̂ is monoidal, so we have θµλ(Uλ̂) ≃ Uµ̂. Note

also that, by [BG, Proposition 1.4], for any r ∈ R
Wχ

0̂
and M ∈ HCλ̂, we have

θµλ(bλ(r) ·m) = bµ(r) · θµλ(m), where m ∈ M and bν : R
Wµ+ρ

0̂
→ Z(Uν̂), ν ∈ ť is the

map in (6.7). Since Zλ (resp. Zµ) is isomorphic to the coinvariant algebra of Uλ̂

(resp. Uµ̂) with respect to the action of R
Wχ

0̂
via the map bλ (resp. bµ), it follows

that θµλ(Zλ) ≃ Zµ. !
6.6. Proof of Theorem 6.1 in the de Rham setting. Let Zλ ∈ Z(HCλ̂,⊗U)

and let Ẽχ ∈ Mχ be the image of Eχ under the equivalence (i0)−1 : Hχ ≃ Mχ.
Define Ẽθ ≃

⊕
χ∈θ Ẽχ ∈ D(G\Y )♥. By the discussion above there exists a character

D-module M′
θ ∈ CS(G)θ such that

RΓλ̂,−̂λ−2ρ ◦ π◦
Y ◦HC(M′

θ) = Zλ.

Hence by Proposition 6.7, we have

RΓλ̂,−̂λ−2ρ ◦ π◦
Y ◦HC(M′

θ) ≃ RΓλ̂,−̂λ−2ρ(π◦Ẽχ)
for any regular dominant λ ∈ ť mapping to χ. Since π◦

Y ◦ HC : D(CSθ) →
⊕

χ∈θ D(Mχ,χ−1) and RΓλ̂,−̂λ−2ρ : D(Mχ,χ−1) ≃ HCλ̂ is an equivalence of cate-
gory for any regular dominant λ, it follows that

(6.10) HC(M′
θ) ≃ Ẽθ.

Applying the equivalence i◦ : D(Mχ) ≃ D(Hχ) and using Lemma 6.2 (2), we see
that

(6.11) AvU∗ (M′
θ) ≃ i◦ ◦HC(M′

θ) ≃ i◦Ẽθ ≃ Eθ.
Note that (6.10) and (6.11) together with Lemma 6.2 (3) imply that M′

θ is a direct
summand of

CH ◦HC(M′
θ) ≃ CH(Ẽθ) ≃ IndGT⊂B(Eθ).
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Since IndGT⊂B(Eθ) is isomorphic to the intermediate extension of its restriction to
Grs, as a direct factor of IndGT⊂B(Eθ), we also have M′

θ ≃ j!∗j∗M′
θ. Therefore,

by Proposition 6.4 (3), there is a canonical W-equivariant structure φ′ = {φ′
w}

on Eθ ≃ ResGT⊂B(M′
θ) such that M′

θ ≃ IndGT⊂B(Eθ)W. We claim that the above
W-equivariant structure on Eθ is isomorphic to the one φ = {φw} constructed in
Section 5.1. Thus we have M′

θ ≃ Mθ. The theorem follows.

6.7. Proof of the claim. The proof is a bit long but the idea behind it is simple.
Since we are in the de Rham setting, to identify the two W-equivariant structures
φ and φ′ on Eθ, it suffices to identify the corresponding W-actions on the space
of global sections Γ(Eθ). To this end, we will give explicit descriptions of various
D-modules and morphisms introduced in the previous section at the level of global
sections.

6.7.1. Let x ∈ N(T ) and w ∈ W its image in the Weyl group. Consider the maps

Γ(φw) : Γ(Eθ) → Γ(w∗Eθ) ≃ Γ(E) Γ(φ′
w) : Γ(Eθ) → Γ(w∗Eθ) ≃ Γ(E)

Γ(φx) : Γ(M′
θ) → Γ(Ad∗xM′

θ) ≃ Γ(M′
θ)

coming from theW-equivariant structures φw,φ′
w : Eθ ≃ w∗Eθ and theG-equivariant

structure φx : M′
θ ≃ Ad∗xM′

θ on Eθ and M′
θ respectively.9 Our goal is to show

Γ(φw) = Γ(φ′
w).

Consider the following commutative diagram

(6.12) G
π !!

Adx

""

G/U

Adx

""

T
ι##

Adx=w

""

G
πw !! G/Uw T

ιw##

where Uw = xUx−1 with Lie algebra nw and the horizontal maps are the natural
quotient maps or embeddings. The diagram (6.12) gives rise to natural isomor-
phisms

Γ(ι∗φw) : Γ(ι∗Eθ) ≃ Γ(ι∗w
∗E) ≃ Γ(Ad∗x(ιw)∗Eθ) ≃ Γ((ιw)∗Eθ)

Γ(ι∗φ
′
w) : Γ(ι∗Eθ) ≃ Γ(ι∗w

∗E) ≃ Γ(Ad∗x(ιw)∗Eθ) ≃ Γ((ιw)∗Eθ)

Γ(AvU∗ (φx)) : Γ(AvU∗ M′
θ) ≃ Γ(AvU∗ Ad∗xM′

θ) ≃ Γ(Ad∗x AvUw
∗ M′

θ) ≃ Γ(AvUw
∗ M′

θ).

By Lemma 6.3 and Example 6.1, we have

(6.13) Γ(AvU∗ (M′
θ)) ≃ (U /U n)⊗U Γ(M′

θ) Γ(ι∗Eθ) = (U /U n)⊗RT Γ(Eθ)

(6.14)
Γ(AvUw

∗ (M′
θ)) ≃ (U /U nw)⊗U Γ(M′

θ) Γ((ιw)∗Eθ) = (U /U nw)⊗RT Γ(Eθ)

and the maps Γ(ι∗φw), Γ(ι∗φ′
w), and Γ(AvU∗ (φx)) above are given by

(6.15)

Γ(ι∗φw) = Adx(−)⊗ Γ(φw) : Γ(ι∗Eθ)
= U /U n⊗RT Γ(Eθ) −→ Γ((ιw)∗Eθ)
= U /U nw ⊗RT Γ(Eθ)

9Recall that there are canonical identifications of vector spaces Γ(Ad∗
xM′

θ) ≃ Γ(M′
θ),

Γ(w∗Eθ) ≃ Γ(Eθ)
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(6.16)

Γ(ι∗φ
′
w) = Adx(−)⊗ Γ(φ′

w) : Γ(ι∗Eθ)
= U /U n⊗RT Γ(Eθ) −→ Γ((ιw)∗Eθ)
= U /U nw ⊗RT Γ(Eθ)

(6.17)

Γ(AvU∗ (φx)) = Adx(−)⊗ Γ(φx) : Γ(AvU∗ M′
θ)

= U /U n⊗U Γ(M′
θ) → Γ(AvUw

∗ M′
θ)

= U /U nw ⊗U Γ(M′
θ).

Thus to prove the claim, that is Γ(φw) = Γ(φ′
w), it suffices to show (6.16)= (6.15).

On the other hand, it follows from the construction of the W-equivariant structure
φ in Proposition 6.4 that the map (6.16) is, by definition, given by the composition

Γ(ι∗Eθ)
(6.11)
≃ Γ(AvU∗ M′

θ)
(6.17)
≃ Γ(AvUw

∗ M′
θ)

(6.11)
≃ Γ((ιw)∗Eθ).

Here the last arrow is induced by the isomorphism AvUx
∗ (M′

θ) ≃ (ιw)∗Eθ in (6.11) in
the case when the unipotent radical is Uw. Thus we need to identify the map above
with (6.15), or equivalently, to prove the commutativity of the following diagram

(6.18) Γ(AvU∗ M′
θ)

(6.17)
!!

(6.11)

""

Γ(AvUw
∗ M′

θ)

(6.11)

""

Γ(ι∗Eθ)
(6.15)

!! Γ((ιw)∗Eθ).

6.7.2. We shall describe the map (6.11) in diagram (6.18) (see line (6.22)). We first
describe Γ(M′

θ). By Theorem 6.6, we have Γ(M′
θ) ≃

⊕
µ∈λ+Λ/W′

χ
θµλ(Zλ). Since

θµλ(Zλ) ≃ Zµ for any dominant µ ∈ λ+Λ (Lemma 6.8) and every W′
χ-orbit in λ+Λ

(under the dot action) contains a unique dominant weight, we have

(6.19) Γ(M′
θ) ≃

⊕

µ∈λ+Λ/W′
χ

θµλ(Zλ) ≃
⊕

µ∈λ+Λ/W′
χ

Zµ
(6.9)
≃

⊕

µ∈λ+Λ/W′
χ

U⊗ZR
Ẇµ
χ .

We claim that there is a natural isomorphism of Z ≃ RẆ
T ≃ R

Wa,−ρ

T -modules (note
that Ẇ = Wa,−ρ as a subgroup of Wa)

(6.20)
⊕

µ∈λ+Λ/W′
χ

RẆµ
χ ≃ Γ(Eθ)Wa,−ρ .

Indeed, the map ť ! Ẇµ → ť ! Ẇ is étale at the image of ν ∈ Ẇµ ⊂ ť along the
projection ť → ť ! Ẇµ, thus we have

ť×ť!Ẇ (̌t ! Ẇµ)µ̂ =
⊔

ν∈Ẇµ

ť×ť!Ẇν
(̌t ! Ẇν)ν̂ ,

(where (̌t ! Ẇν)ν̂ is the completion at image of ν in ť ! Ẇν) and it follows that

RT ⊗Z RẆµ
χ ≃ RT ⊗RẆ

T
RẆµ

χ ≃
⊕

ν∈Ẇµ,χν=exp(ν)

RT ⊗
RẆν

T

RẆν
χν

.
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Using RT ⊗
RẆν

T

RẆν
χν

≃ m∗
−ν(RT /⟨R

Wχν
T,+ ⟩) ≃ Γν̂(Eθ), we obtain

⊕

µ∈λ+Λ/W′
χ

RT ⊗RẆ
T
RẆµ

χ ≃
⊕

µ∈λ+Λ/W′
χ

⊕

ν∈Ẇµ,χν=exp(ν)

RT ⊗
RẆν

T

RẆν
χν

≃
⊕

ν∈Ẇ(λ+Λ)

Γν̂(Eθ) ≃ Γ(Eθ).

Taking Wa,−ρ-invariants on both sides of the above isomorphism, we obtain the
desired isomorphism (6.20). Combining (6.19) and (6.20), we obtain

(6.21) Γ(M′
θ) ≃ U⊗ZΓ(Eθ)Ẇ ≃ U⊗

R
Wa,−ρ
T

Γ(Eθ)Wa,−ρ .

Now using the isomorphism Γ(Eθ) ≃ RT ⊗
R

Wa,−ρ
T

Γ(Eθ)Wa,−ρ (see Theorem 4.2), we

obtain the following description of (6.11):
(6.22)

Γ(AvU∗ (M′
θ))

(6.13)
≃ (U /U n)⊗U Γ(M′

θ)
(6.21)
≃ (U /U n)⊗

R
Wa,−ρ
T

Γ(Eθ)Wa,−ρ ≃

≃ (U /U n)⊗RT RT ⊗
R

Wa,−ρ
T

Γ(Eθ)Wa,−ρ ≃ (U /U n)⊗RT Γ(Eθ)
(6.13)
≃ Γ(ι∗Eθ).

Remark 6.2. The discussion above depends on the choice of the Borel subgroup B.
If we use the Borel subgroup Bw = xBx−1 (where x and w be as in Section 6.7.1),
then the isomorphisms (6.21) and (6.22) become

Γ(M′
θ) ≃ U⊗

R
Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ)

and
Γ(AvUw

∗ (M′
θ)) ≃ (U /U nw)⊗

R
Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ)

≃ (U /U nw)⊗RT Γ(Eθ) ≃ Γ((ιw)∗Eθ),
where w(ρ) is equal to the half sum of positive roots associated to Bw. Moreover,
the composed isomorphism

U⊗
R

Wa,−ρ
T

Γ(Eθ)Wa,−ρ ≃ Γ(M′
θ) ≃ U⊗

R
Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ)

is given by Id ⊗ Γ(φw) (note that the isomorphism Γ(φw) : Γ(Eθ) → Γ(Eθ) maps
Γ(Eθ)Wa,−ρ isomorphically onto Γ(Eθ)Wa,−w(ρ)).

6.7.3. We shall describe the map (6.17) in diagram (6.18) (see line (6.23)) and use
it to verify the desired commutativity of diagram (6.18). Theorem 6.6 and Remark
6.2 imply that, under the isomorphism

Γ(M′
θ) ≃ U⊗

R
Wa,−ρ
T

Γ(Eθ)Wa,−ρ (resp. Γ(M′
θ) ≃ U⊗

R
Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ))

the map Γ(φx) : Γ(M′
θ) → Γ(M′

θ) is given by

Γ(φx)=Adx(−)⊗ Γ(φw) : U⊗
R

Wa,−ρ
T

Γ(Eθ)Wa,−ρ −→ U⊗
R

Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ) .

It follows that, under the isomorphism

Γ(AvU∗ M′
θ) ≃ (U /U n)⊗

R
Wa,−ρ
T

Γ(Eθ)Wa,−ρ

(resp. Γ(AvUw
∗ M′

θ) ≃ (U /U nw)⊗
R

Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ))
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the map Γ(AvU∗ (φx)) : Γ(AvU∗ M′
θ) → Γ(AvUw

∗ M′
θ) in (6.17) is given by

(6.23)
Adx(−)⊗Γ(φw) : (U /U n)⊗

R
Wa,−ρ
T

Γ(Eθ)Wa,−ρ →(U /U nw)⊗
R

Wa,−w(ρ)
T

Γ(Eθ)Wa,−w(ρ) .

Now the description of (6.11) in (6.22) implies that (6.17) fits into the following
commutative diagram

(6.24) Γ(AvU∗ M′
θ)

(6.17)=(6.23)
!!

(6.11)=(6.22)

""

Γ(AvUw
∗ M′

θ)

(6.11)=(6.22)

""

Γ(ι∗Eθ) ≃ (U /U n)⊗RT Γ(E) !! Γ((ιw)∗Eθ) ≃ (U /U nw)⊗RT Γ(E),

where the bottom arrow is given by Adx(−) ⊗ Γ(φw). Since Adx(−) ⊗ Γ(φw) =
(6.15), diagram (6.24) is equal to diagram (6.18) and the commutativity of diagram
(6.18) follows. The proof is complete.

6.8. Mixed characteristic lifting of Eθ and Mθ. Let GZ be a split reductive
group over Z. Let TZ be a maximal torus of GZ and let BZ be a Borel subgroup
containing TZ with unipotent radical UZ. For any ring R (resp. any scheme S), we
denote by GR, BR, etc. (resp. GS, BS , etc.) the base change of GZ, BZ, etc. along
Spec(R) → Spec(Z) (resp. S → Spec(Z)).

Let A be a strictly henselian discrete valuation ring between Z[1/ℓ] and C with
residue field k. Let χ ∈ C(Tk)(Qℓ) and θ = Wχ be the W-orbit of χ. Let Eθ be the
W-equivariant ℓ-adic local system on Tk in Section 5.1.

Lemma 6.9. There exists a W-equivariant ℓ-adic local system Eθ,A on TA which,
after base change A → k, becomes Eθ.
Proof. Let ρθ be the ℓ-adic representation of W ! πt

1(Tk) associated to Eθ. The
specialization isomorphism sp : πt

1(Tk) → πt
1(TA) (see [SGA-1]) induces an isomor-

phism W!πt
1(Tk) ≃ W!πt

1(TA), thus we can identify ρθ as a ℓ-adic representation
of W ! πt

1(TA) and we denote by Eθ,A the corresponding local sysetm on TA. It is
obvious that Eθ,A satisfies the desired property. !

Let Mθ be the character sheaf associated to θ. Our next goal is to construct
a mixed characteristic version of Mθ. For this we observe that for any flat group
scheme G of finite type over Z and a closed subgroup scheme H ⊂ G flat over Z, the
universal geometric quotient G/H exists [A]. Note also that the Chevalley isomor-
phism holds GR!adGR ≃ TR!WR for any ring R and the formation commutes with
arbitrary base change R → R′ [Le]. It follows that the quotient map π : G → G/U
and the Grothendieck-Springer simultaneous resolution in (3.1) make sense over any
ring R. Moreover, the formation commutes with arbitrary base change R → R′.
We denote them by πR : GR → GR/UR and

(6.25) G̃R
q̃R

!!

c̃R

""

TR

qR

""

GR
cR !! TR ! WR.

Denote by hR : G̃R → ZR := GR ×TR!W TR the induced map. We define

(6.26) IC(ZR) := (hZ)!Qℓ[dimGC] ∈ D(ZR).
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When R = k is an algebraically closed field of characteristic not equal to ℓ,
IC(Zk) is the IC-complex of Zk and there is a canonical W-equivariant structure
(IC(Zk),φk) ∈ DW(Zk) (see Section 3.5).

Lemma 6.10. There exists a positive integer N , depending on the group GZ, sat-
isfying the following. Let A be a strictly henselian discrete valuation ring between
Z[1/Nℓ] and C with residue field k. One can endow the ℓ-adic complex IC(ZA)
in (6.26) with a W-equivariant structure (IC(ZA),φA) ∈ DW(ZA) which, under the
base change A → k, becomes (IC(Zk),φk) ∈ DW(Sk).

Proof. According to [BBD, Section 6.1] (or the discussion in [Dr, Section 4]), one
can choose a (large enough) positive integer N , a stratification T of ZZ[1/Nℓ], and
for each T ∈ T a (finite) collection L(T ) of ℓ-adic local systems on T , satisfying
the following: (1) We have w∗IC(ZZ[1/Nℓ]) ∈ DT ,L(ZZ[1/Nℓ]) for w ∈ W. (2)
Let A, k be as above. Let i : Zk → ZA be the imbedding. The functor i∗ :
DT ,L(ZA) → DT ,L(Zk) is an equivalence. Here DT ,L(ZA) (resp. DT ,L(Zk)) is
the full subcategory of D(ZA) (resp. D(Zk)) generated by the ∗-restriction of
L(T ), T ∈ T to ZA (resp. Zk).

Note that, by (1) above, we have w∗IC(ZA) ∈ DT ,L(ZA) and w∗IC(Zk) ∈
DT ,L(Zk). Let φk,w : IC(Zk) ≃ w∗IC(Zk) be the isomorphism coming from the W-
equivariant structure φk on IC(Zk). Since i∗IC(ZA) ≃ IC(Zk), it follows from (2)
above that there exists an isomorphism φA,w : IC(ZA) ≃ w∗IC(ZA) which, under
the base change A → k, becomes φk,w. Now the collection {φA,w|w ∈ W} defines a
W-equivariant structure φA on IC(ZA) satisfying the required property. !
Proposition 6.11. There exists a positive integer N , depending on the group GZ,
satisfying the following: Let A be a strictly henselian discrete valuation ring between
Z[1/Nℓ] and C with residue field k. There is a ℓ-adic complex Mθ,A on GA which,
under the base change A → k, becomes Mθ.

Proof. Let N,A, k be as in Lemma 6.10. Let Eθ,A ∈ DW(TA) be the lift of Eθ in
Lemma 6.9. Define

IndGA
TA⊂BA

(Eθ,A) := (c̃A)!(q̃A)
∗(Eθ,A)[dimGC − dimTC] ≃

≃ pGA,!(p
∗
TA

(Eθ,A)⊗ IC(ZA))[dimGC − dimTC].

Here pT,A and pG,A are the natural projections from ZA to TA and GA respec-
tively. The W-equivariant structures on Eθ,A and IC(ZA) give rise to a W-action
on IndGA

TA⊂BA
(Eθ,A) and we define Mθ,A = IndGA

TA⊂BA
(Eθ,A)W to be the W-invariant

factor. Since the base change of Eθ,A along A → k is isomorphic to Eθ , it follows that
the base change of Mθ,A along A → k is isomorphic to Mθ = IndGk

Tk⊂Bk
(Eθ)W. !

6.9. ULA property of the pushforward functors. We first review the notion
of universal local acyclicity (ULA) following [De2,Z1].

Let S be a Noetherian scheme. Let f : X → S be a morphism of finite type
and let F ∈ D(X). Let s be a geometric point of S and let S(s) be the strict
henselisation at s. We recall the following definition in [De2]:

Definition 6.12. A ℓ-adic complex F ∈ D(X) is called locally acyclic with respect
to f : X → S if for every geometric point x ∈ X and every geometric point
t ∈ S(f(x)), the natural map H∗(X(x),F) → H∗((X(x))t,F) is an isomorphism,
where (X(x))t = (X(x))×S(f(x))

t. It is called universally locally acyclic (ULA) if it
it locally acyclic after arbitrary base change S′ → S.
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One can reformulate local acyclicity as follows. Let t be a geometric point of
S(s). Denote by jt : X ×S t → X and is : X ×S s → X the natural maps. We write

(6.27) Ψt→s(F) := i∗s(jt)∗j
∗
t (F).

It is shown in [Z1, Lemma A 2.2] that F is locally acyclic with respect to f if and
only if the natural map

(6.28) i∗sF → Ψt→s(F)

is an isomorphism.

Remark 6.3. In the case when S = Spec(A) is the spectrum of a strictly henselian
discrete valuation ring A with s the closed point S and t a geometric point over the
generic point of S, Ψt→s(F) in (6.27) is by definition the nearby cycles Ψ(F) of F
and (6.28) is an isomorphism if and only if the vanishing cycles Φ(F) vanishes.

We have the following ULA property of the pushforward functors.

Proposition 6.13. Let f : XZ[1/Nℓ] → YZ[1/Nℓ] be a morphism of smooth schemes
over Z[1/Nℓ], separated and of finite type. There exists a subring R of C, which is
finitely generated and smooth over Z[1/Nℓ], such that the following holds. Let A be
a strictly henselian discrete valuation ring between R and C with residue field k and
let fA : XA → YA be the base change of f along Z[1/Nℓ] → A. For any ℓ-adic local
system LA on XA the pushforward (fA)∗LA is ULA with respect to YA → Spec(A),
of formation compatible with arbitrary change of base on SpecA.

Proof. We first claim that there exists a subring R of C, which is finitely gener-
ated and smooth over Z[1/Nℓ], such that the base change fR : XR → YR of f
along Z[1/Nℓ] → R admits a normal crossing compactification f̄R : XR → YR,
i.e., XR is smooth R-scheme containing XR as a dense open subscheme, such that
XR \XR is a union of smooth over R divisors which have normal crossings relative
to Spec(R), and f̄R is a proper morphism extending fR. Indeed, Nagata compacti-
fication theorem and resolution of singularities imply the existence of such a normal
crossing compactification f̄C : XC → YC for the base change fC : XC → YC of f
along the embedding Z[1/Nℓ] → C. Then we could apply the standard “spreading
out” techniques to produce the desired ring Z[1/Nℓ] ⊂ R ⊂ C and the normal
crossing compactification for fR (see, e.g., [EGA-IV, Section 7 and Section 8] or
[BBD, Section 6.1.7]).

Let A and LA be as in the proposition. The base change f̄A : XA → YA of
f̄R along R → A gives rise to a normal crossing compactification of fA. Denote
by jA : XA → XA the open embedding. Since A has generic characteristic zero,
any ℓ-adic local system LA on XA is tamely ramified along the normal crossing
divisors XA \XA at infinity [SGA-1, XIII 2.3 (a)]. Thus the results in [De3, Lemma
2.1.10 and Lemma 2.1.11] imply that the pushforward (jA)∗LA is ULA with respect
to XA → A of formation compatible with arbitrary change of base on Spec(A).
Indeed, the results in loc. cit. show that the formation (jA)∗LA commutes with
arbitrary base change on Spec(A) and the vanishing cycle Φ((jA)!LA) is zero. Since
the vanishing cycles functor Φ(−) commutes with Verdier duality D, it implies
Φ((jA)∗LA) = DΦ((jA)!(DLA)) = 0 and hence (jA)∗LA is ULA by Remark 6.3.10

10Note that DLA is again a ℓ-adic local system (up to cohomological shift) tamely ramified
along the normal crossing divisors at infinity.
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Since the map f̄A : XA → YA is proper, the functor (f̄A)∗ maps ULA complexes
to ULA complexes [Z1, Theorem A.2.5], and hence (fA)∗(LA) ≃ (f̄A)∗((jA)∗LA)
is ULA with respect to YA → A, of formation compatible with arbitrary change of
base on SpecA. The proof is complete. !

Let A be a strictly henselian local ring and let S = Spec(A). Let s be the closed
point of S and let t be a geometric point of S. Let f : X → S be a scheme over S
and let Y ⊂ X be an open subscheme over S.

Lemma 6.14. Let F be a ℓ-adic complex on X ULA with respect to X → S. Let Fs

and Ft be the restriction of F to the fiber Xs and Xt respectively. Then Ft|Yt ≃ 0
implies Fs|Ys ≃ 0.

Proof. Indeed, since Y → X is smooth and the functor Ψt→s in (6.27) commutes
with smooth pull back, the isomorphism Fs ≃ Ψt→s(F) (coming from the ULA
property) implies Fs|Ys ≃ Ψt→s(F)|Ys ≃ Ψt→s(F|Y ) ≃ i∗s(jt)∗(Ft|Yt) ≃ 0. !
6.10. Proof of Theorem 6.1 in the ℓ-adic setting. We shall show that there
exists a positive integer N , depending only on GZ, such that for any algebraic
closure k of a finite field of characteristic not dividing Nℓ and a W-orbit θ =
Wχ of a tame character χ ∈ C(Tk)(Qℓ), the averaging AvUk

∗ (Mθ) is supported on
Tk = Bk/Uk ⊂ Gk/Uk. Equivalently, the restriction of AvUk

∗ (Mθ) to the open
complement Yk = (Gk/Uk) \ (Bk/Uk) is zero.

To this end, let N be as in Proposition 6.11 and let R ⊂ C be the finitely
generated smooth Z[1/Nℓ]-algebra as in Proposition 6.13 in the case when f :
XZ[1/Nℓ] → YZ[1/Nℓ] is equal to

f : G̃Z[1/Nℓ]
c̃Z[1/Nℓ]−→ GZ[1/Nℓ]

πZ[1/Nℓ]−→ GZ[1/Nℓ]/UZ[1/Nℓ],

where c̃Z[1/Nℓ] is the map in (6.25). By replacing N with a larger positive integer,
we can assume the map Spec(R) → Spec(Z[1/Nℓ]) is a smooth surjection. Then for
any geometric k-point of Spec(Z[1/Nℓ]), there exists a strictly henselian discrete
valuation ring R ⊂ A ⊂ C with residue field k (see, e.g., [BBD, Section 6.1.8]).
Let Mθ,A, Eθ,A be as in Proposition 6.11. We will write Eθ,A′ , Mθ,A′ for the base
change of Eθ,A, Mθ,A along A → A′. Note that, by Lemma 6.9 and Proposition
6.11, we have Eθ,k ≃ Eθ and Mθ,k ≃ Mθ.

Lemma 6.15. (πA)∗Mθ,A is ULA with respect to GA/UA → Spec(A), of formation
compatible with arbitrary base change on Spec(A).

Proof. Let LA = (q̃A)∗Eθ,A be the ℓ-adic local system on G̃A given by the pull-back

of Eθ,A along the map q̃A : G̃A → TA in (6.25). By Proposition 6.13, (fA)∗LA is
ULA with respect to GA/UA → Spec(A), of formation compatible with arbitrary
base change on Spec(A). Since Mθ,A is the W-invariant direct factor of

IndGA
TA⊂BA

(Eθ,A) = (c̃A)∗LA[dimGC − dimTC]

and

(fA)∗LA = (πA)∗(c̃A)∗LA ≃ (πA)∗Ind
GA
TA⊂BA

(Eθ,A)[dimTC − dimGC].

It follows that (πA)∗Mθ,A is a direct factor of (πA)∗LA and hence is also ULA with
respect to GA/UA → Spec(A), of formation compatible with arbitrary base change
on Spec(A).

!
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Lemma 6.16. (πC)∗Mθ,C is supported on TC = BC/UC ⊂ GC/UC.

Proof. Let Db
c(GC,Qℓ) be the bounded derived category of constructible ℓ-adic

complexes on GC and let Db
c(GC(C),C) be the usual bounded derived category of

C-constructible complexes on the complex Lie group GC(C). We fix an isomorphism
Qℓ ≃ C. Then according to [BBD, Section 6.1], there is a comparison functor

ϵ∗ : Db
c(GC,Qℓ) → Db

c(GC(C),C)

which is fully-faithful and commutes with six functor formalism. Let Eθ,C be the
base change of Eθ,A along A → C. We claim that there exists a character χC
of the topological fundamental group π1(T (C)) such that the local system ϵ∗Eθ,C
corresponds to the de Rham local system EθC in Section 5.1 under the Riemann-
Hilbert correspondence. Here θC = WχC is the W-orbit of χC. Assume the claim
for the moment, then the perverse sheaf

ϵ∗Mθ,C ≃ ϵ∗((IndGC
TC⊂BC(Eθ,C))

W) ≃ (IndGC
TC⊂BC(ϵ

∗Eθ,C))W

corresponds to the characterD-module IndGC
TC⊂BC(EθC)

W=MθC under the Riemann-
Hilbert correspondence and the lemma follows from Theorem 6.1 in the de Rham
setting.

To prove the claim, we observe that the constructions of Eθ and Eθ,A in Sec-
tion 5.1 and Lemma 6.9 imply that Eθ,C corresponds to a ℓ-adic representation
IndWW′

χC,ℓ
(RχC,ℓ ⊗χC,ℓ) where χC,ℓ is a ℓ-adic character of π1(TC)ℓ with W′

χC,ℓ = W′
χ,

and RχC,ℓ is the representation of W′
χC,ℓ !π1(TC) in Qℓ[[π1(TC)ℓ]]/⟨Qℓ[[π1(TC)ℓ]]

WχC,ℓ
+ ⟩

given by the Qℓ[[π1(TC)ℓ]]-module structure. Here π1(TC) is the étale fundamental
group of TC and Qℓ[[π1(TC)ℓ]] is the completed group algebra of the pro-ℓ quotient
π1(TC)ℓ of π1(TC). Note that the restriction of the functor ϵ∗ to the subcategory of
ℓ-adic local systems on TC is induced by the natural embedding

(6.29) π1(T (C)) → π1(T (C))ℓ ≃ π1(TC)ℓ.

Note also that (6.29) induces an isomorphism

RχC = RT /⟨ R
WχC
T,+ ⟩ ≃ Qℓ[[π1(TC)ℓ]]/⟨Qℓ[[π1(TC)ℓ]]

WχC,ℓ
+ ⟩ ≃ RχC,ℓ

compatible with the W′
χC = W′

χC,ℓ-action. Let χC be the pullback of the character

χC,ℓ along (6.29). Then the pullback of the representation IndWW′
χC,ℓ

(RχC,ℓ ⊗ χC,ℓ))

along (6.29) is isomorphic to IndWW′
χC
(RχC ⊗ χC). Since EθC is the de Rham local

system corresponding to IndWW′
χC
(RχC ⊗χC) under the Riemann-Hilbert correspon-

dence, the desired claim follows.
!

Applying Lemma 6.14 to the case F = (πA)∗Mθ,A, X = GA/UA, Y = YS =
(GA/UA) \ (BA/UA), and using Lemma 6.15 and Lemma 6.16, we conclude that
AvUk

∗ (Mθ) ≃ (πk)∗Mθ,k is supported on Tk. To finish the proof of Theorem 6.1
it remains to show that ι◦ AvUk

∗ (Mθ) ≃ ResGT⊂B(Mθ) is isomorphic to Eθ but it
follows from Proposition 3.2.
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7. Proof of the vanishing conjecture

In this section we prove the vanishing conjecture (Conjecture 1.2) for almost all
characteristic:

Theorem 7.1. There exists a positive integer N depending only on the type of the
group G such that the following holds. Assume k = C or char k = p is not dividing
Nℓ. Let F ∈ DW(T ) be a central complex (resp. ∗-central complex) on T and let
ΦF = IndGT⊂B(F)W ∈ D(G). For any x ∈ G\B, we have the following cohomology
vanishing

H∗
c(xU, i

∗ΦF ) = 0 (resp. H∗(xU, i!ΦF ) = 0),

where i : xU → G is the natural inclusion map. Equivalently, AvU! (ΦF) (resp.
AvU∗ (ΦF )) is supported on the closed subset T = B/U ⊂ G/U .

7.1. Reduction to perverse sheaves.

Lemma 7.2. If Conjecture 1.2 holds for central perverse sheaves (resp. ∗-central
perverse sheaves), then it holds for arbitrary central complexes (resp. ∗-central
complex).

Proof. Since the Verdier duality interchanges central complexes with ∗-central com-
plexes, it is enough to verify the lemma for ∗-central complexes. Let F be a ∗-central
complex. We claim that both pτ≤b(F) and pH b(F), b ∈ Z, are ∗-central. Assum-
ing the claim for the moment, then an induction argument on the (finite) number
of non vanishing perverse cohomology sheaves of F in [C, Lemma 7.5] implies the
lemma.

We shall prove the claim. We first deal with the the ℓ-adic setting. Let χ ∈
C(T )(Qℓ) and let Iχ be the maximal ideal corresponding to χ. Write C(T )χ̂ for
the completion of C(T ) at χ. Let qχ̂ : C(T )χ̂ → C(T )χ̂ ! Wχ be the quotient map.
Since χ is the unique closed point of C(T )χ̂ and the action of Wχ on the fiber
i∗χ(M(F ⊗ signW)|C(T )χ̂) ≃ i∗χM(F ⊗ signW) is trivial, by [Ne, Theorem 1.3], there

exists G ∈ Db
coh(C(T )χ̂ ! Wχ) such that

M(F ⊗ signW)|C(T )χ̂ ≃ q∗χ̂G ∈ Db
coh(C(T )χ̂ ! Wχ).

Since the functors M, q∗χ̂ and taking completions (−)|C(T )χ̂ are t-exact, we have

M(pτ≤b(F)⊗ signW)|C(T )χ̂ ≃ τ≤b(M(F ⊗ signW)|C(T )χ̂) ≃ τ≤b(q
∗
χ̂G) ≃ q∗χ̂(τ≤b(G)).

Similarly, we have

M(pH b(F)⊗ signW)|C(T )χ̂ ≃ q∗χ̂H
b(G).

It follows that Wχ acts trivially on the fibers i∗χM(pτ≤b(F) ⊗ signW) and

i∗χM(pH b(F)⊗signW) and, by Lemma 4.1, we conclude that pτ≤b(F) and pH b(F)
are ∗-central.

The de Rham setting. Let λ ∈ ť(C). By Theorem 4.4, the Mellin transform
M(F ⊗ signW) descends to ť ! Wa,λ, that is, we have

M(F ⊗ signW) ≃ π∗
λG

for some G ∈ Db
qcoh(̌t ! Wa,λ). Since M and π∗

λ are exact functors, we have

M(τ≤bF ⊗ signW) ≃ τ≤b(M(F ⊗ signW)) ≃ τ≤b(π
∗
λG) ≃ π∗

λ(τ≤bG)

M(H b(F)⊗ signW) ≃ H b(M(F ⊗ signW)) ≃ H b(π∗
λG) ≃ π∗

λ(H
bG)
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and hence by Theorem 4.4 again we conclude that both τ≤bF and H b(F) are
∗-central.

!

7.2. Reduction to reductive groups with connected center.

Lemma 7.3. Let fG : G → G1 be a central isogeny. If Conjecture 1.2 holds for G1

then it holds for G.

Proof. We retain the notation from Section 4.4. Let B1 = f(B) and U1 = f(U).
Since f maps the root subgroups of G isomorphically to the root subgroups of G1

and the kernel of f is in the center of G, B1 = T1U1 is a Borel subgroup of G1 with
unipotent radical U1. In addition, we have the following Cartesian diagrams

G

fG

""

G̃

""

q̃
!!c̃## T

fT

""

G1 G̃1
q̃1

!!
c̃1## T1

where the horizontal arrows are the maps in (3.1). It follows that for any F ∈
DW(T ) we have

IndG1
T1⊂B1

((fT )!F)W1 ≃ (fG)!(Ind
G
T⊂B(F)W)

(recall that fG induces an isomorphism fW : W ≃ W1 (4.12)). From the above
isomorphism we obtain

(7.1)
(π1)!(Ind

G1
T1⊂B1

((fT )!F)W1) ≃ (π1)!((fG)!(Ind
G
T⊂B(F)W))

≃ (fG/U )!(π!(Ind
G
T⊂B(F)W)),

where π : G → G/U , π1 : G1 → G1/U1 and fG/U : G/U → G1/U1. Since

f−1
G/U (T1) = T and for any G ∈ D(G/U) we have supp((fG/U )!G) = fG/U (supp(G))
(as fG/U is surjective étale), the isomorphism (7.1) implies that if

(π1)!(Ind
G1
T1⊂B1

((fT )!F)W1) is supported on T1 then π!(Ind
G
T⊂B(F)W) is supported

on T . Now the lemma follows from Lemma 4.5.
!

Corollary 7.4. If Conjecture 1.2 holds for connected reductive groups with con-
nected center then it holds for arbitrary connected reductive groups.

Proof. Let Gder and ZG be the derived subgroup and the center of G respectively
and let G1 = G/Gder ×G/ZG. Note that G1 has connected center and the natural
map fG : G → G1 is a central isogeny. Thus the corollary follows from Lemma
7.3. !

7.3. Convolution with Mθ.

Proposition 7.5. Assume G has connected center. Let F ∈ DW(T )♥ be a ∗-central
perverse sheaf and let θ be a W-orbit through a tame character χ ∈ C(T )(E). There
is an isomorphism

ΦF ∗Mθ ≃ H∗(T,F ⊗ Lχ−1)⊗Mθ.
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Proof. By Proposition 5.4, we have

(7.2) F ∗ Eθ ≃ H∗(T,F ⊗ Lχ−1)⊗ Eθ ∈ D(T ).

Since AvU∗ (Mθ) ≃ Eθ is supported on T = B/U ⊂ G/U , Proposition 3.3 implies

(7.3) IndGT⊂B(F) ∗Mθ ≃ IndGT⊂B(F ∗ Eθ) ≃ H∗(T,F ⊗ Lχ−1)⊗ IndGT⊂B(Eθ).

We claim that the isomorphism above is compatible with the natural W-actions.
Taking W-invariance on both sides of (7.3), we get

ΦF ∗Mθ ≃ IndGT⊂B(F)W ∗Mθ

(7.3)
≃ H∗(T,F ⊗ Lχ−1)⊗ IndGT⊂B(Eθ)W

≃ H∗(T,F ⊗ Lχ−1)⊗Mθ.

The proposition follows. !

7.3.1. Proof of the claim. Let us write Res = ResGT⊂B, Ind = IndGT⊂B, M = Mθ,
E = Eθ, and V = H∗(T,F ⊗Lχ−1). Our goal is to show that the isomorphism (7.3)

(7.4) φ : Ind(F) ∗M ≃ V ⊗ Ind(E)

is compatible with the W-actions. To this end, consider the following commutative
diagram induced from (7.4):

End(Ind(F) ∗M) !!

(7.4) ∼
""

End(Res(Ind(F) ∗M))

(7.4) ∼
""

End(V ⊗ Ind(E)) !! End(Res(V ⊗ Ind(E)))

.

Since the natural map End(Ind(E)) → End(Res ◦ Ind(E)) is injective,11 the hor-
izontal arrows in the diagram above are injective. Thus it suffices to check the
compatibility after applying the functor Res, that is, the map

(7.5) Res(φ) : Res(Ind(F) ∗M) ≃ Res(V ⊗ Ind(E)) ≃ V ⊗ Res ◦ Ind(E)

is compatible with the W-actions. Since AvU∗ (M) ≃ Res(M) ≃ E is supported on
T , we have a canonical isomorphism

Res(Ind(F) ∗M) ≃ Res ◦ Ind(F) ∗ Res(M) ≃ Res ◦ Ind(F) ∗ E12

and hence (7.5) can be identified with

(7.6) Res ◦ Ind(F) ∗ E ≃ V ⊗ Res ◦ Ind(E)

11Indeed, since Res is the right adjoint of Ind, it has a one side inverse End(Res ◦ Ind(E)) →
End(Ind(E)) sending f : Res ◦ Ind(E) → Res ◦ Ind(E) to Ind(E) η→ Ind ◦ Res ◦ Ind(E) h→ Ind(E),
where η is induced by the the unit morphism Id → Res ◦ Ind and h is the image of f under the
isomorphism End(Res ◦ Ind) ≃ Hom(Ind ◦ Res ◦ Ind, Ind).

12The first isomorphism follows from the fact that, for any M1,M2 ∈ D(G/adG) such that
AvU∗ (M2) ≃ Res(M2) is supported on T , we have canonical isomorphism Res(M1 ∗ M2) ≃
Res(M1) ∗ Res(M2).
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and we reduce to show that (7.6) is compatible with the W-actions. By Proposition
3.2 and Proposition 5.4, there is a commutative diagram

(E[W]⊗ F) ∗ E !!

∼(3.6)

""

V ⊗ (E[W]⊗ E)

∼(3.6)

""

Res ◦ Ind(F) ∗ E
(7.6)

!! V ⊗ (Res ◦ Ind(E))

where the vertical arrows and the upper horizontal arrow are compatible with the
natural W-actions. Therefore (7.6) is also compatible with the W-actions. The
claim follows.

7.4. Proof of Theorem 7.1. Since the Verdier duality interchanges central com-
plexes with ∗-central complexes, it suffices to verify Theorem 7.1 for ∗-central com-
plexes. Let F ∈ DW(T ) be a ∗-central complex. We need to show that the natural
map

(7.7) r : ResGT⊂B(ΦF ) → AvU∗ (ΦF )

is an isomorphism. By Lemma 7.2 and Corollary 7.4, we can assume F is a perverse
sheaf and G has connected center. We claim that, for any W-orbit θ = Wχ ⊂
C(T )(E), the convolution of r with Eθ is an isomorphism

(7.8) ResGT⊂B(ΦF) ∗ Eθ
∼−→ AvU∗ (ΦF ) ∗ Eθ.

For this, it is enough to show that AvU∗ (ΦF)∗Eθ is supported on T and this follows
from Theorem 6.1 and Proposition 7.5. Indeed, we have

AvU∗ (ΦF ) ∗ Eθ
Thm 6.1≃ AvU∗ (ΦF) ∗AvU∗ (Mθ)

≃ AvU∗ (ΦF ∗Mθ)

Prop7.5
≃ H∗(T,F ⊗ Lχ−1)⊗AvU∗ (Mθ)

Thm 6.1≃ H∗(T,F ⊗ Lχ−1)⊗ Eθ.

Since Eθ ≃
⊕

χ∈θ Eχ, the isomorphism (7.8) implies that the cone of the map
in (7.7), denoted by cone(r), satisfies cone(r) ∗ Eχ = 0 for all χ ∈ C(T )(E). As
Eχ is a local system on T with generalized monodromy χ, that is, Eχ ⊗ Lχ is an
unipotent local system, Lemma 7.6 and Lemma 7.7 below imply cone(r) = 0. The
theorem follows.

7.5. Vanishing lemmas. Let X be a smooth variety with a free T action a :
T ×X → X. For L ∈ D(T ) and F ∈ D(X) we define L ∗F := a∗(L"F) ∈ D(X).

Lemma 7.6. Let L be a local system on T with generalized monodromy χ ∈
C(T )(E), that is, L ⊗ Lχ is a unipotent local system. Let F ∈ D(X) and assume
L ∗ F = 0. Then we have Lχ ∗ F = 0.

Proof. There is a filtration 0 = L(0) ⊂ L(1) ⊂ · · · ⊂ L(k) = L such that

0 → L(i−1) → L(i) → L(i)/L(i−1) ≃ Lχ → 0.

Assume Lχ ∗F ̸= 0 and let m be the smallest number such that H ≥m(Lχ ∗F) = 0.
We claim that H ≥m(L(i) ∗ F) = 0 for i = 1, . . . , k. The case i = 1 is automatic

Licensed to Univ of Minnesota. Prepared on Tue Nov  1 07:28:00 EDT 2022 for download from IP 134.84.192.101.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1212 TSAO-HSIEN CHEN

since L(1) = Lχ. For i ≤ k, consider the distinguished triangle

L(i−1) ∗ F → L(i) ∗ F → Lχ ∗ F → L(i−1) ∗ F [1]

induced from above short exact sequence. Then for any n ≥ m we obtain an exact
sequence

H n(L(i−1) ∗ F) → H n(L(i) ∗ F) → H n(Lχ ∗ F).

By induction, the first and third terms are zero, and hence H n(L(i) ∗F) = 0. The
claim follows.

Now since L ∗ F = 0, the distinguished triangle

L(k−1) ∗ F → L ∗ F → Lχ ∗ F → L(k−1) ∗ F [1]

implies
Lχ ∗ F ≃ L(k−1) ∗ F [1].

Therefore we have H m−1(Lχ ∗F) ≃ H m−1(L(k−1) ∗F [1]) = H m(L(k−1) ∗F) = 0
which contradicts to the fact that m is the smallest number such that H ≥m(Lχ ∗
F) = 0. We are done. !

Lemma 7.7. Let F ∈ D(X). If Lχ ∗ F = 0 for all χ ∈ C(T )(E), then F = 0.

Proof. Since T acts freely on X we have an embedding ox : T → X, t → t · x.
Moreover, by base change formulas, we have

H∗(T,Lχ−1 ⊗! o!xF) ≃ i!x(Lχ ∗ F) = 0

for all χ ∈ C(T )(E). Here ix : x → X is the natural inclusion map. By a result
of Laumon [GL, Proposition 3.4.5], it implies o!xF = 0 for all x. The lemma
follows. !
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Boston, Boston, MA, 2003, pp. 27–47. MR1985192

[BY] Roman Bezrukavnikov and Alexander Yom Din, On parabolic restriction of perverse
sheaves, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3, 1089–1107, DOI 10.4171/prims/57-
3-12. MR4322008

[BZG] D. Ben-Zvi and S. Gunningham, Symmetries of categorical representations and the
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Géométrie Algébrique, SGA 7, Volume II, Lecture Notes in Mathematics, vol 340,
Springer, 1973.

[Dr] Vladimir Drinfeld, On a conjecture of Kashiwara, Math. Res. Lett. 8 (2001), no. 5-6,
713–728, DOI 10.4310/MRL.2001.v8.n6.a3. MR1879815

[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.
of Math. (2) 103 (1976), no. 1, 103–161, DOI 10.2307/1971021. MR393266

[FS] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence,
arXiv:2102.13459, 2021.

[SGA-1] Alexander Grothendieck, Revêtements étales et groupe fondamental. Fasc. I: Exposés
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