Selecta Mathematica (2022) 28:13 Selecta Mathematica
https://doi.org/10.1007/s00029-021-00726-2 New Series

®

Check for
updates

A vanishing conjecture: the GL, case

Tsao-Hsien Chen'

Accepted: 13 October 2021 / Published online: 4 December 2021
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection
may apply 2021

Abstract

In this article we propose a vanishing conjecture for a certain class of £-adic complexes
on a reductive group G which can be regarded as a generalization of the acyclicity
of the Artin—Schreier sheaf. We show that the vanishing conjecture contains, as a
special case, a conjecture of Braverman and Kazhdan on the acyclicity of p-Bessel
sheaves (Braverman and Kazhdan in Geom Funct Anal 1:237-278, 2002). Along the
way, we introduce a certain class of Weyl group equivariant £-adic complexes on a
maximal torus called central complexes and relate the category of central complexes
to the Whittaker category on G. We prove the vanishing conjecture in the case when
G = GL,.
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1 Introduction

The Artin—Schreier sheaf L, on the additive group G, over an algebraic closure of a
finite field has the following basic and important cohomology vanishing property

H¥(Gy, Ly) = 0.

If we identify G, as the unipotent radical U of the standard Borel B in SL,, then the
acyclicity of the Artin—Schreier sheaf above can be restated as follows. Lettr : SL, —
G, be the trace map and consider the pull back & = tr*L,,. For any x € SL,\B, we
have the following cohomology vanishing property

H(Ux, i*®) = 0. (1.1)

Here i : Ux — SL» is the natural inclusion map. Indeed, it follows from the fact that
the trace map tr restricts to an isomorphism Ux =~ G, for x € SLy\B.

In this article we propose a vanishing conjecture for a certain class of £-adic com-
plexes on a reductive group G generalizing the cohomology vanishing in (1.1), and
hence can be regarded as a generalization of the acyclicity of the Artin—Schreier sheaf.

We show that the vanishing conjecture implies a conjecture of Braverman and
Kazhdan on the acyclicity of p-Bessel sheaves [4] (Theorem 1.4 and Corollary 1.5)
and we prove the vanishing conjecture in the case G = GL,, (Theorem 1.6). Along
the way, we introduce a certain class of Weyl group equivariant £-adic complexes on a
maximal torus called central complexes and relate the category of central complexes
to the Whittaker category on G (or rather, the de Rham counterpart of the Whittaker
category).

The proof of the vanishing conjecture for GL,, generalizes the one in [8] for the
proof of Braverman-Kazhdan conjecture for GL,, using mirabolic subgroups. A new
ingredient here is a generalization of Deligne’s result of symmetric group actions on
Kloosterman sheaves to the setting of central complexes (Proposition 7.6).

We now describe the paper in more details.

1.1 Central complexes

Let k be an algebraic closure of a finite field kg with g-element of characteristic p > 0.
We fix a prime number ¢ different from p. Let G be a connected reductive group over
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k. Let T be a maximal tour of G and B be a Borel subgroup containing 7 with
unipotent radical U. Denote by W = T\ N (T) the Weyl group, where Ng (T') is the
normalizer of T in G. Let C(T') (@4) be the set consisting of characters of the tame étale
fundamental group 71 (T)" (see Sect. 4.1). For any x € G(T)(@e) we denote by L,
the corresponding tame local system on 7" (a.k.a the Kummer local system associated
to x). The Weyl group W acts naturally on C(T)(Q,) and for any x € C(T)(Q,) we
denote by W/, the stabilizer of x in W and W, C W/, the subgroup of W/, generated
by those reflections s, such that the pull-back (&)* L, is isomorphic to the trivial local
system, where & : G,, — T is the coroot associated to «. The group W, is a normal
subgroup of W;( and, in general, we have W, C W;( (see Example 4.1).!

Denote by Zw (T') the W-equivariant derived category of constructible £-adic com-
plexes on T. For any F € Zw(T) and x € C(T)(Q,), the W-equivariant structure
on JF together with the natural W; -equivariant structure on £, give rise to an action
of W;( on the étale cohomology groups H} (T, F @ L) (resp. H*(T, T ® L,)). In
particular, we get an action of the subgroup W, C W;( on the cohomology groups
above. Denote by signy, : W — {1} the sign character of W.

We have the following key definition.

Definition 1.1 A W-equivariant complex § € Zw(T) is called central (resp. *-
central) if for any tame character x € C(7)(Qy), the group W, acts on

HX(T,F®L,) (resp. HY(T,F®Ly))

via the sign character signyy.

Remark 1.1 The Verdier duality maps central objects to *-central objects and vice
versa.

Example 1.2 Consider the case G = SLy. Lettry : T ~ G, —» G, t — ¢ + 1
and consider F = tr“}Lw[l] with the canonical W-equivariant structure. We claim
that J is central. For this we observe that W, # e if and only if x is trivial. Thus
JF is central if and only if W acts on H}(T', &) by the sign character, equivalently,
the non-trivial involution o € W acts by —1 on H} (T, F). On the other hand, we
have HX(T', 3)° ~ H} (G4, Ly ® (tr7,1Q¢)?) =~ Hi (G4, Ly) = 0 and it implies J is
central.

ExampLe 1.3 Using Mellin transforms in [11], one can associate to each W-orbit 6 in
C(T)(Qy) a tame central local system on T (see Sect. 4.5).

1.2 Statement of the vanishing conjecture
We have the induction functor

nd§ 5 : 2(T) - 2(G)

! The group Wy plays an important role in the study of representations of finite reductive groups and
character sheaves (see, e.g., [14]).
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between the derived categories of £-adic sheaves on T and G. For F € Zw(T), the
W-equivariant structure on F defines a W-action on Ind?C 5 (&) and we denote by

Py :=Indf_p(HV

the W-invariant factor in Ind(T; CB () (see Sect. 3.2). We propose the the following
conjecture on acyclicity of ® g over certain affine subspaces of G, called the vanishing
conjecture:

Conjecture 1.2 Assume F € Pw(T) is central (resp. x-central). For any x € G\B,
we have the following cohomology vanishing

H!(Ux,i*®5) =0 (resp. H*(Ux,i'®g) = 0) (1.2)

where i : Ux — G is the natural inclusion map. Equivalently, the complex m (P )
(resp. 7. (Pg)) is supported on the closed subset T = U\B C U\G. Herew : G —
U\G is the quotient map.

Remark 1.4 Note that the Verdier duality D interchanges central objects with *-central
objects and H (Ux, i*®g) is dual to H*(Ux, i'D® ). Thus the conjecture above for
central objects implies the one for x-central objects and vice versa.

Remark 1.5 The acyclicity of Artin—Schreier sheaf is an essential ingredient in the
proof that the £-adic Fourier transform is a ¢-exact equivalence of categories. This
property of ¢-adic Fourier transform had found several applications in number theory
and representation theory. We expect the vanishing conjecture would also have appli-
cations in number theory and representation theory (see Sects. 1.3 and 1.4 below for
applications in the Braverman-Kazhdan conjecture).

Remark 1.6 Denote by % (G) the G-conjugation equivariant derived category on G
and by 2y (U\G), the Hecke category of U-equivariant derived category on U\G.
Let 7 : G — U\G be the quotient map. The push-forward ) induces a functor

m 1 96(G) — Yy (U\G),

and it is known that for any M € % (G), the image of m;(M) € Py (U\G) carries
a canonical central structure, that is, we have a canonical isomorphism (M) % G ~
G x my(M) for any G € Py (U\G) (here % is the convolution product on the Hecke
category with respect to shriek push-forward). It follows from Conjecture 1.2 that, for
any central complex F, we have 1(®g) ~ F (as plain objects in Z(T)). In particular,
itimplies that any central complex JF carries a canonical central structure. This explains
the origin of the name “central complexes”.

Example 1.7 Let § = tr7.Ly[1] be as in Example 1.2. We claim that &g =~
tr* Ly [dim SL5]. Indeed, both complexes are isomorphic to the IC-extensions of their
restrictions to the regular semi-simple locus SLS, and using the fact that Grothendieck-
Springer simultaneous resolution (7.1) is a Cartesian over SLY, it is easy to show that
PglsLy ~ tr* Ly [dim SL; ]| SLE- Thus the vanishing conjecture becomes (1.1), which
is exactly the acyclicity of Artin—Schreier sheaf.
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1.3 Braverman-Kazhdan conjecture

We recall a construction, due to Braverman and Kazhdan, of p-Bessel sheaf ®¢ ,

attached to a r-dimensional complex representation p of the complex dual group G.
Let p : G — GL(V,) be such a representation. The restriction of p to the maximal

torus T is diagonalizable and there exists a collection of weights
k={A1, s A} C X(T) := Hom(T', C*)
such that there is an eigenspace decomposition
r
v, =P,
i=1

of V,, where T acts on V;,; via the character A;. One can regard A as collection of
co-characters of 7' using the the canonical isomorphism X‘(T) ~ X, (T), and define

&7, = pthr*Llp[r] @’},p = prl,*tr*ﬁlp[l’]

where

r r
pr; = l_[)‘f G, — T, tu:G, — Gg (x1,.0,x,) = in.

i=1 i=1

It is shown in [5], using Deligne’s result about symmetric group actions on hyper-
geometric sheaves (see Proposition 5.2), that both &7, and &7 , carry natural
W-equivariant structures and the resulting objects in Zw(T'), denote again by &7,
and @“;, o are called p-Bessel sheaves on 7.2 The p-Bessel sheaves on G attached to
0, denoted by ®¢ , and <I>>g’p, are defined as

PG, = Ind?cB(q’T,p)w *G,p = Indch(cD*}yp)W.
In [4, Conjecture 9.12], Braverman-Kazhdan proposed the following conjecture on
acyclicity of p-Bessel sheaves over certain affine subspaces of G:

Conjecture 1.3 Let @, (resp. CD*G’ 0 ) be the p-Bessel sheaf attached to a represen-

tation p : G — GL(V),) of the dual group. Then for any x € G\B, we have the
following cohomology vanishing

H} (Ux,i*®g,p) =0 (resp. H*(Ux,i'®f; ) =0) (1.3)

2 In [4,5], the authors called @7, y-sheaves on T. However, based on the fact that the classical y-function
is the Mellin transform of the Bessel function, we follow [17] and use the term p-Bessel sheaves instead of
y-sheaves.
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where i : Ux — G is the natural inclusion map. Equivalently, the complex m/(®g )
(resp. n*(dﬁé’p)) is supported on the closed subset T = U\B C U\G. Heremw : G —
U\G is the quotient map.

Remark 1.8 In loc.cit. Conjecture 1.3 was stated for those representations p with o -
positive weights (see Sect. 5.1 for the definition of o -positive weights). It is shown
in [5,8] that, under this positivity assumption, the p-Bessel sheaves ®¢ , and Cb’&’ 0
(resp. 7, and CD’;’p) are in fact perverse sheaves and we have &g , ~ d>5p (resp.
b7, > @*}’ p) (see Proposition 5.1). This is a generalization of Deligne’s theorem on
Kloosterman sheaves [9]. We will see below that the vanishing conjecture (Conjec-
ture 1.2) implies the Braverman-Kazhdan conjecture for p-Bessel sheaves attached to
arbitrary representation p of the dual group G.

Remark 1.9 For a motivated introduction to the Braverman-Kazhdan conjecture and
its role in the Langlands program see [4,5,17]

1.4 Main results

The following is the first main result of the paper. Let &7 , (resp. dD’}’ p) be the p-
Bessel sheaf on 7 attached to a representation p : G — GL(V,) of the dual group.

Theorem 1.4 For any tame character x of T, the stabilizer subgroup W;( acts on
HX(T,®7,®L,) (resp. H (T, Cb’}’p ®Ly)

via the sign character signy,. In particular, the p-Bessel sheaf @1 , (resp. ®%, p) is
central (resp. *-central)

Corollary 1.5 Conjecture 1.2 implies Conjecture 1.3

Remark 1.10 Theorem 1.4 and Corollary 1.5 put the Braverman—Kazhdan conjecture
in a wider context: it is a special case of a more general vanishing conjecture whose
formulation does not involve representations of the dual group.

Here is the second main result of the paper.
Theorem 1.6 Conjecture 1.2 is true for G = GL,,.
Now Corollary 1.5 immediately implies:
Corollary 1.7 Conjecture 1.3 is true for G = GL,,.

Conjecture 1.3 for GL,, was proved by Cheng and Ng6 [8, Theorem 2.4] under
some assumption on p. The proof of Conjecture 1.2 for GL,, and hence Conjecture
1.3 for GL,, and arbitrary p, follows the one in [8] using mirabolic subgroups. How-
ever, in order to deal with the more general case of central complexes, one needs
a new ingredient: a generalization of Deligne’s result of symmetric group action on
hypergeometric sheaves to the setting of central complexes (see Proposition 7.6).
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The discussions in the previous sections have obvious counterpart in the de Rham
setting, where Artin—Schreier sheaf L is replaced by the exponential D-module e*
and ¢-adic sheaves are replaced by holonomic D-modules. The proof of the main
results that will be given in this paper is entirely geometric and hence can be also
applied to the de Rham setting.

1.5 Whittaker categories

The de Rham counterpart of the category of x-central perverse sheaves on 7, to be
called the category of *-central D-modules on 7', also appears in the recent works
of Ginzburg and Lonergan [10,13] on Whittaker D-modules, nil Hecke algebras, and
quantum Toda lattices. To be specific, in loc.cit. the authors proved that the category
of Whittaker D-modules on G, denoted by Whit(G), is equivalent to a certain full
subcategory of the category of W-equivariant D-modules on 7. It turns out that,
as proven in [7, Theorem 1.8], the latter full subcategory, and hence the Whittaker
category Whit(G), is equivalent to the category of x-central D-modules on 7. It
would be interesting to establish similar results in the £-adic setting and use it to give a
description of ¢-adic counterpart of the Whittaker category in terms of W-equivariant
sheaves on the maximal torus 7.

The equivalence between Whit(G) and the category of x-central D-modules on 7
gives rise to a functor Whit(G) — D-mod(G\G), where D-mod(G\ G) is the category
of G-conjugation equivariant D-modules on G. In [3], Ben-Zvi and Gunningham gave
another construction of a functor from Whit(G) to D-mod(G\ G) and they conjectured
that the essential image of their functor satisfies the same acyclicity in (1.2), see [3,
Conjecture 2.9 and 2.14]. Our results might be useful for studying their conjecture.

1.6 Recent developments

In the recent work [7], we established the vanishing conjecture for general reductive
group G and hence, by Corollary 1.5, the Braverman-Kazhdan conjecture for almost
all characteristics. The proof given in loc. cit. is different form the one given here: it
first established the vanishing conjecture in the de Rham setting using the theory of
Harish-Chandra bimodules and character D-modules and then deduced the positive
characteristic case using character sheaves in mixed-characteristic and a spreading out
argument. The proof makes use of Harish-Chandra bimodules and hence is algebraic.
It will be interesting to have a geometric proof of the vanishing conjecture for general
reductive groups, like the proof given here for GL,,, which treats the case of various
ground fields and sheaf theories uniformly.

In the recent work [15], G. Laumon and E. Letellier established the function theo-
retical version of Braverman-Kazhdan conjecture for all reductive groups G.

3 An question raised by V.Drinfeld according to [10, Section 1.5].
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1.7 Organization

We briefly summarize here the main goals of each section. In Sect. 2 we collect standard
notation in algebraic geometry and ¢-adic sheaves. In Sect. 3 we study induction
and restriction functors for £-adic sheaves on reductive groups. In Sect. 4 we give a
characterization of central complexes using the £-adic Mellin transform and use it to
construct examples of tame central (resp. x-central) local systems on 7. In Sect. 5 we
prove Theorem 1.4. In Sect. 7 we prove Theorem 1.6.

2 Notations

In this article & will be an algebraic closure of a finite field ko with g-element of
characteristic p > 0. We fix a prime number ¢ different from p.

For an algebraic stack X over k, we denote by Z(X) = Df(x, Qy) the bounded
derived category of constructible £-adic complexes on X. For a representable mor-
phism f : X — Y, the six functors f*, fx, fi, g!, ®, Hom are understood in the
derived sense. For a k-scheme X, sometimes we will write RI" (X, @e) = f*@e (resp.
RT(X,Q,) = £iQ,), where f : X — Spec k is the structure map.

For an algebraic group H over k acting on a k-scheme X, we denote by H\X,
the corresponding quotient stack. Consider the case when H is a finite group. Then
the pull-back along the quotient map X — H\X induces an equivalence between
2(H\X) and the (naive) H -equivariant derived category of £-adic complexes on X,
denoted by 2y (X), whose objects consist of pair (F, ¢), where F € Z(X) and
¢ : a*F >~ pr*F is an isomorphism satisfying the usual compatibility conditions (here
a and pr are the action and projection map from H x X to X respectively).* We will call
an object (F, ¢) in Zy (X) a H-equivariant complex and ¢ a H-equivariant structure
on ¥. For simplicity, we will write F = (&, ¢) for an object in Zy (X).

The category Z(X) has a natural perverse ¢-structure and we denote by 2(X)”
the corresponding heart and ”t<,,” 7>, the perverse truncation functors. For any
F e P(X), the n-the perverse cohomology sheaf is defined as P77 (F) =
P12, P 1< (F)[n].

We will denote by G, the additive group over k and G, the multiplicative group
over k. We will fix a non-trivial character ¢ : F, — @Z and denote by Ly the
corresponding Artin—Schreier sheaf on G,.

3 Induction and restriction functors

Let G be a connected reductive group over k. Let T be a maximal torus of G, B a
Borel subgroup containing 7 with unipotent radical U. We denote by W = T\ Ng (T)
the Weyl group of G, where Ng(T) is the normalizer of T in G. We denote by
sign = prsigny € Zw(T) the pull back of the sign representation signy, of W

4 This holds in a more general situation when the neutral component of H is unipotent.
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(regarding as an object in Py (pt)) along the projection pr : T — pt. Throughout the
paper, we assume p does not divide the order of the Weyl group W.

3.2 Recall the Grothendieck-Springer simultaneous resolution of the Steinberg map
c:G— W\\T:

47
)
\

— S W\\T

Q<=—Q@

3.1

where G is the closed subvariety of G x G/B consisting of pairs (g, x B) such that
x~!gx € B.Themap éis givenby (g, x B) — g, and the map § is given by (g, x B) —
x'gx modU € B/U = T.Theinduction functorlnd?cB :9(T) - 2(G)is given
by

nd§_ (%) = &§*(P)[dim G — dim T.

We have the following equivalent construction of IndgC - Consider the fiber product
S = G xw\\r T. The diagram (7.1) induces a map

h:G—S=Gxwa\rT (3.2)

which is proper and small, and an isomorphism over §”* = G"* xw\\7 T"*. It follows
that - _ _
hQldim G] =~ j1,Q,[dim G] :=1C(S, Q) (3.3)

where j : §™ — S is the open embedding and ji, is the intermediate extension
functor. We have

nd§ (P = (pe)(p(F) ® IC(S, Qp))[—dim T] (3.4)

where py : S — T and pg : S — G are the natural projection map.
The functor Ind?C p admits a left adjoint Res(T;C g 1 9(G) — Z(T), called the
restriction functor, which is given by

Resfp(F) = (gp)ip ()

where ip : B — G is the natural inclusion and gp : B — T = U\B is the quotient
map. More generally, one could define ResfC p: 2(G) — Z(L), for any pair (L, P)
where L is a Levi subgroup of a parabolic subgroup P of G.

We have the following exactness properties of induction and restriction functors:

Proposition 3.1 [6, Theorem 5.4] (1) The functor Ind?C p maps perverse sheaves on

T to perverse sheaves on G. (2) The functor Resl(fC p maps G-conjugation equivariant
perverse sheaves on G to L-conjugation equivariant perverse sheaves on L.
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Remark 3.1 The proposition above generalizes well-known results of Lusztig’s on
exactness of induction and restriction functors for character sheaves [14].

3.1 W-action

Proposition 3.2 (1) Let F € Z(T). For every w € W one has a canonical isomor-
phism

Ind$_ 5(F) =~ Ind§_z(w*F).

(2) Let F € Dw(T). There is a natural W -action on Ind?cB(S’) € 2(G) and, for any
irreducible representation § : W — GL(V¢) of W, there is canonical direct summand

nd$_,(HVE € 2(G) (3.5)

ofIndch(EF) such that we have a W-equivariant decomposition in 2(G)

ndf p(H~ P Ve@hdf ,HVE 3.6)
(&, Ve)elr W

(3) Let F € Dw(T)® be a W-equivariant perverse sheaf. Then the direct summand
Ind?cB FWV-E in (3.6) is also a perverse sheaf.

Proof We have a W-action on § = G xw\\7 T given by (g,1) — (g, wt),w € W,
and the projection maps pg and pr form S to G and T are W-equivariant (for pg, the
W-action on G is the trivial action). Consider the following commutative diagram

(3.7)

where 7', py;, py are the natural quotient maps. Note that, since S"* is W-invariant,
the IC-complex IC(S, @g) = j*!@g [dim G] (here j : S — §) descends to the IC-
complex IC(W\S, Q,) on W\S, in particular, IC(S, Q,) is W-equivariant. It follows
from (3.4) that

Ind§ 5 (w*F) = (pe)(w* pj(F) ® IC(S, Qp))[— dim T] =~
~ (pe)(w* p}(F) @ w*IC(S, Qp))[— dim T]
~ (p)w*(p}(F) ®IC(S, Qp))[— dim T] =~
~ (pe)(pf(F) ®IC(S, Qp))[— dim T] =~ Ind§ 5 (F). (3.8)
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Part (1) follows.
LetF € 2w (T).Since w*F >~ Fforany w € W, we have a canonical isomorphism

33)
ay : ndS () = ndf_p(w*F) = mdS_ (),

and the assignment w — a,,, w € W defines a W-action on Ind(T;C 5 (F). Toshow (3.6),
we observe that

IC(S, Q) ~ () IC(W\S, Q).
and it implies

(@ NC(S, Qp) = (') (') IC(W\S, Q) =~ @ Ve ® IC(W\S, Q) ® Ve.s)
(€. Ve)elmW
(3.9)
where Ve s € Z(W\S) is the pull back of (¢, Vi) € RepW >~ Z(W\ pt)” along the
projection W\S — W\ pt.
Let ¥ € 2(W\T) be such that 7*F ~ F. Tt follows that

nd§ (P = (pe)i(ph(F) ®IC(S, Qp))[— dim T] =~
~ (p) (@ (@) (pp)*F ®IC(S, Qp))[—dim T']
~ (P ((P)*F ® (EDICES. Q) — dim T] =

~ P Viohdf @ NF
(&, Ve)elr W

where
nd$ MOV = (pe) ((Pp)*F @ IC(W\S, Q) ® V. s)[—dimT].  (3.10)
Part (2) follows. Part (3) follows from Proposition 3.1. O

Remark 3.2 Part (1) of the proposition generalizes [4, Theorem 2.5(3)].

Definition 3.3 For any W-equivariant complex & € 2w (T'), we will write

nd¢ 5 AV :=ndf OV = (P ((pp)*F @ ICW\S, Qp))[—dim T,
(3.11)
(here p&, P4 are the morphisms in (3.7)) for the summand in (3.5) corresponding to

the trivial representation (triv, Viiy = @@).

In the case when J is a W-equivariant perverse local system on 7, we have the
following description of (3.11): Let ¢”* : T — W\\T"® and ¢’* : G — W\\T"*
be the restriction of the maps in (7.1) to the regular semi-simple locus. As ¢"* is an
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étale covering, the restriction of F to 7" descends to a perverse local system F on
WA\T"* and we have

dS 5PV > jiu(*)*F[dim G — dim T].

Let P be a standard parabolic subgroup containing B and let L be the unique Levi
subgroup of P containing 7" with Borel subgroup By, = B N L. Let W, be the Weyl
group of L, which is naturally a subgroup of W.

Proposition 3.4 Let F € Zw(T)®. (1) We have a canonical isomorphism
Res{ - p o Indf 5 (F7) ~ Indyy, Indf 5 (F7)

which is compatible with the nature W-actions on both sides. (2) There is a canonical
isomorphism

Resyp o Indf 5V >~ Indf 5 (PN

Proof Part (2) follows from part (1) by taking W-invariants on both sides. Part (1) is
proved in [5, Theorem 2.7]. 5 |

4 Characterization of central complexes
4.1 The scheme of tame characters

Let 771 (T') be the étale fundamental group of T and let 7r1 (T)" be its tame quotient. A
continuous character x : 71(T) — @Z is called tame if it factors though 71 (T')!. For

any continuous character x : 71(T) — @Z , we denote by L, the corresponding rank
one local system on 7. A rank one local system £ on T is called tame if L ~ L, for
a tame character .

In [11], a Qp-scheme C(T) is defined, whose Q,-points are in bijection with tame
characters of 71 (7). There is decomposition

ey = || fxs}xem “.1)

XrECT)y

into connected components, where C(T) ; C C(T) is the subset consisting of tame
characters of order prime to ¢ and C(T), is the connected component of C(7) con-
taining the trivial character. It is shown in loc. cit. that C(T') is Noetherian and regular
and there is an isomorphism

C(T)¢ = Spec(Qy ®7z, Zel[x1, ..., x,11).

5 In loc. cit. the authors assumed F is irreducible with support a W-stable sub-torus in 7. This is because
the proof makes use of the isomorphism Ind(TicB(fr") o~ Ind?cB(w*?) which was constructed only for
those J satisfying the assumption above (see [4, Theorem 2.5(3)]). Now, with Proposition 3.2, the same
argument works for arbitrary W-equivariant perverse sheaves on 7'.
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In addition, the @g-points of C(T), are in bijection with pro-£ characters of 71 (T)
(i.e. characters of the pro-£ quotient 71 (T), of 1 (T)").

4.2 Thegroup W,

The Weyl group W acts naturally on C(T). For any x € C(T)(Q,) we denote by
W;( the stabilizer of x in W. Equivalently, W, is the group consisting of w € W
such that w*L, ~ L, . Let W, to be the subgroup of W;( generated by reflections s,
satisfying the following property: Let & : G,, — T be the coroot corresponding to c.
The pullback (a)*L, is isomorphic to the trivial local system on G,.

Example 4.1 Let G = SLy andlet x : 71 (T)" — {41} be the character corresponding
to the tame covering 7 — T, x — x2. Then we have W;( = Whbut W, = eis trivial.

4.3 Central complexes

Let F € Zw(T). For any tame character x € C(T)(Qy) the stabilizer Wg(, hence also
its subgroup W, , acts naturally on the étale cohomology groups H}(T, I ® L)
(resp. H*(T, Ir ® L,)).

Definition 4.1 A W-equivariant complex ¥ € 9w(T) is called central (resp. *-
central) if the following holds: for any tame character x € C(7)(Qy), the group
W, acts on

H(T,F®L,) (resp. H(T,F®L,))

through the sign character signy, : W, — {£1}.

4.4 Mellin transforms
In [11], the authors constructed the Mellin transforms

M, : 2(T) — D", (C(T))

coh

M, : 9(T) — D", (C(T))

coh

with the following properties:
(1) Let x € G(T)(@() and i, : {x} — C(T) be the natural inclusion. We have

RT(T, T ® Ly) = i ¥ M(F)
RU(T,F ® Ly) = i M. (F). 4.2)

(2) We have natural isomorphism D (M, (F)) =~ inv* M, (ID(F)).

(3) The functor M, is t-exact with respect to the perverse ¢-structure on Z(7T) and the
natural 7-structure on Dfoh (C(T)). Moreover, for any F € Z(T), F is perverse if
and only if M, () is a coherent complex in degree zero.
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(4) We have

My(F # F) = Mi(F) @ Mi(F)
Mo (F # F') 2= My (F) @ M (F)

where T F =m(TXRTF), FxF =m(FXRTF),andm : T x T — T is the
multiplication map.
(5) Forany x € C(T) s we have

M P lpnxe), =M (F & Lyler),-
(6) The Mellin transforms restricts to an equivalence
My, Mo 2 Z(Tmon = D2y (C(T)) ¢ 43)

between the full subcategory Z(T )mon of monodromic ¢-adic complexes on T
and the full subcategory Df i (C(T))  of coherent complexes on C(T) with finite
support.

The Weyl group W acts naturally on C(7") and it follows from the construction of
Mellin transforms that for € Zw (T'), the W-equivariant structure on F gives rise to
a W-equivariant structure on M;(F) (resp. M (F)), such that for any x € C(T)(@Q)p),
the isomorphism (4.2) above is compatible with the natural W;( -actions.

We have the following characterization of central complexes:

Proposition4.2 Let § € Dw(T) be a W-equivariant complex. The following are
equivalent:

(1) Fis central. o

(2) Forany x € C(T)(Qy) the action of W, on i; My(F ® sign) is trivial.
Assume further that W, = W;( forall y € C (T)(@(), then above statements are
equivalent to

(3) The restriction of the Mellin transfrom M(F ® sign) € ngh(G(T)) to each

connected component C(T )¢y, := {x s} x C(T)¢ of C(T) (see (4.1)) descends to
the quotient fo\\G(T)g’Xf.()

The same is true for *-central complexes if we replace M, by M.

Proof (1) < (2) follows from the property (1) of Mellin transform above. Assume
Wy =W/ forall x. Then forany x € €(T)¢,y, we have Wy = W/ C W;(f =Wy,
and it follows that the stabilizer of x in W, is equal to W, and (2) < (3) follows
from the descent criterion for coherent complexes in [16, Theorem 1.3]. m]

6 Note that G(T)Zq)(f is stable under the W f.—action.
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4.5 Examples of tame central local systems

Consider the quotient map 7, : C(T), — W, \\C(T)¢. Let 0 € C(T)(Q,) be the
trivial character and let D, = T, l(er (0)) be the scheme theoretic pre-image of

7, (0) for the map ,. We define fRﬁ‘('”' = ODX’ which is a W, -equivariant coherent
sheaf on C(T"),. Note that, as W, is normal subgroup of Wg( , the W;( -action on C(T')¢
descends to a Wg( -action on the quotient W, \\C(7T"), fixing 7, (0) and it follows that

W/, stabilizes Dy and fR?’(’”' has a canonical W/, -equivariant structure.

We will regard R%" as a coherent sheaf on €(T') supported at the component
C(T)¢ = {0} x C(T)¢ and define R, = m*)‘( (33‘)‘(’”) where m, : €(T) — C(T) be the
morphism of translation by y. Since m, intertwines the Wg( -action on C(T), R, is
W;( -equivariant, moreover, there is a natural isomorphism

wiRy ~ Rip-14 4.4)

forany w € W.” Thus for any W-orbit 6§ in C(T'), we have the following W-equivariant
coherent sheaf with finite support

Ry = P Ry

xeb

where the W-equivariant structure is given by the isomorphisms in (4.4).
Finally, we define the following W-equivariant perverse local systems on 7'

Eé = M!_l(ng) ® sign

Ep = M;l(fR(-)) ® sign .
Here Ml_l, M Iare the inverse of the Mellin transforms in (4.3).%
Lemma 4.3 €!9 is central and Ey is x-central.

Proof Since Ry is supported on 8~ = {x ~!|x € 8}, by Proposition 4.2, it suffices to
show that the action of W, -1 (note that W, -1 = W) on the fiber

L M(E) @ sign) = i MOV (89)) =ik Rg = 0% Ry

is trivial. Let C(T'), ,-1 C C(T') be the component containing x~!. Then the trans-
lation map m, restricts to a map my : C(T),, y-1 = C(T)¢, moreover, we have the

7 Indeed, we have w*Ry ~ w¥m} RUNE ~ % ] WERUN ~ % _1 3{“”11 =R _i_, where we use
XX wly X wlyTwmly wx
the observation that w_lWX w=W__; andhence w*RY" ~ R,
wTx X wly

8 Note that Ry has finite support and hence the inverse of the Mellin transform is well-defined by (4.3).
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following commutative diagram

C(T)pyt — = C(T);

lnl,xl lﬂ}(
m

W \\C(T )t ——= W \C(T)y

where 11y is the descent of m, . It follows that the restriction of Ry = m} 7Oz, (0) =

an*‘ 17'1; O, 0) to €(T)g 1 descends to W, -1 \\C(T'), , -1 and it implies the action
of W, -1 on i;,liRX is trivial. O

5 p-Bessel sheaves
5.1 Hypergeometric sheaves

Let A = {A1,...,Ar} C X((T) be a collection of possible repeated cocharacters.
Consider the following maps

tr pr
Gy «—G, —T

where tr(xy, ..., x,) = Y ;_; x; and pry (X1, oo Xp) = [T, %i(x;). Consider the fol-
lowing complexes:

D) = pr&,ltr*ﬁ;,/,[r], CDz = pr&’*tr*Lw[r] (5.1)
in D(T). Note that we have a natural forget supports map
P) — <I>z. (5.2)

Following Katz [12], we will call the complexes in (5.1) hypergeometric sheaves.
Leto : T — G,, be a character. A cocharacter A is called o-positive if (o, A) is
positive.

Proposition 5.1 Let L = {A1, ..., A} C Xo(T') be a collection of cocharacters.

(1) Assume that each X; is nontrivial. Then @, and ®} are perverse sheaves.

(2) Assume that each X; is o -positive. Then the map ®; — ®5 in (5.2) is an isomor-
phism and @), >~ ®F is a perverse local system over the image of p;, which is a
subtorus of T. B

Proof This is [5, Theorem 4.2], and [8, Appendix B] O

Example 5.1 For T = G, and A; = id : G,;, — G, for all i. Then each A; is o-
positive for o = id, and the corresponding perverse local system ®; on G,, is the
Kloosterman sheaf considered by Deligne in [9].
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Let S, be the subgroup of the symmetric group S, consisting of permutations t
such that for all i € {1, ..., r}, we have A;;) = A;. We have the following result due
to Deligne [9, Proposition 7.20]:

Proposition 5.2 The group S, acts on @) (resp. ®3) via the sign character sign, :
S, — {£1}. B

5.2 p-Bessel sheaveson T

We recall the construction of Braverm%n-Kazhdan’vs p-Bessel sheaves on T attached
to a representation of the dual group G. Let p : G — GL(V,) be a r-dimensional

complex representation of G. The restriction of p to T is diagonalizable and there
exists a collection of weights

k={Al, s A} C X(T) := Hom(T', C*)

such that there is an eigenspace decomposition
r
Vv, =P v,
i=1

of V,, where T acts on V), via the character A;.
We can regard A as collection of cocharacters of 7" using the the canonical isomor-
phism X*(7") >~ X,(T) and we denote by

&7, 1= Dy, CD“}’p = CDZ

the hypergeometric sheaves associated to A in (5.1). We will call them p-Bessel
sheaves.

Following [5] (see also [8]), we shall construct a W-equivariant structure on p-
Bessel sheaves. Let {A;, ..., A;,} be the distinct cocharacters appearing in A and m;
be the multiplicity of A;, € A. Let A;,, = {A;|A; = A;, }. Then we have {A{, ..., A,} =
A1 U ..U Ag. The symmetric group on r-letters S, acts naturally on {Aq, ..., A} and
we define S, = {0 € S,|0(A;) = A; for all i}. There is a canonical isomorphism

S). 2 Sy X -0 X Sy
Define S/L = {n € S;|such that, for all i, n(A;) = A,y fora t € Si}. We have a
natural map 7y : S, — Si sending 7 to r. The kernel of 7 is isomorphic to S, and

its image, denote by Sk, consists of T € Sg such that m; = mq(;). In other words,
there is a short exact sequence

O—>SL—>S’LE§S/¢,A—>O.
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Notice that the Weyl group W acts on {A;,, ..., A;, } and the induced map W — S
has image Si . So we have a map p : W — Si ,. Pulling back the short exact
sequence above along p, we get an extension W’ of W by S;

0—>S > W —->W-=0

where an element in w’ € W' consists of pair (w,n) € W x S/A such that p(w) =
7k (1) € Sk.p-

The group W' acts on G/, (resp. T') via the composition of the action of S, (reps.
W) with the natural projection W — S C S, (resp. W' — W) and the map
pry : Gj, — T and tr : G, — G, is W'-equivariant where W’ acts trivially on Gy.

Since ¢ , = prL,tr*L]/,[r] (resp. Cb’}’p = prb*tr*Ll/,[r]), the discussion above
implies for each w’ = (w, n) € W' there is an isomorphism

il/ul HLOY w*CDT,p
(resp. i, o7, = wrOT ). (5.3)

We define

iy = signy(w) sign, ()i, : &7, ~ w*Pr ,
(resp. iy = signy (w) sign, ()i, : CD"}’p o~ w*fbﬁ’p) (5.4)

where sign,. is the sign character of S,. It follows from Proposition 5.2 that the iso-
morphism i,y depends only on w. Denote the resting isomorphism by i,,, then the
data (®7 o, {iwlwew) (resp. (CD’;’p, {iw}wew)) defines an object in Zw (T') which, by
abuse of notation, we still denote by ®r_, (resp. <I>’;‘ p).

vaample 5.2 Consider the case G = GL, and p is the standard representation of
G = GL,(C). We have @7 , = tr*Ly[r] € Zw(T), where tr : G}, — G, is the
trace map.

6 Proof of Theorem 1.4

Recall the maps G, & G, ﬂ) T.Letx € @(G,’n)(@g) be a tame character. The
permutation action of S, on G}, induces an action of S, on €(G},) and let S, , be the
stabilizer of x in S,. The pullback tr*L is naturally S,-equivariant and we have a
natural S, , -action on the cohomology H*(G},, tr*Ly ® L) (resp. HX(G),, tr* Ly ®
Ly)).

Lemma 6.1 TheS, ,-actionon H:(G),, r* Ly, ®L ) is given bysign, : S, , — {£1}.
Proof Leto = (i, j) € S, , be asimple reflection. It suffices to show that o acts on

H*(Gj,, r*Ly, ® L) by —1, or equivalently, the o -invariant H} (G}, tr* Ly ® L,)°
is zero. Write L, = L; X ... X L,, where each Ly is a tame local system on G,,.
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Note that 0*L, ~ L, implies L; >~ L; := L. Consider the quotient map

q:G%—)J\\G,’n:Alemx 1_[ G,
ke{l,...rhk#i,j
given by

q(X1, .oy Xp) = (X; + Xj, Xi X}, H Xk
ke{l,..r} ki,

Using the fact that L X L >~ m™*L, where m : Gi — G, is the multiplication map,
we see that

Ly ® Ly >~ q*(Ly RLR Ly @ [ Lo).
ki, j

The permutation ¢ acts naturally on g, (tr*Ly, ® £,) and it follows from the isomor-
phism above that

(@(tr* Ly ® L))°
~ (geq*(Ly ML K (*Ly ® ]_[ L)) =Ly KLKE (tr'ly @ ]_[ Lr).
ki, j k#i, j
This implies

HY (G, "Ly @ L,)° ~H(0\\G, Ly RLK (r* Ly @ ]_[ L) =0
ki, j

where the last equality follows from the cohomology vanishing H¥ (A !, Ly) =0.The
lemma follows. O

To proceed, let x € C(T)(Q,) and let x' = prix € G(G;)(@g) be the pull back
of x. We have prj L, >~ L, and

H{ (T, @7 ,®Ly) = HI(T, pr; "Ly [r1®@L,) =~ HZ (G, " Ly [r1@L,) (6.1)

where the second isomorphism comes from the projection formula. Let w € W;( and
choose alift w’ = (w, n) € W’ of w. Note that the following diagram is commutative

o P
G, ——T

P

G, ——T
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It follows that n* L, ~ n*priL, ~ priw*L, >~ priL, ~ L,/ thatis, n € S, ,/.
Moreover, we have the following commutative diagram

HX(T, @7, @ Ly) ——=H{(G),, "Ly [r] @ L)

e A
HI(T, @1, ® Ly) ——=HIG),, tr* Ly [r1® L,)
where the horizontal arrows are the isomorphism (6.1), the left vertical arrow is the
isomorphism induced by the isomorphism the i/ , in (5.3), and the right vertical arrow
is the action of n on H}(G],, "Ly [r] ® L,/) coming from the S, ,/-equivariant
structure on tr*Ly [r] ® L. Therefore, by Lemma 6.1, we see that i;j/ = sign, (1)

and it follow from the definition of W-equivariant structure of p-Bessel sheaf in (5.4)
that the action of w on the cohomology group H}(T', @7 , ® L) is given by

iy = signy (w) sign, (n)i,, = signy (w) sign, (1) sign, (1) = signy (w).

The proof of Theorem 1.4 is complete.

7 Proof of Theorem 1.6

In this section we shall prove the vanishing conjecture for G = GL,,.

7.1 The GL;-example

Let us first consider the simple but important case G = GLy. Let F € Zw(T) be
a W-equivariant complex on 7 = an and let &5 = Ind?C B(S’“)W. Note that, for
x € G\B, the coset Ux C G™¢ consists of regular elements. Note also that the
Grothendieck-Springer simultaneous resolution is Cartesian over G™#:

Gree ~ Greg xw\r T = T
lg ‘
Gee < W\\T

(7.1)
All together, we obtain
H!(Ux, ®5) ~ HX(Ux, 6"V ~ H (Ux, FqFH)V

Under the identification W\\T =~ G, x G,,, the maps ¢ (resp. q) is given by c(g) =
(trg(g), det(g)) (resp. g(¢) = (trr(t), det(t))), and a direct calculation shows that ¢
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restricts to an isomorphism
c:Ux =G, xdet(x) C G, x Gy, @ WA\\T. (7.2)
Thus we have
Hi(Ux, @3) = H; (Ux, " g5 = )V |ger().» (7.3)

where m = prg, °q: T = an — G, (x,y) = xy. Asdet|g\p : G\B — Gy, is
surjective, it follows from (7.3) that H: (Ux, ®g) = Oforallx € G\B ifand only it W
acts on mJF via the sign character. We claim that the later property of m,J is equivalent
to F being central. Thus we conclude that HX(Ux, ®g) = 0 for all x € G\B if and
only if & is central. This completes the proof of the vanishing conjecture for GL;.

To prove the claim we observe that W acts on m,J via the sign character if and only
if imF)W = 0. By [11, Proposition 3.4.5], (m;F)V = 0 is equivalent to

H Gy PV @ L) ~HX Gy, mF QL)Y ~HNT, F@m* L)W =0 (7.4)

for all tame local system L’ on G,,. Note that we have W, # e if and only if £, ~
LKL ~ m*L for some tame local system L' on G, thus (7.4) is equivalent to the
condition that W, acts on H} (T, F ® L, ) via the sign character for any tame character
X, that is, F is central. The claim follows.

We shall generalize the proof above for GL, to GL,. The argument involves
mirabolic subgroups of GL,, as an essential ingredient.

7.2 Mirabolic subgroups

We recall some geometric facts about Mirabolic subgroups, established in [8], that
will be used in the proof of Theorem 1.6.°

Let V = A" be the standard n-dimensional vector space over k with the standard
basis ey, ..., e,. For any 1 < m < n We define F,, (resp. E,;) to be the subspace
generated by ey, ..., e, (r€sp. ep+1, ..., €n)-

Let Q be the mirabolic subgroup of G = GL(V) consisting of g € G fixing
the line generated by v := ej. Let Ug be the unipotent radical of Q. Consider the
Q-conjugation equivariant stratification of G

G=|]xn (7.5)
m=1

where X, the subset of G consisting of ¢ € G such that the span of the vectors
v, gV, g2v, ... 18 of dimension m.

9 As mentioned in loc. cit. the geometry of the conjugation action of Mirabolic has been described by
Bernstein in [1].
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Lemma 7.1 Consider the Chevalley quotient map ¢ : G — W\\T ~ A" ! x G,
c(x) = (ay, ..., ay) where t" 4+ ait" + - - - 4+ ay, is the characteristic polynomial of
x € G Let x € X,,. Then the map u — c(ux) — c(x) induces a linear isomorphism

Ug ~ A" x {0} c A" ! x G,

between Ug and the subspace of A"l x G,, defined by a, = 0. In particular, the
map c restricts to an isomorphism Ugx >~ A" {a,} € A x Gy,

Proof This is [8, Proposition 4.1]. O

Remark 7.1 The lemma above is a generalization of the isomorphism in (7.2) to the
setting of mirabolic subgroups.

Lemma7.2 Let x € X,,. There exists an element ¢ € Q such that gxq~" is of the

form
XF,, y
[ : XEJ 76)

where xg,, € GL(E,;), and xf, € GL(F,,) has the form of a companion matrix

00 ... 00 —ap
I 0 ... 0 0 —apn_
01 ... 00 —apa2
Xhp = . . . . . (7.7)
00 ... 10 -
100 ... 01 —a |
Proof Straightforward exercise in linear algebra. O

Let P,, be the parabolic group of G consisting of g such that gF,,, = F,,. Let L,
be the standard Levi subgroup of P,, and U,, be the unipotent radical of P,, consisting

of matrices of the form
- Idr, Um
=10 Idg,,

where u,, € Hom(E,,, F,;). Let U; and U,,_; be the subgroup of U,, consisting of
uy, as above with v,, € Hom(E,,, F1) and v,, € Hom(E,,, F,,_1) respectively.
Lemma?7.3 Let xp, € GL(Fy,) be a linear map such that, for any 1 < j < m,
xf, (Fj) C Fjt1 and the induced map Fj/F;_1 — Fjy1/F; is an isomorphism. Let
xg, € GL(Ey) be an arbitrary linear map. Then the action of Uy x U,,_1 on the
space of matrices of the form
_ | XFm Y
x = [ 0 ] (7.8)

xE’I’I

given by (uy, upy—1)x = um_lulxur;1_1 is simply transitive.\°

10 Note that Mm—lulxu,zl,l = ulum,lxu’;il.
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Proof This is [8, Lemma 3.2].!! o

Let Or,, = Lm N Q be a mirabolic subgroup of L,, and let Ug, be the unipotent
radical of Qy,, consisting of matrices

1 v 0
0 Id,_q 0
0 0 1d,—

where v = (vq, ..., vu—1) € A" is a row vector.

Lemma7.4 Let x € X, be as in (7.6) with xf,, being as in (7.7). The morphism
UpxUp_1 — UmUQme

given by (ug, up—1) — um_luqur;l_l is an isomorphism.

Proof This is proved in [8, p17]. O

7.3 Proof of Theorem 1.6

Lemma 7.5 Assume G = GL,,. If Conjecture 1.2 is true for perverse central sheaves
(resp. perverse x-central sheaves), then is it true for arbitrary central complexes (resp.
arbitrary x-central complexes).'>

Proof By Remark 1.4, it is enough to prove the statement for x-central complexes. By
induction on the (finite) number of non vanishing perverse cohomology sheaves, we
can assume the conjecture is true for x-central complexes in ? .@\[,?’b] (T),|la—b| <1.Let

Fe? .@{%’bH](T) be a *-central complex. We need to show that 7, @5 is supported
on T = U\B C U\G, where 7 : G — U\G is the quotient map. Consider the
following distinguished triangle

PryF — F — PPN F)—b—1]1— .

We claim that both P, F, ? #°+1(F) € Dy (T) are %-central. Applying the functor
Ind?C B (—)V to the above distinguished triangle, we obtain

¢l’r5b? - b5 — ¢I)%b+1(3)[—b —1]—-.

By induction, both 77, (Prr_,5) and 7. (Pp yp+1(g)) are supported on ' = U\B C
U\G and it implies 7, P is also supported on 7.

' There is minor mistake in the computation of ulumxu,;l in loc. cit.: is should be ulumxu,;l =

X VX Up—1XE — XFUp— - .

[({ yHuixg + mx IHE Fim l:|.The same proof goes through after this minor correction.
E

12 fact, the Lemma remains true without the assumption G = GL,,, see [7, Lemma 7.5].
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It remains to prove the claim. Let x y € C€(T) y and 1et C(T )¢, , = {x s} x C(T)¢ be
the corresponding component. Let g : C(T)¢,x, — Wy \\C(T)y,y, be the quotient
map. Note that for G = GL,, we have W, = W;( for all x and hence by Proposition
4.2, we have

M (F @ sign)lery,,, =475
fora§ e Dfoh(WXf\\(?(T)g,Xf). Since both M, and ¢* are exact, we have

Mo 2T @ sign)lea, ,, = 4" (=69), Ml A @ @ sign)leqr,
= g* (),

and by Proposition 4.2 again it implies 7 1<, J and ”.s#*+1(F) are x-central. The proof
is complete. O

Consider G = (]_[ : GLy,;) x GL;; with maximal torus 7' = (]_L?EJ T;) x T;, and
Weyl group W = (1_[,75 Wi x W Here W} denotes the symmetric group of degree
ng. Consider the following map

n:idxdet:T:(l—[Ti)ij—>T/:=(l_[T,~)xGm.
i#] i#]

The symmetric group W ; of degree nn ; acts on T' via the permutation action on the factor
T; and n is W j-invariant. Thus for any F € Zw(T) the push-forward 1,(F) carries
a natural W ;-action. We have the following generalization of Deligne’s result about
S,.-action on hypergeometric sheaves ®, (see Proposition 5.2) to central complexes.

Proposition 7.6 Let J be a central complex in Dw(T). Then the above W j-action on
m () is given by the sign character signy : W; — {£1}.

Proof 1t suffices to show that 7,(5)°=14 = 0 for any involution & € W j- By aresult
of Laumon [11, Proposition 3.4.5], it is enough to show that for any tame local system
L, on T” we have

HA (T, ()= @ L) =0.
Note that, for any such L,, we have
HE(T' ()77 @ L) = HI(T' mi(F) @ £,)7 7 = HE(T. T @ 0" L,) 7.
Since n*L, is a tame local system on 7 fixed by o, the central property of F implies
that the action of o on HX(T', F @ n*L X ) is not trivial, but through the sign charac-
ter. Thus we have HX (T, 7 ® n*L X)":‘d = 0 and the isomorphism above implies

HX (T, nm(F°=14 L) = 0 for all tame local system L, . The proposition follows.
O
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The following proposition generalizes [8, Proposition 5.1] to central complexes:

Proposition 7.7 Let G be a direct product of general linear group and let Q be a
mirabolic subgroup of G of the form

0 =[x 0; cG=[]aL,
i#] i

where Q j is the mirabolic subgroup of GLy;. Let F € Dw(T)® be a W-equivariant
central perverse sheaf on T. Then for any x € G\ Q, we have

Hj(UQx, i*®5)=0
where i : Ugx — G is the inclusion map.

Proof If n; = 1, then Q = G and the proposition holds vacuously. Assume n; > 2.
Consider the following stratification of G

nj

nj
G=|]xw=[](JICLw x X;m)
m=1

m=1 i#j
where X ,, C GLnj is the subset introduced in (7.5). We have Q = X, thus the
assumption x ¢ Q implies x € X,,, for some 2 <m < n;.

Consider the case x € X ;. Since X j ,; is contained in GL;ejg, the Grothendieck-
Springer simultaneous resolution implies a Cartesian diagram

Xn,- — (ITij GLn) x T;

C

Xp, — (ITij GLuy) x W\\T;
It follows that
Oy, = (@r, )N
where L; = ([;; GLy;) x Tj and &, 5 = Ind?" (FH)VLi . Consider the map

dety, =Id x o : (]—[ GLy,) x W \\Tj — (]_[ GL,,) x Gy, (7.9)
i#) i)

where o : W;j\\T; >~ GL, ,\\GL,; — Gy, is given by the determinant function on
GL,,. By Lemma 7.1, the restriction of ¢ to Ugx induces an isomorphism between
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Ugx and the fiber of (7.9) over the image detw; oc(x) of x. Thus, to prove the desired
vanishing, it is enough to show that

det;1(Pr, )™ = detw,1q1(®r, )" =0 (7.10)
where

det; = detw, og : Lj = (]_[ GLy,) x Tj — (]—[ GL,,) x Gy,
i#] i)

is the determinant map on the jth component. Consider the following Cartesian dia-
grams

Lj = ([Tiz; GLn) x Tj =<—— ([T;; GLa)) x Tj ——=T = ([T, T) x T} .
l detj=Id xdet l idxdet \L idxdet

L = ([1ij GLu) x G <——[Tiz; GLu; x G ——=T" = ([[;; ) x G

where the horizontal arrows are the map induced by the Grothendieck-Springer simul-
taneous resolution (see (7.1)). It follows that

. _ X L.
det; ®r, o = det; Indy’ (F) V1 Tz Wi~ g/ (57T Wi (7.11)
where
F' = (Id x det)|(F).

By Proposition 7.6, the action of W; on F is given by the sign character signy, :
W; — {%1}. Therefore, by (7.11), the action W on det; @, 5 is by the sign
character and we have

det;1(Pr; )™ =0

as for n; > 2 the sign character of W is non-trivial. This concludes the case when
xeX nj-

Consider the general case x € X,,, with2 <m < n;. By Lemma7.2, we can assume
the jth component xj € GL,; of x is of the form (7.6) with x; r being a companion
formin (7.7).Let P = []; +j GLn; x Py, denote the parabolic subgroup of G where Py,
is the parabolic subgroup of GL,,; introduced in Sect. 7.2. Let L = (I 2 GLp) X Ly,
and Up = (I—[i £ Id,;) x Uy, be the standard Levi subgroup of P and its unipotent
radical. We have x € P and let x;, be its image in L. Consider the mirabolic subgroup
Q1 of L with unipotent radical Ug, = ([]; %] Id,;) x Qr,,- By applying the result
obtained above to the case to L, we obtain

Hj(UQLxLy q>L,?|UQLXL) = 05
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where ®; 5 = Ind%(F)VL. Note that, by Proposition 3.4, we have ®; 5 =~
ResfC p P, and above cohomology vanishing implies

H: (UpUg, x, ®5upug, ) = 0. (7.12)

Using Lemma 7.4, we see that the map

Ug x ([[1dn; X Un—1) — UpUg, x
i#j

givenby (ug, um—1) = um—1 uqxur;1_1 is anisomorphism. Since ® g is G-conjugation
equivariant, (7.12) implies

H; (Ugx, ®5|yyx) = 0.

The proposition follows. O

We are ready to prove Theorem 1.6. Let G = GL, and let Q be the mirabolic
subgroup. Let F € Zw(T) be a central complex. We would like to show that
H!(Ux, ®g|yx) = 0 for x € G\B. By Lemma 7.5, we can assume J is a per-
verse sheaf. Consider the case x ¢ Q. Thenux ¢ Q forallu € U and, by Proposition
7.7, we have Hi (Ugux, @5|yyux) = 0. The desired vanishing HX(Ux, ®5|yy) =0
follows from the Leray spectral sequence associated to the map Ux — Ug\Ux. Now
assume x € Q. Let x; be the image of x in the standard Levi L of Q. Note that we
have x; ¢ By = BN L and

Hi(Ux, ®gly) = Hi(Up, x1, Resf @5y, ) = Hi(Up, X1, DL 51U, x,)

where U, is the unipotent radical of B; . Now, using Proposition 7.7, we can conclude
by an induction argument.
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