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Abstract: This paper deals with the grouped variable selection problem.
A widely used strategy is to augment the negative log-likelihood function
with a sparsity-promoting penalty. Existing methods include the group
Lasso, group SCAD, and group MCP. The group Lasso solves a convex
optimization problem but suffers from underestimation bias. The group
SCAD and group MCP avoid this estimation bias but require solving a
nonconvex optimization problem that may be plagued by suboptimal local
optima. In this work, we propose an alternative method based on the gener-
alized minimax concave (GMC) penalty, which is a folded concave penalty
that maintains the convexity of the objective function. We develop a new
method for grouped variable selection in linear regression, the group GMC,
that generalizes the strategy of the original GMC estimator. We present a
primal-dual algorithm for computing the group GMC estimator and also
prove properties of the solution path to guide its numerical computation
and tuning parameter selection in practice. We establish error bounds for
both the group GMC and original GMC estimators. A rich set of simulation
studies and a real data application indicate that the proposed group GMC
approach outperforms existing methods in several different aspects under
a wide array of scenarios.
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1. Introduction

Consider the classical linear regression setting where the data have been gener-
ated according to the following model:

y = Xβ⋆ + ϵ, (1.1)

where y ∈ Rn is a response vector, X ∈ Rn×p is a fixed design matrix whose
columns are p covariate variables, and ϵ is a vector of independent noise variables
with mean zero and variance σ2. In modern statistical applications, we often
have p ≫ n where the ordinary least squares estimator is not well defined.

A natural strategy to address this issue is to assume that β⋆ is sparse so as
to improve both the prediction accuracy and the interpretation of the model.
To that end, Tibshirani [32] developed the least absolute shrinkage and selec-
tion operator (Lasso) which performs both coefficient estimation and variable
selection. The Lasso estimator is a solution to

minimize
β∈Rp

1
2n∥y − Xβ∥2

2 + λ∥β∥1,

where the objective function is a sum of the squared error loss, which repre-
sents the lack-of-fit, and the l1-norm penalty, which encourages sparsity in the
estimated model. The l1-norm is able to perform variable selection because of
its singularity at the origin. The nonnegative tuning parameter λ balances the
trade-off between the goodness-of-fit and the model complexity.

The Lasso is one of the most popular penalized regression formulations for
selecting individual variables but cannot immediately deal with certain types
of structured sparsity. For example, in many statistical applications, variables
may have a natural group structure. A classic example in regression is the en-
coding of a single categorical variable using a group of dummy variables. In such
case, what we need is a method for selecting, or not selecting, the entire set of
dummy variables. The most prominent work in grouped variable selection is the
group Lasso [39], which is a natural extension of Lasso and solves the following
penalized least squares problem:

minimize
β∈Rp

1
2n

∥∥∥∥∥y −
J∑

j=1
X·,jβj

∥∥∥∥∥

2

2

+ λ
J∑

j=1
Kj∥βj∥2, (1.2)

where the p covariates are divided into J groups, β = (βT
1 , . . . ,β

T
J)T ∈ Rp

with βj ∈ Rpj and
∑J

j=1 pj = p. The matrix X·,j is the submatrix of X whose
columns correspond to the variables in the j-th group. The Kj ’s are nonnegative
weights used to adjust for the group sizes. A typical choice of Kj is √

pj . The
group Lasso employs the l2-norm of the group coefficients as a component of
the penalty function. One can also view the penalty as applying the l1-norm to
the vector of l2-norms of the groups, which enforces sparsity at the group level
while encouraging ridge regression-like shrinkage within a group.
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Since the introduction of the group Lasso, many variants and generaliza-
tions have been proposed and investigated. Kim, Kim and Kim [20] designed
a blockwise sparse regression method to extend the idea of the group Lasso to
general loss functions but used the same penalty as the group Lasso. Meier,
Van De Geer and Bühlmann [24] derived the group Lasso for logistic regression
and presented an efficient algorithm for fitting related generalized linear models.
Zhao et al. [43] developed a family of composite absolute penalties for grouped
and hierarchical variable selection, which includes the group Lasso as a special
case. Wei and Huang [37] generalized the adaptive Lasso to an adaptive group
Lasso method to improve the variable selection performance. The grouping in-
formation included in the models discussed above has led to improvements in
both estimation accuracy and model interpretability. Many applications can be
found in the corresponding references.

Nonetheless, despite its many desirable characteristics, the group Lasso and
its variants suffer from the same drawback as the Lasso, namely, they tend to
underestimate large magnitude coefficients due to applying the same amount of
shrinkage on all coefficients. Nonconvex penalties, such as the smoothly clipped
absolute deviation (SCAD) [10] and the minimax concave penalty (MCP) [41],
have been developed as alternatives to the Lasso that can diminish the esti-
mation bias in the Lasso estimator. By applying such nonconvex penalties to
the l2-norms of the group coefficients, it is natural to obtain grouped variable
selection via nonconvex penalization, such as the group SCAD and group MCP
[35, 36, 18].

Grouped variable selection models with nonconvex penalties are not without
their disadvantages, however. The nonconvex penalty, though beneficial for the
estimation of coefficients, leads to a nonconvex optimization problem. Objective
functions in nonconvex programming typically possess multiple local optima
which are not global optima, and algorithms for solving nonconvex optimiza-
tion problems such as gradient or coordinate descent may be trapped in local
optima. Early work on statistical theory for SCAD or MCP penalized least
squares estimators focused on either error bounds for global optima [42] or lo-
cal optima obtained through specific initialization schemes and algorithms [11].
More recently, Loh and Wainwright [23] established statistical properties which
apply to all stationary points of SCAD or MCP penalized least squares objective
functions (though their results do not apply directly to group SCAD or MCP
penalized estimators). However, empirical results from [11] and [23], among oth-
ers, suggest that in practice some stationary points perform much better than
others, especially when the overall objective function is highly nonconvex, e.g.,
see the Remark on (α1, µ) and Figure 4 of [23].

To overcome the drawbacks of nonconvex optimization, one line of research,
commonly referred to as the convex-nonconvex strategy, has been studied in the
field of signal processing. This strategy adopts the so-called convexity-preserving
nonconvex penalization, namely, the penalties are nonconvex but capable of
maintaining the convexity of the whole objective function. The idea of convexity-
preserving nonconvex penalties was introduced by [5], [26], and [27], and then
further investigated in [4], [29], and [44]. In particular, Selesnick [30] proposed
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a novel nonconvex penalty function for the regularized least squares problem,
which they call the generalized minimax concave (GMC) penalty. The GMC
penalty is expressed as

ψB(β) = ∥β∥1 − min
v∈Rp

{
∥v∥1 + 1

2∥B(β − v)∥2
2

}
, (1.3)

which can guarantee the convexity of the optimization problem under a suit-
able condition on the matrix parameter B. Lanza et al. [21] and Selesnick et al.
[31] further developed a general strategy to construct parametric noncovex non-
separable regularizers for linear inverse problems. Abe, Yamagishi and Yamada
[1] extended the idea of the GMC to solving linearly involved sparse estimation
problems, such as piecewise constant signal recovery. Abe, Yamagishi and Ya-
mada [2] further extended the GMC framework to more general regularizers,
and their follow-up work [38] investigated linearly involved sparse estimates un-
der additional constraints. Liu and Chi [22] revisited the linearly involved GMC
penalty, proposing a new method for choosing the matrix parameter B in the
penalty and providing an additional algorithm to compute the solution path of
the linearly involved GMC model. The convex-nonconvex strategy bridges the
gap between convex and nonconvex approaches in prior work. The nonconvex
penalty can greatly mitigate the estimation bias for large magnitude coefficients,
while the convexity of the optimization problem guarantees that all local min-
ima are global minima and opens the door to using many efficient algorithms
that are available for convex optimization problems.

In this paper, we focus on grouped variable selection in linear regression
and propose a new generalization of the GMC penalty, called the group GMC
penalty, which is also a convexity-preserving nonconvex penalty. We present the
convexity-preserving condition for the group GMC model and some properties
of its solution path. To solve the proposed optimization problem, we cast it
as a saddle-point problem and provide a primal-dual algorithm for iteratively
computing its saddle point. Theoretically, we establish error bounds for both the
group GMC penalized least squares estimator and, as a special case, the GMC
estimator of [30], which to the best of our knowledge have not been established
yet. We evaluate the effectiveness of the proposed approach by comparing it
with existing grouped variable selection methods through a bunch of simulation
experiments and a real data application.

The rest of this paper is organized as follows. In Section 2, we first review
the GMC penalty and its relation to existing folded concave penalties. Then we
formulate the group GMC penalty and the corresponding optimization problem
for grouped variable selection in linear regression. We also include the convexity-
preserving condition and some theoretical properties of the solution path in this
section. In Section 3, we present in detail how to solve the proposed optimization
problem with a first-order primal-dual algorithm. In Section 4, we study the
statistical properties of both the group GMC estimator and the original GMC
estimator by establishing l2-norm error bounds. In Sections 5 and 6, we report
on numerical experiments and a real data application. We close with a discussion
in Section 7. All proofs in this paper are included in Appendix A.



2916 X. Liu et al.

2. Group GMC

2.1. GMC and MCP

We first review the GMC penalty to help readers understand the relationship
between the GMC and the MCP in [41]. For that purpose, we have to recall the
definition of the infimal convolution and the Huber function.

The infimal convolution of two functions f and g is

(f!g)(β) = inf
v∈Rp

{f(v) + g(β − v)} .

The Huber function [19] is defined as

h(β) =
{

1
2β

2, if |β| ≤ 1,
|β|− 1

2 , if |β| > 1,

which can be equivalently expressed as the infimal convolution

h(β) = min
v∈R

{
|v| + 1

2(β − v)2
}
,

where the infimum is replaced by a minimum since the infimum in the definition
is attained.

Selesnick [30] defined the scaled version of the Huber function as

hb(β) = h(b2β)/b2 = min
v∈R

{
|v| + 1

2b
2(β − v)2

}
,

where b ̸= 0 is a scalar parameter. In the special case where b = 0, hb(β) = 0.
Based on the scaled Huber function, the scaled minimax concave (MC) penalty
is given by

φb(β) = |β|− hb(β). (2.1)
After defining the scaled Huber function in the univariate case, Selesnick [30]

proposed a natural multivariate generalization. Given a matrix parameter B,
the generalized Huber function HB : Rp → R is written as

HB(β) = inf
v∈Rp

{
∥v∥1+

1
2∥B(β − v)∥2

2

}
,

which is a convex function; the infimum is attained since the l1-norm is coercive.
Mimimicking the univariate scaled minimax MC penalty, the generalized MC
(GMC) penalty is defined as the difference of the l1-norm and the generalized
Huber function.

ψB(β) = ∥β∥1−HB(β), (2.2)
which coincides with (1.3). Since the difference of two convex functions is not
necessarily convex, the GMC penalty function is in general nonconvex. But as



Group GMC for grouped variable selection 2917

mentioned in the introduction, the GMC penalty can maintain the convexity
of the penalized least squares problem by suitably choosing B. Details can be
found in [30].

Recall that the MCP defined in [41] is expressed as

Pλ,γ(β) =
p∑

j=1
ρλ,γ(|βj |), (2.3)

where the univariate MCP function defined on [0,∞) is

ρλ,γ(|βj |) =
{
λ|βj |−

β2
j

2γ , if |βj | ≤ γλ,
1
2γλ

2, if |βj | > γλ,
(2.4)

where λ ≥ 0 is the tuning parameter controlling the degree of penalization, and
γ > 1 is a hyper-parameter that determines the degree of concavity of the MCP.
The MCP function converges pointwise to the l1-norm as γ → ∞ and to the
l0-norm as γ → 1, therefore it provides a continuum of penalties by varying the
value of γ.

Now let us have a closer look at the similarities and differences between
the GMC penalty (2.2) and the MCP (2.3). In the univariate case, the GMC
penalty coincides with the scaled MC penalty (2.1) and the MCP (2.3) reduces
to Pλ,γ(β) = ρλ,γ(|β|). If we set b2 = 1/γλ, then ρλ,γ(|β|) = λφb(β). In other
words, (2.2) is equivalent to (2.3) up to a factor of λ. The difference between the
GMC penalty (2.2) and the MCP (2.3) lies in how they are generalized from the
univariate case to the multivariate one. The MCP (2.3) takes an additive form
from the univariate MCP function (2.4), while the GMC penalty (2.2) is derived
from the scaled MC penalty (2.1) via an infimal convolution, thus leading to a
non-separable penalty function whenever BTB is non-diagonal.

The implications of expressing the MC penalty as an infimal convolution
are non-trivial and lead to intrinsic differences with the standard MCP. It is
well known that in the classic low-dimensional case where n > p, there exists
a suitable hyper-parameter γ choice for MCP that leads to a convex objective
function but that no such γ exists when n < p. In contrast, we will see that it
is always possible to find a matrix B for GMC that leads to a convex objective
function for any n and p. Thus, the GMC function enables the application of
folded concave penalties in the high-dimensional case where n ≪ p without
sacrificing convexity, opening the door to methods that can enjoy the best of
both convex and nonconvex worlds.

2.2. The group GMC model

Based on the form of the GMC penalty (1.3) and mimicking the generalization
from the Lasso to the group Lasso, we define the group GMC penalty as

ΦB(β) =
J∑

j=1
Kj∥βj∥2 − min

v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2

⎫
⎬

⎭ , (2.5)
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where β = (βT
1 , . . . ,β

T
J)T ∈ Rp and v = (vT

1 , . . . ,vT
J)T ∈ Rp. For each j ∈ [J ]

where [J ] = {1, . . . , J} for a positive integer J , βj ,vj ∈ Rpj with
∑J

j=1 pj = p,
and Kj is the same as that in the group Lasso model (1.2). Here we insert a
multiplier 1/n in the squared term of the group GMC penalty to put it on the
same scale with the squared error loss term in (1.2).

Therefore, the group GMC model for grouped variable selection and coeffi-
cient estimation in linear regression is cast as the following optimization prob-
lem:

minimize
β∈Rp

1
2n∥y − Xβ∥2

2+λΦB(β), (2.6)

where ∥y − Xβ∥2
2= ∥y −

∑J
j=1 X·,jβj∥2

2 as in (1.2). Here λ ≥ 0 is again a
tuning parameter that controls the degree of penalization, while B is a matrix
parameter that controls the concavity of the group GMC penalty. Note that in
our paper, we refer to λ as the tuning parameter of the group GMC and treat
the matrix B as a hyper-parameter.

Similar to the GMC approach, the basic idea of the group GMC method is
to maintain the convexity of the optimization problem while using a nonconvex
penalty, which can be realized with an appropriate choice of the matrix hyper-
parameter B. The next proposition specifies the condition that B has to satisfy
to guarantee the convexity of problem (2.6). Recall that for two matrices A and
B, A ≽ B means A−B is positive semi-definite; similarly, A ≻ B means A−B
is positive definite.
Proposition 2.1. Let y ∈ Rn,X ∈ Rn×p, and λ ≥ 0. Define F : Rp → R as
in (2.6)

F (β) = 1
2n∥y − Xβ∥2

2+λΦB(β), (2.7)

where ΦB : Rp → R is the group GMC penalty (2.5). If

XTX ≽ λBTB, (2.8)

then F is a convex function. We call (2.8) the convexity-preserving condition
for the group GMC problem (2.6).

Note that the convexity-preserving condition (2.8) can hold without any re-
striction on the problem dimension p and the sample size n, namely, it can
hold for both the low-dimensional case (n ≥ p) and the high-dimensional case
(n < p). To satisfy the convexity-preserving condition (2.8), an intuitive and
simple choice for B is

B =
√
α/λX, 0 ≤ α ≤ 1. (2.9)

We refer to α as the convexity-preserving parameter of the group GMC model
since α controls the nonconvexity of the group GMC penalty. Setting α = 0
reduces the group GMC penalty to the group Lasso penalty. And setting α = 1
gives a maximally nonconvex penalty which can maintain the convexity of the
optimization problem (2.6). The convexity-preserving parameter α is another
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hyper-parameter of the group GMC method and needs to be chosen by users.
We recommend a range of 0.4 < α < 1 based on our simulation studies in
Section 5.

The following proposition establishes the relationship between the group
GMC and group MCP. It also clarifies the relationship between the GMC and
MCP as a by-product.
Proposition 2.2. The group GMC method is equivalent to the group MCP
method when BTB is diagonal and the diagonal elements are suitably designed.
This equivalence also holds for the GMC and MCP.

We write the group GMC estimator, namely a minimizer to problem (2.6), as
β̂(λ) which explicitly represents the dependency of the solution to (2.6) on the
tuning parameter λ. We next discuss two properties of the solution path β̂(λ),
that expedite the numerical computation in practice.
Theorem 2.1. Suppose XTX ≻ λBTB, then the solution path β̂(λ) to the
group GMC problem (2.6) exists, is unique, and is continuous in λ.

Theorem 2.1 tells us that the optimization problem (2.6) is well-posed. More-
over, continuity of β̂(λ) opens the door to a homotopy strategy to reduce compu-
tation time when solving a sequence of problems over a grid of λ values. Namely,
we use the solution to the problem at the previous value of λ to initialize, or
warm start, the next iterate for computing the solution at the next λ value.

Intuitively, we may expect that all groups are excluded from the model when
the tuning parameter λ is sufficiently large. The following theorem confirms our
intuition.
Theorem 2.2. The group GMC problem (2.6) has a unique solution β̂(λ) = 0p

for all λ greater than λ0 = maxj

{
∥(X·,j)Ty∥2/(nKj)

}
, where X·,j and Kj are

as defined in (1.2) for j ∈ [J ].
This second property is practically useful since it gives a range of λ, [0,λ0], to

sample the full dynamic range of group sparse models, and as an added benefit
the computation of λ0 is straightforward.

We close this section with a few remarks. First, the group GMC penalty (2.5)
depends on BTB, not B itself. Therefore, there is no need to express B explicitly
when computing the solution path β̂(λ). Second, the two properties of the so-
lution path hold for any matrix B satisfying the convexity-preserving condition
and are independent of how β̂(λ) is computed, as they are intrinsic to the group
GMC problem. Finally, Theorem 2.1 applies only in the classic setting where
n > p. This is a more stringent condition than what is required to ensure the
uniqueness of the Lasso [33]. The proof of the uniqueness of the Lasso solution
hinged on the Karush-Kuhn-Tucker (KKT) conditions of the Lasso optimiza-
tion problem. The KKT conditions for the group GMC problem, however, are
more complicated than the KKT conditions for the Lasso. Generalization of the
proof used in the Lasso case to the group GMC is not straightforward due to
the more complicated KKT conditions of the latter. Nonetheless, we conjecture
that relaxed conditions similar to those that ensure the uniqueness of the Lasso
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Algorithm 1 Basic PDHG steps for problem (3.1)
Set x0 ∈ RN ,y0 ∈ RM ,σk > 0, τk > 0
1: repeat
2: x̂k+1 = xk − τkATyk
3: xk+1 = arg minx∈RN f(x) + 1

2τk
∥x − x̂k+1∥2

2
4: ŷk+1 = yk + σkA(2xk+1 − xk)
5: yk+1 = arg miny∈RM g(y) + 1

2σk
∥y − ŷk+1∥2

2
6: until convergence

solution can be established and leave establishing these conditions for future
work.

3. Algorithms

3.1. Algorithm for the group GMC model

In this subsection, we focus on the computation of the solution path β̂(λ) to
the group GMC model (2.6). We first review the Primal-Dual Hybrid Gradient
(PDHG) algorithm [9, 7] for computing the solution to non-smooth saddle-point
problems. Then we formulate problem (2.6) as an instance of the kind of saddle-
point problem that the PDHG algorithm can solve.

The PDHG method, also known as the Chambolle-Pock method, is widely
used to solve the following saddle-point problem:

min
x∈X

max
y∈Y

f(x) + yTAx − g(y), (3.1)

where f and g are closed and convex functions, A ∈ RM×N is a matrix, and
X ⊂ RN and Y ⊂ RM are convex sets. A wide range of problems in statistics
and machine learning can be cast as a instance of (3.1), such as the scaled Lasso
and total variation denoising.

Algorithm 1 summarizes the basic PDHG steps for problem (3.1), where
σk and τk are step-size parameters for updating x and y, respectively. One
can choose constant step-sizes, τk = τ and σk = σ with τσ < ∥ATA∥−1, to
guarantee the convergence of the PDHG algorithm. Note that we use ∥A∥ to
denote the spectral norm of a matrix A.

We now recast the optimization problem (2.6) as a saddle-point problem

min
β∈Rp

max
v∈Rp

f(β) + vTZβ − g(v), (3.2)

where

f(β) = 1
2n∥y − Xβ∥2

2+λ
J∑

j=1
Kj∥βj∥2 −

λ

2n∥Bβ∥2
2, (3.3)
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and

g(v) = λ

2n∥Bv∥2
2 + λ

J∑

j=1
Kj∥vj∥2, (3.4)

and Z = λ
nBTB ∈ Rp×p is a symmetric matrix. In addition, both (3.3) and (3.4)

are convex functions under the convexity-preserving condition (2.8). It is
straightforward to see that problem (3.2) is under the framework of (3.1) and
thereby can be solved by the PDHG algorithm.

The basic PDHG method can be slow to converge, however. In this paper,
we employ a faster adaptive PDHG algorithm [15, 12], to solve the group GMC
problem. We provide details about the adaptive PDHG for problem (3.2) and
discuss its convergence guarantees in Appendix B.

3.2. Algorithm for the PDHG updates

The PDHG algorithm for solving the group GMC problem requires solving two
subordinate optimization problems for updating βk+1 and vk+1 which we de-
scribe next.

We first introduce an efficient algorithm, Fast Adaptive Shrinkage/Thresh-
olding Algorithm (FASTA) [13, 14], for solving optimization problems of the
form

minimize
x∈RN

m(x) + h(x), (3.5)

where m is convex and Lipschitz differentiable, h is proper, lower semi-continuous
and convex, and m+h is coercive. FASTA provides a simple framework for imple-
menting the forward-backward splitting (FBS) method, also known as the prox-
imal gradient method [3], to efficiently compute the solution to problem (3.5).
Problems under the framework of (3.5) include the Lasso, noisy matrix comple-
tion, and many other regularized regression problems.

Algorithm 2 shows pseudocode of the basic FBS steps in FASTA for solv-
ing (3.5), where tk is a positive step-size parameter and plays an important role
in the convergence rate of the algorithm. The proximal operator of h is given by

proxh(u) = argmin
x∈RN

(
h(x) + 1

2∥x − u∥2
2

)
.

The proximal operator exists and is unique if h is convex and lower semi-
continuous. The key computation in FBS is the proximal mapping, and many
regularizers h in sparse learning admit proximal operators which either have an
explicit formula or can be evaluated by an efficient algorithm. For instance, the
proximal operator of the l2-norm can be explicitly expressed as

proxλ∥·∥2(u) =
(

1 − λ

∥u∥2

)

+
u,
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Algorithm 2 Basic FBS steps in FASTA for problem (3.5)
Set x0 ∈ RN , tk > 0
1: repeat
2: x̂k+1 = xk − tk∇m(xk)
3: xk+1 = proxtkh

(x̂k+1) = argminx∈RN tkh(x) + 1
2∥x − x̂k+1∥2

2
4: until convergence

where (·)+ = max{0, ·}. The efficiency of computing the proximal operators
of many commonly used penalty functions makes the FBS method popular in
practice.

We now rewrite the two optimization problems for updating βk+1 and vk+1
in the PDHG updates in the form of (3.5). First, the optimization problem for
updating βk+1 can be written as

βk+1 = argmin
β∈Rp

f(β) + 1
2τk

∥β − β̂k+1∥2
2

= argmin
β∈Rp

{ 1
2n∥y − Xβ∥2

2−
λ

2n∥Bβ∥2
2+ 1

2τk
∥β−β̂k+1∥2

2

}
+λ

J∑

j=1
Kj∥βj∥2.

(3.6)

Similarly, we write the optimization problem for updating vk+1 as

vk+1 = argmin
v∈Rp

g(v) + 1
2σk

∥v − v̂k+1∥2
2

= argmin
v∈Rp

{ λ

2n∥Bv∥2
2 + 1

2σk
∥v − v̂k+1∥2

2

}
+ λ

J∑

j=1
Kj∥vj∥2. (3.7)

Under the convexity-preserving condition (2.8), both (3.6) and (3.7) satisfy the
conditions on m and h in (3.5). Therefore, we can compute βk+1 and vk+1 by
using Algorithm 2.

Both the gradient of m and proximal operator of the l2 norm required by
FBS admit simple analytical expressions, ensuring the tractability of both (3.6)
and (3.7). One of the primary difficulties with FBS is that users must carefully
choose the step-size. Fortunately, many variants of FBS are available in FASTA
for adaptively choosing the step-size and accelerating convergence. In this paper,
we use the strategies adopted in the R package fasta to implement FASTA to
compute the solutions to (3.6) and (3.7).

4. Statistical properties

4.1. Main results

In this section, we consider the statistical properties of the group GMC esti-
mator obtained by solving (2.6). First, we demonstrate that the group GMC
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estimator achieves an error bound of the same asymptotic order as existing es-
timators. Second, we discuss how the choice of B, or BTB to be exact, affects
the error bound. We will also contrast our assumptions and error bounds with
B =

√
α/λX to those under the group Lasso penalization.

We now define a number of important quantities. First, define

v⋆ ∈ argmin
v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β⋆ − v)∥2
2

⎫
⎬

⎭ , (4.1)

where β⋆ is the true vector of coefficients and vj has the same dimension as
β⋆
j for each j ∈ [J ]. Implicitly, v⋆ is a function of B,β⋆, n, and Kj : we avoid

notation indicating this dependence for improved readability. We can then define
the sets S = {j : ∥β⋆

j∥2 ̸= 0, j ∈ [J ]} and Sc = [J ] \ S and use |S| to denote the
cardinality of S. We also define

νj =
{
Kj + n−1∥[BTB]j,·(β⋆ − v⋆)∥2, j ∈ S,
Kj − n−1∥[BTB]j,·(β⋆ − v⋆)∥2, j ∈ Sc,

where [BTB]j,· ∈ Rpj×p is the submatrix of BTB with rows corresponding to
the indices of β⋆ defining the j-th group for each j ∈ [J ]. The fact that v⋆

may not be uniquely defined is inconsequential to the definition of νj because
Bv⋆ is identical for all v⋆ which satisfy (4.1). Finally, let ν̄ = maxj∈S νj and
ν = mink∈Sc νk. Both ν̄ and ν play important roles in our error bounds. In brief,
our results indicate that a good choice of B is one in which ν̄ is minimized and
ν is maximized, while also, the νj for j ∈ S are large and νk for k ∈ Sc are
small. For the sake of illustration, we will derive closed form expressions for the
νj under a particular choice of B in the next subsection.

Our results require a number of conditions and assumptions. Our first condi-
tion is that the submatrices of X satisfy a simple scaling condition [25]. Specifi-
cally, we assume that ∥X·,j∥ ≤

√
n for all j ∈ [J ]. Such a condition was used in,

for example, Corollary 4 of [25]. In the case that pj = 1, this simplifies to the
standard column-wise scaling condition that each column of X has squared Eu-
clidean norm no greater than n (e.g., see Example 11.1 of [16]). We also assume
the following:

A1. (Subgaussian errors). The data are generated from (1.1) where ϵ ∈ Rn has
independent entries which are each σ-subgaussian random variables for
0 < σ < ∞. That is, E(ϵi) = 0 and for all t ∈ R, E{exp(tϵi)} ≤ exp(t2σ2/2)
for each i ∈ [n].

A2. (Convexity) The matrix B is chosen so that XTX ≽ λBTB.
A3. (Sample size) The sample size n is sufficiently large such that there exists

a constant ξ where ν ≥ ξ > 0.

Assumption A3 implicitly requires that Kj ≥ ξ > 0 for all j ∈ Sc. In finite
sample settings, assumption A3 could be replaced with an assumption on the
magnitude of the Kj . Finally, we require a version of the well-known restricted
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eigenvalue condition which depends on the design matrix X and the matrix
parameter B.
A4. (Restricted eigenvalue condition) For a fixed c > 1, define

Cn(S, ν, c) =
{
∆ ∈ Rp : ∆ ̸= 0,

∑

k∈Sc

(
νk − ξ

c

)
∥∆k∥2 ≤

∑

j∈S

(
νj + ξ

c

)
∥∆j∥2

}
,

where we use a single notation ν to indicate the dependency on ν̄, ν, and
νj for j ∈ [J ]. We assume there exists a constant k > 0 such that for all n
and p,

0 < k ≤ κB(S, c) = inf
∆∈Cn(S,ν,c)

∆T(XTX − λBTB)∆
2n∥∆∥2

2
.

We will discuss the modified restricted eigenvalue condition after stating our
main result, which we prove in Appendix A.
Theorem 4.1 (Error bound for group GMC). Let c > 1 and k1 > 1 be fixed
constants. If assumptions A1–A4 hold and

λ = 4cσ
ξ

(
max
j∈[J]

√
pj
n

+
√

k1 log(J)
n

)
,

then with probability at least 1 − 2 exp{−(k1 − 1) log(J)},

∥β̂(λ) − β⋆∥2 ≤ 4cσ
κB(S, c)

(
ν̄

ξ
+ 1

c

){(
max
j∈[J]

√
|S|pj
n

)
+
√

|S|k1 log(J)
n

}
,

where β̂(λ) is the group GMC estimator obtained from (2.6).
Perhaps unsurprisingly, the group GMC estimator achieves the same asymp-

totic error rate as the group Lasso penalized least squares estimator. Where an
improvement over other convex estimators could be realized is through judicious
choice of B such that κB(S, c) is large and ν̄/ξ is small. We discuss this further
in the next subsection.

As a consequence of our proof technique, we also establish an error bound
for the original GMC estimator in [30]: this is a special case of the group GMC
estimator with each group consisting of a single coefficient. This is the first error
bound for the GMC estimator that we are aware of.
Theorem 4.2 (Error bound for GMC). Let c > 1 and k2 ∈ (0, 1/2) be fixed
constants. Let pj = 1 for j ∈ [p] so that S = {j : β⋆

j ̸= 0, j ∈ [p]}. If assumptions
A1–A4 hold and λ = (cσ/ξ)

√
2 log(p/k2)/n, then with probability at least 1 −

2k2,

∥β̂(λ) − β⋆∥2 ≤ cσ

κB(S, c)

(
ν̄

ξ
+ 1

c

)√
2|S| log(p/k2)

n
,

where β̂(λ) is the corresponding GMC estimator.
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Like the group-penalized version, the GMC penalized estimator achieves the
same well-known asymptotic

√
|S| log p/n rate as its l1-norm penalized coun-

terpart as long as ν̄ = O(ξ). However, like the group GMC penalized estimator,
an improvement over Lasso in finite sample settings may be realized through an
inflation of the restricted eigenvalue κB(S, c), and through the role of the νj ’s.

4.2. Additional insights

The restricted eigenvalue κB(S, c) in A4 differs from the analogous condition
under the l2-norm group penalization, which may partly explain the difference in
performance observed in Section 5. Specifically, to establish error bounds for the
group Lasso analog of (2.6), the corresponding restricted eigenvalue condition
posits a lower bound on inf∆∈Dn(S,c)

∆TXTX∆
2n∥∆∥2

2
, where

Dn(S, c) =

⎧
⎨

⎩∆ ∈ Rp : ∆ ̸= 0,
∑

k∈Sc

Kk∥∆k∥2 ≤
(
c + 1
c− 1

)∑

j∈S
Kj∥∆j∥2

⎫
⎬

⎭ ,

when the tuning parameter is chosen to be at least as large as cmaxj ∥ϵTX·,j∥2/n.
The difference between restricted eigenvalue conditions comes both in terms
of the function the infimum is taken with respect to and in terms of the set
over which the infimum is taken. For example, when we take B =

√
α/λX for

α ∈ (0, 1), we see that

κB(S, c) = (1 − α)
{

inf
∆∈Cn(S,ν,c)

∆TXTX∆
2n∥∆∥2

2

}
,

which would at first glance seem to imply a (1 − α) factor decrease in the
restricted eigenvalue relative to that for the group Lasso estimator. However,
the benefit comes through the potential reduction in volume of the set Cn(S, ν, c)
relative to Dn(S, c). If, for example, each νj +ξ/c ≥ (c+1)Kj for j ∈ S and each
νk − ξ/c ≤ (c − 1)Kk for k ∈ Sc, this would guarantee the set Cn(S, ν, c) has
volume no greater than Dn(S, c). More generally, if ξ and many νj for j ∈ S are
large, one may expect the reduction in volume of Cn(S, ν, c) relative to Dn(S, c)
to lead to a larger restricted eigenvalue and in turn, an improved error bound.
In addition, since the restricted eigenvalue condition A4 depends on the user-
specified matrix B, one may select B such that this condition is more plausible
than the analogous condition under the group Lasso penalization. The matrix
B also affects the error bound through the νj , both through the modification of
Cn and the ratio ν̄/ξ.

To get a sense of how the νj ’s depend on the choice of B, we focus on a
special case.

Proposition 4.1. Suppose n > p and XTX ≻ Op. Consider the choice of
B =

√
η/λIp where η > 0 is the smallest eigenvalue of XTX so that A2 holds.
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In this situation,

v⋆
j =

(
1 − nKjλ

η∥β⋆
j∥2

)

+
β⋆
j , j ∈ S,

and v⋆
j = 0 for j ∈ Sc. It thus follows that for j ∈ [J ],

νj = Kj + Kj1{∥β⋆
j∥2 > nKjη/λ} + η

nλ
∥β⋆

j∥21{∥β⋆
j∥2 ≤ nKjη/λ},

where 1(·) is the indicator function.

In addition to providing insight regarding the νj , in light of Proposition 2.2,
this result provides a new lens through which the group MCP can be viewed
in the settings in which group MCP and group GMC are equivalent. Existing
theory for group MCP is largely concerned with the oracle property rather than,
say, error bounds.

Crucially, Proposition 4.1 implies νj = Kj for all j ∈ Sc in the considered
scenario. This choice of B is useful because νj = Kj for j ∈ Sc (whereas al-
ternative choices of B will yield νj < Kj for some j ∈ Sc), and because it
enables us to express v⋆ explicitly in terms of β⋆. In this setting of Proposi-
tion 4.1, if each Kj = 1 and the ∥β⋆

j∥2 are sufficiently large for j ∈ S, then
(νj + ξ/c) = (2 + 1/c) for j ∈ S and (νk − ξ/c) = (c − 1)/c for k ∈ Sc so that
Cn(S, ν, c) could be written in the same form as Dn(S, c) with (c + 1)/(c − 1)
replaced with (2c + 1)/(c− 1) (i.e., Cn(S, ν, c) has less volume than Dn(S, c)).

In practice, of course, the νj cannot be computed since they depend on β⋆.
Likewise, the B which minimizes the bounds in Theorem 4.1 also depends on
β⋆ and the set S, so this cannot be used in practice.

5. Simulation studies

We investigate the practical performance of the proposed group GMC method
with experiments that build upon the simulation scenarios in [39]. We also
compare the group GMC with the group Lasso, group MCP, and group SCAD.
The computation of the three existing methods is done using the R package
grpreg developed by [6], and the hyper-parameters in the group MCP and group
SCAD are set as the default values given in their R package. The implementation
of the proposed group GMC method can be found in the R package GMC, which
is available at https://github.com/Xiaoqian-Liu/GMC.

There are four linear regression models considered in the simulation study
in [39]. In this work, we consider the two most complicated ones, an ANOVA
model with all two-way interactions and an additive model with both categor-
ical and continuous variables. More importantly, we study different cases for
each model to explore the effects of interesting factors, including the signal-to-
noise ratio (SNR), the correlation among groups, the problem dimension, and
the convexity-preserving parameter (only for the group GMC). In each case,
we run the experiment for 100 replications and evaluate different methods with

https://github.com/Xiaoqian-Liu/GMC
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respect to: (i) mean squared error (MSE) of the estimated coefficients; (ii) pre-
diction error defined as ∥Xβ̂ − Xβ⋆∥2

2/n where n is the sample size, X is the
design matrix, and β⋆ and β̂ are the vectors of true and estimated coefficients
respectively; (iii) support recovery with respect to F1 score, number of true
positives (TP), and number of false positives (FP). The F1 score is a metric of
support recovery performance that accounts for both TP and FP; it is defined
as F1 = 2TP/(2TP+FP+FN) where FN denotes the number of false negatives.
The F1 score takes on values between 0 and 1, and a higher value indicates bet-
ter support recovery. Regarding the selection of the tuning parameter λ, we use
five-fold cross-validation for all methods. The matrix parameter B for the group
GMC method is set according to (2.9). Namely, given a convexity-preserving pa-
rameter α, B varies with λ, but we always have λBTB = αXTX so that the
convexity degree of the optimization problem is fixed. We include the study of
the ANOVA model in this section and relegate the investigation of the additive
model to Appendix C. We also report run times of different methods for all the
simulation experiments in Appendix C.

The data generation process of the ANOVA model is as follows. Four cat-
egorical variables Z1, Z2, Z3 and Z4 are generated from a centered multivari-
ate normal distribution with covariance between Zi and Zj being ρ|i−j| for
i, j = 1, . . . , 4. Then each Zi is trichotomized to 0, 1 or 2 if it is smaller than
Φ−1(1

3 ), larger than Φ−1(2
3 ) or in between, where Φ is the cumulative density

function (CDF) of the standard normal distribution. The true regression model
is

y = 31(Z1 = 1) + 21(Z1 = 0) + 31(Z2 = 1) + 21(Z2 = 0) + 1(Z1 = 1, Z2 = 1)
+ 1.51(Z1 = 1, Z2 = 0) + 21(Z1 = 0, Z2 = 1) + 2.51(Z1 = 0, Z2 = 0) + ϵ,

(5.1)

where ϵ is normally distributed with mean zero and variance σ2. Therefore, we
have 32 covariate variables from ten groups, where four of them with a group
size of two represent the main effects and the other six groups with a group
size of four indicate the two-way interactions. The response variable, however,
is only related to three groups of covariates as shown in model (5.1). We next
consider three different cases to explore the possible effects of interesting factors.
Case C1: The first factor we are interested in is the SNR, which is defined

as ∥Xβ⋆∥2/(
√
nσ). We consider uncorrelated groups, namely ρ = 0 in

the data generation process. We set a sequence of σ so that the SNR
ranges from 1 to 5. The sample size n is fixed as 100 for each setting. To
better understand how the convexity-preserving parameter α affects the
performance of the proposed group GMC method, we report the results of
the group GMC with α ∈ {0.2, 0.4, 0.6, 0.8, 1}. These results also provide
guidance on how to set α for the group GMC in practice.

Figure 1 presents the impact of SNR on the performance of the four methods
for model (5.1). As expected, the MSE of the estimated coefficients and the
prediction error decrease as the SNR increases for all methods. The group Lasso
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Fig 1. Results for Case C1: Impact of SNR. Group GMC(·) stands for the group GMC with a
specific value of α. Average performance based on 100 simulation replicates for each method.
MSE and Prediction error are on a log scale.

achieves the lowest MSE, while the group GMC gives the lowest prediction error
among the four methods. The convexity-preserving parameter α does not show
a significant effect on the prediction performance of the group GMC, but it has
a mild effect on the coefficient estimation. As indicated in the top left panel
of Figure 1, a smaller value of α leads to a lower MSE. When it comes to
support recovery, the group GMC shows a distinct advantage over the other
three methods. It achieves a higher F1 score than existing methods in all SNR
settings. The two plots on the bottom panel of Figure 1 display the variable
selection results of different methods in detail. The group Lasso obtains the
most true positives but also the most false positives. Both group SCAD and
group MCP miss some true positives and also include some irrelevant variables
into the ANOVA model. The group GMC, however, can achieve a number of
true positives comparable with the group Lasso while maintaining its number of
false positives at a very low level. The convexity-preserving parameter α indeed
affects the variable selection performance of the group GMC. Both numbers of
true and false positives decrease as the value of α increases. In other words, a
large value of α in the group GMC results in a sparse model. In general, a range
of 0.4 < α < 1 works well for this ANOVA example.
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Fig 2. Results for Case C2: Impact of group correlation. Average performance plus/minus
one standard error based on 100 simulation replicates for each method. MSE and Prediction
error are on a log scale.

Case C2: When comparing different grouped variable selection methods, one
factor of interest is to what extent the correlation among groups impacts
their performance. For that purpose, we set a grid of values for ρ, ρ =
{0, 0.2, 0.4, 0.6, 0.8}, so that the correlation between Zi and Zj is ρ|i−j| for
i ̸= j. We fix the SNR of the regression model to be 2 and the sample size
to be 100 for each run. We set the convexity-preserving parameter α = 0.6
for the group GMC method.

Figure 2 shows the performance of the four methods under different group
correlations. Both the group GMC and group Lasso produce worse estimation
as the correlation ρ increases, while the group MCP and group SCAD fail to
achieve comparable estimation even in the uncorrelated setting. For the model
prediction, all four methods are relatively stable across different correlation set-
tings, and the group GMC compares favorably with the other three. Regarding
the variable selection with respect to the F1 score, group GMC visibly outper-
forms the existing three methods. All methods see a drop in F1 score when the
correlation ρ reaches up to 0.8. The plots of true and false positives provide de-
tailed insight into the variable selection performance of different methods. The
group Lasso includes the most false positives into the model, although it leads
others in the inclusion of true positives. In contrast, the group MCP and group
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SCAD build much sparser models and miss some true positives. The group GMC
is capable of obtaining true positives comparable with the group Lasso and ex-
cluding those irrelevant variables from the regression model. When ρ = 0.8, all
methods suffer a drop in their true positives, resulting in the drop in their F1
scores as seen in the corresponding plot.

Case C3: In this third case, our goal is to explore the impact of the problem
dimension on the performance of different methods. To that end, we set
three different dimension settings where four, ten, and sixteen independent
categorical variables Zi are generated accordingly in each setting and then
trichotomized in the same way as described above. As a result, the problem
dimension p is 32, 200, and 512, respectively. But the response variable
y remains generated according to model (5.1) with SNR = 2, namely the
number of true positives is eight in all dimension settings. The sample size
is 100 for each setting. We again fix the convexity-preserving parameter α
of the group GMC as 0.6.

Figure 3 summarizes the simulation results. In terms of the coefficient esti-
mation, the group MCP and group SCAD behave quite similarly and worse than
the group Lasso and group GMC. Regarding the model prediction, the group

Fig 3. Results for Case C3: Impact of problem dimension. Average performance plus/minus
one standard error based on 100 simulation replicates for each method. MSE and Prediction
error are on a log scale.
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Table 1
Description of the birth weight data set.

Name Type Variable description

Birth weight Continuous Infant birth weight in kilograms
Mother’s age Continuous Mother’s age in years
Mother’s weight Continuous Mother’s weight in pounds at last menstrual period
Race Categorical Mother’s race (white, black or other)
Smoking Categorical Smoking status during pregnancy (yes or no)
# Premature Categorical Previous premature labors (0, 1, or more)
Hypertension Categorical History of hypertension (yes or no)
Uterine irritability Categorical Presence of uterine irritability (yes or no)
# Phys. visits Categorical Number of physician visits during the first trimester

(0, 1, 2, or more)

GMC fares well in all dimension settings. With respect to variable selection,
the group GMC exhibits a distinct advantage over the existing three methods
across different problem dimensions thanks to its robust behavior with respect
to both true and false positives. While group MCP performs well at excluding
false positives, it errs on the side of being too conservative and misses some
true positives. The group Lasso and group SCAD, however, select too many ir-
relevant variables into the regression model, especially for the high-dimensional
scenarios.

6. Real data application

We apply our group GMC method on the birth weight data set from [17], which
studies risk factors associated with low infant birth weight. The data set is
publicly available in the R package MASS and contains 189 observations of one
response variable (infant birth weight) and eight explanatory variables from the
mother, including both continuous and categorical factors. We include detailed
description of the data set in Table 1. As with [39], we take into account the pre-
liminary analysis that both mother’s age and weight have non-linear effects on
the birth weight. Therefore, we model these two effects by third-order polynomi-
als. Finally, we get sixteen predictors from eight groups to fit a linear regression
model.

Following our simulation studies, we analyze the data using the proposed
group GMC as well as the group Lasso, group MCP, and group SCAD. For
group GMC, we again set the matrix parameter B according to (2.9) and choose
α = 0.8 based on our experience from the simulation studies. For evaluation, we
first randomly sample three-quarters of the observations (142 cases) as a training
set for selecting the tuning parameter λ by ten-fold cross-validation. Then we
use the obtained tuning parameter to fit the full data to get the estimated
coefficients. Finally, we compute the prediction error based on the testing set of
the remaining one-quarter records.
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Table 2
Summarized results for the birth weight data.

Method Prediction error # nonzero groups Excluded groups

Group Lasso 0.36 8 none
Group SCAD 0.35 8 none
Group MCP 0.35 7 # Phys. visits
Group GMC 0.35 7 # Phys. visits

Fig 4. Solution paths of four different methods on the birth weight data. The dotted vertical
line in each subfigure indicates the selected λ via ten-fold cross-validation.

Table 2 summarizes the prediction errors, numbers of nonzero groups, and
excluded groups from the four methods. The group Lasso and group SCAD
fail to exclude any group from the model. Both group MCP and group GMC,
however, regard the number of physician visits during the first trimester as an
unimportant factor to the infant birth weight. The prediction errors obtained
from the four different methods are comparable.

It seems that, for this birth weight data analysis, the group GMC does not
exhibit any advantage over existing methods. Nevertheless, the solution paths
from the four methods, as shown in Figure 4, tell a different story. The esti-
mated coefficients from the group GMC, as indicated by the vertical dotted
line, undergo noticeably less shrinkage than those of the group Lasso and are
similar to the estimates from the group MCP and group SCAD. This confirms
the unbiased (or at least less biased) estimation of the group GMC as a noncon-
vex penalization method. What is more, the group GMC method is more robust
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against the tuning parameter selection compared to the other three methods.
It is anticipated that the estimated coefficients are increasingly shrunk as λ in-
creases, and thus fewer variables are selected into the regression model. But as
shown in Figure 4, the estimated coefficients and selected variables are stable
over λ ∈ [0.04, 0.07] for the group GMC, while the other three methods do not
have as comparably a wide range of λ. This insensitivity furnishes some evidence
that the group GMC method can potentially blunt estimation bias successfully
while still simultaneously achieving satisfactory variable selection.

7. Discussion

In this paper, we used the convex-nonconvex strategy to propose a novel concave
penalty, called the group GMC, for grouped variable selection and coefficient
estimation in linear regression. The group GMC penalty is a variant of the GMC
penalty and thus inherits its characteristic that it is able to maintain the con-
vexity of the corresponding optimization problem. Therefore, the group GMC
eliminates the possibility of suboptimal local minima while maintaining unbi-
ased estimation as a nonconvex penalization approach. We formulated linear
regression with the group GMC penalization as a convex optimization problem,
or more specifically a saddle-point problem when a certain condition is satisfied.
The resulting group GMC estimator enjoys desirable properties which help ac-
celerate numerical computation and tuning parameter selection. We presented
efficient algorithms for computing the group GMC estimator. Additionally, we
analyzed statistical properties of the group GMC estimator as well as the original
GMC estimator. Our results are the first to establish the l2-norm error bounds
for the GMC least squares estimators and as such, provide novel insights about
the performance of convex nonconvex penalization. In our simulation study, we
compared the practical performance of the group GMC with the group Lasso,
group MCP, and group SCAD via a comprehensive evaluation, including vari-
able selection, coefficient estimation, and model prediction. Through a battery
of simulation experiments, we found that the group GMC can achieve better or
at least competitive performance in comparison with the existing three meth-
ods under different scenarios such as different SNRs, correlated or uncorrelated
groups, and different dimension settings. A real data application displays the
advantage of the group GMC method in its robustness in unbiased coefficient
estimation and grouped variable selection.

While this paper was under review, we became aware of the work by [8].
The key contribution of their work was a convexity-preserving algebraic design
for the parameter matrix B for a wide class of convex-nonconvex regularizers
composed with linear mappings lacking full row rank. As an illustration, the
authors applied their model to a group-sparse least squares estimation problem,
which is essentially the same as the group GMC problem. Nonetheless, there
are notable differences between their investigation of convex-nonconvex group
sparsity and the one in this paper. Their illustrative application considered a
special case of group structure, specifically consecutive groupings. In contrast,
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we put no restriction on the group structure and conducted a wider study of the
empirical behavior of group GMC under various simulation scenarios. Moreover,
we presented novel analysis of the statistical properties of the group GMC and
original GMC estimators, which as far as we are aware have been unexplored
to date in the convex-nonconvex literature.

Several related studies can be done in the future. First of all, how to set the
matrix parameter B warrants more exploration and investigation. We discussed
how B could affect the error bound of the group GMC estimator in Section 4 but
anticipate that other approaches to set B could further improve the performance
of the group GMC, both theoretically and practically. Second, the group GMC
method could be extended to generalized linear models to deal with grouped
variable selection problems in other high-dimensional cases. More generally, the
convex-nonconvex strategy could be applied to other sparse learning scenarios
so that one can enjoy the advantages of convex optimization and nonconvex
penalization simultaneously.

Appendix A: Proofs

A.1. Proof of Proposition 2.1

We rewrite F (β) as

F (β) = 1
2n∥y − Xβ∥2

2+λΦB(β)

= 1
2n∥y − Xβ∥2

2+λ
J∑

j=1
Kj∥βj∥2 − λ min

v∈Rp
g(β,v)

= max
v∈Rp

⎧
⎨

⎩
1
2n∥y − Xβ∥2

2+λ
J∑

j=1
Kj∥βj∥2 − λg(β,v)

⎫
⎬

⎭

= max
v∈Rp

⎧
⎨

⎩
1
2nβ

T(XTX − λBTB)β + λ
J∑

j=1
Kj∥βj∥2 + G(β,v)

⎫
⎬

⎭

= 1
2nβ

T(XTX − λBTB)β + λ
J∑

j=1
Kj∥βj∥2 + max

v∈Rp
G(β,v),

where g(β,v) =
∑J

j=1 Kj∥vj∥2 + 1
2n∥B(β − v)∥2

2, and

G(β,v) = λ

n
vT(BTB)β − 1

n
yTXβ − λ

2n∥Bv∥2
2−λ

J∑

j=1
Kj∥vj∥2+

1
2n∥y∥

2
2

is affine in β. Then maxv∈Rp G(β,v) is convex since it is the pointwise maximum
of a set of convex functions. Therefore, if XTX ≽ λBTB, F is convex.
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A.2. Proof of Proposition 2.2

When λ = 0, both the group GMC and group MCP reduce to the ordinary least
squares problem. In the following proof, we assume that λ > 0.

Recall that the group MCP penalty is expressed as

Pλ,γ(β) =
J∑

j=1
ρKjλ,γ(∥βj∥2),

where β = (βT
1 , . . . ,β

T
J)T ∈ Rp has the group structure and βj ∈ Rpj is the

vector of components in the j-th group. By the definition of the univariate MCP
function (2.4),

ρKjλ,γ(∥βj∥2) =
{
Kjλ∥βj∥2−

∥βj∥
2
2

2γ , if ∥βj∥2≤ Kjγλ,
1
2γK

2
j λ

2, if ∥βj∥2> Kjγλ,

=

⎧
⎨

⎩
Kjλ∥βj∥2−

Kjb
2
jλ

2 ∥βj∥2
2, if ∥βj∥2≤ 1

b2j
,

1
2b2j

Kjλ, if ∥βj∥2>
1
b2j
,

with b2j = 1/(Kjλγ).
Suppose that BTB = (n/λγ)Ip, then we have

λΦB(β) = λ
J∑

j=1
Kj∥βj∥2 − min

v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2

⎫
⎬

⎭

= λ
J∑

j=1
Kj∥βj∥2 − min

v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 +

b2jKj

2

J∑

j=1
∥βj − vj∥2

2

⎫
⎬

⎭

= λ
J∑

j=1

(
Kj∥βj∥2 − min

vj∈Rpj

{
Kj∥vj∥2 +

b2jKj

2 ∥βj − vj∥2
2

})

= λ
J∑

j=1
Kj

(
∥βj∥2 − min

vj∈Rpj

{
∥vj∥2 +

b2j
2 ∥βj − vj∥2

2

})
.

We next show that under this special design of BTB, the group GMC method
is equivalent to the group MCP method, namely,

λΦB(β) = Pλ,γ(β).

We only need to prove that

∥βj∥2− min
vj∈Rpj

{
∥vj∥2 +

b2j
2 ∥βj − vj∥2

2

}
=

⎧
⎨

⎩
∥βj∥2−

b2j
2 ∥βj∥2

2, if ∥βj∥2≤ 1
b2j
,

1
2b2j

, if ∥βj∥2>
1
b2j
,
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or equivalently,

min
vj∈Rpj

{
∥vj∥2 +

b2j
2 ∥βj − vj∥2

2

}
=

⎧
⎨

⎩

b2j
2 ∥βj∥2

2, if ∥βj∥2≤ 1
b2j
,

∥βj∥2− 1
2b2j

, if ∥βj∥2>
1
b2j
.

(A.1)

It is straightforward to see that the solution of the optimization problem on the
left hand side of (A.1) is the proximal operator of the l2 norm. Denote v⋆

j as
the solution, then

v⋆
j = prox∥·∥2/b2j

(βj) =
{0, if ∥βj∥2≤ 1

b2j
,

(1 − 1
b2j∥βj∥2

)βj , if ∥βj∥2>
1
b2j
.

Plugging v⋆
j into the left hand side of (A.1), we proved that the equation (A.1)

holds.
It is trivial to see that the equivalence also holds for the GMC and MCP by

taking βj as each single component of β and Kj = 1.

A.3. Proof of Theorem 2.1

Recall that a coercive and strictly convex function has a unique minimizer in its
domain. Therefore, to show the existence and uniqueness of the solution path
to (2.6), we only need to show F (β) in (2.7) is strictly convex and coercive.

According to the proof of proposition 2.1, it is easy to verify that F (β) is
strictly convex if XTX ≻ λBTB. Besides, we can see that lim∥β∥2→∞ F (β) =
+∞, thus F (β) is coercive.

We next show that the solution path β̂(λ) is continuous in λ. Let us first
rewrite F as

F (β,λ) = 1
2n∥y − Xβ∥2

2+λ

⎧
⎨

⎩

J∑

j=1
Kj∥βj∥2 − f1(β)

⎫
⎬

⎭ ,

where f1(β) = minv∈Rp

(∑J
j=1 Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2

)
. Then f1 is a con-

vex function of β and its domain is Rp. Therefore, f1 is continuous in β, thus
jointly continuous in (β,λ). So for all (β,λ) ∈ (Rp,R+), F is a jointly continuous
function of (β,λ). Besides,

J∑

j=1
Kj∥βj∥2 − min

v∈Rp

⎛

⎝
J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2

⎞

⎠

≥
J∑

j=1
Kj∥βj∥2 −

⎛

⎝
J∑

j=1
Kj∥βj∥2 + 1

2n∥B(β − β)∥2
2

⎞

⎠

= 0.
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So F is non-decreasing in λ. Therefore, for an arbitrary subinterval [a, b] ⊆
(0,+∞) and for all λ̃ ∈ [a, b],

F (β̂(λ̃), a) ≤ F (β̂(λ̃), λ̃) ≤ F (0p, λ̃) ≤ F (0p, b),

where 0p is the zero vector in Rp and β̂(λ̃) is the unique minimizer of F (·, λ̃).
Since F (β, a) is coercive in β, we have

S = {β : F (β, a) ≤ F (0p, b)} is a compact set.

Hence, β̂(λ̃) ∈ S for all λ̃ ∈ [a, b]. Suppose that β̂(λ) is not continuous at some
point λ̃ and choose a, b such that λ̃ ∈ [a, b], then there exists some ϵ0 > 0 and a
sequence {λn}n∈N ∈ [a, b] such that

λn → λ̃ but ∥β̂(λn) − β̂(λ̃)∥2≥ ϵ0 for all n ∈ N.

We have seen that for each n, β̂(λn) ∈ S and S is compact, thus β̂(λn) is a
bounded sequence. Therefore, there exists a subsequence β̂(λnk) such that

β̂(λnk) → β∗ ∈ S,

and
F (β̂(λnk),λnk) ≤ F (β̂(λ̃),λnk). (A.2)

By the joint continuity of F and taking limit on both sides of (A.2), we get

F (β∗, λ̃) ≤ F (β̂(λ̃), λ̃).

By the uniqueness of the globalm minimizer, β∗ = β̂(λ̃), which contradicts the
fact that ∥β̂(λn)− β̂(λ̃)∥2≥ ϵ0 for all n ∈ N. Therefore, the solution path β̂(λ)
is continuous in λ.

A.4. Proof of Theorem 2.2

A point β̂ furnishes a global minimum of the convex function F (β) if and
only if all forward directional derivatives dθF (β) at β̂ are nonnegative. Let
a(β) = 1

2n∥y − Xβ∥2
2 and b(β) = minv∈Rp

∑J
j=1 Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2,

then

dθF (β̂) = lim
h→0

F (β̂ + hθ) − F (β̂)
h

=
〈
∇a(β̂),θ

〉
+ λ lim

h→0

∑J
j=1 Kj(∥β̂j + hθj∥2−∥β̂j∥2)

h
− λdθb(β̂).

To prove Theorem 2.2, we need to show that dθF (0p) ≥ 0 for all θ ∈ Rp when
λ ≥ λ0.

First, we show that
dθb(0p) = 0.
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Note that

dθb(0p) = lim
h→0

b(hθ) − b(0p)
h

= lim
h→0

b(hθ)
h

.

We define l(β,v) =
∑J

j=1 Kj∥vj∥2 + 1
2n∥B(β − v)∥2

2, namely b(β) =
minv∈Rp l(β,v). We next show that for all h sufficiently small, b(hθ) =
l(hθ,0p) = 1

2n∥Bhθ∥2
2. Thus

dθb(0p) = lim
h→0

b(hθ)
h

= lim
h→0

h

2n∥Bθ∥2
2= 0.

Since b(hθ) ≤ l(hθ,0p), we only need to show that b(hθ) ≥ l(hθ,0p).

b(hθ) − l(hθ,0p) = min
v∈Rp

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(hθ − v)∥2
2 −

1
2n∥Bhθ∥2

2

= min
v∈Rp

J∑

j=1
Kj∥vj∥2 + 1

2n∥Bv∥2
2−

h

n
θTBTBv

= min
v∈Rp

J∑

j=1
Kj∥vj∥2 + 1

2n∥Bv∥2
2−

J∑

j=1

〈
h

n
(BTB)j,·θ,vj

〉

≥ min
v∈Rp

J∑

j=1
Kj∥vj∥2 + 1

2n∥Bv∥2
2−

J∑

j=1

∥∥∥∥
h

n
(BTB)j,·θ

∥∥∥∥
2
∥vj∥2

= min
v∈Rp

J∑

j=1

(
Kj −

h

n
∥(BTB)j,·θ∥2

)
∥vj∥2+

1
2n∥Bv∥2

2,

where we denote (BTB)j,· ∈ Rpj×p as the submatrix of BTB with rows from the
j-th group. Then for all h sufficiently small, h

n∥(B
TB)j,·θ∥2≤ Kj for all j ∈ [J ].

Therefore,

b(hθ) − l(hθ,0p) ≥ min
v∈Rp

J∑

j=1

(
Kj −

h

n
∥(BTB)j,·θ∥2

)
∥vj∥2+

1
2n∥Bv∥2

2= 0.

Having proven that dθb(0p) = 0, we now have

dθF (0p) = ⟨∇a(0p),θ⟩ + λ lim
h→0

∑J
j=1 Kj∥hθj∥2

h

=
〈
− 1
n
XTy,θ

〉
+ λ

J∑

j=1
Kj∥θj∥2

=
J∑

j=1

〈
− 1
n

(X·,j)Ty,θj

〉
+ λ

J∑

j=1
Kj∥θj∥2
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≥ λ
J∑

j=1
Kj∥θj∥2−

J∑

j=1

1
n

∥∥(X·,j)Ty∥2·
∥∥θj∥2

=
J∑

j=1

(
λKj −

1
n
∥(X·,j)Ty∥2

)
∥θj∥2,

where the inequality is obtained from the Cauchy-Schwarz inequality. So we
have dθF (0p) ≥ 0 for all θ ∈ Rp when λ ≥ λ0 = maxj∈{1,...,J}{

∥(X·,j)Ty∥2
nKj

}.

A.5. Proof of Theorem 4.1 and Theorem 4.2

To prove the result of Theorem 4.1, we first establish the following lemma.
A proof of the lemma can be found in a subsequent section.
Lemma A.1. Assume that A1–A4 hold. Define the event

Aλ(c, ξ) =
{
λ ≥ max

j∈[J]

[
c∥(X·,j)Tϵ∥2/nξ

]}
.

Then,

∥β̂(λ) − β⋆∥2 ≤
λ
√
|S|

κB(S, c)

(
ν̄ + ξ

c

)

with probability at least Pr{Aλ(c, ξ)}.
With this lemma in hand, we only need a concentration inequality for the

random variable maxj∈[J]
[
c∥ϵTX·,j∥2/nξ

]
in order to establish the main result.

For that, we have the following.
Lemma A.2. If X satisfies the block-normalization condition and assumption
A1 holds, then for k1 > 1

Pr
{

max
j∈[J]

n−1∥(X·,j)Tϵ∥2 ≥ 4σ
(

max
j∈[J]

√
pj
n

+
√

k1 log J
n

)}

≤ 2 exp{−(k1 − 1) log J}.

This further implies that if

λ = 4cσ
ξ

(
max
j∈[J]

√
pj
n

+
√

k1 log J
n

)
,

then it follows that

Pr{Aλ(c, ξ)} ≥ 1 − 2 exp{(k1 − 1) log J}.

Proof of Theorem 4.1. Assume that A1–A4 hold and that X satisfies the block-
normalization condition. If

λ = 4cσ
ξ

(
max
j∈[J]

√
pj
n

+
√

k1 log J
n

)
,
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then applying Lemmas A.1 and A.2,

Pr
{
∥β̂(λ) − β∗∥2 ≤

λ
√
|S|

κB(S, c)

(
ν̄ + ξ

c

)}

= Pr
{
∥β̂(λ) − β⋆∥2 ≤

4cσ
√
|S|

κB(S, c)

(
ν̄

ξ
+ 1

c

)(
max
j∈[J]

√
pj
n

+
√

k1 log J
n

)}

≥ Pr{Aλ(c, ξ)}
≥ 1 − 2 exp{−(k1 − 1) log J}.

We can also use Lemma A.1 to establish an error bound for the case that
each pj = 1. By identical arguments used to prove Lemma A.1, we have the
following.
Lemma A.3. Assume that A1–A4 hold and that pj = 1 for j = 1, . . . , p.
Define the event

Ãλ(c, ξ) =
{
λ ≥ max

j∈[p]
c|(X·,j)Tϵ|/nξ

}
.

Then,

∥β̂(λ) − β⋆∥2 ≤
λ
√
|S|

κB(S, c)

(
ν̄ + ξ

c

)

with probability at least Pr{Ãλ(c, ξ)}.
Thus, to apply Lemma A.3, we only require another concentration inequality

for Ãλ(c, ξ). The following lemma provides such a result.
Lemma A.4. For fixed matrix X ∈ Rn×p satisfying the column-wise normal-
ization condition and ϵ ∈ Rn, a random vector with independent σ-subgaussian
entries, then for α0 ∈ (0, 1/2),

P

(
1
n
∥XTϵ∥∞ ≤ σ

√
2 log(p/α0)

n

)
≥ 1 − 2α0,

where the norm ∥ · ∥∞ is the maximum absolute value of its argument.
For a proof of Lemma A.4, see the proof of Corollary 2 of [25]. Finally,

combining the previous two lemmas leads to the proof of Theorem 4.2.
Proof of Theorem 4.2. Assume that A1–A4 hold and that X satisfies the
column-wise normalization condition. If

λ = cσ

ξ

√
2 log(p/k2)

n
,

then applying Lemmas A.3 and A.4, it follows that

Pr
{
∥β̂(λ) − β⋆∥2 ≤

λ
√
|S|

κB(S, c)

(
ν̄ + ξ

c

)}
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= Pr
{
∥β̂(λ) − β⋆∥2 ≤ cσ

κB(S, c)

(
ν̄

ξ
+ 1

c

)√
2|S| log(p/k2)

n

}

≥ Pr{Ãλ(c, ξ)}
≥ 1 − 2k2.

A.6. Proofs of Lemmas

Throughout this section, we refer to β̂(λ) as simply β̂ for ease of display. In order
to prove Lemma A.1, we will need an auxiliary lemma which we will prove later.
Lemma A.5. Suppose assumptions A1–A4 hold. Then, on the event Aλ(c, ξ),
β̂ − β⋆ ∈ Cn(S, ν, c).
Proof of Lemma A.1. In order to prove the main result, we will use the convex-
ity of objective function under assumption A2. Let Fλ,B denote the objective
function from (2.6). Since β̂ is the global minimizer (because Fλ,B is convex by
assumption), we know that

Fλ,B(β̂) − Fλ,B(β⋆) ≤ 0. (A.3)

We will utilize this inequality to establish the bound. Recall that we define

ΦB(β) =
J∑

j=1
Kj∥βj∥2 − min

v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β − v)∥2
2

⎫
⎬

⎭ ,

and recall that β⋆
j ∈ Rpj is the vector of regression coefficients corresponding

to the j-th group. Similarly, recall v⋆
j ∈ Rpj is the subvector of v⋆ analogous to

β⋆
j for j ∈ [J ]. Hence, (A.3) implies

1
2n

{
∥y − Xβ̂∥2

2 − ∥y − Xβ⋆∥2
2

}
≤ λ

{
ΦB(β⋆) − ΦB(β̂)

}

=⇒ 1
2n

{
∥ϵ− X(β̂ − β⋆)∥2

2 − ∥ϵ∥2
2

}
≤ λ

{
ΦB(β⋆) − ΦB(β̂)

}

=⇒ 1
2n tr

{
(β⋆−β̂)TXTX(β⋆ − β̂) − 2ϵTX(β̂ − β⋆)

}
≤λ

{
ΦB(β⋆) − ΦB(β̂)

}
.

(A.4)

Next, we focus on the difference in the penalties on the right hand side of (A.4).

ΦB(β⋆) − ΦB(β̂) =
J∑

j=1
Kj∥β⋆

j∥2 − min
v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β⋆ − v)∥2
2

⎫
⎬

⎭

−
J∑

j=1
Kj∥β̂j∥2 + min

v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + 1

2n∥B(β̂ − v)∥2
2

⎫
⎬

⎭ ,
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and thus, using v⋆ as defined in (4.1), we have

ΦB(β⋆) − ΦB(β̂) ≤
J∑

j=1
Kj∥β⋆

j∥2 −

⎧
⎨

⎩

J∑

j=1
Kj∥v⋆

j∥2 + 1
2n∥B(β⋆ − v⋆)∥2

2

⎫
⎬

⎭

−
J∑

j=1
Kj∥β̂j∥2 +

⎧
⎨

⎩

J∑

j=1
Kj∥v⋆

j∥2 + 1
2n∥B(β̂ − v⋆)∥2

2

⎫
⎬

⎭

= − 1
2n∥B(β⋆ − v⋆)∥2

2 −
J∑

j=1
Kj(∥β̂j∥2 − ∥β⋆

j∥2)

+ 1
2n∥B(β̂ − v⋆)∥2

2

= −
J∑

j=1
Kj(∥β̂j∥2 − ∥β⋆

j∥2) + 1
2n∥B(β̂ − β⋆)∥2

2

+ 1
n

(β̂ − β⋆)TBTB(β⋆ − v⋆).

Let (BTB)j,· ∈ Rpj×p be the submatrix of BTB consisting of only the rows
corresponding to the j-th group of variables. To proceed, we apply Hölder’s
inequality to the final term.

ΦB(β⋆) − ΦB(β̂) ≤
J∑

j=1
Kj(∥β⋆

j∥2 − ∥β̂j∥2) + 1
2n∥B(β̂ − β⋆)∥2

2

+ 1
n

J∑

j=1
∥β̂j − β⋆

j∥2∥(BTB)j,·(β⋆ − v⋆)∥2,

and by the reverse triangle inequality,

=
∑

j∈S
Kj(∥β⋆

j + β̂j − β̂j∥2 − ∥β̂j∥2) −
∑

k∈Sc

Kj∥β̂k∥2

+ 1
2n∥B(β̂ − β⋆)∥2

2 + 1
n

J∑

j=1
∥β̂j − β⋆

j∥2∥(BTB)j,·(β⋆ − v⋆)∥2

≤
∑

j∈S
Kj∥β̂j − β⋆

j∥2 −
∑

k∈Sc

Kk∥β̂k − β⋆
k∥2 + 1

2n∥B(β̂ − β⋆)∥2
2

+ 1
n

J∑

j=1
∥β̂j − β⋆

j∥2∥(BTB)j,·(β⋆ − v⋆)∥2,
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so that finally, we have

ΦB(β⋆) − ΦB(β̂) ≤
∑

j∈S

{
Kj + 1

n
∥(BTB)j,·(β⋆ − v⋆)∥2

}

︸ ︷︷ ︸
=:νj (j∈S)

(∥β⋆
j − β̂j∥2)

−
∑

k∈Sc

{
Kk − 1

n
∥(BTB)k,·(β⋆ − v⋆)∥2

}

︸ ︷︷ ︸
=:νk (k∈Sc)

∥β⋆
k − β̂k∥2

+ 1
2n∥B(β̂ − β⋆)∥2

2.

Along with (A.4), this thus implies
1
2n tr

{
(β⋆ − β̂)TXTX(β⋆ − β̂) − 2ϵTX(β̂ − β⋆)

}

≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2 + λ

2n∥B(β̂ − β⋆)∥2
2

=⇒ 1
2n tr

{
(β⋆ − β̂)T(XTX − λBTB)(β⋆ − β̂) − 2ϵTX(β̂ − β⋆)

}

≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2, (A.5)

and under A3 and A4,
1
2n (β⋆ − β̂)T(XTX − λBTB)(β⋆ − β̂) ≥ κB(S, c)∥β⋆ − β̂∥2

2.

Thus, letting ν̄ = maxj∈S νj and ν = mink∈Sc νk and assuming there exists a
constant ξ such that ν ≥ ξ > 0, we have that on Aλ(c, ξ) by Lemma A.5, the
inequality (A.5) implies

κB(S, c)∥β̂ − β⋆∥2
2 −

1
n
ϵTX(β̂ − β⋆)

≤ λν̄
∑

j∈S
∥β⋆

j − β̂j∥2 − λν
∑

k∈Sc

∥β⋆
k − β̂k∥2. (A.6)

Then, because

ϵTX(β̂ − β⋆) ≤ |ϵTX(β̂ − β⋆)| ≤
J∑

j=1
∥ϵTX·,j∥2∥β̂j − β⋆

j∥2

≤ max
j∈[J]

∥ϵTX·,j∥2

J∑

j=1
∥β̂j − β⋆

j∥2,

(A.6) implies

κB(S, c)∥β̂ − β⋆∥2
2 − max

j∈[J]

∥ϵTX·,j∥2
n

J∑

j=1
∥β̂j − β⋆

j∥2
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≤ λν̄
∑

j∈S
∥β⋆

j − β̂j∥2 − λν
∑

k∈Sc

∥β⋆
k − β̂k∥2. (A.7)

On Aλ(c, ξ), λ ≥ maxj∈[J] c∥XT
·,jϵ∥2/nξ, so that (A.7) implies

κB(S, c)∥β̂ − β⋆∥2
2 −

λξ

c

J∑

j=1
∥β̂j − β⋆

j∥2

≤ λν̄
∑

j∈S
∥β⋆

j − β̂j∥2 − λν
∑

k∈Sc

∥β⋆
k − β̂k∥2,

which implies

κB(S, c)∥β̂ − β⋆∥2
2 ≤ λ

(
ν̄ + ξ

c

)∑

j∈S
∥β⋆

j − β̂j∥2 − λ

(
ν − ξ

c

) ∑

k∈Sc

∥β⋆
k − β̂k∥2

≤ λ

(
ν̄ + ξ

c

)∑

j∈S
∥β⋆

j − β̂j∥2

≤ λ

(
ν̄ + ξ

c

)√
|S|∥β⋆ − β̂∥2,

from which we can finally conclude that

∥β̂ − β⋆∥2 ≤
λ(ν̄ + ξ

c )
√

|S|
κB(S, c) .

Proof of Lemma A.2. We follow the same arguments as in the proof of Corollary
9.28 of [34]. Throughout, let xi(j) ∈ Rpj be the i-th row of X·,j for i ∈ [n] and
j ∈ [J ], and let Spj−1 = {u ∈ Rpj : ∥u∥2 = 1}. First, note that for each j ∈ [J ],
we can write

n−1(X·,j)Tϵ = n−1
n∑

i=1
x(i)jϵi =

n∑

i=1
wi(j),

where wi(j) = n−1x(i)jϵi, so that

∥∥n−1(X·,j)Tϵ
∥∥

2 =
∥∥∥∥∥

n∑

i=1
wi(j)

∥∥∥∥∥
2

= sup
u∈Spj−1

〈
u,

n∑

i=1
wi(j)

〉
.

Then, applying the fact that we can construct a 1/2-covering of Spj−1 in the
Euclidean norm, say {u1, . . . ,uM}, with cardinality M ≤ 5pj , a straightforward
discretization argument [34, Chapter 5] yields

∥∥∥∥∥

n∑

i=1
wi(j)

∥∥∥∥∥
2

≤ 2 max
k∈[M ]

〈
uk,

n∑

i=1
wi(j)

〉
.
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Next, by definition of wi(j), it can be verified that ⟨uk,
∑n

i=1 wi(j)⟩ is χ-sub-
gaussian where

χ = σ

n
∥(X·,j)Tuk∥2 ≤ σ

n
∥X·,j∥ ≤ σ√

n
.

Thus, by applying a standard subgaussian tail bound to ⟨uk,
∑n

i=1 wi(j)⟩, then
applying the union bound over the k ∈ [M ], we have that

Pr
(
n−1∥(X·,j)Tϵ∥2 ≥ 2t

)
≤ 2 exp

(
− nt2

2σ2 + pj log 5
)
.

Then, applying the union bound over j ∈ [J ], we have

Pr
(
n−1 max

j∈[J]
∥(X·,j)Tϵ∥2 ≥ 2t

)
≤ 2 exp

(
− nt2

2σ2 + max
j∈[J]

pj log 5 + log J
)
.

(A.8)
Thus, if for constant k1 > 1, we take

t = 2σ
(√maxj∈[J] pj

n
+
√

k1 log J
n

)

≥
√

2σ2

(√
maxj∈[J] pj log 5 + k1 log J

n

)
=: t∗,

then (A.8) implies

Pr
(

max
j∈[J]

n−1∥(X·,j)Tϵ∥2 ≥ 2t
)

≤ 2 exp
(
− nt2

2σ2 + log 5 max
j∈[J]

pj + log J
)

≤ 2 exp
(
−nt∗2

2σ2 + log 5 max
j∈[J]

pj + log J
)

= 2 exp {−(k1 − 1) log J} .

It remains only to prove Lemma A.5.
Proof of Lemma A.5. We want to show that β̂ − β⋆ ∈ Cn(S, ν, c) on Aλ(c, ξ).
Starting from (A.5), we have

1
2n tr

{
(β⋆ − β̂)T(XTX − λBTB)(β⋆ − β̂) − 2ϵTX(β̂ − β⋆)

}

≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2.

Then, because XTX ≽ λBTB by assumption A2, the previous inequality, along
with the same argument used to obtain (A.7) yields

− 1
n

J∑

j=1
∥ϵTX·,j∥2∥β̂j − β⋆

j∥2 ≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2,
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which implies

−
maxj∈[J] ∥ϵTX·,j∥2

n

J∑

j=1
∥β̂j − β⋆

j∥2

≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2. (A.9)

Hence, on Aλ(c, ξ), λ ≥ maxj∈[J] c∥XT
·,jϵ∥2/nξ so that (A.9) implies

− λξ

c

J∑

j=1
∥β̂j − β⋆

j∥2 ≤ λ
∑

j∈S
νj∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

νk∥β⋆
k − β̂k∥2

=⇒ 0 ≤ λ
∑

j∈S

(
νj + ξ

c

)
∥β⋆

j − β̂j∥2 − λ
∑

k∈Sc

(
νk − ξ

c

)
∥β⋆

k − β̂k∥2

=⇒
∑

k∈Sc

(
νk − ξ

c

)
∥β⋆

k − β̂k∥2 ≤
∑

j∈S

(
νj + ξ

c

)
∥β⋆

j − β̂j∥2

from which the conclusion follows.

A.7. Proof of Proposition 4.1

In the case that B =
√
η/λIp, by definition

v⋆ = argmin
v∈Rp

⎧
⎨

⎩

J∑

j=1
Kj∥vj∥2 + η

2λn∥β
⋆ − v∥2

2

⎫
⎬

⎭ .

One can see then that this reduces to a version of the proximal operator of the
l2-norm, so that for β⋆

j ̸= 0, it follows that

v⋆
j = max

(
1 − λnKj

η∥β⋆
j∥2

, 0
)
β⋆
j , j ∈ S,

and for j ∈ Sc, v⋆
j = 0. Hence, for j ∈ S,

νj = Kj + 1
n
∥[BTB]j,·(β⋆ − v⋆)∥2

= Kj + η

λn
∥β⋆

j − v⋆
j∥2

= Kj + η

λn

{
1 − max

(
1 − λnKj

η∥β⋆
j∥2

, 0
)}

∥β⋆
j∥2.

Thus, if ∥β⋆
j∥2 > λnKj/η,

νj = Kj + η

λn

(
λnKj

η

)
= 2Kj .
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Algorithm 3 Adaptive PDHG for the group GMC problem (3.2)
Input: Set β0 ∈ Rp,v0 ∈ Rp, and a small sufficient value tol.

Initialize τ0σ0 < ∥ZTZ∥−1 and (α0, ζ) ∈ (0, 1)2.
1: while ∥rk∥2, ∥dk∥2 > tol do
2: Compute PDHG updates with f(β) and g(v) defined in (3.3) and (3.4):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β̂k+1 = βk − τkZTvk

βk+1 = argminβ∈Rp f(β) + 1
2τk

∥β − β̂k+1∥2
2

v̂k+1 = vk + σkZ(2βk+1 − βk)
vk+1 = argminv∈Rp g(v) + 1

2σk
∥v − v̂k+1∥2

2

3: Compute residuals:
{
rk+1 = 1

τk
(βk − βk+1) − ZT (vk − vk+1)

dk+1 = 1
σk

(vk − vk+1) + Z(βk − βk+1)

4: if 2∥rk+1∥2 < ∥dk+1∥2 then

5:

⎧
⎪⎨

⎪⎩

τk+1 = τk(1 − αk)
σk+1 = σk/(1 − αk)
αk+1 = ζαk

6: else if ∥rk+1∥2 > 2∥dk+1∥2 then

7:

⎧
⎪⎨

⎪⎩

τk+1 = τk/(1 − αk)
σk+1 = σk(1 − αk)
αk+1 = ζαk

8: else

9:

⎧
⎪⎨

⎪⎩

τk+1 = τk
σk+1 = σk

αk+1 = αk

10: end if
11: end while

Similarly, if ∥β⋆
j∥2 ≤ λnKj/η,

νj = Kj + η

λn
∥β⋆

j∥2.

Finally, since v⋆
j = 0 for j ∈ Sc, it is trivial to see that νj = Kj for j ∈ Sc.

Appendix B: Adaptive PDHG for group GMC

Algorithm 3 provides pseudocode of the adaptive PDHG algorithm for solving
the group GMC problem (3.2). Algorithm 3 is an instance of the adaptive PDHG
algorithm proposed by [15] to a saddle point formulation of the group GMC
problem.

The following convergence guarantee for Algorithm 3 is adapted from Theo-
rem 1 in [15].

Proposition B.1. Under the convexity preserving condition, the iterate se-
quence {(βk,vk)} generated by Algorithm 3 converges in the sense that the pri-
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mal and dual residuals rk and dk vanish, i.e.,

lim
k→∞

∥rk∥2
2 + ∥dk∥2

2 = 0.

Before proving Proposition B.1, we unpack the motivation for characterizing
convergence in terms vanishing residuals. The pair (β⋆,v⋆) is a solution to the
saddle-point problem (3.2) if and only if

0 ∈ ∂f(β) + ZTv (B.1)
0 ∈ ∂g(v) − Zβ (B.2)

where ∂h(x) denotes the subdifferential of a function h at x [7]. The updates in
line 3 of Algorithm 3 satisfy the following conditions for all k

rk+1 ∈ ∂f(βk+1) + ZTvk+1

dk+1 ∈ ∂g(vk+1) − Zβk+1.

These conditions follow from the convexity of f and g and Fermat’s rule.
The subdifferential ∂h(x) of a function h is a closed point-to-set mapping if

h is a lower-semicontinuous, proper, and convex function [28, Theorem 24.4].
Under the convexity-preserving condition (2.8), both f(β) and g(v) are lower-
semicontinuous, proper, convex functions, so the subdifferentials ∂f(β) and
∂g(v) are closed point-to-set mappings. Recall a closed mapping is the ana-
log of a continuous function for a point-to-set mapping. Specifically, φ is closed
point-to-set mapping if

i. xk → x
ii. yk → y and yk ∈ φ(xk)

together imply that x ∈ φ(y). Thus, if (βk,vk) converges to (β′,v′), then 0 ∈
∂f(β′) + ZTv′ and 0 ∈ ∂g(v′) − Zβ′. In other words, convergence in residuals
implies that if the primal dual sequence converges, the limit is a solution to the
saddle point problem.
Proof. Goldstein et al. [15] establish three conditions that ensure the residuals
of Algorithm 3 vanish provided that f and g are lower-semicontinuous, proper,
convex functions. The convexity-preserving condition (2.8) ensures that f and
g are lower-semicontinous, proper, convex functions. Note that these three con-
ditions are standard assumptions that ensure the existence and uniqueness of
proximal mappings. The three additional conditions are given below.

(1) The sequences {τk} and {σk} are positive and bounded.
The initializations and multiplicative updates in Algorithm 3 imply the
positiveness of {τk} and {σk}.
Since the step-sizes are bounded from below, we just need to show that
they are bounded from above. We prove that the sequence {σk} is bounded
from above. The proof of the boundedness of {τk} is identical. Construct
a surrogate sequence {sk} where

s0 = σ0 and sk = sk−1
1 − α0ζk−1 for all k ≥ 1.
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We use an induction argument to establish that σk ≤ sk for all k. The
inequality holds for k = 0. Select an arbitrary k such that the inequality
holds. Then

σk+1 ≤ max{σk/(1 − αk),σk(1 − αk),σk−1}
= σk/(1 − αk) ≤ σk/(1 − α0ζ

k) ≤ sk/(1 − α0ζ
k) = sk+1.

We next show that {sk} is bounded from above, which will imply {σk} is
bounded since σk ≤ sk for all k. Note that

sk =

⎡

⎣
k−1∏

j=0
(1 − α0ζ

j)

⎤

⎦
−1

σ0 (B.3)

and

− log(1 − α0ζ
k) = − log(1 − ζk + ζk − α0ζ

k)
≤ −(1 − ζk) log(1) − ζk log(1 − α0)
= −ζk log(1 − α0) (B.4)

where the inequality follows from the convexity of − log x.
Taking the logarithm of both sides of (B.3) and applying (B.4) gives

log sk = log σ0 −
k−1∑

j=0
log(1 − α0ζ

j)

≤ log σ0 − log(1 − α0)
k−1∑

j=0
ζj

= log σ0 − log(1 − α0)
1 − ζk

1 − ζ
.

Therefore,
log sk ≤ log σ0 + − log(1 − α0)

1 − ζ
,

and consequently σk ≤ σ0( 1
1−α0

) 1
1−ζ for all k.

(2) The sequence {φk} is summable, where φk = max{ τk−τk+1
τk

, σk−σk+1
σk

, 0}.
According to the updates of τk and σk, we have

τk − τk+1
τk

=

⎧
⎪⎨

⎪⎩

αk, 2∥rk+1∥2 < ∥dk+1∥2
− αk

1−αk
, ∥rk+1∥2 > 2∥dk+1∥2

0, otherwise.

and
σk − σk+1

σk
=

⎧
⎪⎨

⎪⎩

− αk
1−αk

, 2∥rk+1∥2 < ∥dk+1∥2

αk, ∥rk+1∥2 > 2∥dk+1∥2
0, otherwise.
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Therefore, we have

φk = max
{
τk − τk+1

τk
,
σk − σk+1

σk
, 0
}

= αk.

The geometric decay of αk implies that condition (2) holds.
(3) There is a constant L such that for all k > 0,

τkσk < L < ∥ZTZ∥−1. (B.5)

This condition is easily met by setting τ0σ0 < ∥ZTZ∥−1 since the product
τkσk is constant after the updates in lines 4–10 in Algorithm 3.

Condition (B.5) imposes a conservative bound on the step-size parameters.
Consequently, Goldstein et al. [15] also introduced an adaptive PDHG algorithm
with backtracking line search that frees the algorithm to take larger step-sizes
which can lead to fewer iterations and in turn faster convergence. Algorithm 4
provides pseudocode of the adaptive PDHG algorithm with backtracking. Con-
vergence guarantees that are identical to Proposition B.1 hold for Algorithm 4
under the additional assumption that either β or v is bounded [15, 12]. In prac-
tice, however, Goldstein et al. [15] observed that adaptive PDHG with back-
tracking converged even for unbounded problems, e.g., linear programs.

In our R package GMC, users have the flexibility to use basic PDHG, adaptive
PDHG, or adaptive PDHG with backtracking to solve the group GMC problem.
We used adaptive PDHG with backtracking for all our experiments.

While convergence in the sense given in Proposition B.1 provides some assur-
ances about the limiting behavior of the PDHG iterate sequence, we do not have
global convergence guarantees, i.e., the iterate sequence converges to a saddle
point of the group GMC problem (3.2). We can, however, certify whether a pair
(β̂, v̂) is saddle point of the group GMC problem (3.2) using (B.1) and (B.2).

Substituting (3.3) and (3.4) for f and g respectively into (B.1) and (B.2)
gives us

− 1
λn

XT(Xβ − y) + 1
n
BTB(β − v) ∈ ∂R(β), (B.6)

1
n
BTB(β − v) ∈ ∂R(v), (B.7)

where R(β) =
∑J

j=1 Kj∥βj∥2 is the group Lasso penalty. The subgradient
∂R(β) is given by

∂R(β) =
{
u ∈ Rp : ⟨uj ,βj⟩ = Kj∥βj∥2, ∥uj∥2 ≤ Kj , j ∈ [J ]

}
,

where uj ∈ Rpj is the subvector of u with components in the j-th group. Let
b = 1

nBTB(β−v) and a = − 1
λnXT(Xβ−y)+b. Then checking the optimality

conditions (B.6)–(B.7) for problem (3.2) are equivalent to checking the following
hold for all j ∈ [J ]:

⟨aj ,βj⟩ = Kj∥βj∥2, (B.8)
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Algorithm 4 Backtracking PDHG for the group GMC problem (3.2)
Input: Set β0 ∈ Rp,v0 ∈ Rp, and a small sufficient value tol.

Initialize (τ0,σ0) ∈ (0,+∞)2, and (α0, ζ, b) ∈ (0, 1)3.
1: while ∥rk∥2, ∥dk∥2 > tol do
2: Compute PDHG updates with f(β) and g(v) defined in (3.3) and (3.4):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β̂k+1 = βk − τkZTvk

βk+1 = argminβ∈Rp f(β) + 1
2τk

∥β − β̂k+1∥2
2

v̂k+1 = vk + σkZ(2βk+1 − βk)
vk+1 = argminv∈Rp g(v) + 1

2σk
∥v − v̂k+1∥2

2

3: Check the following backtracking condition:
b

2τk
∥βk+1 − βk∥2

2 − 2(vk+1 − vk)TZ(βk+1 − βk) + b

2τk
∥vk+1 − vk∥2

2 > 0

and if it fails, set {
τk = τk/2
σk = σk/2

4: Compute residuals:
{
rk+1 = 1

τk
(βk − βk+1) − ZT (vk − vk+1)

dk+1 = 1
σk

(vk − vk+1) + Z(βk − βk+1)

5: if 2∥rk+1∥2 < ∥dk+1∥2 then

6:

⎧
⎪⎨

⎪⎩

τk+1 = τk(1 − αk)
σk+1 = σk/(1 − αk)
αk+1 = ζαk

7: else if ∥rk+1∥2 > 2∥dk+1∥2 then

8:

⎧
⎪⎨

⎪⎩

τk+1 = τk/(1 − αk)
σk+1 = σk(1 − αk)
αk+1 = ζαk

9: else

10:

⎧
⎪⎨

⎪⎩

τk+1 = τk
σk+1 = σk

αk+1 = αk

11: end if
12: end while

∥aj∥2 ≤ Kj , (B.9)
⟨bj ,vj⟩ = Kj∥vj∥2, (B.10)
∥bj∥2 ≤ Kj . (B.11)

If Algorithm 4 outputs a pair (β̂, v̂) that satisfies conditions (B.8)–(B.11), then
the pair is a saddle point of (3.2) and thererfore β̂ is an optimal solution of
the group GMC problem. We have used this check to certify our group GMC
estimates are globally optimal in our experiments.

We provide an example to illustrate how we verified the optimality of our com-
puted group GMC estimates. We quantify violations of conditions (B.8)–(B.11)
using vectors e1 ∈ RJ , e2 ∈ RJ , e3 ∈ RJ , and e4 ∈ RJ , where the j-th compo-
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Fig 5. Maximum Violation-Error over 20 replicates over different values of ρ for experiments
in Case C2.

nent of each vector is given by

e1,j = ⟨aj ,βj⟩ −Kj∥βj∥2,

e2,j = max (∥aj∥2 −Kj , 0) ,
e3,j = ⟨bj ,vj⟩ −Kj∥vj∥2,

e4,j = max (∥bj∥2 −Kj , 0) .

We encode the overall violation of the optimality conditions for problem (3.2)
with the mean squared error

Violation-Error = 1
4J

4∑

i=1
∥ei∥2

2.

Figure 5 displays the maximum Violation-Error over 20 replicates over
different values of ρ for experiments in Case C2 in Section 5, where the value of
λ was selected by cross-validation. The Violation-Error is smaller than 10−14

for all replicates for all values of ρ, certifying that our group GMC estimates
are optimal up to machine precision.

Appendix C: Additional simulation experiments

We consider an additive model with both categorical and continuous variables.
Similar to what we did in Section 5, we explore the effects of four factors of in-
terest including the SNR, the correlation among groups, the problem dimension,
and the convexity-preserving parameter α for the group GMC method.

The data generation process of the additive model is as follows. Twenty con-
tinuous covariates X1, . . . , X20 are defined as Xi = Zi + tW , where Zi and
W are independently sampled from a standard normal distribution, and t is a
constant controlling the correlation between Xi and Xj . Then X11, . . . , X20 are
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Fig 6. Results for Case I: Impact of SNR. Group GMC(·) stands for the group GMC with a
specific value of α. Average performance based on 100 simulation replicates for each method.
MSE and Prediction error are on a log scale.

trichotomized in the same way as in the simulation study in Section 5. Then
the response y is simulated from

y = X3
3 +X2

3 +X3 + 1
3X

3
6 −X2

6 + 2
3X6 + 21(X11 = 0) +1(X11 = 1) + ϵ, (C.1)

where the noise ϵ ∼ N(0,σ2). That is, we have fifty covariate variables from
twenty groups, where ten of them are continuous with a group size of three and
the other ten are categorical with a group size of two. But the response variable
only depends on three groups of covariates. We next consider three different
cases to explore the possible effects of interesting factors.

Case I: In this case, we aim to see how the SNR affects the performance of
different methods. We fix t = 0 and set a sequence of σ so that the SNR
takes on values from 1 to 5. We sample 100 data sets for each setting.
We also report the results of the group GMC with different values of the
convexity-preserving parameter α to show how α impacts the performance
of the group GMC.

Figure 6 displays how the performance of different methods varies with the
SNR in the considered aspects. All methods achieve better coefficient estimation
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and model prediction as the SNR increases. The four different methods perform
comparably in coefficient estimation and model prediction across different SNR
settings. When it comes to support recovery, we can see significant differences
among different methods. The group Lasso suffers from a much larger number
of false positives than the others, thus resulting in a much lower F1 score under
all SNR settings. The numbers of true positives of both group GMC and group
MCP increase as the SNR becomes higher, but their numbers of false positives
are less responsive to the change in SNR. The group SCAD, however, not only
sees an increase in its number of true positives but also a noticeable decrease
in the number of false positives. Therefore, we can see an improvement in the
F1 score for the nonconvex penalization methods as the SNR increases. The
group MCP obtains a higher F1 score than the group SCAD thanks to its fewer
false positives in all SNR settings. For the group GMC method, we observe that
the value of α clearly affects its variable selection performance. That is, a larger
value of α gives fewer true and false positives but a larger F1 score for the group
GMC. An α in (0.4, 1) is recommended for practical use, which makes the group
GMC perform competitively with or even better than existing methods in all
SNR settings.
Case II: In this case, we investigate how the group GMC as well as the existing

three methods perform for correlated and uncorrelated groups. Note that
the correlation among Xi and Xj is ρ = t2/(1 + t2) for i ̸= j. We set
five different values for t ∈ {0, 0.5, 1, 2, 3}, thus leading to five different
correlations ρ ∈ {0, 0.2, 0.5, 0.8, 0.9} among each pair of groups. We fix
the SNR of the regression model to be 2 and collect 100 observations for
each run. We set the convexity-preserving parameter α = 0.8 for the group
GMC method.

Figure 7 summarizes the simulation results. Regarding the coefficient esti-
mation and model prediction, there is a clear increasing trend in MSE and
prediction error for all methods. The group GMC outperforms existing meth-
ods in these two aspects in high group correlation settings. In terms of variable
selection, the group GMC, group MCP, and group SCAD perform worse as the
correlation gets higher, while the group Lasso always produces a stable but low
F1 score over different correlation settings. The group MCP achieves a slightly
lower F1 score than the group GMC and leads the other two methods in low
correlation settings (ρ ≤ 0.5). Interestingly, in the two high correlation settings,
the group MCP is no longer competitive with the group GMC and behaves com-
parably with the group Lasso and group SCAD. This suggests that the group
GMC method is more robust against the effect of correlation compared to the
group MCP. The bottom panel of Figure 7 shows that the group GMC and
group MCP are able to keep their false positives low at different correlation
settings but miss more true positives as the correlation gets higher. While for
the group Lasso and group SCAD, both their true positives and false positives
decrease as ρ increases.
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Fig 7. Results for Case II: Impact of group correlation. Average performance plus/minus one
standard error based on 100 simulation replicates for each method. MSE and Prediction error
are on a log scale.

Case III: Another factor of interest is how the variable selection methods per-
form as the problem dimension increases. To investigate this, we consider
three different data generation processes. Twenty, eighty, and two hundred
uncorrelated continuous covariate variables are first simulated in respec-
tive settings and then the last half of the covariates are trichotomized in
the same way as described above. Therefore, the problem dimensions p are
50, 200 and 500, respectively. The response variable y remains generated
from (C.1) with an SNR of 2. We fix the sample size n = 100 and the
convexity-preserving parameter α = 0.8 for the group GMC method.

Figure 8 displays the behaviors of four methods in different dimension set-
tings as described in Case III. For coefficient estimation and model prediction,
the performance of all methods degrades as the problem dimension p increases.
In high-dimensional settings where p > n, the group GMC achieves the best
coefficient estimation. In regards to variable selection, all the existing methods
tend to select more irrelevant variables into the model as p increases, thereby
causing a significant deterioration in their variable selection performance, es-
pecially for the group Lasso and group SCAD. The group GMC, however, can
keep the number of false positives small but have to lose some true positives
as the dimension increases. Overall, the group GMC achieves the best variable
selection under different dimension settings.
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Fig 8. Results for Case III: Impact of problem dimension. Average performance plus/minus
one standard error based on 100 simulation replicates for each method. MSE and Prediction
error are on a log scale.

Finally, we report and compare run times of different methods for all the
experiments involved in the two simulation examples. Table 3 summarizes me-
dian run times (with mean and variance in parentheses) of different methods
under different SNRs. Due to space limitation, we only report run times at
SNR = {1, 3, 5}. Run times of existing methods are immune to the SNR. Run
times of the group GMC increase as the SNR grows, particularly for the ANOVA
example. Overall, the group GMC method is less computationally efficient than
the existing three methods. Table 4 displays run times of different methods
under different group correlations ρ. Existing methods behave stably with the
group correlation in their run times. For the ANOVA example, run times of
the group GMC are less responsive to the change of ρ, while for the additive
model, we see an increasing trend in the run times of the group GMC as ρ
increases. Table 5 reports run times of different methods in different problem
dimension settings. As anticipated, all methods require longer run times as p
increases. The group GMC, unfortunately, is more sensitive to the problem di-
mension.

It is not surprising that the group GMC method is computationally expensive
compared to the existing methods. First, the group GMC has to deal with a
saddle-point problem (3.2), which is more complicated than the penalized least
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Table 3
Median run times (with mean and variance in parentheses) of different methods under

different SNRs.

Example Method SNR=1 SNR=3 SNR=5

ANOVA

Group Lasso 0.005 0.005 0.004
(0.005, 2.5e-6) (0.005, 2.5e-7) (0.005, 6.7e-7)

Group SCAD 0.004 0.004 0.004
(0.004, 2.7e-7) (0.004, 3.6e-7) (0.004, 3.1e-7)

Group MCP 0.004 0.004 0.004
(0.005, 2.9e-7) (0.004, 5.2e-7) (0.004, 1.8e-7)

Group GMC (0.2) 0.006 0.010 0.015
(0.006, 2.4e-6) (0.010, 1.3e-5) (0.015, 1.9e-5)

Group GMC (0.4) 0.007 0.019 0.027
(0.008, 4.9e-6) (0.018, 4.7e-5) (0.025, 3.4e-5)

Group GMC (0.6) 0.010 0.029 0.034
(0.011, 2.6e-5) (0.025, 9.7e-5) (0.033, 3.1e-5)

Group GMC (0.8) 0.012 0.033 0.038
(0.015, 6.0e-5) (0.029, 1.1e-4) (0.037, 1.9e-5)

Group GMC (1) 0.011 0.029 0.029
(0.015, 7.1e-5) (0.025, 7.1e-5) (0.029, 6.4e-6)

Additive

Group Lasso 0.008 0.008 0.008
(0.008, 6.5e-7) (0.008, 4.9e-7) (0.008, 4.6e-7)

Group SCAD 0.008 0.008 0.008
(0.008, 1.2e-6) (0.008, 6.4e-7) (0.008, 1.5e-6)

Group MCP 0.008 0.008 0.008
(0.008, 1.7e-6) (0.008, 9.5e-7) (0.008, 1.3e-6)

Group GMC (0.2) 0.010 0.014 0.016
(0.012, 8.4e-6) (0.015, 3.9e-6) (0.016, 2.6e-6)

Group GMC (0.4) 0.013 0.014 0.015
(0.013, 2.0e-6) (0.014, 2.4e-6) (0.015, 2.1e-6)

Group GMC (0.6) 0.014 0.015 0.016
(0.014, 5.2e-6) (0.015, 2.5e-6) (0.016, 2.8e-6)

Group GMC (0.8) 0.015 0.016 0.017
(0.017, 1.8e-5) (0.017, 9.3e-6) (0.017, 6.3e-6)

Group GMC (1) 0.014 0.014 0.015
(0.016, 8.3e-5) (0.016, 4.5e-5) (0.016, 2.6e-5)

squares problems involved in the existing methods. Second, a feature screening
strategy, called SSR-BEDPP [40], was implemented in the R package grpreg
to reduce the computational burden for the three existing methods by utiliz-
ing their KKT conditions. However, we did not adopt any screening rule for
the group GMC due to the complexity of its KKT conditions. Third, there
are other options for solving the group GMC problem, such as the Forward-
Backward algorithm and the Douglas–Rachford algorithm, which could be more
efficient than PDHG. We leave the computation of the group GMC for future
work.
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Table 4
Median run times (with mean and variance in parentheses) of different methods under

different group correlations.

Example ρ Group Lasso Group SCAD Group MCP Group GMC

ANOVA

0 0.005 0.005 0.005 0.028
(0.007, 1.9e-4) (0.005, 8.2e-7) (0.005, 2.9e-7) (0.027, 1.5e-4)

0.2 0.005 0.005 0.005 0.019
(0.005, 3.0e-7) (0.005, 5.7e-7) (0.005, 5.3e-6) (0.022, 1.6e-4)

0.4 0.005 0.005 0.005 0.017
(0.005, 5.2e-7) (0.005, 6.9e-7) (0.005, 5.3e-7) (0.022, 1.6e-4)

0.6 0.005 0.005 0.005 0.013
(0.005, 1.3e-7) (0.005, 7.8e-7) (0.005, 2.5e-7) (0.017, 1.1e-4)

0.8 0.005 0.005 0.005 0.015
(0.005, 3.4e-7) (0.005, 2.2e-6) (0.005, 5.2e-7) (0.020, 1.9e-4)

Additive

0 0.008 0.007 0.007 0.014
(0.008, 5.3e-7) (0.007, 6.9e-7) (0.007, 4.9e-7) (0.015, 1.1e-5)

0.2 0.007 0.007 0.007 0.022
(0.008, 1.1e-6) (0.007, 2.6e-7) (0.007, 4.8e-7) (0.022, 2.9e-5)

0.5 0.008 0.007 0.007 0.071
(0.008, 1.6e-6) (0.007, 2.3e-7) (0.007, 1.7e-6) (0.070, 1.1e-4)

0.8 0.007 0.007 0.007 0.086
(0.007, 2.7e-7) (0.007, 7.2e-7) (0.007, 1.7e-7) (0.077, 5.4e-4)

0.9 0.008 0.007 0.007 0.093
(0.008, 5.5e-7) (0.008, 2.3e-6) (0.007, 9.3e-7) (0.085, 4.6e-4)

Table 5
Median run times (with mean and variance in parentheses) of different methods under

different problem dimensions.

Example p Group Lasso Group SCAD Group MCP Group GMC

ANOVA

32 0.005 0.004 0.004 0.024
(0.005, 8.2e-7) (0.004, 3.7e-7) (0.005, 7.0e-7) (0.021, 1.0e-4)

200 0.019 0.018 0.018 0.238
(0.019, 2.7e-6) (0.019, 2.4e-6) (0.019, 2.7e-6) (0.337, 0.044)

512 0.040 0.042 0.041 2.307
(0.041, 9.4e-6) (0.044, 1.7e-4) (0.041, 7.8e-6) (3.113, 4.869)

Additive

50 0.007 0.007 0.007 0.014
(0.008, 1.0e-6) (0.007, 2.3e-7) (0.007, 2.4e-7) (0.015, 1.0e-5)

200 0.025 0.025 0.024 0.093
(0.026, 3.1e-6) (0.026, 3.9e-6) (0.025, 4.2e-6) (0.121, 0.004)

500 0.060 0.059 0.063 0.630
(0.062, 2.8e-5) (0.060, 1.1e-5) (0.064, 1.2e-4) (0.986, 0.367)
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