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ABSTRACT

While “instruction-tuned” generative large language models
(LLMs) have demonstrated an impressive ability to gener-
alize to new tasks, the training phases heavily rely on large
amounts of diverse and high-quality instruction data (such as
ChatGPT and GPT-4). Unfortunately, acquiring high-quality
data, especially when it comes to human-written data, can
pose significant challenges both in terms of cost and acces-
sibility. Moreover, concerns related to privacy can further
limit access to such data, making the process of obtaining it
a complex and nuanced undertaking. To tackle this issue, our
study introduces a new approach called Federated Instruction
Tuning (FedIT), which leverages federated learning (FL) as
the learning framework for the instruction tuning of LLMs.
This marks the first exploration of FL-based instruction tun-
ing for LLMs. This is especially important since text data is
predominantly generated by end users. For example, collect-
ing extensive amounts of everyday user conversations can be
a useful approach to improving the generalizability of LLMs,
allowing them to generate authentic and natural responses.
Therefore, it is imperative to design and adapt FL approaches
to effectively leverage these users’ diverse instructions stored
on local devices while mitigating concerns related to the data
sensitivity and the cost of data transmission. In this study, we
leverage extensive qualitative analysis, including the preva-
lent GPT-4 auto-evaluation to illustrate how our FedIT frame-
work enhances the performance of LLMs. Utilizing diverse
instruction sets on the client side, FedIT outperforms central-
ized training with only limited local instructions.

1. INTRODUCTION

Large Language Models (LLMs) have become ubiquitous in
natural language processing (NLP) [1, 2, 3], where one single
model can perform well on various language tasks, including
established tasks such as text generation, machine translation,
and question answering, as well as novel application-oriented
tasks in human daily life [4, 5]. To align LLM to follow
human intents, instruction-tuning has been proposed by fine-
tuning LLM on instruction-following data [6, 7, 8]. Though
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Fig. 1. The framework of Federated Instruction Tuning

instruction-tuning has demonstrated great effectiveness in im-
proving the zero and few-shot generalization capabilities of
LLM, its performance on real-world tasks is contingent on
the quantity, diversity, and quality of the collected instruc-
tions [9, 7]. The process of collecting these instructions can
be expensive [10, 7]. Besides, the increasing awareness of
data sensitivity highlights a significant challenge in acquiring
extensive and high-quality instructions [11, 12]. For instance,
collecting vast amounts of daily conversations from users is
a valuable means of providing guidance for LLMs, enabling
them to generate authentic and genuine responses. However,
privacy concerns may hinder users from sharing their con-
versations, resulting in a limited quantity of instructions that
are not fully representative of the target population. Like-
wise, many companies treat their instructions as proprietary
assets that are closely guarded. They are reluctant to share
their instructions with external parties, as they often contain
confidential and proprietary information that is critical to their
success and profitability [13].

We aim to tackle these challenges by exploring the poten-
tial of federated learning (FL) as a promising solution [14].
This collaborative learning technique enables many clients
to learn a shared model jointly without sharing their sensi-
tive data. In particular, in our proposed federated instruction-
tuning, clients initially download a global LLM from a central
server and subsequently compute local model updates using
their respective local instructions. These local updates are
then transmitted back to the server, where they are aggregated
and integrated to update the global LLM. Given that clients
often have limited computational resources in comparison to
traditional centralized training cloud servers, which can uti-
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lize thousands of GPUs [15] to fully fine-tune all parameters
of LLMs, we resort to parameter-efficient tuning techniques.
This leads to a significant decrease in computational and com-
munication demands as it reduces the number of trainable
parameters on each device. Thus, our proposed framework
enables efficient utilization of the computational resources
available on local edge devices, which are commonly acces-
sible, as well as their diverse local instructions. Our major
contributions are summarized as follows. First, we make the
first attempt to leverage FL for instruction tuning (FedIT) of
LLMs. We show that we can circumvent the above-mentioned
challenges of predominant instruction tuning by exploiting
the diverse sets of available instructions from the users in the
FL system. Besides, a comprehensive study is conducted on
the heterogeneity and diversity within the federated instruc-
tion tuning. We employ the GPT-4 auto-evaluation method,
which has been widely utilized in related research [16, 17],
to demonstrate the effectiveness of our FedIT approach in en-
hancing response quality by leveraging diverse available in-
structions. We also have developed and released a GitHub
repository called Shepherd", which has been designed to pro-
vide ease of customization and adaptability, thereby offering
benefits for future research endeavors in this field.

2. FEDERATED INSTRUCTION TUNING

Drawing on the successful application of FL in various ma-
chine learning domains to offer privacy protection, we intro-
duce the FedIT framework. By harnessing the advantages of
FL, our framework enables secure and cost-effective LLM
instruction tuning. The overall framework, illustrated in
Figure 1, involves two primary components: local training
operations on the client side and scheduling and aggrega-
tion operations on the server side, which work together to
ensure efficient training. Our framework assigns an LLM to
each client and performs client selection to determine which
clients will participate in local instruction tuning. During
instruction tuning, clients use their local instruction dataset
to update a small, trainable adapter that is added to the pre-
trained model weights. This approach reduces the cost of
fine-tuning and makes it compatible with the limited compu-
tational resources of local devices. Upon completion, clients
send the updated adapter back to the server, which aggre-
gates the received adapters’ parameters and conducts another
round of client selection. This iterative process continues
until convergence. Our FedIT framework for instruction
tuning is designed to address the challenges of collecting
high-quality data and ensuring data privacy by keeping the
instructions on the local devices throughout the process. By
ensuring data sensitivity protection, we can encourage more
clients to participate in the federated instruction tuning. Con-
sequently, the combined instruction dataset from all clients

mttps://github.com/JayzZhang42/
FederatedGPT-Shepherd

can encompass a broader range of topics, tasks, and valuable
information, as clients may come from different areas and
possess domain-specific expertise. This FL approach enables
our framework to effectively adapt to diverse and evolving
instruction datasets, resulting in more robust and generalized
LLM performance. Moreover, our FedIT methodology incor-
porates a parameter-efficient fine-tuning (PEFT) technique,
known as LoRA [18], to facilitate local training. This method
reduces computational and communication overheads for
local edge devices that have limited system resources. As
a result, we can leverage the computational capabilities of
a multitude of distributed local edge devices that are often
disregarded in conventional centralized instruction tuning.
This feature enhances the scalability of our FedIT solution,
enabling it to address large-scale challenges effectively.

2.1. Heterogeneity of Instructional Data

Beyond the practical benefits of FedIT, our research makes a
unique contribution by presenting a scenario for instruction
tuning of LLMs where statistical heterogeneity can serve as
a positive factor for federated learning. Our work demon-
strates that the extensive heterogeneous and diverse set of
instructions can, in fact, be a blessing factor for our FedIT
approach. For instance, different clients may have different
instruction tasks, such as open-domain QA and writing. The
content and format of these instructions can be substantially
different. For example, QA tasks typically require fact-based
questions and answers, while writing tasks involve instruc-
tions for generating coherent and meaningful sentences. In
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Fig. 2. Illustrate the heterogeneity of FedIT with Databricks-
dolly-15k instruction dataset. The model can be trained on
only the particular local instruction categories of each user
(left), or on the local instruction datasets of all clients with
greater diversity and quantity of data points that cover the en-
tire range of the subject matter with our FedIT (right).

order to obtain a comprehensive understanding of data hetero-
geneity inherent in the instructional dataset utilized for this
study, we performed an in-depth examination of the Dolly
dataset (Databricks-dolly-15k)?. This publicly accessible

Zhttps://huggingface.co/datasets/databricks/
databricks-dolly-15k
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dataset, consisting of instruction-following records generated
by a multitude of Databricks employees, spans a range of be-
havioral categories as outlined in the InstructGPT paper [6].
These categories encompass brainstorming, classification,
closed QA, generation, and more. To emulate an FL environ-
ment with ten clients, we partitioned the entire Dolly dataset
into ten shards using a widely adopted partitioning method
[19], with each shard assigned to an individual client. As is
evident in the left subfigure of Figure 2.1, each user’s dataset
contains imbalanced categories of instructions, with some
categories absent entirely. This reflects real-world scenarios
where users may not possess expertise across all instruction
categories. In the absence of FedIT, due to the challenges as-
sociated with collecting sensitive instruction data, the model
can only be trained on the local instruction dataset of each
user, as depicted in the left subfigure of Figure 2.1. How-
ever, by implementing our FedIT approach, the model can
be trained on the local instruction datasets of all clients, as
illustrated in the right subfigure of Figure 2.1. As a result,
FedIT allows for instruction tuning on a dataset with en-
hanced diversity and a larger number of data points, allowing
the model to be more generalized and applicable to a wider
array of tasks compared to training solely on each client’s
local instruction dataset with limited categories and quantity.

2.2. Parameter Efficiency in FedIT

Taking into account the limited computational capabilities of
local devices, which are unable to support full fine-tuning
of a large language model, it is crucial to implement a
parameter-efficient fine-tuning strategy that leverages local
computational resources, which means optimizing the LLMs
while minimizing the computational and storage demands
associated with the training process. We adopt LoRA in our
FL framework due to its promising performance in recent
studies on instruction tuning. Compared to fully fine-tuning
the LLM, LoRA considerably decreases the number of train-
able parameters. Please refer to Section 3.1 and Table 1,
which present the parameter counts for each model and the
corresponding memory costs.

For a weight matrix W, € R** belonging to a large pre-
trained LLM, the method we adopt, Low-Rank Adaptation
(LoRA) method, freezes W and constrains its update AW by
representing it using a low-rank decomposition Wy + AW =
Wy + BA, where B € R¥" A € R"™F are two trainable
parameters, and the rank r < min(d, k). For a linear layer
h = Wyz, the modified forward pass is given by:

h = W(]ZL' + BAx

Once the local parameter-efficient fine-tuning with LoRA is
completed, clients only need to transmit the B and A matri-

ces of parameters to the server, significantly reducing com-
munication costs compared to sending updates for all LLM
parameters. Finally, the central server aggregates these local
matrices of parameters into a new global model parameter by

FedAvg.It is important to note that the LoORA method we em-
ploy is scalable to accommodate varying system resources. If
a specific client’s communication or computational resources
are significantly lower than others, it can adjust its LoORA con-
figurations by reducing the number of matrix W} elements,
which will be decomposed into low-rank A, B. Alternatively,
it can also opt to decrease the rank r of A and B.

3. QUALITATIVE STUDY

3.1. Implementation details

In our FL setup, we assume the presence of 100 clients. We
proceed to apply the Shepherd framework’s second data par-
titioning technique to divide the residual data from the Dolly
dataset into 100 distinct portions. Each of these portions cor-
responds to an individual client’s local instruction dataset. We
conduct a total of 20 communication rounds, with each round
involving the random selection of 5 clients for training. Each
client performs one epoch of local training with their respec-
tive instruction datasets on a single Nvidia Titan RTX with
24GB memory. We initialize the model with the 7B LLaMA
model. The model remains frozen during training. We apply
LoRA to all linear layers with a rank of 8 to boost adapta-
tion capabilities. We employ the Adam optimizer to update
LoRA parameters with a batch size of 32 and a learning rate
of 1.5e-4. We set the maximum input sequence length to 512.
The derived model is referred to as Shepherd-7B. We detail
the number of parameters, training time, and GPU memory
consumption in Table 1.

Table 1. Numbers of parameters (frozen&trainable), training time, and
GPU memory cost on a single Nvidia Titan RTX

Model Orig. Param Adapt. Param Trainable Training Time GPU Memory

Shepherd-7B 7B 17.9M 0.26% 2 hours 23GB

3.2. Qualitative Study with Automatic Evaluation

Following the same evaluation approach of the Vicuna project
[16] and GPT-4-LLM [17], we use GPT-4 to automatically
assess the responses generated by our Shepherd-7B model
and other baseline models on 20 unseen questions randomly
sampled from the evaluation set of the Vicuna project [16],
which pertain to unseen categories during the training, such as
“counterfactual question,” “femir question,” and others. Each
model produces one response per question, and GPT-4 rates
the response quality between the two models on a scale of 1 to
10. To minimize the impact of randomness, we force it to rate
each response pair three times and then average the ratings.
We compare our Shepherd-7B model with the follow-
ing five baseline models. The first baseline model is a
7B LLaMA model without fine-tuning on the Databricks-
dolly-15k dataset, denoted as LLaMA. The subsequent three
baseline models are three 7B LLaMA models fine-tuned on
three different individual clients’ local datasets for one epoch
without model aggregation in FL. ”Local-1" focuses on the
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brainstorming task solely, "Local-2" on the closed question
answering task, and “Local-3” on classification and brain-
storming tasks. The final strong baseline model, dubbed as
”CentralizedModel”, is fine-tuned with the entire Databricks-
dolly-15k dataset for one epoch, representing the ideal cen-
tralized training scenario where the server could collect all
clients’ instructions. This serves as an upper bound, as we
aim for FL to achieve comparable performance to central-
ized training in the future. We apply the GPT-4 automatic
evaluation and list the averaged scores in Table 2.

Table 2. A summary of the baselines and their corresponding scores eval-
uated by GPT-4. The scores are reported in the format of (Baseline’s score,
Shepherd-7B’s score) and the Relative Score is defined as (Shepherd-7B’s
score / Baseline’s score)

Baseline Task Scores Relative Score
CentralizedModel ~ Centralized tuning with all the instructions (142.2, 130.7) 0919
LLaMA No instruction tuning (114.0, 131.7) 1.155
Local-1 Brainstorming instruction tuning (120.0, 131.0) 1.092
Local-2 Closed question answering instruction tuning (116.1, 129.0) 1111
Local-3 Classification & brainstorming instruction tuning ~ (121.3, 131.8) 1.087

As demonstrated in Table 2, the performance of our pro-
posed model, Shepherd-7B, significantly surpasses that of the
LLaMA model. This result serves as evidence that our FedIT
approach is indeed effective. When compared to other base-
line models, which are fine-tuned solely on local instruction
datasets, Shepherd-7B achieves considerably higher scores.
This underlines the benefits of leveraging diverse instruction
datasets from multiple clients in our FL approach, emphasiz-
ing that the heterogeneity and diversity of instructions within
the FL framework can be advantageous to adopt the LLMs to
different unseen tasks. However, a comparison with the ro-
bust CentralizedModel baseline reveals that our model still
has room for improvement. In conclusion, as discussed in
Section 2.1, statistical heterogeneity can be a beneficial factor
for FedIT, as it enhances the diversity of instruction data, thus
improving the model’s generalization ability to unseen tasks.
However, to fully utilize the benefits of data heterogeneity,
advanced federated optimization methods might need to be
developed and integrated to manage and leverage heterogene-
ity more effectively.

To evaluate the practical significance of this research, we
further compare our proposed model, as well as the baseline
models, with established industry products such as ChatGPT.
In line with our ultimate goal of developing federated GPT
models, we utilized GPT-4 auto-evaluation to compare the re-
sponses of these models with the responses of GPT-3.5-turbo
(ChatGPT). The resulting Relative Scores over ChatGPT are
presented in Figure 3. As can be seen, our method achieves
superior performance compared to all baselines except the
Centralized model, which supports its potential to effectively
address future product development scenarios where instruc-
tion data may be scarce due to the difficulties of collecting
sensitive data. Besides, the performance gap between our
model and ChatGPT does not imply that our model is con-
sistently inferior. As evidenced in Table 3, our response accu-
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Fig. 3. The relative scores of all models against ChatGPT(GPT-3.5-turbo)

rately addresses the question, while ChatGPT fails. Interest-
ingly, ChatGPT falsely claims to have conducted an internet
search, which diminishes the response’s helpfulness and hon-
esty. In contrast, our model, which have encountered similar
classification instructions, excel at this task. This result also
emphasizes the importance of diversity for LLM instruction
tuning. We believe that as valuable instructions become in-
creasingly difficult and costly to collect due to sensitivity or
other factors, our FedIT approach will find broader applica-
tions and add significant value to the development of LLMs.
Overall, this evaluation highlights the value and applicability
of our approach to real-world scenarios.

Table 3. Response demonstration for a classification task from Dolly
dataset. The fact is that Binzasara is a percussion instrument and the Cal-
abrian Lira is a stringed instrument. Our model, Shepherd-7B (ours), cor-
rectly identifies the instruments. In contrast, it is noteworthy that ChatGPT,
which has no access to the internet, inaccurately states that it performed an
online search and incorrectly classifies the instruments.

Identify which instrument is string or percussion: Binzasara, Calabrian Lira

CentralizedModel Calabrian Lira is string, Binzasara is percussion.

LLaMA Binzasara is a string instrument. Calabrian Lira is a percussion in-
strument.

Local-1 Binzasara is string, Calabrian Lira is percussion.

Local-2 Binzasara is string, Calabrian Lira is percussion.

Local-3 Calabrian Lira is a string instrument and Binzasara is percussion.

Shepherd-7B (ours) Calabrian Lira is string, Binzasara is percussion.

ChatGPT Based on a quick internet search, both the Binzasara and Calabrian

Lira are stringed instruments.

4. CONCLUSION

We have explored for the first time the use of FL for the in-
struction tuning of LLMs. This is especially crucial when in-
structional data is primarily generated by end-users who pre-
fer not to share the data. We assess the effectiveness of large
language models by utilizing a diverse and varied range of in-
structions on the client side. This method proves to enhance
the model’s performance when compared to finetuning using
a limited set of instructions.
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