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Abstract:

The Ensemble Kalman Filter (EnKF) has achieved great successes in data assimi-

lation in atmospheric and oceanic sciences, but it fails in converging to the correct

filtering distribution which precludes its use for uncertainty quantification of dy-

namic systems. We reformulate EnKF under the framework of Langevin dynam-

ics, which leads to a new particle filtering algorithm, the so-called Langevinized

EnKF (LEnKF). LEnKF inherits the forecast-analysis procedure from EnKF and

the use of mini-batch data from stochastic gradient Langevin dynamics (SGLD).

We prove that LEnKF turns out to be a sequential preconditioned SGLD sam-

pler but, like EnKF, with its execution being accelerated by the forecast-analysis

procedure and that LEnKF converges to the right filtering distribution in 2-

Wasserstein distance as the number of iterations per stage becomes large. We

illustrate the performance of LEnKF using a variety of examples. LEnKF is not

only scalable with respect to the state dimension and sample size, but also tends

to be immune to sample degeneracy for long series dynamic data.

Key words and phrases: Data Assimilation, Inverse Problem, State Space Model,
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Stochastic Gradient Markov Chain Monte Carlo, Uncertainty Quantification.

1. Introduction

Coming with the new century, the integration of computer technology into

science and daily life has enabled scientists to collect massive volumes of

data, e.g., climate data, high-throughput biological assay data and web-

site transaction logs. To address computational difficulty encountered in

Bayesian analysis of big data, a variety of scalable MCMC algorithms have

been developed, such as stochastic gradient MCMC algorithms (Welling

and Teh, 2011; Ding et al., 2014; Chen et al., 2014; Li et al., 2016; Ma

et al., 2015; Nemeth and Fearnhead, 2021), split-and-merge algorithms

(Scott et al., 2016; Li et al., 2017; Srivastava et al., 2018), mini-batch

Metropolis-Hastings algorithms (Chen et al., 2018; Maclaurin and Adams,

2014; Bardenet et al., 2017), and nonreversible Markov process-based algo-

rithms (Bierkens et al., 2019; Bouchard Coté et al., 2018).

Although the scalable MCMC algorithms have achieved great successes

in Bayesian learning with static data, none of them could be directly ap-

plied to dynamic data. In the literature, learning with static data is often

termed as static or off-line learning, and that with dynamic data is often

termed as dynamic or on-line learning. Dynamic learning is important and
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challenging, as dynamic data collection is general, heterogeneous and messy.

We note that classical sequential Monte Carlo or particle filter algorithms

(see e.g, Liu and Chen (1998) and Doucet et al. (2001)) lack the scalability

necessary for dealing with large-scale dynamic data, which strive to make

use of all available data at each processing step. The ensemble Kalman

filter (EnKF) (Evensen, 1994) is efficient in dealing with high-dimensional

data assimilation problems (e.g., Evensen and Van Leeuween, 1996; Aanon-

sen et al., 2009; Houtekamer and Mitchell, 2011), but fails to converge to

the right filtering distribution for general nonlinear dynamic systems (Law

et al., 2016). How to make Bayesian on-line learning with large-scale dy-

namic data has posed a great challenge on current statistical methods.

In this paper, we are interested in conducting Bayesian on-line learning

for the dynamic system:

xt = g(xt−1) + ut, ut ∼ N(0, Ut),

yt = Htxt + ηt, ηt ∼ N(0,Γt),

(1.1)

for stages t = 1, 2, . . . , T , where xt ∈ Rp and yt ∈ RNt denote, respectively,

the state and observations at stage t. The dimension p, the total number

of stages T , and the sample sizes Nt’s are all assumed to be in a large scale.

For the dynamic system (1.1), the top equation is called the state evolution
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equation, where g(·) is called state propagator and can be nonlinear; the

bottom equation is called the measurement equation, where the propagator

Ht relates the state variable to the measurement variable and yields the ex-

pected value of the prediction given the state and parameters. The dynamic

system (1.1) is of central importance. It itself models the data assimilation

problems with linear measurement equations, while many other problems

such as the inverse problem and the data assimilation with nonlinear mea-

surement equations can be converted to it via appropriate transformations

as discussed in Section 3.1 and Section 5. For simplicity, we assume that

both the model error ut and observation error ηt are zero-mean Gaussian

random variables, and the covariance matrices Ut and Γt and the propagator

g(·) and Ht are all fully specified, i.e. containing no unknown parameters.

How to extend our study to the problems with non-Gaussian observations

and/or unknown parameters will be discussed in Section 5.

Throughout this paper, we will let t index the stage of the dynamic

system, let f(yt|xt) denote the likelihood function of yt, let π(xt|y1:t) denote

the filtering distribution at stage t given the data y1:t = {y1, y2, . . . , yt},

and let π(xt|y1:t−1) =
∫
π(xt|xt−1)π(xt−1|y1:t−1)dxt−1 denote the predictive

distribution of xt given y1:t−1.

Our contribution in this paper is two-fold. (i) We develop a new particle
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filter, the so-called Langevinized EnKF (LEnKF), by reformulating EnKF

under the framework of Langevin dynamics. LEnKF is not only scalable

with respect to the state dimension and sample size, but also tends to be im-

mune to the sample degeneracy issue that is often suffered by conventional

particle filters. LEnKF can work well under the big data scenario where the

stage number T , the state dimension p, and the sample sizes Nt’s are all in

large scale. (ii) We prove that LEnKF turns out to be a sequential precon-

ditioned SGLD sampler but, like EnKF, with an accelerated execution by

the forecast-analysis procedure and that it converges to the right filtering

distribution in 2-Wasserstein distance as the number of iterations per stage

becomes large. LEnKF can be efficiently used for uncertainty quantification

of large-scale dynamic systems. We illustrate the performance of LEnKF

using a variety of examples including the Lorenz-96 model (Lorenz, 1996)

and long short-term memory (LSTM) model (Hochreiter and Schmidhuber,

1997). Due to the page limit, the latter is presented in the supplement. Up

to our knowledge, this work represents the first development of scalable

particle filters under the rigorous probabilistic framework.

The remaining part of this paper is organized as follows. Section 2

provides a brief review for EnKF and explains its scalability with respect

to state dimension. Section 3 describes LEnKF for dynamic learning and
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studies its convergence. Sections 4 illustrate the performance of LEnKF

using a variable selection example and the Lorenz-96 model. Section 5

discusses possible extensions of LEnKF. Section 6 concludes the paper.

2. Why is the EnKF Efficient for High-Dimensional Problems?

Consider the dynamic system (1.1). To estimate the state variables x1, x2,

. . ., xT , Evensen (1994) proposed the EnKF algorithm as described in Algo-

rithm 1. If Ut, Γt, g(·) and Ht contain unknown parameters, the state aug-

mentation method (Anderson, 2001; Baek et al., 2006; Gillijns and De Moor,

2007) can be used, where the state vector is augmented with unknown pa-

rameters and the state and parameters are estimated simultaneously.

Algorithm 1 EnKF Algorithm

Initialization: Initialize an ensemble {xa,10 , xa,20 , . . ., xa,m0 } of size m.
for t = 1 to T do

(i) Forecast: For i = 1, 2, . . . ,m, draw uit ∼ N(0, Ut) and set xf,it =
g(xa,it−1) + uit; calculate the sample covariance matrix of xf,1t , . . . , xf,mt
and denote it by Ct.
(ii) Analysis: For i = 1, 2, . . . ,m, draw ηit ∼ N(0,Γt) and set

xa,it = xf,it + K̂t(yt − Htx
f,i
t − ηit)

∆
= xf,it + K̂t(yt − yf,it ), where

K̂t = CtH
T
t (HtCtH

T
t + Γt)

−1 forms an estimator for the Kalman gain
matrix Kt = StH

T
t (HtStH

T
t + Γt)

−1 and St denotes the covariance
matrix of xft .

end for

EnKF has two attractive features which make it extremely successful
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in dealing with high-dimensional data assimilation problems, e.g., those

encountered in reservoir modeling (Aanonsen et al., 2009), oceanography

(Evensen and Van Leeuween, 1996), and weather forecasting (Houtekamer

and Mitchell, 2011). First, it approximates each filtering distribution π(xt|y1:t)

by an ensemble of particles. Since the ensemble size m is typically much

smaller than p, it leads to dimension reduction and computational feasibil-

ity compared to the Kalman filter, see e.g. Shumway and Stoffer (2006).

In particular, it approximates St by Ct, so the storage for the matrix Ct

is replaced by particles and much reduced. Second, in generating particles

from filtering distributions, it avoids covariance matrix decomposition. It

is known that an LU-decomposition of the covariance matrix has a compu-

tational complexity of O(p3). Instead, EnKF employs a forecast-analysis

procedure to generate particles, which has a computational complexity of

O(max{p2Nt, N
3
t }+mpNt) for m particles at stage t. That is, the forecast-

analysis procedure reduces the computational complexity of particle gen-

eration when m and Nt are smaller than p. This explains why EnKF is

so efficient for high-dimensional problems. On the other hand, this also

implies that EnKF can be inefficient when Nt’s are large.

Despite its great successes in dealing with high-dimensional dynamic

systems, the performance of EnKF is sub-optimal. As shown by Law et al.
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(2016), it converges only to a mean-field filter, which provides the optimal

linear estimator of the conditional mean but not the filtering distribution

except for the linear systems in the large sample limit. Similar results can

be found in Le Gland et al. (2009), Bergou et al. (2019) and Kwiatkowski

and Mandel (2015).

With the state augmentation approach (Iglesias et al., 2013), EnKF can

also be used to solve the inverse problem which is to find the parameter x

for the system

y = G(x) + η, (2.1)

where G(·) is the forward response operator mapping the unknown param-

eter x to the space of observations, η ∼ N(0,Γ) is Gaussian random noise,

and y is observed data. However, as mentioned previously, EnKF does not

converge to the filtering distribution, so the posterior distribution π(x|y)

cannot be well approximated by the approach. Numerically, Ernst et al.

(2015) demonstrated that for nonlinear inverse problems, the large sample

limit does not lead to a good approximation to the posterior distribution.

3. Langevinized Ensemble Kalman Filter

To motivate the development of LEnKF, we first consider a linear inverse

problem, and then extend it to the data assimilation problem (1.1) and oth-
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ers. Note that, as implied by (1.1), estimation of xt at each individual stage

is essentially a linear inverse problem but with some “prior” information

passed on from the proceeding stage.

3.1 Linear Inverse Problem

Consider a Bayesian inverse problem for the regression

y = Hx+ η, (3.1)

where H is a known matrix, η ∼ N(0,Γ) for some covariance matrix Γ,

y ∈ RN , and x ∈ Rp is an unknown continuous parameter vector. To

accommodate the case that the sample size N is extremely large, we assume

y can be partitioned into B = N/n independent and identically distributed

blocks {ỹ1, . . . , ỹB}, where each block is of size n and has a positive definite

covariance matrix V such that Γ = diag[V, · · · , V ]. Note that this is a

trivial assumption for independent samples as considered in this paper.

Let π(x) denote the prior density function of x, which is assumed to be

differentiable with respect to x. Let π(x|y) denote the posterior distribu-

tion. To develop a scalable algorithm for simulating from π(x|y) under the

scenario that both N and p are large, we reformulate the model (3.1) as a
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state-space model through subsampling and Langevin diffusion:

xt = xt−1 + εt
n

2N
∇ log π(xt−1) + wt,

yt = Htxt + vt,

(3.2)

where wt ∼ N(0, n
N
εtIp) = N(0, n

N
Qt), i.e., Qt = εtIp, yt denotes a block

randomly drawn from {ỹ1, . . . , ỹB}, vt ∼ N(0, V ), and Ht is a submatrix of

H extracted with the corresponding yt. In the state-space model, at each

stage t, the state (i.e., the parameters of model (3.1)) evolves according to

an Euler-discretized Langevin equation of the prior distribution, and the

measurement equation varies with subsampling.

To simulate from dynamic system (3.2), we propose Algorithm 2, which

makes use of both techniques, subsampling and the forecast-analysis pro-

cedure and is thus scalable with respect to both the sample size N and the

state dimension p. Theorem 1 shows that the proposed algorithm turns

out to be a parallel pre-conditioned SGLD algorithm, whose proof is given

in the supplement. Then, following from the general recipe of stochastic

gradient MCMC (Ma et al., 2015), each chain of the algorithm will converge

to the target posterior π(x|y) as t → ∞, provided εt → 0 as t → ∞. As

mentioned in Remark S1, the convergence of the algorithm (measured in

2-Wasserstein distance) also follows from Corollary S1 directly.
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Theorem 1. For Algorithm 2, if V is positive definite, then the algorithm

is reduced to a parallel pre-conditioned SGLD algorithm which converges

to the target posterior distribution π(x|y) as t → ∞, provided εt → 0 as

t→∞; i.e., for each chain i ∈ {1, 2, . . . ,m},

xa,it = xa,it−1 +
εt
2

Σt∇̂ log π(xa,it−1|y) + et, (3.3)

where Σt = n
N

(I−KtHt) is a constant matrix of x, et is a zero mean Gaus-

sian random error with covariance Var(et) = εtΣt, and ∇̂ log π(xa,it−1|y) =

N
n
HT
t V

−1
t (yt − Htx

a,i
t−1) + ∇ log π(xa,it−1) represents an unbiased estimate of

∇ log π(xa,it−1|y).

The major advantage of such a reformulation from an inverse problem

to a state space model is at computation. For a high-dimensional problem,

suppose that we have set the mini-batch size nmuch smaller than p, then the

computational complexity of LEnKF for T iterations is O((n2p+mnp)T ).

In contrast, if (3.3) is directly simulated as a preconditioned algorithm for

the original inverse problem, the computational complexity will be O((p3 +

np2)mT ), where O(p3) and O(np2) represent the costs for generating ek

and computing Σk∇̂ log π(xak−1|y), respectively. The former requires an

LU-decomposition of Σt, which has a computational complexity of O(p3).
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Algorithm 2 LEnKF for Linear Inverse Problems

Initialization: Set t = 0 and initialize an ensemble {xa,10 , xa,20 , . . . , xa,m0 }
of size m.
for t = 1 to T do

(i) Subsampling: Draw yt from {ỹ1, . . . , ỹB}. Set Qt = εtIp, Rt = 2V ,
and the Kalman gain matrix Kt = QtH

T
t (HtQtH

T
t +Rt)

−1.
for i = 1 to m do

(ii) Forecast: Draw wit ∼ Np(0,
n
N
Qt) and set

xf,it = xa,it−1 + εt
n

2N
∇ log π(xa,it−1) + wit. (3.4)

(iii) Analysis: Draw vit ∼ Nn(0, n
N
Rt) and set

xa,it = xf,it +Kt(yt −Htx
f,i
t − vit)

∆
= xf,it +Kt(yt − yf,it ). (3.5)

end for
end for

LEnKF gets around this issue with the forecast-analysis procedure, making

it scalable with respect to the state dimension p.

It is interesting to note that the computational complexity of LEnKF is

the same as that of the parallel SGLD algorithm (Welling and Teh, 2011),

which consists of m chains and each chain evolves via the iteration

xit = xit−1 +
εt
2
∇̂x log π(xit−1|y) + ẽt, i = 1, 2, . . . ,m,

where ∇̂x log π(xit−1|y) = N
n
HT
t V

−1(yt −Htx
i
t−1) +∇ log π(xit−1) as defined

in (3.3), ẽt ∼ N(0, εtIp) and, at each iteration t, all chains are updated

based on the same mini-batch data yt. As implied by Theorem 1 of Li et al.

12



(2016), LEnKF can converge much faster than the parallel SGLD, since

all eigenvalues of the preconditioner Σt can be much less than 1 by noting

that Σt = n
N

(I − KtHt) = n
N

(I − εtHT
t (εtHtH

T
t + 2V )−1Ht). This will be

illustrated by Figure 2, Figure S1 and Figure S2 (in the supplement).

3.2 Data Assimilation with Linear Measurement Equations

Consider the dynamic system (1.1). Similar to the linear inverse problem,

we assume that at each stage t, yt can be partitioned into Bt = Nt/nt

independent and identically distributed blocks {ỹt,1, . . . , ỹt,Bt}, where each

block has size nt and ỹt,k = Ht,kxt + vt,k, k = 1, 2, . . . Bt, where Nt is the

total number of observations at stage t, vt,k ∼ N(0, Vt) for all k, and vt,k’s

are mutually independent, i.e., Γt = diag[Vt, . . . , Vt]. Again we assume that

Vt is positive definite. Let yt,k denote a block of nt observations randomly

drawn from the set {ỹt,1, . . . , ỹt,Bt}.

To motivate the development of the algorithm, we first consider the

Bayesian formula

π(xt|y1:t) =
f(yt|xt)π(xt|y1:t−1)∫
f(yt|xt)π(xt|y1:t−1)dxt

, (3.6)

which suggests that in order to get the filtering distribution π(xt|y1:t), the
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predictive distribution π(xt|y1:t−1) needs to be used as the prior at stage

t. To estimate the gradient ∇xt log π(xt|y1:t−1), we employ the following

identity established in Song et al. (2020):

∇β log π(β | D) =

∫
∇β log π(β | γ,D)π(γ | β,D)dγ, (3.7)

where D denotes data, and β and γ denote two parameters of a posterior

distribution π(β, γ|D). By this identity, we have

∇xt log π(xt|y1:t−1) =

∫
∇xt log π(xt|xt−1, y1:t−1)π(xt−1|xt, y1:t−1)dxt−1

=

∫
∇xt log π(xt|xt−1)

π(xt−1|xt, y1:t−1)

π(xt−1|y1:t−1)
π(xt−1|y1:t−1)dxt−1

=

∫
∇xt log π(xt|xt−1)ω(xt−1|xt)π(xt−1|y1:t−1)dxt−1,

(3.8)

where ω(xt−1|xt) = π(xt−1|xt, y1:t−1)/π(xt−1|y1:t−1) = π(xt|xt−1)/π(xt|y1:t−1)

∝ π(xt|xt−1), as π(xt|y1:t−1) is a constant with respect to xt−1, given the

particle xt and the data y1:t−1. Therefore, given a set of samples Xt−1 =

{xt−1,1, xt−1,2, . . . , xt−1,m′} drawn from the filtering distribution π(xt−1|y1:t−1),

an importance resampling procedure can be employed to draw a sample

from π(xt−1|xt, y1:t−1). The importance resampling procedure can be exe-

cuted very fast, as calculation of the importance weight ω(xt−1|xt) does not

involve any data.

With the above formulas, we can construct a dynamic system, similar
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to (3.2), for the data assimilation problem (1.1) at stage t as

xt,k = xt,k−1 − εt
nt

2Nt

U−1
t (xt,k−1 − g(x̃t−1,k−1)) + wt,k,

yt,k = Ht,kxt,k + vt,k,

(3.9)

for k = 1, 2, . . ., where xt,0 = g(xt−1) + ut; x̃t−1,k−1 represents a sample of

π(xt−1|xt,k−1, y1:t−1) and it is drawn from Xt−1 via an importance resampling

procedure; wt,k ∼ N(0, nt

Nt
εt,kIp), Qt,k = εt,kIp, and p is the dimension of xt.

Applying Algorithm 2 to (3.9) at each stage t leads to Algorithm 3. The

convergence theory of the algorithm is studied in Theorem 2, whose proof

is given in the supplement.

Theorem 2. We consider a dynamic system with t = 1, 2, . . . , T stages.

Let πt = π(xt|y1:t) denote the filtering distribution at stage t. Suppose

Assumptions S1-S8 (given in the supplement) hold, and Nt’s are larger

than certain threshold. If εt,k ∝ 1
n2
t logKk

−$ for some $ ∈ (0, 1) and any

k ∈ {1, 2, . . . ,K}, then uniformly with dominating probability, for any t ∈

{1, 2, . . . , T}, xa,it,K follows a probability law π̃t and limK→∞W2(π̃t, πt) = 0,

where W2(·, ·) denotes 2-Wasserstein distance between two distributions.

Regarding Algorithm 3 and Theorem 2, we have a few remarks.

Remark 1. (On asymptotic regime) Theorem 2 studies the convergence
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Algorithm 3 LEnKF for Data Assimilation Problems

Initialization: Initialize an ensemble {xa,11,0, xa,21,0, . . ., xa,m1,0 } of size m by
drawing from the prior distribution π(x1). Set Xt = ∅ for t = 1, 2, . . . , T ;
set the learning rate sequence {εt,k : t = 1, 2, . . . , T, k = 1, 2, . . . ,K},
where K denotes the number of iterations performed at each stage; and
set k0 as the common burnin period of each stage.
for t = 1 to T do

for k = 1 to K do
(i) Subsampling: Draw a mini-batch sample yt,k from the set
{ỹt,1, . . . , ỹt,Bt}. Set Qt,k = εt,kIp, Rt = 2Vt, and the Kalman gain
matrix Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)

−1.
for i = 1 to m do

(ii) Importance resampling: If t > 1, calculate importance
weights ωit,k−1,j = π(xa,it,k−1|xt−1,j) = φ(xa,it,k−1; g(xt−1,j), Ut) for j =
1, 2, . . . , |Xt−1|, where φ(·) denotes a Gaussian density, and xt−1,j ∈
Xt−1 denotes the jth sample in Xt−1; if k = 1, set xa,it,0 = g(xa,it−1,K)+

ua,it and ua,it ∼ N(0, Ut). Resample s ∈ {1, 2, . . . , |Xt−1|} with a

probability ∝ ωit,k−1,s, i.e., P (St,k,i = s) = ωit,k−1,s/
∑|Xt−1|

j=1 ωit,k−1,j,

and denote the sample drawn from Xt−1 by x̃it−1,k−1.

(iii) Forecast: Draw wit,k ∼ Np(0,
n
N
Qt,k). If t = 1, set xf,it,k =

xa,it,k−1 − εt,k nt

2Nt
∇ log π(xa,it,k−1) + wit,k, where π(·) denotes the prior

distribution of x1; otherwise, set xf,it,k = xa,it,k−1−εt,k nt

2Nt
U−1
t (xa,it,k−1−

g(x̃it−1,k−1)) + wit,k.
(iv) Analysis: Draw vit,k ∼ Nn(0, n

N
Rt) and set

xa,it,k = xf,it,k +Kt,k(yt,k −Ht,kx
f,i
t,k − v

i
t,k)

∆
= xf,it,k +Kt,k(yt,k − yf,it,k).

(v) Sample collection: If k > k0, add the sample xa,it,k into the
set Xt.

end for
end for

end for
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of Algorithm 3 under the asymptotic regime that the number of iterations

performed at each stage (i.e., K) diverges. Such a result is in parallel to the

convergence theory of sequential Monte Carlo as the number of particles

increases to infinite (see e.g., Beskos et al., 2016; Crisan and Doucet, 2000).

Under this asymptotic regime, we are able to provide a rigorous study for

the convergence of the algorithm; in particular, we are able to account for

the approximation error of π̃t to πt for each stage t in establishing the

convergence of the algorithm. See equations (S2.27), (S2.29) and (S2.31) of

the supplement for the detail.

Remark 2. (On sample degeneracy) It is known that sample degeneracy is

an inherent default of sequential importance sampling (Cappé et al., 2004),

especially when the dimension of the system is high. When it occurs, the

importance weights concentrate on a few samples, the effective sample size

is low, and the resulting importance sampling estimate is heavily biased.

Fortunately, LEnKF is essentially immune to this issue. In LEnKF, the

importance resampling procedure is to draw from Xt−1 a particle which

matches a given particle xt in state propagation such that the gradient

∇xt log π(xt|y1:t−1) can be reasonably well estimated, and this gradient es-

timate is then combined with the gradient of the likelihood function of the

new data yt to have xt updated. By (3.6), π(xt|y1:t−1) works as the prior
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distribution of xt for the filtering distribution π(xt|y1:t). Therefore, the

effect of the importance resampling procedure on the performance of the

algorithm is limited if the sample size Nt is reasonably large at each stage t.

In contrast, the importance resampling procedure in sequential importance

sampling is to draw a particle from Xt−1 and treat the particle as from the

filtering distribution π(xt|y1:t). For high-dimensional problems, the overlap

between the high density regions of neighboring stage filtering distributions

can be very small, which naturally causes the sample degeneracy issue. In

summary, the importance resampling step of LEnKF aims to draw a sample

for the prior distribution π(xt|y1:t−1) used at each stage t, while that of se-

quential importance sampling aims to draw a sample for the target filtering

distribution π(xt|y1:t). Therefore, LEnKF is less bothered by the sample

degeneracy issue than sequential importance sampling. Refer to Section

S1.2 for a numerical illustration on this issue.

Remark 3. (On uncertainty quantification) LEnKF is run in ensemble

which provides a convenient way for uncertainty quantification. At each

stage and for each chain, the state can be estimated by averaging over iter-

ations as prescribed for the SGLD estimator in Teh et al. (2016) (weighted

version) or Song et al. (2020) (unweighted version). The state estimates can

then be further averaged over the chains. It is easy to see that the central

18



limit theorem holds for this chain-averaged estimator approximately given

the weak dependence between different chains, and uncertainty quantifica-

tion can be made accordingly.

Finally, we note that as implied by Theorem 1, Algorithm 3 is essentially

a sequential pre-conditioned SGLD sampler. As implied by the proof of

Theorem 2, a lower approximation error (measured in W2(π̃t, πt)) obtained

at one stage of LEnKF helps to reduce the approximation error of the next

stage, and the approximation error becomes negligible as the number of

stages increases.

4. Numerical Studies

4.1 Bayesian variable selection for large-scale linear regression

Consider the linear regression

Y = Zβ + ε, (4.1)

where Y ∈ RN is the response, Z = (Z1, Z2, . . . , Zp) ∈ RN×p are covariates,

β ∈ Rp, and ε ∼ N(0, IN). An intercept term has been implicitly included

in the model. We generate ten datasets from this model with N = 50, 000,

p = 2, 000, and β = (β1, β2, . . . , βp) = (1, 1, 1, 1, 1,−1,−1,−1, 0, . . . , 0).
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That is, the first 8 variables are true and the others are false. Each variable

Zi has a marginal distribution of N(0, IN), but they are mutually correlated

with a correlation coefficient of 0.5.

To conduct Bayesian analysis for the model, we consider the follow-

ing hierarchical mixture Gaussian prior distribution which, with the latent

variable ξi ∈ {0, 1}, can be expressed as

βi|ξi ∼ (1− ξi)N(0, τ 2
1 ) + ξiN(0, τ 2

2 ),

P (ξi = 1) = 1− P (ξi = 0) = ρ0,

(4.2)

for i = 1, 2, . . . , p. Such a prior distribution has been widely used in the

literature of Bayesian variable selection, see e.g. George and McCullloch

(1993). To apply LEnKF to this problem, we first integrate out ξi from the

prior (4.2), which leads to the marginal distribution

βi ∼ (1− ρ0)N(0, τ 2
1 ) + ρ0N(0, τ 2

2 ), i = 1, 2, . . . , p,

such that the log-prior density function log π(β) is differentiable. Algorithm

2 is applied to simulate from the posterior π(β|Y ,Z). In the simulation,

we set ρ0 = 1/p = 0.0005, τ 2
1 = 0.01 and τ 2

2 = 1 for the prior distribution,

and set the ensemble size m = 100, mini-batch size n = 100, and learning
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rate εt = 0.2/max{t0, t}0.6, where t0 = 100. As implied by Lemma S6, the

convergence of LEnKF suffers from an elbow phenomenon with respect to

the mini-batch size, i.e., an extremely large mini-batch size will not lead

to a much better convergence rate than a reasonably large one. On the

other hand, as analyzed in Section 3.1, a large batch size can significantly

increase the CPU cost of the algorithm. Therefore, a reasonably large

value of n is preferred for LEnKF. For this example, we have attempted

n = 100, n = 200, n = 500, and n = 1000 and found that n = 100 can

lead to comparable results as the other three but with shorter CPU time.

Algorithm 2 was run for 10,000 iterations, which cost 375 CPU seconds on

a personal computer with 2.9GHz Intel Core i7 CPU and 16GB RAM. All

computation reported in this paper were done on the same computer.

To accomplish the goal of variable selection, we consider the factor-

ization of the posterior distribution π(β, ξ|Y ,Z) ∝ π(Y |β,Z)π(β|ξ)π(ξ),

where ξ = (ξ1, ξ2, . . . , ξp). By assuming that βi’s and ξi’s are a priori inde-

pendent, we are able to draw posterior samples of ξ from the distribution:

π(ξti = 1|βti,Y ,Z) =
ati

ati + bti
, i = 1, 2, . . . , p, (4.3)

where ati = p0
τ2

exp(−β2
ti/2τ

2
2 ), bti = 1−p0

τ1
exp(−β2

ti/2τ
2
1 ), and βti denotes the

posterior sample of βi drawn by Algorithm 2 at stage t. Here we denote by
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βt = (βt1, βt2, . . . , βtp) a posterior sample of β drawn by Algorithm 2 at the

analysis step of stage t.

Figure 1 summarizes the variable selection results for one data set. The

results for the other data sets are similar. Figure 1(a) shows the sample tra-

jectories of β1, β2, . . . , β9, which are averaged over the ensemble along with

iterations. All the samples converge weakly to their true values in 100 iter-

ations, taking about 3.7 CPU seconds. This is extremely fast! Figure 1(b)

shows the marginal inclusion probabilities of the covariates Z1, Z2, . . . , Zp.

From this graph, we can see that each of the 8 true variables (indexed 1-

8) has a marginal inclusion probability close to 1, while each of the false

variables has a marginal inclusion probability close to 0. Figure 1(c) shows

the scatter plot of the response variable and its fitted value for the training

data, and Figure 1(d) shows the scatter plot of the response variable and

its predicted value for 200 test samples generated from the model (4.1). In

summary, Figure 1 shows that LEnKF is able to identify true variables for

large-scale linear regression and, moreover, it is extremely efficient.

For comparison, SGLD (Welling and Teh, 2011), preconditioned SGLD

(pSGLD, Li et al., 2016), and stochastic gradient Nosé-Hoover thermostat

(SGNHT, Ding et al., 2014) were applied to this example. For these al-

gorithms, their learning rates have been tuned to their maximum values
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Figure 1: LEnKF for large-scale linear regression: (a) Trajectories of
β1, . . . , β9, where β1 = · · · = β5 = 11, β6 = · · · = β8 = −1, and β9 = 0 (yel-
low line). (b) marginal inclusion probabilities of all covariates Z1, . . . , Zp,
where the first 8 high bars represent Z1, Z2, . . . , Z8; (c) scatter plot of Y
versus the fitted value for training samples; and (d) scatter plot of Y versus
the predicted value for test samples.

such that the simulation converges fast while not exploding, and their iter-

ation numbers have been adjusted such that they cost about the same CPU

time as LEnKF. Refer to the supplement for their settings. Figure 2 com-

pares the trajectories of (β1, β2, . . . , β9) produced by the four algorithms in

their first 5% iterations. It indicates that LEnKF can converge significantly

faster than SGLD, pSGLD and SGNHT for this example, which can be ex-

plained as the advantage of preconditioning of LEnKF. The full trajectories
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Figure 2: Trajectories of (β1, β2, . . . , β9) produced by SGLD (upper), pS-
GLD (upper middle), SGNHT (lower middle), and LEnKF (lower) for a
large-scale linear regression example in their first 5% iterations.

by these algorithms are shown in Figure S1 of the supplement.

Since LEnKF is a parallel preconditioned SGLD algorithm, we have

also compared it with parallel SGLD, pSGLD and SGNHT. The results are

presented in the supplement. The comparison shows a much larger margin

that LEnKF significantly outperforms parallel runs of these algorithms. Re-

call that LEnKF has the same computational complexity as parallel SGLD

as mentioned in Section 3.1.
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4.2 Uncertainty Quantification for the Lorenz-96 Model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to study

difficult questions regarding predictability in weather forecasting (Lorenz,

1996). The model is given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, · · · , p,

where F = 8, p = 40, and it is assumed that x−1 = xp−1, x0 = xp, and

xp+1 = x1. Here F is known as a forcing constant, and F = 8 is a common

value known to cause chaotic behavior. In order to generate the true state

X t = (X1
t , . . . , X

p
t ) for t = 1, 2, . . . , T , we initialized X0 by setting X i

0 to

20 for all i but adding to X20
0 a small perturbation of 0.1; we solved the

differential equation using the fourth-order Runge-Kutta numerical method

with a time interval of ∆t = 0.01; and for each i and t, we added to

X i
t a random noise generated from N(0, 1). At each stage t, data was

observed for half of the state variables and masked with a Gaussian noise,

i.e., yt = HtX t + εt for t = 1, 2, . . . , T , where εt ∼ N(0, Ip/2), and Ht is a

random selection matrix. Figure 3 shows the simulated path of the partial

state variables (X1
t , X

2
t , X

3
t ) for t = 1, 2, . . . , T , whose chaotic behavior

indicates the challenge of the problem.
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Figure 3: Chaotic path of the partial state variables (X1
t , X

2
t , X

3
t ) for t =

1, 2, . . . , 100, simulated from the Lorenz-96 Model.

Algorithm 3 was applied to this example with the ensemble size m = 50,

the iteration number K = 20, k0 = K/2, and the learning rate εt,k = 0.5/k0.9

for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . At each stage t, the state was

estimated by averaging over the ensembles generated at iterations k0 +

1, k0 + 2, . . . ,K. The accuracy of the estimate was measured using the root

mean-squared error (RMSE) defined by RMSEt = ||X̂ t−X t||2/
√
p, where

X̂ t denote the estimate of X t. For comparison, EnKF was applied to this

example with the same ensemble size m = 50. To be fair, it was run in a

similar way to LEnKF except that the Kalman gain matrix was estimated

based on the ensemble, without the resampling step being performed, and

the random error being drawn from N(0, Vt) in the step of analysis.

Figure 4 compares the estimates of X3
t produced by LEnKF and EnKF
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for one simulated dataset. The plots for the other components of X t are

similar. The comparison shows that LEnKF and EnKF produce comparable

RMSEt’s, while LEnKF provides better uncertainty quantification for the

estimates. Figure 4(a) shows that the confidence band by LEnKF covers

many states, but this is not the case for EnKF. This is consistent with the

existing result that EnKF is known to provide the optimal linear estimator

of the conditional mean (Law et al., 2016), but underestimate the confidence

intervals (Saetrom and Omre, 2013).
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Figure 4: State estimates produced by LEnKF (red) and EnKF (green) for
the Lorenz-96 model along with t = 1, 2, . . . , 100: (left plot) the estimates
of X3

t , where the true states are represented by ‘+’, the estimates are rep-
resented by solid lines, and their 95% confidence intervals are represented
by shaded bands; (right plot) log(RMSEt) along with stage t.

Figure 5(a) shows the coverage probabilities of 95% confidence inter-

vals produced by LEnKF and EnKF, where the coverage probability was

calculated by averaging over 40 state components of X t at each stage

t ∈ {1, 2, . . . , 100}. Figure 5(b) shows the averaged coverage probabilities
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over 10 datasets. The comparison shows that LEnKF produces a faithful

coverage probability (closing to its nominal level), while EnKF does not.

This implies that LEnKF is able to correctly quantify uncertainty of the

estimates as t becomes large. This is a remarkable result given high non-

linearity and dynamic nature of the Lorenz-96 model!

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 Pr
ob

ab
ilit

y

Langevinized EnKF
EnKF

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 Pr
ob

ab
ilit

y

Langevinized EnKF
EnKF

Figure 5: Coverage probabilities of the 95% confidence intervals produced
by LEnKF (red) and EnKF (green) for Lorenz-96 Model for along with
stage t = 1, 2, . . . , 100: (left plot) results for one dataset; (right plot) results
averaged over 10 datasets.

Table 1 summarizes the results produced by the two methods on 10

datasets. For LEnKF, two choices of k0 were tried. For each dataset, we cal-

culated the mean RMSE by averaging RMSEt over stages t = 21, 22, . . . , 100.

Similarly, we calculated the mean CP by averaging CPt’s over the stages

t = 21, 22, . . . , 100, where CPt denotes the coverage probability calculated

for one dataset at stage t. Then their values were further averaged over 10

datasets and denoted by “Am-RMSE” and “Am-CP”, respectively. Table
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1 also reports the CPU time cost by each method. Compared to EnKF,

LEnKF produced slightly lower RMSEt’s, but much more accurate uncer-

tainty quantification for the model. LEnKF also produced very good results

with k0 = K − 1, and it cost much less CPU time than with k0 = K/2.

Table 1: Comparison of the EnKF and LEnKF, where the averages over 10
independent datasets are reported with the standard deviation given in the
parentheses. The CPU time was recorded for a single run of the method.

LEnKF
k0 = K/2 k0 = K − 1 EnKF

Am-RMSE 1.702(0.0343) 1.714(0.0360) 1.722(0.0230)
Am-CP 0.948(0.0028) 0.947(0.0034) 0.460(0.0029)
CPU(s) 6.37(0.3942) 3.350(0.0807) 0.817(0.0426)

For EnKF, we have tried several larger ensemble sizes up to 2000, which

cost much longer CPU time than LEnKF, but EnKF can only get a coverage

rate about 70%. This is consistent with the result of Law et al. (2016) that

EnKF converges only to a mean-field filter but not the filtering distribution.

5. Extensions of LEnKF

This section discusses a few possible extensions of LEnKF with numerical

results reported elsewhere.
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5.1 Dynamic Systems with Unknown Parameters

Like EnKF, LEnKF is developed under the assumption that the dynamic

system contains no unknown parameters. Extension of LEnKF to the dy-

namic systems with unknown parameters can be done in different ways.

One way is with the EM algorithm (Dempster et al., 1977). Since

LEnKF is able to sample from the filtering distribution for given parame-

ters, the EM algorithm can be conveniently used for parameter estimation.

A related work is Aicher et al. (2019) where, however, the filtering distri-

bution is simulated with a traditional sequential Monte Carlo algorithm. It

lacks the necessary scalability for big data problems.

An alternative way is with an adaptive stochastic gradient MCMC al-

gorithm. Taking the model (3.2) as the example again: If the propagator

Ht or the observation noise covariance matrix contain unknown parameters,

then the parameters can be estimated in a recursive way. In this case, the

following parameter updating step can be added to Algorithm 2:

(iv) Parameter updating: Update parameters by the recursion ϑt =

(1− at)ϑt−1 + atφ(ϑt−1,x
a
t ), where ϑ denotes the vector of unknown

parameters, {at} is a pre-specified, positive, decreasing sequence sat-

isfying the conditions
∑

t at =∞ and
∑

t a
2
t <∞, xat = (xa1t , . . . , x

am
t )

denotes the ensemble of samples at stage t, and φ(ϑt−1,x
a
t ) is a map-
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ping driving to an estimate of ϑ based on the ensemble xat .

By the theory of stochastic approximation (Robbins and Monro, 1951),

the mapping φ(ϑt−1,x
a
t ) can be easily designed. With the parameter up-

dating step, LEnKF becomes an adaptive stochastic gradient MCMC algo-

rithm, where the target distribution varies from iteration to iteration. The

convergence of such an adaptive algorithm can be studied in a similar way

to Deng et al. (2019). Under appropriate conditions, we will be able to

show that as t → ∞, ϑt converges to the true parameters in probability

and xat converges weakly to the filtering distribution.

Finally, we note that use of the state-augmentation approach for pa-

rameter estimation is also possible. However, this approach applies only

to the case that the resulting covariance matrix Σt = n
N

(I −KtHt) is still

a constant matrix of the augmented state variable. Otherwise, the weak

convergence of xat to the filtering distribution will no longer be guaranteed.

5.2 Dynamic Systems with non-Gaussian Observations

In practice, we often encounter the problems where the response variable

follows a non-Gaussian distribution, e.g., multinomial or Poisson. LEnKF

can be extended to these problems by introducing a latent variable. For

example, consider an inverse problem for which the latent variable model
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can be formulated as

z|y ∼ ρ(z|y), y = h(x) + η, η ∼ N(0,Γ), (5.1)

where z is observed data following a non-Gaussian distribution ρ(·), y is

the latent Gaussian variable, and x is the parameter. To adapt LEnKF to

simulating from the posterior distribution π(x|z), we only need to add an

imputation step in Algorithm 2, between the forecast and analysis steps.

The imputation step is to simulate a latent vector y from the distribution

π(y|x, z) ∝ ρ(z|y)f(y|x). Since the imputation will lead to an unbiased

estimate for the gradient of the involved log-density function, the proposed

extension is valid, with which samples from the target posterior π(x|z) can

be generated. A further extension of this algorithm to data assimilation

problems is straightforward.

5.3 Dynamic Systems with Nonlinear Measurement Equations

As indicated by Algorithm 3, LEnKF turns out to be a sequential pre-

conditioned SGLD sampler. At each stage, it aims to simulate from the

posterior distribution for a linear inverse problem with an appropriately

designed prior distribution for which the gradient of the log-density func-
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tion is estimated based on the samples simulated at the proceeding stage.

In the same vein, Algorithm 3 can be extended to the data assimilation

problems with nonlinear measurement equations, for which we only need to

figure out how LEnKF can be used for nonlinear inverse problems.

Consider the nonlinear inverse problem

y = G(z) + η, η ∈ N(0,Γ),

where y = (ỹT1 , ỹ
T
2 , . . . , ỹ

T
B)T , Γ = diag[V, V, . . . , V ] is a diagonal block ma-

trix, each block V is of size n× n, and N = Bn for some positive constant

B. To reformulate the problem in the central dynamic system (1.1), we

define an augmented state vector by an n-vector γt:

xt = (zT , γTt )T , γt = Gt(z) + ut, ut ∼ N(0, αV ), (5.2)

where Gt(·) is the mean response function for a mini-batch of data drawn

at stage t, and 0 < α < 1 is a pre-specified constant. In this paper, α is

called the variance splitting proportion.

Let π(z) denote the prior density function of z, which is differentiable

with respect to z. The conditional distribution of γt is γt|z ∼ N(Gt(z), αV ),

and the joint density function of xt is then π(xt) = π(z)π(γt|z). Based on
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Langevin dynamics, a system identical to (3.2) (in symbol) can be con-

structed for the nonlinear inverse problem:

xt = xt−1 + εt
n

2N
∇x log π(xt−1) + wt

yt = Htxt + vt,

(5.3)

where wt ∼ N(0, n
N
Qt), Qt = εtIp, p is the dimension of xt; Ht = (0, I) such

that Htxt = γt; vt ∼ N(0, (1 − α)V ), which is independent of wt for all t;

and yt is a random draw from {ỹ1, ỹ2, . . . , ỹB}.

With this formulation, LEnKF can be easily extended to simulate from

the posterior π(z|y) for the nonlinear inverse problem. With the variance

splitting state augmentation approach and in the same vein of Algorithm

3, LEnKF can be further extended to the data assimilation problems with

nonlinear measurement equations.

6. Conclusion

This paper proposes LEnKF as a scalable particle filter by reformulating

EnKF under the framework of Langevin dynamics. LEnKF turns out to be

a sequential preconditioned SGLD algorithm but, like EnKF, its execution

is accelerated with a forecast-analysis procedure. LEnKF converges to the

right filtering distribution in 2-Wasserstein distance as the number of iter-
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ations per stage becomes large. LEnKF can be applied to state estimation

for both inverse and data assimilation problems, and uncertainty quantifi-

cation of the state estimates. LEnKF is not only scalable with respect to

the state dimension and sample size, but also tends to be immune to the

sample degeneracy issue suffered by conventional particle filters.

Supplementary Materials

The supplementary materials present the proofs of Theorem 1 and Theorem

2 and more numerical examples.
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