
 key insights
	˽ Possible world semantics give meaning to 

queries over incomplete, inconsistent, or 
uncertain databases. Such databases are 
viewed as compact representations of all 
their possible rectifications; the “certain 
answers” are the query answers that hold 
true in every possible rectification. 

	˽ Queries that are computationally 
tractable under standard database 
semantics may become intractable under 
possible world semantics. In many cases, 
the tools of computational complexity 
can be applied to delineate the boundary 
between tractability and intractability.

	˽ Election databases form a new setting 
for the framework of possible worlds. 
This setting brings social choice theory 
and relational databases together 
and supports reasoning about elections 
with partial voter preferences and 
with contextual information about the 
candidates.

DATA B A SE S A R E OF T EN assumed to have definite 
content. The reality, though, is the database at 
hand may be deficient due to missing, invalid, or 
uncertain information. As a simple illustration, the 
primary address of a person may be missing, or it may 
conflict with another primary address, or it may be 
improbable given the presence of nearby businesses. 
A common practice to address this challenge is to 
rectify the database by fixing the gaps, as done in data 
imputation, entity resolution, and data cleaning.  
The process of rectifying the database, however, 

may involve arbitrary choices due to 
computational limitations, such as er-
rors in statistical or machine-learning 
models, or mere lack of information 
that even humans cannot cope with 
in full confidence. In turn, answers 
to queries over the deficient database 
may depend on the choices made to 
rectify it; thus, the answers to queries 
may vary from one choice to choice, 
even though both choices may be 
equally legitimate.

In the pursuit of principled solu-
tions, there has been a continuous 
research effort to develop fundamen-
tal approaches for handling database 
deficiency with no (or with less) arbi-
trariness. The purpose of this review 
article is to highlight some of the ways 
in which the possible world semantics 
has been deployed as a principled ap-
proach to overcome database defi-
ciency in different contexts. In this 
approach, we acknowledge that we 
need to rectify the deficiency: fill in 
missing information, delete wrong 
records (hereafter tuples or facts), cor-
rect erroneous values, and so on. Yet, 
since many rectifications may exist 
and since we do not know which is the 
correct one, we do not commit to a spe-
cific one. Instead, we view our deficient 
database as a representation of the re-
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sults of all conceivable rectifications, 
each such rectification giving rise to 
a legitimate candidate of a valid data-
base that we call a possible world.

Since the possible worlds differ from 
each other, a query may produce differ-
ent collections of answers (which are 
also tuples) when applied to different 
possible worlds. Therefore, query an-
swering requires the use of an aggre-
gation method to combine the query 
results over the possible worlds. The 
intersection of all possible results is the 
prototypical example of such an ag-
gregation method. In this context, the 
tuples in the intersection are called the 
“certain answers” because they are ob-
tained in every possible world, regard-
less of what rectification has led to it. 
Intersection is the most studied aggre-
gation method because of its intuitive 
meaning: it extracts the answers for 
which validity is not affected by the da-
tabase anomaly. For example, if we have 
uncertainty regarding the apartment 
number of a person ​x​, we can still be cer-
tain about ​x​ living in Paris in the same 
apartment as ​y​. Intersection is the main, 
but not the only, aggregation method 

discussed in this survey. The union is a 
different type of aggregation, where we 
are interested in the “possible answers,” 
that is, the answers that are obtained in 
at least one possible world. Probabilistic 
variants of the possible world semantics 
have also been studied in depth; here, 
each rectification has a probability (that 
can be determined from the database 
content), and then the aggregation is 
done by marginal inference: to each tu-
ple, we associate the probability that it is 
an answer when the query is applied to a 
random possible world.

It is often the case that the original 
(deficient) database constitutes a com-
pact representation of the set of possi-
ble worlds, and that this set is infeasi-
ble to materialize or store; for example, 
the number of possible worlds can be 
exponential in the size of the represen-
tation or even infinite. Consequently, 
finding the certain answers to que-
ries poses a significant computational 
challenge because an efficient aggre-
gation of the answers over all possible 
worlds has to be performed without 
actually accessing each possible world, 
but by directly processing the compact 

deficient database. Such processing 
might be attainable for some queries 
but unattainable for others, and in 
such cases we would like to distinguish 
between queries with tractable and in-
tractable certain answers. The distinc-
tion is often achieved via dichotomy 
theorems that classify the complexity 
of the certain answers of every query in 
some large family of queries.

We will illustrate the possible-world 
semantics in four different settings. 
While not exhaustive, these four set-
tings represent substantially differ-
ent mechanisms for forming possible 
worlds. In the setting of data exchange, 
logical inference rules are used to form 
the possible worlds: we have a database 
under one schema that has to be trans-
formed into a database under a differ-
ent schema, and the possible worlds 
are the candidate solutions accord-
ing to rule-based constraints specify-
ing the relationship between the two 
schemas. In the setting of inconsistent 
databases, minimal intervention is 
used to form the possible worlds: we 
have a database that violates integrity 
constraints, and the possible worlds 

MARCH 2024  |   VOL.  67  |   NO.  3  |   COMMUNICATIONS OF THE ACM     75

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

, 
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K



research

are the different ways to repair the in-
consistent database. In the setting of 
probabilistic databases, we have a rep-
resentation of a probability distribu-
tion over the collection of all databas-
es. Here we focus on the most studied 
model, the tuple-independent databas-
es: each record has a confidence value 
that is interpreted as a probability, and 
different records are probabilistically 
independent. Finally, in the setting 
of election databases, completions of 
partial orders are used to form pos-
sible worlds: we have ordinary data-
bases that describe information about 
voters, candidates, and winners in 
elections, but only partial knowledge 
about voter preferences is known, thus 
there is uncertainty about who the 
winning candidates are. Note that the 
framework of election databases aug-
ments computational social choice 
with relational database context. In 
particular, it generalizes the necessary 
winners and the possible winners prob-
lems studied by researchers in compu-
tational social choice, because we can 
now ask for the certainty or possibility 
of properties of the winners (for exam-
ple, their partisan affiliation or posi-
tion on some issue) and not just their 
mere identity (for example, whether 
candidate ​a​ or candidate ​b​ is a winner).

In each setting considered here, we 
use the lens of computational complex-
ity to highlight the algorithmic aspects 
of aggregating the answers to conjunc-
tive queries, an extensively studied 
class of queries that form the core of 
most relational database queries.

An online appendix (available at 
https://dl.acm.org/doi/10.1145/3624717) 
contains additional discussion about 
topics not covered in this article and an 
expanded list of references.

Basic Notions
Relational databases and queries. We 
start with some terminology from 
relational databases. A schema ​S​ is a 
collection of relation symbols ​R​, each 
with an associated arity (number of 
columns). A database over the schema ​
S​, also called an instance of ​S​ (or just an 
instance if ​S​ is clear from the context), 
associates with each relation symbol ​
R​ a finite relation ​r​ with the same ar-
ity as ​R​. We identify an instance ​I​ with 
its finite set of facts ​​R​(​​ ​c​ 1​​, ⋯ , ​c​ k​​​)​​​​, where 
each such fact asserts that the tuple  

​​​(​​ ​c​ 1​​, ⋯ , ​c​ k​​​)​​​​ belongs to the relation ​r​ of ​
I​ associated symbol ​R​. In this case, we 
say that ​​R​(​​ ​c​ 1​​, ⋯ , ​c​ k​​​)​​​​ is an ​R​-fact of ​I​. We 
write ​J  ⊆  I​ to denote that for every re-
lation symbol ​R​, every ​R​-fact of ​J​ is also 
an ​R​-fact of ​I​. We also view a database 
as a finite relational structure in the 
sense of mathematical logic (for exam-
ple, see Abiteboul et al.1).

A ​k​-ary query ​q​ over a schema ​S​ maps 
every instance ​I​ of ​S​ into a ​k​-relation  
​​q​(​​I​)​​​​. Every tuple of ​​q​(​​I​)​​​​ is referred to as 
an answer. As a special case, a query 
of arity zero is viewed as a Boolean 
query that is either true (has the emp-
ty tuple as an answer) or false (has no 
answers) on the given instance ​I​. In 
logical terms, a Boolean query is sim-
ply a Boolean statement (true or false) 
about the database. When analyzing a 
query, we typically ignore the database 
schema and, without loss of general-
ity, assume that it consists of the rela-
tion symbols that are mentioned in the 
query formulation.

We will focus on the class of conjunc-
tive queries, also known as select-proj-
ect-join queries. They are at the core of 
the most frequently asked queries on 
relational databases, and are directly 
supported by SQL. For example, con-
sider the schema with the binary rela-
tions ​​Country​(​​id, name​)​​​​ and ​​Borders 
​(​​id1, id2​)​​​​, and consider also the follow-
ing query that finds the neighboring 
countries of France:

SELECT B.id2
FROM Country C, Borders B
WHERE �C.id = B.id1 and  

C.name = "France"

This query is expressed as a con-
junctive query using the formula

​​∃ y ​[​​Country​( ​​y, 'France'​)​​ ∧ 
        Borders​( ​​y, x​)​​​]​​​​  (1)

More generally, a conjunctive query 
is a logical formula of the form

​​∃ y​[​​ ​ϕ​ 1​​​​(​​x, y​)​​​ ∧ ⋯ ∧ ​ϕ​ k​​​​(​​x, y​)​​​​]​​​​

where ​x​ is a sequence of free variables, 
disjoint from ​y​ (the sequence of existen-
tially quantified variables), and each 
​​ϕ​ i ​​​​(​​x, y​)​​​​ is an relational atom, that is, 
an expression of the form ​​R​(​​ ​τ​ 1​​, ⋯ , ​τ​ k​​​)​​​​ 
where ​R​ is a ​k​-ary relation symbol and 
each ​​τ​ j​​​ is either a constant or a variable 
from ​x​ or ​y​. We refer to each ​​ϕ​ i ​​​​(​​x, y​)​​​​ as 
an atom of the query. Semantically, an 
answer is a tuple ​a​ that makes the for-

mula true when assigned to ​x​. We also 
assume that every variable in ​x​ occurs 
in at least one atom—this is a standard 
safety assumption. A Boolean conjunc-
tive query has no free variables, hence 
it has the form ​​∃ y​[​​​ϕ​ 1​​​​(​​y​)​​​ ∧ ⋯ ∧ ​ϕ​ k​​​​(​​y​)​​​​]​​​​.  
A conjunctive query has a self-join if 
two different atoms use the same rela-
tion symbol ​R​. For example, the query 
of Equation (1) has no self-joins, but it 
would if the atom ​​Country​(​​x, ​x ′ ​​)​​​​ is add-
ed for retrieving the id’s and the names 
of the returned countries. Some of the 
results will require the assumption 
that the considered queries have no 
self-joins.

Possible worlds and certain an-
swers. The standard query evaluation 
problem involves a query ​q​ and an in-
stance ​I​, and the problem is to compute 
the answer ​​q​(​​I​)​​​​ of ​q​ on ​I​. We explore set-
tings where query evaluation involves 
a query and a collection of databases, 
instead of a single database. These da-
tabases can be thought of as possible 
worlds on which a query can be evalu-
ated. What is the semantics of a query 
posed on different worlds? Clearly, we 
need a notion that provides a method 
for aggregating the answers obtained 
on each possible world. The certain an-
swers is the most extensively studied 
such notion, where intersection is used 
as the aggregation method.

Definition 2.1.
Let ​q​ be a ​k​-ary query and let ​𝒲​ be a 
collection of databases. The certain an-
swers of ​q​ on ​𝒲​ is the set

​CERTAIN​​(​​q, 𝒲​)​​​ = ​ ⋂ 
J∈𝒲

​​​ q​​( ​​J​)​​​ = 

​​{​​a : a ∈ q​​( ​​J​)​​​, for every J in 𝒲​}​​​.​

We will discuss the cost of computing 
the certain answers. On the face of 
their definition, computing the certain 
answers requires evaluating the query 
on each possible world. This may be a 
formidable task because the number 
of possible worlds can be very large or 
even infinite. In several different set-
tings, however, the collection ​𝒲​ of the 
possible worlds admits a compact rep-
resentation ​ℛ​. This suggests a differ-
ent approach: compute the certain an-
swers of a query on ​𝒲​ by working with 
the compact representation ​ℛ​, instead 
of examining each possible world in ​𝒲​.

We assume familiarity with basic 
notions in complexity theory, such as 
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not adopt the certain-answer seman-
tics, but rather the semantics of three-
valued logic, where every comparison 
to a null value results in "unknown" 
rather than "true" or "false." There has 
been a large body of work, such as Lib-
kin’s,28 in which the SQL semantics are 
compared and contrasted with the cer-
tain-answer semantics.

The preceding uses of nulls have 
been extensively studied, and we will 
not focus on these here. Instead, we 
will focus on the use of labeled nulls in 
data exchange, which is the problem of 
transforming data structured under a 
source schema ​S​ into data structured 
under a different target schema ​T​. To be 
able to generate meaningful solutions 
to the data exchange problem, we may 
need to invent new values that are not 
in the source database; this is achieved 
by using labeled nulls that mark en-
tries as invented values, instead of ac-
tual known values. Still, there might 
be many different solutions, and we 
view each solution as a possible world. 
In particular and unlike the possible 
worlds in the framework of Imielinski 
and Lipski, each possible world may in-
clude labeled nulls (that are treated as 
ordinary values by database queries).

Data exchange is formalized us-
ing schema mappings, that is, triples 
of the form ​​ℳ  = ​ (​​S, T, Σ​)​​​​, where ​Σ​ is a 
set of constraints that specify the data 
transformation from ​S​ to ​T​.14 If ​I​ is a 
source instance, then a solution for ​I​ 
with respect to ​ℳ​ is a target instance ​
J​ such that the pair ​​​(​​I, J​)​​​​ satisfies the 
constraints in ​Σ​. The active domain of ​
I​ consists entirely of constants, while 
the active domain of ​J​ may contain 
both constants and labeled nulls. If 

the complexity classes P, NP, coNP, and 
#P, and the meaning of hardness and 
completeness for complexity classes.18 
We follow the convention of analyzing 
database problems in terms of their 
data complexity, which means that the 
input consists of the instance ​I​ while 
everything else, such as the schema 
and the query, are fixed.35 In particu-
lar, when we analyze computational 
problems associated with queries, 
each query gives rise to a separate com-
putational problem, and this problem 
might be tractable for one query and 
intractable for another query.

Nulls and Data Exchange
In many settings, the possible worlds 
under consideration involve the use of 
null values that, intuitively, are place-
holders for missing values. Database 
systems supported null values from 
the very beginning. Moreover, the pio-
neering work of Imielinski and Lipski20 
gave semantics to null values by means 
of possible worlds. Their framework in-
troduced the concept of marked nulls, 
later called labeled nulls, that behave 
like variables: two occurrences of the 
same labeled null represent the same 
missing value, while distinct labeled 
nulls represent missing values that 
may be different or equal.

We will use the symbols ​​N​ 1​​, ​N​ 2​​, ...​ 
to denote labeled nulls. An incomplete 
database ​I​ is a collection of relations 
 ​​R ​ 1​ I ​, ... , ​R​ k​ I  ​​ such that each tuple ​​​(​​ ​a​ 1​​, ... , ​a​ n​​​)​​​​  
in each relation ​​R​ i​ 

I​​ of ​I​ consists of con-
stants and labeled nulls, that is, each ​​a​ j​​​ 
is a constant or a labeled null. Let ​​𝒲​(​​I​)​​​​  
be the collection of all databases ob-
tained from ​I​ by replacing each labeled 
null by some constant. Therefore, the 
incomplete database ​I​ is a compact 
representation of the possible worlds 
in ​​𝒲​(​​I​)​​​​. In this scenario, it is not hard 
to prove that the certain answers of a 
conjunctive query on ​​𝒲​(​​I​)​​​​ can be com-
puted by evaluating the query directly 
on the compact representation ​I​, where 
each labeled null in ​I​ is treated as a dis-
tinct actual value (constant). More pre-
cisely, ​CERTAIN​​(​​q, 𝒲​​(​​I​)​​​​)​​​ = q ​​(​​I​)​​​ ​↓​​​​​, where ​
q ​​(​​I​)​​​ ​↓​​​​​ is the set of of all null-free tuples 
of ​​q​(​​I​)​​​​. For more details, Abiteboul et al.1

In the SQL standard, nulls are not 
labeled, that is, there is a single null 
each occurrence of which should be 
viewed as a distinct labeled null. It 
should be noted that SQL queries do 

the schema mapping ​ℳ​ is understood 
from the context, we simply talk about 
a solution for ​I​, instead of a solution for ​
I​ with respect to ​ℳ​.

If ​ℳ​ is a schema mapping and ​I​ is 
a source instance, we write ​​𝒲​(​​ℳ, I​)​​​​ to 
denote the set of all solutions for ​I​. In 
general, the constraints in ​Σ​ may over-
specify or under-specify the data trans-
formation task, hence ​​𝒲​(​​ℳ, I​)​​​​ may be 
the empty set or a non-empty finite set 
or an infinite set. If ​q​ is a query over the 
target schema ​T​, we can consider the 
certain answers of ​q​ on ​​𝒲​(​​ℳ, I​)​​​​, that 
is, the set

​CERTAIN​​(​​q, 𝒲​​(​​ℳ, I​)​​​​)​​​ =​  ⋂ 
J∈𝒲​(​​ℳ,I​)​​

​​​ q​​( ​​J​)​​​.​

The pair ​​​(​​ℳ, I​)​​​​ is a compact repre-
sentation of the space ​​𝒲​(​​ℳ, I​)​​​​ of all so-
lutions for ​I​. Thus, the question arises: 
can this compact representation be 
used to compute the certain answers 
of target queries, and if so, how? As 
shown in,14 there are many natural set-
tings in which the pair ​​​(​​ℳ, I​)​​​​ is used 
to compute a universal solution for ​I​, a 
special type of solution for ​I​ with the 
property that the certain answers of ev-
ery conjunctive query can be obtained 
by directly evaluating the query on the 
universal solution.

By a definition, a universal solution 
for ​I​ is a solution ​J​ for ​I​ such that for 
every solution ​​J ′ ​​ for ​J​, there is a ho-
momorphism ​h​ from ​J​ to ​​J ′ ​​ that is 
the identity on the constants in ​J​. In-
tuitively, a universal solution for ​I​ is a 
“most general" solution for ​I​ because 
it has no more and no less informa-
tion than what is encapsulated in the 
pair ​​​(​​ℳ, I​)​​​​. Universal solutions can  
be used to obtain the certain answers 

Figure 1. Illustration of the certain answers.

Set � of
possible worlds

Query q 

CERTAIN (q, �) = q(J1) ⋂ ⋂ …⋂

…

 q(J2)  q(Jm) 

J1 J2

I

Jm
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allowed in the schema mappings. Fig-
ure 3 summarizes the precise results in 
three parts. Next, we discuss the main 
ideas behind the proofs of each part.

The undecidability results in the first 
part are obtained via a reduction from 
the embedding problem for finite semi-
groups: given a finite partial semigroup, 
can it be extended to a finite semigroup? 
(see Kolaitis et al.24 for the details).

The main tool for the tractability re-
sults in the second part is the chase pro-
cedure, a versatile algorithm originally 
designed to study the implication prob-
lem for database dependencies.2,7,29 In-
tuitively, when an instance is chased 
with a set of tgds and egds, we consider 
all instantiations of variables that sat-
isfy the antecedents of the constraints 
and then generate new facts as needed 
to satisfy the consequents of the con-
straints. For example, if the instance 
consisting of ​​E​(​​1, 2​)​​​​ is chased with the 
tgd ​​∀ x, y​(​​E​(​​x, y​)​​  →  ∃ z​(​​H​(​​x, z​)​​ ∧ H​(​​z, y​)​​​)​​​​, 
then the chase procedure will generate 
a labeled null ​​N​ i​​​ and the facts ​​H​(​​1, ​N​ i​​​)​​​​ 
and ​​H​(​​ ​N​ i​​, 2​)​​​​. With egds, the chase will 
attempt to equate the values of the two 
variables in the consequent of the egd 
by replacing a labeled null by a con-
stant or one labeled null by another, 
but it will fail if it has to equate two dif-
ferent constants.

In general, the chase procedure 
may not terminate. There are, however, 
broad sufficient conditions guarantee-
ing the termination of the chase. In 
particular, if the set of the target tgds in 
the schema mapping considered obeys 
certain structural conditions, such as 
weak acyclicity, then the chase proce-
dure terminates within time bounded 
by a polynomial in the size of the in-
put structure and produces a universal 
solution precisely when a solution ex-

oms with variables from ​x​ and ​y​. These 
formulas are known as tuple-generating 
dependencies (tgds) and constitute one 
of the broadest classes of integrity con-
straints in databases.15 In fact, the for-
mulas that we used to express these data 
transformations belong to a special class 
of tgds called source-to-target tgds (s-t 
tgds), because the atoms in the anteced-
ent ​​ϕ​(​​x​)​​​​ of each tgd are over the source 
schema, while the atoms in the conse-
quent ​​ψ​(​​x, y​)​​​​ are over the target schema.

In what follows, we will consider 
schema mappings ​​ℳ  = ​ (​​S, T, Σ​)​​​​ where ​
Σ​ always contains s-t tgds. In addition, ​
Σ​ may include target tgds and target 
equality-generating dependencies (tar-
get egds). Target tgds are tgds of the 
form ​​∀ x​(​​ϕ​(​​x​)​​  →  ∃ y ψ ​(​​x, y​)​​​)​​​​ in which 
both ​​ϕ​(​​x​)​​​​ and ​​ψ​(​​x, y​)​​​​ are conjunctions 
of atoms over the target schema; tar-
get egds are first-order formulas of the 
form ​​∀ x​(​​ϕ​​(​​x​)​​​  → ​ x​ i​​  = ​ x​ j​​​)​​​​, where ​​ϕ​(​​x​)​​​​ is 
a conjunction of atoms over the target 
schema and ​​x​ i​​, ​x​ j​​​ are two distinct vari-
ables from ​x​. Target tgds and target egds 
are the most extensively studied class of 
integrity constraints over a database 
schema.15 As special cases, they contain 
the functional dependencies and the 
full tgds, which are tgds with no existen-
tial quantifiers in the consequent.

Let ​​ℳ  = ​ (​​S, T, Σ​)​​​​ be a schema map-
ping and let ​q​ be a Boolean target con-
junctive query.

	˲ The existence-of-universal-solu-
tions problem ​​EoU​(​​ℳ​)​​​​ asks: given a 
source instance ​I​, is there a universal 
solution ​J​?

	˲ The certain answers problem ​​CER-
TAINTY​(​​q, ℳ​)​​​​ asks: given a source in-
stance ​I​, is ​​CERTAIN​(​​q, 𝒲​(​​ℳ, I​)​​​)​​​​ true?

The complexity of these two deci-
sion problems exhibits diverse behav-
ior, which depends on the constraints 

of conjunctive target queries. More 
precisely, let ​​ℳ = ​(​​S, T, Σ​)​​​​ be a schema 
mapping, ​I​ a source instance, and  
​q​ a target conjunctive query. If ​J​  
is a universal solution for ​I​, then  
​CERTAIN​​(​​q, 𝒲​​(​​ℳ, I​)​​​​)​​​ = q ​​( ​​J​)​​​ ​↓​​​​​, where ​
q ​​( ​​J​)​​​ ​↓​​​​​ is the set of of all null-free tuples 
of ​​q​( ​​J​)​​​​. The proof follows from the defi-
nitions and the fact that conjunctive 
queries are preserved under homo-
morphisms.

When do universal solutions exist? 
To answer this question, we also need 
to address a different question: what 
are good schema-mapping specifica-
tion languages, that is, languages for 
expressing the constraints used in sche-
ma mappings? Ideally, a good schema-
mapping specification language should 
strike a balance between high expres-
sive power and tame computational 
behavior. From top down, if arbitrary 
first-order formulas are allowed to spec-
ify schema mappings, then it is easy to 
show that there are simple conjunctive 
queries for which computing the cer-
tain answers is an undecidable prob-
lem. From bottom up, let us consider 
some basic data transformation tasks 
that every schema-mapping specifica-
tion language ought to support. In each 
case, we first describe the transforma-
tion and then give a first-order formula 
expressing an example of it.

	˲ Project a column from a source rela-
tion and copy the result to a target rela-
tion; in symbols, ​​∀ x ∀ y​(​​P​(​​x, y​)​​  →  R​(​​x​)​​​)​​​​.

	˲ Decompose a source relation into 
two target relations; in symbols, ​​∀ x, y, z​
(​​P​(​​x, y, z​)​​  →  R​(​​x, y​)​​ ∧ Q​(​​y, z​)​​​)​​​​.

	˲ Add a column to a source relation 
and copy the result to a target relation; 
in symbols, ​​∀ x​(​​P​(​​x​)​​  →  ∃ zR​(​​x, z​)​​​)​​​​.

	˲ Join two source relations and copy 
the result to a target relation; in symbols, ​​
∀ x, y, z​(​​E​(​​x, y​)​​ ∧ F​(​​y, z​)​​  →  H​(​​x, y, z​)​​​)​​​​.

The formulas expressing the pre-
ceding data transformations are 
first-order formulas of the form  
​​∀ x​(​​ϕ​(​​x​)​​  →  ∃ yψ ​(​​x, y​)​​​)​​​​, where ​​ϕ​(​​x​)​​​​ is a 
conjunction of atoms with variables 
from ​x​ and ​​ψ​(​​x, y​)​​​​ is a conjunction of at-

Figure 2. Illustration of a schema mapping.

I J

S T∑

q

Figure 3. Complexity of the existence of universal solutions (EoU) and the certain answers (CE)  
problems for different types of schema mappings.

Theorem 3.1. The following statements are true.
(1) There is a schema mapping ℳ = (S, T, Σ) and a target conjunctive query q such that Σ consists 

of s-t tgds, target tgds and target egds, and EoU(ℳ) and CERTAINTY(q, ℳ) are undecidable.
(2) If ℳ = (S, T, Σ) is a schema mapping such that Σ consists of s-t tgds, full target tgds, and 

target egds, then EoU(ℳ) is solvable in polynomial time. Also, for every target conjunctive 
query q, we have that CERTAINTY(q, ℳ) is solvable in polynomial time.

(3) If ℳ= (S, T, Σ) is a schema mapping such that Σ consists of s-t tgds, then EoU(M) is trivial, 
i.e., every source instance has a universal solution. Also, for every target conjunctive query q, 
we have that CERTAINTY(q, ℳ) is SQL-rewritable; in fact, there is a union q′ of source conjunctive 
queries such that q′(I) = CERTAIN(q, �(ℳ, I)) for every I.
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Definition 4.3.5

Let ​Σ​ be a set of integrity constraints, 
let ​q​ be a query, and let ​I​ be a database. 
The consistent answers of ​q​ on ​I​ w.r.t. ​Σ​ 
is the set

​​CONS​(​​q, I, Σ​)​​  =   
⋂ ​{​​q​( ​​J​)​​ : J is a repair of I w.r.t. Σ​}​​.​​

The consistent answers are certain 
answers, where the possible worlds are 
the repairs. Indeed, if ​Σ​ is a set of con-
straints and ​I​ is a database, let ​​𝒲​(​​I​)​​​​ be 
the set of all repairs of ​I​ w.r.t. ​Σ​. Then ​​
CONS​(​​q, I, Σ​)​​  =  CERTAIN​(​​q, 𝒲​(​​I​)​​​)​​​​.

Let us revisit the preceding Example 
4.2, where we have:

​​Σ =​ ​​{​​ ∀ x ∀ y ∀ z​(​​​(​​R​(​​x, y​)​​ ∧ 
         R​(​​x, z​)​​  →  y = z​)​​​}​​​​    
I =​ ​​{​​R​​(​​ ​a​ 1​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 1​​, ​b​ 2​​​)​​​, 
        R​​(​​ ​a​ 2​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 2​​, ​b​ 2​​​)​​​​}​​​​​

	˲ If ​​q​(​​x​)​​​​ is the query ​​∃ yR​(​​x, y​)​​​​, then ​
CONS​​(​​q, I, Σ​)​​​ = ​​{​​ ​a​ 1​​, ​a​ 2​​​}​​​.​

	˲ If ​​q​(​​x​)​​​​ is the query ​​∃ zR​(​​z, x​)​​​​, then ​​
CONS​(​​q, I, Σ​)​​ = ∅ .​​

Let ​Σ​ be a set of integrity constraints 
and let ​q​ be a Boolean query. ​​CERTAIN-
TY​(​​q, Σ​)​​​​ is the following decision prob-
lem: Given a database ​I​, is ​​CONS​(​​q, I, Σ​)​​​​ 
true? (In other words, is ​q​ true on every 
repair of ​I​?) We will examine the com-
plexity of ​​CERTAINTY​(​​q, Σ​)​​​​ in a basic 
setting, namely, when ​q​ is a Boolean 
conjunctive query and ​Σ​ is a set of key 
constraints with one key per relation.

We first observe that in this setting 
the repair-checking problem w.r.t. ​Σ​ is 
in ​P​, where this problem asks: given 
two databases ​I​ and ​J​, is ​J​ a repair of ​I​ 
w.r.t. ​Σ​? From this observation and the 
relevant definitions, it follows that if ​Σ​ 
is a set of key constraints with one key 
constraint per relation and ​q​ is a Bool-
ean conjunctive query, then ​​CERTAIN-
TY​(​​q, Σ​)​​​​ is in ​coNP​.

Let ​Σ​ be the following set of con-
straints asserting that the binary rela-
tions ​R​ and ​S​ have their first attribute 
as key:

​​Σ = ​{​​R​(​​u, v​)​​ ∧ R​(​​u, w​)​​  →  v = w,  
S​(​​u, v​)​​ ∧ S​(​​u, w​)​​  →  v = w​}​​.​​

Consider the following two Boolean 
queries:

• �​​q​ 1​​​ is the path query  
​​∃ x, y, z​(​​R​(​​x, y​)​​ ∧ S​(​​y, z​)​​​)​​​​.

• �​​q​ 2​​​ is the sink query  
​​∃ x, y, z​(​​R​(​​x, y​)​​ ∧ S​(​​z, y​)​​​)​​​​.

es and without “cleaning” dirty data 
first. Database repairs constitute a 
mechanism for representing possible 
worlds through interventions in the 
database. Specifically, given an incon-
sistent database, the aim is to achieve 
consistency through some minimal in-
tervention in the database. There may 
exist, however, many different such 
minimal interventions, and it may not 
be known which one represents the 
ground truth. Hence, the result of each 
such minimal intervention is viewed 
as a possible world.

Let ​Σ​ be a set of integrity constraints 
and let ​I​ be an inconsistent database. 
Intuitively, a database ​J​ is a repair of ​
I​ w.r.t. ​Σ​ if ​J​ is a consistent database 
(that is, ​J  ⊧  Σ​), and ​J​ differs from ​I​ in 
a “minimal" way. Several different 
types of repairs have been considered, 
including set-based repairs (subset, su-
perset, ​⊕​-repairs), cardinality-based re-
pairs, attribute-based repairs, and pre-
ferred repairs.

Definition 4.1.
Let ​Σ​ be a set of integrity constraints 
and let ​I​ be an inconsistent data-
base. A database ​J​ is a subset-repair of  
​I​ w.r.t. ​Σ​ if ​J​ is a maximal consistent 
sub-database of ​I​, that is, the following 
conditions hold:
(a) ​J  ⊂  I​;  
(b) ​J  ⊧  Σ​;  
(c) there is no database ​​J ′ ​​ such that ​​
J ′ ​  ⊧  Σ​ and ​J  ⊂ ​ J ′ ​  ⊂  I​, where ​⊂​ de-
notes proper containment.

In what follows, we will focus on 
subset repairs and so from now on we 
will use the term repair, instead of the 
term subset repair.

Example 4.2.
Let ​Σ​ be the set consisting of the key 
constraint ​​ 
∀ x ∀ y ∀ z​(​​​(​​R​(​​x, y​)​​ ∧ R​(​​x, z​)​​  →  y = z​)​​​​.  
The inconsistent database ​​ 
I = ​{​​R​​(​​ ​a​ 1​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 1​​, ​b​ 2​​​)​​​,R​​(​​ ​a​ 2​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 2​​, ​
b​ 2​​​)​​​​}​​​​ has four repairs:

•  �​​J​ 1​​ = ​​{​​R​​(​​ ​a​ 1​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 2​​, ​b​ 1​​​)​​​​}​​​​; 
•  �​​​​J​ 2​​ = ​​{​​R​​(​​ ​a​ 1​​, ​b​ 1​​​)​​​, R​​(​​ ​a​ 2​​, ​b​ 2​​​)​​​​}​​​​;
•  �​​J​ 3​​ = ​​{​​R​​(​​ ​a​ 1​​, ​b​ 2​​​)​​​, R​​(​​ ​a​ 2​​, ​b​ 1​​​)​​​​}​​​​; 
•  �​​​​J​ 4​​ = ​​{​​R​​(​​ ​a​ 1​​, ​b​ 2​​​)​​​, R​​(​​ ​a​ 2​​, ​b​ 2​​​)​​​​}​​​.​

A straightforward generalization of 
this example shows that an inconsis-
tent database may have exponentially 
many repairs.

ists.14 Every set of full tgds is weakly acy-
clic, while the set consisting of the tar-
get tgd ​​∀ x, y​(​​H​(​​x, y​)​​  →  ∃ zH​(​​y, z​)​​​)​​​​ is not. 
Actually, if the instance consisting of the 
fact ​​H​(​​1, 2​)​​​​ is chased with this tgd, then 
the chase procedure will not terminate 
as it will generate an infinite sequence  
​H​​(​​2, ​N​ 1​​​)​​​, H​​(​​ ​N​ 1​​, ​N​ 2​​​)​​​, H​​(​​ ​N​ 2​​, ​N​ 3​​​)​​​, ...​ of facts.

As regards the rewritability results 
in the third part, if a schema mapping ​​
ℳ  = ​ (​​S, T, Σ​)​​​​ is specified using s-t tgds 
only, then, given a source instance ​I​, 
the chase procedure always terminates 
and produces a universal solution ​J​ for ​
I​ in time bounded by a polynomial in 
the size of ​I​. Therefore, by the proper-
ties of universal solutions. ​J​ can be 
used to compute the certain answers ​​
CERTAIN​(​​q, 𝒲​(​​ℳ, I​)​​​)​​​​, where ​q​ is a tar-
get conjunctive query, in time bound-
ed by a polynomial in the size of ​I​. In 
this case, however, the certain answers 
can also be obtained by rewriting ​q​ to 
a union ​​q ′ ​​ of conjunctive queries over 
the source schema and then directly 
evaluating ​​q ′ ​​ on ​I​. This is achieved by 
“decomposing” ​Σ​ into a set of local-as-
view (LAV) constraints and a set of glob-
al-as-view (GAV) constraints, where a 
LAV constraint is a tgd whose anteced-
ent consists of a single atom and a GAV 
constraint is a tgd whose consequent 
consists of a single atom. The rewrit-
ing of ​q​ into ​​q ′ ​​ can then be achieved 
by combining the MiniCon algorithm 
for LAV constraints31 with an unfolding 
technique for GAV constraints.

For further reading about data ex-
change, see the monograph5 and the 
collection.24

Inconsistent Databases
In designing databases, one specifies 
a schema ​S​ and a set ​Σ​ of integrity con-
straints on ​S​. An inconsistent database 
is a database ​I​ that does not satisfy ​Σ​.  
Inconsistent databases arise in a variety 
of contexts and for different reasons, 
including the following two. First, a da-
tabase system may not support the en-
forcement of a particular type of integri-
ty constraints. Second, data at different 
sources may be transferred to a central 
repository and the resulting database 
may be inconsistent, even though each 
source database is consistent.

The framework of database repairs, 
introduced by Arenas, Bertossi, and 
Chomicki,5 is a principled approach 
to coping with inconsistent databas-
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As conventional in probabilistic 
modeling, we seek compact represen-
tations of probabilistic databases, 
where a finite object represents many 
possible worlds (for example, exponen-
tial number w.r.t. the size of the repre-
sentation itself). Such representations 
rely on assumptions of probabilistic 
independence that, in turn, allow for 
factorization. The most studied repre-
sentation is the Tuple-Independent Da-
tabase (TID)11 (with roots in prior work, 
for example, Grädel et al.19). A TID is 
represented as an ordinary database 
where each fact is associated with a 
probability of existence. Then, a pos-
sible world is a subset of the database 
and it is randomly drawn by indepen-
dently considering each tuple and de-
ciding whether or not it is valid. More 
formally, a TID over a schema ​S​ is rep-
resented as a pair ​​​(​​I, π​)​​​​ where ​I​ is a da-
tabase over ​S​ and ​​π : I  → ​ [​​0, 1​]​​​​ assigns 
a probability to each fact. The pair  
​​​(​​I, π​)​​​​ represents the probabilistic data-
base ​​​(​​𝒫, p​)​​​​ where ​𝒫​ consists of all the 
subsets of ​I​ and

​p​​( ​​J​)​​​: = ​∏ 
f∈J

​ ​​ ​π ​( ​​f ​)​​​ × ​∏ 
f∈I\J

​ ​​​​(​​1 − π​ ​( ​​f ​)​​​​)​​​ .​

The computational complexity of 
query evaluation over TIDs has been 
scrutinized by the database community 
over the past two decades. As we shall 
see next, the probability of a query can 
be ​#P​-hard even for very simple join que-
ries. Past results have established thor-
ough classifications of query classes into 
tractable and intractable, in either the 
exact or approximate sense. In this part, 
we explain the first dichotomy found for 
TIDs11 that considers the class of con-
junctive queries without self-joins. We 
refer to it as the Little Dichotomy Theorem 
as it was later generalized to the broader 
class of all union of conjunctive queries 
(or, equivalently, the class of queries that 
can be phrased using the positive opera-
tors of the relational algebra).12

Before we give the dichoto-
my, let us illustrate it. For the 
positive side, let ​​q​ 1​​​ be the query  
​​∃ x ∃ y ​(​​R​(​​x​)​​ ∧ S​(​​x, y​)​​​​. Given the in-
put TID ​​​(​​I, π​)​​​​, we compute ​​Pr​[​​q​]​​​​ as fol-
lows. First, write ​​q​ 1​​​ as the expression   
​​∃ x​(​​R​(​​x​)​​ ∧ ∃ yS ​(​​x, y​)​​​)​​​​. Then, using tuple-
independence, the computation can 
be done as in Figure 5.

The last expression has size ​​O​(​​ ​n​​ 2​​)​​​​, 
where ​​n = ​|​​dom​(​​I​)​​​|​​​​.

• �​​CERTAINTY​(​​ ​q​ 3​​, Σ​)​​​​ is in ​P​,  
but it is not FO-rewritable.

• �​​CERTAINTY​(​​ ​q​ 2​​, Σ​)​​​​ is  
​coNP​-complete.

The trifurcation in the complexity 
of ​​CERTAINTY​(​​ ​q​ i ​​, Σ​)​​​​, for ​i = 1, 2, 3​, is 
not an isolated phenomenon, but an 
instance of a deeper result, depicted 
in Figure  4, about conjunctive que-
ries without self-joins. In that result, 
the boundaries of the trichotomy are 
delineated with the help of a graph, 
called the attack graph, which is as-
sociated with ​Σ​ and ​q​. This graph has 
two types of edges, regular edges and 
strong edges. If the attack graph is 
acyclic, then ​​CERTAINTY​(​​q, Σ​)​​​​ is FO-
rewritable. If the attack graph is cyclic, 
but no cycle contains a strong edge, 
then ​​CERTAINTY​(​​q, Σ​)​​​​ is in ​P​ but it is 
not FO-rewritable. Finally, if the attack 
graph has a cycle containing at least 
one strong edge, then ​​CERTAINTY 
​(​​q, Σ​)​​​​ is coNP-complete.

The Koutris-Wijsen Dichotomy 
Theorem vastly generalizes several 
different earlier dichotomy results, in-
cluding the one in25 that classifies the 
queries that consist of two atoms over 
two distinct relations. Classifying of 
the complexity of ​​CERTAINTY​(​​q, Σ​)​​​​ for 
arbitrary Boolean conjunctive queries 
(including those with self-joins) re-
mains an open problem.

For further reading about incon-
sistent databases and consistent an-
swers, see the monograph.8

Probabilistic Databases
A probabilistic database is a probabil-
ity space over possible worlds (that is, 
ordinary databases). Restricting to the 
discrete case, which is the most com-
monly studied, we formally define a 
probabilistic database over a schema ​
S​ as a pair ​​​(​​𝒫, p​)​​​​ where ​𝒫​ is a count-
able set of databases over ​S​, and is,  
​​∑ J∈𝒫​ ​​ p​​(​​J​)​​​ = 1​. The conventional seman-
tics of query evaluation over a probabi-
listic database asks for the marginal 
probability of every answer. For a Bool-
ean query, this amounts to computing 
the probability that the query is true 
on a random possible world. Formally, 
the task is to compute the probability  
​​Pr​[​​q​]​​​​ that ​J ⊧ q​ when ​J​ is drawn ran-
domly from ​​​(​​𝒫, p​)​​​​:

​Pr ​​[​​q​]​​​: = ​  ∑ 
J∈𝒫 , J⊧q

​​​ p​​( ​​J​)​​​​

The question now arises: what can 
we say about the computational com-
plexity of ​​CERTAINTY​(​​ ​q​ i ​​, Σ​)​​​​, ​i  =  1, 2​? 
Fuxman and Miller17 showed that ​​CER-
TAINTY​(​​ ​q​ 1​​, Σ​)​​​​ is in ​P​, whereas ​​CER-
TAINTY​(​​ ​q​ 2​​, Σ​)​​​​ is ​coNP​-complete.

Let's explain why ​​CERTAINTY​(​​ ​q​ 1​​, Σ​)​​​​ 
is in ​P​. In fact, a stronger result holds: ​​
CERTAINTY​(​​ ​q​ 1​​, Σ​)​​​​ is FO-rewritable, 
which means that there is a first-order 
definable query ​​q​​ *​​ such that for every 
database ​I​, we have ​​CONS​(​​ ​q​ 1​​, I, Σ​)​​​​ is 
true if and only if ​​q​​ *​​​(​​I​)​​​​ is true.

Concretely, it is easy to verify that ​​q​​ *​​ 
is the query

​​q​​ *​ ≡ �∃ x, y, z​​(​​R​​(​​x, y​)​​​ ∧ S​​(​​y, z​)​​​ ∧  
∀ ​y ′ ​​​(​​R​​(​​x, ​y ′ ​​)​​​  →  ∃ ​z ′ ​S​​(​​​y ′ ​, ​z ′ ​​)​​​​)​​​​)​​​.​

From a complexity standpoint, FO-
rewritability is the most desirable out-
come: we can compute the consistent 
answers by directly evaluating a FO-
query on the inconsistent database. 
Furthermore, FO-rewritability implies 
that ​​CERTAINTY​(​​ ​q​ 1​​, Σ​)​​​​ is in ​P​.

We show ​​CERTAINTY​(​​ ​q​ 2​​, Σ​)​​​​ is ​
coNP​-complete via a polynomial-time 
reduction from the (complement of) 
Monotone SAT, which is the restric-
tion of SAT to monotone formulas, that 
is, to Boolean formulas in conjunctive 
normal form such that each clause 
(conjunct) of the formulas is either 
a disjunction of variables (positive 
clause) or a disjunction of negated vari-
ables (negative clause).

Given a monotone formula ​ϕ​, con-
struct a database ​I​ with relations ​R​ and ​
S​: if ​c​ is a positive clause and the vari-
able ​v​ occurs in ​c​, then put ​​​(​​c, v​)​​​​ in ​R​; 
if ​c​ is a negative clause and ​v​ occurs in ​
c​, then put ​​​(​​c, v​)​​​​ in ​S​. It is now easy to 
verify that ​ϕ​ is satisfiable if and only if ​​
CONS​(​​ ​q​ 2​​, I, Σ​)​​​​ is false (that is, there is a 
repair ​J​ of ​I​ such that ​​q​( ​​J​)​​​​ is false). Thus, ​​
CERTAINTY​(​​ ​q​ 2​​, Σ​)​​​​ is ​coNP​-complete.

Next, consider the following Bool-
ean query:

• �​​q​ 3​​​ is the cycle query  
​​∃ x, y​(​​R​(​​x, y​)​​ ∧ S​(​​y, x​)​​​)​​​​.

Wijsen36 showed that the problem ​​
CERTAINTY​(​​ ​q​ 3​​, Σ​)​​​​ is in ​P​, but it is not 
FO-rewritable. Thus, FO-rewritability 
is not the only way in which the con-
sistent answers of a query can be trac-
table.

In summary, we have seen that the 
following statements are true.

• �​​CERTAINTY​(​​ ​q​ 1​​, Σ​)​​​​ is in ​P​;  
in fact, it is FO-rewritable.
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and yet, ​​at​(​​x​)​​​​ and ​​at​(​​y​)​​​​ have a common 
member, namely ​​S​(​​x, y​)​​​​.

Figure 7 depicts the formal theorem 
that we refer to as the “little dichotomy 
theorem,” stating that being hierarchi-
cal characterizes being tractable (un-
der standard complexity assumptions) 
as far as conjunctive queries without 
self-joins are concerned.

For further reading about probabi-
listic databases, we refer the reader to 
the monograph.34

Election Databases
Social choice theory is concerned with 
the aggregation of individual prefer-
ences into a collective outcome. Elec-
tion databases form a framework that 
infuses social choice theory with rela-
tional database context. An election da-
tabase may contain information about 
individual candidates (for example, age, 
education, wealth), voters (for example, 
age, occupation, affiliation), positions 
of candidates on various issues, and 
preferences of voters. This framework 
supports the formulation of sophisti-
cated queries that go well beyond ask-
ing who the winners in some election 
are, which is the traditional focus of 
social choice theory. Ideally, each voter 
casts a complete preference, which is 
formalized as a total order of the candi-
dates that the voter has to rank. It is of-
ten the case, however, that some voters 
can only cast incomplete preferences, 
which are formalized as partial orders 

An example of an intractable query 
is ​​∃ x ∃ y​(​​R​(​​x​)​​ ∧ S​(​​x, y​)​​ ∧ T​(​​y​)​​​)​​​​, which we 
denote by ​​q​ 2​​​. We will show that ​​Pr​[​​ ​q​ 2​​​]​​​​  
is ​#P​-complete through a reduc-
tion from a well known ​#P​-complete  
problem.

A positive partitioned 2DNF for-
mula (PP2DNF) is a DNF-formula of 
the form ​​​(​​ ​x​ ​i​ 1​​​​ ∧ ​y​ ​j​ 1​​​​​)​​​ ∨ ⋯ ∨ ​​(​​ ​x​ ​i​ k​​​​ ∧ ​y​ ​j​ k​​​​​)​​​,​ 
where the ​​x​ i​​​’s and the ​​y​ j​​​’s form disjoint 
sets of variables. Counting the satis-
fying assignments of a PP2DNF for-
mula known to be ​#P​-complete.32 We 
can visualize a PP2DNF as a bipartite 
graph, where the left and right sides 
consist of the ​x​ and ​y​ variables, respec-
tively, and the edges correspond to the 
clauses. As an example, the graph of 
Figure  6a corresponds to the formula 
​​​(​​ ​x​ 1​​ ∧ ​y​ 1​​​)​​​ ∨ ​​(​​ ​x​ 1​​ ∧ ​y​ 2​​​)​​​ ∨ ​​(​​ ​x​ 2​​ ∧ ​y​ 1​​​)​​​​. If we 
view a truth assignment to the vari-
ables as stating whether a vertex is 
present or not, then a satisfying assign-
ment corresponds to a non-indepen-
dent set, that is, a set of vertices with at 
least one edge. Hence, the number of 
satisfying assignments is ​​2​​ n​ − M​ where ​
n​ is the number of variables and ​M​ is 
the number of independent sets. Also, 
every bipartite graph represents some 
PP2DNF formula in this way. Thus, 
counting the satisfying assignments 
of a PP2DNF formula is the same as 
counting the independent sets of a bi-
partite graph.

Dalvi and Suciu11 showed that this 
problem can be simulated as the evalu-
ation of ​​q​ 2​​​ over a TID, as we illustrate 
in Figure 6a. Let ​​​(​​I, π​)​​​​ be the TID shown 
in Figure 6b. There is a one-to-one cor-
respondence between truth assign-
ments for ​ϕ​ and possible worlds for ​​​ 
(​​I, π​)​​​​. It is easy to verify ​#ϕ  = ​ 2​​ n​ Pr ​​[​​ ​q​ 2​​​]​​​​ 
where ​n​ is the number of variables of  
​ϕ​. Hence, we reduce #PP2DNF to ​​Pr​[​​ ​q​ 2​​​]​​​​.

The queries ​​q​ 1​​​ and ​​q​ 2​​​ are examples 
of hierarchical and non-hierarchical 
queries, respectively. As it turns out, 
the property of being hierarchical 
characterizes tractability. A conjunc-
tive query ​q​ without self-joins is hier-
archical if for every two variables ​x​ and ​
y​ of ​q​, either ​​at​(​​x​)​​  ⊆  at​(​​y​)​​​​, or ​​at​(​​y​)​​  ⊆  
at​(​​x​)​​​​, or ​​at​(​​x​)​​ ∩ at​(​​y​)​​ = ∅​​, where ​​at​(​​z​)​​​​ is 
the set of all atoms of ​q​ where ​z​ appears.

For example, our query ​​q​ 1​​​, namely ​​
∃ x ∃ y​(​​R​(​​x​)​​ ∧ S​(​​x, y​)​​​)​​​​, is hierarchical, 
since ​​at​(​​y​)​​  ⊆  at​(​​x​)​​​​. Query ​​q​ 2​​​, namely ​​
∃ x ∃ y​(​​R​(​​x​)​​ ∧ S​(​​x, y​)​​ ∧ T​(​​y​)​​​)​​​​, is not hier-
archical since ​at​​(​​x​)​​​ ​⊆​ at​​(​​y​)​​​​, ​at​​(​​y​)​​​ ​⊆​at​​(​​x​)​​​​, 

Figure 4. Trichotomy in the complexity of consistent query answering over conjunctives 
queries without self-joins.27  

Theorem 4.4. If Σ is a set of key constraints with one key per relation and q is a Boolean 
self-join free conjunctive query, then one of the following statements holds:

� Certainty(�, Σ) is FO-rewritable (hence, it is in P).
� Certainty(�, Σ) is in P, but it is not FO-rewritable.
� Certainty(�, Σ) is coNP-complete.

Moreover, this trichotomy is effective: there is an algorithm for deciding, given Σ and �, 
which of the three cases holds.

of the candidates. Each such partial or-
der represents the possible total rank-
ings of the candidates by a voter, and 
different total rankings may produce 
different election outcomes. This con-
stitutes a different mechanism for de-
fining possible worlds.

To present a more rigorous treat-
ment, we first recall the basic termi-
nology of voting theory in computa-
tional social choice; for additional 
background, we refer the reader to the 
Handbook of Computational Social 
Choice.10 Let ​​C  = ​ {​​ ​c​ 1​​, ... , ​c​ m​​​}​​​​ be a set of 
candidates, and let ​​V  = ​ {​​ ​v​ 1​​, ... , ​v​ n​​​}​​​​ be a 
set of voters. A complete voting profile 
is a tuple ​​T  = ​ (​​ ​T​ 1​​, ... , ​T​ n​​​)​​​​, where each ​​
T​ i​​​ is a total order over ​C​, representing 
the ranking (preference) of voter ​​v​ i​​​ of 
the candidates in ​C​. A voting rule ​r​ is 
a function that maps every complete 
profile ​T​ into a set ​​𝒲​(​​r, T​)​​  ⊆  C​​ of win-
ners. We say that a candidate ​c​ is a win-
ner if ​​c  ∈  𝒲​(​​r, T​)​​​​.

We focus on the class of positional 
scoring rules, which is arguably the 
most extensively studied class of voting 
rules in computational social choice. 
A positional scoring rule ​r​ maps every 
number ​m​ of candidates to a scoring 
vector ​​​(​​r​(​​m, 1​)​​, ⋯  , r​(​​m, m​)​​​)​​​​ of natural 
numbers where ​​r​(​​m, 1​)​​  ≥  r​(​​m, 2​)​​ ... ≥  
r​(​​m, m​)​​​​. Here, ​​r​(​​m, j​)​​​​ is the score that 
a candidate is awarded when posi-
tioned ​j​th by a voter. The score ​​s​(​​ ​T​ i​​, c​)​​​​ 
of a candidate ​c​ on the order ​​T​ i​​​ of the 
voter ​​v​ i​​​ is ​​r​(​​m, j​)​​​​, where ​j​ is the position 

Figure 5. Computation example.

​​

​Pr​[​​ ​q​ 1​​​]​​​

​ 

=

​ 

1 − ​  ∏ 
a∈dom​(​​I​)​​

​​​​​(​​1 − Pr ​​[​​R​​(​​a​)​​​ ∧ ∃ yS​​(​​a, y​)​​​​]​​​​)​​​

​    ​​  =​  1 − ​  ∏ 
a∈dom​(​​I​)​​

​​​​​(​​1 − Pr ​​[​​R​​(​​a​)​​​​]​​​ · Pr ​​[​​ ∃ yS​​(​​a, y​)​​​​]​​​​)​​​​    

​

​ 

=

​ 

1 − ​  ∏ 
a∈dom​(​​I​)​​

​​​​​(​​1 − π​​(​​R​​(​​a​)​​​​)​​​ · ​​(​​1 − ​  ∏ 
b∈dom​(​​I​)​​

​​​​​(​​1 − π​​(​​S​​(​​a, b​)​​​​)​​​​)​​​​)​​​​)​​​
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We now discuss the problem of de-
ciding the necessity of a Boolean con-
junctive query ​q​ under a positional 
scoring rule ​r​. This problem has two 
parameters, ​q​ and ​r​, and the input con-
sists of a candidate set ​C​, a partial pro-
file ​P​, and a database ​I​.

An immediate observation is that 
the necessity problem is in coNP. Let 
us consider several examples of trac-
tability and hardness. The simplest 
example is the query ​​∃ x​[​​WINNER​(​​x​)​​​]​​​​ 
asking whether there exists a winner. 
By definition, there is always one or 
more winners, so this query is neces-
sary on every election database (and 
the problem is trivially solvable in con-
stant time). More interesting examples 
are the conjunctive queries depicted in 
Figure 8, namely,

​∃ ​x​ 1​​, ⋯ ,  ​x​ k​​​​[​​WINNER​​(​​ ​x​ 1​​​)​​​ ∧ ⋯ ∧  

WINNER​​(​​ ​x​ k​​​)​​​ ∧ R​​(​​ ​x​ 1​​, ⋯ , ​x​ k​​​)​​​​]​​​​

for different ​k  ≥  1​, asking whether 
there are ​k​ winners who participate in 
the ​k​-ary relation ​R​. In the remainder 
of this section, we discuss the proofs of 
the complexity results in Figure 8.

We begin with ​k = 1​. In the case of 
plurality and veto, the polynomial-time 
algorithm is based on a polygamous ver-
sion of the perfect-matching problem, 
where each vertex of one side should be 
matched with a number of neighbors 
from the other side, and this number is 
from an interval associated to the ver-
tex. Hardness for the remaining pure 
rules is via a reduction from the prob-
lem of the possible unique winner: given 
a partial profile ​P​ and a member ​c​ of the 
set ​C​ of candidates, is there any comple-
tion where ​c​ is the single winner? In-
deed, the complexity of this problem ex-
hibits a classification analogous to the 
theorem: it is solvable in polynomial 
time under plurality and veto, yet NP-
hard for every other pure rule.6

T​ i​​​ is a completion of ​​P​ i​​​, that is, a total 
order that completes the partial order ​​
P​ i​​​. A candidate ​c​ is a necessary winner 
if ​​c  ∈  𝒲​(​​r, T​)​​​​ for all completions ​T​.26 
(We later discuss the analogous notion 
of a possible winner.)

An election database consists of a 
partial voting profile, along with a da-
tabase ​I​ that has contextual informa-
tion about the candidates. Formally, 
it is a tuple ​​​(​​I, C, P, r​)​​​​ that represents a 
set of possible worlds, where each pos-
sible world is a completion of ​I​. In turn, 
a completion of ​I​ is obtained by taking 
a completion ​T​ of ​P​, and adding to ​I​ a 
new unary relation ​WINNER​ that has 
the fact ​​WINNER​(​​c​)​​​​ for each winner ​​
c  ∈  𝒲​(​​r, T​)​​​​. In particular, the possible 
worlds are identical, except for the con-
tent of the ​WINNER​ relation that de-
pends on the underlying completion of ​
P​. A Boolean query ​q​ is necessary if ​J ⊧ q​ 
for all completions ​J​ of ​I​. (Note that 
“necessary” is the adaptation of the 
term “certain” to the election setting.)

As an example, let ​c​ be a candidate 
and ​q​ be the query ​​WINNER​(​​c​)​​​​. Then ​q​ 
is necessary if and only if ​c​ is a neces-
sary winner. As another example, let ​​
q ′ ​​ be the query ​​∃ x​[​​WINNER​(​​x​)​​ ∧ R​(​​x​)​​​]​​​​ 
where ​R​ can be thought of as represent-
ing a party of candidates. Necessity of ​​q ′ ​​ 
means that there is necessarily a winner 
from ​R​. Note that it may be the case that ​
q​ is necessary even if no candidate in ​R​ is 
a necessary winner, and even if there are 
no necessary winners at all.

of candidate ​c​ in ​​T​ i​​​. When ​r​ is applied 
to ​​T  = ​ (​​ ​T​ 1​​, ... , ​T​ n​​​)​​​​, it assigns to each 
candidate ​c​ the sum ​​∑ i=1​ n  ​​ s​​(​​ ​T​ i​​, c​)​​​​ as the 
score of ​c​. A candidate is a winner if her 
score is greater or equal to the score 
of every candidate. Popular positional 
scoring rules include the plurality rule ​​​
(​​1, 0, ⋯ , 0​)​​​​ where the winners are the 
candidates most frequently ranked 
first, the veto rule ​​​(​​1, ⋯ , 1, 0​)​​​​ where the 
winners are the candidates least fre-
quently ranked last, and the Borda rule ​​​
(​​m − 1, m − 2, ⋯ , 0​)​​​​, where the score of a 
candidate is the position itself minus 1 
in reverse order.

To avoid trivialities, we assume 
that every ​​r ​(​​ · , m​)​​​​ contains at least 
two different score values, that is,  
​​r ​(​​m, 1​)​​ > r ​(​​m, m​)​​​​. We also assume that 
the scores in ​​r ​(​​ · , m​)​​​​ are co-prime (that 
is, their biggest common divisor is 
1), since multiplying all scores by the 
same number has no impact on the 
outcome. Rule ​r​ is pure if for every ​m ≥ 2​
, the scoring vector ​​r ​(​​ · , m​)​​​​ is obtained 
from ​​r ​(​​ · , m − 1​)​​​​ by inserting a score 
value at some position. For example, 
essentially all specific rules studied in 
the literature (for example, plurality, 
veto and Borda) are pure.

A partial voting profile is a tuple  
​​P = ​(​​ ​P​ 1​​, ... , ​P​ n​​​)​​​​, where each ​​P​ i​​​ is a par-
tial order over the set ​C​ of candidates, 
representing a partially known pref-
erence of the voter ​​v​ j ​​​. A completion of  
​​P = ​(​​ ​P​ 1​​, ... , ​P​ n​​​)​​​​ is a complete voting 
profile ​​T = ​(​​ ​T​ 1​​, ... , ​T​ n​​​)​​​​ such that each ​​

Figure 6. (a) Representation of (x1 ∧ y1) ∨ (x1 ∧ y2) ∨ (x2 ∧ y1) as a bipartite graph. (b) The TID 
for the bipartite graph.
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Figure 7. The little dichotomy theorem for 
probabilistic query answering.

Theorem 5.1 (The Little Dichotomy 
Theorem). Let q be a Boolean self-join
free conjunctive query.

� If � is hierarchical, then Pr[�] is in P.
� If � is not hierarchical, then Pr[�] 

is #P-complete.

Figure 8. Complexity of the necessity for different combinations of queries and voting 
rules.22  

Theorem 6.1. For every natural number �, let �� be the query
∃�1, . . . , ��[Winner(�1) ∧ · · · ∧ Winner(��) ∧ � (�1, . . . , ��)] asking whether there is a sequence of 
co-winners who jointly participate in the relation �.

� For � = 1, the necessity of �� is:
 – solvable in polynomial time, if � is plurality or veto;
 – coNP-complete, if � is any other pure rule.
� For � > 1, the possibility of �� is coNP-complete for every positional scoring rule.
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al complexity since the number of pos-
sible worlds can be prohibitively large. 
Indeed, computational hardness al-
ready arises for frequently asked que-
ries, such as conjunctive queries; we 
discussed several dichotomy theorems 
that strive to delineate the boundary 
between tractability and intractability 
for queries in a class. In practice, how-
ever, hard problems are often attacked 
by general-purpose tools, such as inte-
ger linear programming, SAT solvers, 
and answer-set programming, as done 
in consistent query answering,13,24 vari-
ants of consistent query answering9,30, 
and probabilistic databases.16,33

Beyond data management, the pos-
sible world semantics provides a natu-
ral approach to incorporating contex-
tual data in the study of other settings 
that involve deficiencies. As a case in 
point, we illustrated this idea by dis-
cussing the framework of election da-
tabases. We believe the versatility of 
the possible world semantics can have 
significant applications in a plethora 
of other fields. 
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For ​k = 2​, hardness 
for plurality and veto is 
proved via the maximum 
independent set prob-
lem, and hardness for 
any other pure rule is 

via a reduction from ​k = 1​. Hardness 
for ​k > 2​ can be easily established via 
a reduction from ​k = 2​. Interestingly, 
Kimelfeld et al.22 used a more complex 
reduction (from DNF tautology) that 
applies to all positional scoring rules, 
pure or not; hence, for ​k > 2​ the neces-
sity problem is coNP-complete for ev-
ery such rule.

We conclude this section with sev-
eral comments. First, in the case of the 
plurality rule, a dichotomy in the com-
plexity has been establish for a large 
fragment of conjunctive queries.21 Sec-
ond, the necessity problem becomes 
tractable if we assume that the number 
of candidates is small. In particular, 
the problem is fixed-parameter trac-
table with respect to the parameter ​​​|​​C​|​​​​ 
for every polynomial-time query.22

Conclusion
The possible world semantics is a natu-
ral and principled approach to coping 
with deficiencies in data. We discussed 
the versatility of this approach in such 
deficiencies as missing information 
(null values), under-specified transfor-
mations (data exchange), violation of 
integrity constraints (inconsistent da-
tabases), and quantified uncertainty 
(probabilistic databases). When possi-
ble world semantics is adopted, query 
evaluation entails the aggregation of 
the results of the query over the pos-
sible worlds. The intersection of the 
results (certain/consistent answers) 
amounts to logical inference—these 
are the answers that are derived from 
the deficient data. Summation in prob-
abilistic databases amounts to proba-
bilistic inference—each answer is as-
signed its marginal probability. Other 
aggregation mechanisms have also 
been investigated. We touched on the 
union (possible answers) in passing, 
but did not cover the range semantics 
for queries with numerical operators, 
such as COUNT and SUM.5 There is 
also work on combinations of settings 
discussed here; relevant references are 
given in the online appendix.

The adoption of the possible world 
semantics increases the computation-

• more online

An online 
appendix is 
available at 
https://dl.acm.
org/doi/10.1145/ 
3624717
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