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Abstract
In this article we propose a vanishing conjecture for a certain class of �-adic complexes
on a reductive group G which can be regarded as a generalization of the acyclicity
of the Artin–Schreier sheaf. We show that the vanishing conjecture contains, as a
special case, a conjecture of Braverman and Kazhdan on the acyclicity of ρ-Bessel
sheaves (Braverman and Kazhdan in Geom Funct Anal I:237–278, 2002). Along the
way, we introduce a certain class of Weyl group equivariant �-adic complexes on a
maximal torus called central complexes and relate the category of central complexes
to the Whittaker category on G. We prove the vanishing conjecture in the case when
G = GLn .
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1 Introduction

The Artin–Schreier sheaf Lψ on the additive group Ga over an algebraic closure of a
finite field has the following basic and important cohomology vanishing property

H∗
c(Ga,Lψ) = 0.

If we identify Ga as the unipotent radical U of the standard Borel B in SL2, then the
acyclicity of the Artin–Schreier sheaf above can be restated as follows. Let tr : SL2 →
Ga be the trace map and consider the pull back � = tr∗Lψ . For any x ∈ SL2\B, we
have the following cohomology vanishing property

H∗
c(Ux, i∗�) = 0. (1.1)

Here i : Ux → SL2 is the natural inclusion map. Indeed, it follows from the fact that
the trace map tr restricts to an isomorphism Ux � Ga for x ∈ SL2\B.

In this article we propose a vanishing conjecture for a certain class of �-adic com-
plexes on a reductive group G generalizing the cohomology vanishing in (1.1), and
hence can be regarded as a generalization of the acyclicity of the Artin–Schreier sheaf.

We show that the vanishing conjecture implies a conjecture of Braverman and
Kazhdan on the acyclicity of ρ-Bessel sheaves [4] (Theorem 1.4 and Corollary 1.5)
and we prove the vanishing conjecture in the case G = GLn (Theorem 1.6). Along
the way, we introduce a certain class of Weyl group equivariant �-adic complexes on a
maximal torus called central complexes and relate the category of central complexes
to the Whittaker category on G (or rather, the de Rham counterpart of the Whittaker
category).

The proof of the vanishing conjecture for GLn generalizes the one in [8] for the
proof of Braverman-Kazhdan conjecture for GLn using mirabolic subgroups. A new
ingredient here is a generalization of Deligne’s result of symmetric group actions on
Kloosterman sheaves to the setting of central complexes (Proposition 7.6).

We now describe the paper in more details.

1.1 Central complexes

Let k be an algebraic closure of a finite field k0 with q-element of characteristic p > 0.
We fix a prime number � different from p. Let G be a connected reductive group over
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k. Let T be a maximal tour of G and B be a Borel subgroup containing T with
unipotent radical U . Denote by W = T \NG(T ) the Weyl group, where NG(T ) is the
normalizer of T inG. LetC(T )(Q�) be the set consisting of characters of the tame étale
fundamental group π1(T )t (see Sect. 4.1). For any χ ∈ C(T )(Q�) we denote by Lχ

the corresponding tame local system on T (a.k.a the Kummer local system associated
to χ ). The Weyl group W acts naturally on C(T )(Q�) and for any χ ∈ C(T )(Q�) we
denote by W′

χ the stabilizer of χ in W and Wχ ⊂ W′
χ , the subgroup of W

′
χ generated

by those reflections sα such that the pull-back (α̌)∗Lχ is isomorphic to the trivial local
system, where α̌ : Gm → T is the coroot associated to α. The group Wχ is a normal
subgroup of W′

χ and, in general, we have Wχ � W′
χ (see Example 4.1).1

Denote byDW(T ) theW-equivariant derived category of constructible �-adic com-
plexes on T . For any F ∈ DW(T ) and χ ∈ C(T )(Q�), the W-equivariant structure
on F together with the natural W′

χ -equivariant structure on Lχ give rise to an action
of W′

χ on the étale cohomology groups H∗
c(T ,F ⊗ Lχ ) (resp. H∗(T ,F ⊗ Lχ )). In

particular, we get an action of the subgroup Wχ ⊂ W′
χ on the cohomology groups

above. Denote by signW : W → {±1} the sign character of W.
We have the following key definition.

Definition 1.1 A W-equivariant complex F ∈ DW(T ) is called central (resp. ∗-
central) if for any tame character χ ∈ C(T )(Q�), the group Wχ acts on

H∗
c(T ,F ⊗ Lχ ) (resp. H∗(T ,F ⊗ Lχ ))

via the sign character signW.

Remark 1.1 The Verdier duality maps central objects to ∗-central objects and vice
versa.

Example 1.2 Consider the case G = SL2. Let trT : T � Gm → Ga, t → t + t−1

and consider F = tr∗TLψ [1] with the canonical W-equivariant structure. We claim
that F is central. For this we observe that Wχ 	= e if and only if χ is trivial. Thus
F is central if and only if W acts on H∗

c(T ,F) by the sign character, equivalently,
the non-trivial involution σ ∈ W acts by −1 on H∗

c(T ,F). On the other hand, we
have H∗

c(T ,F)σ � H∗
c(Ga,Lψ ⊗ (trT ,!Q�)

σ ) � H∗
c(Ga,Lψ) = 0 and it implies F is

central.

Example 1.3 Using Mellin transforms in [11], one can associate to each W-orbit θ in
C(T )(Q�) a tame central local system on T (see Sect. 4.5).

1.2 Statement of the vanishing conjecture

We have the induction functor

IndGT⊂B : D(T ) → D(G)

1 The group Wχ plays an important role in the study of representations of finite reductive groups and
character sheaves (see, e.g., [14]).
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between the derived categories of �-adic sheaves on T and G. For F ∈ DW(T ), the
W-equivariant structure on F defines a W-action on IndGT⊂B(F) and we denote by

�F := IndGT⊂B(F)W

the W-invariant factor in IndGT⊂B(F) (see Sect. 3.2). We propose the the following
conjecture on acyclicity of�F over certain affine subspaces ofG, called the vanishing
conjecture:

Conjecture 1.2 Assume F ∈ DW(T ) is central (resp. ∗-central). For any x ∈ G\B,
we have the following cohomology vanishing

H∗
c(Ux, i∗�F) = 0 (resp. H∗(Ux, i !�F) = 0) (1.2)

where i : Ux → G is the natural inclusion map. Equivalently, the complex π!(�F)

(resp. π∗(�F)) is supported on the closed subset T = U\B ⊂ U\G. Here π : G →
U\G is the quotient map.

Remark 1.4 Note that the Verdier dualityD interchanges central objects with ∗-central
objects and H∗

c(Ux, i∗�F) is dual to H∗(Ux, i !D�F). Thus the conjecture above for
central objects implies the one for ∗-central objects and vice versa.

Remark 1.5 The acyclicity of Artin–Schreier sheaf is an essential ingredient in the
proof that the �-adic Fourier transform is a t-exact equivalence of categories. This
property of �-adic Fourier transform had found several applications in number theory
and representation theory. We expect the vanishing conjecture would also have appli-
cations in number theory and representation theory (see Sects. 1.3 and 1.4 below for
applications in the Braverman-Kazhdan conjecture).

Remark 1.6 Denote by DG(G) the G-conjugation equivariant derived category on G
and by DU (U\G), the Hecke category of U -equivariant derived category on U\G.
Let π : G → U\G be the quotient map. The push-forward π! induces a functor

π! : DG(G) → DU (U\G),

and it is known that for any M ∈ DG(G), the image of π!(M) ∈ DU (U\G) carries
a canonical central structure, that is, we have a canonical isomorphism π!(M) ∗! G �
G ∗! π!(M) for any G ∈ DU (U\G) (here ∗! is the convolution product on the Hecke
category with respect to shriek push-forward). It follows from Conjecture 1.2 that, for
any central complex F, we have π!(�F) � F (as plain objects inD(T )). In particular,
it implies that any central complexF carries a canonical central structure. This explains
the origin of the name “central complexes”.

Example 1.7 Let F = tr∗TLψ [1] be as in Example 1.2. We claim that �F �
tr∗Lψ [dim SL2]. Indeed, both complexes are isomorphic to the IC-extensions of their
restrictions to the regular semi-simple locus SLrs

2 , and using the fact that Grothendieck-
Springer simultaneous resolution (7.1) is a Cartesian over SLrs

2 , it is easy to show that
�F|SLrs

2
� tr∗Lψ [dim SL2]|SLrs

2
. Thus the vanishing conjecture becomes (1.1), which

is exactly the acyclicity of Artin–Schreier sheaf.
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1.3 Braverman–Kazhdan conjecture

We recall a construction, due to Braverman and Kazhdan, of ρ-Bessel sheaf �G,ρ

attached to a r -dimensional complex representation ρ of the complex dual group Ǧ.
Let ρ : Ǧ → GL(Vρ) be such a representation. The restriction of ρ to the maximal

torus Ť is diagonalizable and there exists a collection of weights

λ = {λ1, ..., λr } ⊂ X
•(Ť ) := Hom(Ť , C

×)

such that there is an eigenspace decomposition

Vρ =
r⊕

i=1

Vλi

of Vρ , where Ť acts on Vλi via the character λi . One can regard λ as collection of
co-characters of T using the the canonical isomorphism X

•(Ť ) � X•(T ), and define

�T ,ρ = prλ,!tr∗Lψ [r ] �∗
T ,ρ = prλ,∗tr∗Lψ [r ]

where

prλ :=
r∏

i=1

λi : G
r
m −→ T , tr : G

r
m −→ Ga, (x1, ..., xr ) →

r∑

i=1

xi .

It is shown in [5], using Deligne’s result about symmetric group actions on hyper-
geometric sheaves (see Proposition 5.2), that both �T ,ρ and �∗

T ,ρ carry natural
W-equivariant structures and the resulting objects in DW(T ), denote again by �T ,ρ

and �∗
T ,ρ , are called ρ-Bessel sheaves on T .2 The ρ-Bessel sheaves on G attached to

ρ, denoted by �G,ρ and �∗
G,ρ , are defined as

�G,ρ = IndGT⊂B(�T ,ρ)W �∗
G,ρ = IndGT⊂B(�∗

T ,ρ)W.

In [4, Conjecture 9.12], Braverman-Kazhdan proposed the following conjecture on
acyclicity of ρ-Bessel sheaves over certain affine subspaces of G:

Conjecture 1.3 Let �G,ρ (resp. �∗
G,ρ) be the ρ-Bessel sheaf attached to a represen-

tation ρ : Ǧ → GL(Vρ) of the dual group. Then for any x ∈ G\B, we have the
following cohomology vanishing

H∗
c(Ux, i∗�G,ρ) = 0 (resp. H∗(Ux, i !�∗

G,ρ) = 0) (1.3)

2 In [4,5], the authors called�T ,ρ γ -sheaves on T . However, based on the fact that the classical γ -function
is the Mellin transform of the Bessel function, we follow [17] and use the term ρ-Bessel sheaves instead of
γ -sheaves.
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where i : Ux → G is the natural inclusion map. Equivalently, the complex π!(�G,ρ)

(resp. π∗(�∗
G,ρ)) is supported on the closed subset T = U\B ⊂ U\G. Here π : G →

U\G is the quotient map.

Remark 1.8 In loc.cit. Conjecture 1.3 was stated for those representations ρ with σ -
positive weights (see Sect. 5.1 for the definition of σ -positive weights). It is shown
in [5,8] that, under this positivity assumption, the ρ-Bessel sheaves �G,ρ and �∗

G,ρ

(resp. �T ,ρ and �∗
T ,ρ) are in fact perverse sheaves and we have �G,ρ � �∗

G,ρ (resp.
�T ,ρ � �∗

T ,ρ) (see Proposition 5.1). This is a generalization of Deligne’s theorem on
Kloosterman sheaves [9]. We will see below that the vanishing conjecture (Conjec-
ture 1.2) implies the Braverman-Kazhdan conjecture for ρ-Bessel sheaves attached to
arbitrary representation ρ of the dual group Ǧ.

Remark 1.9 For a motivated introduction to the Braverman-Kazhdan conjecture and
its role in the Langlands program see [4,5,17]

1.4 Main results

The following is the first main result of the paper. Let �T ,ρ (resp. �∗
T ,ρ) be the ρ-

Bessel sheaf on T attached to a representation ρ : Ǧ → GL(Vρ) of the dual group.

Theorem 1.4 For any tame character χ of T , the stabilizer subgroup W′
χ acts on

H∗
c(T ,�T ,ρ ⊗ Lχ ) (resp. H∗(T ,�∗

T ,ρ ⊗ Lχ ))

via the sign character signW. In particular, the ρ-Bessel sheaf �T ,ρ (resp. �∗
T ,ρ) is

central (resp. ∗-central)
Corollary 1.5 Conjecture 1.2 implies Conjecture 1.3

Remark 1.10 Theorem 1.4 and Corollary 1.5 put the Braverman–Kazhdan conjecture
in a wider context: it is a special case of a more general vanishing conjecture whose
formulation does not involve representations of the dual group.

Here is the second main result of the paper.

Theorem 1.6 Conjecture 1.2 is true for G = GLn.

Now Corollary 1.5 immediately implies:

Corollary 1.7 Conjecture 1.3 is true for G = GLn.

Conjecture 1.3 for GLn was proved by Cheng and Ngô [8, Theorem 2.4] under
some assumption on ρ. The proof of Conjecture 1.2 for GLn , and hence Conjecture
1.3 for GLn and arbitrary ρ, follows the one in [8] using mirabolic subgroups. How-
ever, in order to deal with the more general case of central complexes, one needs
a new ingredient: a generalization of Deligne’s result of symmetric group action on
hypergeometric sheaves to the setting of central complexes (see Proposition 7.6).
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The discussions in the previous sections have obvious counterpart in the de Rham
setting, where Artin–Schreier sheaf Lψ is replaced by the exponential D-module ex

and �-adic sheaves are replaced by holonomic D-modules. The proof of the main
results that will be given in this paper is entirely geometric and hence can be also
applied to the de Rham setting.

1.5 Whittaker categories

The de Rham counterpart of the category of ∗-central perverse sheaves on T , to be
called the category of ∗-central D-modules on T , also appears in the recent works
of Ginzburg and Lonergan [10,13] on Whittaker D-modules, nil Hecke algebras, and
quantum Toda lattices. To be specific, in loc.cit. the authors proved that the category
of Whittaker D-modules on G, denoted by Whit(G), is equivalent to a certain full
subcategory of the category of W-equivariant D-modules on T . It turns out that,
as proven in [7, Theorem 1.8], the latter full subcategory, and hence the Whittaker
category Whit(G), is equivalent to the category of ∗-central D-modules on T . It
would be interesting to establish similar results in the �-adic setting and use it to give a
description of �-adic counterpart of the Whittaker category in terms of W-equivariant
sheaves on the maximal torus T .3

The equivalence between Whit(G) and the category of ∗-central D-modules on T
gives rise to a functorWhit(G) → D-mod(G\G), whereD-mod(G\G) is the category
ofG-conjugation equivariant D-modules onG. In [3], Ben-Zvi and Gunningham gave
another construction of a functor fromWhit(G) to D-mod(G\G) and they conjectured
that the essential image of their functor satisfies the same acyclicity in (1.2), see [3,
Conjecture 2.9 and 2.14]. Our results might be useful for studying their conjecture.

1.6 Recent developments

In the recent work [7], we established the vanishing conjecture for general reductive
group G and hence, by Corollary 1.5, the Braverman-Kazhdan conjecture for almost
all characteristics. The proof given in loc. cit. is different form the one given here: it
first established the vanishing conjecture in the de Rham setting using the theory of
Harish-Chandra bimodules and character D-modules and then deduced the positive
characteristic case using character sheaves in mixed-characteristic and a spreading out
argument. The proof makes use of Harish-Chandra bimodules and hence is algebraic.
It will be interesting to have a geometric proof of the vanishing conjecture for general
reductive groups, like the proof given here for GLn , which treats the case of various
ground fields and sheaf theories uniformly.

In the recent work [15], G. Laumon and E. Letellier established the function theo-
retical version of Braverman-Kazhdan conjecture for all reductive groups G.

3 An question raised by V.Drinfeld according to [10, Section 1.5].



13 Page 8 of 28 T.-H. Chen

1.7 Organization

Webriefly summarize here themain goals of each section. In Sect. 2we collect standard
notation in algebraic geometry and �-adic sheaves. In Sect. 3 we study induction
and restriction functors for �-adic sheaves on reductive groups. In Sect. 4 we give a
characterization of central complexes using the �-adic Mellin transform and use it to
construct examples of tame central (resp. ∗-central) local systems on T . In Sect. 5 we
prove Theorem 1.4. In Sect. 7 we prove Theorem 1.6.

2 Notations

In this article k will be an algebraic closure of a finite field k0 with q-element of
characteristic p > 0. We fix a prime number � different from p.

For an algebraic stack X over k, we denote by D(X) = Db
c (X, Q�) the bounded

derived category of constructible �-adic complexes on X. For a representable mor-
phism f : X → Y, the six functors f ∗, f∗, f!, g!,⊗,Hom are understood in the
derived sense. For a k-scheme X , sometimes we will write R
(X , Q�) = f∗Q� (resp.
R
c(X , Q�) = f!Q�), where f : X → Spec k is the structure map.

For an algebraic group H over k acting on a k-scheme X , we denote by H\X ,
the corresponding quotient stack. Consider the case when H is a finite group. Then
the pull-back along the quotient map X → H\X induces an equivalence between
D(H\X) and the (naive) H -equivariant derived category of �-adic complexes on X ,
denoted by DH (X), whose objects consist of pair (F, φ), where F ∈ D(X) and
φ : a∗F � pr∗F is an isomorphism satisfying the usual compatibility conditions (here
a and pr are the action and projectionmap from H×X to X respectively).4 Wewill call
an object (F, φ) in DH (X) a H -equivariant complex and φ a H -equivariant structure
on F. For simplicity, we will write F = (F, φ) for an object in DH (X).

The category D(X) has a natural perverse t-structure and we denote by D(X)♥
the corresponding heart and pτ≤n,

p τ≥n the perverse truncation functors. For any
F ∈ D(X), the n-the perverse cohomology sheaf is defined as pH n(F) =
pτ≥n

pτ≤n(F)[n].
We will denote by Ga the additive group over k and Gm the multiplicative group

over k. We will fix a non-trivial character ψ : Fq → Q
×
� and denote by Lψ the

corresponding Artin–Schreier sheaf on Ga .

3 Induction and restriction functors

Let G be a connected reductive group over k. Let T be a maximal torus of G, B a
Borel subgroup containing T with unipotent radicalU . We denote byW = T \NG(T )

the Weyl group of G, where NG(T ) is the normalizer of T in G. We denote by
sign = pr∗ signW ∈ DW(T ) the pull back of the sign representation signW of W

4 This holds in a more general situation when the neutral component of H is unipotent.
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(regarding as an object in DW(pt)) along the projection pr : T → pt. Throughout the
paper, we assume p does not divide the order of the Weyl group W.
3.2 Recall the Grothendieck-Springer simultaneous resolution of the Steinberg map
c : G → W\\T :

G̃
q̃

c̃

T

q

G
c

W\\T
(3.1)

where G̃ is the closed subvariety of G × G/B consisting of pairs (g, x B) such that
x−1gx ∈ B. Themap c̃ is given by (g, x B) → g, and themap q̃ is given by (g, x B) →
x−1gx modU ∈ B/U = T . The induction functor IndGT⊂B : D(T ) → D(G) is given
by

IndGT⊂B(F) = c̃!q̃∗(F)[dimG − dim T ].

We have the following equivalent construction of IndGT⊂B . Consider the fiber product
S = G ×W\\T T . The diagram (7.1) induces a map

h : G̃ → S = G ×W\\T T (3.2)

which is proper and small, and an isomorphism over Srs = Grs ×W\\T T rs . It follows
that

h!Q�[dimG] � j!∗Q�[dimG] := IC(S, Q�) (3.3)

where j : Srs → S is the open embedding and j!∗ is the intermediate extension
functor. We have

IndGT⊂B(F) � (pG)!(p∗
T (F) ⊗ IC(S, Q�))[− dim T ] (3.4)

where pT : S → T and pG : S → G are the natural projection map.
The functor IndGT⊂B admits a left adjoint ResGT⊂B : D(G) → D(T ), called the

restriction functor, which is given by

ResGT⊂B(F) = (qB)!i∗B(F)

where iB : B → G is the natural inclusion and qB : B → T = U\B is the quotient
map. More generally, one could define ResGL⊂P : D(G) → D(L), for any pair (L, P)

where L is a Levi subgroup of a parabolic subgroup P of G.
We have the following exactness properties of induction and restriction functors:

Proposition 3.1 [6, Theorem 5.4] (1) The functor IndGT⊂B maps perverse sheaves on
T to perverse sheaves on G. (2) The functorResGL⊂P maps G-conjugation equivariant
perverse sheaves on G to L-conjugation equivariant perverse sheaves on L.
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Remark 3.1 The proposition above generalizes well-known results of Lusztig’s on
exactness of induction and restriction functors for character sheaves [14].

3.1 W-action

Proposition 3.2 (1) Let F ∈ D(T ). For every w ∈ W one has a canonical isomor-
phism

IndGT⊂B(F) � IndGT⊂B(w∗F).

(2) Let F ∈ DW(T ). There is a naturalW-action on IndGT⊂B(F) ∈ D(G) and, for any
irreducible representation ξ : W → GL(Vξ ) ofW, there is canonical direct summand

IndGT⊂B(F)W,ξ ∈ D(G) (3.5)

of IndGT⊂B(F) such that we have a W-equivariant decomposition in D(G)

IndGT⊂B(F) �
⊕

(ξ,Vξ )∈Irr W
Vξ ⊗ IndGT⊂B(F)W,ξ . (3.6)

(3) Let F ∈ DW(T )♥ be a W-equivariant perverse sheaf. Then the direct summand
IndGT⊂B(F)W,ξ in (3.6) is also a perverse sheaf.

Proof We have a W-action on S = G ×W\\T T given by (g, t) → (g, wt), w ∈ W,
and the projection maps pG and pT form S to G and T are W-equivariant (for pG , the
W-action on G is the trivial action). Consider the following commutative diagram

G

id

S

π ′

pG pT
T

π

G W\S p′
Tp′

G
W\T

(3.7)

where π ′, p′
G , p′

T are the natural quotient maps. Note that, since Srs is W-invariant,
the IC-complex IC(S, Q�) = j∗!Q�[dimG] (here j : Srs → S) descends to the IC-
complex IC(W\S, Q�) on W\S, in particular, IC(S, Q�) is W-equivariant. It follows
from (3.4) that

IndGT⊂B(w∗F) � (pG)!(w∗ p∗
T (F) ⊗ IC(S, Q�))[− dim T ] �

� (pG)!(w∗ p∗
T (F) ⊗ w∗IC(S, Q�))[− dim T ]

� (pG)!w∗(p∗
T (F) ⊗ IC(S, Q�)

)[− dim T ] �
� (pG)!

(
p∗
T (F) ⊗ IC(S, Q�)

)[− dim T ] � IndGT⊂B(F). (3.8)
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Part (1) follows.
LetF ∈ DW(T ). Sincew∗F � F for anyw ∈ W,wehave a canonical isomorphism

aw : IndGT⊂B(F) � IndGT⊂B(w∗F)
(3.8)� IndGT⊂B(F),

and the assignmentw → aw,w ∈ Wdefines aW-action on IndGT⊂B(F). To show (3.6),
we observe that

IC(S, Q�) � (π ′)∗IC(W\S, Q�),

and it implies

(π ′)!IC(S, Q�) � (π ′)!(π ′)∗IC(W\S, Q�) �
⊕

(ξ,Vξ )∈IrrW
Vξ ⊗ (IC(W\S, Q�) ⊗ Vξ,S

)

(3.9)
where Vξ,S ∈ D(W\S) is the pull back of (ξ, Vξ ) ∈ RepW � D(W\ pt)♥ along the
projection W\S → W\ pt.

Let F′ ∈ D(W\T ) be such that π∗F′ � F. It follows that

IndGT⊂B(F) � (pG)!
(
p∗
T (F) ⊗ IC(S, Q�)

)[− dim T ] �
� (p′

G)!(π ′)!
(
(π ′)∗(p′

T )∗F′ ⊗ IC(S, Q�)
)[− dim T ]

� (p′
G)!

(
(p′

T )∗F′ ⊗ (π ′
! )IC(S, Q�)

)[− dim T ] (3.9)�
�

⊕

(ξ,Vξ )∈Irr W
Vξ ⊗ IndGT⊂B(F)W,ξ

where

IndGT⊂B(F)W,ξ := (p′
G)!

(
(p′

T )∗F′ ⊗ IC(W\S, Q�) ⊗ Vξ,S
)[− dim T ]. (3.10)

Part (2) follows. Part (3) follows from Proposition 3.1. 
�
Remark 3.2 Part (1) of the proposition generalizes [4, Theorem 2.5(3)].

Definition 3.3 For any W-equivariant complex F ∈ DW(T ), we will write

IndGT⊂B(F)W := IndGT⊂B(F)W,triv = (p′
G)!

(
(p′

T )∗F′ ⊗ IC(W\S, Q�)
)[− dim T ],

(3.11)
(here p′

G , p′
T are the morphisms in (3.7)) for the summand in (3.5) corresponding to

the trivial representation (triv, Vtriv = Q�).

In the case when F is a W-equivariant perverse local system on T , we have the
following description of (3.11): Let qrs : T rs → W\\T rs and crs : G → W\\T rs

be the restriction of the maps in (7.1) to the regular semi-simple locus. As qrs is an
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étale covering, the restriction of F to T rs descends to a perverse local system F′ on
W\\T rs and we have

IndGT⊂B(F)W � j!∗(crs)∗F′[dimG − dim T ].
Let P be a standard parabolic subgroup containing B and let L be the unique Levi

subgroup of P containing T with Borel subgroup BL = B ∩ L . Let WL be the Weyl
group of L , which is naturally a subgroup of W.

Proposition 3.4 Let F ∈ DW(T )♥. (1) We have a canonical isomorphism

ResGL⊂P ◦ IndGT⊂B(FT ) � IndWWL
IndLT⊂BL

(FT )

which is compatible with the natureW-actions on both sides. (2) There is a canonical
isomorphism

ResGL⊂P ◦ IndGT⊂B(F)W � IndLT⊂BL
(F)WL .

Proof Part (2) follows from part (1) by taking W-invariants on both sides. Part (1) is
proved in [5, Theorem 2.7]. 5 
�

4 Characterization of central complexes

4.1 The scheme of tame characters

Let π1(T ) be the étale fundamental group of T and let π1(T )t be its tame quotient. A
continuous character χ : π1(T ) → Q

×
� is called tame if it factors though π1(T )t . For

any continuous character χ : π1(T ) → Q
×
� , we denote by Lχ the corresponding rank

one local system on T . A rank one local system L on T is called tame if L � Lχ for
a tame character χ .

In [11], a Q�-scheme C(T ) is defined, whose Q�-points are in bijection with tame
characters of π1(T ). There is decomposition

C(T ) =
⊔

χ f ∈C(T ) f

{χ f } × C(T )� (4.1)

into connected components, where C(T ) f ⊂ C(T ) is the subset consisting of tame
characters of order prime to � and C(T )� is the connected component of C(T ) con-
taining the trivial character. It is shown in loc. cit. that C(T ) is Noetherian and regular
and there is an isomorphism

C(T )� � Spec(Q� ⊗Z�
Z�[[x1, ..., xr ]]).

5 In loc. cit. the authors assumed F is irreducible with support a W-stable sub-torus in T . This is because
the proof makes use of the isomorphism IndGT⊂B (F) � IndGT⊂B (w∗F) which was constructed only for
those F satisfying the assumption above (see [4, Theorem 2.5(3)]). Now, with Proposition 3.2, the same
argument works for arbitrary W-equivariant perverse sheaves on T .
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In addition, the Q�-points of C(T )� are in bijection with pro-� characters of π1(T )

(i.e. characters of the pro-� quotient π1(T )� of π1(T )t ).

4.2 The groupW�

The Weyl group W acts naturally on C(T ). For any χ ∈ C(T )(Q�) we denote by
W′

χ the stabilizer of χ in W. Equivalently, Wχ is the group consisting of w ∈ W
such that w∗Lχ � Lχ . Let Wχ to be the subgroup of W′

χ generated by reflections sα
satisfying the following property: Let α̌ : Gm → T be the coroot corresponding to α.
The pullback (α̌)∗Lχ is isomorphic to the trivial local system on Gm .

Example 4.1 LetG = SL2 and let χ : π1(T )t → {±1} be the character corresponding
to the tame covering T → T , x → x2. Then we have W′

χ = W but Wχ = e is trivial.

4.3 Central complexes

Let F ∈ DW(T ). For any tame character χ ∈ C(T )(Q�) the stabilizer W
′
χ , hence also

its subgroup Wχ , acts naturally on the étale cohomology groups H∗
c(T ,FT ⊗ Lχ )

(resp. H∗(T ,FT ⊗ Lχ )).

Definition 4.1 A W-equivariant complex F ∈ DW(T ) is called central (resp. ∗-
central) if the following holds: for any tame character χ ∈ C(T )(Q�), the group
Wχ acts on

H∗
c(T ,F ⊗ Lχ ) (resp. H∗(T ,F ⊗ Lχ ))

through the sign character signW : Wχ → {±1}.

4.4 Mellin transforms

In [11], the authors constructed the Mellin transforms

M! : D(T ) → Db
coh(C(T ))

M∗ : D(T ) → Db
coh(C(T ))

with the following properties:

(1) Let χ ∈ C(T )(Q�) and iχ : {χ} → C(T ) be the natural inclusion. We have

R
c(T ,F ⊗ Lχ ) � i∗χM!(F)

R
(T ,F ⊗ Lχ ) � i∗χM∗(F). (4.2)

(2) We have natural isomorphism D(M!(F)) � inv∗ M∗(D(F)).
(3) The functorM∗ is t-exact with respect to the perverse t-structure onD(T ) and the

natural t-structure on Db
coh(C(T )). Moreover, for any F ∈ D(T ), F is perverse if

and only ifM∗(F) is a coherent complex in degree zero.
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(4) We have

M!(F ∗! F′) � M!(F) ⊗ M!(F′)
M∗(F ∗ F′) � M∗(F) ⊗ M∗(F′)

where F ∗! F′ = m!(F � F′), F ∗ F′ = m∗(F � F′), and m : T × T → T is the
multiplication map.

(5) For any χ ∈ C(T ) f we have

M∗(F)|{χ}×C(T )� � M∗(F ⊗ Lχ )|C(T )� .

(6) The Mellin transforms restricts to an equivalence

M!,M∗ : D(T )mon � Db
coh(C(T )) f (4.3)

between the full subcategory D(T )mon of monodromic �-adic complexes on T
and the full subcategory Db

coh(C(T )) f of coherent complexes on C(T ) with finite
support.

The Weyl group W acts naturally on C(T ) and it follows from the construction of
Mellin transforms that for F ∈ DW(T ), the W-equivariant structure on F gives rise to
a W-equivariant structure on M!(F) (resp. M∗(F)), such that for any χ ∈ C(T )(Q�),
the isomorphism (4.2) above is compatible with the natural W′

χ -actions.
We have the following characterization of central complexes:

Proposition 4.2 Let F ∈ DW(T ) be a W-equivariant complex. The following are
equivalent:

(1) F is central.
(2) For any χ ∈ C(T )(Q�) the action of Wχ on i∗χM!(F ⊗ sign) is trivial.

Assume further thatWχ = W′
χ for all χ ∈ C(T )(Q�), then above statements are

equivalent to
(3) The restriction of the Mellin transfrom M!(F ⊗ sign) ∈ Db

coh(C(T )) to each
connected component C(T )�,χ f := {χ f } ×C(T )� of C(T ) (see (4.1)) descends to
the quotient Wχ f \\C(T )�,χ f .

6

The same is true for ∗-central complexes if we replace M! byM∗.

Proof (1) ⇔ (2) follows from the property (1) of Mellin transform above. Assume
Wχ = W′

χ for all χ . Then for any χ ∈ C(T )�,χ f we have Wχ = W′
χ ⊂ W′

χ f
= Wχ f

and it follows that the stabilizer of χ in Wχ f is equal to Wχ and (2) ⇔ (3) follows
from the descent criterion for coherent complexes in [16, Theorem 1.3]. 
�

6 Note that C(T )�,χ f is stable under the Wχ f -action.
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4.5 Examples of tame central local systems

Consider the quotient map πχ : C(T )� → Wχ\\C(T )�. Let 0 ∈ C(T )(Q�) be the
trivial character and let Dχ = π−1

χ (πχ(0)) be the scheme theoretic pre-image of
πχ(0) for the map πχ . We define Runi

χ = ODχ , which is a Wχ -equivariant coherent
sheaf on C(T )�. Note that, as Wχ is normal subgroup of W′

χ , the W
′
χ -action on C(T )�

descends to a W′
χ -action on the quotient Wχ\\C(T )� fixing πχ(0) and it follows that

W′
χ stabilizes Dχ and Runi

χ has a canonical W′
χ -equivariant structure.

We will regard Runi
χ as a coherent sheaf on C(T ) supported at the component

C(T )� = {0} × C(T )� and define Rχ = m∗
χ (Runi

χ ) where mχ : C(T ) → C(T ) be the
morphism of translation by χ . Since mχ intertwines the W′

χ -action on C(T ), Rχ is
W′

χ -equivariant, moreover, there is a natural isomorphism

w∗Rχ � Rw−1χ (4.4)

for anyw ∈ W.7 Thus for anyW-orbit θ inC(T ), we have the followingW-equivariant
coherent sheaf with finite support

Rθ =
⊕

χ∈θ

Rχ

where the W-equivariant structure is given by the isomorphisms in (4.4).
Finally, we define the following W-equivariant perverse local systems on T :

E!
θ := M−1

! (Rθ ) ⊗ sign

Eθ := M−1∗ (Rθ ) ⊗ sign .

HereM−1
! ,M−1∗ are the inverse of the Mellin transforms in (4.3).8

Lemma 4.3 E!
θ is central and Eθ is ∗-central.

Proof Since Rθ is supported on θ−1 = {χ−1|χ ∈ θ}, by Proposition 4.2, it suffices to
show that the action of Wχ−1 (note that Wχ−1 = Wχ ) on the fiber

i∗
χ−1M!(E!

θ ⊗ sign) � i∗
χ−1M!(M−1

! (Sθ )) � i∗
χ−1Rθ � i∗

χ−1Rχ

is trivial. Let C(T )�,χ−1 ⊂ C(T ) be the component containing χ−1. Then the trans-
lation map mχ restricts to a map mχ : C(T )�,χ−1 → C(T )�, moreover, we have the

7 Indeed, we have w∗Rχ � w∗m∗
χR

uni
χ � m∗

w−1χ
w∗Runi

χ � m∗
w−1χ

Runi
w−1χ

= Rw−1χ , where we use

the observation that w−1Wχw = Ww−1χ and hence w∗Runi
χ � Runi

w−1χ
.

8 Note that Rθ has finite support and hence the inverse of the Mellin transform is well-defined by (4.3).
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following commutative diagram

C(T )�,χ−1
mχ

π
�,χ−1

C(T )�

πχ

Wχ−1\\C(T )�,χ−1
m̄χ

Wχ\\C(T )�

where m̄χ is the descent ofmχ . It follows that the restriction ofRχ = m∗
χπ∗

χOπχ (0) �
π∗

�,χ−1m̄
∗
χOπχ (0) to C(T )�,χ−1 descends toWχ−1\\C(T )�,χ−1 and it implies the action

of Wχ−1 on i∗
χ−1Rχ is trivial. 
�

5 �-Bessel sheaves

5.1 Hypergeometric sheaves

Let λ = {λ1, ..., λr } ⊂ X•(T ) be a collection of possible repeated cocharacters.
Consider the following maps

Ga
tr←− G

r
m

prλ−→ T

where tr(x1, ..., xr ) = ∑r
i=1 xi and prλ(x1, ..., xr ) = ∏r

i=1 λi (xi ). Consider the fol-
lowing complexes:

�λ := prλ,!tr∗Lψ [r ], �∗
λ := prλ,∗tr∗Lψ [r ] (5.1)

in D(T ). Note that we have a natural forget supports map

�λ → �∗
λ. (5.2)

Following Katz [12], we will call the complexes in (5.1) hypergeometric sheaves.
Let σ : T → Gm be a character. A cocharacter λ is called σ -positive if 〈σ, λ〉 is

positive.

Proposition 5.1 Let λ = {λ1, ..., λr } ⊂ X•(T ) be a collection of cocharacters.

(1) Assume that each λi is nontrivial. Then �λ and �∗
λ are perverse sheaves.

(2) Assume that each λi is σ -positive. Then the map �λ → �∗
λ in (5.2) is an isomor-

phism and �λ � �∗
λ is a perverse local system over the image of pλ, which is a

subtorus of T .

Proof This is [5, Theorem 4.2], and [8, Appendix B] 
�
Example 5.1 For T = Gm and λi = id : Gm → Gm for all i . Then each λi is σ -
positive for σ = id, and the corresponding perverse local system �λ on Gm is the
Kloosterman sheaf considered by Deligne in [9].
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Let Sλ be the subgroup of the symmetric group Sr consisting of permutations τ

such that for all i ∈ {1, ..., r}, we have λτ(i) = λi . We have the following result due
to Deligne [9, Proposition 7.20]:

Proposition 5.2 The group Sλ acts on �λ (resp. �∗
λ) via the sign character signr :

Sr → {±1}.

5.2 �-Bessel sheaves on T

We recall the construction of Braverman-Kazhdan’s ρ-Bessel sheaves on T attached
to a representation of the dual group Ǧ. Let ρ : Ǧ → GL(Vρ) be a r -dimensional
complex representation of Ǧ. The restriction of ρ to Ť is diagonalizable and there
exists a collection of weights

λ = {λ1, ..., λr } ⊂ X
•(Ť ) := Hom(Ť , C

×)

such that there is an eigenspace decomposition

Vρ =
r⊕

i=1

Vλi

of Vρ , where Ť acts on Vλi via the character λi .
We can regard λ as collection of cocharacters of T using the the canonical isomor-

phism X
•(Ť ) � X•(T ) and we denote by

�T ,ρ := �λ, �∗
T ,ρ := �∗

λ

the hypergeometric sheaves associated to λ in (5.1). We will call them ρ-Bessel
sheaves.

Following [5] (see also [8]), we shall construct a W-equivariant structure on ρ-
Bessel sheaves. Let {λi1, ..., λik } be the distinct cocharacters appearing in λ and ml

be the multiplicity of λil ∈ λ. Let Am = {λ j |λ j = λim }. Then we have {λ1, ..., λr } =
A1 � ... � Ak . The symmetric group on r -letters Sr acts naturally on {λ1, ..., λr } and
we define Sλ = {σ ∈ Sr |σ(Ai ) = Ai for all i}. There is a canonical isomorphism

Sλ � Sm1 × · · · × Smk .

Define S′
λ = {η ∈ Sr |such that, for all i, η(Ai ) = Aτ(i) for a τ ∈ Sk}. We have a

natural map πk : S′
λ → Sk sending η to τ . The kernel of πk is isomorphic to Sλ and

its image, denote by Sk,λ, consists of τ ∈ Sk such that mi = mτ(i). In other words,
there is a short exact sequence

0 → Sλ → S′
λ

πk→ Sk,λ → 0.
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Notice that the Weyl group W acts on {λi1, ..., λik } and the induced map W → Sk
has image Sk,λ. So we have a map ρ : W → Sk,λ. Pulling back the short exact
sequence above along ρ, we get an extension W ′ of W by Sλ

0 → Sλ → W ′ → W → 0

where an element in w′ ∈ W ′ consists of pair (w, η) ∈ W × S′
λ such that ρ(w) =

πk(η) ∈ Sk,λ.
The group W′ acts on G

r
m (resp. T ) via the composition of the action of Sr (reps.

W) with the natural projection W′ → S′
λ ⊂ Sr (resp. W′ → W) and the map

prλ : G
r
m → T and tr : G

r
m → Ga is W ′-equivariant where W′ acts trivially on Ga .

Since �T ,ρ = prλ,!tr∗Lψ [r ] (resp. �∗
T ,ρ = prλ,∗tr∗Lψ [r ]), the discussion above

implies for each w′ = (w, η) ∈ W′ there is an isomorphism

i ′w′ : �T ,ρ � w∗�T ,ρ

(resp. i ′w′ : �∗
T ,ρ � w∗�∗

T ,ρ). (5.3)

We define

iw′ = signW(w) signr (η)i ′w′ : �T ,ρ � w∗�T ,ρ

(resp. iw′ = signW(w) signr (η)i ′w′ : �∗
T ,ρ � w∗�∗

T ,ρ) (5.4)

where signr is the sign character of Sr . It follows from Proposition 5.2 that the iso-
morphism iw′ depends only on w. Denote the resting isomorphism by iw, then the
data (�T ,ρ, {iw}w∈W) (resp. (�∗

T ,ρ, {iw}w∈W)) defines an object inDW(T ) which, by
abuse of notation, we still denote by �T ,ρ (resp. �∗

T ,ρ).

Example 5.2 Consider the case G = GLr and ρ is the standard representation of
Ǧ = GLr (C). We have �T ,ρ = tr∗Lψ [r ] ∈ DW(T ), where tr : G

r
m → Ga is the

trace map.

6 Proof of Theorem 1.4

Recall the maps Ga
tr←− G

r
m

prλ−→ T . Let χ ∈ C(Gr
m)(Q�) be a tame character. The

permutation action of Sr on G
r
m induces an action of Sr on C(Gr

m) and let Sr ,χ be the
stabilizer of χ in Sr . The pullback tr∗Lψ is naturally Sr -equivariant and we have a
natural Sr ,χ -action on the cohomology H∗(Gr

m, tr∗Lψ ⊗Lχ ) (resp. H∗
c(G

r
m, tr∗Lψ ⊗

Lχ )).

Lemma 6.1 TheSr ,χ -action onH∗
c(G

r
m, tr∗Lψ ⊗Lχ ) is given by signr : Sr ,χ → {±1}.

Proof Let σ = (i, j) ∈ Sr ,χ be a simple reflection. It suffices to show that σ acts on
H∗(Gr

m, tr∗Lψ ⊗Lχ ) by −1, or equivalently, the σ -invariant H∗
c(G

r
m, tr∗Lψ ⊗Lχ )σ

is zero. Write Lχ = L1 � · · · � Lr , where each Lk is a tame local system on Gm .
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Note that σ ∗Lχ � Lχ implies Li � L j := L. Consider the quotient map

q : G
r
m → σ\\G

r
m � A

1 × Gm ×
∏

k∈{1,...,r},k 	=i, j

Gm,

given by

q(x1, ..., xr ) = (xi + x j , xi x j ,
∏

k∈{1,...,r},k 	=i, j

xk).

Using the fact that L � L � m∗L, where m : G
2
m → Gm is the multiplication map,

we see that

tr∗Lψ ⊗ Lχ � q∗(Lψ � L � (tr∗Lψ ⊗
∏

k 	=i, j

Lk)
)
.

The permutation σ acts naturally on q∗(tr∗Lψ ⊗Lχ ) and it follows from the isomor-
phism above that

(q∗(tr∗Lψ ⊗ Lχ ))σ

� (q∗q∗(Lψ � L � (tr∗Lψ ⊗
∏

k 	=i, j

Lk)
)
)σ � Lψ � L � (tr∗Lψ ⊗

∏

k 	=i, j

Lk).

This implies

H∗
c(G

r
m, tr∗Lψ ⊗ Lχ )σ � H∗

c(σ\\G
r
m,Lψ � L � (tr∗Lψ ⊗

∏

k 	=i, j

Lk)) = 0

where the last equality follows from the cohomology vanishing H∗
c(A

1,Lψ) = 0. The
lemma follows. 
�

To proceed, let χ ∈ C(T )(Q�) and let χ ′ = pr∗λχ ∈ C(Gr
m)(Q�) be the pull back

of χ . We have pr∗λLχ � Lχ ′ and

H∗
c(T ,�T ,ρ ⊗Lχ ) � H∗

c(T , prλ,!tr∗Lψ [r ]⊗Lχ ) � H∗
c(G

r
m, tr∗Lψ [r ]⊗Lχ ′) (6.1)

where the second isomorphism comes from the projection formula. Let w ∈ W′
χ and

choose a liftw′ = (w, η) ∈ W′ ofw. Note that the following diagram is commutative

G
r
m

prλ

η

T

w

G
r
m

prλ
T

.
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It follows that η∗Lχ ′ � η∗pr∗λLχ � pr∗λw∗Lχ � pr∗λLχ � Lχ ′ , that is, η ∈ Sr ,χ ′ .
Moreover, we have the following commutative diagram

H∗
c(T ,�T ,ρ ⊗ Lχ )

i ′
w′

H∗
c(G

r
m, tr∗Lψ [r ] ⊗ Lχ ′)

η

H∗
c(T ,�T ,ρ ⊗ Lχ ) H∗

c(G
r
m, tr∗Lψ [r ] ⊗ Lχ ′)

where the horizontal arrows are the isomorphism (6.1), the left vertical arrow is the
isomorphism induced by the isomorphism the i ′

w′ in (5.3), and the right vertical arrow
is the action of η on H∗

c(G
r
m, tr∗Lψ [r ] ⊗ Lχ ′) coming from the Sr ,χ ′ -equivariant

structure on tr∗Lψ [r ] ⊗ Lχ ′ . Therefore, by Lemma 6.1, we see that i ′
w′ = signr (η)

and it follow from the definition of W-equivariant structure of ρ-Bessel sheaf in (5.4)
that the action of w on the cohomology group H∗

c(T ,�T ,ρ ⊗ Lχ ) is given by

iw′ = signW(w) signr (η)i ′w′ = signW(w) signr (η) signr (η) = signW(w).

The proof of Theorem 1.4 is complete.

7 Proof of Theorem 1.6

In this section we shall prove the vanishing conjecture for G = GLn .

7.1 The GL2-example

Let us first consider the simple but important case G = GL2. Let F ∈ DW(T ) be
a W-equivariant complex on T = G

2
m and let �F = IndGT⊂B(F)W. Note that, for

x ∈ G\B, the coset Ux ⊂ Greg consists of regular elements. Note also that the
Grothendieck-Springer simultaneous resolution is Cartesian over Greg:

G̃reg � Greg ×W\\T T
q̃

c̃

T

q

Greg c
W\\T

(7.1)

All together, we obtain

H∗
c(Ux,�F) � H∗

c(Ux, c̃!q̃∗F)W � H∗
c(Ux, c∗q!F)W

Under the identification W\\T � Ga × Gm , the maps c (resp. q) is given by c(g) =
(trG(g), det(g)) (resp. q(t) = (trT (t), det(t))), and a direct calculation shows that c
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restricts to an isomorphism

c : Ux � Ga × det(x) ⊂ Ga × Gm � W\\T . (7.2)

Thus we have

H∗
c(Ux,�F) � H∗

c(Ux, c∗q!F)W � (m!F)W|det(x), (7.3)

where m = prGm
◦ q : T = G

2
m → Gm, (x, y) → xy. As det |G\B : G\B → Gm is

surjective, it follows from (7.3) that H∗
c(Ux,�F) = 0 for all x ∈ G\B if and only ifW

acts onm!F via the sign character.We claim that the later property ofm!F is equivalent
to F being central. Thus we conclude that H∗

c(Ux,�F) = 0 for all x ∈ G\B if and
only if F is central. This completes the proof of the vanishing conjecture for GL2.

To prove the claim we observe that W acts onm!F via the sign character if and only
if (m!F)W = 0. By [11, Proposition 3.4.5], (m!F)W = 0 is equivalent to

H∗
c(Gm, (m!F)W ⊗ L′) � H∗

c(Gm,m!F ⊗ L′)W � H∗
c(T ,F ⊗ m∗L′)W = 0 (7.4)

for all tame local system L′ on Gm . Note that we have Wχ 	= e if and only if Lχ �
L′ �L′ � m∗L′ for some tame local system L′ on Gm , thus (7.4) is equivalent to the
condition thatWχ acts on H∗

c(T ,F⊗Lχ ) via the sign character for any tame character
χ , that is, F is central. The claim follows.

We shall generalize the proof above for GL2 to GLn . The argument involves
mirabolic subgroups of GLn as an essential ingredient.

7.2 Mirabolic subgroups

We recall some geometric facts about Mirabolic subgroups, established in [8], that
will be used in the proof of Theorem 1.6.9

Let V = A
n be the standard n-dimensional vector space over k with the standard

basis e1, ..., en . For any 1 ≤ m ≤ n We define Fm (resp. Em) to be the subspace
generated by e1, ..., em (resp. em+1, ..., en).

Let Q be the mirabolic subgroup of G = GL(V ) consisting of g ∈ G fixing
the line generated by v := e1. Let UQ be the unipotent radical of Q. Consider the
Q-conjugation equivariant stratification of G

G =
n⊔

m=1

Xm, (7.5)

where Xm the subset of G consisting of g ∈ G such that the span of the vectors
v, gv, g2v, ... is of dimension m.

9 As mentioned in loc. cit. the geometry of the conjugation action of Mirabolic has been described by
Bernstein in [1].
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Lemma 7.1 Consider the Chevalley quotient map c : G → W\\T � A
n−1 × Gm,

c(x) = (a1, ..., an) where tn + a1tn + · · · + an is the characteristic polynomial of
x ∈ G Let x ∈ Xn. Then the map u → c(ux) − c(x) induces a linear isomorphism

UQ � A
n−1 × {0} ⊂ A

n−1 × Gm

between UQ and the subspace of A
n−1 × Gm defined by an = 0. In particular, the

map c restricts to an isomorphism UQx � A
n−1 × {an} ⊂ A

n−1 × Gm.

Proof This is [8, Proposition 4.1]. 
�
Remark 7.1 The lemma above is a generalization of the isomorphism in (7.2) to the
setting of mirabolic subgroups.

Lemma 7.2 Let x ∈ Xm. There exists an element q ∈ Q such that qxq−1 is of the
form [

xFm y
0 xEm

]
(7.6)

where xEm ∈ GL(Em), and xFm ∈ GL(Fm) has the form of a companion matrix

xFm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 −am
1 0 . . . 0 0 −am−1
0 1 . . . 0 0 −am−2
...

...
. . .

...
...

...

0 0 . . . 1 0 −a2
0 0 . . . 0 1 −a1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(7.7)

Proof Straightforward exercise in linear algebra. 
�
Let Pm be the parabolic group of G consisting of g such that gFm = Fm . Let Lm

be the standard Levi subgroup of Pm andUm be the unipotent radical of Pm consisting
of matrices of the form

um =
[
IdFm vm
0 IdEm

]

where um ∈ Hom(Em, Fm). Let U1 and Um−1 be the subgroup of Um consisting of
um as above with vm ∈ Hom(Em, F1) and vm ∈ Hom(Em, Fm−1) respectively.

Lemma 7.3 Let xFm ∈ GL(Fm) be a linear map such that, for any 1 ≤ j ≤ m,
xFm (Fj ) ⊂ Fj+1 and the induced map Fj/Fj−1 → Fj+1/Fj is an isomorphism. Let
xEm ∈ GL(Em) be an arbitrary linear map. Then the action of U1 × Um−1 on the
space of matrices of the form

x =
[
xFm y
0 xEm

]
(7.8)

given by (u1, um−1)x = um−1u1xu
−1
m−1 is simply transitive.

10

10 Note that um−1u1xu
−1
m−1 = u1um−1xu

−1
m−1.
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Proof This is [8, Lemma 3.2].11 
�
Let QLm = Lm ∩ Q be a mirabolic subgroup of Lm and letUQLm

be the unipotent
radical of QLm consisting of matrices

⎡

⎣
1 v 0
0 Idm−1 0
0 0 Idn−m

⎤

⎦

where v = (v1, ..., vm−1) ∈ A
m−1 is a row vector.

Lemma 7.4 Let x ∈ Xm be as in (7.6) with xFm being as in (7.7). The morphism

UQ ×Um−1 → UmUQLm
x

given by (uQ, um−1) → um−1uQxu
−1
m−1 is an isomorphism.

Proof This is proved in [8, p17]. 
�

7.3 Proof of Theorem 1.6

Lemma 7.5 Assume G = GLn. If Conjecture 1.2 is true for perverse central sheaves
(resp. perverse ∗-central sheaves), then is it true for arbitrary central complexes (resp.
arbitrary ∗-central complexes).12

Proof By Remark 1.4, it is enough to prove the statement for ∗-central complexes. By
induction on the (finite) number of non vanishing perverse cohomology sheaves, we
can assume the conjecture is true for∗-central complexes in pD [a,b]

W (T ), |a−b| ≤ l. Let

F ∈ pD [a,b+1]
W (T ) be a ∗-central complex. We need to show that π∗�F is supported

on T = U\B ⊂ U\G, where π : G → U\G is the quotient map. Consider the
following distinguished triangle

pτ≤bF → F → pH b+1(F)[−b − 1] → .

We claim that both pτ≤bF, pH b+1(F) ∈ DW(T ) are ∗-central. Applying the functor
IndGT⊂B(−)W to the above distinguished triangle, we obtain

�pτ≤bF → �F → �pH b+1(F)[−b − 1] → .

By induction, both π∗(�pτ≤bF) and π∗(�pH b+1(F)) are supported on T = U\B ⊂
U\G and it implies π∗�F is also supported on T .

11 There is minor mistake in the computation of u1umxu−1
m in loc. cit.: is should be u1umxu−1

m =[
xF y + v1xE + vm−1xE − xFvm−1
0 xE

]
. The same proof goes through after this minor correction.

12 In fact, the Lemma remains true without the assumption G = GLn , see [7, Lemma 7.5].
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It remains to prove the claim. Let χ f ∈ C(T ) f and let C(T )�,χ f = {χ f }×C(T )� be
the corresponding component. Let q : C(T )�,χ f → Wχ f \\C(T )�,χ f be the quotient
map. Note that for G = GLn we have Wχ = W′

χ for all χ and hence by Proposition
4.2, we have

M∗(F ⊗ sign)|C(T )�,χ f
= q∗G

for a G ∈ Db
coh(Wχ f \\C(T )�,χ f ). Since both M∗ and q∗ are exact, we have

M∗(pτ≤b(F ⊗ sign))|C(T )�,χ f
= q∗(τ≤bG), M∗(pH b+1(F ⊗ sign))|C(T )�,χ f

= q∗H b+1(G),

and by Proposition 4.2 again it implies pτ≤bF and pH b+1(F) are ∗-central. The proof
is complete. 
�

Consider G = (
∏

i 	= j GLni )×GLn j with maximal torus T = (
∏

i 	= j Ti )×Tj , and
Weyl group W = (

∏
i 	= j Wi ) ×W j . Here Wk denotes the symmetric group of degree

nk . Consider the following map

η = id × det : T = (
∏

i 	= j

Ti ) × Tj −→ T ′ := (
∏

i 	= j

Ti ) × Gm .

The symmetric groupW j of degreen j acts onT via the permutation action on the factor
Tj and η is W j -invariant. Thus for any F ∈ DW(T ) the push-forward η!(F) carries
a natural W j -action. We have the following generalization of Deligne’s result about
Sλ-action on hypergeometric sheaves �λ (see Proposition 5.2) to central complexes.

Proposition 7.6 Let F be a central complex in DW(T ). Then the aboveW j -action on
η!(F) is given by the sign character signW : W j → {±1}.
Proof It suffices to show that η!(F)σ=id = 0 for any involution σ ∈ W j . By a result
of Laumon [11, Proposition 3.4.5], it is enough to show that for any tame local system
Lχ on T ′ we have

H∗
c(T

′, η!(F)σ=id ⊗ Lχ ) = 0.

Note that, for any such Lχ , we have

H∗
c(T

′, η!(F)σ=id ⊗ Lχ ) � H∗
c(T

′, η!(F) ⊗ Lχ )σ=id � H∗
c(T ,F ⊗ η∗Lχ )σ=id.

Since η∗Lχ is a tame local system on T fixed by σ , the central property of F implies
that the action of σ on H∗

c(T ,F ⊗ η∗Lχ ) is not trivial, but through the sign charac-
ter. Thus we have H∗

c(T ,F ⊗ η∗Lχ )σ=id = 0 and the isomorphism above implies
H∗
c(T

′, η!(F)σ=id ⊗ Lχ ) = 0 for all tame local system Lχ . The proposition follows.

�
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The following proposition generalizes [8, Proposition 5.1] to central complexes:

Proposition 7.7 Let G be a direct product of general linear group and let Q be a
mirabolic subgroup of G of the form

Q = (
∏

i 	= j

GLni ) × Q j ⊂ G =
∏

i

GLni

where Q j is the mirabolic subgroup of GLn j . Let F ∈ DW(T )♥ be a W-equivariant
central perverse sheaf on T . Then for any x ∈ G\Q, we have

H∗
c(UQx, i

∗�F) = 0

where i : UQx → G is the inclusion map.

Proof If n j = 1, then Q = G and the proposition holds vacuously. Assume n j ≥ 2.
Consider the following stratification of G

G =
n j⊔

m=1

Xm =
n j⊔

m=1

( ∏

i 	= j

GLni × X j,m
)

where X j,m ⊂ GLn j is the subset introduced in (7.5). We have Q = X1, thus the
assumption x /∈ Q implies x ∈ Xm for some 2 ≤ m ≤ n j .

Consider the case x ∈ X j,n j . Since X j,n j is contained in GL
reg
n j , the Grothendieck-

Springer simultaneous resolution implies a Cartesian diagram

X̃n j

c̃

q̃

(
∏

i 	= j GLni ) × Tj

q

Xn j

c
(
∏

i 	= j GLni ) × W j\\Tj

It follows that

�F|Xn j
� c∗q!(�L j ,F)W j

where L j = (
∏

i 	= j GLni ) × Tj and �L j ,F = Ind
L j
T (F)

WL j . Consider the map

detW j = Id × σ : (
∏

i 	= j

GLni ) × W j\\Tj → (
∏

i 	= j

GLni ) × Gm (7.9)

where σ : W j\\Tj � GLn j \\GLn j → Gm is given by the determinant function on
GLn j . By Lemma 7.1, the restriction of c to UQx induces an isomorphism between
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UQx and the fiber of (7.9) over the image detW j ◦c(x) of x . Thus, to prove the desired
vanishing, it is enough to show that

det j,!(�L j ,F)W j � detW j ,! q!(�L j ,F)W j = 0 (7.10)

where

det j = detW j ◦q : L j = (
∏

i 	= j

GLni ) × Tj → (
∏

i 	= j

GLni ) × Gm

is the determinant map on the j th component. Consider the following Cartesian dia-
grams

L j = (
∏

i 	= j GLni ) × Tj

det j=Id×det

(
∏

i 	= j G̃Lni ) × Tj

id×det

T = (
∏

i 	= j Ti ) × Tj

id×det

L ′
j = (

∏
i 	= j GLni ) × Gm

∏
i 	= j G̃Lni × Gm T ′ = (

∏
i 	= j Ti ) × Gm

,

where the horizontal arrows are the map induced by the Grothendieck-Springer simul-
taneous resolution (see (7.1)). It follows that

det j,! �L j ,F � det j,! Ind
L j
T (F)

WL j =
∏

i 	= j Wi � Ind
L ′
j

T ′ (F′)
∏

i 	= j Wi (7.11)

where

F′ = (Id × det)!(F).

By Proposition 7.6, the action of W j on F′ is given by the sign character signW :
W j → {±1}. Therefore, by (7.11), the action W j on det j,! �L j ,F is by the sign
character and we have

det j,!(�L j ,F)W j = 0

as for n j ≥ 2 the sign character of W j is non-trivial. This concludes the case when
x ∈ Xn j .

Consider the general case x ∈ Xm with 2 ≤ m ≤ n j . ByLemma7.2,we can assume
the j th component x j ∈ GLn j of x is of the form (7.6) with x j,F being a companion
form in (7.7). Let P = ∏

i 	= j GLni ×Pm denote the parabolic subgroup ofG where Pm
is the parabolic subgroup of GLn j introduced in Sect. 7.2. Let L = (

∏
i 	= j GLni )×Lm

and UP = (
∏

i 	= j Idni ) × Um be the standard Levi subgroup of P and its unipotent
radical. We have x ∈ P and let xL be its image in L . Consider the mirabolic subgroup
QL of L with unipotent radical UQL = (

∏
i 	= j Idni ) × QLm . By applying the result

obtained above to the case to L , we obtain

H∗
c(UQL xL ,�L,F|UQL xL

) = 0,
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where �L,F = IndLT (F)WL . Note that, by Proposition 3.4, we have �L,F �
ResGL⊂P�F, and above cohomology vanishing implies

H∗
c(UPUQL x,�F|UPUQL x

) = 0. (7.12)

Using Lemma 7.4, we see that the map

UQ × ( ∏

i 	= j

Idni ×Um−1
) → UPUQL x

given by (uq , um−1) → um−1uq xu
−1
m−1 is an isomorphism. Since�F isG-conjugation

equivariant, (7.12) implies

H∗
c(UQx,�F|UQx ) = 0.

The proposition follows. 
�
We are ready to prove Theorem 1.6. Let G = GLn and let Q be the mirabolic

subgroup. Let F ∈ DW(T ) be a central complex. We would like to show that
H∗
c(Ux,�F|Ux ) = 0 for x ∈ G\B. By Lemma 7.5, we can assume F is a per-

verse sheaf. Consider the case x /∈ Q. Then ux /∈ Q for all u ∈ U and, by Proposition
7.7, we have H∗

c(UQux,�F|UQux ) = 0. The desired vanishing H∗
c(Ux,�F|Ux ) = 0

follows from the Leray spectral sequence associated to the mapUx → UQ\Ux . Now
assume x ∈ Q. Let xL be the image of x in the standard Levi L of Q. Note that we
have xL /∈ BL = B ∩ L and

H∗
c(Ux,�F|Ux ) = H∗

c(UBL xL ,ResGL �F|UBL xL
) = H∗

c(UBL xL ,�L,F|UBL xL
)

whereUBL is the unipotent radical of BL . Now, using Proposition 7.7, we can conclude
by an induction argument.
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