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Deploying possible world semantics and the
challenge of computing the certain answers to
queries.

| BY BENNY KIMELFELD AND PHOKION G. KOLAITIS

A Unifying
Framework for
Incompleteness,
Inconsistency,
and Uncertainty
In Databases

DATABASES ARE OFTEN assumed to have definite
content. The reality, though, is the database at

hand may be deficient due to missing, invalid, or
uncertain information. As a simple illustration, the
primary address of a person may be missing, or it may
conflict with another primary address, or it may be
improbable given the presence of nearby businesses.
A common practice to address this challenge is to
rectify the database by fixing the gaps, as done in data
imputation, entity resolution, and data cleaning.

The process of rectifying the database, however,

74 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO.3

may involve arbitrary choices due to
computational limitations, such as er-
rors in statistical or machine-learning
models, or mere lack of information
that even humans cannot cope with
in full confidence. In turn, answers
to queries over the deficient database
may depend on the choices made to
rectify it; thus, the answers to queries
may vary from one choice to choice,
even though both choices may be
equally legitimate.

In the pursuit of principled solu-
tions, there has been a continuous
research effort to develop fundamen-
tal approaches for handling database
deficiency with no (or with less) arbi-
trariness. The purpose of this review
article is to highlight some of the ways
in which the possible world semantics
has been deployed as a principled ap-
proach to overcome database defi-
ciency in different contexts. In this
approach, we acknowledge that we
need to rectify the deficiency: fill in
missing information, delete wrong
records (hereafter tuples or facts), cor-
rect erroneous values, and so on. Yet,
since many rectifications may exist
and since we do not know which is the
correct one, we do not commit to a spe-
cific one. Instead, we view our deficient
database as a representation of the re-

key insights

m Possible world semantics give meaning to
queries over incomplete, inconsistent, or
uncertain databases. Such databases are
viewed as compact representations of all
their possible rectifications; the “certain
answers” are the query answers that hold
true in every possible rectification.

B Queries that are computationally
tractable under standard database
semantics may become intractable under
possible world semantics. In many cases,
the tools of computational complexity
can be applied to delineate the boundary
between tractability and intractability.

m Election databases form a new setting
for the framework of possible worlds.
This setting brings social choice theory
and relational databases together
and supports reasoning about elections
with partial voter preferences and
with contextual information about the
candidates.
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sults of all conceivable rectifications,
each such rectification giving rise to
a legitimate candidate of a valid data-
base that we call a possible world.

Since the possible worlds differ from
each other, a query may produce differ-
ent collections of answers (which are
also tuples) when applied to different
possible worlds. Therefore, query an-
swering requires the use of an aggre-
gation method to combine the query
results over the possible worlds. The
intersection of all possible results is the
prototypical example of such an ag-
gregation method. In this context, the
tuples in the intersection are called the
“certain answers” because they are ob-
tained in every possible world, regard-
less of what rectification has led to it.
Intersection is the most studied aggre-
gation method because of its intuitive
meaning: it extracts the answers for
which validity is not affected by the da-
tabase anomaly. For example, if we have
uncertainty regarding the apartment
number of a person x, we can still be cer-
tain about x living in Paris in the same
apartmentasy. Intersection is the main,
but not the only, aggregation method

discussed in this survey. The union is a
different type of aggregation, where we
are interested in the “possible answers,”
that is, the answers that are obtained in
at least one possible world. Probabilistic
variants of the possible world semantics
have also been studied in depth; here,
each rectification has a probability (that
can be determined from the database
content), and then the aggregation is
done by marginal inference: to each tu-
ple, we associate the probability that it is
an answer when the queryis applied to a
random possible world.

It is often the case that the original
(deficient) database constitutes a com-
pact representation of the set of possi-
ble worlds, and that this set is infeasi-
ble to materialize or store; for example,
the number of possible worlds can be
exponential in the size of the represen-
tation or even infinite. Consequently,
finding the certain answers to que-
ries poses a significant computational
challenge because an efficient aggre-
gation of the answers over all possible
worlds has to be performed without
actually accessing each possible world,
but by directly processing the compact

MARCH 2024 | VOL. 67 | NO.3

deficient database. Such processing
might be attainable for some queries
but unattainable for others, and in
such cases we would like to distinguish
between queries with tractable and in-
tractable certain answers. The distinc-
tion is often achieved via dichotomy
theorems that classify the complexity
of the certain answers of every queryin
some large family of queries.

We will illustrate the possible-world
semantics in four different settings.
While not exhaustive, these four set-
tings represent substantially differ-
ent mechanisms for forming possible
worlds. In the setting of data exchange,
logical inference rules are used to form
the possible worlds: we have a database
under one schema that has to be trans-
formed into a database under a differ-
ent schema, and the possible worlds
are the candidate solutions accord-
ing to rule-based constraints specify-
ing the relationship between the two
schemas. In the setting of inconsistent
databases, minimal intervention is
used to form the possible worlds: we
have a database that violates integrity
constraints, and the possible worlds
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are the different ways to repair the in-
consistent database. In the setting of
probabilistic databases, we have a rep-
resentation of a probability distribu-
tion over the collection of all databas-
es. Here we focus on the most studied
model, the tuple-independent databas-
es: each record has a confidence value
thatis interpreted as a probability, and
different records are probabilistically
independent. Finally, in the setting
of election databases, completions of
partial orders are used to form pos-
sible worlds: we have ordinary data-
bases that describe information about
voters, candidates, and winners in
elections, but only partial knowledge
about voter preferences is known, thus
there is uncertainty about who the
winning candidates are. Note that the
framework of election databases aug-
ments computational social choice
with relational database context. In
particular, it generalizes the necessary
winners and the possible winners prob-
lems studied by researchers in compu-
tational social choice, because we can
now ask for the certainty or possibility
of properties of the winners (for exam-
ple, their partisan affiliation or posi-
tion on some issue) and not just their
mere identity (for example, whether
candidate a or candidate b is awinner).

In each setting considered here, we
use the lens of computational complex-
ity to highlight the algorithmic aspects
of aggregating the answers to conjunc-
tive queries, an extensively studied
class of queries that form the core of
most relational database queries.

An online appendix (available at
https://dl.acm.org/doi/10.1145/3624717)
contains additional discussion about
topics not covered in this article and an
expanded list of references.

Basic Notions

Relational databases and queries. We
start with some terminology from
relational databases. A schema S is a
collection of relation symbols R, each
with an associated arity (number of
columns). A database over the schema
S, also called an instance of S (or just an
instance if S is clear from the context),
associates with each relation symbol
R a finite relation r with the same ar-
ity as R. We identify an instance I with
its finite set of facts R(c,,---,c,), where
each such fact asserts that the tuple

(¢,,-+,c,) belongs to the relation r of
I associated symbol R. In this case, we
say thatR(c,,---,c,) isan R-fact of I. We
write /] C I to denote that for every re-
lation symbol R, every R-fact of J is also
an R-fact of 1. We also view a database
as a finite relational structure in the
sense of mathematical logic (for exam-
ple, see Abiteboul et al.).

A k-ary query q over a schema S maps
every instance I of S into a k-relation
q(I). Every tuple of g(I) is referred to as
an answer. As a special case, a query
of arity zero is viewed as a Boolean
query that is either true (has the emp-
ty tuple as an answer) or false (has no
answers) on the given instance I. In
logical terms, a Boolean query is sim-
ply a Boolean statement (true or false)
about the database. When analyzing a
query, we typically ignore the database
schema and, without loss of general-
ity, assume that it consists of the rela-
tion symbols that are mentioned in the
query formulation.

We will focus on the class of conjunc-
tive queries, also known as select-proj-
ect;join queries. They are at the core of
the most frequently asked queries on
relational databases, and are directly
supported by SQL. For example, con-
sider the schema with the binary rela-
tions Country(id, name) and Borders
(id1,1d2), and consider also the follow-
ing query that finds the neighboring
countries of France:

SELECT B.id2

FROM Country C, Borders B

WHERE C.id = B.idl and
C.name = "France"

This query is expressed as a con-
junctive query using the formula

Jy[Country(y, France') A
Borders(y,x)] )]

More generally, a conjunctive query
is a logical formula of the form

Iy[#,(x,3) A - A dy(x,)]

where x is a sequence of free variables,
disjoint fromy (the sequence of existen-
tially quantified variables), and each
¢,(x,y) is an relational atom, that is,
an expression of the form R(t,,-,t,)
where R is a k-ary relation symbol and
each 7 is either a constant or a variable
from x or y. We refer to each ¢,(x,y) as
an atom of the query. Semantically, an
answer is a tuple a that makes the for-
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mula true when assigned to x. We also
assume that every variable in x occurs
in at least one atom—this is a standard
safety assumption. A Boolean conjunc-
tive query has no free variables, hence
it has the form 3y[p,(y) A - AP y)]-
A conjunctive query has a selfjoin if
two different atoms use the same rela-
tion symbol R. For example, the query
of Equation (1) has no self;joins, but it
would if the atom Country(x,x") is add-
ed for retrieving the id’s and the names
of the returned countries. Some of the
results will require the assumption
that the considered queries have no
self-joins.

Possible worlds and certain an-
swers. The standard query evaluation
problem involves a query g and an in-
stance ], and the problem is to compute
the answer g(I) of g on 1. We explore set-
tings where query evaluation involves
a query and a collection of databases,
instead of a single database. These da-
tabases can be thought of as possible
worlds on which a query can be evalu-
ated. What is the semantics of a query
posed on different worlds? Clearly, we
need a notion that provides a method
for aggregating the answers obtained
on each possible world. The certain an-
swers is the most extensively studied
such notion, where intersection is used
as the aggregation method.

Definition 2.1.

Let g be a k-ary query and let 77" be a
collection of databases. The certain an-
swers of g on 7" is the set

CERTAIN(q, %) ={ ) ¢()) =
(54
{a:aeq()), for everyJin 7'}

We will discuss the cost of computing
the certain answers. On the face of
their definition, computing the certain
answers requires evaluating the query
on each possible world. This may be a
formidable task because the number
of possible worlds can be very large or
even infinite. In several different set-
tings, however, the collection 7" of the
possible worlds admits a compact rep-
resentation . This suggests a differ-
ent approach: compute the certain an-
swers of a query on 7" by working with
the compact representation %, instead
of examining each possible world in 7.

We assume familiarity with basic
notions in complexity theory, such as



the complexity classes P, NP, coNP, and
#P, and the meaning of hardness and
completeness for complexity classes.'
We follow the convention of analyzing
database problems in terms of their
data complexity, which means that the
input consists of the instance I while
everything else, such as the schema
and the query, are fixed.** In particu-
lar, when we analyze computational
problems associated with queries,
each query gives rise to a separate com-
putational problem, and this problem
might be tractable for one query and
intractable for another query.

Nulls and Data Exchange

In many settings, the possible worlds
under consideration involve the use of
null values that, intuitively, are place-
holders for missing values. Database
systems supported null values from
the very beginning. Moreover, the pio-
neering work of Imielinski and Lipski*
gave semantics to null values by means
of possible worlds. Their framework in-
troduced the concept of marked nulls,
later called labeled nulls, that behave
like variables: two occurrences of the
same labeled null represent the same
missing value, while distinct labeled
nulls represent missing values that
may be different or equal.

We will use the symbols N ,N ,...
to denote labeled nulls. An incomplete
database I is a collection of relations
R',...,R!l suchthateachtuple (a,...,a,)
in each relation R’ of I consists of con-
stants and labeled nulls, that is, each a;
is a constant or a labeled null. Let 7'(I)
be the collection of all databases ob-
tained from I by replacing each labeled
null by some constant. Therefore, the
incomplete database I is a compact
representation of the possible worlds
in 7(I). In this scenario, it is not hard
to prove that the certain answers of a
conjunctive query on 7 (I) can be com-
puted by evaluating the query directly
on the compact representation I, where
each labeled nullin7is treated as a dis-
tinct actual value (constant). More pre-
cisely, CERTAIN(q, 7' (D) = q() v where
q, is the set of of all null-free tuples
of g(I). For more details, Abiteboul et al.!

In the SQL standard, nulls are not
labeled, that is, there is a single null
each occurrence of which should be
viewed as a distinct labeled null. It
should be noted that SQL queries do

not adopt the certain-answer seman-
tics, but rather the semantics of three-
valued logic, where every comparison
to a null value results in "unknown"
rather than "true” or "false.” There has
been a large body of work, such as Lib-
kin’s,?® in which the SQL semantics are
compared and contrasted with the cer-
tain-answer semantics.

The preceding uses of nulls have
been extensively studied, and we will
not focus on these here. Instead, we
will focus on the use of labeled nulls in
data exchange, which is the problem of
transforming data structured under a
source schema S into data structured
under a different target schemaT.Tobe
able to generate meaningful solutions
to the data exchange problem, we may
need to invent new values that are not
in the source database; this is achieved
by using labeled nulls that mark en-
tries as invented values, instead of ac-
tual known values. Still, there might
be many different solutions, and we
view each solution as a possible world.
In particular and unlike the possible
worlds in the framework of Imielinski
and Lipski, each possible world may in-
clude labeled nulls (that are treated as
ordinary values by database queries).

Data exchange is formalized us-
ing schema mappings, that is, triples
of the form /# = (S,T,X), where X is a
set of constraints that specify the data
transformation from S to T.* If I is a
source instance, then a solution for I
with respect to ./ is a target instance
J such that the pair (7,]) satisfies the
constraints in X. The active domain of
I consists entirely of constants, while
the active domain of J may contain
both constants and labeled nulls. If
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the schema mapping . is understood
from the context, we simply talk about
a solution for I, instead of a solution for
I'with respectto /.

If / is a schema mapping and I is
a source instance, we write %' (/,I) to
denote the set of all solutions for I. In
general, the constraints in £ may over-
specify or under-specify the data trans-
formation task, hence #'(.,I) may be
the empty set or a non-empty finite set
oran infinite set. If g is a query over the
target schema T, we can consider the
certain answers of g on % (/,I), that
is, the set

CERTAIN(q, 7' (M, 1)) =

JEW(AL,T)

q()).

The pair (/,1) is a compact repre-
sentation of the space %'(.,I) of all so-
lutions for I. Thus, the question arises:
can this compact representation be
used to compute the certain answers
of target queries, and if so, how? As
shown in," there are many natural set-
tings in which the pair (/,I) is used
to compute a universal solution for I, a
special type of solution for I with the
property that the certain answers of ev-
ery conjunctive query can be obtained
by directly evaluating the query on the
universal solution.

By a definition, a universal solution
for I is a solution J for I such that for
every solution J’ for J, there is a ho-
momorphism A from J to J’ that is
the identity on the constants in J. In-
tuitively, a universal solution for I is a
“most general" solution for I because
it has no more and no less informa-
tion than what is encapsulated in the
pair («,I). Universal solutions can
be used to obtain the certain answers

Figure 1. lllustration of the certain answers.

Set W of 2
possible worlds

CERTAIN (g, W) =
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Figure 2. Illustration of a schema mapping.

of conjunctive target queries. More
precisely, let # = (S, T,X) be a schema
mapping, [ a source instance, and
g a target conjunctive query. If J
is a universal solution for I, then
CERTAIN(q, %' (M,1)) = q (N where
q(J), is the set of of all null-free tuples
of g(J). The proof follows from the defi-
nitions and the fact that conjunctive
queries are preserved under homo-
morphisms.

When do universal solutions exist?
To answer this question, we also need
to address a different question: what
are good schema-mapping specifica-
tion languages, that is, languages for
expressing the constraints used in sche-
ma mappings? Ideally, a good schema-
mapping specification language should
strike a balance between high expres-
sive power and tame computational
behavior. From top down, if arbitrary
first-order formulas are allowed to spec-
ify schema mappings, then it is easy to
show that there are simple conjunctive
queries for which computing the cer-
tain answers is an undecidable prob-
lem. From bottom up, let us consider
some basic data transformation tasks
that every schema-mapping specifica-
tion language ought to support. In each
case, we first describe the transforma-
tion and then give a first-order formula
expressing an example of it.

» Project a column from a source rela-
tion and copy the result to a target rela-
tion; in symbols, VxVy(P(x,y) — R(X)).

» Decompose a source relation into
two target relations; in symbols, Vx, y,z
(P(x,,2) = R(x,y) A Q(,2))-

» Add a column to a source relation
and copy the result to a target relation;
in symbols, VX(P(x) — 3zR(X,2)).

» Join two source relations and copy
the result to a target relation; in symbols,
VX, 9, 2E(x,y) AF(y,2) = H(x,),2)).

The formulas expressing the pre-
ceding data transformations are
firstorder formulas of the form
VX($(x) — Jyw(xy)), where $(x) is a
conjunction of atoms with variables
from x and y(x,y) is a conjunction of at-
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oms with variables from x and y. These
formulas are known as tuple-generating
dependencies (tgds) and constitute one
of the broadest classes of integrity con-
straints in databases.”” In fact, the for-
mulas that we used to express these data
transformations belong to a special class
of tgds called source-to-target tgds (s-t
tgds), because the atoms in the anteced-
ent ¢(x) of each tgd are over the source
schema, while the atoms in the conse-
quent y(x,y) are over the target schema.

In what follows, we will consider
schema mappings .# = (S,T,X)where
¥ always contains s-t tgds. In addition,
¥ may include target tgds and target
equality-generating dependencies (tar-
get egds). Target tgds are tgds of the
form Vx(¢(x) — Fyw(x,y)) in which
both ¢(x) and y(x,y) are conjunctions
of atoms over the target schema; tar-
get egds are first-order formulas of the
form Vx(¢(x) - X, = xj),where P(x)is
a conjunction of atoms over the target
schema and x,x; are two distinct vari-
ables from x. Target tgds and target egds
are the most extensively studied class of
integrity constraints over a database
schema.”® As special cases, they contain
the functional dependencies and the
fulltgds, which are tgds with no existen-
tial quantifiers in the consequent.

Let # = (S,T,Z)be a schema map-
ping and let g be a Boolean target con-
junctive query.

» The existence-of-universal-solu-
tions problem EoU(.#) asks: given a
source instance I, is there a universal
solution j?

» The certain answers problem CER-
TAINTY(q, /) asks: given a source in-
stance I, is CERTAIN(q, #'(#,I)) true?

The complexity of these two deci-
sion problems exhibits diverse behav-
ior, which depends on the constraints

allowed in the schema mappings. Fig-
ure 3 summarizes the precise results in
three parts. Next, we discuss the main
ideas behind the proofs of each part.

The undecidability results in the first
part are obtained via a reduction from
the embedding problem for finite semi-
groups: given a finite partial semigroup,
canitbe extended to a finite semigroup?
(see Kolaitis et al.* for the details).

The main tool for the tractability re-
sultsin the second partis the chase pro-
cedure, a versatile algorithm originally
designed to study the implication prob-
lem for database dependencies.>”* In-
tuitively, when an instance is chased
with a set of tgds and egds, we consider
all instantiations of variables that sat-
isfy the antecedents of the constraints
and then generate new facts as needed
to satisfy the consequents of the con-
straints. For example, if the instance
consisting of E(1,2) is chased with the
tgd Vox,y(E(x,y) — 3Jz2(H(x,2) A H(2,))),
then the chase procedure will generate
a labeled null N, and the facts H(1,N,)
and H(N,2). With egds, the chase will
attempt to equate the values of the two
variables in the consequent of the egd
by replacing a labeled null by a con-
stant or one labeled null by another,
but it will fail if it has to equate two dif-
ferent constants.

In general, the chase procedure
may not terminate. There are, however,
broad sufficient conditions guarantee-
ing the termination of the chase. In
particular, if the set of the target tgds in
the schema mapping considered obeys
certain structural conditions, such as
weak acyclicity, then the chase proce-
dure terminates within time bounded
by a polynomial in the size of the in-
put structure and produces a universal
solution precisely when a solution ex-

Figure 3. Complexity of the existence of universal solutions (EoU) and the certain answers (CE)

problems for different types of schema mappings.

Theorem 3.1. The following statements are true.

(1) There is a schema mapping M = (S, T, £) and a target conjunctive query g such that £ consists
of s-t tgds, target tgds and target egds, and EoU(M) and CerTAINTY(g, M) are undecidable.

(2) IfMm=(S, T, 2)is aschema mapping such that  consists of s-t tgds, full target tgds, and
target egds, then EoU(M) is solvable in polynomial time. Also, for every target conjunctive
query g, we have that CERTAINTY(qg, M) is solvable in polynomial time.

(3) If M= (S, T, %)isaschema mapping such that X consists of s-t tgds, then EoU(M) is trivial,

i.e., every source instance has a universal solution. Also, for every target conjunctive query g,
we have that CerTAINTY(g, M) is SQL-rewritable; in fact, there is a union g’ of source conjunctive
queries such that g'(I) = cerTAIN(g, WM, I)) for every I.

| VOL.67 | NO.3



ists." Every set of full tgds is weakly acy-
clic, while the set consisting of the tar-
get tgd Vx, y(H(x,y) — 3zH(y,z))is not.
Actually, if the instance consisting of the
fact H(1,2) is chased with this tgd, then
the chase procedure will not terminate
as it will generate an infinite sequence
H(2,N,),H(N,,N,),H(N,,N,),... of facts.

As regards the rewritability results
in the third part, if a schema mapping
M = (S,T,X)is specified using s-t tgds
only, then, given a source instance I,
the chase procedure always terminates
and produces a universal solution j for
I in time bounded by a polynomial in
the size of I. Therefore, by the proper-
ties of universal solutions. J can be
used to compute the certain answers
CERTAIN(q, #'(#,1)), where q is a tar-
get conjunctive query, in time bound-
ed by a polynomial in the size of I. In
this case, however, the certain answers
can also be obtained by rewriting g to
a union ¢’ of conjunctive queries over
the source schema and then directly
evaluating ¢’ on I. This is achieved by
“decomposing” ¥ into a set of local-as-
view (LAV) constraints and a set of glob-
al-as-view (GAV) constraints, where a
LAV constraint is a tgd whose anteced-
ent consists of a single atom and a GAV
constraint is a tgd whose consequent
consists of a single atom. The rewrit-
ing of g into ¢’ can then be achieved
by combining the MiniCon algorithm
for LAV constraints®! with an unfolding
technique for GAV constraints.

For further reading about data ex-
change, see the monograph® and the
collection.?

Inconsistent Databases

In designing databases, one specifies
a schema S and a set X of integrity con-
straints on S. An inconsistent database
is a database I that does not satisfy X.
Inconsistent databases arise in avariety
of contexts and for different reasons,
including the following two. First, a da-
tabase system may not support the en-
forcement of a particular type of integri-
ty constraints. Second, data at different
sources may be transferred to a central
repository and the resulting database
may be inconsistent, even though each
source database is consistent.

The framework of database repairs,
introduced by Arenas, Bertossi, and
Chomicki,® is a principled approach
to coping with inconsistent databas-

es and without “cleaning” dirty data
first. Database repairs constitute a
mechanism for representing possible
worlds through interventions in the
database. Specifically, given an incon-
sistent database, the aim is to achieve
consistency through some minimal in-
tervention in the database. There may
exist, however, many different such
minimal interventions, and it may not
be known which one represents the
ground truth. Hence, the result of each
such minimal intervention is viewed
as a possible world.

Let X be asetofintegrity constraints
and let I be an inconsistent database.
Intuitively, a database J is a repair of
I'w.rt X if J is a consistent database
(that is, J F X), and J differs from I in
a “minimal" way. Several different
types of repairs have been considered,
including set-based repairs (subset, su-
perset, @-repairs), cardinality-based re-
pairs, attribute-based repairs, and pre-
ferred repairs.

Definition 4.1.

Let X be a set of integrity constraints
and let I be an inconsistent data-
base. A database J is a subset-repair of
I wrt. X if J is a maximal consistent
sub-database of I, that is, the following
conditions hold:

@J c

b)) E

(c) there is no databaseJ' such that

J E XandjJ C J C I,where C de-
notes proper containment.

In what follows, we will focus on
subset repairs and so from now on we
will use the term repair, instead of the
term subset repair.

Example 4.2.

Let X be the set consisting of the key

constraint

VxVyVz((R(x,y) A R(x,2) = y=2).

The inconsistent database

I= {R(al’bl)’R( al’bz)’R(az’h1)7R(a

b,)} has four repairs:
>-]1 = {R(a1’b1)’R

27

A straightforward generalization of
this example shows that an inconsis-
tent database may have exponentially
many repairs.
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Definition 4.3.°
Let X be a set of integrity constraints,
let g be a query, and let I be a database.
The consistent answers of qonIw.r.t. X
is the set
CONS(q,,%) =
MN{g(J):/ is a repair of Tw.r.t. }.

The consistent answers are certain
answers, where the possible worlds are
the repairs. Indeed, if X is a set of con-
straints and I is a database, let 7'(I) be
the set of all repairs of I w.r.t. Z. Then
CONS(q,1,%) = CERTAIN(q, 7/ ().

Let us revisit the preceding Example
4.2, where we have:

2 ={VxVyVz((R(x,y) A
R(x,2) = y=2)}
I={R(a1,b1),R(al,b?2),

R(a2,b1),R(a2,b2)}

» If q(x) is the query 3yR(x,y), then
CONS(q,,%)={a,a,}.

» If g(x) is the query JzR(z,x), then
CONS(¢,1,%) = @.

Let X be asetof integrity constraints
and let g be a Boolean query. CERTAIN-
TY(g,X) is the following decision prob-
lem: Given a database I, is CONS(q, 1, X)
true? (In other words, is g true on every
repair of I?) We will examine the com-
plexity of CERTAINTY(q,X) in a basic
setting, namely, when ¢ is a Boolean
conjunctive query and X is a set of key
constraints with one key per relation.

We first observe that in this setting
the repair-checking problem w.r.t. X is
in P, where this problem asks: given
two databases I and J, is J a repair of I
w.r.t. X? From this observation and the
relevant definitions, it follows that if &
is a set of key constraints with one key
constraint per relation and q is a Bool-
ean conjunctive query, then CERTAIN-
TY(q,X)is in coNP.

Let X be the following set of con-
straints asserting that the binary rela-
tions R and S have their first attribute
as key:

Y ={R(u,v) AR(u,w) - v=w,

S(u,v) A S(u,w) — v=w}.

Consider the following two Boolean
queries:

> g, is the path query

Ax,y,z(R(x,y) A S(¥,2))-
> g, is the sink query

3x,,2(R(x,Y) A 8(z,))-
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The question now arises: what can
we say about the computational com-
plexity of CERTAINTY(¢,%), i = 1,2?
Fuxman and Miller"” showed that CER-
TAINTY(q,,X) is in P, whereas CER-
TAINTY( g,,%) is coNP-complete.

Let's explain why CERTAINTY(q ,X)
is in P. In fact, a stronger result holds:
CERTAINTY(q,,X) is FO-rewritable,
which means that there is a first-order
definable query ¢" such that for every
database I, we have CONS(q,,I,X) is
true if and only if ¢"(1) is true.

Concretely, it is easy to verify that g
is the query

q" = 3x,9,2R(x,y) A S(,2) A
VY (R(x,y) — 3Z8(y,2))).

From a complexity standpoint, FO-
rewritability is the most desirable out-
come: we can compute the consistent
answers by directly evaluating a FO-
query on the inconsistent database.
Furthermore, FO-rewritability implies
that CERTAINTY(q,,X) isinP.

We show CERTAINTY(g,,X) is
coNP-complete via a polynomial-time
reduction from the (complement of)
MONOTONE SAT, which is the restric-
tion of SAT to monotone formulas, that
is, to Boolean formulas in conjunctive
normal form such that each clause
(conjunct) of the formulas is either
a disjunction of variables (positive
clause) or a disjunction of negated vari-
ables (negative clause).

Given a monotone formula ¢, con-
struct a database I with relations R and
S: if ¢ is a positive clause and the vari-
able v occurs in ¢, then put (c,v) in R;
if ¢ is a negative clause and v occurs in
¢, then put (c,v) in S. It is now easy to
verify that ¢ is satisfiable if and only if
CONS(q,,1,X) is false (that is, there is a
repairjof I such that g(J)is false). Thus,
CERTAINTY( g,,%) is coNP-complete.

Next, consider the following Bool-
ean query:

> g, is the cycle query

Ax, Y(R(x,y) A S(, X))

Wijsen®® showed that the problem
CERTAINTY( g,,%) is in P, but it is not
FO-rewritable. Thus, FO-rewritability
is not the only way in which the con-
sistent answers of a query can be trac-
table.

In summary, we have seen that the
following statements are true.

» CERTAINTY(¢,,%) isin P;

in fact, it is FO-rewritable.
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» CERTAINTY(¢,,X) isinP,

but it is not FO-rewritable.

» CERTAINTY( q,,X) is

coNP-complete.

The trifurcation in the complexity
of CERTAINTY(q,,X), for i=1,2,3, is
not an isolated phenomenon, but an
instance of a deeper result, depicted
in Figure 4, about conjunctive que-
ries without selfjoins. In that result,
the boundaries of the trichotomy are
delineated with the help of a graph,
called the attack graph, which is as-
sociated with X and q. This graph has
two types of edges, regular edges and
strong edges. If the attack graph is
acyclic, then CERTAINTY(q,X) is FO-
rewritable. If the attack graph is cyclic,
but no cycle contains a strong edge,
then CERTAINTY(q,X) is in P but it is
not FO-rewritable. Finally, if the attack
graph has a cycle containing at least
one strong edge, then CERTAINTY
(g,%)is coNP-complete.

The Koutris-Wijsen Dichotomy
Theorem vastly generalizes several
different earlier dichotomy results, in-
cluding the one in* that classifies the
queries that consist of two atoms over
two distinct relations. Classifying of
the complexity of CERTAINTY(q, X) for
arbitrary Boolean conjunctive queries
(including those with selfjoins) re-
mains an open problem.

For further reading about incon-
sistent databases and consistent an-
swers, see the monograph.?

Probabilistic Databases

A probabilistic database is a probabil-
ity space over possible worlds (that is,
ordinary databases). Restricting to the
discrete case, which is the most com-
monly studied, we formally define a
probabilistic database over a schema
S as a pair (2,p) where & is a count-
able set of databases over S, and is,
Zjeg,p(]) = 1. The conventional seman-
tics of query evaluation over a probabi-
listic database asks for the marginal
probability of every answer. For a Bool-
ean query, this amounts to computing
the probability that the query is true
on a random possible world. Formally,
the task is to compute the probability
Prlq] that JE g when J is drawn ran-
domly from (2, p):

Prlgl: = ) ()

JeZ,JFq
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As conventional in probabilistic
modeling, we seek compact represen-
tations of probabilistic databases,
where a finite object represents many
possible worlds (for example, exponen-
tial number w.r.t. the size of the repre-
sentation itself). Such representations
rely on assumptions of probabilistic
independence that, in turn, allow for
factorization. The most studied repre-
sentation is the Tuple-Independent Da-
tabase (TID)" (with roots in prior work,
for example, Gradel et al."?). A TID is
represented as an ordinary database
where each fact is associated with a
probability of existence. Then, a pos-
sible world is a subset of the database
and it is randomly drawn by indepen-
dently considering each tuple and de-
ciding whether or not it is valid. More
formally, a TID over a schema S is rep-
resented as a pair (/,m) where I is a da-
tabase over S and m:I — [0,1] assigns
a probability to each fact. The pair
(Z,mm) represents the probabilistic data-
base (2, p) where & consists of all the
subsets of I and

p:=1a < Ha-= ().
JeI fety

The computational complexity of
query evaluation over TIDs has been
scrutinized by the database community
over the past two decades. As we shall
see next, the probability of a query can
be #P-hard even for very simple join que-
ries. Past results have established thor-
ough classifications of query classes into
tractable and intractable, in either the
exact or approximate sense. In this part,
we explain the first dichotomy found for
TIDs" that considers the class of con-
junctive queries without self-joins. We
refer to it as the Little Dichotomy Theorem
as it was later generalized to the broader
class of all union of conjunctive queries
(or, equivalently, the class of queries that
can be phrased using the positive opera-
tors of the relational algebra).'?

Before we give the dichoto-
my, let us illustrate it. For the
positive side, let g, be the query
Ix3y(R(x) A S(x,y). Given the in-
put TID (I,z), we compute Pr[g] as fol-
lows. First, write g, as the expression
3x(R(x) A 3yS(x,y)). Then, using tuple-
independence, the computation can
be done as in Figure 5.

The last expression has size O(n?),
where n = |dom(7)].



An example of an intractable query
is Ix3Y(R(x) A S(x,y) A T(y)), which we
denote by g,. We will show that Pr[g,]
is #P-complete through a reduc-
tion from a well known #P-complete
problem.

A positive partitioned 2DNF for-
mula (PP2DNF) is a DNF-formula of
the form (xl. /\y,) VoV (xl, /\yj),

1 1 f o
where the x;’s and the y’s form disjoint
sets of variables. Counting the satis-
fying assignments of a PP2DNF for-
mula known to be #P-complete.* We
can visualize a PP2DNF as a bipartite
graph, where the left and right sides
consist of the x and y variables, respec-
tively, and the edges correspond to the
clauses. As an example, the graph of
Figure 6a corresponds to the formula
(xl /\yl) v (xl Ayz) v (xz Ayl)' If we
view a truth assignment to the vari-
ables as stating whether a vertex is
present or not, then a satisfying assign-
ment corresponds to a non-indepen-
dent set, that is, a set of vertices with at
least one edge. Hence, the number of
satisfying assignments is 2" — M where
n is the number of variables and M is
the number of independent sets. Also,
every bipartite graph represents some
PP2DNF formula in this way. Thus,
counting the satisfying assignments
of a PP2DNF formula is the same as
counting the independent sets of a bi-
partite graph.

Dalvi and Suciu' showed that this
problem can be simulated as the evalu-
ation of g, over a TID, as we illustrate
in Figure 6a. Let (I, 7) be the TID shown
in Figure 6b. There is a one-to-one cor-
respondence between truth assign-
ments for ¢ and possible worlds for
(I, 7). 1t is easy to verify #¢ = 2"Pr|q ]|
where 7 is the number of variables of
¢. Hence, we reduce #PP2DNF to Pr[q |.

The queries g, and g, are examples
of hierarchical and non-hierarchical
queries, respectively. As it turns out,
the property of being hierarchical
characterizes tractability. A conjunc-
tive query g without selfjoins is hier-
archical if for every two variables x and
y of g, either at(x) C at(y), or at(y) C
at(x), or at(x) N at(y) = @, where at(z) is
the set of all atoms of g where zappears.

For example, our query g,, namely
Ix3AY(R(x) A S(x,y)), is hierarchical,
since at(y) C at(x). Query g,, namely
Ix3AP(R(x) A S(x,y) A T(y)), is not hier-
archical since at(x) C at(y), at(y) Cat(x),

research

Figure 4. Trichotomy in the complexity of consistent query answering over conjunctives

queries without self-joins.?”

Theorem 4.4. If X is a set of key constraints with one key per relation and g is a Boolean
self-join free conjunctive query, then one of the following statements holds:

» Certainty(q, X) is FO-rewritable (hence, it is in P).

» Certainty(q, X) is in P, but it is not FO-rewritable.

» Certainty(q, ) is coNP-complete.

Moreover, this trichotomy is effective: there is an algorithm for deciding, given £ and ¢,

which of the three cases holds.

Figure 5. Computation example.

Prig,| =

and yet, at(x) and at(y) have a common
member, namely S(x, y).

Figure 7 depicts the formal theorem
that we refer to as the “little dichotomy
theorem,” stating that being hierarchi-
cal characterizes being tractable (un-
der standard complexity assumptions)
as far as conjunctive queries without
selfjoins are concerned.

For further reading about probabi-
listic databases, we refer the reader to
the monograph.**

Election Databases

Social choice theory is concerned with
the aggregation of individual prefer-
ences into a collective outcome. Elec-
tion databases form a framework that
infuses social choice theory with rela-
tional database context. An election da-
tabase may contain information about
individual candidates (for example, age,
education, wealth), voters (for example,
age, occupation, affiliation), positions
of candidates on various issues, and
preferences of voters. This framework
supports the formulation of sophisti-
cated queries that go well beyond ask-
ing who the winners in some election
are, which is the traditional focus of
social choice theory. Ideally, each voter
casts a complete preference, which is
formalized as a total order of the candi-
dates that the voter has to rank. It is of-
ten the case, however, that some voters
can only cast incomplete preferences,
which are formalized as partial orders

1- H (1 = Pr[R@ A 3yS(a,y)])
aedom(l)
1- 1-
aeg\[l](
1= I1 (1-nan- (1- T (1 -nista b))
a€dom(n) bedom(1)

PriR(a)] - Pr[3yS(a,y)])

of the candidates. Each such partial or-
der represents the possible total rank-
ings of the candidates by a voter, and
different total rankings may produce
different election outcomes. This con-
stitutes a different mechanism for de-
fining possible worlds.

To present a more rigorous treat-
ment, we first recall the basic termi-
nology of voting theory in computa-
tional social choice; for additional
background, we refer the reader to the
Handbook of Computational Social
Choice®Let C = {c,,...,c, } be a set of
candidates, and letV = {v ,...,v } bea
set of voters. A complete voting profile
is a tuple T = (T,,...,T,), where each
T, is a total order over C, representing
the ranking (preference) of voter v, of
the candidates in C. A voting rule r is
a function that maps every complete
profile T into a set #'(r,T) C C of win-
ners. We say that a candidate c is a win-
nerifc € W (r,T).

We focus on the class of positional
scoring rules, which is arguably the
most extensively studied class of voting
rules in computational social choice.
A positional scoring rule r maps every
number m of candidates to a scoring
vector (r(m,1),--- ,r(m,m)) of natural
numbers where r(m,1) > r(m,2)...>
r(m,m). Here, r(m,j) is the score that
a candidate is awarded when posi-
tioned jth by a voter. The score s(T,¢)
of a candidate ¢ on the order T, of the
voter v, is r(m, ), where j is the position
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Figure 6. (a) Representation of (x1 A y1) V (X1 A ¥2) V (X2 A y1) as a bipartite graph. (b) The TID

for the bipartite graph.

(a)

of candidate ¢ in T.. When r is applied
toT = (T,..,T,), it assigns to each
candidate ¢ the sum )" s(7T,c) as the
score of c. A candidate is a winner if her
score is greater or equal to the score
of every candidate. Popular positional
scoring rules include the plurality rule
(1,0,---,0) where the winners are the
candidates most frequently ranked
first, the veto rule (1, ---,1,0) where the
winners are the candidates least fre-
quently ranked last, and the Borda rule
(m-1,m-2,---,0),where the score of a
candidate is the position itself minus 1
in reverse order.

To avoid trivialities, we assume
that every r(-,m) contains at least
two different score values, that is,
r(m,1) > r(m,m). We also assume that
the scores in r( - ,m) are co-prime (that
is, their biggest common divisor is
1), since multiplying all scores by the
same number has no impact on the
outcome. Rule ris pureif foreverym > 2
, the scoring vector r( - ,m) is obtained
from r(-,m-1) by inserting a score
value at some position. For example,
essentially all specific rules studied in
the literature (for example, plurality,
veto and Borda) are pure.

A partial voting profile is a tuple
P=(P,..,P ), where each P, is a par-
tial order over the set C of candidates,
representing a partially known pref-
erence of the voter v.. A completion of
P=(P,..,P) is a complete voting

n

profile T=(T,...,T,) such that each

Figure 7. The little dichotomy theorem for

probabilistic query answering.

Theorem 5.1 (The Little Dichotomy
Theorem). Let g be a Boolean self-join
free conjunctive query.
» If q is hierarchical, then Pr[q] is in P.
» If q is not hierarchical, then Pr[q]
is #P-complete.

X Y T T|Y T
Xy Y1 1 y; | 0.5
0.5 x| » 1 v, | 0.5
X2 N 1
(b)

T, is a completion of P, that is, a total
order that completes the partial order
P. A candidate ¢ is a necessary winner
if c € ' (r,T) for all completions T.>
(We later discuss the analogous notion
of a possible winner.)

An election database consists of a
partial voting profile, along with a da-
tabase I that has contextual informa-
tion about the candidates. Formally,
it is a tuple (Z,C,P,r) that represents a
set of possible worlds, where each pos-
sible world is a completion of I. In turn,
a completion of I is obtained by taking
a completion T of P, and adding to I a
new unary relation WINNER that has
the fact WINNER(c) for each winner
¢ € %(r,T).Inparticular, the possible
worlds are identical, except for the con-
tent of the WINNER relation that de-
pends on the underlying completion of
P. ABoolean query q is necessaryifJ F q
for all completions J of I. (Note that
“necessary” is the adaptation of the
term “certain” to the election setting.)

As an example, let ¢ be a candidate
and g be the query WINNER(c). Then g
is necessary if and only if ¢ is a neces-
sary winner. As another example, let
q' be the query Ix[WINNER(x) A R(x)]
where R can be thought of as represent-
ing a party of candidates. Necessity of g’
means that there is necessarily a winner
from R. Note that it may be the case that
gisnecessaryevenifnocandidateinRis
anecessarywinner, and even if there are
no necessary winners at all.

We now discuss the problem of de-
ciding the necessity of a Boolean con-
junctive query g under a positional
scoring rule r. This problem has two
parameters, g and r, and the input con-
sists of a candidate set C, a partial pro-
file P, and a database I.

An immediate observation is that
the necessity problem is in coNP. Let
us consider several examples of trac-
tability and hardness. The simplest
example is the query Jx[WINNER(x)]
asking whether there exists a winner.
By definition, there is always one or
more winners, so this query is neces-
sary on every election database (and
the problem is trivially solvable in con-
stant time). More interesting examples
are the conjunctive queries depicted in
Figure 8, namely,

3x,, -+, X, [WINNER(x,) A - A
WINNER(x,) AR(x,,-,x,)]

for different k > 1, asking whether
there are k winners who participate in
the k-ary relation R. In the remainder
of this section, we discuss the proofs of
the complexity results in Figure 8.

We begin with k =1. In the case of
plurality and veto, the polynomial-time
algorithmis based on a polygamous ver-
sion of the perfectmatching problem,
where each vertex of one side should be
matched with a number of neighbors
from the other side, and this number is
from an interval associated to the ver-
tex. Hardness for the remaining pure
rules is via a reduction from the prob-
lem of the possible unique winner: given
apartial profile Pand a member c of the
set C of candidates, is there any comple-
tion where c is the single winner? In-
deed, the complexity of this problem ex-
hibits a classification analogous to the
theorem: it is solvable in polynomial
time under plurality and veto, yet NP-
hard for every other pure rule.®

Figure 8. Complexity of the necessity for different combinations of queries and voting

rules.??

Theorem 6.1. For every natural number k, let q, be the query

Ixy, ..y X [Winner(x;) A -+ A Winner(x,) A R (x,
co-winners who jointly participate in the relation R.

» For k =1, the necessity of g, is:

..... x,)] asking whether there is a sequence of

- solvable in polynomial time, if r is plurality or veto;

— coNP-complete, if r is any other pure rule.

» For k > 1, the possibility of g, is coNP-complete for every positional scoring rule.
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) For k=2, hardness
for plurality and veto is
proved via the maximum
independent set prob-
lem, and hardness for
any other pure rule is
via a reduction from k =1. Hardness
for k> 2 can be easily established via
a reduction from k = 2. Interestingly,
Kimelfeld et al.>> used a more complex
reduction (from DNF tautology) that
applies to all positional scoring rules,
pure or not; hence, for k > 2 the neces-
sity problem is coNP-complete for ev-
ery such rule.

We conclude this section with sev-
eral comments. First, in the case of the
plurality rule, a dichotomy in the com-
plexity has been establish for a large
fragment of conjunctive queries.* Sec-
ond, the necessity problem becomes
tractable if we assume that the number
of candidates is small. In particular,
the problem is fixed-parameter trac-
table with respect to the parameter |C|
for every polynomial-time query.*

An online
appendix is

available at
https://dl.acm.
org/doi/10.1145/
3624717

Conclusion
The possible world semantics is a natu-
ral and principled approach to coping
with deficiencies in data. We discussed
the versatility of this approach in such
deficiencies as missing information
(null values), under-specified transfor-
mations (data exchange), violation of
integrity constraints (inconsistent da-
tabases), and quantified uncertainty
(probabilistic databases). When possi-
ble world semantics is adopted, query
evaluation entails the aggregation of
the results of the query over the pos-
sible worlds. The intersection of the
results (certain/consistent answers)
amounts to logical inference—these
are the answers that are derived from
the deficient data. Summation in prob-
abilistic databases amounts to proba-
bilistic inference—each answer is as-
signed its marginal probability. Other
aggregation mechanisms have also
been investigated. We touched on the
union (possible answers) in passing,
but did not cover the range semantics
for queries with numerical operators,
such as COUNT and SUM.® There is
also work on combinations of settings
discussed here; relevant references are
given in the online appendix.

The adoption of the possible world
semantics increases the computation-

al complexity since the number of pos-
sible worlds can be prohibitively large.
Indeed, computational hardness al-
ready arises for frequently asked que-
ries, such as conjunctive queries; we
discussed several dichotomy theorems
that strive to delineate the boundary
between tractability and intractability
for queries in a class. In practice, how-
ever, hard problems are often attacked
by general-purpose tools, such as inte-
ger linear programming, SAT solvers,
and answer-set programming, as done
in consistent query answering,"*** vari-
ants of consistent query answering®3°,
and probabilistic databases.!®

Beyond data management, the pos-

sible world semantics provides a natu-
ral approach to incorporating contex-
tual data in the study of other settings
that involve deficiencies. As a case in
point, we illustrated this idea by dis-
cussing the framework of election da-
tabases. We believe the versatility of
the possible world semantics can have
significant applications in a plethora
of other fields.
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