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Abstract

This study presents a new vision-based deep learning method to monitor and evaluate the structural health of in-service
infrastructure. For this purpose, three different camera placements, including remote, structure-mounted, and drone-mounted
cameras, are proposed to capture the vibrations or displacements of bridges. The vision-based deep learning method is
verified by an optical flow approach. Various techniques, such as visual data denoising and camera motion removal, are
utilized to process the test data for displacement measurements and extract the structural frequencies. Structural models of
bridges are analyzed to validate the measurements and assess the structural health of several pedestrian, traffic, and railway
bridges without interfering with traffic. Measurements in the field experiments and results from the structural analysis
on tested bridges show that the proposed framework works successfully and can be potentially engineered to monitor the
structural health of existing bridges.

Keywords Camera placements - Deep learning - HR Mask R-CNN - Optical flow - UAVs - Structural analysis - Structural
health monitoring

1 Introduction and must have sufficient stiffness to avoid excessive defor-
mations or vibrations. Their dynamic performance can be
Bridges are essential to commute, travel and perform other  evaluated using their strength, stiffness, mass, damping,
activities resulting in external loads. These structures are ~ and other properties with machine learning tools [1, 2] and
designed to be strong enough to support these applied loads ~ various sensors [3—5]. Structural engineers can monitor
the potential damage and structural response of important
bridges by considering environmental factors [6, 7] and
Yongsheng Bai, Aydin Demir, Alper Yilmaz and Halil Sezen have using structural analysis [8, 9]. In missions of Structural
contributed equally to this work. Health Monitoring (SHM), vibration-based technologies,
such as accelerometers permanently or temporarily attached
to structural members, have been used as a conventional
) approach. However, these technologies have several disad-
Yongsheng Bai . . . . .
bai. 426 @osu.edu vantages, including higher cost, fewer desirable instrumenta-
tion locations on in-service tall structures, and limitations as
contact sensors [10-17].

In contrast, emerging vision-based technologies can be
alternative and effective in achieving this goal because more
advanced computer vision techniques and structural analysis
Civil, Environmental and Geodetic Engineering, The Ohio tools are available ( e.g., Unmanned Aerial Vehicles (UAVs)
%tgf University, 2070 Neil Avenue, Columbus, OH 43210, and less expensive optical devices). In this research, aiming

to engineer a pipeline using computer vision methods at low
cost and high efficiency in SHM missions, different cam-
era placements are validated by monitoring the vibrations
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vision-based technologies are used to collect time history
data. Then, signal processing techniques are developed to
analyze and interpret the visual data using deep learning
and computer vision methods. Structural models, as the last
step, are analyzed to verify the measurements and evaluate
the conditions of these bridges.

Figure 1 shows that the motion of a target on a bridge
can be captured by a camera in spatial and temporal spaces.
The target’s moving distance AB in the real world can be
projected onto the image plane, where the origin is on the
left corner, while the x and y axes are denoted from left to
right and from top to bottom using pixels as its unit. Since
the target’s size in the real world and image plane are known,
the scale factor is defined to convert coverage of one pixel
into millimeters or inches on the target in the scene plane.
Thus, the motion of the target in pixel unit can be effectively
scaled to the length unit by multiplying it with the scalar.
The higher the camera resolution, the more accurate this
conversion is. ab is the trajectory of the target on the image
plane, where dx and dy are the projected distance of ab in
x and y directions, respectively. The target’s motion can be
recorded with a digital video of N frames or images. These
consecutive images are defined as .. .. IV, where I
is the intensity value, and i and ¢ represent the ith frame
and time. To gain a high-level understanding of information
with a video, machine learning and deep learning algorithms
can be applied to quantify this motion for a structure or its

Fig. 1 Motion of a target pro-
jected in spatial space (a) and
recorded in temporal space (b)
with a camera
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component in the laboratory and field experiments [18, 19].
The key to measure the target’s motion is to use a motionless
infrastructure or a camera itself in the scene as a reference.
For example, a stationary camera itself can be the reference
to record the movements of targets, otherwise, the surround-
ing buildings or other standstill objects that are not affected
by the target’s motion can be the reference to remove the
relative camera motion from the measurements.

In this study, three camera placements are considered to
measure the displacement or vibration of a bridge, includ-
ing (i) structure-mounted cameras (when the cameras are
placed on the bridge and nearby structures are used as a
reference), (ii) remote cameras (when the cameras are fixed
remotely to the observed bridges and part of their appear-
ance is captured in the videos), and (iii) drone-mounted cam-
eras (i.e., UAVs). Figure 2 illustrates these three different
camera placements to measure the vibrations of a pedestrian
bridge. These methods demonstrate how vision-based tech-
nologies can be used to monitor and measure the displace-
ments and vibrations of structures or structural elements in
a laboratory experiment or a field test. New techniques are
developed to use deep learning as a better feature extraction
tool and suppress the low- or high-frequency motion in the
visual data or the camera’s own vibrations. To the best of
our knowledge, structure-mounted camera placement and
frequency subtraction are first proposed and implemented in
this research to monitor the response of bridges and remove
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Fig.2 Three camera placements for vibration measurement of a pedestrian bridge
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camera motion [20]. The main objective of demonstrating
the use of a structure-mounted camera system and camera
motion removal in this research is to provide more options
for vibration and displacement measurements with cameras.
Field experiments on existing bridges with cameras and
accelerometers and structural analysis are utilized to verify
the proposed methods.

2 Related work

Wireless accelerometers have been commonly used as
contact sensors to detect the dynamic response of various
bridge structures these days. Gheitasi et al. demonstrated
how to assess the serviceability of an in-service footbridge
and gain ideal results when wireless accelerometers were
used for vibration data acquisition [21]. Gibbs et al.
showed how to process data from wireless accelerometers
as the ground truth for a framework to extract dynamic
characteristics for rural footbridges [22]. Also, several
wireless accelerometers were deployed for measuring
vibration responses of traffic bridges in [23, 24]. We used
the data from wireless accelerometers as the reference to
verify the camera measurements in our field experiments.

There are many computer vision techniques to measure
the displacement of structures or their components with tra-
ditional computer vision methods. The experimental studies
[18, 25-28] help us find a solution to accurately measure
displacements in the field or laboratory. We were inspired
by the applications of vision sensors for cost-effective struc-
tural health monitoring and verified with the field tests of
the Manhattan Bridge in New York, USA [29] and a short-
span railway bridge [30]. Also, the main idea of this study
is based on the template matching or phase-based methods
to measure structural displacements [8, 19, 31-33]. Further-
more, the Lucas-Kanade template tracker algorithm used
in [34, 35] is employed to measure dynamic displacement
for large-scale structures. For displacement measurements
with cameras in these laboratory and field experiments, an
accuracy of 0.016-0.25 mm and 0.64—3.5 mm is reported,
respectively. All these methods did not include a structure-
mounted camera placement in experiments, which we first
proposed and tested in this study.

Deep learning methods are widely used to gain a high-
level understanding of visual data and extract desired infor-
mation. Like aforementioned traditional methods, the deep
learning methods perform displacement or vibration meas-
urements using data processing techniques to automatically
convert visual information to datapoints in experiments.
Precise motion measurements can be achieved from images
and videos with these methods. Xiao et al. proved that it
is applicable to a proposed SHM system using deep learn-
ing algorithms to evaluate the structural response, in which

visual data and measurements from conventional sensors
are fused for a more reliable diagnosis of bridges’ health
[36]. Dong et al. implemented an optical flow algorithm
named FlowNet2 to measure the displacements and vibra-
tions of bridge structures [37]. Dong and Catbas applied
Visual Graph Visual Geometry Group to extract features
on the target of a two-span bridge during the traffic time
[38]. The measured accuracy of displacements with deep
learning varied from 0.0087 to 0.08 mm in the laboratory
tests. These methods indicate how cameras can be used effi-
ciently to monitor and measure the displacements or vibra-
tions of structural members or a structure in the laboratory
or field. Li and Sun applied a deep learning algorithm to
detect structural damages by monitoring the continuous
bridge deflection based on fiber optic sensing technology
[39]. Inspired by these applications, a deep learning frame-
work with High-resolution Mask Regional Convolutional
Neural Network (HR Mask R-CNN) was proposed by us to
track and accurately measure the deflection of three con-
crete beams, and the vibrations of three masses on a shaking
table in the laboratory tests. This HR Mask R-CNN was
trained following standard data annotation, loss regulation
and parameter settings of such a deep neural network. A
measurement-smoothing technique referred to as the Scale-
Invariant Feature Transformation (SIFT) [40] was also intro-
duced for high-accuracy measurements. Thus, the average
error of deflection measurements from HR Mask R-CNN +
SIFT for the three test beams is 0.13 mm, and the difference
between the extracted and input frequencies is less than 9%
by identifying all the intended frequencies. An optical flow
method referred to as Lucas-Kanade (LK) tracker [41] was
also utilized in these studies as a validation method [20, 42].
It is critical to test both methods on real structures, so we
apply this framework and LK tracking algorithm to monitor
and evaluate the response of in-service bridges in this paper.

In addition, drones have become an important platform to
mount high-definition cameras and investigate the response
of simulated structures or existing infrastructure. Yoon
et al. displayed how to measure the vibrations of structures
in laboratory and field tests with UAVs. They recovered the
motion of the UAVs and got correct measurements during
the flight [43]. Tomiczek et al. developed a small unmanned
aircraft system that can be used to perform bridge inspec-
tions using a laser range finder and an optical flow sensor
[44]. Chen et al. employed homography transformation
to estimate the motion of the UAV and then corrected the
measurement of a model bridge with Digital Image Correla-
tion (DIC) [19]. Hoskere et al. used a UAV to measure the
dynamic structural displacements from videos and obtained
the model of a full-scaled suspension pedestrian bridge [9].
Ribeiro et al. used the visual and Inertial Measuring Unit
(IMU) data from UAVs to measure the in-plane displace-
ment, in which IMU data represented the motion of the UAV.
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The visual data described the combined motion of the target,
and then the subtraction of both actions was the absolute dis-
placement of the target [45]. Perry and Guo offered a frame-
work to use stereo and infrared cameras for 3D displacement
of structures, which was verified by an indoor shaking table
test [46]. Khuc et al. employed UAVs to measure the sway-
ing displacement of small-scale structures [47]. Different
from Khuc et al.’s study using homography transformation
to align the adjacent frames in the video, we think there
is another way to remove the camera motions during the
flights. In our study, each frame is aligned to the first frame
with Affine Transformation for removing drone motion.

3 Methodologies

There are two steps in our framework, including visual data
acquisition and processing, to perform an accurate
measurement and assess the vibrations or deflections of a
bridge under normal loading excitation with vision-based
technologies [20, 48]. In the data acquisition step, three
different ways to place cameras in field experiments were
studied to investigate the accuracy of vision-based vibration
methods and their limitations for real applications. If a
camera is seated on an intended location of a bridge and
moves with the structure, or it is fixed remotely, or a drone
flies and keeps at a certain height to focus on the moving
part of the bridge and nearby stationary objects, these
camera placements are called structure-, remote and drone-
mounted cameras, respectively (see Fig. 2). In the visual
data processing step, the HR Mask R-CNN method [49-51]
is employed to track targets or regions of interest (ROIs) on
the bridges in these videos, where spatial information (i.e.,
coordinates in the image plane) is included in each frame
and the temporal information can be obtained by the duration
and frame rate used to record the videos (see Fig. 1). In order
to achieve sub-pixel accuracy of displacement measurement,
SIFT is also used to refine and smooth the measurements.
Figure 3 is an example that a target (e,g., a joint region) on
a bridge is recognized and tracked with the HR Mask

Fig.3 An example of a target

on Columbus Downtown North
Bridge detected and tracked by
the proposed HR Mask R-CNN
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] yay: A
| L L
P ROI Align Convolution | Convolution
T—» ) o —

R-CNN. In Fig. 4, the keypoints on the detected target with
our deep learning method are matched with the SIFT. Then,
the average coordinate change (dx' and dy’) of these
keypoints in the image plane, where (xJQ, yj(.)) and (x{, y!) are
the coordinates of jth matching keypoints on the first and
ith frames in the video, respectively, will be used to
represent the target’s movement between these two frames.
In our experimental studies, the measured movement was
converted from pixel unit to metric unit based on the target’s
size in the image plane and real world. The LK tracker [41]
is employed to verify the proposed HR Mask R-CNN +
SIFT in this study. Both methods were validated using labo-
ratory tests in [20, 42, 48].

Some signal processing techniques are applied in our
framework of displacement or vibration measurements. But-
terworth Band Filter [52] is used to get rid of noises caused by
very low or high frequencies and to correct the wrong trend
of the visual data. Then, Faster Fourier Transform (FFT) [53]
is utilized to extract the modal frequencies of structures or
structural components with these filtered vibration signals.
Since a camera can be affected by the wind or movement
of the ground where it stands or may shake if it is attached

(0'0) 13 i_..0 n i_.,0 X
dxi = Ei=1(xj—xi)/n and dy' = Ei:l(yj_yj)/n
(xl.o, y;)) are the distance of a moving target between
the first and i*" frame in a video using Mask R-
I 1 CNN+ SIFT, n is the number of matching
3 dx keypoints.
i 1 I
Lt X y))
ay' (T o
i i
? 5
Lt J
(x}’, y]'-)): the jth matching keypoint for a target in the first frame of a video.
y (xi-, y}): the j™ matching keypoint for a target in the it frame of a video.

Fig.4 An illustration to get the average coordinate change of multi-
ple matching keypoints on a target in Fig. 3 between two frames in
a video with Mask R-CNN + SIFT. The target’s movement is repre-
sented with this change and can be converted from pixel unit to met-
ric unit if the scale factor is known
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to the drone, the camera motion can be isolated and elimi-
nated when appropriate techniques are applied. For example,
displacement and frequency subtractions are used to remove
the drone motion in field experiments [20, 48]. To be more
specific, the former is a subtraction of movement between the
drone’s motion and the targets on the bridge. The latter is the
subtraction between the frequencies of the drone and bridge
motions in the camera. The flowchart of the proposed HR
Mask R-CNN + SIFT to track and measure the vibration of
a bridge with cameras is illustrated in Fig. 5. As a validation
method, the LK tracker method also has a similar pipeline.

The proposed framework with various camera place-
ments can save time and effort for monitoring the vibra-
tions of existing bridges. This research provides struc-
tural engineers with more options to select a place to
fix a camera or fly a drone to an ideal observation point.
Then, higher-quality data can be obtained in addition to
eliminating the need for markers on the bridges and refer-
ence objects. The data processing is automatic since the
acquired visual data are the only input and the frequencies
of bridges are the output. Currently, it may take several
minutes to do this if the training to detect and track the
targets are needed. In the proposed framework, this can
be real-time if the vibration measurements are repeated
using the same setup that was used in previous tests on
the same bridge.

4 Experimental studies

The framework proposed in the previous section to capture and
measure the vibrations of structures or their components was
validated with two shaking table tests in the laboratory [20,
42, 48]. The HR Mask R-CNN + SIFT and the LK tracker

transformation is applied to align

each frame based on the first frame

H Camera setup and video recording If there is camera motion, affine
If no camera motion

Train HR Mask R-CNN with a small portion of
images in the video to recognize targets on bridges

Track and crop the targets

H Apply SIFT for matching and obtaining average translation of each target H

H Convert the targets’ motion to measurement H

H Post-processing to filter measured visual data for vibration measurement |

If no camera motion If there is camera motion, displacement

and frequency subtractions are applied

Extract frequencies of the
bridge these filtered vibration

Fig.5 A flowchart of HR Mask R-CNN + SIFT used for vibration
measurement of a bridge

achieved sub-pixel accuracy in these tests with remote cam-
eras as non-contact sensors. In this section, all three camera
placements and techniques to remove camera motion for in-
service bridges are tested. Some measurements were compared
with the results from the structural analysis performed using
SAP2000 [54]. These bridges are shown in Fig. 6.

In the experiments, the original unit for the vibration meas-
urement of these bridges is in pixels. One pixel is the smallest
2D square to divide the image plane evenly in two directions
and can be used as the length unit (Fig. 1). For example, the
convention to describe the pixel resolution of an image is to
use integer numbers in both width and height directions, where
width is the number of pixel columns in x direction and height
is the number of pixel rows in y direction. The measurements
were converted into millimeters (mm) with the measured scale
factors, which are in a range between 1.10 and 3.80 mm/pixel
in our field experiments. We rely on the SIFT to obtain sub-
pixel accuracy, thus, the error of displacement measurements
in a laboratory test can be 0.13 mm [42].The same subpixel
precision can be achieved in field experiments but may be less
accurate because of the longer distance with our current cam-
eras. Also, we did not model the Lane Ave Bridge because the
documents at hand are insufficient to model and analyze this
prestressed and cable-stayed concrete bridge in Fig. 6.

4.1 Vibrations of pedestrian bridges measured
with three camera placements

Six pedestrian bridges on the main campus of the Ohio
State University (OSU) were tested. All of them are truss
structures with steel tube members and concrete decks.
These bridges are less rigid and tend to vibrate more when
people pass. In this study, their dynamic responses under
the excitation of jumps were measured with the camera
placements illustrated in Fig. 2. The tracking targets are
all on the midspans of these bridges.

Cannon Bridge, a three-span bridge, was used as a
detailed example to address the application of the proposed
deep learning-based method to quantify its dynamic charac-
teristics. The drawing and views of this bridge are shown in
Fig. 7. The midspan of the second span was selected as the
location for tests with remote, structure-mounted, and drone-
mounted cameras. The frame rates of remote and structure-
mounted cameras are set as 45 and 60, respectively, with an
image size of 1920x1200. The drone-mounted camera has an
image size of 1920x1080 and records at a speed of 48 frames
per second. Original measured visual data are filtered or
aligned in case of camera motion. FFT is applied to extract
the frequencies of the bridges [20, 48].

The measured vibrations and extracted fundamental
frequency of this bridge with the proposed framework are
shown in Fig. 8. The fundamental frequency obtained from
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Name SAP2000 information
Cannon Th'ree—sp.a n
Bridee bridge with
8 steel tubes
Simply
Schottenstein supported
Bridge steel truss
s¢ bridge
Simply
Carmack supported
Bridge 1 steel truss
bridge
Simply
Carmack supported
Bridge 2 steel truss
bridge
Simply
supported
Morrill Bridge steel truss
bridge
Simply
Lincoln supported
Bridee steel truss
& bridge
Two-span fix-
ended cable-
Lane Ave stayed bridge
Bridge with
precasted
concrete
Five simply-
Columbus
supported
Downtown steel truss
North Bridge bridge
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Fig.7 Views and drawings for Cannon Bridge. a, b and ¢ are two views, architectural and structural drawings for the bridge, respectively (1 ft =

30.48 cm)

the accelerometers is approximately 4.0 Hz. Similarly, the
fundamental frequency calculated by analyzing the structure
with SAP2000 is around 4.0 Hz (see Table 1). Using three
different camera placements in Fig. 2, its vibrations can be
captured successfully and the fundamental frequency can
be determined accurately. In addition, it can be observed
that the structure-mounted camera (Fig. 8c) can acquire
more accurate shapes of a free-damped vibration system as

one jump excited the bridge to vibrate from the peak to the
standstill state due to the damping, but the remote and drone-
mounted cameras (Fig. 8a and b) cannot clearly capture this
shape. For this reason, we focused more on the frequency
extraction than vibration magnitude in this paper.

Table 1 summarizes the measured and calculated funda-
mental frequencies of these six pedestrian bridges, although
a study in [20] shows that the structure-mounted camera
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Fig.8 Filtered vibrations (left) with three different camera placements and extracted frequency (right) with FFT for Cannon Bridge. a, b and ¢
are the results from a remote, drone-mounted, and structure-mounted camera, respectively

Table 1 Fundamental frequency
(Hz) of six pedestrian bridges
measured and extracted by three
different camera placements and
accelerometers

placement can identify the top four frequencies of Schot-
tenstein Bridge. The drone-mounted camera placement is
not tested for Morrill Bridge because this bridge is almost

Remote Structure-mounted Drone-mounted SAP2000

Bridge HR LK Acc HR LK Acc Disp Freq  Acc

Carmack1 4.68 4.68 466 469 462 464 470 4.68 459 475
Carmack? 4.61 4.61 462 4.6l 4.62 4.6l 4.68 4.68 4.60 4.5
Lincoln 544 544 5.44 5.49 547 547 5.45 4.94 5.45 5.44
Morrill 543 5.43 5.43 547 5.45 5.45 5.44
Cannon 3.99 399  4.03 4.02 4.02 3.99 4.04 4.02 399  4.04
Schottenstein 3.84 3.84 385 3.84 3.84 3.85 391 3.87 3.84 3.88

*HR and LK refer to HR Mask R-CNN + SIFT and LK tracker. Acc., Disp., and Freq. stand for

accelerometers, displacement subtraction, and frequency subtraction

identical to Lincoln Bridge. These results indicate that our
proposed methods can accurately capture the fundamental
frequencies of the bridges.
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4.2 Ateston atraffic bridge

Lane Avenue Bridge is a cable-stayed bridge over the
Olentangy River near the OSU campus (see Fig. 6). The total
length of this two-span bridge is 113.1 m (371 ft). There are
six lanes for vehicle traffic with additional two pedestrian
lanes on the bridge. It is a stiff bridge made of prestressed
concrete girders, a reinforced concrete deck, and steel cables
connected to the reinforced concrete towers. The motion of
the bridge induced by the regular traffic was measured and
evaluated.

In the experiment, a camera was fixed on the bridge’s
sidewalk about 6.1 m (20 ft) far from the reference target, the
bridge’s tower, to record the deck’s motion during normal
traffic. The frame rate was set as 45 frames per second and
the image size is 1920x1200. Both HR Mask R-CNN and
the LK tracker were utilized to capture the vibration with
sub-pixel precision, although the magnitude of the vibration
is very small (e.g., the magnitude of vibrations is less than
0.2 mm). The measured and calculated results are shown in
Fig. 9. Compared to the measurement from accelerometers,
the first two modal frequencies, such as 7.86 and 9.63 Hz,
were successfully detected by our visual data processing
method. But the bridge’s vibration caused by running vehi-
cles is not significant. Thus, the remote and drone-mounted

camera placements did not work on this bridge with our
current cameras.

4.3 Vibrations and deflection measured
for Columbus Downtown North Bridge

This railway bridge is a steel truss structure built in the
1930s in Downtown Columbus, Ohio. It is currently open
for railway transportation. It has five spans, but pin-hinged
supports independently restrain each span and make each
of them a simply supported structure. The bridge has com-
posite steel sections and an open deck with square timber
members placed laterally on the floor beams. The views
and information about the structure and steel members are
shown in Fig. 10. The largest span length is 38.1 m (125 ft).
Tests were conducted on both end spans of this bridge as
described below.

(1) A structure-mounted camera with the jump excitation
in the north end span: This was a test to excite the bridge
by jumps. Obviously, this kind of excitation is far smaller
than the vibration that the bridge experiences when a train
passes over it. A camera was placed right on the top of a
steel beam of the bridge, and its frame rate was set as 60
frames per second. The image size is 1920x1200. The cam-
era was focused on the nearby retaining wall as a reference
of stationary objects.

Fig.9 Processed visual data

measured by a structure- £ o,
mounted camera (top record- £
ings) and accelerometers (bot- §
tom recording) on Lane Avenue £
Bridge. a, b and ¢ are measured g

vibrations (left) and extracted

O =W A~ U,

FFT magnitude (power)
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Mask R-CNN, LK tracker, and Time (s) (a) Frequencies (Hz)
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7.
6.
3|
4
g2
£
15 25 35 45 £l
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Fig. 10 Views and drawings for Columbus Downtown North Bridge. (a) is its views, (b) to (d) are the elevation and plan views, and sections for
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Figure 11 shows the testing results and Table 2 indicates
the difference of extracted frequencies between the camera
and accelerometers. It can be seen that only the third fre-
quency was detected by both HR Mask R-CNN and the LK
tracker, but the frequencies of 5.07(5.10) and 15.63 Hz are
not well captured by both proposed methods. We think it is
because the jumps cannot excite the bridge to a significant
overall movement.

(2) Remote cameras focusing on two locations of the
south end span of the railway bridge: Two cameras were
placed 12.2 m (40 ft) far away from the south end span of
this bridge. They were focused on the midspan and one-
quarter span of the bottom chord of this steel truss bridge.
The synchronization of data acquisition by two cameras
was tested in this study. The frame rate and image size of
each camera were set as 45 frames per second and 1920x
1200, respectively. Visual data during the train going over
that end span was processed by our proposed framework,
whereas only the LK tracker was used to capture the bridge’s
vibrations at two locations. Details of the experiment data
processing and applications of the proposed frameworks can
be found in [20].

Figures 12 and 13 show that the filtered vibrations and
extracted frequencies for two observed locations on the
bridge can be captured using the method described in the
previous section. Three major frequencies, such as 6.32,
10.90 (11.11), and 15.26 (15.91) Hz, at both locations were

Table 2 Three frequencies (Hz) measured and extracted by the frame-
works of HR Mask R-CNN and LK tracker and with accelerometers
for Columbus Downtown North Bridge

Accelerom- HR Mask R-CNN LK tracker
eters
Measure- Difference ~ Measure- Difference %
ment % ment
7.39 5.07 —-314 5.07 -314
11.03 11.08 0.4 11.0 0
18.02 15.63 - 133 15.63 —13.3

detected by the camera and accelerometer data, but the fre-
quency of 4.89 Hz was not identified from the accelerom-
eter data. Their differences in extracted frequencies for the
one-quarter and midspan are shown in Table 3. Based on
the measurements from accelerometers, the camera place-
ment under the train-running excitation has less difference
in extracted frequencies than the one under the jump excita-
tion. Compared with Table 2, these extracted frequencies
from different camera placements are also not close. This
indicates that the former excitation can cause a structural
response for such a heavy and stiff bridge but the latter can-
not achieve this. Also, the mass of this bridge was chang-
ing when the train went over the span. Thus, the dynamic
response of this train-structure system would be less steady.
It ws hard to achieve an accurate vibration measurement

Fig. 11 Two different methods 21 s w S07H 15.63 Hz
used for processing data from a %fg H 8.63Hz
structure-mounted camera for % 053 % 30 ‘ 11'?8 Hz
Columbus Downtown North T 00 T2 |
Bridge with jumps. a, b and ¢ £ gir’g ';éb 10
are measured vibrations (left) 5 166 2 0
and extracted frequencies (right 221
X quencies (right) 0 £ o 50 100 150 200 225
from HR Mask R-CNN, LK 10 20 30 40 50 (a)
tracker, and accelerometers, Time (s) Frequencies (Hz)
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066 T 510H 15,63 Hz
= 3 40
£ o 3 8.66H
Son 230 OO 1103 Hz
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202 ‘ 2
5044 €10
S @
<-0.66 €0
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Table 3 Three frequencies measured and extracted by the framework
of LK tracker and with accelerometers for the one-quarter span and
midspan of the south end span of Columbus Downtown North Bridge

Accelerom- One-quarter Midspan
eters
Measure- Difference ~ Measure- Difference %
ment % ment
6.33 (6.32) 6.26 -0.1 6.26 -0.1
10.90 11.25 3.2 11.85 6.7
(11.11)
15.26 14.70 -37 15.42 -3.1
(15.91)

with the remote camera placement in this case. We may fig-
ure out a solution for this in a future study.

(3) Deflection of the north end span of the railway bridge
under train loading: A high-resolution camera with an image
size of 3260x2440 was used to measure the deflection of the
midspan of the north end span of the bridge. The camera was
placed approximately 18.3 m (60 ft) far away from it and
focused on the joint of the bottom chord in the middle of the
bridge. The frame rate was 15 frames per second. There were
30 cars on the train. It recorded the whole process of loading
and unloading cycles on the bridge. As shown in Fig. 14, two
proposed methods, HR Mask R-CNN + SIFT and the LK
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Fig. 14 Two different methods
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tracker, were applied for deflection measurement. There is
a sharp increase and decrease for both when the train was
on and off the span.

5 Validation and structural health
assessment with structural analysis

In the above experiments, the performance of the tested
bridges can be captured by various camera placements.
Some of their dynamic characteristics can be interpreted
with techniques like FFT. But it is insufficient to evaluate the
health of bridge structures only with these measurements,
especially for in-service bridges. Structural analysis can be
introduced to model these bridges and analyze the calculated
response with the measurements considering the degradation
of materials. The results of experiments can also be used
to validate and update finite element models. Thus, a more
accurate numerical analysis can be performed during the
assessment of the bridge structures.

SAP2000 software (2022) is utilized to model and
analyze the selected six pedestrian bridges (e.g., Cannon
Bridge) and a railway bridge (e.g., Columbus Downtown
North Bridge). The dynamic performance of these bridges
under ambient loading conditions is the focus of this study.

The modulus of elasticity and yield strength of steel material
were assumed as 200 GPa (29,000 ksi) and 413.7 MPa (60
ksi), respectively. Details of the structural models, geometric
information, and loads are provided in [20].

5.1 Structural models for all six pedestrian bridges

The views of six pedestrian bridges and their structural mod-
els in SAP2000 are shown in Fig. 6. The information used
for structural modeling is shown in Table 4. Six modes of
the Cannon Bridge model are shown in Fig. 15 based on the
configuration in Fig. 7. The fundamental frequency corre-
sponding to Mode 1 in the vertical direction is 4.04 Hz and
it is very close to the measured frequencies by the cameras
and accelerometers. The frequencies of the first mode ana-
lyzed by SAP2000 for these pedestrian bridges are shown
in Table 1.

5.2 Structural modeling and analysis of Columbus
Downtown North Bridge

The general plan and elevation views of the bridge are
depicted in Fig. 10. The load-bearing members of the rail-
way bridge were modeled using frame elements in SAP2000,
including moment releases defined at both ends of the

Table 4 Information for six

pedestrian bridges (1 ft = 30.48 Bridge Spans Span length (ft) Main components Materials Support types

cm) Carmack1 1 80.75 HSS7x7x1/4 A36 Simply
Carmack2 1 80.75 HSS7x7x1/4 A36 Simply
Lincoln 1 53 HSS 6 x8x 1/8 A36 Simply
Morrill 1 53 HSS 6 x8x1/8 A36 Simply
Cannon 3 24,78,24 HSS 8 x 8 x 3/8 A36 Simply
Schottenstein 1 90.5 HSS6x6x 1/4 A36 Simply
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Fig. 15 Six selected modal shapes of the computer model of the Cannon Bridge

members to simulate the hinged end connections. A modal
analysis was conducted to calculate the frequencies of the
bridge. The first six modes have frequencies of 5.78, 7.15,
9.43, 11.45, 13.43, and 16.52 Hz. Compared to the meas-
urements from cameras in Fig. 11, the difference between
the measured and calculated frequencies are 14.0% ((5.78—
5.07)/5.07=14.0%), —=17.1% ((7.15—8.63)/8.63=—17.1%),
3.3% ((11.45—11.08)/11.08=3.3%), and 5.7% ((16.52—
15.63)/15.63=5.7%) for the first, second, fourth, and sixth
modes, respectively. The visual measurements can not cap-
ture the other modes. It is apparent that the modal analysis
results are a good match with the test measurements.
Additionally, a live load analysis was applied to obtain
the deflection time history of this bridge loaded with a train.
Since the weight, axle location, and other properties of cars
in freight trains can be very different in the U.S., it is very
challenging to determine their exact weight and location as
observers. Therefore, upper and lower bound limits were
defined to include the cases of fully loaded and empty freight
trains. The maximum live load was determined for the upper
bound analysis by considering design live loads prescribed
in the Manual for Railway Engineering of the American
Railway Engineering and Maintenance-of-Way Associa-
tion (AREMA) [55]. The primary live load model of the
manual, Cooper’s E80 load (see Fig. 16), was implemented
in the study. Secondly, the weight of empty freight cars and

‘‘‘‘‘‘

corresponding axle load (P), which are 311.4 kN (70 kips)
and 77.8 kN (17.5 kips), respectively, were selected for the
lower bound analysis. The freight train dimensions and axle
configuration were chosen according to Fig. 16 reported by
[56]. It should be pointed out that the weight of the loco-
motives leading to the empty freight cars was assumed as
1174.3 kN (264 kips), and a similar locomotive axle pat-
tern prescribed in Cooper’s E80 live load was implemented
[56-58].

In the SAP2000 model, the load factor was not considered
for dead and live loads since the purpose of this study is to
capture the actual behavior as much as possible. A moving
load defined on a predetermined path was applied for the live
load pattern to represent both fully loaded and empty trains.
In addition, a nonlinear static load case simulating a vertical
pushover analysis was defined to consider the self-weight of
the bridge and the dead loads. Then, two nonlinear multi-
step static analysis cases representing an empty and full
freight train were employed to apply the moving live loads
in sequence [59]. Because the freight trains traverse the
bridge at very low speeds, other potential longitudinal and
lateral dynamic actions that they may induce were ignored
in the simulations. The results of the upper and lower bound
live load analyses are shown in Fig. 14 for the fully loaded
and empty freight train, respectively. The deflections from
camera measurements and structural analyses are consistent
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Fig. 16 Implemented live load patterns: Cooper’s E8O (top) and idealized empty vehicles (bottom). Loads are in kips unit (1 kip = 4.45 kN)

because the typical freight train loads are unlikely to be as
large as the specified conservative design loads. The camera
measurements also stay within the lower and upper bound
response limits.

6 Discussion

This research investigates the effect of various camera
placements on bridge deformation measurements. Accurate
results can be achieved with our proposed pipeline and the
remote camera placement in laboratory tests, where more
structural modes or precise displacements can be captured
[42]. However, in field experiments, structure-mounted cam-
era placement is the only one which can capture more accu-
rate vibrations of bridges, as addressed by an ablation study
in [20]. That is because this camera placement is used as
contact sensors attached to the structures. Remote or drone-
mounted cameras are affected harder by the surroundings
and weather than structure-mounted cameras. Thus, less
accurate shapes or few modes of structural dynamic response
can be observed. Although similar experiments were not
conducted to quantify the ambient effects or weather on the
camera’s performance, we believe that high-quality cameras
and ideal daytime are essential for more accurate displace-
ment or vibration measurements of bridges. We are also
working on performing real-time and automatic measure-
ments based on our proposed framework. For visual data
collection and processing, it should be pointed out that high-
performance computers (e.g., better Graph Processing Units
(GPUs) and large storage space) are required.

As discussed in experimental studies, it is a key factor
that the appropriate excitation is applied on these bridges.
A simple jump is easier to cause the resonant movement of
a pedestrian bridge, but a traffic or railway bridge is so rigid

that it will not vibrate significantly under such an excitation.
This is why our framework for some camera placements
performs poorly in some experiments on Lane Ave Bridge
and Columbus Downtown North Bridge. Also, it is time-
consuming and challenging to retrieve design documents
and model these existing bridges. However, if a structural
model is built and the changes in structural materials (e.g.,
degradation) and loading conditions can be simulated for a
bridge, this analysis can be updated with long-term vibration
measurements obtained from the cameras to evaluate the
health of this bridge.

On the other hand, the proposed framework with various
camera placements was also applied to a progressive collapse
study of the field experiment on a multi-story building [20].
Like some tests in this paper, these applications show that
this framework can be treated as a remote sensing system
using remote and drone-mounted camera placements to
focus on more observation locations of a structure. As long
as the weather conditions are ideal and the setup of camera
placements is right, our proposed framework can work well
in field experiments on bridges and buildings.

7 Conclusions

Aiming to explore more advanced vision-based technolo-
gies for capturing the dynamic characteristics of in-service
bridges, a framework with a deep learning method (i.e.,
HR Mask R-CNN) and a smoothing technique for displace-
ment measurement (i.e., SIFT) are proposed and tested
using field experiment data from eight bridges, includ-
ing six pedestrian bridges, a traffic bridge, and a railway
bridge. Remote, structure- and drone-mounted camera
placements (see Fig. 2) were used to acquire the meas-
urement data. Similar to the proposed framework of HR

uuuuuu
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Mask R-CNN + SIFT, the Lucas-Kanade (LK) tracker
is utilized to verify the vibration measurements of these
bridges. The accelerometers and analyses of structural
models are employed to validate the measurements from
three camera placements. There are several conclusions
from this research:

(1) In the data acquisition step, three camera placements
were tested with these in-service bridges. These camera
placements were found to be practical and effective to
capture the structural characteristics of bridges under
normal loading excitation. Structure-mounted camera
placement can be used as a contact sensor and achieve
more accurate measurements in field experiments. But
remote and drone-mounted cameras can cover more
desirable observation locations and be deployed easily
and effectively in these experiments.

(2) The proposed framework of HR Mask R-CNN + SIFT
or the LK tracker can process the visual data well when
some filters are employed to suppress the very low and
high frequencies. It should be pointed out that other
deep learning-based methods for tracking can be used
in the proposed framework.

(3) To eliminate the camera motion for drone-mounted
cameras, two approaches (i.e., displacement and
frequency subtractions) were proposed and validated.
Our experiments on pedestrian bridges show that both
methods work successfully to capture the fundamental
frequency of each bridge.

(4) Low-cost cameras can be used to perform accurate
measurements of vibrations or deflections of existing
bridges if the cameras are set up correctly and pipelines
for visual data processing are established effectively.
Also, more modal shapes or structural frequencies of
monitored bridges can be obtained with sufficient exci-
tation and better camera placements. In this research,
visual data can not only be served as documentation
but also for quantitative analysis as we did. Structural
analysis and our proposed framework of visual data
processing can be used together to assess whether the
bridges are healthy or not by capturing the changes in
their dynamic response over time.
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