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ABSTRACT 

Grain boundaries can greatly affect the transport properties of polycrystalline materials, 

particularly when the grain size approaches the nanoscale. While grain boundaries often enhance 

diffusion by providing a fast pathway for chemical transport, some material systems, such as 

those of solid oxide fuel cells and battery cathode particles, exhibit the opposite behavior, where 

grain boundaries act to hinder diffusion. To facilitate the study of systems with hindered grain 

boundary diffusion, we propose a model that utilizes the Smoothed Boundary Method (SBM) to 

simulate the dynamic concentration evolution in polycrystalline systems. The model employs 

domain parameters with diffuse interfaces to describe the grains, thereby enabling solutions with 

explicit consideration of their complex geometries. The intrinsic error arising from the diffuse 

interface approach employed in our proposed model is explored by comparing the results against 

a sharp interface model for a variety of parameter sets. Finally, two case studies are considered to 

demonstrate potential applications of the model. First, a nanocrystalline yttria-stabilized zirconia 

solid oxide fuel cell system is investigated, and the effective diffusivities are extracted from the 



simulation results and are compared to the values obtained through mean-field approximations. 

Second, the concentration evolution during lithiation of a polycrystalline battery cathode particle 

is simulated to demonstrate the method’s capability. 

KEYWORDS: Grain Boundary, Diffusion, Diffuse Interface Method, Simulation, Battery, 

Microstructure. 

 

1. INTRODUCTION 

Defects, such as grain boundaries in polycrystalline solids, often have a significant effect on 

material properties. Grains and grain boundaries in materials arise from various processing 

techniques such as sintering, agglomeration of particles, or nucleation and growth. The unique 

configurations of atoms at grain boundaries, in which bonding structures differ from atoms in the 

intrinsic lattice, lead to differences in mechanical and/or transport behavior between grain 

boundaries and bulk regions. In many cases, materials can be designed to take advantage of these 

grain boundary effects [1], such as improving corrosion resistance [2, 3], creep strength [3, 4], 

ductility [5, 6], and damage resistance [3, 7, 8] in metallic alloys. Grain boundaries have also 

been shown to increase transport rates of charge-carrying species in photovoltaics [9-11] and 

battery materials [12, 13] as well as enhancing dopant diffusion rates in polycrystalline silicon 

[14]. 

 

However, some materials systems exhibit the opposite behavior, in which grain boundaries act to 

hinder transport. In the solid oxide fuel cell material yttria-stabilized zirconia (YSZ), space 

charge layers and oxygen vacancy depletion at grain boundaries decrease the diffusivity of 

oxygen ions at the grain boundaries compared to the bulk [15-17]. The decrease in diffusivity at 



grain boundaries becomes particularly important for performance in nanocrystalline YSZ, in 

which the effects of the grain boundaries become more prominent as the grain boundary density 

increases [18]. Battery cathode particles often consist of agglomerations of smaller particles that 

form dense, polycrystalline structures [19-21]. During electrochemical charging and discharging, 

stress from volumetric changes may cause decohesion and cracks to form at the grain boundaries 

of the cathode particle which may obstruct ionic transport (if electrolyte does not penetrate) and 

negatively affect battery performance [19]. Hydrogen diffusion in aluminum [22] and helium 

diffusion in tungsten [23] are hindered across grain boundaries. Hindered grain boundary 

diffusion has been simulated at the atomic scale in bicrystals via molecular dynamics [18, 24] 

and the kinetic Monte Carlo method [25]. Additionally, there are instances of hindrance relevant 

to the biomedical field; such is the case for medicine delivery to tumors where diffusion may be 

impeded at membranes in vasculature [26]. 

 

At the microstructure scale, recent studies have considered both hindered [27-29] and enhanced 

[27-31] grain boundary diffusion. In Ref. [30], a diffuse interface method was developed to 

simulate enhanced grain boundary diffusion, as discussed further below. In Refs. [27, 28], both 

hindered and enhanced diffusion of hydrogen were considered in polycrystalline metals as part 

of parametric studies that also included hydrogen trapping. In Ref. [29], lithium in 

polycrystalline lithium lanthanum zirconium oxide was modeled to have hindered grain 

boundary diffusion at low temperatures and enhanced grain boundary diffusion at high 

temperatures, which was predicted by their molecular dynamics simulations. The effect of grain 

boundary diffusivity was modeled in Refs. [27-29] by solving a diffusion equation with 

diffusivity that is a function of phase-field order parameters that specify the grains. A grain 



boundary is represented implicitly by the diffuse interface where the order parameters of 

adjacent grains change in value. In the models presented in Refs. [27-29], while the diffuse 

interface enables accurate modeling with a simple (e.g., uniformly meshed) spatial discretization, 

its thickness in the simulation must be similar in magnitude to the physical width of the grain 

boundary, limiting the grain sizes of the microstructures that can be investigated [28]. 

 

In this paper, we follow previous work on enhanced grain boundary diffusion [30] by proposing 

a new diffuse interface approach based on the Smoothed Boundary Method (SBM) to solve the 

diffusion equation with hindrance at the interfaces between grains. SBM is a method for 

applying boundary conditions to irregularly shaped domains described by a diffuse interface 

[32]. By treating the hindrance as a boundary condition, the diffuse interface in our simulations 

can be decoupled from the physical width of the grain boundary, which becomes a model 

parameter. The proposed model is compared to a sharp interface model in one dimension. The 

effect of the numerical and physical parameters on the error of the model is explored. Finally, 

two case studies are presented. The first case study is oxygen diffusion in nanocrystalline YSZ, 

in which the effective diffusivities of the inhomogeneous structures are calculated and compared 

to the values obtained from mean field approximations. The second case study is the lithiation of 

a polycrystalline battery cathode particle that consists of primary particles (grains). 

 

The proposed model will provide the dynamic, non-uniform concentration field that sets 

composition-dependent material properties and thus influences physical processes, such as 

reaction kinetics of electrochemically active materials or the stress state of a composite electrode. 

Additionally, the concentration information can be used to calculate effective properties of a 



microstructure. For example, the effective diffusivity of a polycrystalline microstructure can be 

determined from the flux in the system in which the grain boundaries are explicitly included 

without making simplifying assumptions required in mean field approximations such as the Hart 

[33] or Maxwell Garnett [34] approaches. 

 

2. METHODS 

2.1 The Sharp Interface Model  

Grain boundaries that hinder diffusion have their greatest effect at orientations perpendicular to 

the diffusion direction as that configuration positions the high- and low-diffusivity regions in 

series. Therefore, as a first step to develop a numerical model and assess its accuracy, we 

consider a one-dimensional system in which grain boundaries are placed perpendicular to the 

diffusion direction (i.e., the grain boundary normal is parallel to the diffusion direction). The flux 

in concentration 𝐶 in the bulk of the grains is described in one dimension by Fick’s first law, 

 

𝐽!"#$ = −𝐷!"#$ 	
𝜕𝐶
𝜕𝑥, 

 (1) 

 

where 𝑥 is the spatial coordinate, 𝐷!"#$ is the bulk diffusivity, which we assume to be constant.  

The evolution of the concentration in time is given by the diffusion equation, which, in one 

dimension with constant diffusivity, can be expressed as 

 

𝜕𝐶
𝜕𝑡 = −

𝑑
𝑑𝑥 𝐽!"#$ = 𝐷!"#$

𝜕%𝐶
𝜕𝑥% , 

 (2) 

 



where 𝑡 is time. 

 

To account for the hindrance of diffusion at the grain boundary, a Neumann boundary condition 

is imposed at each grain boundary such that for an identical concentration gradient, the flux 

across the grain boundary is lower than the flux in the bulk, resulting in a sharper concentration 

gradient in grain boundaries than in the bulk at steady state. The other physical constants needed 

to parameterize the model for a given system are the grain boundary diffusivity, 𝐷&!, the grain 

boundary thickness, 𝛿, and the grain size, 𝑑. 

 

First, a sharp interface model for the flux boundary condition at grain boundaries will be 

described and used as a baseline. The flux at the grain boundary, 𝐽&!, is dependent on the 

concentration drop across the grain boundary and is given by: 

 

𝐽&! = −
1
𝜅 Δ𝐶&! , 

(3) 

 

where ∆𝐶&! is the concentration drop across the grain boundary, and 𝜅 is the degree of 

hindrance.  

 

The degree of hindrance, 𝜅, is the parameter that describes how strongly the grain boundary 

blocks chemical transport, and it is related to the diffusivity and thickness of the grain boundary.  

These properties may vary with grain boundary misorientation and have different values for 

high-symmetry grain boundaries such as twins or S-boundaries.  They can also be altered at 

triple junctions, which can be identified by a triple product of the grain order parameters.  In this 



work, however, for simplicity we will consider them to be constants for a given material.  The 

assumption of constant grain boundary properties has been suggested as a reasonable 

approximation for sintered ceramic materials where high-angle grain boundaries predominate 

[29]. To formulate 𝜅, we consider diffusivity across grain bulk and grain boundaries as an 

analogy to electrical conductivity in a series circuit. Conductivity is a measure of how easily 

electricity can flow through a material whereas diffusivity across a grain boundary refers to how 

easily chemical species can flow across the grain boundary. Using this analogy, we formulate 𝜅 

such that the degree of hindrance is the difference between the inverse of 𝐷&! and 𝐷!"#$ 

multiplied by 𝛿 such that the degree of hindrance becomes independent of 𝛿 when 𝐷&! = 𝐷!"#$ 

as expected. Therefore, our formulation of 𝜅 is  

 

𝜅 = 𝛿 2
1
𝐷&!

−
1

𝐷!"#$
3. (4) 

 

The second term counteracts the constant bulk diffusivity assumed everywhere. The boundary 

conditions at the left and right boundaries of the domain are Dirichlet boundary conditions of 

𝐶 = 1 and 𝐶 = 0, respectively. The concentration evolution is calculated using Eq. (2). This 

one-dimensional sharp interface model is sufficient for systems in which the grain boundaries are 

all perfectly perpendicular to the diffusion direction; however, a model that can allow for angled 

or curved grain boundaries is necessary for more complex systems. 

 

We implement the sharp interface model using a one-dimensional finite difference discretization 

that will share the same time discretization (forward Euler), grid spacing (Δx), and time step 

(∆𝑡 = 0.05∆𝑥%/𝐷!"#$) as the SBM model described in the next subsection.  The sharp interface 



model requires two points at each grain boundary location (one on each side of the grain 

boundary) for accurate evaluation of 𝐽&! in Eq. (3).  The bulk flux in Eq. (1) is calculated on half 

points using centered differences, (𝐽!"#$)'(!"
= − )#$%&

*+
(𝐶'(, − 𝐶'), where i is the grid point 

index.  At points in the bulk grains, the finite difference update is 𝐶'-(, = 𝐶'- +

𝐷!"#$
*.
*+"

(𝐶'(, − 2𝐶' + 𝐶'/,), where n is the time step index, which is second-order accurate 

[35].  At grain boundary points, a second-order-accurate one-sided difference is used.  For a 

point with index i on the left side on the grain boundary this is 𝐶'-(, = 𝐶'- −
%*.
*+
;0
1
𝐽&! −

1
%
(𝐽!"#$)'/!"

+ ,
2
(𝐽!"#$)'/'"

<.  Similarly, the formula for the point on the right side is 𝐶'-(, = 𝐶'- +

%*.
*+
;0
1
𝐽&! −

1
%
(𝐽!"#$)'(!"

+ ,
2
(𝐽!"#$)'('"

<. 

 

2.2 The Smoothed Boundary Method 

The Smoothed Boundary Method is a diffuse interface approach for setting internal boundary 

conditions using a field variable called a domain parameter [32]. For a polycrystal, we use 

domain parameters, 𝜙3, to describe the location of each grain in the system such that 𝜙3 = 0 

outside Grain 𝑞 and 𝜙3 = 1 inside Grain 𝑞, as in the phase-field modeling of grain growth [36]. 

The interface, which represents a grain boundary, is indicated as a region of smooth transition 

between 0 and 1 described by a hyperbolic tangent function in one dimension,  

 

𝜙3 =
1
2 ;1 + tanh ;

𝑥 − 𝑥3
𝜁 <<, (5) 

 



where 𝑥3 is the location of the grain boundary and 𝜁 is a numerical parameter that controls the 

thickness of the diffuse interface. The hyperbolic tangent profile for interfaces naturally arises as 

a solution to the Allen-Cahn equation [37]. At a boundary between any two grains, we expect 

∑ 𝜙3
4
35, = 1, where 𝑄 is the number of grains in the system (behavior of phase-field models at 

junctions between three or more grains is more complex [38] and will be neglected here).  Phase-

field models enable the definition of grain inclination and misorientation using the gradients of 

the grain order parameters [36].  Thus, while we here consider 𝜅 to be independent of 

orientation, our approach could be extended to include misorientation-dependent hindrance. 

 

To include the effect of grain boundaries, the diffusion equation is modified to include a term 

that sets the Neumann boundary condition at the grain boundaries (i.e., regions where the 

gradient of the domain parameter is nonzero) [32]: 

 

𝜕𝐶3
𝜕𝑡 = −

1
𝜙3

𝜕
𝜕𝑥 𝐽!"#$

678 −	
1
𝜙3
F
𝜕𝜙3
𝜕𝑥 F 𝐽&!

678 , (6) 

 

where the flux in the bulk of the grains 𝐽!"#$678 is given by 

𝐽!"#$678 = −𝐷!"#$𝜙3
𝜕𝐶3
𝜕𝑥 , 

(7) 

 

in which 𝐶3 is the concentration field for grain 𝑞. See Ref. [32] for the derivation of Eq. (6).  The 

grain boundary flux 𝐽&!678 takes the same form as 𝐽&! in Eq. (3), but now a separate concentration 

field must be solved for each grain to accurately capture Δ𝐶&!. This concentration drop for the 

diffuse interface approach is calculated by 



 

Δ𝐶&!678 = 𝐶3 −
∑ 𝜙'𝐶'
4
'93

∑ 𝜙'
4
'93

 (8) 

 

such that Δ𝐶&!678 is the difference between the concentration of the grain considered and a 

weighted average of the concentrations of all the other grains. The use of this weighted average 

term also prevents any spurious effect from the concentration solution outside a grain located far 

from the grain under consideration. 

 

For the one-dimensional simulations, we choose a domain which consists of three grains and two 

grain boundaries (Figure 1a), to evaluate the error resulting from the interaction between grain 

boundaries. The first and last grain in the domain have lengths half that of the other grain(s). 

This choice is made based on the symmetry it provides, as it allows the bulk-to-interface ratio to 

remain constant regardless of the number of grains in the system.  To illustrate the effect of grain 

boundary hindrance in this test system, the simulated concentration 𝐶 = ∑ 𝐶3𝜙3
4
35,  is shown at 

steady state in Figure 1b for three different values of the ratio between grain boundary and bulk 

diffusivity, 𝐷&!/𝐷!"#$.  Lower ratios 𝐷&!/𝐷!"#$ lead to larger gradients in concentration across 

the diffuse grain boundaries and smaller gradients in the bulk grains. 

 

The SBM model was discretized using finite differences, namely a forward Euler tine stepping 

scheme and centered differences in space on a uniform grid.  The bulk flux is calculated at half 

points as (	𝐽!"#$678 	)3,'(!"
= − )#$%&

%*+
	G𝜙3,' + 𝜙3,'(,H(𝐶3,'(, − 𝐶3,'), where q denotes the grain index 

and i denotes the grid point index. The spatial derivative of the bulk flux is calculated at grid 



points using a centered difference of 	𝐽!"#$678 values at half points (𝑖 + ,
%
, etc.) and the term 

J𝜕𝜙3/𝜕𝑥J is calculated at grid points using a centered difference of 𝜙3 values at full points (𝑖, 

etc.).  To reduce the effect of rounding error in the comparison, all parameters were 

nondimensionalized for simulations using a length scale 𝑊 equal to the grain size and a time 

scale 𝜏 = 𝑊%/𝐷!"#$, such that nondimensional bulk diffusivity was equal to unity. 

Concentrations are scaled to fall within the range of zero to one. 

 

For the three-dimensional structures, 𝑊 was set to be equal to the smallest grain size (40 nm for 

YSZ and 100 nm for battery cathode primary particles). Two YSZ geometries are considered: a 

representative bulk polycrystalline microstructure consisting of a cube with side length 240 nm 

and a thin-film specimen with dimensions 240 nm × 240 nm × 40 nm. The numerical grid sizes 

for the YSZ simulations were 120×120×120 and 120×120×20 grid points for the cube structure 

and the thin-film structure, respectively. The cathode particle simulation consisted of a secondary 

(polycrystalline) particle with nominal diameter 1 𝜇m inside a cubic simulation domain having a 

side length 1.2 𝜇m that was discretized using 240×240×240 grid points. Before smoothing, 

grains in the cathode-particle domain with the center of mass located outside the sphere of 

diameter 1 𝜇m were removed, leaving a rough surface similar to those of experimentally 

synthesized particles (e.g., see Ref. [19]). The particle is described by an additional domain 

parameter 𝜓 = ∑𝜙3 with which the Dirichlet concentration boundary condition is set on the 

outside surface of the particle via SBM [32]. The three-dimensional polycrystalline 

microstructures were originally generated using Dream.3D [39], and then the order parameters 

were smoothed and reduced following the description in Ref. [30]. 

 



The numerical parameter ratios are 𝜁/∆𝑥 (a measure of the resolution of the numerical interface) 

and 𝑁&!𝜁/𝐿+ (a measure of the numerical interface volume fraction or the thickness of the 

numerical interface), where ∆𝑥 is the grid spacing, 𝐿+ is the domain size and 𝑁&! is the number 

of grain boundaries. The physical parameter ratios are 𝐷&!/𝐷!"#$ and 𝑉&! = 𝑁&!𝛿/𝐿+, the latter 

of which is the physical grain boundary volume fraction. 

 

2.3 Error analysis 

The sharp and diffuse interface models were compared by examining one-dimensional 

simulations on uniform grids with the same values of ∆𝑥 and with finite difference 

approximations that have the same order of accuracy (second order).  By making the 

comparisons between the numerical solutions solved by consistent methods and parameters, we 

ensure that the error represents the effect of the diffuse interface, rather than a difference in 

accuracy of the numerical method and discretization.  The metric chosen with which to calculate 

error is the average difference in bulk flux between the two methods, 

 

 𝜖 = ;<#$%&
()*/<#$%&;
|<#$%&|

, (9) 

 

We consider the evolution of this error over the course of a simulation, and we compare sets of 

parameters based on the maximum value it reaches, 𝜖>?@. 

 

3. RESULTS AND DISCUSSION 

3.1 One-dimensional simulations and error analyses 



The solutions from the sharp-interface model, Eqs. (1-3), and our model, Eqs. (6-8) are obtained 

and compared to assess the error introduced by the diffuse interfaces in our model. An initial 

parameter set of 𝜁/∆𝑥 = 1, 𝑁&!𝜁/𝐿+ = 1/48, 𝐷&!/𝐷!"#$ 	= 1/50 = 0.02	, and 𝑉&! = 1/40 was 

chosen. The resolution of the numerical interface, 𝜁/Δ𝑥, corresponds to three points across the 

interface, defined approximately by the range 0.1 ≤ 𝜙 ≤ 0.9. 

 

Figure 2a shows the transient behavior of the error over the course of this simulation.  Initially 

zero, the error rapidly reaches a sharp initial peak, followed by a second, shallow peak, followed 

by a decline to near zero corresponding to steady state.  (Note that 𝜖 = 0 here means that the 

simulations have identical fluxes; both fluxes still have truncation error associated with the finite 

difference discretization.) Figure 2b compares the sharp and SBM concentration profiles at the 

time corresponding to the initial error peak, 𝑡 = 0.0543	𝜏.  At this time, most of the gradient in 

concentration is still in the left-most grain and the first grain boundary, and the second grain is 

just beginning to increase to the steady-state profile, which is shown in Figure 2c.  This time 

corresponds to the rapid evolution in concentration (concentration pile-up at the hindering grain 

boundary) in the vicinity of the left-most grain boundary, which we hypothesize leads to the peak 

in error.  The same explanation applies to the second peak, which corresponds to concentration 

pile up at the second grain boundary that is fast relative other times but still slower than at the 

first/left-most grain boundary (thus resulting in a smaller peak value).  In additional simulations, 

we found that 𝜖AB+  was unaffected by changing the number of grains 𝑁&! when the numerical 

interface volume fraction 𝑁&!𝜁/𝐿+ was held constant, supporting the idea that 𝜖AB+ corresponds 

to an interaction with a single grain boundary. 

  



Figure 3 shows how 𝜖AB+ changes as a function of the numerical interface volume fraction 

𝑁&!𝜁/𝐿+ for three values of the ratio of diffusivities 𝐷&!/𝐷!"#$.  Other parameters are held 

constant from the simulation in Figure 2.  We find that 𝜖AB+ is second order in 𝑁&!𝜁/𝐿+, and the 

solid lines in Figure 3 depict fits to the form 

 

𝜖AB+ = 𝑎 ;
𝑁&!𝜁
𝐿+

<
%

, (10) 

 

where values of the fitting parameter 𝑎 and the coefficients of determination 𝑅% are provided in 

the legend.  The values of 𝑅% are close to unity, indicating good agreement with Eq. (10), which 

is consistent with an analytical prediction for SBM with Neumann-type boundary conditions 

[40].  We find that the fitting parameter 𝑎 increases as the ratio 𝐷&!/𝐷!"#$ decreases.  Recalling 

Figure 1b, the ratio 𝐷&!/𝐷!"#$ 	affects how much the gradient in concentration is localized to the 

grain boundaries rather than distributed through the bulk of the grains.  This suggests that large 

gradients in concentration at the diffuse grain boundaries also affect 𝜖. 

 

The second-order relationship between error and 𝑁&!𝜁/𝐿+ is predicted to hold for complex 

geometries in two or three dimensions [40], although the parameter 𝑎 may change.  Furthermore, 

the steady-state error, which was near zero (~10-12) in our one-dimensional simulations, is likely 

to be more significant for complex geometries due to interfacial curvature.  Because we compare 

between simulations rather than to an analytical solution, our analysis does not consider error 

due to the finite difference discretization.  Due to our use of centered differences and a forward 

Euler time discretization, we expect error from this source to vary proportionally to Δ𝑥% and Δ𝑡 



when other parameters are held constant [35]. In simulations with complex geometries in two or 

three dimensions, care should be taken to ensure that the diffuse interface width 𝜁 is small 

relative to the radii of curvature of microstructural features [32] and that ∆𝑥/𝜁 is small enough to 

limit discretization error and avoid mesh anisotropy. 

 3.2 Case study 1 – Solid oxide fuel cell 

To use our model to accurately investigate the transport properties of solid oxide fuel cell 

materials such as YSZ, the model must be extended to three dimensions. The generalization of 

Eqs. (6) and (7) gives  

 

𝜕𝐶3
𝜕𝑡 = 𝐷!"#$

1
𝜙3
∇ ⋅ 𝜙3∇𝐶3 +

J∇𝜙3J
𝜙3

;−
1
𝜅 Δ𝐶&!< 

(11) 

 

A cubic microstructure was generated with an average grain size of 50 nm with a range of 40-60 

nm (comparable to those found in Ref. [15]) and an edge size of 240 nm in each direction. The 

microstructure was generated and smoothed in the manner presented in Ref. [30] to obtain 

domain parameter interfaces with hyperbolic tangent function profiles with thicknesses and grid 

spacing corresponding to 𝑁&!𝜁/𝐿+ = 1/25 and 𝜁/∆𝑥 = 1, respectively. A thin-film structure 

having dimensions of 240 nm×240 nm×40 nm was similarly generated using the same set of 

parameters other than the thickness of the computational domain. Other physical parameters used 

for YSZ are 𝐷!"#$ = 2.17 × 10/,1 m2/s, 𝐷&! = 5.0 × 10/,C m2/s, and 𝛿 = 1 nm [15]. This 

parameter set corresponds to an expected error of less than 0.6% from Figure 3.  

 

Figure 4a shows the microstructure through plotting the sum of the square of the domain 

parameters. Figures 4b-d show the evolution of the concentration profile in the bulk of the YSZ. 



Sharp drops in concentration can be observed at the grain boundaries with a much more gradual 

concentration drop across the bulk of the grains. As time progresses and the system evolves 

towards steady state, the concentration profile becomes more diffuse in the direction of the 

concentration gradient for both the 40 nm and 240 nm thick YSZ structures. 

 

One additional application of this hindered grain boundary diffusion model is to use the 

computed steady-state concentration profile to calculate the effective diffusivity of the 

microstructure using the expression 

 

𝐷DEE = −
𝐽678𝐿+

(𝐶F". − 𝐶'-)
, (12) 

 

where 𝐶'- and 𝐶F". are the concentration values for the Dirichlet boundary conditions at the left 

and right faces of the domain, respectively (𝐶'- = 1 and 𝐶F". = 0), and 𝐽678 is the simulated 

steady-state flux in the primary diffusion direction (pointing from left to right) averaged over the 

left or right face. For the steady-state concentration profile in Figure 4d, we find 𝐷DEE =

1.17 × 10/,1 m2/s, whereas the experimentally reported value for effective diffusivity is 

6.8 × 10/,0 m2/s [15], which is 42% less than the computed value. The discrepancy can be 

attributed to the uncertainty of the effective thickness of the grain boundary as the space charge 

layer thickness is greater than that of the grain boundary itself [15]. Additionally, there is 

uncertainty of the actual particle size distribution because only the average grain size of 50 nm 

was reported in Ref. [15], and the 40-60 nm range was arbitrarily chosen when generating the 

microstructure.  

 



There are multiple other models utilized to predict the effective diffusivity of polycrystalline 

solids in which grain boundary diffusivities differ from the bulk diffusivity. One such model is 

Hart’s equation [33], which assumes a simplified geometry where all grain boundaries are 

parallel to the diffusion direction:  

 

𝐷GBH. = 𝑉&!𝐷&! + G1 − 𝑉&!H𝐷!"#$ .              (13) 

 

In a three-dimensional structure, the grain boundary volume fraction, 𝑉&!, is calculated by 

multiplying 𝛿 by the total area of the grain boundaries as calculated by summing the area of 

triangular patches generated from a MATLAB isosurface of the domain parameters. Another 

mean field approach is Maxwell Garnett’s equation [34], which assumes spherical grain 

boundaries:  

 

𝐷8I =
𝐷&! _G3 − 2𝑉&!H𝐷!"#$ + 2𝑉&!𝐷&!`

𝑉&!𝐷!"#$ + G3 − 𝑉&!H𝐷&!
. (14) 

 

For the 240 nm thick YSZ microstructure, 𝐷GBH. = 2.05 × 10/,1 m2/s and 𝐷8I = 1.16 × 10/,1 

m2/s. The Maxwell Garnett prediction is very close to that of the numerical model because the 

spherical grain assumption is reasonable for an isotropic structure. The Hart model’s assumption 

of parallel grain boundaries is not accurate for such a microstructure and overestimates the 

effective diffusivity. 

 



Not only is the presented numerical model more comprehensibly applicable than the existing 

mean field approaches (because it can dynamically predict the concentration profile), but it is 

also more robust when being used only to predict the effective diffusivity as it makes no 

assumptions about the geometry of grain boundaries. In the 240 nm thick microstructure, 

Maxwell Garnett’s equation gives nearly the same result as the numerical model without the 

need – nor the cost – of a simulation. However, Maxwell Garnett’s equation is only successful 

because the structure is isotropic. If we introduce an anisotropic microstructure in which grains 

are elongated in one direction, we expect the numerical model to become much more accurate 

than Maxwell Garnett’s prediction. Furthermore, Maxwell Garnett’s equation assumes that all 

grain boundaries possess the same properties. As mentioned earlier, our model is capable of 

relaxing such an assumption. 

 

Another method to introduce anisotropy in the grain boundary structure is to consider a thin film 

with a thickness on the order of the grain size. In this case, there will be relatively fewer grain 

boundaries perpendicular to the diffusion direction. Figures 4e-h show the microstructure and 

concentration evolution of a 40 nm thick YSZ structure using the same average grain size of 50 

nm. For this 40 nm thin film, we find the effective diffusivity value of 𝐷DEE = 1.66 × 10/,1 

m2/s from the simulation, while 𝐷GBH. = 2.08 × 10/,1 m2/s and 𝐷8I = 1.32 × 10/,1 m2/s. The 

decrease in grain boundary volume fraction from the 240 nm to 40 nm structure (5.7% to 4.3%) 

results in an increase in 𝐷8I  by 14%. However, the numerical model, which accounts for both 

the change in volume fraction and the introduced anisotropy, predicts an increase in 𝐷DEE of 

42%. Hart’s equation predicts very little change between the 240 nm and 40 nm structures as the 

assumption of parallel grain boundaries is already at the extreme limit of anisotropy and the 



change in volume fraction matters little in the parallel orientation. It is evident that neither Hart’s 

model nor Maxwell Garnett’s model yield quantitatively accurate approximation in this case, 

indicating a need for numerical simulations. 

 

 

3.3 Case study 2 – Cathode particle 

Battery cathode particles often consist of an agglomeration of smaller, primary particles and thus 

are roughly spherical polycrystalline structures [19]. Our numerical model for hindered grain 

boundary diffusion can be applied to this case, where cracks that form at the grain boundaries 

during cycling are the sources of diffusion hindrance. The model is parameterized for the Nickel 

Manganese Cobalt (NMC) cathode material with 𝐷!"#$ = 6.1 × 10/,1 m2/s [21], an average 

grain size of 150 nm (with a range of 100 nm to 200 nm), and a cathode particle size of 1 micron 

[30]. Because the width and effective diffusivity across the crack (or grain boundary with poor 

contact) are not well studied, an arbitrary choice is made for the degree of hindrance (𝜅 =

1.0 × 10,, s/m). This parameter could be tuned and the simulation results compared against 

experimental data to extract an accurate 𝜅. The simulation numerical parameters are the same as 

those used in the YSZ case study in section 3.2. 

 

A boundary condition for lithium concentration (in terms of the site fraction) of 𝐶 = 1 is set at 

the surface of the particle that is initially devoid of lithium. Figures 5b-c show the evolution of 

the concentration as the cathode particle is intercalated with lithium. Again, sharp concentration 

drops can be seen at the grain boundaries where the cracks (or grain boundaries with poor 

contact) are inhibiting the lithium transport. Potential uses of this numerical model for cathode 



particles are to investigate the cracks’ effects on cycling performance and/or coupling the 

concentration field to a mechanical solver to study the dynamic concentration’s effects on stress 

and crack growth.  Such simulations have been demonstrated for the case where a liquid 

electrolyte infiltrates cracks [41], enhancing transport, but not for the case where cracks hinder 

transport, which is more likely for all-solid-state batteries where the solid electrolyte cannot flow 

into newly opened cracks [42].  Future work could be made more accurate by implementing a 

variable diffusivity which depends on the local concentration as lithium diffusivity in NMC is 

known to be concentration dependent [21]. 

 

4. CONCLUSION 

In summary, we developed a model that utilizes the SBM and accurately predicts the 

concentration evolution in polycrystalline structures with hindered grain boundary diffusion. The 

model developed in this work can explicitly consider geometries of grain boundaries, making it 

more robust than mean field approaches when calculating effective diffusivity. Furthermore, 

when diffusion plays a role in coupled-physics phenomena, the model can account for the details 

of the microstructure more accurately. For example, it can be applied to study the effects of grain 

morphology on chemical transport in systems such as solid oxide fuel cell and battery cathode 

materials, accounting for the interplay between reaction kinetics, mechanical response, and 

transport. Because the diffuse interface width in our model is decoupled from the width of the 

physical grain boundary, users can change the diffuse interface width to trade off numerical 

accuracy with computational cost. The error analyses conducted in this work will enable users to 

select proper parameter sets to accurately predict the diffusion behavior of polycrystalline 

systems with hindered grain boundary diffusion. Along with our previous work that focused on 



enhanced grain boundary diffusion, this work provides a framework for examining diffusional 

transport in polycrystalline systems. 
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Figure 1 One-dimensional SBM simulations. (a)  Plots of the domain parameter, 𝜙, for three 

grains with two grain boundaries as a function of position, 𝑥. (b) Plots of the simulated 

concentration field 𝐶 for three different ratios of grain boundary diffusivity to bulk diffusivity, 

0.004 (black line), 0.02 (blue line), and 0.1 (red line). 
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Figure 2 Comparison of a sharp interface simulation and an SBM simulation in one dimension. 

(a) Normalized error 𝜖 defined in Eq. (9) plotted vs. time. (b) Concentration profiles of the sharp 

interface and SBM simulations at time 𝑡 = 0.0543	𝜏 corresponding to the first peak in (a).  (c) 

Concentration profiles corresponding to steady state.  In (b) and (c), the SBM result is indicated 

by a solid black line and the sharp interface result is indicated by a dashed red line.   
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Figure 3 Calculated maximum error 𝜖AB+ in the one-dimensional simulations (indicated by 

symbols) plotted as a function of the volume fraction of numerical interface 𝑁&!𝜁/𝐿+, alongside 

their fits (indicated by solid lines) to the second-order polynomial in Eq. (10).  Data and fits for 

three values of 𝐷&!/𝐷!"#$ are shown, namely, 0.004 (black circles, black line), 0.02 (blue 

squares, blue line), and 0.1 (red triangles, red line).  Values for 𝑎, the fitted parameter in Eq. 

(10), and 𝑅%, the coefficient of determination, are displayed for each fit in the legend.  
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Figure 4 The microstructure and dynamic concentration profiles for YSZ. The sum of the square 

of the order parameters, ∑ 𝜙3%3 , is plotted to show the grain boundaries of (a) the 240 nm thick 

YSZ structure and (e) the 40 nm thick YSZ structure. The evolving concentration field from the 

SBM simulation, 𝐶, is shown for (b) an early time, 250𝜏 = 1.84 s, (c) a later time, 1000𝜏 =

7.37 s, and (d) at steady state for the 240 nm YSZ structure and (f) an early time, 15𝜏 = 0.111 s, 

(g) a later time, 40𝜏 = 0.294 s, and (h) at steady state for the 40 nm YSZ structure. Each plot has 

one quarter of the domain removed to show the interior. 
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Figure 5 The microstructure and dynamic concentration profiles for a battery cathode NMC 

particle. (a) The sum of the square of the order parameters, ∑ 𝜙3%3 , showing the grain boundaries 

of NMC particle. The concentration, 𝐶, profiles are shown for (b) an early time, 150𝜏 = 2.46 s, 

(c) a later time, 750𝜏 = 12.3 s, and (d) at a time approaching complete lithiation, 1000𝜏 = 49.2 

s. Each plot has one quarter of the domain removed to see the interior. 
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