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1. INTRODUCTION

This paper is a sequel to [C]. In loc.cit. it was shown that a conjecture of
Braverman-Kazhdan on acyclicity of p-Bessel sheaves on reductive groups follows
from a certain vanishing conjecture. The goal of this paper is to give a proof of this
vanishing conjecture. In the introduction, we would like to recall the statement of
the vanishing conjecture, explain its applications to the conjectures of Braverman-
Kazhdan on acyclicity of p-Bessel sheaves and non-linear Fourier kernels for finite
reductive groups, and outline a proof of the vanishing conjecture.

1.1. The vanishing conjecture. Let k be an algebraic closure of a finite field I,
with g-element of characteristic p > 0 or k = C. We fix a prime number ¢ different
from p. We set E = Q, in the case chark = p and E = C in the case k = C.
We will consider the following two geometric/sheaf-theoretic contexts: (1) ¢-adic
sheaves on schemes over k of characteristic p, (2) holonomic D-modules on schemes
over k = C. We refer to context (1) as the f-adic setting and context (2) as the de
Rham setting. We will fix a non-trivial character 9 : F; — @ZX . Depending on the
setting, let £, be the Artin-Schreier sheaf on the additive group G, associated to
1 in the f-adic setting or the exponential D-module in the de Rham setting.

The vanishing conjecture proposed in [C] is a generalization of the well-known
acyclicity
(1.1) H}(Gq, Ly) =0
of Ly to general reductive groups. The starting point is the observation that (1.1)

can be restated as acyclicity of a certain local system on SLo over certain affine
subspaces. Namely, let tr : SLy — G, be the trace map and let U be the unipotent
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1172 TSAO-HSIEN CHEN

radical of the the standard Borel subgroup B of SLs. Then (1.1) is equivalent to
the following acyclicity of the local system ® = tr*L, over U-orbits on the open
Bruhat cell: for any x € SLy \ B we have

(1.2) H*(2U,i*®) = 0.

Here i : xU — SLy is the embedding. Indeed, it follows from the fact that for any
x € SLy \ B, the trace map restricts to an isomorphism tr : zU ~ G, between the
U-orbit through x and G,.

To state a generalization of (1.2) to general reductive groups, let me first recall
some notations and definitions. Let G be a connected reductive group over k.
Let T be a maximal torus of G and B be a Borel subgroup containing 7" with
unipotent radical U. Denote by W = Ng(T)/T the Weyl group, where Ng(T) is
the normalizer of T' in G. Depending on the setting, we denote by 7} (T') the tame
étale fundamental group of T if chark > 0 or the topological fundamental group
i (T) = m(T(C)) of T(C) if k = C. We denote by C(T)(FE) the set of continuous
E-valued characters of 7¢(T).

For any character x € C(T)(E), we write £,, for the corresponding rank one ¢-
adic/de Rham local system on T'. The Weyl group W acts naturally on C(T')(E) and
for any x € C(T)(FE), we denote by W/ the stabilizer of x in W and W, C W/, the
subgroup of W/ generated by those reflections s, such that the pull-back (&)L, is
isomorphic to the trivial local system, where ¢& : G, — T is the coroot associated
to a.t

Denote by 2w (T) the W-equivariant bounded derived category of sheaves on T'.
For any F € 2w(T) and x € C(T)(E), the W-equivariant structure on F together
with the natural W/ -equivariant structure on L, give rise to an action of W/ on
the cohomology groups H}(T', F ® L,) (resp. H*(T, F® L )). In particular, we get
an action of the subgroup W, C W on the cohomology groups above. Denote by
signy : W — {£1} the sign character of W.

The key in formulating the generalization of (1.2) to general G is the following
definition of central complexes on T introduced in [C, Definition 1.1]:

Definition 1.1. A W-equivariant complex F € Pw(T) is called central (resp.
s-central) if for any x € C(T)(E), the group W, acts on

HI(T,F®Ly) (resp. H*(T, F ® L))

via the sign character signy,. It is called strongly central (resp. strongly x-central)
if the stabilizer W} acts on the cohomology groups above by the sign character.

Remark 1.1. If the center of G is connected, then it is known that W, = W;( for
all x € C(T)(FE) (see, for example, [DL, Theorem 5.13]), thus the notions of central
complexes and strongly central complexes are the same. In general, the two notions
are different (see the example below).

Example 1.2. Consider the case G = SLy. The Weyl group W ~ {£1} acts on
T ~ Gy, by the inverse map and it is straightforward to check that W, # {1} if
and only if x is trivial. Thus a W-equivariant complex F € Zw(T') is central if and
only if W acts on H (T, F) by the sign character, equivalently, H?(7, F)W = 0. Let
x € C(T)(Qy) be a character satisfying x = x~!. The corresponding local system

!The group W, plays an important role in the study of representations of finite reductive
groups and character sheaves (see, e.g., [Lu]).
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1173

L, has a canonical equivariant structure £, ~ £, -1 ~ (—=1)*L,. If x is trivial then
HA(T, L)V ~ H:(T,Q,)W # 0, and hence £, ~ Q, is not central. If x is non-
trivial, then HX(T, £,) = 0 and hence L, is central. Note that in the latter case we
have W), = {1} and W/, = {£1} and since H:(T, L, @ £,)Vx ~ HX(T,Q,)V # 0
we see that £, is not strongly central.

Recall the Lusztig induction functor Ind$_ 5 : 2(T) — 2(G) between bounded
derived category of sheaves on T and G. It is given by pull-push Indgp;C B =
¢, 0 ¢*[dim G — dim T along the correspondence G < G % T, where G is the
Grothendieck-Springer simultaneous resolution and ¢ and ¢ are the natural projec-
tion maps, see (3.1).

For F € 9w(T), the W-equivariant structure on F defines a W-action on
Ind$ . 5(F) and we denote by

= Indch(]—")w

the W-invariant factor in Ind$_5(F). In [C, Conjecture 1.2], we proposed the
Conjecture 1.2 on acyclicity of ® over certain affine subspaces in G, called the
vanishing conjecture:

Conjecture 1.2. Assume F € Dw(T) is central (resp. x-central). For any x €
G\ B, we have the following cohomology vanishing

(1.3) H:(2U,i"®£) =0 (resp. H*(zU,i'®x) = 0),

where i : xU — G is the natural inclusion map. Equivalently, the derived pushfor-
ward m(®x) (resp. m.(PF)) is supported on the closed subset T = B/U C G/U.
Here m: G — G/U is the quotient map.

Example 1.3. Assume G = SL,. Consider the trace map tr : SLy — G, and let
trr : T — G, be its restriction to the maximal torus. The pullback F = tr;:Ly
together with the canonical W-equivariant structure is central. Moreover, we have

Sy~ tI‘*[,w [2}

(see, e.g., [C, Example 1.2 and 1.7]). It follows that Conjecture 1.2 (in this case)
is equivalent to (1.2), and hence is also equivalent to the acyclicity of the Artin-
Schreier sheaf (1.1).

1.2. Braverman-Kazhdan conjectures. Assume k = F, and G is defined over
F,. In [BK1, BK2], Braverman and Kazhdan associated to each representation
p: G — GL(V,) of the complex dual group, a Q,-valued function

(1.4) V6.pu  r(G(Ey)) = Q

on the set of irreducible representation of the finite group G(F,), satisfying the
following remarkable properties:

(1) it is constant on Deligne-Lusztig packets, that is, we have vg ¢ (7T) =
va,p(m') if m and 7’ appear in the same Deligne-Lusztig representation
Rryp,

(2) if m appears in Ry g, then the value v , () is given by a certain explicit
Gauss-type sum associated to the character 6.
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1174 TSAO-HSIEN CHEN

They called @, ¢ the y-function associated to p.
The function vg . on Irr(G(F,)) gives rise to a Q,-valued class function ¢, 4
on G(F,) characterized by the property that the operator

Z, : Func(G(Fy)) — Func(G(F,))
on the space of functions on G(F,) given by convolution with ¢¢ , . satisfies

yp(Xﬂ) = VG,p,w(W)Xm

where x is the character of 7 € Irr(G(Fy)). In the case G = GL,, and p = std is the
standard representation of G = GL,, (C), the function ®G.p,p 18 given by Yotr (up to
some power of ¢) and the operator .%, is the linear Fourier transform on the space
of functions on GL,, (F,) (or rather, the restriction of the linear Fourier transform
on Func(gl, (F,)) to the subspace Func(GL, (F,)). Thus, one can view .%, as a kind
of non-linear Fourier transform and ¢¢,,. as the corresponding Fourier kernel.

In loc. cit. Braverman and Kazhdan proposed a geometric construction of ¢ap
using the theory of f-adic sheaves. To explain their construction, let us fix a F-
stable maximal torus T' C G where F : G — G is the geometric Frobenius morphism
and consider the restriction of p to the dual maximal torus 7 C G. Then there
exists a collection of weights

A={\,.. ., A} CX(T) := Hom(T,C*)

such that there is an eigenspace decomposition V, = @._, Vi, of V,, where T acts
on V), via the character A\;. One can regard A as collection of co-characters of T'

using the the canonical isomorphism X*(7) ~ X,(7) and define

Oy = Pry tr"Ly[r] D7 pop =PIy 7Ly [r],

where

T T

prA::H)\i:G:n—>T, tr:an—>Ga,(x1,...,xr)—>2xi.
i=1 i=1

It is shown in [BK2] that both ®r,, and @7, carry natural W-equivariant

structures and the resulting objects in Zw (T'), denoted again by @7, and @7, b

are called the p-Bessel sheaves.? The p-Bessel sheaves on G, denoted by @, and
@E’p’w, are defined as

PG pyp = Indch(q)T,p,dJ)w, ‘I%,p,w = Indch(‘I)*T,p,qp)w
It is shown in [BK2, Theorem 4.2] and [CN, Appendix B] that, if p satisfies certain
positivity assumption (see [BK2, Section 1.4]), then the p-Bessel sheaves ®7 ,
and @7, oy o0 T are in fact local systems on the image of pry, moreover, we have
@rpy = 7, This is a generalization of Deligne’s theorem on Kloosterman
sheaves [Del].

Braverman and Kazhdan showed that one can endow the p-Bessel sheaf ®¢ 4 .
with a Weil structure F* ®¢ ¢ » ~ ®¢ .4 and they proposed Conjecture 1.3:

2In [BK1, BK2], the authors called &7, v-sheaves on T. However, based on the fact that
the classical y-function is the Mellin transform of the Bessel function, we follow [Ng] and use the
term p-Bessel sheaves instead of «-sheaves.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1175

Conjecture 1.3. Let Tr(®¢ ) : G(F,) — Q, be the function corresponding to
@, via the functions-sheaves correspondence. We have

Te(PG,p0) = dG,p,0

Conjecture 1.3 gives a geometric construction of the non-linear Fourier kernel
¢aG,pp- They also showed that Conjecture 1.3 follows from Conjecture 1.4 on
acyclicity of p-Bessel sheaves:

Conjecture 1.4 ([BK1, Conjecture 9.12]). For any x € G\ B, we have the following
cohomology vanishing

H (2U,i"®q py) =0  (resp. H*(:vU,i!q)*G,p’w) =0),

where i : xU — G 1is the natural inclusion map. FEquivalently, the derived pushfor-
ward m(®@c pp) (resp. T (P, ) is supported on the closed subset T = B/U C
G/U. Here m: G — G/U is the quotient map.

The goal of this paper is to give a proof of Conjecture 1.4, and hence Conjecture
1.3. Note that the construction of p-Bessel sheaves and Conjecture 1.4 are entirely
geometric and have obvious counterparts in the de Rham setting. Moreover, it
is shown in [C] that the p-Bessel sheaves on T are in fact strongly central (see
Definition 1.1). Thus the vanishing conjecture contains Conjecture 1.4 as a special
case and what we actually prove here is the vanishing conjecture.

Remark 1.4. Conjecture 1.3 and Conjecture 1.4 here are (slightly) generalized ver-
sions of the original conjectures of Braverman and Kazhdan. The original conjec-
tures require that the representation p satisfies the positivity assumption mentioned
earlier. In Corollary 1.6 and Corollary 1.7, we will prove that their conjecture holds
without any assumption on p.

1.3. The main result. Theorem 1.5 is the main result of the paper which confirms
the vanishing conjecture for almost all characteristics:

Theorem 1.5 (Theorem 7.1). There exists a positive integer N depending only on
the type of the group G such that the following holds. Assume k = C or chark =p
is not dividing NC. Let F € Qw(T) be a central complex (resp. *-central complex)
on T and let & = Ind$_p(F)V € 2(G). Then for any x € G\ B, we have the
following cohomology vanishing

(1.5) H: (2U,i*®x) = 0 (resp. H*(zU,i'®z) = 0).

Here i : zU — G is the embedding. Equivalently, the derived pushforward m(®x)
(resp. m.(®x)) is supported on the closed subset T = B/U C G/U. Here 7w : G —
G/U is the quotient map.

Remark 1.5. The assumption on the characteristic of & comes from a spreading out
argument used in the proof (see Section 1.5).

Remark 1.6. In [C], we proved the vanishing conjecture in the case G = GL,, using
mirabolic subgroups. The argument in loc. cit. was inspired by the work of Cheng
and Ngb [CN] on Braverman-Kazhdan conjectures for G = GL,,. The proof of
Theorem 1.5 for general G uses different methods (see Section 1.5).
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1176 TSAO-HSIEN CHEN

1.4. Applications. In this subsection we assume the characteristic of k is either
zero or not dividing N/, where N is the positive integer in Theorem 1.5.

Corollary 1.6. Conjecture 1.4 holds.

Proof. Tt was shown in [C, Theorem 1.4] that Braverman-Kazhdan’s p-Bessel sheaf
@1y (vesp. @7 ) on T is strongly central (resp. strongly x-central). Thus
Theorem 1.5 immediately implies the corollary. |

Corollary 1.7. Conjecture 1.3 holds.

Proof. Tt was shown in [BK2, Corollary 6.7] that Conjecture 1.4 implies Conjecture
1.3. Thus Corollary 1.6 implies Corollary 1.7. (]

Conjecture 1.4 was proved by Braverman and Kazhdan [BK2, Theorem 6.9] in
the case when the semi-simple rank of G is less or equal to one, and by Cheng and
Ngb [CN, Theorem 2.4] in the case G = GL,,.

Conjecture 1.3 was proved by Braverman and Kazhdan [BK2, Theorem 1.6] when
the semi-simple rank of G is less or equal to one or G = GL,, under some assumption
on p. In a recent work, G. Laumon and E. Letellier established Conjecture 1.3 via a
different method [LL, Theorem 1.0.2]. It is interesting to note that in loc.cit. they
also made no assumption on the representation p.

Remark 1.7. In [LL, Theorem 1.0.1], Laumon-Letellier also proved a formula for
the non-linear Fourier kernel ¢¢ , . in terms of Deligne-Lusztig inductions. It will
be interesting to prove a similar result in the de Rham setting, that is, write down
an explicit formula for the p-Bessel D-module ®¢ , ., or rather, the corresponding
system of differential equations on G. We expect applications of such a formulation
to the Braverman-Kazhdan-Ngd’s approach to functional equation of automorphic
L-functions [BK1, Ng].

1.5. Outline of the proof. The proof of Theorem 1.5 consists of three steps:

Step 1. We construct for each W-orbit § in C(T')(E) a remarkable W-equivariant
local system & on T and study the equivariant perverse sheaf or D-module My =
Indch(Eg)W on G.3 A key observation is that to prove Theorem 1.5 it suffices to
prove the acyclicity of My, that is, the cohomology vanishing properties in (1.5)
where ®x is replaced by My. This follows from a computation of the convolution
of My with ® (Proposition 7.5), where F € Pw(T) is a *-central complex, and a
result of Laumon on the conservativity of the Mellin transform (Lemma 7.7).

Step 2. We use the techniques developed in [BG,BFO] on Drinfeld center of Harish-
Chandra bimodules and character D-modules to prove acyclicity of My in the de
Rham setting. An important point here is that the D-module My associated to
&y is a character D-module and hence the results in loc. cit. are applicable. A
key step in the proof is to show that the Harish-Chandra bimodule corresponding
to &y, under the Beilinson-Bernstein localization theorem, has a canonical central
structure (Proposition 6.7).

Step 3. We construct a mixed characteristic lifting Mg 4 of My over a strictly
henselian discrete valuation ring A with residue field k of characteristic not dividing
N/, where N is a positive integer depending only on the type of G. We prove that

3The author learned the existence of £ from R. Bezrukavnikov.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1177

M 4 is universally locally acyclic with respect to the quotient map 74 : G4 —
Ga /Uy (here G4 and Uy are models of G and U over A). This allows us to deduce
acyclicity of My in the f-adic setting from the de Rham setting. This completes
the proof of Theorem 1.5.

Remark 1.8. The proof of acyclicity of My in the de Rham setting makes use of
Harish-Chandra bimodules, and hence is algebraic. It would be interesting to have
a geometric proof which treats the cases of various ground fields and sheaf theories
uniformly. Presumably, such a proof will provide an explicit bound on the integer
N in Theorem 1.5.

1.6. Related work and further directions. We briefly explain the relationship
between the results of the paper and the work of Ginzburg [Gi2], Lonergan [Lo], and
Ben-Zvi-Gunningham [BZG] on Whittaker D-modules, Toda lattice, and nil-Hecke
algebras, and discuss some generalizations of the results of the paper.

We first recall the definition of Whittaker sheaves on GG. Fix a non-degenerate
homomorphism x : U — G, that is, the restriction of x to each root subgroup
U, C U is non-trivial for each simple root «. Depending on the setting, a Whittaker
sheaf on G is a perverse sheaf or a holonomic D-module F on G together with an
isomorphism a°F ~ x°L,, M x° Ly, X F satisfying the usual cocycle condition. Here
a:UxUxG— G, a(ur,uz,g) = urguy *. In the de Rham setting, Ginzburg and
Lonergan proved that the category of Whittaker D-modules on G is equivalent to
the category of holonomic modules over the quantum Toda lattice of G, and is also
equivalent to the category of holonomic modules over nil-Hecke algebra of G, see
[Gi2, Theorem 1.5.1] and [Lo, Theorem 1.2.2]. It turns out that the results in loc.
cit. and Theorem 4.2 of the present paper imply that the category of holonomic
modules over nil-Hecke algebra of G is equivalent to the category of central D-
modules on T. As a corollary, we obtain:

Theorem 1.8. The category of Whittaker D-modules on G is equivalent to the
category of central D-modules on T.

On the other hand, in the work [BZG], Ben-Zvi and Gunningham constructed
a functor from the category of Whittaker D-modules on G to the category of G-
conjugation equivariant D-module on G. They called it the Ng6 functor and they
conjectured that the objects in the essential image of the Ngo functor satisfy the
cohomology vanishing property in (1.3), see [BZG, Conjecture 2.9 and 2.14]. We
propose the following ¢-adic counterpart of the results and conjectures discussed
above:

Conjecture 1.9. The following categories are equivalent:

(1) The category of l-adic Whittaker sheaves on G.

(2) The category of £-adic central perverse sheaves on T.

(3) The full subcategory of the category G-conjugation equivariant £-adic per-
verse sheaves on G whose object ® satisfy H(zU,i*®) = 0 for allz € G\ B,
or equivalently, m(®) is supported on the closed subset T = B/U C G/U.
Here 7w : G — G/U is the quotient map.

Remark 1.9. We expect the equivalence from (2) to (3) is given by the functor
sending a central perverse sheaf 7 on T to ®r = Indch(}")W. Note that this
functor is well-defined thanks to Theorem 1.5.
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1178 TSAO-HSIEN CHEN

Remark 1.10. It was mentioned in the introduction of [Gi2] that Drinfeld asked
the question of finding a description of an f-adic counterpart of the category of
Whittaker D-modules on G in terms of W-equivariant sheaves on T'. The conjecture
above provides a possible answer to Drinfeld’s question.

Remark 1.11. The conjecture above can be viewed as a finite group analogue of the
conjectural descriptions of the endomorphism ring of the Whittaker representation
of a (quasi-split) p-adic group G in terms of, on one hand, the ring of stable Bern-
stein center of G (viewed as stable distributions on the group) and, on the other
hand, the ring of functions on the moduli stack of Langlands parameters (see, e.g.,
[F'S, Example X.1.6] and [Z2, Conjecture 4.5.1]).

1.7. Organization. We briefly summarize here the main goals of each section. In
Section 2 we collect standard notation on algebraic groups, ¢-adic sheaves, and D-
modules. In Section 3 we study induction and restriction functors. In Section 4,
we study central and *-central complexes using the Mellin transforms. In Section 5
we study the local systems &. In Section 6 we establish acyclicity of the character
sheaves My, see Theorem 6.1. In Section 7 we prove the main result of the paper,
Theorem 1.5.

2. NOTATIONS

2.1. We denote by B = G/B the flag variety. We denote by g, b, t, n the Lie
algebras of G, B, T,U. We denote by G™ (resp. T"®) the open subset consisting of
regular semi-simple elements in G (resp. T). We denote by G**® the open subset
consisting of regular elements in G. We denote by G, the additive group and G,,
the multiplicative group. We denote by G the complex dual group of G and T the
dual maximal torus. We denote by W* = W x A the extended affine Weyl group
and W, = W x R the affine Weyl group of G. Here A = X¢(T) = Hom(G,,,T) is
the co-character lattice and R C A is the set of co-roots of G.

2.2. For an algebraic stack X’ over k, we denote by Z(X) the bounded derived
category of £-adic sheaves on X in the £-adic setting or the bounded derived category
of holonomic D-modules on X in the de Rham setting.

For a smooth scheme X, we will write 1x € 2(X)Y for the constant perverse
sheaf Q[dim X] on X in the f-adic setting or the structure sheaf Ox in the de
Rham setting.

For a representable morphism f : X — Y, the six functors f*, fs, fi,¢', ®, Hom
are understood in the derived sense. For a smooth map f : X — ) of relative
dimension d we write f° = f*[d] = f'[—d].

For an algebraic group H over k acting on a k-scheme X, we denote by X/H
the corresponding quotient stack and X J H the geometric invariant quotient (if
exists). We will write H/,qH for the quotient stack of H with respect to the adjoint
action. Consider the case when H is a finite group. Then the pull-back along the
quotient map X — X/H induces an equivalence between Z(X/H) and the (naive)
H-equivariant derived category on X, denoted by Zy(X), whose objects consist
of pair (F,¢), where F € Z(X) and ¢ : a*F ~ pr*F is an isomorphism satisfying
the usual compatibility conditions (here a and pr are the action and projection
map from H x X to X respectively).? We will call an object (F,¢) in Zy(X) a

4This holds in a more general situation when the neutral component of H is unipotent.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1179

H-equivariant complex and ¢ a H-equivariant structure on F. For simplicity, we
will write F = (F, ¢) for an object in 2y (X).

We denote by 7<;, 7>, the truncation functors corresponding to the standard
t-structure on 2(X). For any F € 2(X), we denote by 5" (F) the n-th cohomol-
ogy sheaf. In the f-adic setting, we denote by P7<,,” 7>, the truncation functors
corresponding to the perverse t-structure. For any F € Z(X), the n-th perverse
cohomology sheaf is defined as PA™(F) = P75, 1<, (F)[n].

Depending on the setting, we write 2(X)Y for the heart corresponding to the
perverse t-structure in the ¢-adic setting and the heart corresponding to the stan-
dard t-structure in the de Rham setting.

For any stack X over k, we denote by Coh(X) and QCoh(X) the categories of
coherent and quasi-coherent sheaves on X, and D% , (X) and Dgcoh (X) the corre-
sponding bounded derived categories.

Let F be a quasi-coherent sheaf or D-module on a scheme. We will write I'(F)
and RI'(F) for the global section and derived global section of F as an quasi-
coherent sheaf. For any scheme X we will write Ox for the structure sheaf of X
and O(X) =T'(Ox) the ring of global functions on X.

Assume k£ = C. For any smooth scheme X we denote by Dx the sheaf of
differential operators on X. Let f : X — Y be a principal T-bundle over a smooth
scheme Y. A D-module F on X is called T-monodromic if it is weakly T-equivariant
(see [BB, Section 2.5]). A object F € 2(X) is called T-monodromic if J#*(F) is
T-monodromic for all i. Let F € Z(X) be a T-monodromic object. For any
p € t~t*, we denote I'(F) (resp. RT'*(F)) the maximal summand of I'(F) (resp.
RT'(F)) where t, acting as infinitesimal translations along the action of 7', acts with
the generalized eigenvalue p.

3. INDUCTION AND RESTRICTION FUNCTORS

In this section we collect some known facts about induction and restriction func-
tors.

3.1. Recall the Grothendieck-Springer simultaneous resolution of the Steinberg map

c:G—=T ) W:
(3.1) T%T
G—ST)W

where @ is the closed subvariety of G x G /B consisting of pairs (g, zB) such that
r7lgx € B. The map ¢ is given by (g,2B) — g, and the map § is given by
(9,2B) — 2 'gz modU € B/U = T. The induction functor Ind$p : 2(T) —
2(G) is given by

Indf 5(F) = &.4°(F).

We have the following equivalent constructions of IndgC - Consider the fiber prod-
uct

Z:GXT//W/T.
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1180 TSAO-HSIEN CHEN

It is known that the map h : G — Z induced from (3.1) is a small map and it
follows that IC(Z) = hlg € 2(Z)7 is the IC-complex of Z. We have

(3.2) d§ 5(F) = (pa)-(p(F) © IC(Z))[dim G — dim T,

where pr : Z — T and pg : Z — G are the natural projection map. Let X be a
scheme acted on by an algebraic group H and let H' C H be a subgroup. There
is an averaging functor AV*H/H/ =7 : D(X/H') = P(X/H) (resp. AV!H/HI =m:
P(X/H') — 2(X/H)) which is the right adjoint (resp. left adjoint) of the forgetful
functor oblv/#" 2(X/H) - 2(X/H'). Here 7 : X/H' — X/H is the natural
map. If H = e is trivial we will omit H’ and simply write Av = AvH/¢ (resp.
Av = Av/e) and oblv? = oblvi/e,

Note that, for any F € 2(T), its *-pull back along B — T = B/U, denoted by
Fg, can be regarded as an object in (G /.4 B) and there is a canonical isomorphism

Ind$ 5 (F) ~ oblv®/¢ o AVE/B(Fp).

The functor Ind 5 admits a right adjoint Res¢ 5 : 2(G) — 2(T), called the
restriction functor, and is given by

Resf e 5(F) = (45)+ip(F),

where ip : B — G is the natural inclusion and ¢g : B — T = B/U is the quotient
map. More generally, one could define Res? - p : 2(G) — 2(L), for any pair (L, P)
where L is a Levi subgroup of a parabolic subgroup P of G.

We have the following exactness properties of induction and restriction functors:

Proposition 3.1. (1) The functor Indch maps perverse sheaves on T to perverse
sheaves on G. (2) The functor Resfcp maps G-conjugation equivariant perverse
sheaves on G to L-conjugation equivariant perverse sheaves on L.

Proof. This is [BY, Theorem 5.4]. O

3.2. W-action. Let F € Pw(T). Since the map pr : Z — T and the IC-complex
IC(Z) are W-equivariant, it follows from (3.2) that the W-equivariant structure on
F gives rise to a W-action on Ind$_ 5 (F). We denote by

(3.3) 5 = IndS_p(F)V

the W-invariant factor of IndgC g(F).

In the case when F is a W-equivariant perverse local system on 7', we have the
following description of ®x: Let ¢** : T™ — T /W and ¢** : G*™ — T™ /W be the
restriction of the maps in (3.1) to the regular semi-simple locus and let j : G** — G
be the open embedding. Since ¢™ is an étale covering and ¢ : G — G is a small
map, the restriction of F to T™ descends to a perverse local system F’ on T* | W
and

Indfc p(F) = juj* Indfc g (F)

is isomorphic to the intermediate extension of its restriction to G*™. As a direct
factor of Ind%’wC g(F), ©r is also isomorphic to the intermediate extension of its
restriction to G*® and it follows that

(3.4) Dr = juj OF = ju(c)°(F).
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1181

Let F € 2w (T)% and let E[W] — End@(g)v(lndch(F)) be the map coming
from the W-action. By adjunction, we get a map

E[W] — Endg o (Indch(]—')) ~ Homg o (F, Resch ) Indch(}")),
which gives rise to
(3.5) E[W]® F — ResG 5 o Ind% 5(F).
We have the following generalization of [Gu, Theorem 4.6] to the group setting:

Proposition 3.2. Let F € 2(T)Y. (1) There is a canonical isomorphism
Dpew W F =~ ResScp o md$ 5(F). (2) Assume further that F € w(T)".
Then the composition

(3.6) EW] @ F £ @ w'F ~ Res§ ; 0 Ind§e 5 (F)
weW

is equal to (3.5). Here ¢ is the W-equivariant structure of F.

Proof. We follow the argument in loc. cit.. We shall give a proof in the de Rham
setting. The same proof works for the f-adic setting. Consider the product Sg =
G X g B. There are two natural maps gs : S¢ — T and cg : S¢ — T coming from
G:G > Tand¢: G — Tin (3.1). Let Sg := #°(qs X ¢g)s(ws,,). Using base
changes formulas, it is easy to see that the functor ResgC B O IndgC g(—) is given
by the kernel Sg, that is, we have, Res$_p o Ind_ 5(F) =~ pr; . (proF @ Sg), here
pr; : pr, : T'xT — T are the left and right projection maps. Now the same proof as
in [Gu, Section 4.3], replacing t by 7', shows that there is a canonical isomorphism
of monads S¢ ~ @,y Or,,, here T'y, = {z,wzlz € T} C T x T. It follows
that Res$c p o Ind$ p(F) ~ pr, . (proF @ Sa) ~ @, cw w*F. This completes the
proof of (1). Assume F is W-equivariant. It follows from the construction that the
isomorphism in (1) intertwines the W-action on Res% 5 o Ind% - 5 (F) with the one
on P, cw w*F given by the map

a, @ w F g @ w*r* F o~ @ (rw)*F = @ w*F,
weW weW weW weW
for any r € W. Part (2) follows. O

We will need the following properties of induction functors. Let mg : GXG — G
and mp : T x T — T be the multiplication maps. For any M, M’ € 2(G), we
define M « M’ := mg (MR M) € Z(G). Similarly, for any F,F' € 2(T), we
define F « F' = mp . (F R F').

Proposition 3.3. Let M € 2(G/.aG) and F € P(T). Assume AvY (M) is

supported on T = B/U C G/U. Then we have a natural isomorphism in 2(Q)
mdS 5(F) * M =~ IndS 5(F * ResG pM)

which is functorial with respect to F.

Proof. This is proved in [BK2, Proposition 2.9]. Let us recall the construction

in loc.cit.. For any H € Z(G/aaB) and M € P(G/.aG)", there is a natural
isomorphism

AVE/B(H 5 oblv?/ B M) ~ AvE/B (1) « M.
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1182 TSAO-HSIEN CHEN
When H = Fp = ¢pF is the pull back of F along g : B — T = B/U, the
assumption that AV*U(M) is supported on T implies that
Fp #oblvB M ~ (F « ResZ 5(M))p € 2(G/aaB)
and it follows that

ndf p(F) * M ~ oblv&/e
GJ/e

AVE/B(Fp) « M)

~ oblv AVE/B(Fg « oblv?’ B M)
~ oblv®/¢ o(AVE/ B ((F « Res p(M))B)
~ ndG p(F * ResGe p(M)).

v/
v/

o
o

4. MELLIN TRANSFORM, CHARACTERIZATION, AND FUNCTORIALITY

4.1. The scheme of tame characters. We review the construction of the scheme
C(T) parametrizing tame characters of the fundamental group of T

We first consider the de Rham setting. Let C[m(T(C))] be the group algebra
of m(T(C)) and we set C(T) = Spec(C[m1(T(C))]) . Then the C-points of C(T)
are in bijection with characters of m1(7T(C)). Note that, under the isomorphism
m1(T(C)) = Xo(T), characters of 71 (T(C)) correspond to elements in the dual
torus 7.

In the f-adic setting, in [GL], a Q,-scheme C(T') is defined, whose Q,-points are
in bijection with continuous characters of w¢(T). There is a decomposition

)= || {x}xem)

XEC(T) s

into connected components, where C(T')y C C(T') is the subset consisting of tame
characters of order prime to ¢ and C(T); is the connected component of C(T) con-
taining the trivial character. It is shown in loc. cit. that C(T) is Noetherian and
regular and there is an isomorphism

(4.1) C(T)e = Spec(Zy[[m1(T)e)] @z, Qo),

where Z[[m1(T)¢]] is the completed group algebra of the pro-¢ quotient (T, of
7t (T). In addition, the Q,-points of C(T'), are in bijection with characters of 71 (T),.

For any x € C(T'), we denote by L, the corresponding rank one ¢-adic/de Rham
local system on T'.

4.2. Mellin transform. We give a review of Mellin transform in both de Rham
and f-adic settings and establish some basic facts about them.

4.2.1. We first recall the Mellin transform of D-modules on T. Let x; € A =
Xo(T) ~ Hom(T, G,,) be a basis and consider the regular function O(T) ~ C[z:]
and the algebra of differential operators I'(Dy) =~ Clz!](v;) /{viz; = x;(5i; + vi)}
where v; = z;0,, € t are a basis for the T-invariant vector fields. Recall that for
any D-module F on T, the tensor product F ® wp with the canonical line bundle
wr on T carries a natural right D-module structure. Note also that, if we consider
['(Dr) as the algebra of difference operators Clv;](z!) /{vix; = x;(di; + vi)}, the
assignment N — O;®¢ ) N defines a canonical equivalence between the category of

Licensed to Univ of Minnesota. Prepared on Tue Nov 1 07:28:00 EDT 2022 for download from IP 134.84.192.101.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1183

right I'(Dr)-modules and the category QCoh(t/A) of A-equivariant quasi-coherent
sheaves on {.° The Mellin transform functor is defined as

M : D-mod(T) — QCoh(t/A), N — O; @i TN @ wr).
We have the following properties:
(1) The functor M is an equivalence.

(2) Let x € T(C) ~ C(T)(C) and let X € {(C) be a lift of x along the universal
covering exp : t — 1. Then for any F € D-mod(T') we have

(4.2) H (T, F ® Ly) ~ i,90(F)

here iy : pt — {is the embedding given by .
(3) Consider the bounded derived category choh(f/ A) of A-equivariant quasi-
coherent sheaves on t with the monoidal structure given by the (derived)

tensor product. We have
M(F + F') = M(F) @0, M(F').

(4) Let F be a W-equivariant D-module F on T'. Then W-equivariant structure
on F gives rise to a W = W x A-equivariant structure on 9(F). Let x
and A be as in (2) and let Wg¥, be the stabilizers of A in Wg*. Then
H*(T, F ® Ly) (resp. i3 (F)) carries a natural action of W (resp. Wg¥,)
such that, under the isomorphisms

(4.3) W~ WS w— (w,w A= X)
the isomorphism (4.2) intertwines those actions.

Remark 4.1. The restriction of the isomorphism in (4.3) to the subgroup W, € W
gives rise to an isomorphism

(4.4) W, W,y w— (w,w 'A= ),
where W, » be the stabilizers of A in W,. Since W, is generated by reflections,
it follows that W, » is generated by affine reflections passing through A (see, e.g.,

[Lo, Proposition 2.4.3]). This property of W,  plays an important role in Section
4.3 when we study characterizations of *-central complexes.

Remark 4.2. A non-zero invariant section o of wp gives rise to an isomorphism
L(ON(F)) = T(F @wr) = T(F), here v; acts on I'(F) by the formula v; -m = —v;m.
Since the W-action on invariant sections of wyp is given by the sign character, we
obtain an isomorphism of O(t)-modules

P((—1)"M(F @ signy))) = [(F)
compatible with the natural W-actions. Here —1:t — t,2 — —x.

4.2.2. We now consider the ¢-adic setting. In [GL], the authors constructed the
Mellin transform®

M : 9(T) — DL, (C(T))

coh

with the following properties:

5For any right T'(Dr)-module N, the action of Clv;] = O(f) on N gives a O;-module structure
on Oy ®pp N € QCoh(t) and the action of x; € A defines a A-equivariant structure.
61t is denoted by .#. in loc.cit.
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(1) Let x € C(T)(Qy) and iy, : pt — C(T) be the embedding given by y. We
have
HY(T, F @ Ly) ~= 3 M(F).
(2) For any x € C(T)(Q,) we have
M(F @ Ly) = mIM(F),

where m, : C(T') — C(T') is the morphism of translation by x.

(3) The functor 9 is t-exact with respect to the perverse ¢-structure on 2(T')
and the standard t-structure on D® , (C(T')). Moreover, for any F € 2(T),
F is perverse if and only if 9(F) is a coherent complex in degree zero.

(4) We have
M(F * F') = M(F) @0y MUF).
(5) The Mellin transforms restricts to an equivalence

(4.5) M : D(T)mon == DYy, (C(T))

coh

between the full subcategory Z(T")mon of monodromic ¢-adic complexes on
T and the full subcategory D%, (C(T))s of coherent complexes on C(T)
with finite support.

(6) For F € 9w (T), the W-equivariant structure on F gives rise to a W-
equivariant structure on M(F) such that for any y € C(T)(Q,) the isomor-
phism in (1) above is compatible with the natural W' -actions.

4.2.3. The properties of the Mellin transforms above imply the following;:

Lemma 4.1. Let F € Pw(T). (1) Assume chark > 0. Then F is *-central (resp.
strongly x-central) if and only if , for any x € C(T)(Qy), the action of W, (resp.
W) on " (i3 M(F @ signy)) for all n € Z is trivial. (2) Assume k = C. Then
F is *-central (resp. strongly x-central) if and only if for any \ € {(C), the action
of Wax (resp. WX\ ) on F7 (i3 IU(F @ signyy)) for all n € Z is trivial.

4.3. Characterization. In [C, Proposition 4.2], we established several characteri-
zations of x-central complexes in the ¢-adic setting. In this section we extend those
results to the de Rham setting.

We first consider the case of *-central D-modules:

Theorem 4.2. Let F be a W-equivariant holonomic D-module onT. The following
are equivalent
(1) F is x-central.
(2) for any X € ¥(C), the action of W, x on " (i3M(F @signy)), n =0, —1,
is trivial.
(3) for any X € ¥(C), the Mellin transform 9MM(F @signy, ), regarded as a W, x-
equivariant quasi-coherent sheaf on t, descends to t ] W x.
(4) for any X € (C), the natural morphism O(%) 0 () Wa.r D(F)Wer — T'(F)
is an isomorphism.
Remark 4.3. The definition of *-central D-modules makes sense for arbitrary W-
equivariant D-modules on T (not necessary holonomic) and the proof below shows

that Theorem 4.2 remains true in this more general setting. Very similar results
were proved in [Gi2, Lo].

We begin with Lemma 4.3.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1185

Lemma 4.3. Let T’ be a finite reflection group with reflection representation V
over C. Let F be a I'-equivariant quasi-coherent sheaf on V.. Then F descends to
V J T if and only if for any A € V(C) the actions of the stabilizer T'yx of X in T on
HO(i3F) and A (i3 F) are trivial. Here iy : pt — V is the embedding given by
A

Proof. Assume F descends to V J/T. Then we have F ~ 7* (7, F)l where 7 : V —
V /T is the quotient map and it implies i3F ~ i%(m.F)"', where A = 7m(\) and
i5 : pt = V /' is the inclusion. As I' acts trivially on (i (. F)") for all
n € Z, it follows that I" acts trivially on " (i}F) for all n € Z, in particular, for
n=0,—1.

Assume I' acts trivially on 7 (i3F) for n = 0, —1. We would like to show that
F descends to V' /T'. By [Lo, Theorem 1.3.2], it suffices to show that F descends to
V' J/ (o) for any simple reflection o € T'. So we could assume I = (o) is generated by
a reflection 0. Write F' = I'(F) for the global sections of F, viewed as a O(V) x I'-
module, and let F7 = {h € F|o(h) = h} and F°=~! = {h € F|o(h) = —h}.
Choose a coordinate (z1,...,x,) of V such that o(x1) = —z1 and o(x;) = z; for
i > 2. Let A € V(C) be the origin with coordinate z; = 0.

We claim that if I' = Ty acts trivially on s#°(i3F) ~ F/(x1,...,2,)F then the
natural map

(4.6) O(V)®c F? = F

is surjective.

Step 1. We first show that if I' acts trivially on F'/(z1)F then (4.6) is surjective. In-
deed, the assumption implies that the image of f € F°=~1 in the quotient F/(x1)F

is zero, that is, f € (z1)F. Since o(z1) = —x1 and F = F° @ F°=~1 it follows
that f = x1f’ for some f’ € F? and it implies (4.6) is surjective.

Step 2. We show that if I' acts trivially on J#9(i3F) then I' acts trivially on
F/(z1)F. The case n = 1 is trivial as J#°(i3F) ~ F/(z1)F. Assume n > 1.
Consider the exact sequence
(4.7) OV)®cF° = F— M —0,
where M is the cokernel. The quotient F’ = F/(xa,...,z,)F isa O(V')xT-module,
V' = Spec(C[z1]), such that I acts trivially on F'/(x1)F’ = F/(x1,...,z,)F. Thus
Step 1 implies the natural map O(V’) ®@c (F')? — F’ is surjective. On the other
hand, we have an exact sequence
OV"Y&c (F') — F' — M/(z2,...,2,)M — 0

induced from (4.7) and it follows that M/(za,...,2,)M = 0. Thus M/(z1)M =
M/(z1,22,...,7,)M, which is an quotient of #°(i}F) = F/(x1,...,x,)F, and it
implies I' acts trivially on M/(z1)M. Consider the exact sequence

(OV)/(x1)O(V)) @c F7 — F/(z1)F — M/(x1)M — 0

induced from (4.7). As I' acts both trivially on (O(V)/(z1)O(V)) ®¢ F? and
M/(xz1)M, it also acts trivially on F/(x1)F. This completes the proof of Step 2.
The desired claim follows.

To proceed, let us consider the short exact sequence

0=>N—=>0V)®c F? = F =0,
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where N is the kernel of (4.6). It gives rise to an exact sequence

(4.8) A i3 F) = N/(x1,...,20)N = (O(V)/(x1,...,2,)O(V)) &c F°
—)F/($1,,.Tn)F—>O

Since I' acts both trivially on #71(i5F) (by assumption) and
(OWV)/(z1,...,2,)O(V))®c F?, (4.8) implies that I' acts trivially on
N/(x1,...,2,)N, and the claim above implies that the natural map O(V)®@c N —
N is surjective. All together, we obtain a I'-equivariant presentation of F’

OV)®@c N7 - O(V)®c F° - F — 0,
where F; = O(V) ®c N7 and Fy = O(V) ®c F are free O(V)-modules satisfying
F; = O(V) ®ocvry FY. By [Ne, Lemma 3.1], this implies F' also satisfies F' =

O(V) ®o(vyry F'7 and thus the corresponding I'-equivariant quasi-coherent sheaf
F descends to V J/ T O

Proof of Theorem 4.2. (1) implies (2) is clear. (2) implies (3) follows from Lemma
4.3 and the fact that I' = W, ) is generated by affine reflections passing through
A € {(C) (see Remark 4.1) and, for any p € {(C), the stabilizer '), = W, x VWY, is
a subgroup of W, ,,, and hence acts trivially on J#”7 (i M(F @ signy)), j = 0,—1.
(3) implies (1) follows from the first paragraph of the proof of Lemma 4.3. The
equivalence between (3) and (4) follows from Remark 4.2 and the fact .Z (F ®signyy)
descends to t J W, , if and only if (—1)*.# (F ® signy ) descends to t ) W, —,. O

We now extend Theorem 4.2 to the case of *-central complexes.

Theorem 4.4. Let F € Dw(T) be a W-equivariant complex of holonomic D-
modules on T'. The following are equivalent
(1) F is *-central.
(2) for any A € ¥(C), the Mellin transform 9M(F ®signyy ), regarded as an object
in D, (}/Wa.), descends to t ) W x.

qgcoh

Proof. (2) implies (1) follows from the first paragraph of the proof of Lemma 4.3.
To show (1) implies (2) let F be a *-central complex and let b € Z be the largest
integer such that J#°(F) # 0. We have the following distinguished triangle

(4.9) T<p 1 F — F — H(F)[-b] — 1<p_1 F[1].

We claim that both s#°(F) and 7<;_1F are *-central. Indeed, for any de Rham
local system L, on T associated to x € C(T')(C), the distinguished triangle above
gives rise to the following exact sequence
(4.10) ‘ ‘ .
(T, FRL,) =B (T, #°(F)RLy) T, 7y 1 FRL,) =TT, FRL,).
By the exactness of the Mellin transform and the right-exactness of the tensor
product, we have

H2(T, 7<p 1 F © Ly) = A2 (i3 (<51 F)) = 0
(here \ € tis a lift of x) and it follows that the first arrow in (4.10) is surjective
for j > b — 1. In particular, for j = b,b — 1, we have the following surjections

H(T,F®L,) = H(T, #"(F)® L,) =0

HNT,F®L,) —» B YT,#°(F) o L,) — 0.
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ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1187

Since the group W, acts on H*(T, F ® L) by the sign character (as F is *-central
by assumption), the above surjections imply that W, acts on H (T, #°(F) ® L)
by the sign character for ¢ = 0,—1, and thus by Theorem 4.2 (2), we conclude
that s#°(F) is *-central. Now the exact sequence (4.10) implies that W, acts
on H (T, 7<p—1F @ L) by the sign character and hence, by definition, 7<;_1F is
*-central.

By induction on the (finite) number of non vanishing cohomology sheaves and
Theorem 4.2, we could assume both 7<,_1F and S#°(F) satisfy statement (2) of
the theorem. We shall prove that F also satisfies statement (2), that is, the Mellin
transform M := M(F @ signy ) € Dgcoh(f/Wa’)\) descends to t / W, ) along the
quotient map my : t — £/ W, n. Recall the following descent criteria for quasi-
coherent complexes (see, e.g., [Ne, Corollary 2.6]): a complex M € Db (t/W,. )

qcoh
descends to t W, if and only if the canonical morphism
(4.11) ()« (M)Ver) = M

is an isomorphism.”
To proceed, let us consider the following distinguished triangle

M’ = M(r<p 1 F @ signy) = M 1= M(F @ signyy)
— M = M(A(F)[-b] @ signyy ) — M'[1]

obtained by applying the functor 9M(— ® signy ) to (4.9). There is a morphism
between the following distinguished triangles

T3 () (M) War) —C s M

c'[1]
—

w3 ()« (M) Ve ) 1] M]

where the horizontal arrows are the canonical morphisms in (4.11). By assumption
and the above descent criteria, both ¢’ and ¢” are isomorphisms. It follows that ¢
is also an isomorphism and, by the descent criteria again, we conclude that M =
IN(F @ signyy) descends to t / W, . This completes the proof of (1) implies (2),
and hence the theorem.

|

Remark 4.4. The results of this sections were inspired by the work of T. Nevins
[Nel. In loc. cit. the author proved similar descent criterions in the case when I is
a reductive algebraic group and F is a I'-equivariant coherent sheaf or a complex
I'-equivariant coherent sheaves. The argument in loc. cit. used the coherence
assumption of F and hence cannot be applied directly to the case of quasi-coherent
sheaves. The proof above uses some special features of finite reflection groups.

"Note that the map 7y is flat and affine and hence both functor m} and ()« are exact.
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4.4. Functoriality. In this section we show that central complexes (resp. #-central
complexes) are stable under pushforward along central isogenies. This result will
be used later to reduce the proof the vanishing conjecture for a general connected
reductive group to the one with connected center.

We first review the notion of central isogenies between connected reductive
groups following [S, Section 2]. Let G and G; be two connected reductive groups
and let T' be a maximal torus of G. Let fg : G — G1 be a central isogeny, that is,
fa is a surjective map with finite kernel such that fg maps the root subgroup U,
isomorphically onto its image, for all roots a. Denote by T} := f(T') the image of T'
which is a maximal torus of G;. The resulting homomorphism fr := fg|r: T — T}
induces a map f} : X*(T1) — X*(T) (resp. (fr)« : Xe(T) — Xo(T1)) between
character lattices (resp. co-character lattices), which maps the root lattice R; iso-
morphically onto the root lattice R (resp. the coroot lattice Ry isomorphically onto
the coroot lattice RY). Moreover, we have an isomorphism of Weyl groups

(412) fw W= ]VG1 (Tl)/Tl ~ ]\/vG1 (Tl)/Tl = W1

such that the map fr : T — T} is compatible with the W ~ Wj-action. Thus the
pushforward along fr induces a functor

(fr): Pw(T) — Dw,(Th)

between the corresponding equivariant derived categories. Note that as fr is finite,
we have (fr) =~ (fr)«.

Lemma 4.5. The functor (fr)1 maps central complexes on T to central complezes
on Ty. The same is true for x-central complezxes.

Proof. Let F € Zw(T) be a central complex and let Fy := (frhF € Dw, (T1).
We need to show that, for any x; € C(T1)(E), the action of the subgroup W,, of
the stabilizer of x; in Wy on H (T, F1 ® Ly,) is given by the sign character (the
definition of W,, will be recalled below). Let x = frx1 € C(T)(E). We claim
that the map fw in (4.12) maps W, isomorphically onto W,,. Then, by projection
formula, we get an isomorphism

H (T, 71 @ Ly,) = Ho(Th, (fr)hWF © Ly,) = HA(T, F @ frLly,) = Ho(T, F @ Ly)

compatible with the W, @v W, -actions. Since F is central, the group W, acts on
H} (T, F ® L) via the sign character and the isomorphism above implies that W,,
also acts on H} (T4, F1 ® Ly,) by the sign character and hence F; is central. Since
the Verdier duality ID maps central complexes to *-central complexes and vice versa,
and the functor (fr)1 ~ (fr)« commutes with D, the case of *-central complexes
follows from the case of central complexes. This finishes the proof of the lemma.

Proof of the claim. Recall that the map fr induces an isomorphism (fr), : RY ~

RY between coroot lattices, sending a coroot a¥ to of = (fr).«(a¥) = froaV.
Thus for any o and ) as above, we have
(4.13) (@) Ly 2 ()" f1(Ly,) = (froa”) (Ly,) = (a])"Ly, -

Since the group W, (resp. W,,) is generated by those reflection s, (resp. sq,)
such that (av)*L, is trivial (resp. (ay)*L,,), the isomorphism (4.13) implies that
fw : W — W; maps W, isomorphically onto W,,. The claim follows.

O
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Example 4.5. Consider the case G = SLy, G; = PGLy and the central isogeny
fe : SLy — SLy/{+1} ~ PGLy. We have W ~ W; ~ {+1} actingon T ~ T} ~ G,,
by the inverse map and fr : T — T} is given by the square map G,, = G,,,z — z2.
It is straightforward to check that, in the case of PGLy, a complex Fy € Py, (T1)
is central if and only if H}(T1,F1 ® L£y,)W' = 0 for any x1 € C(T1)(E) such that
X3 is trivial. Let F € Zw(T) be a central complex for SLy and let x; be as above.
We have HX (T, F)WV =0 and f;L,, ~ Eil is trivial and it follows that

HI (T, (fr)F @ L)Vt = Hy(T, F @ f7.Ly,)Y = Hy(T, F)V = 0.

Thus (fr)F is indeed a central complex for PGLs.

5. LOCAL SYSTEMS &y

5.1. Tame local systems &y. In this subsection we attach each W-orbit § = Wy
in C(T)(F) a W-equivariant tame local system £y on T'.

We first consider the ¢-adic setting. Recall the pro-¢ quotient m1(T"), of the tame
fundamental group 74 (7). Let Ry = Sym(m;(T)¢®z, Q;) be the symmetric algebra
of m1(T)¢ ®z, Q, and let Ry be the argumentation ideal. The Weyl group W,
and hence the subgroup W, acts naturally on Ry and we define R, = Ry/ <R¥Vf~_>,

where (RE}V_"‘_) is the ideal generated by Rz,lvi‘i_
71(T)e, on which an element v € m1(T), acts as multiplication by exp(7y). It is well-
defined since the multiplication action of m1(T"), on R, is nilpotent. By pullback
along 7} (T) — m1(T)¢, we obtain a representation of 7} (T') and we denote by £
the corresponding /-adic local system on T'. Since W, is normal in W;, the natural
action of W) on Rr descends to the quotient R, which gives rise to a canonical W' -
equivariant structure on E;C””. On the other hand, since w* L, ~ L, forw € W;(, the
above W;—equivariant structure on 5;‘” gives rise to a W;(—equivariant structure on
Ey =&Y @ L. Finally, we define & = Indw,x &, to be the induced W-equivariant
{-adic local system on T.

The construction in the de Rham setting is similar to the f-adic setting. Let
Ry = Sym(m (T(C)) @z C) and let R, = RT/<R¥§_>, where (Rg_’;) is the ideal
generated by the W, -invariants RTVYi in the argumentation ideal Ry ;. Define 8;“”
to be the de Rham local system on 1" corresponding to the representation R, of
7m1(T(C)), on which an element v € 71 (T(C)) acts as multiplication by exp(y). Let
Ey =&Y @ L. The same reasoning as in the (-adic setting shows that both £

Consider the representation R, of

and &, carry natural W;(-equivariant structures and we let & = Indyy, &, to be the
X

induced W-equivariant de Rham local system on 7'
The local systems €, and £ have rank [W, | and & has rank [W||W,|/|W/].

Example 5.1. Let § = Wy be a W-orbit of a character x. If the character x is
regular, that is, W;( = e, then we have &, = £, and & = IndXVEX ~ P, ew Loy
is a local system of rank [W|. If x is quasi-regular, that is, W, = e (e.g., the
quadratic character y = x~! for SLy in Example 1.2), then & = £, and & =
Indwkﬁx = GaweW/W;( Ly~ which is a local system of rank [W[/[W[. If x is the
trivial character, then W, = W) =W and & = &, = E;ém' is the local system of
rank |W| corresponding to the unipotent representation R, = Ry / (R:,Vy L) of m{(T).
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5.2. Mellin transform of &. In this subsection we study the Mellin transform
of 59.

We first consider the (-adic setting. Let x € C (T)(Qy) be a tame character and
let & = Wy be its W-orbit in C(T")(Q,). Consider the quotient map m, : C(T') —
C(T) ) Wy. Let 0 € C(T)(Q;,) be the trivial character and let D,, = m ! (my(0)) be
the scheme theoretic preimage of m,(0) € C(T) J W, for the map m,. Introduce

the following coherent sheaves on C(T")
(5.1) R;m = ODX RX = m;(ODX)

Since W;( stabilizes D, and x, both R;‘(m and R, are canonically W;—equivariant
and we let
Ry = Indyy, R,
X

be the induced W-equivariant coherent sheaf on C(T"). Note that Ry is set theoret-
ically supported on =1 = {x 1|y € 0} C C(T)(Q).

We now consider the de Rham setting. For any A € {, let my : { — { be the map
of translation by A. For any y € C(C), we write m, : t — /W, for the quotient map
and let D, = 7' (7 (0)) be the scheme theoretic preimage of m, (0) for the map .
Note that the natural identification Ry ~ Sym(m;(T(C)) ®z C) ~ Sym(t) ~ O(%)
gives rise to an isomorphism

1 nWx Wi
(5.2) I'(Op,) =~ O{)/(O(t),*) ~ RT/<RT7+> ~R,.
Introduce the following A-equivariant quasi-coherent sheaves on
(5.3) R =P mi(0p,) Ry= P  miOpy).
AEA Aetexp(N)=x

Since Dy, A, and the set {\ € {exp(\) = x} are stable under the natural W/-
action, both R;”i and R, are canonically W;(—equivariant and we define

_ W
(5.4) Ry = Indyy, Ry

to be the induced W = W x A-equivariant sheaf on t. Note that Ry is set
theoretically supported on {—\|exp()\) € 6} C t.

Proposition 5.1. There is an isomorphism
M(Ey @ signy) ~ Ry

compatible with the W-equivariant structures in the l-adic setting, and the WE*-
equivariant structures in the de Rham setting.

Proof. The f-adic setting. Pick a x € 6. Since & = Indw&ﬁx and Ry = Indw;RX,
it suffices to construct an isomorphism M (&, ® signy ) ~ R, compatible with the
W;-equivariant structures. Denote by R; the completion of the symmetric algebra
Ry = Sym(m1(T), ®z, Q,) with respect to the argumentation ideal Ry . The
ring of functions O(C(T),) of C(T'), is isomorphic to the completed group algebra
Qq[[71(T),]] and the logarithm defines a natural W-equivariant isomorphism

Ry = Qu[[m1(T)]]

intertwining the action of multiplication by exp(y) on Ry, v € m(T)¢, with the
action of multiplication by v on Q[[71(T)]]. The isomorphism above gives rise to
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an isomorphism
Ry =~ Ry/(R)'Y) = O(C(T)0)/{0(C(T)) ) ~ O(Dy) =~ D(RY™)

and it follows that the Q,[[m1(T)]]-module corresponding to EY™ is isomorphic to
L(RY™). Since RY™ ~ inv* RY™ (here inv the inverse map on C(T)), by [GL,
Corollary 4.2.2.4], there is an isomorphism

M(Ey) = myM(EY™) = my (RY™ @z, Ay, (m1(T)e)Y) = Ry @z, Azl (mi(T)e),

compatible with the W’ -actions. By choosing a generator of /\tz(zp(m (T)e)Y, we
obtain a W-equivariant isomorphism /\tzip(ﬂ'l (T)e)Y ~ Z; ® signy. The desired
claim follows.

The de Rham setting. It suffices to construct an isomorphism of W; X A-
equivariant quasi-coherent sheaves SJI(SX ® signyy) ~ R, . Note that, any lift A € t
of x gives rise to canonical isomorphisms MM(E, @ signyy ) ~ mIM(EY™ @ signyy)
and R, ~ m}(RY"™). Thus we reduce to show that

(5.5) M(EL™ @ signyy) ~ RY™.

Since 5;’”' is a monodromic D-module on 7" with unipotent monodromy, the global

section T'(£4") (viewed as a Sym(t) ~ O(f)-module) admits a unique decomposi-

tion D(EX™) = @, cp F’A\(S;ém), where the summand F;\(S;mi) is supported at A.
Moreover, there is a natural identification of 1"0(6';”1') with the fiber £4|; at the
identiy 1 € T such that the action of 71 (7(C)) on FO(S;‘M), viewed as an element
in t = 71 (T(C)) ®zC, becomes the logarithm of the monodromy action of 71 (T(C))
on the fiber £¢|;. It follows that I‘O(S;C“”') ~ EUy o~ {ET/<R¥‘{+> ~T'(Op, ) and,
by the A-equivariance, we obtain an isomorphism of O(t)-modules

unt %10 uni * (5:3) uni
(5.6) D(Exm) ~ @m0 (Epm) ~ @G mil(Op,) =~ T(RE™).
AEA AEA

Since (—1)*RY™ ~ RY"™, Remark 4.2 implies that there is an isomorphism

uni : * uni (5.6) * uni uni
intertwining the W’ x A-actions. The isomorphism (5.5) follows. The proof of the
proposition is complete. O

Corollary 5.2. & is x-central.

Proof. Tt is proved in [C, Corollary 5.2] in the f-adic setting. Consider the de
Rham setting. By Proposition 5.1, the fiber i{9M(E @ signy) at A € t is equal
to i3M(Ep @ signy) =~ i3Re =~ i3(m*(Op,)) if x = exp(=A) € 0 and is zero
otherwise. We claim that m* , (O DX), viewed as a W, y-equivariant coherent sheaf

on {, descends along the quotient map my : £ — £ / W, ». Indeed, the map m_} :

S 4.4
t—tis W, (f:) W,-equivariant and we have the following cartesian diagram
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where m_y is the descent of m_. It follows that m* ,(Op, ) ~ m*_)\(ﬂ;OWX(O)) ~
T3Or,(n)- The claim implies that W, x acts trivially on 7" (i3 (Ep @ signyy)) =~
A" (i3 (13O0, (n))) and Theorem 4.2 implies that & is *-central. O

5.3. Convolution with &.

Proposition 5.3. Assume G has connected center. Let F be a x-central complex
and let 0 = Wy be a W-orbit of a tame character x. There is an isomorphism

Fx (& @signy) @ H' (T, F @ Ly—1) ® & € Dw(T).

Proof. We first consider the ¢-adic setting. Since G has connected center, by Re-
mark 1.1, W, is equal to the stabilizer W;( of x in W and it follows that

em 5.1
(5.7) M(Ey @ signy) b Ry =~ Indw; (myOp, ) ~ Indwx (myOp, ).

Thus there is an isomorphism
(5.8) M(F * & @ signy) ~ M(F) @ M(Ep ® signyy) ~ Indwx (m?(f)\m;l(DX)).

On the other hand, since m3'(D,) is equal to the inverse image m '(Dy) =

T (m (x71) of my(x 1) along my : C(T') — C(T) ) Wy, the characterization of /-
adic *-central complexes in [C, Proposition 4.2] implies that 9(F ® signw)|m;1( DY)

descends to m3;'(Dy) / Wy. It follows that there is an isomorphism
(5.9) W(F@signw)\mglwx) ~ m(]‘_)‘x—l ®m;(9px ~ H*(T, f@ﬁx—l)@)m;ODX
compatible with the W, -equivariant structure, which induces an isomorphism

Indy (M(F @ signw)|,,1(p, ) = H(T,F @ L-1) ® Indyy (m},Op, )

(5.10)
~ H*(T,]:@) Ex—l) ® Ry.

All together, we obtain

. (5.8)
M(F « E @ signyy) =~ Ind%x (im(]-')\m;l(Dx))
(5.10) .
~ H*(T,F ®Ly-1) ® Ry @ signy
5.7
(T, F oL ) omE).
Since the Mellin transform restricts to an equivalence on monodromic sheaves (4.5),
the isomorphism above comes from an isomorphism

(5.11) F (g @ signy) ~ H (T, F ® L,-1) ® & € Dw (T).

The de Rham setting. By Theorem 4.4, the Mellin transfrom 9(F ® signy),

viewed as an object in choh (t/W,.), descends to t / W,  and it follows that the

restriction IM(F ® signw)|m;1(Dx) descends to mj '(Dy) / Wax. Now the same
argument as in the /-adic setting, replacing D, and W, by Dy and W, », gives the
desired isomorphism (5.11).

(]

Proposition 5.3 can be reformulated as follows:
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Proposition 5.4. Assume G has connected center. Let F be a x-central complex
and let 6 = Wy be a W-orbit of a tame character x. For each w € W, there is a
canonical isomorphism in P(T)

(5.12) aw W F xEg 2 H (T, F @ Ly—1) @ w*E,

such that the following diagram is commutative

(5.13) W F * Eg —25 H* (T, F @ Ly1) @ w*Ep ,

| |

FxEg — s H (T, F@Ly1)®E

where the vertical arrows are the isomorphism induced from the W -equivariant
structures on F and Ey.

6. CHARACTER SHEAVES My AND DRINFELD CENTER OF HARISH-CHANDRA
BIMODULES

Let & be the tame x-central local system in Section 5. Consider the character
sheaf My = g, = Ind ()W, Recall the averaging functor AvY := m, :
2(G) —» 2(G/U), where m : G — G/U is the quotient map. Let ¢ : T = B/U —
G/U be the closed embedding. The goal of this section is to prove the following;:

Theorem 6.1. There exists a positive integer N depending only on the type of the
group G such that the following holds. Assume k = C or chark = p is not dividing
N{. We have

AvT(My) ~ 1,&.
In particular, AvY (My) is supported on T = B/U.

We will first establish Theorem 6.1 in the case k = C using the techniques de-
veloped in [BFO] and [BG] on Drinfeld center of Harish-Chandra bimodules and
character D-modules. Then we construct a mixed characteristic lifting Mg 4 of
My over a strictly henselian discrete valuation ring A with residue field & of char-
acteristic p not dividing N/, which is universally locally acyclic with respect to the
quotient map G4 — G4 /Ua. This allows us to use spreading out arguments to
prove Theorem 6.1 in the positive characteristic case.

We will assume k = C until Section 6.8.

6.1. Hecke categories. Consider the left G and right T'x T actionson Y = G/U x
G/U. To every x,x' € T we denote by M, -+ the category of G-equivariant D-
modules on G/U x G /U which are T x T-monodromic with generalized monodromy
(x, ), that is, U(t)®@U () (acting as infinitesimal translations along the right action
of T x T) acts locally finite with generalized eigenvalues in (x, x’). Consider the
quotient Y/T where T acts diagonally from the right. The group T acts on Y/T via
the formula ¢(zU,yU) mod T = (2tU,yU) mod T. To every x € T we denote by M,
the category of G-equivariant T-monodromic D-modules on Y/T with generalized
monodromy x. We write (M, ) and Z(M,) for the corresponding G-equivariant
monodromic derived categories.
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The groups B and T x T act on X = G/U by the formula b(zU) = bxb~'U,
(t,t")(xU) = txt’'U. For any (x1,x2) € T x T we write H,, ,, for the cate-
gory of U-equivariant T' X T-monodromic D-modules on X with generalized mon-
odromy (x1,x2). For any x € T we write H, for the category of B-equivariant
T-monodromic D-modules on X with generalized monodromy Y, where B acts on
X by the same formula as before and T acts on X by the formula ¢(zU) = tzU.
We denote by Z(H,) (resp. Z(Hy, y,)) the corresponding B-equivariant (resp.
U-equivariant) monodromic derived category.

6.2. The Harish-Chandra functor. Consider the following correspondence
G- GxG/B-LY/T=(G/UxG/U)T,

where p(g,2B) = g and ¢(g,2B) = (gaU,2U)modT. The group G acts on G,
G x G/B and Y/T by the formulas a - g = aga™', a - (g,2B) = (aga™!,axB),
a(zU,yU) = (azU,ayU). One can check that p and g are compatible with those

G-actions.
Following [Gil,MV], we consider the functor
(6.1) HC =¢.p°: 2(G) - 2(Y/T).

The functor above admits a right adjoint CH = p.¢° : 2(Y/T) — 2(G). We use
the same notations for the corresponding functors between G-equivariant derived
categories 2(G/.qaG) and 2(G\Y/T).

Consider the embedding i : X — Y,gU — (gU,eU) and the projection map
mT:G—X=G/U.

Lemma 6.2 ([MV,Gil]). (1) The functor i® =i'[dim X] : 2(G\Y) — 2(U\X) is
an equivalence of categories with the inverse givne by (i) 71 := Indch ot [dim G —
dim B]. (2) We have i® o HC ~ . (3) The identity functor is a direct summand
of CHo HC.

We have the convolution product 2(G\Y) x 2(G\Y) — 2(G\Y) given by
(F,F") = (p13)+(pioF @ p33F'). Here p;; : G\(G/U x G/U x GJU) — G\Y =
G\(G/U x G/U) is the projection on the (7, j)-factors. The convolution product
on Z(G\Y) restricts to a convolution product on Z(M, ,-1). The equivalence
i 2(G\Y) ~ 2(U\X) above induces convolution products on Z(U\X) and
P(H, ). In addition, there is an action of 2(U\X) on Z(X) by right convolution.
The convolution operation will be denoted by .

We will need Lemma 6.3. Let X be an algebraic variety with an action of an
affine algebraic group G. Denote the action map by a : G x X — X .

Lemma 6.3 ([BFO, Lemma 2.1]). For any A € 2(G), F € 2(X), we have a
canonical isomorphism

RT(a.(AR F)) ~ RT(A) ®f; 4 RI(F).

Example 6.1. Consider the action map a : G x G/U — G/U,a(x,gU) = xgU.
Let 6 € 2(G/U) be the delta D-module supported at the base point eU € G/U.

For any D-module F on G, there is a canonical isomorphism AvY(F) ~ a,(F X 6)
and lemma above implies that

RT(Av(F)) ~ RT(a.(F R 6)) ~ RI(F) @4, RT(5).
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Note that RI'(F) = I'(F) (since G is affine) and RI'(§) ~ U(g)/U(g)n, and it
follows that
RI(AV](F)) = T(F) @ g Ula)/U(g)n.

6.3. Character D-modules. We denote by CS(G) the category of finitely gener-
ated G-equivariant D-modules on G such that the action of the center Z C Ul(g),
embedding as left invariant differential operators, is locally finite. To every W-orbit
0 c T, we denote by CS (G)g the category of finitely generated G-equivariant D-
modules on G such that the action of the center Z(U(g)) C U(g) is locally finite and
has generalized eigenvalues in {\ € t|exp(\) € 8}. We denote by Z(CS(G)) (resp.
2(CS(G)g)) the minimal triangulated full subcategory of Z(G/.qG) containing all
objects M € 9(G/.aG) such that (M) € CS(G) (resp. (M) € CS(G)g ).
We call CS§(G) and CS(G)g (resp. Z(CS(G)) and 2(CS(G)g)) the category (resp.
derived category) of character D-modules on G and character D-modules on G with
generalized central character 6.

Proposition 6.4. We have the following:
(1) Let GECS(G)g. Then HC(G) €@, cp Z(My) and AvY(G) €D, ¢ Z(Hy.)
(2) The functors Indch and Resch preserve the derived categories of charac-
ter D-modules. The resulting functors Ind$p : 2(CS(T)) — 2(CS(G)),
ResZ g @ 2(CS(G)) — 2(CS(T)) are independent of the choice of the Borel
subgroup B and t-exact with respect to the natural t-structures on 2(CS(G))
and 2(CS(T)). Moreover, for any G € CS(G) we have ResGp(G) ~
(J7)1x(G|1=s), here jr : T™ — T is the embedding.
(3) Let GECS(G). There is a canonical W -equivariant structure on Resy (G).
Let j : G* — G be the open embedding. If G = 51.5*G, then we have
G~ Indch(ReSch(g))W-
Proof. Part (1) and (2) are proved in [Gil, Lu]. We now prove part (3). We
first show that F = Res?C 5(G) is canonically W-equivariant. Let © € N(T) and
w € N(T)/T =W be its image in the Weyl group. Denote B, := Ad, B. Consider
the following commutative diagram

T—B——(G

lw J{Adx J{Adz
T+—B,——G
where w : T — T the natural action of w € W on T and the horizontal arrows

are the natural inclusion and projection maps. The base change theorems and the
fact that the functors Res% 5 and Res% p, are canonical isomorphic (see part (2))

imply

(6.2) Resch(Ad;g) ~ w*Reschm(g) ~ w*Resch(g)‘

Since G is G-conjugation equivariant, we have a canonical isomorphism ¢, : G ~
Ad;G. Applying ResgC g to ¢, and using (6.2) we get

(6.3) F = Resch(g) ~ Resch(Ad;g) ~ w*ReSch(g) =w*F.

We claim that the isomorphism above depends only the image w and we denote it
by

(6.4) Cw: F 2w F.
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To prove the claim it is enough to check that for x € T the restriction of the iso-
morphism (6.3) to T" is equal to the identity map. By [Gil], the restriction F|qr
is canonically isomorphic to G|r+ and the map in (6.3) is equal to the restriction of
¢, to T™. Since the adjoint action Ad, : G — G is trivial on T, the claim follows
from the fact that any T-equivariant structure of a local system on T is trivial. The
G-conjugation equivariant structure on G implies {cy, }wew satisfies the required co-
cycle condition and hence the data (F, {cy }wew) defines a W-equivariant structure
on F = Res% 5(G). We shall prove IndS_ 5(F)WV ~ G. Let ¢ : G™ — T" | W be
the restriction of the Chevalley map ¢ : G — T /W to G*™. Since G ~ ji.(G|gr) and
mdS 5(F)WV =~ ji. (¢)°(F), where F € 9(T™ ) W)? is the descent of F|z= along
the map ¢™ : T — T™ J W, it suffices to show G|gr ~ (¢'*)°(F) € 2(G*/G)".

This follows again from the fact that G|pes ~ Flpe ~ (¢)°(F)|pe= € 2(T7/W)©.
]

6.4. Drinfeld center of Harish-Chandra bimodules and character
D-modules. We give a review of the work [BFO,BG] on Drinfeld center of Harish-
Chandra bimodules and character D-modules.

Write U = U(g) for the universal enveloping algebra of g and Z = Z(U) for the
center of U. Consider the dot action w-\ = w(A+p) —p on t where p is the half-sum
of positive roots. Denote by W the group W acting via the dot action t. We have
the Harish-Chandra isomorphism hc : Z ~ O(1)WV such that for any X € t the center
Z acts on the Verma module associated to A via 2 — he(2)()). For any A € t we
write m) for the corresponding maximal ideal and denote by I the maximal ideal
of Z corresponding to my under the Harish-Chandra isomorphism. Consider the
extended universal enveloping algebra U = U ®zO(%), where Z acts on O(%) via the
Harish-Chandra isomorphism. We denote by Ux = U/ Uy, Us = lim(U/UIY),

Uy = ﬁ/ﬁmh and 65\ = L&n(ﬁ/ﬁm’;) The action of W on O(f) gives rise to an

. ~ ~W . .
action of W on U such that U = U. In addition, the stabilizer Wy of A € t in
W acts naturally on Uj and the natural inclusion U — U induces an isomorphism

Ug ~ [NJ;)VA (see, e.g., [BG, Section 1]).

We denote by HCj the category of finitely generated Harish-Chandra bimodules
over Ug, that is, finitely generated continuous U;-bimodules such that the diagonal
action of g is locally finite. We denote by Z(HCj;) the corresponding derived
category. The tensor product M@y M’, M, M’ € HCj (resp. M@EM', M, M’ €
2(HC5)) defines a monoidal structure on HCj (resp. Z(HCy)).

Recall that A € fis called regular if Wy = 0, that is, A does not lie on any coroot
hyperplane shifted by —p, and it is called dominant if the value of A at any positive
coroot is not a negative integer.

Proposition 6.5 ([BFO, Proposition 3.1]). Let x € T and A € t be a dominant
reqular lifting of x. The functor

RN (M), %) = (F(HC5), @)

is an equivalence of monoidal categories. Here RFS"’/)‘;\QP is the functor of tak-
ing the mazimal summand of RI'(F),F € P(M, 1) where t x t acts with the
generalized eigenvalue (A, —A — 2p).
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Let x € T and A € { be as in Proposition 6.5 and consider the equivalence of
monoidal categories
RPA-3TEp :
(6.5) M : (Z(Hy,y),*) = (2(My 1), *) o~ (Z(HC5), @)
We denote by HC the category of finitely generated Harish-Chandra bimodules
over U (no restriction on the action of the center Z). We denote by HCy, the category
of finitely generated Harish-Chandra bimodules over the product [] perta/w Ui

(here W/ acts on 1 € A+ A via the dot action). We denote by Z(HCj,®vu)
(resp. Z(HC,®u), Z(HCx,®v), Z(Hf¢,*")) the Drinfeld center of the monoidal
category (HCj, ®vu) (resp. (HC,®v), (HCy, ®v), (HL ,+")). Recall an element in
Z(HC5,®u) consists of an element M € HC; together with family of compatible
isomorphisms by : M@uF ~ F@uyM for F € HC;. Recall the notion of translation
functor 05 : HC; — HC; where p € X+ A (see, e.g., [BG]).

Theorem 6.6.

(1) [BFO, Lemma 3.7] There is a lifting 05 : Z(HC5, ®v) — Z(HCp, ®u) such
that the functor F : Z(HC, ®u) = Z(HCx,®v), L — @MEA+A/W’ 0% (L) define
an equivalence of braided monoidal categories.

(2) [BFO, Theorem 3.6, Lemma 3.8] For any M € P¢(G)%, the global section
I'(M) is naturally a Harish-Chandra bimodule, with a canonical central structure
and the resulting functor T : 9¢(G)° — Z(HC,®vy) is an equivalence of abelian
categories. Moreover, the equivalence above restricts to an equivalence CS(G)g ~
Z(HCy, ®u) and the composed equivalence

CS(G)g ~ Z(HCy, ®u) "~ Z(HCy, ®u)

is isomorphic to RTM—A=20 ¢ my o HC. Here my : Y — Y/T is the projection map.

6.5. Harish-Chandra bimodules Z,. In this subsection we attach to each dom-
inant regular lift A € { of Y € T an element 2, € Z(HC5,®y) in the Drinfeld
center of Harish-Chandra bimodules, and identify it with the local system &, in-
troduced in Section 5.1 under the equivalence in (6.5). We will use the notation
Ry = Sym(m1(T(C))®zC) in Section 5.1 and the identification Ry ~ Sym(t) ~ O(%)
for the rest of the section.

Recall the identification W, » ~ W, in (4.4). We have a natural inclusion WA C
W, sending o to (w,w™ v —v) = (w, p—w~1p) and it is straightforward to check
that the identification above maps Wy C W, isomorphically onto the subgroup
Wi, C Wy. Since the map m_y : t — t of translation by — X intertwines the W, -

W)\+p ~ RW)\

action with the W -action, we have an isomorphism m?* , : R where

Rgv”" (resp. RXV*) is the W4 ,-invariant of the completion Ry of Ry ~ O(%) at

the origin 0 (resp. Wx-invariant of the completion Ry of Ry at X ). Consider the
following quotient

Wito — pWirtp
R = R (R,

where (RZ‘:’f) is the ideal generated by the augmentation ideal R of Rgv". We

introduce the following Harish-Chandra bimodule

(6.6) 2y = U3 @ wap, By 7 € HCS.
0
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Here Rgv”" acts on Uy via the the map

m> ; ~W
(6.7) by: Ry =" R = Z(U3) — Z(Us),

~W
where the last map is induced from the isomorphism Uj Y~ U;. Equivalently,

consider the R}\iv*—module
Wy _ pW Wa,
(6.8) R =R /(Rs 1)

A

here <R§VJ‘;A> is the ideal generated by the augmentation ideal szj‘r associated to

s

the evaluation morphism ey : sz‘“ — C at A. Then we have
(6.9) 2, = U®zR™,
where Z acts on RXVA via the Harish-Chandra isomorphism hc : Z ~ O(HW ~ RTVY.

Proposition 6.7. Let A € t be a dominant reqular lift of x € T..
(1) To every M € HC; there is a canonical isomorphism
bat 1 2y ®@u M~ M@y 2
such that the data (2, bM)MeHC; defines an element in the Drinfeld center
Z(’HC;\, ®u).
(2) Let &, € H, be the local system in Section 5.1, viewed as an object in H,

via the natural embedding H, C H, ., and consider its image M(E,) €
P(HC5). We have M(Ey) ~ Zy.

Proof. Proof of (1). We have Wy, = Wy = e since X is regular. To every
M € HCj, the map by in (6.7) gives rise to an action of Ry®@c Ry = Rgv”” ®<cRgN”"
on M and it follows from [MS, Theorem 4.1] that this action factors through Ry ®c
Ry — Ry ® R()WX R;. Indeed, it is shown in loc. cit. that for every finite dimensional

representation V' of g, the action of Ry ®c Ry on the bimodule pry(V@cU/UIY) €
HC;, n € Zxg factors through R, ® pwy Ry. Here prs(—) is the projection of the
0

summand on which the action of Iy is locally nilpotent.® Since every object in
HC; is isomorphic to a quotient of prs (V ®@c U /UIY) for some V and n, the claim
follows. Therefore, for every M € HCj, we have a canonical isomorphism

bat i Zx @uM = Ry /(RY'Y) @, M= M @p, Ry (R X) = M@y 2,

It follows from the construction that those isomorphisms satisfy the required com-
patibility conditions and the data (Zx,baq) defines an element in Z(HCj, ®v).

Proof of (2). Let &, € M, be the image of £, under the equivalence (i%)~' :
H, =~ M, in Lemma 6.2. Then by definition we have M(E,) ~ RV~ *=2°(72.£, ),
where my : Y — Y/T. Consider the map

a:Tx(G/UxG/U)/T — (G/U x G/U)/T, (t,9U,g'U) — (gtU,g'U).

81n fact, it was shown in [MS, Theorem 4.1] that, for any A € {(C) and any finite dimensional
representation V, the action of Ry ®c Ry on prs(V ® U /UIY) factors through Ry ® pw Ry. But
0

the proof in loc.cit. actually shows that, if we fix A € {(C), the action factors through Ry ®RWX Ry.
0

Licensed to Univ of Minnesota. Prepared on Tue Nov 1 07:28:00 EDT 2022 for download from IP 134.84.192.101.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A CONJECTURE OF BRAVERMAN-KAZHDAN 1199

Then it follows from the definition of (i%)~! that &, = a.(&, X A.Oq)B), here
A:G/B — (G/U x G/U)/T is the embedding gB — (gU, gU)mod T. It is shown
in [BFO, Proposition 3.1] that RI'(A.Og/p ® p3wa/B) =~ U (here ps is the right
projection map (G/U x G/U)/T — G/B), hence by Lemma 6.3 we get

RDM 2720 (1. €,) =~ RTA (&, ® pywap) = BRI a. (& B (A O p ® Pywas))

~ RI(A.Og,p ® piweyp) @, RINEY) ~ U ®r, T (Ey).
On the other hand, Proposition 5.1 implies that, as a O(t)-module, we have I'(£,) ~

i} (5.2) } )

F(RX) = @p,ei,exp(p,):x F(mu(oDx)) = @p,ei,exp(p,)zx muRX' Thus FA(gX) =
6.8)

m* Ry ~ m* Ry ) RY> (since A is regular we have Wy;, = €) and we

conclude that

M(&y) = RTM A2 (10.6,) ~ U @p, TNEY) ~ U®p, RV ~ 2,
Part (2) follows. O
We finish this section with a lemma to be used in the next section.

Lemma 6.8. Let \ € t be regular dominant weight and let . be a dominant weight
in A+ A. We have 0§ (Z25) ~ Z,,.

Proof. Note that 64 : HC; — HCj is monoidal, so we have #5(Us) ~ U;. Note
also that, by [BG, Proposition 1.4], for any r € Rgvx and M € HCj;, we have
04 (ba(r) -m) = by(r) - 05 (m), where m € M and b, : Rgv“” — Z(Uy), v € tis the
map in (6.7). Since Zy (resp. Z,) is isomorphic to the coinvariant algebra of Uy
(resp. Up) with respect to the action of Rgv)‘ via the map by (resp. b,), it follows
that 64/ (25) = 2,,. O
6.6. Proof of Theorem 6.1 in the de Rham setting. Let 2\ € Z(HC;,®v)
and let &, € M, be the image of £ under the equivalence (i%)~! : H, ~ M,.
Define & ~ P, ¢4 &x € P(G\Y)?. By the discussion above there exists a character
D-module Mj, € CS(G)g such that

RTMA=20 6 19 o HO(M)) = Zy.
Hence by Proposition 6.7, we have
RN 720 019, 0 HO(M}) ~ RIM 2 20(n°8, )
for any regular dominant A € t mapping to y. Since w5 o HC : 2(CSy) —

D, co Z(My 1) and RDA2—20 D (M, 1) ~ HCj is an equivalence of cate-
gory for any regular dominant A, it follows that

(6.10) HC(M}) ~ &.

Applying the equivalence i° : P(M,) ~ Z(H,) and using Lemma 6.2 (2), we see
that

(6.11) AVY(M}) ~i° o HC(M}) ~ iy ~ &.

Note that (6.10) and (6.11) together with Lemma 6.2 (3) imply that M is a direct
summand of }
CH o HC(M}) ~ CH(&) ~ IndS 5(Ep).
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Since IndgC 5(&p) is isomorphic to the intermediate extension of its restriction to
G™, as a direct factor of Ind% (&), we also have M) =~ jij*M}. Therefore,
by Proposition 6.4 (3), there is a canonical W-equivariant structure ¢’ = {¢/,}
on & =~ Res%p(M)}) such that M)y ~ Ind$_5(E)V. We claim that the above
W-equivariant structure on & is isomorphic to the one ¢ = {¢,,} constructed in
Section 5.1. Thus we have M}, ~ My. The theorem follows.

6.7. Proof of the claim. The proof is a bit long but the idea behind it is simple.
Since we are in the de Rham setting, to identify the two W-equivariant structures
¢ and ¢’ on &y, it suffices to identify the corresponding W-actions on the space
of global sections I'(£y). To this end, we will give explicit descriptions of various
D-modules and morphisms introduced in the previous section at the level of global
sections.

6.7.1. Let x € N(T) and w € W its image in the Weyl group. Consider the maps
L(¢w) 1 T(Eg) = T(w"E) ~T(E)  T(dy,) : ['(Ep) = T(w"Ep) ~T(E)
[(¢z) : D(Mp) = T(AdZMG) ~ T'(Mjp)

coming from the W-equivariant structures ¢, ¢}, : & ~ w*Ep and the G-equivariant
structure ¢, : M} ~ Ad; M) on & and M) respectively.” Our goal is to show

[(¢w) = T(¢),)-

Consider the following commutative diagram

(6.12) G—"=G/U+—T

J{Adw JAdm J{Adw_w

G——%G/U, +2~—T

where U,, = xUz~! with Lie algebra n,, and the horizontal maps are the natural
quotient maps or embeddings. The diagram (6.12) gives rise to natural isomor-
phisms

T(tath) : T(1xEp) = T(1ew*E) = T(A} (1) +E0) = T((

C(te@ly) s T(1x&p) = T(1sw*E) ~ T(Ad} (tw)«Eo) ~ T((
D(AVY (¢2)) : T(AVY M) ~ D(AVY Adi M) ~ T(AdE AvY» M)) ~ T(AvT» M),
By Lemma 6.3 and Example 6.1, we have
(6.13) DAV (M)~ (U/Un) @6 T(M))  T(1&9) = (U/Un) &g, T(E0)
(6.14)

D(AV" (M) = (U/Uny) @y T(Mp)  T((ew)s&s) = (U/Uny) @r, T(E)
and the maps T'(t,¢y), I'(1.¢,), and T(AvY (¢,)) above are given by
[(tadw) = Ade (=) @ T'(Pw) : T'(14Ep)
(6.15) =U/Un QRr ['(&E) — T((tw)«Ep)
- U/Unw ®RT P(ge)

Eo Lw)«Ep)
Eo Lw)«Ep)

9Recall that there are canonical identifications of vector spaces I'(AdjMj) =~ I'(Mp),
F(w*é'g) ~ F(E@)
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L(txdly,) = Ady (=) @ T(¢1,) : T(14Eo)
(6.16) —U/Un®gp, T(E) — T((tw)+E)
=U/Uny, ®r, I'(&)

D(AVY (62)) = Ady (=) @ T(¢) : T(AVY Mp)
(6.17) =U/Un®yT(Mjp) = T(AvY» Mp)
=U/Un, ®uy T(Mp).
Thus to prove the claim, that is I'(¢,,) = I'(¢),), it suffices to show (6.16)= (6.15).

On the other hand, it follows from the construction of the W-equivariant structure
¢ in Proposition 6.4 that the map (6.16) is, by definition, given by the composition

(6 17) (6.11)

(&) 2V 1AV ML) 27 DAV M) CRY T ((0)uE0).

Here the last arrow is induced by the isomorphism AvYs (M}) = (1,,).& in (6.11) in
the case when the unipotent radical is U,,. Thus we need to identify the map above
with (6.15), or equivalently, to prove the commutativity of the following diagram

(6. 17)
(6.18) (A Mp) S p(AvDe AMp)

(6.11)J{ J(G.ll)
(6.15)

T(0x&p) ———— T ((tw)+Ep)-

6.7.2. We shall describe the map (6.11) in diagram (6.18) (see line (6.22)). We first
describe I'(Mp). By Theorem 6.6, we have I'(Mp) ~ €D,cr /w05 (22). Since
0% (2x) ~ Z, for any dominant € A+ A (Lemma 6.8) and every W/ -orbit in A4 A
(under the dot action) contains a unique dominant weight, we have

I (6.9) :
(6.19) I'Mp)~ P k2N~ P 2. = P UvezR)-

HEAA/ W, HEAA/ W, HEAHA/ W,

We claim that there is a natural isomorphism of Z ~ RW ~ R\:;v“”p—modules (note
that W = W, _, as a subgroup of W,)

(6.20) P RV =1 (&)W,
HEMHA/ W,

Indeed, the map § / W, — t/ W is étale at the image of v € Wy C T along the
projection t — t W,,, thus we have

t Xiyw (t) Wo)s |_| t X, ( (t) W.)s,
veWpu

(where (f / W,); is the completion at image of v in { / W) and it follows that

Wﬂ/ ~ . Wl‘/ ~ . WV
Rr ®z RX ~ Rp ®R\:;Fv RX ~ @ Ry ®R¥Y" RXI/ .
vEW 1, x» =exp(v)
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Using Ry @ ,w, R;Z" o~ mi,,(RT/<R\TATf )) =~ T?(&y), we obtain

W, . pW,
D moghis @ B Aol
HEANA/ W HEA+A/WE veW i, x, =exp(v)
~ @ Ffl(gg) >~ F(gg)
vEW(A+A)

Taking W, _,-invariants on both sides of the above isomorphism, we obtain the
desired isomorphism (6.20). Combining (6.19) and (6.20), we obtain

(6.21) D(Mp) ~ U@zl (€)Y ~U® w, _,[(E)Verr.

Now using the isomorphism I'(£y) ~ Rr & Wa—s I'(&)Wa—r (see Theorem 4.2), we
T
obtain the following description of (6.11):
(6.22)
T (AvY (M)

(6.13) (6.21)

(U/Un)@yT(Mp) =~ (U/Un) ®R¥“v*ﬁ I’(Eg)w%*” ~

6.13
~ (U/Un) ®np Ry ® i, T(E)Ver = (U/Un) @, T(E) = D(1.E).

Remark 6.2. The discussion above depends on the choice of the Borel subgroup B.
If we use the Borel subgroup B,, = xBz~! (where z and w be as in Section 6.7.1),
then the isomorphisms (6.21) and (6.22) become

P(Mp) =U® w [(Ep)Wa—wtn

a,—w(p)

and
LAV (M) = (U/ Unty) @ w, i D(E9) o
~ (U/Uny) @r, I'(E) = T'((tw)«Eo),

where w(p) is equal to the half sum of positive roots associated to B,,. Moreover,
the composed isomorphism

U@ v, D(E) Ve 2 D(Mp) =~ U w T(Eg)Wearmwto

a,—w(p)

is given by Id ® I'(¢,,) (note that the isomorphism I'(¢,,) : T'(Ey) — T'(Ep) maps
['(Eg)Wa—r isomorphically onto T'(Ep)We.—w).

6.7.3. We shall describe the map (6.17) in diagram (6.18) (see line (6.23)) and use
it to verify the desired commutativity of diagram (6.18). Theorem 6.6 and Remark
6.2 imply that, under the isomorphism

'(Mp) ~ U®R7vya,_pf(€9)w‘“*ﬁ (resp. T'(My) ~ U®R;v [(E)War—w)

a,—w(p)
the map I'(¢;) : I'(Mj) — T'(My}) is given by
[(¢2)=Ade (=) @ T'(w) : U®R;va,pr(5e)W“‘*” — U®R;va,7w(p>F(é’e)w“**”(’”-
It follows that, under the isomorphism
DAV Mp) = (U/Un) @ pw, , (€)™

(resp. T(AvU» M}) ~ (U/Un,) ®R¥ [(Ep)Warwie)

a,—w(p)
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the map T(AvY (¢,)) : T(AvY M}) — T(AvY» M}) in (6.17) is given by

(6.23)

Ady (=)@ (60): (U /Un)@ pwa,, T(Eg) ™2 = (U / Uny)@ w, .,y D(Eg) Voo,
T T

Now the description of (6.11) in (6.22) implies that (6.17) fits into the following
commutative diagram

(6.24) I(AvY M) (©1=(629 D(AVY" M)

(6.11)_(6.22)J( J{(6.11)_(6.22)

[(ea€p) ~ (U/Un) @py [(E) —— T((tw)+E0) =~ (U/ Uny) @r, (),

where the bottom arrow is given by Ad,(—) ® I'(¢w). Since Ady(—) @ I'(¢y) =
(6.15), diagram (6.24) is equal to diagram (6.18) and the commutativity of diagram
(6.18) follows. The proof is complete.

6.8. Mixed characteristic lifting of & and My. Let Gz be a split reductive
group over Z. Let Ty be a maximal torus of Gz and let Bz be a Borel subgroup
containing Ty, with unipotent radical Uy. For any ring R (resp. any scheme S), we
denote by Gr, Br, etc. (resp. Gg, Bg, etc.) the base change of Gz, Bz, etc. along
Spec(R) — Spec(Z) (resp. S — Spec(Z)).

Let A be a strictly henselian discrete valuation ring between Z[1/¢] and C with
residue field k. Let x € C(T%)(Q,) and & = Wy be the W-orbit of x. Let & be the
W-equivariant ¢-adic local system on T} in Section 5.1.

Lemma 6.9. There exists a W-equivariant -adic local system Eg a4 on Ty which,
after base change A — k, becomes Ey.

Proof. Let pg be the f-adic representation of W x 7t (T}) associated to . The
specialization isomorphism sp : 74 (7)) — 74 (T4) (see [SGA-1]) induces an isomor-
phism W x 7t (T)) =~ W x 7t (T4 ), thus we can identify py as a f-adic representation
of W x 74 (T'4) and we denote by & 4 the corresponding local sysetm on T)4. It is
obvious that £ 4 satisfies the desired property. |

Let My be the character sheaf associated to #. Our next goal is to construct
a mixed characteristic version of My. For this we observe that for any flat group
scheme G of finite type over Z and a closed subgroup scheme H C G flat over Z, the
universal geometric quotient G/H exists [A]. Note also that the Chevalley isomor-
phism holds G JaaGr ~ Tr /| Wg for any ring R and the formation commutes with
arbitrary base change R — R’ [Le]. It follows that the quotient map = : G — G/U
and the Grothendieck-Springer simultaneous resolution in (3.1) make sense over any
ring R. Moreover, the formation commutes with arbitrary base change R — R/'.
We denote them by 7 : G — Gr/Ug and

(6.25) Gr—2 Ty
lé}{ JQR
Gr —3Tg [ Wg.

Denote by hpg : éR — Zp = Gg X7y yw Tr the induced map. We define
(6.26) IC(ZR) = (hz)1Q,[dim G¢] € 2(ZR).
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When R = k is an algebraically closed field of characteristic not equal to ¢,
IC(Zy) is the IC-complex of Zj and there is a canonical W-equivariant structure
(IC(Zk), ¢r) € Dw(Zk) (see Section 3.5).

Lemma 6.10. There exists a positive integer N, depending on the group Gz, sat-
isfying the following. Let A be a strictly henselian discrete valuation ring between
Z[1/N{] and C with residue field k. One can endow the ¢-adic complex 1C(Z4)
in (6.26) with a W-equivariant structure (IC(Za), ¢pa) € Pw(Za) which, under the
base change A — k, becomes (1C(Zy), 1) € Pw(Sk).

Proof. According to [BBD, Section 6.1] (or the discussion in [Dr, Section 4]), one
can choose a (large enough) positive integer N, a stratification 7 of Zz1 /), and
for each T' € T a (finite) collection £(T') of ¢-adic local systems on T', satisfying
the following: (1) We have w*IC(Zzj1/ng) € P7.c(Zzp/ng) for w € W. (2)
Let A,k be as above. Let i : Z; — Z4 be the imbedding. The functor i* :
Dr.c(Za) — P7,c(Z) is an equivalence. Here P71 £(Z4) (vesp. P7.(Zy)) is
the full subcategory of Z(Z4) (resp. 2(Zy)) generated by the x-restriction of
L(T), T €T to Zy (resp. Zy).

Note that, by (1) above, we have w*IC(Z4) € D71..(Z4) and w*IC(Zy) €
Dr.c(Zk). Let ¢p o : IC(Zy) ~ w*IC(Zy) be the isomorphism coming from the W-
equivariant structure ¢ on IC(Zy). Since i*IC(Z,4) ~ IC(Zy), it follows from (2)
above that there exists an isomorphism ¢4 ,, : IC(Z4) ~ w*IC(Z4) which, under
the base change A — k, becomes ¢y, ,,. Now the collection {¢4.,|w € W} defines a
W-equivariant structure ¢4 on IC(Z,) satisfying the required property. O

Proposition 6.11. There exists a positive integer N, depending on the group Gy,
satisfying the following: Let A be a strictly henselian discrete valuation ring between
Z[1/N{] and C with residue field k. There is a {-adic complex Mg 4 on G 4 which,
under the base change A — k, becomes My.

Proof. Let N, A,k be as in Lemma 6.10. Let &y 4 € Zw(T4) be the lift of & in
Lemma 6.9. Define

Ind%chA (59’14) = (EA)!(QA)*(EQ,A)[dim GC — dim TC] ~
~ pGA’!(p;«A (59,,4) ®IC(Z4))[dim G¢ — dim T¢].
Here pr 4 and pg 4 are the natural projections from Z4 to T4 and G4 respec-
tively. The W-equivariant structures on & 4 and IC(Z4) give rise to a W-action
on IndgjcBA (€p,4) and we define Mg 4 = Ind%chA (€s.4)W to be the W-invariant
factor. Since the base change of & 4 along A — £ is isomorphic to & , it follows that
the base change of My 4 along A — k is isomorphic to My = Ind%chk EHWV. O

6.9. ULA property of the pushforward functors. We first review the notion
of universal local acyclicity (ULA) following [De2, Z1].

Let S be a Noetherian scheme. Let f : X — S be a morphism of finite type
and let 7 € Z(X). Let s be a geometric point of S and let S(,) be the strict
henselisation at s. We recall the following definition in [De2]:

Definition 6.12. A ¢-adic complex F € 2(X) is called locally acyclic with respect
to f : X — S if for every geometric point z € X and every geometric point
t € S(f(z)), the natural map H*(X(,), F) — H*((X(y))s, F) is an isomorphism,
where (X))t = (X(2)) X854, - It is called universally locally acyclic (ULA) if it
it locally acyclic after arbitrary base change S’ — S.
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One can reformulate local acyclicity as follows. Let t be a geometric point of
S(s). Denote by j; : X xgt — X and 75 : X Xgs — X the natural maps. We write

(6.27) Wiss(F) 1= g (i) «di (F)-

It is shown in [Z1, Lemma A 2.2] that F is locally acyclic with respect to f if and
only if the natural map

is an isomorphism.

Remark 6.3. In the case when S = Spec(A) is the spectrum of a strictly henselian
discrete valuation ring A with s the closed point S and ¢ a geometric point over the
generic point of S, ¥;_,4(F) in (6.27) is by definition the nearby cycles U(F) of F
and (6.28) is an isomorphism if and only if the vanishing cycles ®(F) vanishes.

We have the following ULA property of the pushforward functors.

Proposition 6.13. Let f: Xzp1/neg — Yzi1/ne be a morphism of smooth schemes
over Z[1/N¥], separated and of finite type. There exists a subring R of C, which is
finitely generated and smooth over Z[1/N¥], such that the following holds. Let A be
a strictly henselian discrete valuation ring between R and C with residue field k and
let fa: Xa — Y4 be the base change of f along Z[1/N{] — A. For any £-adic local
system L4 on X 4 the pushforward (fa)«La is ULA with respect to Y4 — Spec(A),
of formation compatible with arbitrary change of base on Spec A.

Proof. We first claim that there exists a subring R of C, which is finitely gener-
ated and smooth over Z[1/N/], such that the base change fr : Xg — Yg of f
along Z[1/Nf] — R admits a normal crossing compactification fr : Xpr — Y&,
i.e., X i is smooth R-scheme containing X5 as a dense open subscheme, such that
X\ Xg is a union of smooth over R divisors which have normal crossings relative
to Spec(R), and fg is a proper morphism extending fr. Indeed, Nagata compacti-
fication theorem and resolution of singularities imply the existence of such a normal
crossing compactification fc : X¢ — Y¢ for the base change fc : X¢ — Yr of f
along the embedding Z[1/N¢] — C. Then we could apply the standard “spreading
out” techniques to produce the desired ring Z[1/N¢] C R C C and the normal
crossing compactification for fr (see, e.g., [EGA-IV, Section 7 and Section 8] or
[BBD, Section 6.1.7]).

Let A and L4 be as in the proposition. The base change fA X4 — Yy of
fr along R — A gives rise to a normal crossing compactification of f4. Denote
by ja : X4 — X 4 the open embedding. Since A has generic characteristic zero,
any f-adic local system L4 on X4 is tamely ramified along the normal crossing
divisors X 4\ X 4 at infinity [SGA-1, XIII 2.3 (a)]. Thus the results in [De3, Lemma
2.1.10 and Lemma 2.1.11] imply that the pushforward (ja).L4 is ULA with respect
to X4 — A of formation compatible with arbitrary change of base on Spec(A).
Indeed, the results in loc. cit. show that the formation (ja)«£a commutes with
arbitrary base change on Spec(A) and the vanishing cycle ®((ja)1£4) is zero. Since
the vanishing cycles functor ®(—) commutes with Verdier duality D, it implies
D((ja)eLa) =D®((j4)1(DL4)) = 0 and hence (j4).L4 is ULA by Remark 6.3.°

10Note that DL 4 is again a f-adic local system (up to cohomological shift) tamely ramified
along the normal crossing divisors at infinity.
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Since the map f4 : X 4 — Y} is proper, the functor (f4), maps ULA complexes
to ULA complexes [Z1, Theorem A.2.5], and hence (fa)«(£a) =~ (fa)«((ja)«La)
is ULA with respect to Y4 — A, of formation compatible with arbitrary change of
base on SpecA. The proof is complete. O

Let A be a strictly henselian local ring and let S = Spec(A). Let s be the closed
point of S and let ¢ be a geometric point of S. Let f : X — S be a scheme over S
and let Y C X be an open subscheme over S.

Lemma 6.14. Let F be a £-adic complex on X ULA with respect to X — S. Let Fy
and Fy be the restriction of F to the fiber X5 and Xy respectively. Then Fily, ~ 0
implies Fsly, ~ 0.

Proof. Indeed, since Y — X is smooth and the functor ¥;_,, in (6.27) commutes
with smooth pull back, the isomorphism F; ~ W;, (F) (coming from the ULA
property) implies Fly, ~ Wy s(F)ly, = Vims(Fly) 2 05 (Je)« (Fely;) = 0. O

6.10. Proof of Theorem 6.1 in the /-adic setting. We shall show that there
exists a positive integer N, depending only on Gy, such that for any algebraic
closure k of a finite field of characteristic not dividing N¢ and a W-orbit 6 =
Wy of a tame character x € C(T})(Q,), the averaging AvY* (M) is supported on
Ty = Bi/Ur C Gi/Us. Equivalently, the restriction of AvV*(My) to the open
complement Yy, = (Gy/Ux) \ (B /Uk) is zero.

To this end, let N be as in Proposition 6.11 and let R C C be the finitely
generated smooth Z[1/N/{]-algebra as in Proposition 6.13 in the case when f :
Xznyne — Yz ng is equal to

FGapyng 23" Gopyng 23T Gy /Usings

where ¢zp1/n¢) is the map in (6.25). By replacing N with a larger positive integer,
we can assume the map Spec(R) — Spec(Z[1/N¥]) is a smooth surjection. Then for
any geometric k-point of Spec(Z[1/N/]), there exists a strictly henselian discrete
valuation ring R C A C C with residue field &k (see, e.g., [BBD, Section 6.1.8]).
Let My 4,Ep 4 be as in Proposition 6.11. We will write £y 4/, My 4+ for the base
change of £y a4, Mg a along A — A’. Note that, by Lemma 6.9 and Proposition
6.11, we have &g i, >~ & and My >~ M,.

Lemma 6.15. (7m4).Mg 4 is ULA with respect to Ga/Ua — Spec(A), of formation
compatible with arbitrary base change on Spec(A).

Proof. Let L4 = (Ga)*Ep,a be the f-adic local system on Ga given by the pull-back
of & 4 along the map G4 : Ga — Ty in (6.25). By Proposition 6.13, (fa)«La4 is
ULA with respect to G4/Ua — Spec(A), of formation compatible with arbitrary
base change on Spec(A). Since My 4 is the W-invariant direct factor of

Ind%chA (59,,4) = (EA)*ﬁA[dim G(C — dimT@]

and
(fa)eLa = (7a)u(Ga)La = (ma).IndF 5 (E9.4)[dim Tt — dim Gg].

It follows that (m4). Mg, 4 is a direct factor of (74)+L 4 and hence is also ULA with
respect to G 4/Ua — Spec(A), of formation compatible with arbitrary base change
on Spec(A).

O
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Lemma 6.16. (7¢)..Myc is supported on Te = Be/Uc C Ge/Uc.

Proof. Let D%(G¢,Q,) be the bounded derived category of constructible /-adic
complexes on G¢ and let D(G¢(C),C) be the usual bounded derived category of
C-constructible complexes on the complex Lie group G¢(C). We fix an isomorphism
Q; ~ C. Then according to [BBD, Section 6.1], there is a comparison functor

¢ : D%(Ge, Q) — D5(Gc(C),C)

which is fully-faithful and commutes with six functor formalism. Let & ¢ be the
base change of £ 4 along A — C. We claim that there exists a character xc
of the topological fundamental group m (T'(C)) such that the local system €*&g ¢
corresponds to the de Rham local system &g, in Section 5.1 under the Riemann-
Hilbert correspondence. Here 6c = W is the W-orbit of x¢. Assume the claim
for the moment, then the perverse sheaf
Mo ~ € (IndFe g (Eo.c))V) ~ (IndFC 5 (" Eg )

corresponds to the character D-module Ind%C Be (Ep.)W = Mg, under the Riemann-
Hilbert correspondence and the lemma follows from Theorem 6.1 in the de Rham
setting.

To prove the claim, we observe that the constructions of & and & 4 in Sec-
tion 5.1 and Lemma 6.9 imply that £ ¢ corresponds to a f-adic representation
IndVV\é;C , (Ryc., ®Xxc,0) where xc ¢ is a f-adic character of 7, (T¢)e with W/, = W1,

Xc,e
and R, , is the representation of W . 1 (Tc) in Q[[m1(Tc)e]]/(Q,[[m1 (TC)A]YXC’@
given by the Q,[[m1 (T¢)¢]]-module structure. Here 71 (7¢) is the étale fundamental
group of Tr and Q,[[m;(T¢),]] is the completed group algebra of the pro-¢ quotient
7m1(Tc)e of 1 (Tc). Note that the restriction of the functor €* to the subcategory of

{-adic local systems on T¢ is induced by the natural embedding
(6.29) m(T(C)) = m (T(C))e = 71 (Tc)e-

Note also that (6.29) induces an isomorphism

Rye = Rr/{ Ry€) = Qyllm (Te)e])/ @ellm (Te)el]y ") = Ry,

compatible with the W/ . = W;(xc, ,-action. Let xc be the pullback of the character

Xc,¢ along (6.29). Then the pullback of the representation Indw; (Ryc, ® Xc,0))
C,e ’
along (6.29) is isomorphic to Indw,ﬁ (Rye ® xc). Since &, is the de Rham local

system corresponding to Indw, (Ry. ® xc) under the Riemann-Hilbert correspon-
XC

dence, the desired claim follows.
O

Applying Lemma 6.14 to the case F = (m4). Mg a, X = Ga/Us, Y =Ys =
(Ga/Ua) \ (Ba/Uy,), and using Lemma 6.15 and Lemma 6.16, we conclude that
Av*Uk (Myg) =~ (m)+ Mo i is supported on Tj. To finish the proof of Theorem 6.1
it remains to show that :© Av/*(My) ~ Res$ 5(My) is isomorphic to & but it
follows from Proposition 3.2.
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7. PROOF OF THE VANISHING CONJECTURE

In this section we prove the vanishing conjecture (Conjecture 1.2) for almost all
characteristic:

Theorem 7.1. There exists a positive integer N depending only on the type of the
group G such that the following holds. Assume k = C or char k = p is not dividing
NtU. Let F € Pw(T) be a central complex (resp. x-central complex) on T and let
dr =nd§_5(F)V € 2(Q). For any = € G\ B, we have the following cohomology
vanishing
H:(2U,i"®x) =0 (resp. H*(zU,i'®x) = 0),

where i : U — G is the natural inclusion map. Equivalently, AvY (®x) (resp.
AVY(®5)) is supported on the closed subset T = B/U C G/U.

7.1. Reduction to perverse sheaves.

Lemma 7.2. If Conjecture 1.2 holds for central perverse sheaves (resp. x-central
perverse sheaves), then it holds for arbitrary central complezes (resp. x-central
complex).

Proof. Since the Verdier duality interchanges central complexes with *-central com-
plexes, it is enough to verify the lemma for *-central complexes. Let F be a *-central
complex. We claim that both Pr<,(F) and P5#°(F), b € Z, are *-central. Assum-
ing the claim for the moment, then an induction argument on the (finite) number
of non vanishing perverse cohomology sheaves of F in [C, Lemma 7.5] implies the
lemma.

We shall prove the claim. We first deal with the the f-adic setting. Let x €
C(T)(Q,) and let I, be the maximal ideal corresponding to x. Write C(T)y for
the completion of C(T) at x. Let g5 : C(T)y — C(T)5, / Wy be the quotient map.
Since x is the unique closed point of C(T)y and the action of W, on the fiber
ix (MUF @ signy)le(r), ) = i3 IM(F @ signyy) is trivial, by [Ne, Theorem 1.3], there
exists G € D%, (C(T)x J Wy) such that

coh
M(F @ signw)|e(r), ~ 939 € D2y (C(T)x | W)
Since the functors 90, ¥ and taking completions (=)le(r), are t-exact, we have
M(Pr<p(F) @ signy)|e(r), = T<p(M(F @ signy)le(r),) = 7<b(639) =~ ¢; (T<6(9))-
Similarly, we have
MEA(F) @ sighyw)|e(1), =~ q:@%ﬂb(g)-
It follows that W, acts trivially on the fibers if9M(P7<;(F) ® signy) and
X IM(PAP(F) @signyy ) and, by Lemma 4.1, we conclude that P7<,(F) and ?. 7 (F)
are *-central.

The de Rham setting. Let A € #(C). By Theorem 4.4, the Mellin transform
IN(F @ signy ) descends to t / W, y, that is, we have

M(F @ signy ) ~ 3G

b on(t /] Way). Since M and 7§ are exact functors, we have

qcoh
M(r<pF @ signyy) = 7<p(M(F @ signy ) = 7<p(13G) = 73 (7<69)
SJI(%Z’(]:) ® signyy) ~ %b(m?(f@) signy)) ~ %”b(w}ig) ~ wi(%ﬂbg)

for some G € D
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and hence by Theorem 4.4 again we conclude that both 7<,F and J#°(F) are
*-central.
O

7.2. Reduction to reductive groups with connected center.

Lemma 7.3. Let fo : G — G4 be a central isogeny. If Conjecture 1.2 holds for Gy
then it holds for G.

Proof. We retain the notation from Section 4.4. Let By = f(B) and Uy = f(U).
Since f maps the root subgroups of G isomorphically to the root subgroups of G
and the kernel of f is in the center of G, By = T1U; is a Borel subgroup of G; with
unipotent radical U;. In addition, we have the following Cartesian diagrams

Gt G171

-l

GG T
where the horizontal arrows are the maps in (3.1). It follows that for any F €
Pw(T) we have

d 7, (fr)F)V = (fo)(IndGe g (F)V)
(recall that fo induces an isomorphism fyw : W ~ W; (4.12)). From the above
isomorphism we obtain
(m)i(Id i, () F)™V) 2 (w0 (o) (IndFe g (F)Y))
~ (fou)(m(Indfc g (F)V)),

where 7 : G — G/U, m : Gi — G1/U;y and fqv : G/U — G1/U;. Since

f&)u(Th) =T and for any G € 2(G/U) we have supp((fe;v)1G) = fa v (supp(9))
(as  fgqu is surjective étale), the isomorphism (7.1) implies that if

(wl)!(Indglchl ((fr)nF)W1) is supported on T then m(Ind$ 5 (F)W) is supported
on T'. Now the lemma follows from Lemma 4.5.

(7.1)

]

Corollary 7.4. If Conjecture 1.2 holds for connected reductive groups with con-
nected center then it holds for arbitrary connected reductive groups.

Proof. Let Gger and Zg be the derived subgroup and the center of G respectively
and let G1 = G/Gaer X G/Z¢. Note that G7 has connected center and the natural
map fg : G — G is a central isogeny. Thus the corollary follows from Lemma
7.3. O

7.3. Convolution with Mj.

Proposition 7.5. Assume G has connected center. Let F € Pw(T)" be a x-central
perverse sheaf and let 0 be a W-orbit through a tame character x € C(T)(E). There
s an tsomorphism

Srx My ~H" (T, F® ﬁx—l) R Ma.
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Proof. By Proposition 5.4, we have
(7.2) FxEoH (T, F @ Ly1)®E € 2(T).
Since AvY(My) ~ & is supported on T = B/U C G /U, Proposition 3.3 implies
(7.3)  IndG5(F) * Mg ~ IndS 5(F * &) ~ H* (T, F @ L,,-1) @ IndG 5(Ep).
We claim that the isomorphism above is compatible with the natural W-actions.
Taking W-invariance on both sides of (7.3), we get

Drx My ~IndS5(F)V x My

7.3
D H(T,Fo L, 1) ©mdS (&)W

~ H*(T,}—@)L‘,Xfl) ® May.

The proposition follows. O

7.3.1. Proof of the claim. Let us write Res = Resch, Ind = Ind?cB, M = M,
E=CE,and V =H*(T,F®L,-1). Our goal is to show that the isomorphism (7.3)

(7.4) ¢ Ind(F) * M~V @ Ind(€)

is compatible with the W-actions. To this end, consider the following commutative
diagram induced from (7.4):

End(Ind(F) * M) —— End(Res(Ind(F) * M)) .

(7.4)l~ (7‘4)J~

End(V ® Ind(€)) —— End(Res(V ® Ind(£)))

Since the natural map End(Ind(€)) — End(Res o Ind(€)) is injective,!! the hor-
izontal arrows in the diagram above are injective. Thus it suffices to check the
compatibility after applying the functor Res, that is, the map

(7.5) Res(¢) : Res(Ind(F) * M) ~ Res(V ® Ind(£)) ~ V ® Res o Ind (&)

is compatible with the W-actions. Since AvY (M) ~ Res(M) ~ £ is supported on
T, we have a canonical isomorphism

Res(Ind(F) * M) ~ Res o Ind(F) * Res(M) =~ Res o Ind(F) 12
and hence (7.5) can be identified with
(7.6) ResoInd(F) « & ~ V ® Res o Ind(€)

1ndeed, since Res is the right adjoint of Ind, it has a one side inverse End(Res o Ind(£)) —

End(Ind(£)) sending f : Res o Ind(€) — Res o Ind(€) to Ind(€) - Ind o Res o Ind(&) A Ind(€),
where 7 is induced by the the unit morphism Id — Res o Ind and h is the image of f under the
isomorphism End(Res o Ind) ~ Hom(Ind o Res o Ind, Ind).

12The first isomorphism follows from the fact that, for any M, Ma € 2(G/.qG) such that
AvY(Ms) ~ Res(Mz) is supported on T, we have canonical isomorphism Res(Mi * Ms) =~
Res(M1) * Res(Ma2).
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and we reduce to show that (7.6) is compatible with the W-actions. By Proposition
3.2 and Proposition 5.4, there is a commutative diagram

(E[W] @ F)* € —— V @ (E[W] ® €)

(3.6)J~ (3.6)J~

Res o Ind(F) * & Oy ® (Res o Ind(£))

where the vertical arrows and the upper horizontal arrow are compatible with the
natural W-actions. Therefore (7.6) is also compatible with the W-actions. The
claim follows.

7.4. Proof of Theorem 7.1. Since the Verdier duality interchanges central com-
plexes with x-central complexes, it suffices to verify Theorem 7.1 for x-central com-
plexes. Let F € Zw(T) be a *-central complex. We need to show that the natural
map

(7.7) r:ResZ 5 (Pr) — AvY (D)

is an isomorphism. By Lemma 7.2 and Corollary 7.4, we can assume F is a perverse
sheaf and G has connected center. We claim that, for any W-orbit § = Wy C
C(T)(E), the convolution of r with £ is an isomorphism

(7.8) ResSc 5 () * &g — AVY(®F) * &.
For this, it is enough to show that AvY(®5)* &y is supported on T and this follows
from Theorem 6.1 and Proposition 7.5. Indeed, we have

AV (@) & RO AV (@) 5 AVY (M)

~ AVY (D5« My)

rop 7.5

PRI, F o L) @ AvY (My)
m 6.1
ST F @ L) @ .

Since £ ~ €D, 4 &y, the isomorphism (7.8) implies that the cone of the map
in (7.7), denoted by cone(r), satisfies cone(r) * £, = 0 for all x € C(T)(E). As
&, is a local system on T with generalized monodromy Y, that is, &, ® Ly is an
unipotent local system, Lemma 7.6 and Lemma 7.7 below imply cone(r) = 0. The
theorem follows.

7.5. Vanishing lemmas. Let X be a smooth variety with a free T action a :
TxX — X.For L€ P(T)and F € Z(X) we define L+ F 1= a. (LK F) € Z(X).

Lemma 7.6. Let L be a local system on T with generalized monodromy x €
C(T)(E), that is, L ® Ly is a unipotent local system. Let F € 2(X) and assume
L+ F =0. Then we have Ly x F = 0.

Proof. There is a filtration 0 = £(© ¢ £1) ¢ ... ¢ £*®) = £ such that
0— L0 5 20 & 2@/~ p 0.

Assume £, * F # 0 and let m be the smallest number such that S#=™ (L,  F) = 0.
We claim that s#2™ (L") « F) = 0 for i = 1,...,k. The case i = 1 is automatic
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since £(1) = L. For i <k, consider the distinguished triangle
LOVF 5 LD F - £+ F — L0795 F1]

induced from above short exact sequence. Then for any n > m we obtain an exact
sequence
A (LY« F) = (LD« F) — ALy, + F).
By induction, the first and third terms are zero, and hence 5" (£)  F) = 0. The
claim follows.
Now since £ x F = 0, the distinguished triangle

LEVF 5 LxF = L+ F— L5 5 F1)
implies
Lo+ F =~ £5D 5 Fl1].
Therefore we have 7™ (L, x F) ~ AN LED « F1)) = 2™ (LF D5 F) =0

which contradicts to the fact that m is the smallest number such that J#=™ (L, *
F) = 0. We are done. O

Lemma 7.7. Let F € 2(X). If L, « F =0 for all x € C(T)(E), then F = 0.

Proof. Since T acts freely on X we have an embedding o, : T — X,t — ¢ - x.
Moreover, by base change formulas, we have

HY(T, Ly ® 0, F) ~ i\ (L x F) =0

for all x € C(T)(E). Here i, : * — X is the natural inclusion map. By a result
of Laumon [GL, Proposition 3.4.5], it implies o}, F/ = 0 for all 2. The lemma
follows. O
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