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Abstract—Maddah-Ali and Niesen (MAN) showed that coded
caching can effectively mitigate peak-time network load by
leveraging local caches at the end users. In the MAN model,
a server stores multiple files, populates the local caches, and
serves single-file requests from cache-aided users via an error-
free shared link. The delivered multicast messages in the MAN
scheme to serve the users’ requests require all users to stay active
and expose demand information. To preserve demand privacy
and accommodate for offline users, the hotplug caching model
with demand privacy against colluding users was introduced and
an achievable schemes based on the '"privacy keys' idea was
proposed at ISIT 2023. This ISIT 2024 paper proposes three new
achievable schemes for this model which use Maximum Distance
Separable codes coupled with the 'virtual users' idea. These new
schemes turn out to be exactly optimal under certain conditions,
and otherwise optimal to within a constant factor.

Index Terms—Coded caching with offline users; Achievablity;
Demand privacy; Colluding users; Optimality for small memory
size; Multiplicative constant gap.

I. INTRODUCTION

Coded caching is a technique that aims to tradeoff network
load from a server for storage space at the end users. In [1],
Maddah-Ali and Niesen first defined a shared-link network
model with multiple cache-aided users (referred to as MAN),
and characterized its fundamental limits via a cut-set converse.
MAN uses a combinatorial uncoded placement strategy and
network coding for the delivery. Compared to uncoded deliv-
ery, the MAN scheme achieves a great load reduction, thanks
to a global coded cache gain, and it is order optimality to
within a constant factor.

Wan et al. derived a converse bound under the constraint of
uncoded cache placement and proved that the MAN scheme
achieves it when the system has more files than users [2]. The
Yu et al.’s scheme (referred to as YMA) improved the MAN
scheme and was shown to meet the Wan et al.’s converse
under the constraint of uncoded placement for all system
parameters [3]. In terms of order optimality, Yu ef al. proved
that the YMA scheme is optimal to within a factor of 2 [4].

In the MAN setting, users request a single file from the
server, i.e., single-file retrieval (SFR). In [5], Wan et al
extended the demands so as to include scalar linear function
retrieval (SLFR), that is, a linear function of the files; they
showed that a YMA-type scheme is optimal under the con-
straint of uncoded placement for the expanded demand space.

The MAN setting has limitation. In partcular, i) the MAN
scheme halts when some users are offline, i.e., who fail to
submit their demand; and ii) decoding the delivered multicast
messages requires each user to know all demands. For the

first issue, [1], [6] introduced a decentralized coded caching
scheme, where the cache placement happens in a decentralized
manner. In contrast to those works, in [7] we introduced
the hotplug model, where the server can accommodate a
fixed number of offline users. Compared to the decentralized
scheme, the proposed hotplug schemes have better load perfor-
mance and are exactly optimal for certain system parameters,
and otherwise optimal to within a constant factor.

For the second issue, [8] introduced the Virtual Users (VU)
idea, whereby the server pretends to serve a lot more users
than those actually present in the system; the resulting scheme
was shown to be order optimal in [9]. The Authors of [10]
introduced the Privacy Keys (PK) idea, which essentially uses
a one-time pad to mask a demand and stores PKs in the
caches to enable successful decoding; the resulting scheme
is order optimal for both SFR and SLFR demands under a
privacy constraint against colluding users. In [11], the SLFR
hotplug model with demand privacy against colluding users
is considered; a scheme that combines Maximum Distance
Separable (MDS) with the PK idea is shown to achieve lower
subpacketization and better load in the small cache regime
than trivial baseline schemes. To the best of our knowledge,
no order optimality results are known for the hotplug model
with demand privacy; this paper aims to fill this gap.

Main Contributions: Inspired by [12], we derive three new
schemes for the hotplug model with demand privacy against
colluding users based on the combination of VU and MDS
codes. Two schemes are shown to be optimal in the small or
large memory regime, respectively. We also show a constant
multiplicative gap for all memory regimes.

Paper Outline: The rest of paper is organized as fol-
lows. Section II states the problem formulation. Section III
summarizes related prior works. Section IV summarizes our
main results. Section V gives a specific example. Section VI
conclude this paper. Some proofs can be found in Appendix.

II. PROBLEM SETTINGS
A. Notation Convention

We adopt the following notation convention. Calligraphic
symbols denote sets, bold lowercase symbols vectors, bold
uppercase symbols matrices, and sans-serif symbols system
parameters. | - | is the cardinality of a set or the length of a
vector. For integers a and b, (Z) is the binomial coefficient,
or 0 if @ > b > 0 does not hold. For an integer b, we let
[b] :== {1,...,b}. For sets S and Q, we let S\ Q := {k :
k€ S,k ¢ Q}. For a collection {Z1,...Z,} and a index set



S C [n], we let Zs := {Z; : i € S}. For a set G and an
integer ¢, we let Qf :={T C G :|T|=t}.

B. SFR Hotplug Model

An (A,K,;N) SFR (single-file retrieval) hotplug model con-
sists of N files stored at a central server, and K cache-aided
users connected to the server via an error-free shared link.
File 4, i € [N], is denoted by Fj, contains B i.i.d uniformly
random symbols over a finite field Iy, where q is a prime-
power number. User k, k € [K], has a cache, denoted by Z,
which can store MB symbols. The server is aware that only
A < K users are active, but the identity of the active users
remain unknown until they sent their SFR demands.

In the placement phase, the server generates a random
variable 73 for every user k, and fills the cache of user k
based on the files and 73, i.e.,

H(Zy | Fony ) =0, Yk € [K]. (1)

The cache size is MB symbols for M € [0, N].

In the delivery phase, only A users are active, indexed by
the set Z € Q. Active user k € T requests file dj, € [N], and
the collection of all active users’ demands is denoted by dz.
The server serves the demands of the active users by sending
a message X which satisfies

H(X | Finy,Z,dz, k) = 0, )

which contains RB symbols, where R € [0, N] is the load.
Each active user decodes its desired file based on the
delivery message and its own cache, i.e.,

H(Fy, | X, Zy,dy) =0, VkeT. 3)

In addition, for any set 5 C Z of colluding active users, any
active user in 3 must not obtain any information about the
demands of other active users, i.e.,

I(d\s;ds, Z5, X | Finj,Z) =0, VBCZ. 4)

The optimal load with demand privacy is defined as

R} (M) = lim sup

min _ max {R : conditions
B—oo z

X,Z1,...2¢ T,d
in (1), (2), (3), and (4) are satisfied}, (5)

If R* is the minimal load without the demand privacy con-
straint in (4), then trivially R* < R;.

III. PRIOR RESULTS AND BASELINE SCHEMES
A. YMA scheme with SLFR demands

In the SLFR model, demands are linear combinations of
files (rather than a single files). The classical MAN coded
caching model is obtained for A = K and without the privacy
constraint (4). For this classical setting, the YMA scheme
is optimal when the placement is uncoded [3], [5], for both
SFR and SLFR demands. YMA for SLFR demands is a key
ingredient for the schemes we shall introduce later.

Placement Phase: Fix t € [0 : K]. Partition each file into
(%) equal-size subfiles as

Fy=(Fiw: W e Qy), VielN]. (6)

The cache content of user k is

Zy=(Fw:ie INJWeQy,keW), VkelKl. ()
The memory size is thus
K—1
_ t
M(tYMA) —N (t 1) - N )

R.

K
(%)
Bilinear Product: Given two vectors a € ]F(';' and b €

K
IF((,‘) We denote the “bilinear product of the subfiles” as

T(a,b) := Z Z an Fnw, bj € EE:/(}:). 9

n€(N] JE[(I:)]

Note that we can express subfile F;y, as Fiy, =
T(e;,e;),i € [N],j € [(¥)], where e; is a one-hot vector
with 1 in position ¢; with a slight abuse of notation, we also
write F;yy = T(e;, ew), fori € [N], W e Qny

SLFR Demands: Each user k € [K] demands the linear
combination of files denoted by

Bp= Y dinFn, k€ [K].
n€[N]

(10)

where d, ,, € Fq. We denote the demand vector for user k as
di = [dk1,-..,dgn]. Given the file partitioning in (7), we
can partition (10) as By = (Bgw : W € QfK}) where block
By yy is defined as

Bk,W = Z dk,nFn,W = T(dk,ew), Vk € [K}
n€(N]

Y

Delivery Phase: Given the demand matrix D =

[d1;...;dk], the server constructs the multicast messages
Xs = Z ag,s\{k} Br,s\{k} (12a)
kes
= ars\m T(dr, S\ {k}), VS € QfF', (12b)
keS

where the encoding coefficients oy, s\(1) € {+1,—1} are
chosen as shown in [5], [13]. The server selects a leader set
L C [K] such that rank(D[L£]) = rank(D), and sends

X = (L, D, XS:SGQf,{]l,SmL#@). (13)

As shown in [5], [13], the delivery signal in (13) allows
all users to successfully decode their requested SLFR. The
key observation is that it is possible to choose the encoding
coefficients in (12) in such a way that the non-leader users,
indexed by [K] \ £, can locally reconstruct the not-sent mul-
ticast messages X 4, for all A € Q'Ef{]{ > from the delivery
signal in (13).



B. Extension of YMA to hotplug without privacy

When A < K, the server can assign to the offline users
the demand of the first leader user. As a consequence, for the
worst case of |£]| = min(A, N), the memory size is unchanged
while the load is given by the following theorem.

Theorem III.1 (Extension of YMA to SLFR hotplug [7,
Theorem 1]). For an (A, K,N) SLFR hotplug coded caching
system without privacy, let t € [0,K], the lower convex
envelope of the following points is achievable

(Mta Rt)(YMA+) — <t’ (t—lil) B (i rjﬁgA’N))). (14)
K (x)

Works [3], [6] describe a decentralized placement for the
classical model where each symbol of all files is stored in
each user’s cache with a probability p := M/N. Similarly
to the YMA+ scheme in Theorem III.1, we can extend the
decentralized scheme from the classical model to the hotplug
model by filling in “fake” demands for the offline users. As a
result, the following load is achievable for the SLFR hotplug
without privacy

R(decen+) ( M ) —

1-p (1 (- (15)

I

For the SLFR hotplug without privacy we have [7, Theorem
2]

‘u)min(A,N)) .

R*(M) S R(YMA+)(M) S R(decen+)(M) S QR*(M). (16)

C. Privacy-Keys scheme with SFR demands

In [10], a scheme which preserves demand privacy against
colluding users by using Privacy Keys (PK) was proposed for
the classical setting of A = K.

Placement Phase: Files are split is as in (6). We shall
continue to use the notation of bilinear product in (9). For each
user k, k € [K], the server picks i.i.d uniformly at random the
key vector py, € FN, such that E;\':l pri = q — 1. The server
populates the cache of user £ as

Zy = {T(ei,E{k}Ug) ;i €[N, Qe Qﬁz]i{k}}
U {T(pkaeW) We QfK]\{k}}a Vk € [K], (17b)

where (17a) is the uncoded part of the cache as in (7), while
in (17b) are the PKs of the form T(py,eyy) for all sets W
that do not include k. The needed memory size is

(17a)

K-1 K—1
MiPK)::N@+( L3 ) :1+£(N*1)217

@ @ K

where M N% < MgPK) as users also store PKs.

Delivery Phase: For every active user k € Z, user k
requests a single file F;, where dj, € [N], alternatively it can
be written as e4, in the SLFR fashion. We denote the guery
vector for user k as

(18)

(YMA) _
¢ -

Q. == Pr + eq, €F}, Vk € [K], (19)

which can be thought of as a one-time pad of the demand

N
vector eq4, by the key vector pi. Note that Zi:l Qiyi =
Z'i\l:l pr,i +1 = 0. The collection of all query vectors gives
the query matrix Q = [q1;...;qk] € IE"qKXN. For those offline
users, similar to YMA+, the server fills in their demands from
active users demands, thus rank(Q) = min(K,N — 1). The
server constructs the multicast messages

Xs = ZSO%,S\{k} T(qr,es\(x}), VS € le,
ke

(20)

where ay s\(x} € {+1, —1}. The server selects a leader set
L C [K] such that rank(Q[L]) = rank(Q), and sends

X=(£,QXs:SeQf,SNLAD). (1)

It can be shown that the signal X and the cached content
guarantee successful recovery of the demanded file while
preserving privacy against colluding users [10].

D. Extension of PK to hotplug with privacy

When A < K, the server can assign to the offline users
the demand of the first leader user. As a consequence, the
PK memory size is unchanged while the load is given by the
following theorem.

Theorem IIL.2 (Extension of PK to SFR hotplug with pri-
vacy [11, Theroem 2]). For an (A,K,N) SFR hotplug coded
caching system with demand privacy, let t € [0,K], the lower
convex envelope of (0,N), (N, 0), and the following points is

achievable
(1) - (Kmi?i’i’””)> |

(?)

(Mta Rt)(PK+) = <1 + %(N - 1)a
(22)
E. PK-type schemes for hotplug with privacy

In [14], we combined MDS coded placement and the PK
idea to designs schemes; we skip the technical detail due to
limited space and refer the readers to [14].

Theorem II1.3 (MDS+PK for SFR hotplug with privacy [11,
Theroem 3 and 4]). For an (A,K,N) hotplug model with
privacy, for t € [0 : A], the lower convex envelope of
(0,N), (N,0), and the following points is achievable

(Mt, Rt)MDS+PK1 _
N+ [ = D] () - ()
@ 0 |

(23)

(24)

N—-11
M RMDS+PK2: N — —).
(M,R) A A

F. Virtual-Users Scheme

The Author of [8] introduced the idea of virtual users (VU)
to achieve demand privacy in the SFR classical model. In
the placement phase, each physical user has associated to it
a distinct set of N virtual-users; every physical users picks



independently and uniformly at random the cache content from
one of its associated virtual users. In the delivery phase, the
demands all the KN virtual users are assigned in such a way
that each of the N file is demanded exactly K times. As a
result, the performance of the VU scheme with this “restricted”
demand type is the same as that of the YMA scheme with
KN users and N files, i.e., in (14) we replace K with KN.
The essence of VU idea is to derive a private scheme for
a (K,N) classical model from a non-private scheme for a
(KN, N) classical model [15]. In Section IV, we shall derive
baseline schemes by leveraging the VU idea.

At this point, no constant gap result for SLFR hotplug with
privacy is known, to the best of our knowledge, as opposed to
the case without privacy in (16).

IV. MAIN RESULTS

We first take the YMA and the decentralized schemes for
the non-private classical model to obtain a private scheme for
the hotplug model by the VU idea. The key observation is
that the argument in [12, Theorem 2] extends to the SFR
hotplug model: we can derive a scheme for a (A, K,N) SFR
hotplug private model from a (AN, KN, N) SFR hotplug NON-
private model. Notng that min(AN,N) = N = min(KN, N),
we conclude that the load of the resulting VU-based schemes
is unchanged, as the next theorem states.

Theorem IV.1 (Application of VU to SFR hotplug with
privacy). For an (A,K,N) SFR hotplug model with privacy,
let t € [0 : KN], the lower convex envelope of the following
points is achievable

t (tlerl) - (Kl\lJr_lN)
(Mt> Rt)(YMA&VU) _ (N, KN) ) (25)
KN (")
In addition, the following is achievable

1—
=), p= Mo
The proof of Theorem IV.1 is a special case of the general

derivation in [14, Appendix].

R(decen&VU) ( M ) _

Theorem IV.2 (New schemes for SFR hotplug with privacy).
For an (A, K,N) SFR hotplug system with privacy, the follow-
ing points are achievable

(M, R)New! — GN (1 — i)) , L:=AN—-1)+1,

27

(M, R)New2 — (/‘: N — N;Al) , (28)

(M, R)New3 — <N (1 — 1) 1) (29)
’ AN/’ AN/’

Remark 1. Inspired by [12], all tradeoffs in Theorem IV.2
are derived from an immediate application of the general
result proved in Appendix that a scheme for an (A, K, N) SFR
hotplug model with privacy can be obtained from scheme for
a (NA,;NK,N) SFR hotplug system without privacy.

The first new point in (27) extends the optimal classical VU
scheme in [15] to the hotplug model.

The point in (29) is exactly optimal as it meets the non-
private cut-set bound R*(M) > 1 — M/N. We provide the
achievability proof of (27) in Appendix Both the second point
in (28) and the third point in (29) are [14, Theorem IV.1
(for t = 1)] and [14, Theorem IV.3] used with parameters
(AN, KN, N). For sake of space, we omit the proof details,
which can be found in Appendix.

Note that all points in Theorem IV.2 are function of A and
N, and not of K. For the cases of hotplug for which exact
optimality is known, the optimal performance only depends
on A, and not on K. O

Remark 2 (Extension to SLFR demands). Theorem IV.2 can
be extended to SLFR hotplug model seamlessly. In term of
VU schemes, the necessary step is to create virtual users
who have distinct demands. In SLFR hotplug, there are N :=
(qN—1)/(g—1) non-zero distinct lienar combination demands,
which depends on q. The first new tradeoff point requires
an MDS code, whose dimension is KN x AN; to guarantee
such MDS code exists, we need a large qg; an interesting open
question is find the minimum of q necessary to implement the
SLFR hotplug scheme. |

Remark 3 (Converse bound for hotplug with privacy). A
trivial converse bound for the hotplug system with privacy
can be obtained by considering the converse bound in [10,
Theorem 3] (for demand demand privacy with colluding users
in the classical setting) by replacing K with A. The reasoning
is that we cannot do better than knowing at the time of
placement which A users will be active, and derive the optimal
performance of these active users. The lower bound from [10,
Theorem 3] is thus as follows

(N—¢)min{¢ + 1,A}

N —¢) + min{¢ + 1,A}
which is known to be good in the low memory regime [10],
i.e., note R;(O) > N. In later sections, we shall combine the
bound in (30) (with privacy) together with [4, Theorem 2 and

Theorem 4] (without privacy) as a converse bound for our
plots, and for the gap result next. (]

RS (M) > max {£+ ( —eM}, (30)

Le[N]

Theorem IV.3 (Optimality for SFR hotplug with privacy). For
an (A,K,N) SFR hotplug system with demand privacy,
1) when A > N, we have RYMA&VD) < 9 00884 R*;
2) when A < N, we have RPX" > 5. 4656 R;;
3) when M < A(N+1)+1 or M > N (1— ﬁ) the points
Jrom Theorem IV.2 are optimal.

The proof of Theorem IV.3 is provided in [14, Appendix].

V. EXAMPLE OF HOTPLUG WITH PRIVACY

In this section, we illustrate by way of example how the new
SFR hotplug model with privacy. The memory-load tradeoff
is reported in Fig. 1 for (A,K,N) = (3,6,3). As shown in
Fig. 1, the first and third points in Theorem IV.3 are optimal.
As a comparison, we provide other schemes which also



preserve demand privacy: MDS+PK is Theorem II1.3; PK+
is Theorem 1V.2; YMA&VU is Theorem IV.1; the converse is
as stated in Remark 3. We choose this case as an example as it
is the smallest example where we can clearly and simply show
all the new aspects of the proposed schemes. More examples
can be found at [14].

1) The first point in Theorem IV.2: Placement Phase: Par-
tition each file into 7 subfiles as

F,=(Fhe:Le[7])=(T(en,er):Le]7]), Vn e [3].
€29

Consider the MDS generator matrix G = [g; : j € [18]]
of rate 7/18, i.e., any 7 vectors g’s are linear independent.
Sample the scalar p; € [3] i.i.d. uniformly at random for each
user j € [6]. The placement is,

3
Z; ={p;j} U {Z T(en,g3(j-1)4p,)} Vi €[6]. (32)
n=1
Delivery Phase: Let W : [3]> — [3]® denote the cyclic shift
operator, such that ¥(1,2,3) = (3,1,2). Let us denote a
vector I3 := (1,2, 3), and define the subtraction under modular
3 as ©, for example 1 61 = 0,1 62 = 2. Consider an
active user set Z = {j1,j2,j3} € Q¢ and their demands
dr € {d;,,dj,,d;,}, the server creates an vector of length
3 for each user j € 7 as

d; := WP (Iy), (33)

where the operator U? denotes the i-times cyclic shift operator,
which is the operator ¥ applied ¢ times. We define the
extended active user set Z of size 9 as

T:=(j-1)N+L:jeT,le3), (34)

and

pr ©dz = (pjl S dj17pj2 © djzvpj:s © djs) . (35)

Therefore, the server sends (i, pr ©dz), and
X = {T(eng;):je L 0c 38ne [\ {d}},

where d; ¢ is the (-th element of &j.

Decoding: User j € [Z], who knows {T(e,,g3(j—1)+p,) :
n € [3] \ {d;}} from X, can “unlocks” T(e4;,83(—1)+p;)
from its cache. Next, for every ¢ € Z and ¢ € [3] such
that di,g # dj, the bilinear combination T(eq,, g3(i—1)4¢) is
contained in X, in total 6. Since user j knows 7 independent
coded subfiles and the MDS rate is 7/18, it can restore Fdj.

Performance: The point (M, R) = (1/7,18/7) is achievable.

2) The second and third points in Theorem IV.2: These
points are attained from non-private HT1 and HT3 Schemes,
respectively, in [14, Theorem IV.1 and IV.3] with parameters
(A,K,N) = (9,18, 3).

Placement Phase: Each real user j € [6], together with 2
extra virtual users forms a group. The server populates the
cache content for all users including virtual ones, then a real

[:4
< .
g e
P il RN
é
e 1)
3 RN .
05| @ New tradeoffs (27)(28)(29) | = N
’ —— MDS+PK (23)(24)
—A— PK+ (22)
O - - YMA&VU (25)
Converse [4], [10]
| | | | | | |
0 0.5 1 1.5 2 2.5 3

memory size M

Fig. 1: Memory-load tradeoffs for the hotplug model with privacy
when (A, K,N) = (3,6, 3).

user uniformly chooses the content of one cache from its
assigned group independently and uniformly at random.
Delivery Phase: After the real users have sent their demands,
the server transmits to the extended set of users as shown
in (33) and (34).
Performance: The point (M, R) = (1/3,14/6) and (M,R) =
(24/9,1/9) are achievable respectively.

VI. CONCLUSION

We investigated the hotplug model under the constraint of
demand privacy against colluding users. Three new points
were shown to be achievable based on the virtual user idea, two
of which are proved to be optimal when the memory is either
small or large. We also proved other scheme that allowed us
to derive an order optimality result for all system parameters.

This work was funded in parts by NSF under awards
1910309 and 2312229.
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