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Abstract—Recent advances in deep neural networks (DNNs)
have enabled highly effective recommendation models for diverse
web services. In such DNN-based recommendation models, the
embedding layer comprises the majority of model parameters.
As these models scale rapidly, the embedding layer’s memory
capacity and bandwidth requirements threaten to exceed the
limits of current computing architectures. We observe the em-
bedding layer’s computational demands increase much more
slowly than its storage needs, suggesting an opportunity to
offload embeddings to storage hardware. In this work, we
present NDRec, a near-data processing system to train large-scale
recommendation models. NDRec offloads both the parameters
and the computation of the embedding layer to computational
storage devices (CSDs), using coherence interconnects (CXLs)
for communication between GPUs and CSDs. By leveraging the
statistical properties of embedding access patterns, we develop
an optimized CSD memory hierarchy and caching strategy. A
lookahead embedding scheme enables concurrent execution of
embeddings and other operations, hiding latency and reducing
memory bandwidth requirements. We evaluate NDRec using real-
world and synthetic benchmarks. Results demonstrate NDRec
achieves up to 4.33x and 3.97 X speedups over heterogeneous
CPU-GPU platforms and GPU caching, respectively. NDRec also
reduces per-iteration energy consumption by up to 54.9%.

Index Terms—Computational storage, recommendation sys-
tem, near storage computing, coherence interconnect (CXL).

I. INTRODUCTION

ECOMMENDATION system is an essential building
block in many web services such as social networks [38],
search engines [6], and e-businesses [5]. Various machine learn-
ing methods [21], [22], [43] have been incorporated into modern
recommendation systems. With the continuously growing scale
and complexity of recommendation tasks, deep neural network
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(DNN) based recommendation models [11], [30], [34] have
received increasing attention for their superior performance;
recommendation systems have also become the dominant work-
load in data centers [16].

The DNN-based recommendation models have a unique ar-
chitecture that poses some challenges to the training process.
One of these challenges is the data-intensive embedding layer,
which transforms the categorical features into continuous vec-
tors by looking up and aggregating the parameters from many
embedding tables (EMBs). Each EMB corresponds to one input
feature and can have a different size, with the largest one having
up to billions of entries (e.g., for social media pages). However,
only a few entries are fetched in each query [29], resulting in
a sparse access pattern that does not benefit from the cache in
the CPU and GPU memory hierarchies. This leads to a high
memory bandwidth requirement [16] and a low GPU utiliza-
tion. Moreover, the embedding layer requires a huge memory
capacity (up to 10TBs [44]), which grows much faster than the
hardware capability. As shown in [32], the memory capacity and
bandwidth demand of the DNN-based recommendation models
increased by over 16x and 30X in the past five years, while
the memory capacity and bandwidth of top-level GPUs only
improved by 6x and 2.3, respectively.

The efficient training of large-scale recommendation mod-
els on GPU requires different strategies to deal with the
data-intensive embedding layer. One strategy is to shard the
embedding tables across multiple GPUs and use all-to-all com-
munication to aggregate the embedding results, as proposed in
the original paper of DLRM [30] and later improved by [29].
However, this strategy assumes that the total GPU memory can
accommodate the whole embedding table, which is not feasible
for certain large-scale models (e.g., with 12TB of parameters,
128 A100 GPUs are needed). Another strategy is to use host
memory as backing storage and GPU memory as cache, and
move the entries that are needed within a lookahead window to
the GPU memory, as proposed by [3], [7], [24]. This solution
avoids sharding but still relies on DRAM to store the embedding
table, which is costly and could increase the operational expense
with the growing size of the recommendation models.

One possible solution to cope with the increasing memory
capacity demand of the embedding layer is to use lower-level
storage, such as Solid-State Disk (SSD), in the memory hi-
erarchy. However, this solution faces the challenge of limited

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on October 30,2024 at 03:29:20 UTC from IEEE Xplore. Restrictions apply.



LI et al.: NDREC: NEAR-DATA PROCESSING SYSTEM FOR TRAINING LARGE-SCALE RECOMMENDATION MODELS

bandwidth, both from the SSD and the system interconnects,
which cannot meet the data movement requirements of the
training process. We propose to overcome this challenge by
offloading the embedding layer to the storage side and only
transferring the output of the embedding layer to the GPUs.
We observe that the computation cost of the embedding layer
is mainly determined by factors unrelated to the total vol-
ume of the parameters, such as the pooling size, the size of
embedding dimensions, and the number of EMBs [29]. This
implies that the embedding layer can be computed using a less-
powerful device, such as FPGA-based computational storage
devices (CSDs), e.g., SmartSSD [25]. FPGA-based CSDs allow
us to build customized hardware kernels and exploit the access
patterns of the embedding tables. Offloading also enables the
further scale-up of the recommendation models, as storing data
in storage devices is usually much cheaper than in DRAM or
high-end GPUs.

Based on the above observations, we present NDRec — a near-
data processing system for training large-scale DNN-based
recommendation models in this work. We use CSDs to of-
fload memory-intensive embedding operations, free up GPU
resources for compute-intensive operations, and enable full
data-parallel training on GPUs. To achieve this, we decom-
pose the embedding layer into two stages: 1) lookup with the
old weights and 2) update with the generated gradients. This
decomposition allows us to perform ‘lookahead’ before the
weights are updated and thus enable concurrent execution of
the embedding layer and the other layers of the recommenda-
tion models. Moreover, we design a software-managed cache
in the CSD’s DRAM based on the embedding tables’ access
pattern. We evaluate NDRec with both real-world and synthetic
benchmarks and show that it can achieve significant speedup
and energy saving over existing platforms. Specifically, NDRec
can achieve up to 4.33x and 3.97x speedup on real-world
benchmarks over a unified-memory-based CPU-GPU platform
and GPU caching, respectively. For the synthetic embedding-
dominant benchmark, NDRec can achieve over 26 x speedup
over the GPU baseline. NDRec can also reduce the energy
consumption of single training iteration by up to 54.9%.

We summarize our contribution as follows.

o We identify the opportunities of offloading the embedding
layer to CSDs and design a near data processing system,
namely, NDRec, to tackle the memory capacity bottleneck
of large-scale DLRM training.

o We propose a lookahead embedding scheme that enables
the concurrent execution of the compute-intensive layers
and the data-intensive embedding layer during training.
The concurrency relaxes the bandwidth requirement of the
embedding operation.

o We propose a software-managed caching strategy on
CSDs to hide the long access latency of the SSD and fully
utilize the SSD bandwidth.

o We design an FPGA Kkernel on the SmartSSD device for
processing the stored embedding table.

The remainder of this paper is organized as follows. Section

II presents the background information; Section III analyzes the
challenges and opportunities that we found to build the NDRec
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Fig. 1. Left: The general architecture of DLRM. Right: An example of the
embedding operation.

system; Section IV presents the design of the NDRec system;
Section V provides details on the CSD side design; Section
VI demonstrates our evaluation results and the corresponding
discussions; Section VII summarizes related works, and Section
VIII concludes this work.

II. BACKGROUND
A. DNN-Based Recommendation Model

We focus on DLRM [30], a representative DNN-based rec-
ommendation model that has been widely used in the industry.
Fig. 1 shows the general model architecture of DLRM, which
takes both dense and sparse features as inputs. Dense features
are numerical values, such as length of time. Sparse features
are categorical values, such as genres of movies. Dense features
are processed by a bottom MLP, while sparse features are trans-
formed into dense vectors by an embedding layer. The outputs
of the bottom MLP and the embedding layer are combined by
a feature interaction operation and fed to a top MLP for gen-
erating the prediction output. The inference process of DLRM
handles single or small batches of dynamic input samples, with
low latency as the main optimization goal. The training process
of DLRM processes large batches of input samples from a static
dataset, with high throughput as the main optimization goal.
The training process is typically performed on GPU or other
powerful accelerators.

The embedding layer consists of multiple EMBs, each cor-
responding to one sparse feature. Each row of an EMB i.e.,
an embedding vector, represents one category, and each sparse
feature contains one or more indices that refer to the rows of
the EMB. In the forward pass of the embedding layer, we fetch
the embedding vectors (EVs) from each EMB according to the
indices in the corresponding sparse feature and aggregate these
vectors. Most recommendation models use summation as the
aggregation operator. To avoid confusion with the embedding
vector, we use embedding output (EO) to denote the aggregated
result from one embedding table. These terms are also illus-
trated in Fig. 1.

B. Computational Storage

CSDs are introduced to address the I/O bottleneck by allow-
ing the processing of the data in place. Storage vendors have
proposed two paradigms of CSDs: (1) integrating the processing
units into the SSD controllers [40]; (2) building a separate
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processing unit near the SSD with a private P2P link [25]. We
select the latter type of CSD design, specifically the SmartSSD,
for its flexibility in customizing the hardware. SmartSSD builds
a separate FPGA chip alongside the SSD device and provides
a private PCIe 3.0 x4 link between the two parts. The FPGA
has a dedicated 4GB DRAM for a customized accelerator de-
sign. The functionalities related to SSD—interface handling,
wear leveling, error correction, etc.—are implemented in the
SSD controller. The data movement between SSD and FPGA’s
DRAM can be invoked with a command by the host program,
but the actual transfer bypasses the host [41].

C. Coherent Interconnect

Conventional system interconnects, for example, PCI-
express (PCle), were designed for IO devices. Although
such interconnects are able to provide high bandwidth, they
are inefficient for fine-grained transfers. Moreover, handling
the coherence and synchronization with the software will
incur extra overhead. Novel coherent system interconnects,
e.g., Compute eXpress Link (CXL) [37], are proposed to
address this issue. CXL utilizes the physical layer of PCle
and provides CXL.io, CXL.mem, and CXL.cache protocols
for devices. CXL.io protocol is an enhancement of the PCle
protocol, while the CXL.cache and CXL.mem protocols have
smaller packetization overhead and a higher priority, which
creates low access latency. Three types of devices are defined in
the CXL specification. The type-1 device only has CXL.cache
protocol and hides its device-attached memory. Type-2 is
the accelerator device with both CXL.cache and CXL.mem
protocols. Type-3 devices have CXL.mem protocol and can be
used as a memory expansion of the system.

Type-2 and Type-3 devices can (selectively) map their at-
tached memory (e.g., the GPU memory) as host-managed de-
vice memory (HDM). HDM is mapped to the CPU’s host
physical address (HPA) space and is directly accessible to the
host as cacheable memory. The coherency of HDM can either
be managed by the host (HDM-H) or the device (HDM-D or
HDM-DB). HDM-DB utilizes back invalidation channels to en-
able direct snooping by the device to the host. Device-coherent
HDM has a bias-based coherency model. The cacheline can
be host-biased or device-biased, whose coherency is resolved
at the root complex or the device coherence engine. The bias
mode can be either explicitly controlled by software or managed
by hardware. The device-biased mode saves unnecessary traffic
to/from the host for internal memory access in Type-2 devices.
Type-2 devices are also able to access any cacheable memory
within the system address space with hardware coherence. We
adopt the latest CXL 3.0 standard [ 13] in our design since it sup-
ports multiple Type-2 devices per root port, back invalidation-
based device coherent HDM, and multi-level switching.

D. CXL-Enabled SSD

The integration of CXL introduces an enticing prospect for
leveraging SSDs as an extension of the main memory. The
substantial storage capacity and cost-effectiveness of SSDs of-
fer a promising solution to address the challenges posed by
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memory-intensive applications. A prior proposal [17] outlines
a practical approach to developing CXL-enabled SSD devices
by enhancing the SSD controller. For the SSD to function as
a Type-3 device, it must provide byte addressability and, at
a minimum, support access at the cacheline granularity. This
requirement contrasts with the page-grained access inherent
in NAND flash, potentially leading to significant read/write
amplification issues. Additionally, the extended access latency
and finite endurance of SSDs pose formidable obstacles in
constructing such devices. A recent investigation [42] delves
into design options aimed at overcoming these challenges.
The study demonstrates that, through the implementation of
caching, prefetching, and software assistance, it is feasible to
construct CXL-enabled SSDs with commendable performance.
Notably, industry vendors are actively exploring CXL-enabled
SSDs and have showcased prototypes of such designs [12].

III. MOTIVATION

DNN-based recommendation models have increasing
memory capacity and bandwidth requirements, but their
computation demand does not scale proportionally. Based on
the representative model configurations from Meta [29], we ob-
serve that: 1). The computation demand of the embedding layer
is determined by the embedding dimensions (i.e., the number
of EVs to reduce) and the number of tables, not by the number
of parameters. 2). The models with more computation demand
in the embedding layer (i.e., with more embedding tables) also
have more and wider MLP layers, which are the dominant
operators. These observations suggest that the embedding layer
can be offloaded from GPU without creating a new bottleneck.

SmartSSD is a potential candidate for offloading the embed-
ding, as it provides large and cheap capacity with SSD. How-
ever, the limited memory bandwidth and long access latency
of SSD pose challenges for implementing embedding. We ex-
plore opportunities in the overall training process to overcome
these challenges.

Opportunity 1: Use the knowledge of access pattern to
embedding table for scheduling. Unlike in inference, we can
know the exact inputs for future iterations during training. This
information can help us schedule the data movement among
SSD, DRAM Cache, and on-chip buffer. Furthermore, previous
works [32], [35] have shown that the embedding vector access
distribution is skewed. A small subset of embedding vectors
accounts for a large fraction of the total accesses. We can
leverage this statistical feature in the caching strategy design
to minimize access to SSD.

Opportunity 2: Relax the dependency to reduce the
bandwidth demand. For each training iteration, the embedding
operation has a read-after-write (RAW) dependency with the
weight update process of the previous iteration. The subse-
quent forward process also depends on the embedding operation
(RAW). This means that even if we offload the embedding
operation to other devices, we still have to wait for the previous
training iteration to finish before the embedding operation can
start and produce the result for GPU. The embedding operation
cannot run in parallel with other processes on GPUs. These
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Fig. 2. The architecture of the NDRec system and the allocation of the host
physical address space (HPA). The blue arrow indicates coherent traffic in the
CXL subsystem while the gray arrows show internal traffic. ‘HDM-DB’ stands
for host-managed memory with device coherent using back-invalidation.

dependencies drive the high memory bandwidth demand. We
found it is possible to break the embedding operation into two
stages. In the first stage, we use the old embedding vectors
to compute an intermediate embedding output. This stage is
memory-intensive but can start earlier in the previous iteration.
In the second stage, we correct the intermediate result when the
gradients are available. This relaxation preserves the ‘illusion’
of respecting RAW dependencies (i.e., the optimizer behavior
is unchanged) and enables concurrent execution between GPU
and SmartSSD. The concurrent execution can hide the latency
of the embedding operation, thus lowering the bandwidth re-
quirement for the same target training throughput.
Opportunity 3: Trade the cheap GPU computation for
expensive memory bandwidth. The aforementioned correc-
tion to the embedding output can be represented as a matrix
multiplication between the gradients and the indicator matrix of
the overlapped embedding vectors between two iterations. The
batched matrix multiplication is a relatively simple and well-
optimized task for GPU. Since the cost of a compute-saturated
task is lower than the memory-saturated one [4], we argue that
it is worthwhile to trade the extra computation on GPU for
significantly reducing the bandwidth demand of embedding op-
eration on SmartSSD. Moreover, the extra matrix multiplication
on GPU has a negligible overhead compared with the MLPs.

IV. NDREC SYSTEM
A. System Architecture

The proposed design is shown in Fig. 2. NDRec system
consists of host processors with CXL root complex, CXL-
enabled GPUs, and CXL-enabled SmartSSDs. A CXL-enabled
GPU is a Type-2 device that supports io, cache, and memory
protocols. Meanwhile, a CXL controller replaces the original
PCle controller and handles the protocol traffic on the GPU.
The CXL controller has a device coherence engine that resolves
accesses from the CXL.mem protocol or peer caches and for-
wards cache coherence messages to the last-level cache. GPU
memory (VRAM in the figure) is mapped as HDM-DB, which
uses back invalidation channels to maintain coherency with the
host. This is because the access latency from GPU’s LLC to
GPU memory is critical for the performance of the kernels
running on GPU. We assume that hardware manages the bias
mode autonomously, as suggested by the spec [13].

Because there is yet to be any CXL-enabled SmartSSD
on the market, we extrapolate its design based on existing
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architecture. The device consists of a CXL switch, an SSD with
CXL interface as a Type-3 device, and an FPGA as a Type-
2 device. For the SSD, we follow a previous proposal [17]
where the SSD controller directly supports memory protocol
and byte addressability. We use non-deterministic (ND) and
bufferable (BF) attributes for all requests to the SSD for per-
formance reasons, i.e., improving asynchrony and overlap of
compute and multiple in-flight requests. The original controller
functions, such as wear leveling, error corrections, etc., remain
unchanged. Load/store request from the memory protocol is
translated into read and write requests and sent to the controller.
The control and management commands can be issued through
the io protocol. From the system perspective, the SSD can
now be accessed with load/store requests as regular memory.
For the FPGA, we replace the original PCle endpoint with a
CXL controller, similar to the CXL-enabled GPU. The CXL
controller also has a coherence engine for resolving the request
to the FPGA memory. We map part of the FPGA memory as
HDM-DB, which will be used as transaction buffers (Section
IV-E). Software controls the bias mode of this region. The
coherence engine handles the external and internal access to the
transaction buffers to maintain coherency. The rest of the FPGA
memory is used as the embedding cache region and reserved as
private device-attached memory (PDM).

Remaining resources of the FPGA are reserved for cus-
tomized logic where we build an embedding cache agent and
an embedding kernel. The embedding cache agent cooperates
with the host cache planning process to manage the embedding
cache (Section V-A). A hardware kernel performs the forward
and backward computation of the embedding operation (Sec-
tion V-B). Meanwhile, the embedding kernel sends read/write
requests of the EVs to the embedding cache agent, in which the
counter and statistics of the EV are updated, and the request is
fulfilled by forwarding the request to the AXI bus. Accesses to
EVs are non-coherent since EVs reside in the reserved PDM
region (embedding cache region). Meanwhile, the embedding
cache agent pulls cache plans from the cache mailbox region
in the host memory and executes these plans by sending read
and write requests to the CXL controller. The EVs in the em-
bedding cache can be viewed as coherent snapshots of the EVs
stored in SSD. Load/eviction operations are implemented with
memory copy.

All aforementioned memories, except for the embedding
cache region and the SSD’s DRAM, are mapped into host
physical address space. The SSD controller uses the DRAM for
running the firmware and buffering data and is transparent to the
system. The system can have multiple GPUs and/or SmartSSDs,
which can be connected to the root port directly or through
multiple levels of switching. In this work, we study the con-
figuration with up to two levels of switching and a simple tree
topology. We avoid using more advanced fabric management
features in CXL 3.0 due to a lack of performance studies to
cross-validate against.

B. Lookahead Embedding

As we mentioned in Section III, the RAW dependencies
of the embedding layer prevent concurrent execution without
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speculation. This restriction imposes a tight latency constraint
on the memory-intensive embedding operation, thus requiring
high memory bandwidth. By offloading the embedding oper-
ation, we also hope to perform the embedding operation con-
currently with other operations running on GPU and relax the
bandwidth requirement.

Assuming the recommendation model uses the summation as
the pooling operation, the computation of the embedding output
can be represented as,

N,
vl =Y EYO:,[K]), (1)
k=1

where the subscripts i, j, and ¢ represent the j-th sparse feature
of the i-th sample in the ¢-th iteration; F; is the j-th EMB,
O;,; is the array of indices of the current query, and N; ; is
the number of those indices. The backward process is done by
aggregating the gradient vectors from the samples that include
the EV in the forward pass,

oL oL
OELR] ~ 2= duf, ¥<0L @)
J i %,

where [ keo! is an indicator function.

Thus, we may decompose the process of computing EVs
in Equation (1) into two stages, embedding lookup with the
old embedding table and correction with the new gradients.
Specifically, if with SGD optimizer, the EV in equation (1) can
be calculated as,

t
Ni Noatch oL
t t—1 t
Vi = E:E [0: ;K] —n E: E: e 1p€Ot1’
k=1 peof q q,]

3)

where 7) is the learning rate, Nyq;.p, 1S the batch size, p covers all
indices related to the ¢-th sample of the current iteration, and ¢
captures the sample indices that include the entry p in the previ-
ous iteration. The second term indicates the difference between
the embedding vector calculated with the old embedding table
and the updated embedding table. It can also be expressed in
the vector form,

Mat = M, Zﬂkeot 1,

Since the indices of each batch is determined for each training
run, the vector M; can be generated through the preprocessing
on CPU. Thus, we can compute the first term in Equation (3)
on SmartSSD concurrently with the training process running
on the GPU. The result is sent to GPU. Then, the correct EV
can be obtained by performing a matrix multiplication on GPU
according to the Equation (3).

We name this scheme as lookahead embedding. Fig. 3 de-
picts the lookahead embedding process. Lookahead embedding
enables the concurrent execution of GPU and the SmartSSD.
Fig. 4 compares the training timelines with and without the
lookahead embedding scheme. For example, when the GPU
is processing the forward/backward for the n-th iteration, the
backward process updates the embedding vectors with the

Zﬂkeou 7. @)

thhJ
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omit the lookahead embedding for the i-th iteration for readability.
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Fig. 4. The illustration of the training timeline of naiVe offloading and

NDRec. ‘WU’ stands for weight update. The embedding backward for the
(n — 1)-th iteration can be overlapped with the embedding forward of the
(n 4 1)-th iteration by forwarding the updated EVs.

gradients generated at the end of the (n — 1)-th iteration.
Meanwhile, the forward process speculatively calculates the
embedding output for the (n + 1)-th iteration with the for-
warded embedding vectors updated by the backward process
of the (n — 1)-th iteration. We will discuss the forwarding in
Section V-B. In other words, the lookahead embedding re-
moves the RAW dependency between the forward process of
T,+1 and the backward process of T,,. Instead, the forward
process of 7,41 relies on the output of the backward process
of Tn,1 .

Although we only discussed the model with summation as the
pooling operator, as previous works did [19], [20], [23], [32],
the proposed lookahead embedding also applies to other linear
operators (e.g., mean, weighted sum, etc.). We also noticed
sum and mean are the only pooling operators supported by a
majority of recommendation model frameworks [31], [36] or
adopted by the published model configurations [1], [29]. The
decomposition made by lookahead embedding does not make
any approximation in embedding lookup. The EOs used by
forward process are the accurate one computed in two stages.
The EV update is delayed by one iteration but still follows
the original computation formula. Thus, lookahead embedding
does not alter the behavior of the training process and has no
impact to the accuracy.

C. Task Coordination

The major objective of NDRec is to offload the embedding
operation to computational storage devices and enjoy the large
cheap capacity provided by SSD. Unlike the original sequential
execution flow of the model, offloading decomposes the recom-
mendation model training into multiple smaller tasks that can
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run concurrently. Apart from the computation of MLP layers
remaining in GPU and the embedding layer offloaded to the
SmartSSDs, we also need to run the preprocessing process
to feed the input features and one or more cache planning
processes (depending on the number of the SmartSSD devices)
to schedule the data movement.

We illustrate the task coordination of the NDRec system in
Fig. 5. The GPUs process the compute-intensive part of the rec-
ommendation model (i.e., MLPs) with the data parallel strategy.
Apart from the MLP layers, we also place small embedding
tables on the GPU devices. The small embedding tables show
the higher operational intensity (if we assume the embedding
vectors can fit into the L2 cache) according to the pigeonhole
principle, i.e., if the total number of embedding vectors is much
smaller than the number of accesses per iteration, some embed-
ding vectors must be accessed multiple times. The parameters
of the rest of the embedding tables are stored in the SSD, and
the FPGA handles the computation of the embedding lookup in
each SmartSSD device. The bandwidth requirement determines
the placement of embedding tables. We will provide quantita-
tive analysis on the embedding table placement in Section I'V-D.

The FPGA DRAM of each SmartSSD device is split into
multiple regions, as shown in Fig. 2. Two regions work as
transaction (TX) buffers to hold the EOs of the current iteration
(old EO buffer) or store the result of the lookahead embedding
(new EO buffer) for the next iteration. The total size of em-
bedding outputs determines the size of the TX buffer region. If
we assume TX buffer 1 is used as the old EO buffer and TX
buffer 2 is used as the new EO buffer, GPU will fetch from the
TX Buffer 1, while the embedding kernel will write the result
of lookahead embedding into the TX Buffer 2. The two buffer
will switch their roles at the beginning of each iteration. At
the beginning of the next iteration, TX buffer 1 becomes the
new EO buffer, and the newly generated EOs will overwrite
the data. TX buffer 2 becomes the old EO buffer and keeps its
data for GPU to fetch. The embedding cache region occupies the
remaining capacity of the memory. Currently, we did not further
partition the embedding table and assign them to different SSDs
since the cross-device access incurs high overhead.

During one training iteration, the data loader and prepro-
cessing process load the raw input data from storage or main
memory. The dense features and sparse features for small em-
bedding tables are sent to the GPU, while the sparse features
for large embedding tables are sent to the SmartSSDs. The
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forward/backward computation of MLP layers on GPU and
forward/backward computation of the embedding layers on
SmartSSDs run concurrently, as shown in Fig. 4. Apart from
the computations, we have one cache planning process running
on the CPU for each SmartSSD. The cache planning process
maintains the metadata of the entries in the embedding cache,
schedules the data movement, and writes the movement sched-
ule to the cache mailbox. Before starting a new iteration, the
system will perform a synchronization to guarantee all queu-
ing data movement commands have been committed. We will
discuss synchronization details in Section IV-E.

D. Embedding Table Placement

GPU or SSD. As aforementioned, the small embedding
tables typically show higher operational intensity
(FLOPs/DRAM Byte), which indicates assigning them to GPU
is a better solution. We adopt a simple rule in determining the
threshold on the placement decision—the operational intensity
should be large enough to avoid the throughput being bounded
by the memory bandwidth. We proceed to compute the average
operational intensity (AOI), where AOI is defined as the ratio
of the number of floating-point operations (FLOPs) needed
for embedding lookup per batch to the table size. This metric
serves as a proxy for estimating the position on the roofline
analysis, helping discern whether the embedding lookup for
a particular table is constrained by memory bandwidth or
computation. Through a comparative analysis with the GPU
roofline, we employ this heuristic to ascertain the optimal
placement. The analysis results on our experiment platform
are shown in Fig. 6. We use this heuristic for the placement of
the embedding table in the following experiments.

Among SSD. The key metric for determining the table
placement across SSDs is the achieved aggregated bandwidth.
As mentioned in [32], the bandwidth requirement of EMBs is
mainly related to the pooling size, i.e., how many embedding
vectors are involved in each embedding lookup. Since we focus
on maximizing the bandwidth between DRAM and FPGA and
most of the embedding vectors can stay on the on-chip buffer
within one training iteration, we use the number of unique
embedding vectors per iteration rather than the pooling size
as the proxy of the bandwidth requirement. Thus, to derive an
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EMB placement plan, we sample 1% of the training data (as
suggested in [32]) and calculate the average number of unique
EVs per iteration. Then, we sort this number and assign a pair of
tables from both ends of the sorted list to the SSDs in a round-
robin fashion.

E. Communication

NDRec system performs a synchronization at the end of each
iteration to guarantee resolution of the five key operations or
transactions. Specifically: 1) the first stage of the lookahead
embedding has finished on SmartSSD, and the result has been
written into one of the TX buffers; 2) the backward process on
GPU has finished, and gradients of embedding tables have been
produced; 3) the backward process on FPGA has finished, and
all updated are committed to the FPGA DRAM,; 4) the embed-
ding cache agent has committed all data movement schedules;
5) the cache planning process running on CPU has written
the new data movement schedule to the mailbox and sent the
pointer of the mailbox to the embedding cache agent on FPGA.
Afterwards, a new iteration for training can commence.

At the beginning of each iteration, a copy of the EMB gra-
dients is created on the GPU, and the corresponding address is
passed to the embedding kernel. Then, we issue the command
to FPGA and swap the role of the TX buffers. After swapping,
the old EO buffer (which contains the EOs for this iteration)
is configured as host-biased and ready to be fetched by the
GPU, while the new EO buffer (which contains stale EOs) is
configured as device-biased and ready to receive the new result
generated by the embedding kernel. The write to the new EO
buffer will issue a back invalidation request, flushing the cache
line in all peer caches (i.e., GPU caches), and avoiding the
stale data used by GPU in the future. GPU then fetches the
result from the TX buffer and performs the training process,
while the embedding kernel loads the gradients directly from
GPU memory to start the backward process. The embedding
cache agent pulls the data movement schedule from the mailbox
region in host memory and executes the schedule to write the
EVs in DRAM back to SSD and load new EVs. Since the
embedding cache is software-managed, we need to perform a
memory copy rather than directly issue a cacheable load request
to avoid data consistency issues. The memory copy also helps
avoid the impact of unpredictable SSD access latency during
forward/backward.

V. NEAR-STORAGE EMBEDDING

A. Embedding Cache Design

As discussed in previous works [32], [35], accesses to embed-
ding tables show a power-law distribution. Thus, we can build
an embedding cache to capture this access pattern, reuse the fre-
quently used embedding vectors, and reduce the expensive SSD
access. Previous designs [3], [7] utilize the information of up-
coming iterations to build a software-managed lookahead cache
and preload the necessary embedding vectors to the cache. On
the CPU-GPU platform, the cache management process running
on the CPU needs to not only plan for the data movement but
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also collect and exchange these data from the main memory
and GPU memory. Both cDLRM [7] and ScratchPipe [24] show
the overhead of these processes running on the CPU could
dominate the latency, especially when we have multiple caches
to manage (i.e., with multiple GPUs). For SmartSSD, only the
plan phase needs to be done by the CPU. The data movement
is then handled by the embedding cache agent on SmartSSD,
runs asynchronously with the computational kernel, and does
not require the involvement of the CPU. Thus, we can overlap
the planning and exchange phases and have a higher tolerance
for the search cost.

We built an embedding cache in the FPGA DRAM on
each SmartSSD. The cache design is based on two principles:
1) trade the manipulation of metadata for the movement of em-
bedding vectors; 2) Use the access pattern’s statistical feature to
reduce SSD access. Moreover, unlike traditional cache, we need
to prefetch all necessary embedding vectors before the iteration
and guarantee the hits during the forward and backward process
of the embedding. Thus, we design the embedding cache as
a software-managed fully-associated cache, with each cache
block representing an embedding vector. The cache blocks are
stored in FPGA DRAM, while all metadata is stored in the main
memory and manipulated by the cache planning process on the
CPU. The metadata is maintained as a table of (EV ID, Address)
pairs. We also maintain an access counter for each embedding
vector presented in the cache to evaluate the access frequency of
the EV. Apart from the main table that contains the EV-address
pairs, we also have a hot-entry table and an in-use table to utilize
the statistical information of the EV access. The main table, hot-
entry table, and in-use table are exclusive to each other, i.e., each
EV can only be present in one of these three tables. The hot-
entry table contains frequently accessed EVs. The EV will be
promoted to the hot-entry table if the counter surpasses a certain
threshold. The EVs in the hot-entry table will not be evicted.
The in-use table tracks EVs used by the process running on the
SmartSSD (i.e., four sections for T, 1,7}, Ty41, and Ty 49).
The entry in the in-use table has an extra reuse bit indicating
whether they will be used by the subsequent iterations.

We illustrate the embedding cache in Fig. 7. The cache
planning process, which runs on the CPU, generates a data
movement plan and writes it to the mailbox region in the main
memory. The mailbox is implemented as a circular buffer,
where the plan for the next iteration is appended to the end
of the buffer. Upon reading the plan from the mailbox, the
embedding cache agent on the FPGA executes the plan. If we
assume GPU is running forward and backward processes for
the n-th iteration, as shown in Fig. 4, the forward process on
SmartSSD computes for the (n + 1)-th iteration. Meanwhile,
the embedding cache agent executes the data movement plan
to collect the EVs required by the (n + 2)-th iteration, while
the cache planning process on the CPU generates the plan for
the (n + 3)-th iteration. The cache planning process will run
two iterations ahead of the current forward process running on
the SmartSSD so that data movement for the next iteration can
overlap with cache planning.

In the cache planning phase, we first create a section in the
in-use table to collect all EVs to be used by the next iteration
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figure shows only the manipulation of the metadata and the data movement is executed only when the queues are submitted.

(i.e., Ty, +3). The metadata of these EVs can either be from the
in-use table, that main or hot-entry table, or a new entry created
for a load from SSD. If the EV is also used in the previous
iterations (e.g., EV 1 in the figure), we directly get the metadata
from the corresponding section in the in-use table and update
the reuse bit, indicating the EV should not be returned to the
main or hot-entry table. For the rest of the EVs, we first search
in the hot-entry table, then the main table for the entry. The hit
will remove the EV from the main or hot-entry table and add
it to the new section of the in-use table. If the EV cannot be
found in both tables (e.g., EV 42 in the figure), we generate an
SSD access command and randomly select one EV (e.g., EV
15 in the figure) in the main table for eviction. A new entry
will be created in the in-use table for this EV. The SSD access
and eviction commands are sent to two priority queues, where
a coalescer will check whether the command can be merged to
improve the transfer efficiency. Finally, at the synchronization
point, the plan generated from the two queues will be written
into the mailbox. The plan guarantees that the write command
(i.e., eviction) will be first executed to avoid the dirty entries
being overlapped by the new entries. Meanwhile, we will also
flush the table for 7T}, _; by returning the EVs not used by later
iterations back to the main table.

When there is a hit, the counter related to the corresponding
EV will be updated. We will compare the updated counter with
a predefined threshold and promote the entry to the hot-entry
table when the entry is flushed from the in-use table if it is larger
than the threshold. When the hot-entry table is full (i.e., larger
than a predefined size), the tail entry will be evicted back to
the main table from the hot-entry table. We will discuss the
selection of the parameters for hot-entry table in Section VI-C.

B. Embedding Kernel

The embedding kernel design aims to maximize the reuse
of the embedding vectors presented on-chip and reduce off-
chip access. We utilize the overlap of embedding vectors be-
tween consecutive iterations to achieve this goal. If we take
the timeline presented in Fig. 4 for example, when we start the
T, +2 forward process, the EVs used by the forward process
of T,,4+1 and not used by the backward process of T, are
presented in the on-chip buffer and does not need to be reloaded
from the embedding cache. Similarly, the backward process of
T, can reuse the EVs from the backward process of T, _;.

512b| EV Embedding Core
"3” Reader
O |[512b| EO
o .
S Writer
[9)
>
® |512b )
> EV Writer|
3
S [ 512b|Gradient
Reader
Fig. 8. An example of the embedding kernel configuration with embedding

dimension of 64. The control signals and the write ports on Bank 6 of both
buffers are omitted for readability.

Meanwhile, the EVs updated by the backward process of T,
can be forwarded to the forward process of 77,42 to run these
two processes concurrently.

The architecture of the proposed embedding kernel is de-
picted in Fig. 8. We used a banked buffer design where each
buffer bank corresponds to the number of dual-port BRAM
blocks (32-bit per port [9]) that can provide the width of two
embedding vectors. The bank size depends on the embedding
dimension. For example, if the dimension is 64, each buffer
bank of the embedding table contains 64 BRAM blocks or
32 URAM blocks. We can build 12 such buffer banks given
the available memory resources for the kernel and memory
controller on SmartSSD [33]. We then evenly split the buffer
banks and used them for the forward and backward process,
respectively. For the forward process, the EVs read from the
buffer are then sent to a crossbar and a vector adders tree to
generate the partial embedding output. The output is then accu-
mulated in the output register and sent to the result writer when
all EVs are reduced. For the backward process, one gradient
vector (processed by the optimizer) is loaded from the gradient
reader per cycle. All EVs related to the gradient vector are read
from the buffer, updated, and then written back to the buffer.
When all gradients related to the EV have been applied, the
updated EV will be forwarded to the buffer for the forward
computation or written back to memory if it is not used in
subsequent iterations. The assignment of the EVs to buffer
banks is done during the preprocessing phase. We assign the
EVs in a round-robin manner and swap the assignment with
other EVs in the same iteration if there is a bank conflict. When
the forward/backward process is done for one iteration, the
buffer will hold EVs for the next iteration to reuse them.
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The kernel is connected to the memory controller through the
AXI bus. We build two reader units and two writer units. The
EV reader receives the requests from the controller and initiates
the request to the memory bus. Since the length of each EV
could be larger than the width of the memory port, the reader
will send a burst request, compose the response data into one
vector, and send it back to the block. The gradient reader sends
requests to load the gradient from GPU memory and sends it
to the vector adder for the backward process. The EO writer
stores the embedding output back to memory. Meanwhile, the
EO writer updates the embedding table entries in the embedding
cache. The readers/writers are connected to the AXI bus through
512-bit ports to match the width of the memory controller.

VI. EVALUATION
A. Experiment Method

Platform. Due to the lack of commercially available CXL
3.0 systems or official support for P2P access between GPU
and SmartSSD, we are not able to fully evaluate NDRec on
a physical system. Instead, we design our evaluation setting
based on RecNMP [19]. We use TorchRec [36] to run the
training pipeline on the real GPU-based system and replace
the embedding operation with a predefined tensor. The traces
of the training process, containing the detailed latency of each
event during training, are then exported using profiling tools.
Then, we feed these traces into our simulation framework. The
experiment methodology is depicted in Fig. 9. We performed
our study with gem5 [28]. The CXL is simulated using the Ruby
memory system and Garnet network model [2] with the port,
link, and switch latencies shown in [26]. We modified the MESI
protocol provided in Ruby to support CXL. We downgrade the
link bandwidth to make a fair comparison with the PCle 4.0
bus in the baseline system. The proposed embedding kernel
design is implemented with Xilinx HLS and verified on the
SmartSSD device. Then, we built a cycle-accurate simulation
model for embedding kernel running on SmartSSD according
to the implementation result. DRAMSim3 [27] and MQSim-
CXL [42] are used to simulate the DRAM and SSD with a CXL
interface in the SmartSSD device, respectively. Table I lists key
hardware setups and parameters we used for evaluation. We
use 200 as the hot-entry threshold and 2048 as the hot-entry
table size in embedding cache. The choice of these parameters
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TABLE 1
HARDWARE SETUP FOR THE EVALUATION
Server
CPU | AMD EPYC 7352x2 @ 2.8GHz
GPU | NVIDIA RTX A5000 24GB x4
DRAM 16 x DDR4 3200 64GB DIMM
Mem Ctrl. | 8 Channels/Node X 2 Nodes
Simulation
DRAM | DDR4 2400 8Gb x4
SSD | Samsung 983 DCT 3.84 TB
Interconnect | CXL 3.0x16@16GT/s/lane
Kernel Freq. | 250MHz
# of SmartSSDs | 4

TABLE 11
MODEL CONFIGURATIONS

MLP Size

Model # MLPs Dim | Tables EMB Size
(Mean/Max)
Kaggle DAC 7 231(512) 16 26 2.06 GB
Criteo Terabyte | 8 465(1024) 128 26 91.10 GB
Random-XL 7 460(1024) 128 52 538.90 GB
Random-MLP 20 1590(5120) 64 16 75.90 GB

will be discussed in Section VI-C. We extract the traces of 100
iterations in the middle of one epoch for simulation and report
the average latency.

Benchmarks. We use two publicly available datasets, Kaggle
Display Advertising Challenge (DAC) [18], and Criteo Terabyte
[14]. Both datasets have 13 dense features and 26 sparse fea-
tures. The Kaggle DAC and Criteo Terabyte have 39.3M and
645M training samples, respectively. We also create two syn-
thetic datasets that follow the distribution of Terabyte. We create
two models for the random datasets to evaluate the configura-
tion with higher computation demand for embedding (Random-
XL, pooling size 40) and the MLPs (Random-MLP, pooling size
10), respectively. The details on model configurations are listed
in Table II.

Baselines. We select two optimized out-of-core training imple-
mentations provided by the TorchRec framework, UVM and
UVM-Caching, and a look-ahead caching solution cDLRM [7]
as our baselines. We compare NDRec with a near-memory
processing solution based on the design of RecNMP [19]. We
follow the design of RecNMP-opt, implement the performance
model following the description in the paper, and connect the
NMP-enhanced memory modules with the system as a type-3
device in CXL (NMP-CXL). We follow the parameters in the
original papers with 2 DIMMs x 4 Ranks configuration and
only increase the number of channels to 16 to have sufficient
capacity to hold the model. We did not compare with the more
recent work RecShard [32] since the publicly available datasets
are too small for RecShard, as mentioned by the authors. The
randomly generated dataset may make an unfair comparison
since RecShard Relies on the statistical features of the embed-
ding tables. The UVM strategy uses the unified virtual memory
feature provided by the GPU and stores the embedding tables
in DRAM, while UVM-Caching adopts a LRU cache in EV
granularity to manage the movement of embedding vectors. We
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Fig. 10. Normalized speedup of NDRec and baseline approaches over UVM-based GPU training on 4 GPUs.

use the codebase published by the authors [10] with the recom-
mended parameters discussed in the original paper to reproduce
the result of cDLRM on our server. For the Kaggle DAC model
whose parameters are able to fit into the GPU memory, we also
evaluate the naive table-wise sharding strategy.

B. End-to-End Results

Fig. 10 presents the normalized speedup of NDRec over base-
line methods. For the small model, Kaggle DAC, we achieve
up to 2.6x speedup over the UVM method. The results also
show that the increasing batch size diminishes the advantage
of NDRec. This trend originates from the small model size,
which makes most embedding vectors reside in GPU memory,
even with the simplest UVM strategy in the later iterations. The
negligible gap between UVM and caching can also prove this
explanation. For the 8K batch size, static (UVM) and look-
ahead (cDLRM) caching introduce overhead over UVM and
lead to performance degradation. NDRec is slower than NMP-
CXL, and the gap deepens as the batch size increases. This is
due to the small size of Kaggle DAC. The NMP solution ben-
efits from its high internal bandwidth. As for Criteo Terabyte,
we achieve up to 4.33 %, 3.97, and 2.13 x speedup over UVM,
cDLRM, and NMP-CXL, respectively. A larger batch size helps
NDRec explore the reuse of embedding vectors in the embed-
ding cache and on-chip buffer. For the NMP solution, the impact
of limited rank cache capacity and the interference of weight
updates outweighs the benefit of the larger bandwidth. These
two real-world benchmarks demonstrate the advantage of the
NDRec system. For small models, even if the whole embedding
table can fit into the GPU memory, the concurrent execution
of embedding lookup and the rest of the model still achieve
noticeable speedup. Furthermore, in a multi-GPU environment,
NDRec mitigates the need for additional synchronization re-
sulting from all-to-all communications, a common challenge
associated with sharding. The overhead of synchronization can
be particularly significant in the training of smaller models. For
large models, the embedding table exceeds the size of GPU
memory. NDRec can eliminate the frequent data movement be-
tween main memory and GPU through the system interconnect
with limited bandwidth.

The two synthetic benchmarks, Random-XL and Random-
MLP, illustrate two extreme cases where the computation of
embedding or MLP dominates the training time. When the
embedding layer dominates the overall cost, all strategies
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movement size and latency to SSD per iteration.

except for the NMP-CXL show over 8 x speedup over the UVM
baseline. NDRec further shows up to 3.38 x and 1.71 x speedup
over UVM caching and cDLRM, respectively. The increased
number of embedding tables and a larger pooling size contribute
to the opportunities for exploring embedding vector reuse. We
also notice the speedup of NMP solution decreases as the batch
size increases. This is due to the limited rank cache size in
NMP solution causing a low hit rate. The Random-MLP, how-
ever, achieves up to 1.35x speedup with different approaches.
Since the MLP computation is the dominating factor in the
training latency, the data movement cost can be hidden by
the computation. These two synthetic benchmarks prove the
effectiveness of NDRec in addressing the overhead brought by
the embedding operation. Since the synthetic benchmarks only
reflect the extreme cases, we will only use the Criteo Terabyte
for the subsequent studies.

C. Embedding Cache

We evaluate the effectiveness of the embedding cache by
examining the hit rate, cache planning cost, and the number of
accesses to SSD. The result is shown in Fig. 11. We separately
show the hit rate in the main and hot-entry tables. For different
batch sizes, the hit rate in the hot-entry table remains constant
since the hit rate for the hot-entry table is determined by the
statistical feature of the dataset. Meanwhile, the hit rate in the
main table increases with the batch size. Overall, we achieved
over 90% cache hit rate on all settings and even over 95% on
the 16K batch size. Since the software-managed cache is fully
associated, we can fully utilize the capacity of the embedding
cache. The search cost increases with the batch size as there
are more embedding vectors to search. However, the overall
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search cost can still be overlapped by the computation latency.
Regarding the SSD access, the embedding cache significantly
reduces the read and write from/to SSD. The accesses to SSD
are a mix of approximately 50% read and 50% write for EV
loading and eviction. Even with the 16K batch size, there is only
9.18MB traffic between SSD and embedding cache with less
than 12ms transfer latency per device. Since only the evicted
entries are updated to SSD, the embedding cache significantly
reduces the write to SSD, avoiding wearing out the SSD.

We further investigate the design choices for the hot-entry
table, specifically, the selection of hot-entry threshold and
hot-entry table size. The result is shown in Fig. 12. A small
threshold could promote a less frequently accessed EV to the
hot-entry table and prevent it from being evicted. A small
hot-entry table size might lose the opportunity to capture the
frequently accessed EVs. We also notice that, given the large
capacity of the embedding cache and fully associated organiza-
tion, the hit rate reaches a plateau when both parameters pass
a certain value. Thus, we select 200 as the hot-entry threshold
and 2048 as the hot-entry table size.

D. Ablation Study

Component Contribution. We perform an ablation study to
evaluate the contribution of individual components in NDRec.
The result is depicted in Fig. 13. We remove lookahead embed-
ding, CXL, and embedding cache separately in our evaluated
system. For the system without lookahead embedding, the train-
ing tasks are scheduled as shown in Fig. 4 ‘Naiv’. We see up to
4 x slowdown since the fully sequential training timeline signif-
icantly increases the bandwidth requirement of the embedding
operation. The gap narrows to 2x when we increase the batch
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size to 16K, as the cache design alleviates the bandwidth issue.
For the system without CXL, we use DMA to communicate
between GPU and CPU and refer to [8] to verify the achieved
bandwidth in the simulator. To efficiently use DMA, we only
initiate the data transfer when the embedding forward process
is finished, which forces an additional synchronization barrier.
The lack of CXL can cause up to 2.5x increment in latency
due to the inefficient communication for the small amount of
data. We also evaluate the case where two-level switching is
required for SmartSSD to reach the host. Negligible overhead
can be observed. For the system without embedding cache, we
employ a simple static caching strategy where 3% of embedding
parameters are cached in FPGA DRAM and randomly evict
entries to load the necessary embedding vector for the new
iteration. It increases the latency by 20% for 2K and 4K batch
sizes, while up to 41% increment in latency can be observed
for larger batch sizes. The simple static cache cannot effectively
exploit the reuse opportunities.

E. Discussion

Bandwidth. We present the achieved aggregated bandwidth
between the embedding cache and FPGA on SmartSSDs under
different configurations in Fig. 14. The theoretical maximum
bandwidth of the memory on a single SmartSSD device is
19.2GB/s. The achieved bandwidth is affected by multiple fac-
tors, including the efficiency of the memory controller, the size
of EV loading required for each iteration, and the number of
reused EVs in the on-chip buffer. A large batch size requires
loading more EVs from the embedding cache, thus making
it easier for the reader to schedule the memory request. The
peak bandwidth approaches the efficiency of burst read as listed
in [15]. For a small batch size, fewer EVs are required for
each iteration. The access pattern is more random and reduces
the efficiency of the memory controller. We notice that, for
the 8K batch size, the 4 SSDs configuration achieves a simi-
lar bandwidth to that of the 8 SSDs configuration, indicating
the bandwidth is not a limiting factor here. We can also tell
that, for the configuration with less than 4 SmartSSDs, the
achieved bandwidth with 16K batch size is limited by the device
bandwidth. For further scaling up of the training batch size,
the limited memory bandwidth could be the bottleneck for the
performance. However, the configurations mentioned in [29]
use the 16K batch size at most (2048 local batch size with 8
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Fig. 16. The execution time breakdown of NDRec and GPU-UVM.

GPUs per node). Eight or more SmartSSDs should be able to
serve one training node.

Scalability. We evaluate the scalability of the proposed NDRec
system by scaling the number of GPUs and SmartSSDs. For
GPU, we use weak scaling, i.e., the overall batch size remains
constant so that we can maintain a similar amount of workload
on SmartSSDs. Results are depicted in Fig. 15. When we have
more SmartSSDs, the speedup ratio scales accordingly, showing
the extra bandwidth/computing power provided by additional
SmartSSDs can be efficiently utilized. We also noticed that
when the number of SmartSSDs is smaller than or equal to 4,
the speedup ratio scales linearly, indicating the overall perfor-
mance is limited by the bandwidth or computing power of the
SmartSSDs. Combined with the bandwidth analysis shown in
Fig. 14, we can conclude that 4 SmartSSDs are sufficient to
support the 8K batch size while 8 SmartSSDs are necessary
for the 16K batch size. As for the GPUs, we can tell that
for the 2K batch size, the GPUs form the bottleneck. Thus,
increasing the number of GPUs from 1 to 2 shows nearly 2x
improvement. For the 16K batch size, an additional GPU brings
marginal benefit. In both cases, further increasing the number
of GPUs to 4 narrows the gap over the baseline, indicating the
baseline benefits from the extra GPUs while NDRec does not
since the computation on GPU is no longer the bottleneck of
the training.

Latency Breakdown. We present a latency breakdown of
NDRec and GPU-UVM in Fig. 16. The result illustrates that
the embedding operation dominates the training latency due to
frequent data movement between the GPU and main memory.
NDRec addresses this bottleneck by overlapping the embedding
and other stages and avoiding expensive data movement.
Energy Consumption. We compare the energy consumption
of NDRec per training iteration with the baselines. To estimate
the energy consumption of the simulated part of NDRec, we
use the measured worst-case dynamic power of the embedding
kernel running on SmartSSD to obtain a pessimistic number
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for comparison. The result is illustrated in Fig. 17. NDRec
can utilize the customized FPGA kernel and reduce the burden
of data movement and GPU. On average, NDRec reduces the
energy consumption by 54.9% and 43.8% over the UVM and
UVM-Caching systems, respectively.

VII. RELATED WORKS

Near-Data Processing. NDP-based DLRM accelerators

[19], [20], [23], [39], [40] build customized computing units
near where the embedding tables are stored. TensorDIMM [23]
and RecNMP [19], [20] directly process the embedding op-
eration when the embedding vectors are read from the main
memory. Customized instructions are used to trigger the com-
putation, and the data layout is optimized to maximize the
effective bandwidth. RecSSD [40] and RM-SSD [35] select
storage as the level of operation. By modifying the FTL and/or
architecture of SSD controllers, these designs are able to utilize
the statistical information of embedding table access to opti-
mize the data movement and fully utilize the internal bandwidth
of the SSDs. Unlike NDRec, these solutions only support in-
ference tasks. Even if they may be inserted into the training
pipeline, the embedding operation is sequential with other pro-
cesses and remains the bottleneck in the critical path. NDRec
addresses these issues with relaxed dependencies through
speculative embedding.
Multi-Tier Caching. The embedding table may be stored in
main memory and/or storage and only necessary embedding
vectors are retrieved during each iteration. cDLRM [7], Scratch-
Pipe [24], and BagPipe [3] use a two-level storage (main mem-
ory and GPU memory). The data is prefetched to GPU memory
with a caching strategy. AIBox [45] and RecShard [32] also
include storage in the tiers. Apart from the caching strategy,
the statistical features of the embedding vectors are used to
determine the placement of data. These solution only offload
the data rather than the computation of the embedding layer.
The embedding layer remains on the critical path while the
further inflation of DLRM model could saturate the available
bandwidth of the system. NDRec performs computation at the
storage level and only transfers the embedding output to GPUs,
leading to higher utilization of GPU cores and alleviating the
pressure on the system bus.

VIII. CONCLUSION

In this paper, we present NDRec, a near-data processing sys-
tem for large-scale recommendation model training. We offload
the embedding operation to SmartSSDs to enable the training
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of large recommendation models and increase the utilization
of GPUs. We then propose the lookahead embedding scheme
to enable concurrent execution between GPU and CSDs. A
software-managed DRAM cache and a customized FPGA ker-
nel are designed to maximize the performance of the embed-
ding operation. The evaluation result shows that NDRec could
achieve up to 4.33x and 3.97x speedup over heterogeneous
CPU-GPU platform and GPU caching, respectively. NDRec
eliminates the capacity bottleneck and could enable the adop-
tion of larger-scale recommendation models.
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