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Abstract:

The Ensemble Kalman Filter (EnKF) has achieved great successes in data assimi-
lation in atmospheric and oceanic sciences, but it fails in converging to the correct
filtering distribution which precludes its use for uncertainty quantification of dy-
namic systems. We reformulate EnKF under the framework of Langevin dynam-
ics, which leads to a new particle filtering algorithm, the so-called Langevinized
EnKF (LEnKF). LEnKF inherits the forecast-analysis procedure from EnKF and
the use of mini-batch data from stochastic gradient Langevin dynamics (SGLD).
We prove that LEnKF turns out to be a sequential preconditioned SGLD sam-
pler but, like EnKF, with its execution being accelerated by the forecast-analysis
procedure and that LEnKF converges to the right filtering distribution in 2-
Wasserstein distance as the number of iterations per stage becomes large. We
illustrate the performance of LEnKF using a variety of examples. LEnKF is not
only scalable with respect to the state dimension and sample size, but also tends

to be immune to sample degeneracy for long series dynamic data.
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Stochastic Gradient Markov Chain Monte Carlo, Uncertainty Quantification.

1. Introduction

Coming with the new century, the integration of computer technology into
science and daily life has enabled scientists to collect massive volumes of
data, e.g., climate data, high-throughput biological assay data and web-
site transaction logs. To address computational difficulty encountered in
Bayesian analysis of big data, a variety of scalable MCMC algorithms have
been developed, such as stochastic gradient MCMC algorithms (Welling
and Teh, 2011; Ding et al., 2014; Chen et al., 2014; Li et al., 2016; Ma
et al., 2015; Nemeth and Fearnhead, 2021), split-and-merge algorithms
(Scott et al., 2016; Li et al., 2017; Srivastava et al., 2018), mini-batch
Metropolis-Hastings algorithms (Chen et al., 2018; Maclaurin and Adams,
2014; Bardenet et al., 2017), and nonreversible Markov process-based algo-
rithms (Bierkens et al., 2019; Bouchard Coté et al., 2018).

Although the scalable MCMC algorithms have achieved great successes
in Bayesian learning with static data, none of them could be directly ap-
plied to dynamic data. In the literature, learning with static data is often
termed as static or off-line learning, and that with dynamic data is often

termed as dynamic or on-line learning. Dynamic learning is important and



challenging, as dynamic data collection is general, heterogeneous and messy.
We note that classical sequential Monte Carlo or particle filter algorithms
(see e.g, Liu and Chen (1998) and Doucet et al. (2001)) lack the scalability
necessary for dealing with large-scale dynamic data, which strive to make
use of all available data at each processing step. The ensemble Kalman
filter (EnKF) (Evensen, 1994) is efficient in dealing with high-dimensional
data assimilation problems (e.g., Evensen and Van Leeuween, 1996; Aanon-
sen et al., 2009; Houtekamer and Mitchell, 2011), but fails to converge to
the right filtering distribution for general nonlinear dynamic systems (Law
et al., 2016). How to make Bayesian on-line learning with large-scale dy-
namic data has posed a great challenge on current statistical methods.

In this paper, we are interested in conducting Bayesian on-line learning

for the dynamic system:

xy = g(xi—1) +ug, ug ~ N(0,Up),
(1.1)
vy = Hyxy +m,  me~ N(0, 1Y),

for stages t = 1,2,...,T, where x; € RP and 3, € R denote, respectively,
the state and observations at stage t. The dimension p, the total number
of stages T', and the sample sizes N,’s are all assumed to be in a large scale.

For the dynamic system (1.1), the top equation is called the state evolution



equation, where g(-) is called state propagator and can be nonlinear; the
bottom equation is called the measurement equation, where the propagator
H, relates the state variable to the measurement variable and yields the ex-
pected value of the prediction given the state and parameters. The dynamic
system (1.1) is of central importance. It itself models the data assimilation
problems with linear measurement equations, while many other problems
such as the inverse problem and the data assimilation with nonlinear mea-
surement equations can be converted to it via appropriate transformations
as discussed in Section 3.1 and Section 5. For simplicity, we assume that
both the model error u; and observation error 7, are zero-mean Gaussian
random variables, and the covariance matrices U; and I'; and the propagator
g(+) and H, are all fully specified, i.e. containing no unknown parameters.
How to extend our study to the problems with non-Gaussian observations
and/or unknown parameters will be discussed in Section 5.

Throughout this paper, we will let ¢ index the stage of the dynamic
system, let f(y;|z;) denote the likelihood function of y;, let 7(z|y;.+) denote
the filtering distribution at stage t given the data y1., = {vy1,¥2, ..., U},
and let m(z¢|y1.—1) = [ m(ze|zi—1)m(@i—1|y1:e—1)dx—1 denote the predictive
distribution of x; given yy.,_1.

Our contribution in this paper is two-fold. (i) We develop a new particle



filter, the so-called Langevinized EnKF (LEnKF), by reformulating EnKF
under the framework of Langevin dynamics. LEnKF is not only scalable
with respect to the state dimension and sample size, but also tends to be im-
mune to the sample degeneracy issue that is often suffered by conventional
particle filters. LEnKF can work well under the big data scenario where the
stage number T', the state dimension p, and the sample sizes N;’s are all in
large scale. (ii) We prove that LEnKF turns out to be a sequential precon-
ditioned SGLD sampler but, like EnKF, with an accelerated execution by
the forecast-analysis procedure and that it converges to the right filtering
distribution in 2-Wasserstein distance as the number of iterations per stage
becomes large. LEnKF can be efficiently used for uncertainty quantification
of large-scale dynamic systems. We illustrate the performance of LEnKF
using a variety of examples including the Lorenz-96 model (Lorenz, 1996)
and long short-term memory (LSTM) model (Hochreiter and Schmidhuber,
1997). Due to the page limit, the latter is presented in the supplement. Up
to our knowledge, this work represents the first development of scalable
particle filters under the rigorous probabilistic framework.

The remaining part of this paper is organized as follows. Section 2
provides a brief review for EnKF and explains its scalability with respect

to state dimension. Section 3 describes LEnKF for dynamic learning and



studies its convergence. Sections 4 illustrate the performance of LEnKF
using a variable selection example and the Lorenz-96 model. Section 5

discusses possible extensions of LEnKF. Section 6 concludes the paper.

2. Why is the EnKF Efficient for High-Dimensional Problems?

Consider the dynamic system (1.1). To estimate the state variables 1, x,
..., o, Evensen (1994) proposed the EnKF algorithm as described in Algo-
rithm 1. If Uy, T'y, g(-) and H, contain unknown parameters, the state aug-
mentation method (Anderson, 2001; Baek et al., 2006; Gillijns and De Moor,
2007) can be used, where the state vector is augmented with unknown pa-

rameters and the state and parameters are estimated simultaneously.

Algorithm 1 EnKF Algorithm

o e . . el 1 1 2 .
Initialization: Initialize an ensemble {xy ", xg”, ..., 2™} of size m.

fort=1to T do
(i) Forecast: For i = 1,2,...,m, draw u} ~ N(0,U,) and set z]" =
g(z")) + ul; calculate the sample covariance matrix of ', ... /™
and denote it by C}.
(ii) Analysis: For i = 1,2,...,m, draw ni ~ N(0,T;) and set
it = o'+ Ky~ Hal' =) £ o' + Ky — y/"), where
K; = C;HI (H,C,HF +T;)~! forms an estimator for the Kalman gain
matrix K; = S;H! (H:S;H! + T';)~! and S; denotes the covariance
matrix of a:{ .

end for

EnKF has two attractive features which make it extremely successful



in dealing with high-dimensional data assimilation problems, e.g., those
encountered in reservoir modeling (Aanonsen et al., 2009), oceanography

(Evensen and Van Leeuween, 1996), and weather forecasting (Houtekamer

and Mitchell, 2011). First, it approximates each filtering distribution 7 (z|y;.

by an ensemble of particles. Since the ensemble size m is typically much
smaller than p, it leads to dimension reduction and computational feasibil-
ity compared to the Kalman filter, see e.g. Shumway and Stoffer (2006).
In particular, it approximates S; by C}, so the storage for the matrix C;
is replaced by particles and much reduced. Second, in generating particles
from filtering distributions, it avoids covariance matrix decomposition. It
is known that an LU-decomposition of the covariance matrix has a compu-
tational complexity of O(p?®). Instead, EnKF employs a forecast-analysis
procedure to generate particles, which has a computational complexity of
O(max{p*Ny, N} + mpN;) for m particles at stage ¢. That is, the forecast-
analysis procedure reduces the computational complexity of particle gen-
eration when m and N; are smaller than p. This explains why EnKF is
so efficient for high-dimensional problems. On the other hand, this also
implies that EnKF can be inefficient when N,’s are large.

Despite its great successes in dealing with high-dimensional dynamic

systems, the performance of EnKF is sub-optimal. As shown by Law et al.



(2016), it converges only to a mean-field filter, which provides the optimal
linear estimator of the conditional mean but not the filtering distribution
except for the linear systems in the large sample limit. Similar results can
be found in Le Gland et al. (2009), Bergou et al. (2019) and Kwiatkowski
and Mandel (2015).

With the state augmentation approach (Iglesias et al., 2013), EnKF can
also be used to solve the inverse problem which is to find the parameter x

for the system

y=0(z)+n, (2.1)

where G(-) is the forward response operator mapping the unknown param-
eter = to the space of observations, n ~ N(0,I") is Gaussian random noise,
and y is observed data. However, as mentioned previously, EnKF does not
converge to the filtering distribution, so the posterior distribution 7(z|y)
cannot be well approximated by the approach. Numerically, Ernst et al.
(2015) demonstrated that for nonlinear inverse problems, the large sample

limit does not lead to a good approximation to the posterior distribution.

3. Langevinized Ensemble Kalman Filter

To motivate the development of LEnKF, we first consider a linear inverse

problem, and then extend it to the data assimilation problem (1.1) and oth-
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ers. Note that, as implied by (1.1), estimation of x; at each individual stage
is essentially a linear inverse problem but with some “prior” information

passed on from the proceeding stage.

3.1 Linear Inverse Problem

Consider a Bayesian inverse problem for the regression

y=Hx+n, (3.1)

where H is a known matrix, n ~ N(0,I') for some covariance matrix T,
y € RN, and x € RP is an unknown continuous parameter vector. To
accommodate the case that the sample size N is extremely large, we assume
y can be partitioned into B = N/n independent and identically distributed
blocks {71, ...,¥s}, where each block is of size n and has a positive definite
covariance matrix V' such that I' = diag[V,---,V]. Note that this is a
trivial assumption for independent samples as considered in this paper.
Let 7(x) denote the prior density function of x, which is assumed to be
differentiable with respect to x. Let m(z|y) denote the posterior distribu-
tion. To develop a scalable algorithm for simulating from 7(x|y) under the

scenario that both N and p are large, we reformulate the model (3.1) as a



state-space model through subsampling and Langevin diffusion:

Ty =Ty_1+ EthVIOg m(xi_1) + wy,
2 (3.2)

yr = Hyxy + vy,

where w; ~ N(0, Fed,) = N(0, Q) i.e., Q; = €1, y; denotes a block
randomly drawn from {g1,...,9}, v ~ N(0,V), and H; is a submatrix of
H extracted with the corresponding ;. In the state-space model, at each
stage t, the state (i.e., the parameters of model (3.1)) evolves according to
an FEuler-discretized Langevin equation of the prior distribution, and the
measurement equation varies with subsampling.

To simulate from dynamic system (3.2), we propose Algorithm 2, which
makes use of both techniques, subsampling and the forecast-analysis pro-
cedure and is thus scalable with respect to both the sample size N and the
state dimension p. Theorem 1 shows that the proposed algorithm turns
out to be a parallel pre-conditioned SGLD algorithm, whose proof is given
in the supplement. Then, following from the general recipe of stochastic
gradient MCMC (Ma et al., 2015), each chain of the algorithm will converge
to the target posterior 7(x|y) as t — oo, provided ¢, — 0 as t — oco. As
mentioned in Remark S1, the convergence of the algorithm (measured in

2-Wasserstein distance) also follows from Corollary S1 directly.
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Theorem 1. For Algorithm 2, if V' is positive definite, then the algorithm
1s reduced to a parallel pre-conditioned SGLD algorithm which converges
to the target posterior distribution m(xly) as t — oo, provided ¢, — 0 as

t — oo; i.e., for each chain i € {1,2,...,m},
a,i a,i € - a,i
T =Tt éEtV log (™" [y) + ex, (3.3)

where 3; = %(I— K H,) is a constant matriz of x, e; is a zero mean Gaus-
sian random error with covariance Var(e,) = &%y, and Vlogm(z®|y) =
NHIV g — Hyx!" ) + Vogw(z",) represents an unbiased estimate of

Vlog m(zy*|y).

The major advantage of such a reformulation from an inverse problem
to a state space model is at computation. For a high-dimensional problem,
suppose that we have set the mini-batch size n much smaller than p, then the
computational complexity of LEnKF for T iterations is O((n*p + mnp)T).
In contrast, if (3.3) is directly simulated as a preconditioned algorithm for
the original inverse problem, the computational complexity will be O((p?® +
np?)mT), where O(p®) and O(np?) represent the costs for generating e,
and computing Zkﬁlog m(x¢_,|y), respectively. The former requires an

LU-decomposition of Y;, which has a computational complexity of O(p?).
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Algorithm 2 LEnKF for Linear Inverse Problems

oy . . e e 1s 1 2
Initialization: Set ¢ = 0 and initialize an ensemble {zy", zg", ..., zg"

of size m.
fort=1to T do
(i) Subsampling: Draw y, from {¢,...,9p}. Set Q; = €:l,, Ry =2V,
and the Kalman gain matrix K; = Q. H! (H;Q:H! + R;)~*.
for 1 =1tom do
(ii) Forecast: Draw w; ~ N,(0, £Q;) and set

i ai n ai i
alt = 2P 4 etﬁVIOg m(xp)) + wy. (3.4)

(iii) Analysis: Draw v; ~ N, (0, % R;) and set
ai i i iy A fi i
it =l + Ky — Head ' — o) S ol + Ky — ol (35)

end for
end for

LEnKF gets around this issue with the forecast-analysis procedure, making
it scalable with respect to the state dimension p.

It is interesting to note that the computational complexity of LEnKF is
the same as that of the parallel SGLD algorithm (Welling and Teh, 2011),

which consists of m chains and each chain evolves via the iteration
. . 6 A~ . ~ )
Ty =x,_ 4+ évx logm(z;_q|y) + &, i=1,2,...,m,

where V, log 7 (i _,|y) = NHIV Ny, — Hyxi_)) + Viogw(z|_,) as defined
in (3.3), & ~ N(0,¢l,) and, at each iteration ¢, all chains are updated

based on the same mini-batch data y;. As implied by Theorem 1 of Li et al.
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(2016), LEnKF can converge much faster than the parallel SGLD, since
all eigenvalues of the preconditioner »; can be much less than 1 by noting

that Zt = %([ — Kth) = (I — EtHg(EthHz + QV)_IHt). ThlS Wlu be

n
N

illustrated by Figure 2, Figure S1 and Figure S2 (in the supplement).

3.2 Data Assimilation with Linear Measurement Equations

Consider the dynamic system (1.1). Similar to the linear inverse problem,
we assume that at each stage ¢, y, can be partitioned into B, = Ny/n,
independent and identically distributed blocks {1, ..., 3 5, }, where each
block has size n, and 4, = Hypxy + v, k = 1,2,... B;, where N, is the
total number of observations at stage t, vy ~ N(0,V;) for all k, and v, ’s
are mutually independent, i.e., I'; = diag[V;, ..., V{]. Again we assume that
V} is positive definite. Let y,; denote a block of n; observations randomly
drawn from the set {G11,..., %5}

To motivate the development of the algorithm, we first consider the

Bayesian formula

_ S elze)m(@e|yr-1)
T(Te|y1e) = T F il m(@elyrer)dzs (3.6)

which suggests that in order to get the filtering distribution 7(x|y1.¢), the

13



predictive distribution m(x;|y1.;—1) needs to be used as the prior at stage
t. To estimate the gradient V., logm(x|y14—1), we employ the following

identity established in Song et al. (2020):

Vslog (8| D) = / Valogn(8 | v D)n(y| 6. D)dy,  (3.7)

where D denotes data, and S and v denote two parameters of a posterior

distribution 7(3,v|D). By this identity, we have

Vo, log m(zi|y1:e-1) = /th log m(xe|@i—1, y1:e—1) 7 (Te—1|xt, Y1:0—1)dTi—1

m(ze—1|Te, Y1:4—1)
W(xt—llylzt—l)

= /th log m(z¢|@e—1) T(zi—1|yre—1)dzi—1 (3.8)

= /th log m(wt|zi—1)w(@e—1]Te) ™ (@1—1[Y1:8-1)dTt 1,

where w(z;1[2¢) = T(@e1|Te, Yyra—1) /T (@1 |Y1:e-1) = 7(@e]21) /7 (T4]Y1:0-1)
o m(x¢|xi—1), as w(x¢|y14-1) 1S a constant with respect to z,_1, given the
particle x; and the data y;.,_1. Therefore, given a set of samples X;_; =
{xt-11,%1-129,. .., Tt_1 4 } drawn from the filtering distribution 7(z¢—1|y1.4-1),
an importance resampling procedure can be employed to draw a sample
from 7(x;_1|xy, y14-1). The importance resampling procedure can be exe-
cuted very fast, as calculation of the importance weight w(x;_1|x;) does not
involve any data.

With the above formulas, we can construct a dynamic system, similar

14



to (3.2), for the data assimilation problem (1.1) at stage ¢ as

ny

Tip = Tpp—1 — EtWU;%xt,kfl — 9(Ty—15-1)) + Wik,
t (3.9)
Yeo = Hy Ty g + Vg,
for k =1,2,..., where 2,0 = g(z4—1) + w;; T4—1-1 represents a sample of

(21|t k-1, Y1.4—1) and it is drawn from A;_; via an importance resampling
procedure; wy ~ N(0, ]@—iet,kfp), Qtr = €111y, and p is the dimension of z;.
Applying Algorithm 2 to (3.9) at each stage ¢ leads to Algorithm 3. The
convergence theory of the algorithm is studied in Theorem 2, whose proof

is given in the supplement.

Theorem 2. We consider a dynamic system with t = 1,2,...,T stages.
Let mp = w(x¢|yr4) denote the filtering distribution at stage t. Suppose

Assumptions S1-S8 (given in the supplement) hold, and Ny’s are larger

1

Tieeck © for some w € (0,1) and any
t

than certain threshold. If €. o<
ke {1,2,...,K}, then uniformly with dominating probability, for any t €
{1,2,...,T}, x?,zc follows a probability law 7, and limy_,oo Wa (7, m) = 0,

where Wy (-, -) denotes 2-Wasserstein distance between two distributions.
Regarding Algorithm 3 and Theorem 2, we have a few remarks.

Remark 1. (On asymptotic regime) Theorem 2 studies the convergence

15



Algorithm 3 LEnKF for Data Assimilation Problems

Initialization: Initialize an ensemble {7} 0> T 0, ..., 27 } of size m by
drawing from the prior distribution 7(x1). Set /'\ft 0fort=1,2,...,T;
set the learning rate sequence {ey : t = 1,2,...,7, k = 1,2,...,K},
where K denotes the number of iterations performed at each stage; and
set kg as the common burnin period of each stage.
fort=1to T do
for k=1to K do
(i) Subsampling: Draw a mini-batch sample v from the set
{1, OB} Set Qi = €y, Ry = 2V, and the Kalman gain
matrix Ky, = QueHE (HyxQueHYy, + Re) ™!
for i =1 to m do
(ii) Importance resampling: If ¢ > 1, calculate importance
weights wi )y ; = m(2y5 4 [Te-15) = (aty_159(24-1,), Uy) for j =
1,2,...,|X,_1|, where ¢(-) denotes a Gaussian density, and z;_1 ; €
X,_1 denotes the jth sample in X,y if k = 1, set 2y = g2, o)+
uf' and uf' ~ N(0,U,). Resample s € {1,2,...,]X,_1|} with a
probability oc w,f’kfl’s, ie., P(Sipi=s)= wtk 1 s/ Z‘Xt 1l W;kq,ja
and denote the sample drawn from X;_; by xt—l,k—l
(111) Forecast: Draw wj, ~ N, (O *Quk). Ift =1, set x{,ﬁ =

Tl 1~ ko V1og 7T<£Ctk O+ wtk, Where 7(+) denotes the prior

ng — a, 7
distribution of 1 otherwise, set xt r =T ko Uy Yz k1

9(%-1,/&-1)) + wt,k' .
(iv) Analysis: Draw v;, ~ N,(0, &+ R;) and set

f:i A
$t r = xt k '+ K k(Y — Hypay) — vt,k)

N A
= afy + Koy — ulh).

(v) Sample collection: If k£ > kg, add the sample x?,z into the
set A;.
end for
end for
end for
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of Algorithm 3 under the asymptotic regime that the number of iterations
performed at each stage (i.e., K) diverges. Such a result is in parallel to the
convergence theory of sequential Monte Carlo as the number of particles
increases to infinite (see e.g., Beskos et al., 2016; Crisan and Doucet, 2000).
Under this asymptotic regime, we are able to provide a rigorous study for
the convergence of the algorithm; in particular, we are able to account for
the approximation error of 7; to m; for each stage t in establishing the
convergence of the algorithm. See equations (52.27), (52.29) and (52.31) of

the supplement for the detail.

Remark 2. (On sample degeneracy) It is known that sample degeneracy is
an inherent default of sequential importance sampling (Cappé et al., 2004),
especially when the dimension of the system is high. When it occurs, the
importance weights concentrate on a few samples, the effective sample size
is low, and the resulting importance sampling estimate is heavily biased.
Fortunately, LEnKF is essentially immune to this issue. In LEnKF, the
importance resampling procedure is to draw from X;_; a particle which
matches a given particle z; in state propagation such that the gradient
V., log m(x¢|y14—1) can be reasonably well estimated, and this gradient es-
timate is then combined with the gradient of the likelihood function of the

new data y; to have x; updated. By (3.6), 7(x|y1.4—1) works as the prior
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distribution of z; for the filtering distribution m(z;|y;.1). Therefore, the
effect of the importance resampling procedure on the performance of the
algorithm is limited if the sample size IV, is reasonably large at each stage t.
In contrast, the importance resampling procedure in sequential importance
sampling is to draw a particle from X;_; and treat the particle as from the
filtering distribution 7(x;|y;.;). For high-dimensional problems, the overlap
between the high density regions of neighboring stage filtering distributions
can be very small, which naturally causes the sample degeneracy issue. In
summary, the importance resampling step of LEnKF aims to draw a sample
for the prior distribution m(x|y;.¢—1) used at each stage ¢, while that of se-
quential importance sampling aims to draw a sample for the target filtering
distribution 7(z|y1.4). Therefore, LEnKF is less bothered by the sample
degeneracy issue than sequential importance sampling. Refer to Section

S1.2 for a numerical illustration on this issue.

Remark 3. (On uncertainty quantification) LEnKF is run in ensemble
which provides a convenient way for uncertainty quantification. At each
stage and for each chain, the state can be estimated by averaging over iter-
ations as prescribed for the SGLD estimator in Teh et al. (2016) (weighted
version) or Song et al. (2020) (unweighted version). The state estimates can

then be further averaged over the chains. It is easy to see that the central

18



limit theorem holds for this chain-averaged estimator approximately given
the weak dependence between different chains, and uncertainty quantifica-

tion can be made accordingly.

Finally, we note that as implied by Theorem 1, Algorithm 3 is essentially
a sequential pre-conditioned SGLD sampler. As implied by the proof of
Theorem 2, a lower approximation error (measured in Wy (7, m;)) obtained
at one stage of LEnKF helps to reduce the approximation error of the next
stage, and the approximation error becomes negligible as the number of

stages increases.

4. Numerical Studies

4.1 Bayesian variable selection for large-scale linear regression

Consider the linear regression

Y =273 +c¢, (4.1)

where Y € RY is the response, Z = (Zy, Zs, ..., Z,) € R¥*P are covariates,
B € RP and € ~ N(0,Iy). An intercept term has been implicitly included
in the model. We generate ten datasets from this model with N = 50, 000,

p = 2,000, and B = (B1,5s,....5,) = (1,1,1,1,1,—1,—1,—1,0,...,0).
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That is, the first 8 variables are true and the others are false. Each variable
Z; has a marginal distribution of N (0, Iy), but they are mutually correlated
with a correlation coefficient of 0.5.

To conduct Bayesian analysis for the model, we consider the follow-
ing hierarchical mixture Gaussian prior distribution which, with the latent

variable & € {0, 1}, can be expressed as

Bil& ~ (1= &)N(0,77) + &N (0,73),
(4.2)

P=1)=1-P(&=0) = po,
for i = 1,2,...,p. Such a prior distribution has been widely used in the
literature of Bayesian variable selection, see e.g. George and McCullloch
(1993). To apply LEnKF to this problem, we first integrate out &; from the

prior (4.2), which leads to the marginal distribution

Bi ~ (1= po)N(0,72) + poN(0,72), i=1,2,...,p,

such that the log-prior density function log w(3) is differentiable. Algorithm
2 is applied to simulate from the posterior 7(8|Y, Z). In the simulation,
we set pg = 1/p = 0.0005, 72 = 0.01 and 73 = 1 for the prior distribution,

and set the ensemble size m = 100, mini-batch size n = 100, and learning
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rate €, = 0.2/ max{tg, t}°%, where t; = 100. As implied by Lemma S6, the
convergence of LEnKF suffers from an elbow phenomenon with respect to
the mini-batch size, i.e., an extremely large mini-batch size will not lead
to a much better convergence rate than a reasonably large one. On the
other hand, as analyzed in Section 3.1, a large batch size can significantly
increase the CPU cost of the algorithm. Therefore, a reasonably large
value of n is preferred for LEnKF. For this example, we have attempted
n = 100, n = 200, n = 500, and n = 1000 and found that n = 100 can
lead to comparable results as the other three but with shorter CPU time.
Algorithm 2 was run for 10,000 iterations, which cost 375 CPU seconds on
a personal computer with 2.9GHz Intel Core i7 CPU and 16GB RAM. All
computation reported in this paper were done on the same computer.

To accomplish the goal of variable selection, we consider the factor-
ization of the posterior distribution 7(3,&|Y, Z) < n(Y'|3, Z)n(B|&)w(€),
where £ = (&1,&,...,&,). By assuming that §;’s and ;’s are a priori inde-

pendent, we are able to draw posterior samples of £ from the distribution:

W(éti:”ﬂti;YaZ): ) Z.:]-uz)"'apa (43>

where a;; = 22 exp(—[2%/273), by = 1;% exp(—f%/27¢), and B;; denotes the
posterior sample of §; drawn by Algorithm 2 at stage t. Here we denote by
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B, = (Bu, Br2, - - -, Brp) a posterior sample of 3 drawn by Algorithm 2 at the
analysis step of stage t.

Figure 1 summarizes the variable selection results for one data set. The
results for the other data sets are similar. Figure 1(a) shows the sample tra-
jectories of 1, Ba, ..., By, which are averaged over the ensemble along with
iterations. All the samples converge weakly to their true values in 100 iter-
ations, taking about 3.7 CPU seconds. This is extremely fast! Figure 1(b)
shows the marginal inclusion probabilities of the covariates Z1, Zs, ..., Z,.
From this graph, we can see that each of the 8 true variables (indexed 1-
8) has a marginal inclusion probability close to 1, while each of the false
variables has a marginal inclusion probability close to 0. Figure 1(c) shows
the scatter plot of the response variable and its fitted value for the training
data, and Figure 1(d) shows the scatter plot of the response variable and
its predicted value for 200 test samples generated from the model (4.1). In
summary, Figure 1 shows that LEnKF is able to identify true variables for
large-scale linear regression and, moreover, it is extremely efficient.

For comparison, SGLD (Welling and Teh, 2011), preconditioned SGLD
(pSGLD, Li et al., 2016), and stochastic gradient Nosé-Hoover thermostat
(SGNHT, Ding et al., 2014) were applied to this example. For these al-

gorithms, their learning rates have been tuned to their maximum values
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Figure 1:  LEnKF for large-scale linear regression: (a) Trajectories of

Biy. .., By, where By =--- =35 =11, fg=--- = fg = —1, and ffg = 0 (yel-
low line). (b) marginal inclusion probabilities of all covariates Zi, ..., Z,,

where the first 8 high bars represent 73, Zs, ..., Zg; (c) scatter plot of YV
versus the fitted value for training samples; and (d) scatter plot of Y versus
the predicted value for test samples.

such that the simulation converges fast while not exploding, and their iter-
ation numbers have been adjusted such that they cost about the same CPU
time as LEnKF. Refer to the supplement for their settings. Figure 2 com-
pares the trajectories of (51, fa, . .., B9) produced by the four algorithms in
their first 5% iterations. It indicates that LEnKF can converge significantly
faster than SGLD, pSGLD and SGNHT for this example, which can be ex-

plained as the advantage of preconditioning of LEnKF. The full trajectories
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Figure 2: Trajectories of (f1, (2, ..., fs) produced by SGLD (upper), pS-
GLD (upper middle), SGNHT (lower middle), and LEnKF (lower) for a
large-scale linear regression example in their first 5% iterations.
by these algorithms are shown in Figure S1 of the supplement.

Since LEnKF is a parallel preconditioned SGLD algorithm, we have
also compared it with parallel SGLD, pSGLD and SGNHT. The results are
presented in the supplement. The comparison shows a much larger margin
that LEnKF significantly outperforms parallel runs of these algorithms. Re-

call that LEnKF has the same computational complexity as parallel SGLD

as mentioned in Section 3.1.
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4.2 Uncertainty Quantification for the Lorenz-96 Model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to study
difficult questions regarding predictability in weather forecasting (Lorenz,
1996). The model is given by

da’
dt

:<Ii+1_$i72)xi71_xi+F7 221727 ],

1 1 0

where F' = 8, p = 40, and it is assumed that x= = 2P~ 2° = 2P, and
2Pt = 1. Here F is known as a forcing constant, and F' = 8 is a common
value known to cause chaotic behavior. In order to generate the true state
X, = (X},...,XP) for t = 1,2,...,T, we initialized X, by setting X} to
20 for all 7 but adding to X32° a small perturbation of 0.1; we solved the
differential equation using the fourth-order Runge-Kutta numerical method
with a time interval of At = 0.01; and for each 7 and ¢, we added to
X! a random noise generated from N(0,1). At each stage ¢, data was
observed for half of the state variables and masked with a Gaussian noise,
ie,y = H X, +¢ fort=12,...,T, where ¢ ~ N(0,1,/2), and H; is a
random selection matrix. Figure 3 shows the simulated path of the partial

state variables (X}, X7, X?) for ¢ = 1,2,...,T, whose chaotic behavior

indicates the challenge of the problem.
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Figure 3: Chaotic path of the partial state variables (X}, X2, X?) for t =
1,2,...,100, simulated from the Lorenz-96 Model.

Algorithm 3 was applied to this example with the ensemble size m = 50,
the iteration number K = 20, kg = K /2, and the learning rate €, 5, = 0.5/k%9
for k = 1,2,..., K and t = 1,2,...,T. At each stage t, the state was
estimated by averaging over the ensembles generated at iterations kg +
1,kg+2,...,K. The accuracy of the estimate was measured using the root
mean-squared error (RMSE) defined by RMSE, = || X, — X¢||2/+/P, where
X, denote the estimate of X,. For comparison, EnKF was applied to this
example with the same ensemble size m = 50. To be fair, it was run in a
similar way to LEnKF except that the Kalman gain matrix was estimated
based on the ensemble, without the resampling step being performed, and
the random error being drawn from N (0, V;) in the step of analysis.

Figure 4 compares the estimates of X} produced by LEnKF and EnKF
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for one simulated dataset. The plots for the other components of X, are
similar. The comparison shows that LEnKF and EnKF produce comparable
RMSE,’s, while LEnKF provides better uncertainty quantification for the
estimates. Figure 4(a) shows that the confidence band by LEnKF covers
many states, but this is not the case for EnKF. This is consistent with the
existing result that EnKF is known to provide the optimal linear estimator
of the conditional mean (Law et al., 2016), but underestimate the confidence

intervals (Saetrom and Omre, 2013).

— Langevinized EnkF 3
— EnkF 2571 1
+ True States

Vvalue
Logarithm of RMSE
=
n

6 zb 4‘0 '0 160 0 20 40 60 80 100
State estimates along t?\e time

Figure 4: State estimates produced by LEnKF (red) and EnKF (green) for
the Lorenz-96 model along with ¢ = 1,2,...,100: (left plot) the estimates
of X2, where the true states are represented by ‘+’, the estimates are rep-
resented by solid lines, and their 95% confidence intervals are represented
by shaded bands; (right plot) log(RMSE,) along with stage ¢.

Figure 5(a) shows the coverage probabilities of 95% confidence inter-
vals produced by LEnKF and EnKF, where the coverage probability was
calculated by averaging over 40 state components of X; at each stage

t € {1,2,...,100}. Figure 5(b) shows the averaged coverage probabilities
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over 10 datasets. The comparison shows that LEnKF produces a faithful
coverage probability (closing to its nominal level), while EnKF does not.
This implies that LEnKF is able to correctly quantify uncertainty of the
estimates as ¢ becomes large. This is a remarkable result given high non-

linearity and dynamic nature of the Lorenz-96 model!
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Figure 5: Coverage probabilities of the 95% confidence intervals produced
by LEnKF (red) and EnKF (green) for Lorenz-96 Model for along with
stage t = 1,2,...,100: (left plot) results for one dataset; (right plot) results
averaged over 10 datasets.

Table 1 summarizes the results produced by the two methods on 10
datasets. For LEnKF', two choices of ky were tried. For each dataset, we cal-
culated the mean RMSE by averaging RMSE; over stages t = 21,22, ...,100.
Similarly, we calculated the mean CP by averaging CP,’s over the stages
t =21,22,...,100, where CP,; denotes the coverage probability calculated
for one dataset at stage t. Then their values were further averaged over 10

datasets and denoted by “Am-RMSE” and “Am-CP”, respectively. Table
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1 also reports the CPU time cost by each method. Compared to EnKF,
LEnKF produced slightly lower RMSE;’s, but much more accurate uncer-
tainty quantification for the model. LEnKEF also produced very good results
with ky = K — 1, and it cost much less CPU time than with ko = K/2.

Table 1: Comparison of the EnKF and LEnKF, where the averages over 10

independent datasets are reported with the standard deviation given in the
parentheses. The CPU time was recorded for a single run of the method.

LEnKF
k():IC/2 k():]C—l EnKF

Am-RMSE  1.702(0.0343) 1.714(0.0360) 1.722(0.0230)
Am-CP  0.948(0.0028) 0.947(0.0034) 0.460(0.0029)
CPU(s)  6.37(0.3942) 3.350(0.0807) 0.817(0.0426)

For EnKF, we have tried several larger ensemble sizes up to 2000, which
cost much longer CPU time than LEnKF, but EnKF can only get a coverage
rate about 70%. This is consistent with the result of Law et al. (2016) that

EnKF converges only to a mean-field filter but not the filtering distribution.

5. Extensions of LEnKF

This section discusses a few possible extensions of LEnKF with numerical

results reported elsewhere.
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5.1 Dynamic Systems with Unknown Parameters

Like EnKF, LEnKF is developed under the assumption that the dynamic
system contains no unknown parameters. Extension of LEnKF to the dy-
namic systems with unknown parameters can be done in different ways.

One way is with the EM algorithm (Dempster et al., 1977). Since
LEnKF is able to sample from the filtering distribution for given parame-
ters, the EM algorithm can be conveniently used for parameter estimation.
A related work is Aicher et al. (2019) where, however, the filtering distri-
bution is simulated with a traditional sequential Monte Carlo algorithm. It
lacks the necessary scalability for big data problems.

An alternative way is with an adaptive stochastic gradient MCMC al-
gorithm. Taking the model (3.2) as the example again: If the propagator
H,; or the observation noise covariance matrix contain unknown parameters,
then the parameters can be estimated in a recursive way. In this case, the

following parameter updating step can be added to Algorithm 2:

(iv) Parameter updating: Update parameters by the recursion ¥, =
(1 — a1 + ap(¥4_1, %), where 9 denotes the vector of unknown
parameters, {a;} is a pre-specified, positive, decreasing sequence sat-
isfying the conditions } , a; = co and >, a7 < oo, &} = (2, ..., z4™)
denotes the ensemble of samples at stage ¢, and ¢(9;_1, xf) is a map-
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ping driving to an estimate of 99 based on the ensemble x{.

By the theory of stochastic approximation (Robbins and Monro, 1951),
the mapping ¢(9;_1,xf) can be easily designed. With the parameter up-
dating step, LEnKF becomes an adaptive stochastic gradient MCMC algo-
rithm, where the target distribution varies from iteration to iteration. The
convergence of such an adaptive algorithm can be studied in a similar way
to Deng et al. (2019). Under appropriate conditions, we will be able to
show that as t — oo, 19, converges to the true parameters in probability
and xf converges weakly to the filtering distribution.

Finally, we note that use of the state-augmentation approach for pa-
rameter estimation is also possible. However, this approach applies only
to the case that the resulting covariance matrix 3, = $+(I — K H,;) is still
a constant matrix of the augmented state variable. Otherwise, the weak

convergence of x¢ to the filtering distribution will no longer be guaranteed.

5.2 Dynamic Systems with non-Gaussian Observations

In practice, we often encounter the problems where the response variable
follows a non-Gaussian distribution, e.g., multinomial or Poisson. LEnKF
can be extended to these problems by introducing a latent variable. For

example, consider an inverse problem for which the latent variable model
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can be formulated as

zly ~ p(zly), y=nh(z)+n, n~N(OT), (5.1)

where z is observed data following a non-Gaussian distribution p(-), y is
the latent Gaussian variable, and x is the parameter. To adapt LEnKF to
simulating from the posterior distribution 7(x|z), we only need to add an
imputation step in Algorithm 2, between the forecast and analysis steps.
The imputation step is to simulate a latent vector y from the distribution
m(y|z, z) o p(z|ly)f(y|z). Since the imputation will lead to an unbiased
estimate for the gradient of the involved log-density function, the proposed
extension is valid, with which samples from the target posterior 7(z|z) can
be generated. A further extension of this algorithm to data assimilation

problems is straightforward.

5.3 Dynamic Systems with Nonlinear Measurement Equations

As indicated by Algorithm 3, LEnKF turns out to be a sequential pre-
conditioned SGLD sampler. At each stage, it aims to simulate from the
posterior distribution for a linear inverse problem with an appropriately

designed prior distribution for which the gradient of the log-density func-
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tion is estimated based on the samples simulated at the proceeding stage.
In the same vein, Algorithm 3 can be extended to the data assimilation
problems with nonlinear measurement equations, for which we only need to
figure out how LEnKF can be used for nonlinear inverse problems.

Consider the nonlinear inverse problem

y=6(z)+n, neN(@OT),

where y = (91,94 ,...,95)", T = diag[V,V,..., V] is a diagonal block ma-
trix, each block V is of size n X n, and N = Bn for some positive constant
B. To reformulate the problem in the central dynamic system (1.1), we

define an augmented state vector by an n-vector ~;:

Ty = (ZT7’7tT)T7 Tt = gt('z) + Ut, Uy ~ N(Ov OéV), (52)

where G;(-) is the mean response function for a mini-batch of data drawn
at stage ¢, and 0 < o < 1 is a pre-specified constant. In this paper, « is
called the variance splitting proportion.

Let m(z) denote the prior density function of z, which is differentiable
with respect to z. The conditional distribution of ~; is v|z ~ N(Gi(2), aV'),

and the joint density function of z; is then 7(z;) = 7(2)7(y:|2). Based on
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Langevin dynamics, a system identical to (3.2) (in symbol) can be con-

structed for the nonlinear inverse problem:

n
Ty = Ty + €=V logm(a_y) + wy

2N (5.3)
ye = Hywy + vy,

where wy ~ N(0, £Q;), Q: = €1y, p is the dimension of z,; H, = (0, I) such
that Hyzy = ;5 vy ~ N(0, (1 — a)V'), which is independent of w; for all ¢;
and y; is a random draw from {g1, %o, ..., U5}

With this formulation, LEnKF can be easily extended to simulate from
the posterior 7(z|y) for the nonlinear inverse problem. With the variance
splitting state augmentation approach and in the same vein of Algorithm
3, LEnKF can be further extended to the data assimilation problems with

nonlinear measurement equations.

6. Conclusion

This paper proposes LEnKF as a scalable particle filter by reformulating
EnKF under the framework of Langevin dynamics. LEnKF turns out to be
a sequential preconditioned SGLD algorithm but, like EnKF, its execution
is accelerated with a forecast-analysis procedure. LEnKF converges to the

right filtering distribution in 2-Wasserstein distance as the number of iter-
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ations per stage becomes large. LEnKF can be applied to state estimation
for both inverse and data assimilation problems, and uncertainty quantifi-
cation of the state estimates. LEnKF is not only scalable with respect to
the state dimension and sample size, but also tends to be immune to the

sample degeneracy issue suffered by conventional particle filters.

Supplementary Materials

The supplementary materials present the proofs of Theorem 1 and Theorem

2 and more numerical examples.
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