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Abstract
This study presents a new vision-based deep learning method to monitor and evaluate the structural health of in-service 
infrastructure. For this purpose, three different camera placements, including remote, structure-mounted, and drone-mounted 
cameras, are proposed to capture the vibrations or displacements of bridges. The vision-based deep learning method is 
verified by an optical flow approach. Various techniques, such as visual data denoising and camera motion removal, are 
utilized to process the test data for displacement measurements and extract the structural frequencies. Structural models of 
bridges are analyzed to validate the measurements and assess the structural health of several pedestrian, traffic, and railway 
bridges without interfering with traffic. Measurements in the field experiments and results from the structural analysis 
on tested bridges show that the proposed framework works successfully and can be potentially engineered to monitor the 
structural health of existing bridges.

Keywords  Camera placements · Deep learning · HR Mask R-CNN · Optical flow · UAVs · Structural analysis · Structural 
health monitoring

1  Introduction

Bridges are essential to commute, travel and perform other 
activities resulting in external loads. These structures are 
designed to be strong enough to support these applied loads 

and must have sufficient stiffness to avoid excessive defor-
mations or vibrations. Their dynamic performance can be 
evaluated using their strength, stiffness, mass, damping, 
and other properties with machine learning tools [1, 2] and 
various sensors [3–5]. Structural engineers can monitor 
the potential damage and structural response of important 
bridges by considering environmental factors [6, 7] and 
using structural analysis [8, 9]. In missions of Structural 
Health Monitoring (SHM), vibration-based technologies, 
such as accelerometers permanently or temporarily attached 
to structural members, have been used as a conventional 
approach. However, these technologies have several disad-
vantages, including higher cost, fewer desirable instrumenta-
tion locations on in-service tall structures, and limitations as 
contact sensors [10–17].

In contrast, emerging vision-based technologies can be 
alternative and effective in achieving this goal because more 
advanced computer vision techniques and structural analysis 
tools are available ( e.g., Unmanned Aerial Vehicles (UAVs) 
and less expensive optical devices). In this research, aiming 
to engineer a pipeline using computer vision methods at low 
cost and high efficiency in SHM missions, different cam-
era placements are validated by monitoring the vibrations 
or displacements of the same bridges. Both vibration- and 
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vision-based technologies are used to collect time history 
data. Then, signal processing techniques are developed to 
analyze and interpret the visual data using deep learning 
and computer vision methods. Structural models, as the last 
step, are analyzed to verify the measurements and evaluate 
the conditions of these bridges.

Figure 1 shows that the motion of a target on a bridge 
can be captured by a camera in spatial and temporal spaces. 
The target’s moving distance AB in the real world can be 
projected onto the image plane, where the origin is on the 
left corner, while the x and y axes are denoted from left to 
right and from top to bottom using pixels as its unit. Since 
the target’s size in the real world and image plane are known, 
the scale factor is defined to convert coverage of one pixel 
into millimeters or inches on the target in the scene plane. 
Thus, the motion of the target in pixel unit can be effectively 
scaled to the length unit by multiplying it with the scalar. 
The higher the camera resolution, the more accurate this 
conversion is. ab is the trajectory of the target on the image 
plane, where dx and dy are the projected distance of ab in 
x and y directions, respectively. The target’s motion can be 
recorded with a digital video of N frames or images. These 
consecutive images are defined as I0,..., Ii,..., IN , where I 
is the intensity value, and i and t represent the ith frame 
and time. To gain a high-level understanding of information 
with a video, machine learning and deep learning algorithms 
can be applied to quantify this motion for a structure or its 

component in the laboratory and field experiments [18, 19]. 
The key to measure the target’s motion is to use a motionless 
infrastructure or a camera itself in the scene as a reference. 
For example, a stationary camera itself can be the reference 
to record the movements of targets, otherwise, the surround-
ing buildings or other standstill objects that are not affected 
by the target’s motion can be the reference to remove the 
relative camera motion from the measurements.

In this study, three camera placements are considered to 
measure the displacement or vibration of a bridge, includ-
ing (i) structure-mounted cameras (when the cameras are 
placed on the bridge and nearby structures are used as a 
reference), (ii) remote cameras (when the cameras are fixed 
remotely to the observed bridges and part of their appear-
ance is captured in the videos), and (iii) drone-mounted cam-
eras (i.e., UAVs). Figure 2 illustrates these three different 
camera placements to measure the vibrations of a pedestrian 
bridge. These methods demonstrate how vision-based tech-
nologies can be used to monitor and measure the displace-
ments and vibrations of structures or structural elements in 
a laboratory experiment or a field test. New techniques are 
developed to use deep learning as a better feature extraction 
tool and suppress the low- or high-frequency motion in the 
visual data or the camera’s own vibrations. To the best of 
our knowledge, structure-mounted camera placement and 
frequency subtraction are first proposed and implemented in 
this research to monitor the response of bridges and remove 

Fig. 1   Motion of a target pro-
jected in spatial space (a) and 
recorded in temporal space (b) 
with a camera

Fig. 2   Three camera placements for vibration measurement of a pedestrian bridge
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camera motion [20]. The main objective of demonstrating 
the use of a structure-mounted camera system and camera 
motion removal in this research is to provide more options 
for vibration and displacement measurements with cameras. 
Field experiments on existing bridges with cameras and 
accelerometers and structural analysis are utilized to verify 
the proposed methods.

2 � Related work

Wireless accelerometers have been commonly used as 
contact sensors to detect the dynamic response of various 
bridge structures these days. Gheitasi et al. demonstrated 
how to assess the serviceability of an in-service footbridge 
and gain ideal results when wireless accelerometers were 
used for vibration data acquisition [21]. Gibbs et  al. 
showed how to process data from wireless accelerometers 
as the ground truth for a framework to extract dynamic 
characteristics for rural footbridges [22]. Also, several 
wireless accelerometers were deployed for measuring 
vibration responses of traffic bridges in [23, 24]. We used 
the data from wireless accelerometers as the reference to 
verify the camera measurements in our field experiments.

There are many computer vision techniques to measure 
the displacement of structures or their components with tra-
ditional computer vision methods. The experimental studies 
[18, 25–28] help us find a solution to accurately measure 
displacements in the field or laboratory. We were inspired 
by the applications of vision sensors for cost-effective struc-
tural health monitoring and verified with the field tests of 
the Manhattan Bridge in New York, USA [29] and a short-
span railway bridge [30]. Also, the main idea of this study 
is based on the template matching or phase-based methods 
to measure structural displacements [8, 19, 31–33]. Further-
more, the Lucas-Kanade template tracker algorithm used 
in [34, 35] is employed to measure dynamic displacement 
for large-scale structures. For displacement measurements 
with cameras in these laboratory and field experiments, an 
accuracy of 0.016–0.25 mm and 0.64–3.5 mm is reported, 
respectively. All these methods did not include a structure-
mounted camera placement in experiments, which we first 
proposed and tested in this study.

Deep learning methods are widely used to gain a high-
level understanding of visual data and extract desired infor-
mation. Like aforementioned traditional methods, the deep 
learning methods perform displacement or vibration meas-
urements using data processing techniques to automatically 
convert visual information to datapoints in experiments. 
Precise motion measurements can be achieved from images 
and videos with these methods. Xiao et al. proved that it 
is applicable to a proposed SHM system using deep learn-
ing algorithms to evaluate the structural response, in which 

visual data and measurements from conventional sensors 
are fused for a more reliable diagnosis of bridges’ health 
[36]. Dong et al. implemented an optical flow algorithm 
named FlowNet2 to measure the displacements and vibra-
tions of bridge structures [37]. Dong and Catbas applied 
Visual Graph Visual Geometry Group to extract features 
on the target of a two-span bridge during the traffic time 
[38]. The measured accuracy of displacements with deep 
learning varied from 0.0087 to 0.08 mm in the laboratory 
tests. These methods indicate how cameras can be used effi-
ciently to monitor and measure the displacements or vibra-
tions of structural members or a structure in the laboratory 
or field. Li and Sun applied a deep learning algorithm to 
detect structural damages by monitoring the continuous 
bridge deflection based on fiber optic sensing technology 
[39]. Inspired by these applications, a deep learning frame-
work with High-resolution Mask Regional Convolutional 
Neural Network (HR Mask R-CNN) was proposed by us to 
track and accurately measure the deflection of three con-
crete beams, and the vibrations of three masses on a shaking 
table in the laboratory tests. This HR Mask R-CNN was 
trained following standard data annotation, loss regulation 
and parameter settings of such a deep neural network. A 
measurement-smoothing technique referred to as the Scale-
Invariant Feature Transformation (SIFT) [40] was also intro-
duced for high-accuracy measurements. Thus, the average 
error of deflection measurements from HR Mask R-CNN + 
SIFT for the three test beams is 0.13 mm, and the difference 
between the extracted and input frequencies is less than 9% 
by identifying all the intended frequencies. An optical flow 
method referred to as Lucas-Kanade (LK) tracker [41] was 
also utilized in these studies as a validation method [20, 42]. 
It is critical to test both methods on real structures, so we 
apply this framework and LK tracking algorithm to monitor 
and evaluate the response of in-service bridges in this paper.

In addition, drones have become an important platform to 
mount high-definition cameras and investigate the response 
of simulated structures or existing infrastructure. Yoon 
et al. displayed how to measure the vibrations of structures 
in laboratory and field tests with UAVs. They recovered the 
motion of the UAVs and got correct measurements during 
the flight [43]. Tomiczek et al. developed a small unmanned 
aircraft system that can be used to perform bridge inspec-
tions using a laser range finder and an optical flow sensor 
[44]. Chen et  al. employed homography transformation 
to estimate the motion of the UAV and then corrected the 
measurement of a model bridge with Digital Image Correla-
tion (DIC) [19]. Hoskere et al. used a UAV to measure the 
dynamic structural displacements from videos and obtained 
the model of a full-scaled suspension pedestrian bridge [9]. 
Ribeiro et al. used the visual and Inertial Measuring Unit 
(IMU) data from UAVs to measure the in-plane displace-
ment, in which IMU data represented the motion of the UAV. 
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The visual data described the combined motion of the target, 
and then the subtraction of both actions was the absolute dis-
placement of the target [45]. Perry and Guo offered a frame-
work to use stereo and infrared cameras for 3D displacement 
of structures, which was verified by an indoor shaking table 
test [46]. Khuc et al. employed UAVs to measure the sway-
ing displacement of small-scale structures [47]. Different 
from Khuc et al.’s study using homography transformation 
to align the adjacent frames in the video, we think there 
is another way to remove the camera motions during the 
flights. In our study, each frame is aligned to the first frame 
with Affine Transformation for removing drone motion.

3 � Methodologies

There are two steps in our framework, including visual data 
acquisition and processing, to perform an accurate 
measurement and assess the vibrations or deflections of a 
bridge under normal loading excitation with vision-based 
technologies [20, 48]. In the data acquisition step, three 
different ways to place cameras in field experiments were 
studied to investigate the accuracy of vision-based vibration 
methods and their limitations for real applications. If a 
camera is seated on an intended location of a bridge and 
moves with the structure, or it is fixed remotely, or a drone 
flies and keeps at a certain height to focus on the moving 
part of the bridge and nearby stationary objects, these 
camera placements are called structure-, remote and drone-
mounted cameras, respectively (see Fig. 2). In the visual 
data processing step, the HR Mask R-CNN method [49–51] 
is employed to track targets or regions of interest (ROIs) on 
the bridges in these videos, where spatial information (i.e., 
coordinates in the image plane) is included in each frame 
and the temporal information can be obtained by the duration 
and frame rate used to record the videos (see Fig. 1). In order 
to achieve sub-pixel accuracy of displacement measurement, 
SIFT is also used to refine and smooth the measurements. 
Figure 3 is an example that a target (e,g., a joint region) on 
a bridge is recognized and tracked with the HR Mask 

R-CNN. In Fig. 4, the keypoints on the detected target with 
our deep learning method are matched with the SIFT. Then, 
the average coordinate change ( dxi and dyi ) of these 
keypoints in the image plane, where ( x0

j
 , y0

j
 ) and ( xi

j
 , yi

j
 ) are 

the coordinates of j th  matching keypoints on the first and 
i th frames in the video, respectively, will be used to 
represent the target’s movement between these two frames. 
In our experimental studies, the measured movement was 
converted from pixel unit to metric unit based on the target’s 
size in the image plane and real world. The LK tracker [41] 
is employed to verify the proposed HR Mask R-CNN + 
SIFT in this study. Both methods were validated using labo-
ratory tests in [20, 42, 48].

Some signal processing techniques are applied in our 
framework of displacement or vibration measurements. But-
terworth Band Filter [52] is used to get rid of noises caused by 
very low or high frequencies and to correct the wrong trend 
of the visual data. Then, Faster Fourier Transform (FFT) [53] 
is utilized to extract the modal frequencies of structures or 
structural components with these filtered vibration signals. 
Since a camera can be affected by the wind or movement 
of the ground where it stands or may shake if it is attached 

Fig. 3   An example of a target 
on Columbus Downtown North 
Bridge detected and tracked by 
the proposed HR Mask R-CNN

Fig. 4   An illustration to get the average coordinate change of multi-
ple matching keypoints on a target in Fig. 3 between two frames in 
a video with Mask R-CNN + SIFT. The target’s movement is repre-
sented with this change and can be converted from pixel unit to met-
ric unit if the scale factor is known
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to the drone, the camera motion can be isolated and elimi-
nated when appropriate techniques are applied. For example, 
displacement and frequency subtractions are used to remove 
the drone motion in field experiments [20, 48]. To be more 
specific, the former is a subtraction of movement between the 
drone’s motion and the targets on the bridge. The latter is the 
subtraction between the frequencies of the drone and bridge 
motions in the camera. The flowchart of the proposed HR 
Mask R-CNN + SIFT to track and measure the vibration of 
a bridge with cameras is illustrated in Fig. 5. As a validation 
method, the LK tracker method also has a similar pipeline.

The proposed framework with various camera place-
ments can save time and effort for monitoring the vibra-
tions of existing bridges. This research provides struc-
tural engineers with more options to select a place to 
fix a camera or fly a drone to an ideal observation point. 
Then, higher-quality data can be obtained in addition to 
eliminating the need for markers on the bridges and refer-
ence objects. The data processing is automatic since the 
acquired visual data are the only input and the frequencies 
of bridges are the output. Currently, it may take several 
minutes to do this if the training to detect and track the 
targets are needed. In the proposed framework, this can 
be real-time if the vibration measurements are repeated 
using the same setup that was used in previous tests on 
the same bridge.

4 � Experimental studies

The framework proposed in the previous section to capture and 
measure the vibrations of structures or their components was 
validated with two shaking table tests in the laboratory [20, 
42, 48]. The HR Mask R-CNN + SIFT and the LK tracker 

achieved sub-pixel accuracy in these tests with remote cam-
eras as non-contact sensors. In this section, all three camera 
placements and techniques to remove camera motion for in-
service bridges are tested. Some measurements were compared 
with the results from the structural analysis performed using 
SAP2000 [54]. These bridges are shown in Fig. 6.

In the experiments, the original unit for the vibration meas-
urement of these bridges is in pixels. One pixel is the smallest 
2D square to divide the image plane evenly in two directions 
and can be used as the length unit (Fig. 1). For example, the 
convention to describe the pixel resolution of an image is to 
use integer numbers in both width and height directions, where 
width is the number of pixel columns in x direction and height 
is the number of pixel rows in y direction. The measurements 
were converted into millimeters (mm) with the measured scale 
factors, which are in a range between 1.10 and 3.80 mm/pixel 
in our field experiments. We rely on the SIFT to obtain sub-
pixel accuracy, thus, the error of displacement measurements 
in a laboratory test can be 0.13 mm [42].The same subpixel 
precision can be achieved in field experiments but may be less 
accurate because of the longer distance with our current cam-
eras. Also, we did not model the Lane Ave Bridge because the 
documents at hand are insufficient to model and analyze this 
prestressed and cable-stayed concrete bridge in Fig. 6.

4.1 � Vibrations of pedestrian bridges measured 
with three camera placements

Six pedestrian bridges on the main campus of the Ohio 
State University (OSU) were tested. All of them are truss 
structures with steel tube members and concrete decks. 
These bridges are less rigid and tend to vibrate more when 
people pass. In this study, their dynamic responses under 
the excitation of jumps were measured with the camera 
placements illustrated in Fig. 2. The tracking targets are 
all on the midspans of these bridges.

Cannon Bridge, a three-span bridge, was used as a 
detailed example to address the application of the proposed 
deep learning-based method to quantify its dynamic charac-
teristics. The drawing and views of this bridge are shown in 
Fig. 7. The midspan of the second span was selected as the 
location for tests with remote, structure-mounted, and drone-
mounted cameras. The frame rates of remote and structure-
mounted cameras are set as 45 and 60, respectively, with an 
image size of 1920×1200. The drone-mounted camera has an 
image size of 1920×1080 and records at a speed of 48 frames 
per second. Original measured visual data are filtered or 
aligned in case of camera motion. FFT is applied to extract 
the frequencies of the bridges [20, 48].

The measured vibrations and extracted fundamental 
frequency of this bridge with the proposed framework are 
shown in Fig. 8. The fundamental frequency obtained from 

Camera setup and video recording

Train HR Mask R-CNN with a small portion of 
images in the video to recognize targets on bridges

Track and crop the targets

Apply SIFT for matching and obtaining average translation of each target   

Convert the targets’ motion to measurement

Post-processing to filter measured visual data for vibration measurement

If no camera motion

If there is camera motion, affine 
transformation is applied to align 

each frame based on the first frame

Extract frequencies of the 
bridge these filtered vibration

If there is camera motion, displacement 
and frequency subtractions are applied

If no camera motion

Fig. 5   A flowchart of HR Mask R-CNN + SIFT used for vibration 
measurement of a bridge
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Name Views SAP2000 informa�on

Cannon 
Bridge

Three-span 
bridge with 
steel tubes

Scho�enstein 
Bridge

Simply 
supported 
steel truss 

bridge

Carmack 
Bridge 1

Simply 
supported 
steel truss 

bridge

Carmack 
Bridge 2

Simply 
supported 
steel truss 

bridge

Morrill Bridge

Simply 
supported 
steel truss 

bridge

Lincoln  
Bridge

Simply 
supported 
steel truss 

bridge

Lane Ave 
Bridge

Two-span fix-
ended cable-
stayed bridge 

with 
precasted
concrete 

Columbus 
Downtown 

North Bridge

Five simply-
supported 
steel truss 

bridge

Fig. 6   Eight bridges tested in this study
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the accelerometers is approximately 4.0 Hz. Similarly, the 
fundamental frequency calculated by analyzing the structure 
with SAP2000 is around 4.0 Hz (see Table 1). Using three 
different camera placements in Fig. 2, its vibrations can be 
captured successfully and the fundamental frequency can 
be determined accurately. In addition, it can be observed 
that the structure-mounted camera (Fig. 8c) can acquire 
more accurate shapes of a free-damped vibration system as 

one jump excited the bridge to vibrate from the peak to the 
standstill state due to the damping, but the remote and drone-
mounted cameras (Fig. 8a and b) cannot clearly capture this 
shape. For this reason, we focused more on the frequency 
extraction than vibration magnitude in this paper.

Table 1 summarizes the measured and calculated funda-
mental frequencies of these six pedestrian bridges, although 
a study in [20] shows that the structure-mounted camera 

Fig. 7   Views and drawings for Cannon Bridge. a, b and c are two views, architectural and structural drawings for the bridge, respectively (1 ft = 
30.48 cm)
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placement can identify the top four frequencies of Schot-
tenstein Bridge. The drone-mounted camera placement is 
not tested for Morrill Bridge because this bridge is almost 

identical to Lincoln Bridge. These results indicate that our 
proposed methods can accurately capture the fundamental 
frequencies of the bridges.
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Fig. 8   Filtered vibrations (left) with three different camera placements and extracted frequency (right) with FFT for Cannon Bridge. a, b and c 
are the results from a remote, drone-mounted, and structure-mounted camera, respectively

Table 1   Fundamental frequency 
(Hz) of six pedestrian bridges 
measured and extracted by three 
different camera placements and 
accelerometers

*HR and LK refer to HR Mask R-CNN + SIFT and LK tracker. Acc., Disp., and Freq. stand for 
accelerometers, displacement subtraction, and frequency subtraction

Remote Structure-mounted Drone-mounted SAP2000

Bridge HR LK Acc HR LK Acc Disp Freq Acc

Carmack1 4.68 4.68 4.66 4.69 4.62 4.64 4.70 4.68 4.59 4.75
Carmack2 4.61 4.61 4.62 4.61 4.62 4.61 4.68 4.68 4.60 4.75
Lincoln 5.44 5.44 5.44 5.49 5.47 5.47 5.45 4.94 5.45 5.44
Morrill 5.43 5.43 5.43 5.47 5.45 5.45 5.44
Cannon 3.99 3.99 4.03 4.02 4.02 3.99 4.04 4.02 3.99 4.04
Schottenstein 3.84 3.84 3.85 3.84 3.84 3.85 3.91 3.87 3.84 3.88
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4.2 � A test on a traffic bridge

Lane Avenue Bridge is a cable-stayed bridge over the 
Olentangy River near the OSU campus (see Fig. 6). The total 
length of this two-span bridge is 113.1 m (371 ft). There are 
six lanes for vehicle traffic with additional two pedestrian 
lanes on the bridge. It is a stiff bridge made of prestressed 
concrete girders, a reinforced concrete deck, and steel cables 
connected to the reinforced concrete towers. The motion of 
the bridge induced by the regular traffic was measured and 
evaluated.

In the experiment, a camera was fixed on the bridge’s 
sidewalk about 6.1 m (20 ft) far from the reference target, the 
bridge’s tower, to record the deck’s motion during normal 
traffic. The frame rate was set as 45 frames per second and 
the image size is 1920×1200. Both HR Mask R-CNN and 
the LK tracker were utilized to capture the vibration with 
sub-pixel precision, although the magnitude of the vibration 
is very small (e.g., the magnitude of vibrations is less than 
0.2 mm). The measured and calculated results are shown in 
Fig. 9. Compared to the measurement from accelerometers, 
the first two modal frequencies, such as 7.86 and 9.63 Hz, 
were successfully detected by our visual data processing 
method. But the bridge’s vibration caused by running vehi-
cles is not significant. Thus, the remote and drone-mounted 

camera placements did not work on this bridge with our 
current cameras.

4.3 � Vibrations and deflection measured 
for Columbus Downtown North Bridge

This railway bridge is a steel truss structure built in the 
1930s in Downtown Columbus, Ohio. It is currently open 
for railway transportation. It has five spans, but pin-hinged 
supports independently restrain each span and make each 
of them a simply supported structure. The bridge has com-
posite steel sections and an open deck with square timber 
members placed laterally on the floor beams. The views 
and information about the structure and steel members are 
shown in Fig. 10. The largest span length is 38.1 m (125 ft). 
Tests were conducted on both end spans of this bridge as 
described below.

(1) A structure-mounted camera with the jump excitation 
in the north end span: This was a test to excite the bridge 
by jumps. Obviously, this kind of excitation is far smaller 
than the vibration that the bridge experiences when a train 
passes over it. A camera was placed right on the top of a 
steel beam of the bridge, and its frame rate was set as 60 
frames per second. The image size is 1920×1200. The cam-
era was focused on the nearby retaining wall as a reference 
of stationary objects.

Fig. 9   Processed visual data 
measured by a structure-
mounted camera (top record-
ings) and accelerometers (bot-
tom recording) on Lane Avenue 
Bridge. a, b and c are measured 
vibrations (left) and extracted 
frequencies (right) from HR 
Mask R-CNN, LK tracker, and 
accelerometers, respectively
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Fig. 10   Views and drawings for Columbus Downtown North Bridge. (a) is its views, (b) to (d) are the elevation and plan views, and sections for 
major members of the bridge, respectively (1 ft = 12 in. = 30.48 cm)
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Figure 11 shows the testing results and Table 2 indicates 
the difference of extracted frequencies between the camera 
and accelerometers. It can be seen that only the third fre-
quency was detected by both HR Mask R-CNN and the LK 
tracker, but the frequencies of 5.07(5.10) and 15.63 Hz are 
not well captured by both proposed methods. We think it is 
because the jumps cannot excite the bridge to a significant 
overall movement.

(2) Remote cameras focusing on two locations of the 
south end span of the railway bridge: Two cameras were 
placed 12.2 m (40 ft) far away from the south end span of 
this bridge. They were focused on the midspan and one-
quarter span of the bottom chord of this steel truss bridge. 
The synchronization of data acquisition by two cameras 
was tested in this study. The frame rate and image size of 
each camera were set as 45 frames per second and 1920×
1200, respectively. Visual data during the train going over 
that end span was processed by our proposed framework, 
whereas only the LK tracker was used to capture the bridge’s 
vibrations at two locations. Details of the experiment data 
processing and applications of the proposed frameworks can 
be found in [20].

Figures 12 and 13 show that the filtered vibrations and 
extracted frequencies for two observed locations on the 
bridge can be captured using the method described in the 
previous section. Three major frequencies, such as 6.32, 
10.90 (11.11), and 15.26 (15.91) Hz, at both locations were 

detected by the camera and accelerometer data, but the fre-
quency of 4.89 Hz was not identified from the accelerom-
eter data. Their differences in extracted frequencies for the 
one-quarter and midspan are shown in Table 3. Based on 
the measurements from accelerometers, the camera place-
ment under the train-running excitation has less difference 
in extracted frequencies than the one under the jump excita-
tion. Compared with Table 2, these extracted frequencies 
from different camera placements are also not close. This 
indicates that the former excitation can cause a structural 
response for such a heavy and stiff bridge but the latter can-
not achieve this. Also, the mass of this bridge was chang-
ing when the train went over the span. Thus, the dynamic 
response of this train-structure system would be less steady. 
It ws hard to achieve an accurate vibration measurement 

Fig. 11   Two different methods 
used for processing data from a 
structure-mounted camera for 
Columbus Downtown North 
Bridge with jumps. a, b and c 
are measured vibrations (left) 
and extracted frequencies (right) 
from HR Mask R-CNN, LK 
tracker, and accelerometers, 
respectively
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Table 2   Three frequencies (Hz) measured and extracted by the frame-
works of HR Mask R-CNN and LK tracker and with accelerometers 
for Columbus Downtown North Bridge

Accelerom-
eters

HR Mask R-CNN LK tracker

Measure-
ment

Difference 
%

Measure-
ment

Difference %

7.39 5.07  − 31.4 5.07  − 31.4
11.03 11.08 0.4 11.0 0
18.02 15.63  − 13.3 15.63  − 13.3
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with the remote camera placement in this case. We may fig-
ure out a solution for this in a future study.

(3) Deflection of the north end span of the railway bridge 
under train loading: A high-resolution camera with an image 
size of 3260×2440 was used to measure the deflection of the 
midspan of the north end span of the bridge. The camera was 
placed approximately 18.3 m (60 ft) far away from it and 
focused on the joint of the bottom chord in the middle of the 
bridge. The frame rate was 15 frames per second. There were 
30 cars on the train. It recorded the whole process of loading 
and unloading cycles on the bridge. As shown in Fig. 14, two 
proposed methods, HR Mask R-CNN + SIFT and the LK 

Fig. 12   Remote-camera data 
for the one-quarter span of the 
south end span of Columbus 
Downtown North Bridge a 
and b are measured vibrations 
(left) and extracted frequencies 
(right) from the LK tracker and 
accelerometers
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Table 3   Three frequencies measured and extracted by the framework 
of LK tracker and with accelerometers for the one-quarter span and 
midspan of the south end span of Columbus Downtown North Bridge

Accelerom-
eters

One-quarter Midspan

Measure-
ment

Difference 
%

Measure-
ment

Difference %

6.33 (6.32) 6.26  − 0.1 6.26  − 0.1
10.90 

(11.11)
11.25 3.2 11.85 6.7

15.26 
(15.91)

14.70  − 3.7 15.42  − 3.1
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tracker, were applied for deflection measurement. There is 
a sharp increase and decrease for both when the train was 
on and off the span.

5 � Validation and structural health 
assessment with structural analysis

In the above experiments, the performance of the tested 
bridges can be captured by various camera placements. 
Some of their dynamic characteristics can be interpreted 
with techniques like FFT. But it is insufficient to evaluate the 
health of bridge structures only with these measurements, 
especially for in-service bridges. Structural analysis can be 
introduced to model these bridges and analyze the calculated 
response with the measurements considering the degradation 
of materials. The results of experiments can also be used 
to validate and update finite element models. Thus, a more 
accurate numerical analysis can be performed during the 
assessment of the bridge structures.

SAP2000 software (2022) is utilized to model and 
analyze the selected six pedestrian bridges (e.g., Cannon 
Bridge) and a railway bridge (e.g., Columbus Downtown 
North Bridge). The dynamic performance of these bridges 
under ambient loading conditions is the focus of this study. 

The modulus of elasticity and yield strength of steel material 
were assumed as 200 GPa (29,000 ksi) and 413.7 MPa (60 
ksi), respectively. Details of the structural models, geometric 
information, and loads are provided in [20].

5.1 � Structural models for all six pedestrian bridges

The views of six pedestrian bridges and their structural mod-
els in SAP2000 are shown in Fig. 6. The information used 
for structural modeling is shown in Table 4. Six modes of 
the Cannon Bridge model are shown in Fig. 15 based on the 
configuration in Fig. 7. The fundamental frequency corre-
sponding to Mode 1 in the vertical direction is 4.04 Hz and 
it is very close to the measured frequencies by the cameras 
and accelerometers. The frequencies of the first mode ana-
lyzed by SAP2000 for these pedestrian bridges are shown 
in Table 1.

5.2 � Structural modeling and analysis of Columbus 
Downtown North Bridge

The general plan and elevation views of the bridge are 
depicted in Fig. 10. The load-bearing members of the rail-
way bridge were modeled using frame elements in SAP2000, 
including moment releases defined at both ends of the 

Fig. 14   Two different methods 
to measure the deflection of 
midspan of Columbus Down-
town North Bridge. Positive 
deflection means downward 
movement
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Table 4   Information for six 
pedestrian bridges (1 ft = 30.48 
cm)

Bridge Spans Span length (ft) Main components Materials Support types

Carmack1 1 80.75 HSS 7 × 7 × 1/4 A36 Simply
Carmack2 1 80.75 HSS 7 × 7 × 1/4 A36 Simply
Lincoln 1 53 HSS 6 × 8 × 1/8 A36 Simply
Morrill 1 53 HSS 6 × 8 × 1/8 A36 Simply
Cannon 3 24,78,24 HSS 8 × 8 × 3/8 A36 Simply
Schottenstein 1 90.5 HSS 6 × 6 × 1/4 A36 Simply
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members to simulate the hinged end connections. A modal 
analysis was conducted to calculate the frequencies of the 
bridge. The first six modes have frequencies of 5.78, 7.15, 
9.43, 11.45, 13.43, and 16.52 Hz. Compared to the meas-
urements from cameras in Fig. 11, the difference between 
the measured and calculated frequencies are 14.0% ((5.78−
5.07)/5.07=14.0% ), −17.1% ((7.15−8.63)/8.63=−17.1% ), 
3.3% ((11.45−11.08)/11.08=3.3% ), and 5.7% ((16.52−
15.63)/15.63=5.7% ) for the first, second, fourth, and sixth 
modes, respectively. The visual measurements can not cap-
ture the other modes. It is apparent that the modal analysis 
results are a good match with the test measurements.

Additionally, a live load analysis was applied to obtain 
the deflection time history of this bridge loaded with a train. 
Since the weight, axle location, and other properties of cars 
in freight trains can be very different in the U.S., it is very 
challenging to determine their exact weight and location as 
observers. Therefore, upper and lower bound limits were 
defined to include the cases of fully loaded and empty freight 
trains. The maximum live load was determined for the upper 
bound analysis by considering design live loads prescribed 
in the Manual for Railway Engineering of the American 
Railway Engineering and Maintenance-of-Way Associa-
tion (AREMA) [55]. The primary live load model of the 
manual, Cooper’s E80 load (see Fig. 16), was implemented 
in the study. Secondly, the weight of empty freight cars and 

corresponding axle load (P), which are 311.4 kN (70 kips) 
and 77.8 kN (17.5 kips), respectively, were selected for the 
lower bound analysis. The freight train dimensions and axle 
configuration were chosen according to Fig. 16 reported by 
[56]. It should be pointed out that the weight of the loco-
motives leading to the empty freight cars was assumed as 
1174.3 kN (264 kips), and a similar locomotive axle pat-
tern prescribed in Cooper’s E80 live load was implemented 
[56–58].

In the SAP2000 model, the load factor was not considered 
for dead and live loads since the purpose of this study is to 
capture the actual behavior as much as possible. A moving 
load defined on a predetermined path was applied for the live 
load pattern to represent both fully loaded and empty trains. 
In addition, a nonlinear static load case simulating a vertical 
pushover analysis was defined to consider the self-weight of 
the bridge and the dead loads. Then, two nonlinear multi-
step static analysis cases representing an empty and full 
freight train were employed to apply the moving live loads 
in sequence [59]. Because the freight trains traverse the 
bridge at very low speeds, other potential longitudinal and 
lateral dynamic actions that they may induce were ignored 
in the simulations. The results of the upper and lower bound 
live load analyses are shown in Fig. 14 for the fully loaded 
and empty freight train, respectively. The deflections from 
camera measurements and structural analyses are consistent 

Fig. 15   Six selected modal shapes of the computer model of the Cannon Bridge
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because the typical freight train loads are unlikely to be as 
large as the specified conservative design loads. The camera 
measurements also stay within the lower and upper bound 
response limits.

6 � Discussion

This research investigates the effect of various camera 
placements on bridge deformation measurements. Accurate 
results can be achieved with our proposed pipeline and the 
remote camera placement in laboratory tests, where more 
structural modes or precise displacements can be captured 
[42]. However, in field experiments, structure-mounted cam-
era placement is the only one which can capture more accu-
rate vibrations of bridges, as addressed by an ablation study 
in [20]. That is because this camera placement is used as 
contact sensors attached to the structures. Remote or drone-
mounted cameras are affected harder by the surroundings 
and weather than structure-mounted cameras. Thus, less 
accurate shapes or few modes of structural dynamic response 
can be observed. Although similar experiments were not 
conducted to quantify the ambient effects or weather on the 
camera’s performance, we believe that high-quality cameras 
and ideal daytime are essential for more accurate displace-
ment or vibration measurements of bridges. We are also 
working on performing real-time and automatic measure-
ments based on our proposed framework. For visual data 
collection and processing, it should be pointed out that high-
performance computers (e.g., better Graph Processing Units 
(GPUs) and large storage space) are required.

As discussed in experimental studies, it is a key factor 
that the appropriate excitation is applied on these bridges. 
A simple jump is easier to cause the resonant movement of 
a pedestrian bridge, but a traffic or railway bridge is so rigid 

that it will not vibrate significantly under such an excitation. 
This is why our framework for some camera placements 
performs poorly in some experiments on Lane Ave Bridge 
and Columbus Downtown North Bridge. Also, it is time-
consuming and challenging to retrieve design documents 
and model these existing bridges. However, if a structural 
model is built and the changes in structural materials (e.g., 
degradation) and loading conditions can be simulated for a 
bridge, this analysis can be updated with long-term vibration 
measurements obtained from the cameras to evaluate the 
health of this bridge.

On the other hand, the proposed framework with various 
camera placements was also applied to a progressive collapse 
study of the field experiment on a multi-story building [20]. 
Like some tests in this paper, these applications show that 
this framework can be treated as a remote sensing system 
using remote and drone-mounted camera placements to 
focus on more observation locations of a structure. As long 
as the weather conditions are ideal and the setup of camera 
placements is right, our proposed framework can work well 
in field experiments on bridges and buildings.

7 � Conclusions

Aiming to explore more advanced vision-based technolo-
gies for capturing the dynamic characteristics of in-service 
bridges, a framework with a deep learning method (i.e., 
HR Mask R-CNN) and a smoothing technique for displace-
ment measurement (i.e., SIFT) are proposed and tested 
using field experiment data from eight bridges, includ-
ing six pedestrian bridges, a traffic bridge, and a railway 
bridge. Remote, structure- and drone-mounted camera 
placements (see Fig. 2) were used to acquire the meas-
urement data. Similar to the proposed framework of HR 

Fig. 16   Implemented live load patterns: Cooper’s E80 (top) and idealized empty vehicles (bottom). Loads are in kips unit (1 kip = 4.45 kN)
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Mask R-CNN + SIFT, the Lucas-Kanade (LK) tracker 
is utilized to verify the vibration measurements of these 
bridges. The accelerometers and analyses of structural 
models are employed to validate the measurements from 
three camera placements. There are several conclusions 
from this research:

(1)	 In the data acquisition step, three camera placements 
were tested with these in-service bridges. These camera 
placements were found to be practical and effective to 
capture the structural characteristics of bridges under 
normal loading excitation. Structure-mounted camera 
placement can be used as a contact sensor and achieve 
more accurate measurements in field experiments. But 
remote and drone-mounted cameras can cover more 
desirable observation locations and be deployed easily 
and effectively in these experiments.

(2)	 The proposed framework of HR Mask R-CNN + SIFT 
or the LK tracker can process the visual data well when 
some filters are employed to suppress the very low and 
high frequencies. It should be pointed out that other 
deep learning-based methods for tracking can be used 
in the proposed framework.

(3)	 To eliminate the camera motion for drone-mounted 
cameras, two approaches (i.e., displacement and 
frequency subtractions) were proposed and validated. 
Our experiments on pedestrian bridges show that both 
methods work successfully to capture the fundamental 
frequency of each bridge.

(4)	 Low-cost cameras can be used to perform accurate 
measurements of vibrations or deflections of existing 
bridges if the cameras are set up correctly and pipelines 
for visual data processing are established effectively. 
Also, more modal shapes or structural frequencies of 
monitored bridges can be obtained with sufficient exci-
tation and better camera placements. In this research, 
visual data can not only be served as documentation 
but also for quantitative analysis as we did. Structural 
analysis and our proposed framework of visual data 
processing can be used together to assess whether the 
bridges are healthy or not by capturing the changes in 
their dynamic response over time.
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