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The interplay between local consistency and global consistency has been the object of study in several

different areas, including probability theory, relational databases, and quantum information. For relational

databases, Beeri, Fagin, Maier, and Yannakakis showed that a database schema is acyclic if and only if it has

the local-to-global consistency property for relations, which means that every collection of pairwise consistent

relations over the schema is globally consistent. More recently, the same result has been shown under bag

semantics. In this paper, we carry out a systematic study of local vs. global consistency for relations over

positive commutative monoids, which is a common generalization of ordinary relations and bags. Let K be an

arbitrary positive commutative monoid. We begin by showing that acyclicity of the schema is a necessary

condition for the local-to-global consistency property for K-relations to hold. Unlike the case of ordinary

relations and bags, however, we show that acyclicity is not always sufficient. After this, we characterize the

positive commutative monoids for which acyclicity is both necessary and sufficient for the local-to-global

consistency property to hold; this characterization involves a combinatorial property of monoids, which

we call the transportation property. We then identify several different classes of monoids that possess the

transportation property. As our final contribution, we introduce a modified notion of local consistency of

K-relations, which we call pairwise consistency up to the free cover. We prove that, for all positive commutative

monoids K, even those without the transportation property, acyclicity is both necessary and sufficient for

every family of K-relations that is pairwise consistent up to the free cover to be globally consistent.
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1 INTRODUCTION
The interplay between local consistency and global consistency has been investigated in several

different settings. In each such setting, the concepts “local", “global", and “consistent" are defined

rigorously and a study is carried out as to when objects that are locally consistent are also glob-

ally consistent. In probability theory, Vorob’ev [14] studied when, for a collection of probability

distributions on overlapping sets of variables, there is a global probability distribution whose
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marginals coincide with the probability distributions in that collection. In quantum mechanics,

Bell’s theorem [5] is about contextuality phenomena, where empirical local measurements may be

locally consistent but there is no global explanation for these measurements in terms of hidden

local variables. In relational databases, there has been an extensive study of the universal relation

problem [1, 9, 13]: given relations 𝑅1, . . . , 𝑅𝑚 , is there a relation𝑊 such that, for each relation 𝑅𝑖 ,

the projection of𝑊 on the attributes of 𝑅𝑖 is equal to 𝑅𝑖? If the answer is positive, the relations

𝑅1, . . . , 𝑅𝑚 are said to be globally consistent and𝑊 is a universal relation for them. If the relations

𝑅1, . . . , 𝑅𝑚 are globally consistent, they are pairwise consistent (i.e., every two of them are globally

consistent), but the converse need not hold.

Beeri, Fagin, Maier, and Yannakakis [4] showed that a relational schema is acyclic if and only

if the local-to-global consistency property for relations over that schema holds, which means that

every collection of pairwise consistent relations over the schema is globally consistent. Thus, for

acyclic schemas, pairwise consistency and global consistency coincide. Note that set semantics is

used in this result, i.e., the result is about ordinary relations. More recently, in [2] it was shown

that an analogous result holds also under bag semantics: a relational schema is acyclic if and only

if the local-to-global consistency property for bags holds, where in the definitions of pairwise

consistency and global consistency for bags, the projection operation adds the multiplicities of all

tuples in the relation that are projected to the same tuple. It should be pointed out, however, that

there are significant differences between set semantics and bag semantics as regards consistency

properties. In particular, under set semantics, the relational join of two consistent relations is the

largest witness of their consistency, while, under bag semantics, the join of two consistent bags

need not even be a witness of their consistency [2].

During the past two decades and starting with the paper [8], there has been a growing study of

K-relations, where tuples in K-relations are annotated with values from the universe of a fixed

semiring K. Clearly, ordinary relations are B-relations, where B is the Boolean semiring, while bags

are N-relations, where N is the semiring of non-negative integers. Originally, K-relations were
studied in the context of provenance in databases [8]; later on, the study was expanded to other

fundamental problems in databases, including the query containment problem [7, 10]. Note that in

the study of both provenance and query containment, the definitions of the basic concepts involve

both the addition operation and the multiplication operation of the semiring K.
Aiming to obtain a common generalization of the results in [4] and in [2], we carry out a

systematic investigation of local consistency vs. global consistency for relations whose tuples

are annotated with values from the universe of some suitable algebraic structure. At first sight,

semirings appear to be the most general algebraic structures for this purpose. Upon closer reflection,

however, one realizes that the definition of a projection of K-relation involves only the addition

operation of the semiring (and not the multiplication operation), hence so do the definitions of the

notions of local and global consistency for K-relations. For this reason, we embark on a study of the

interplay between local vs. global consistency for K-relations, where K = (𝐾, +, 0) is a commutative

monoid. In addition, we require the monoid K to be positive, which means that the sum of non-zero

elements from 𝐾 is non-zero. This condition is needed in key technical results, but it also ensures

that the support of the projection of a K-relation is equal to the support of that relation.

Let K be an arbitrary positive commutative monoid. Our first result asserts that if a hypergraph

𝐻 is not acyclic, then there is a collection of pairwise consistent K-relations over 𝐻 that are

not globally consistent; in other words, acyclicity is a necessary condition for the local-to-global

consistency property for K-relations to hold. The construction of such K-relations is similar to the

one used for bags in [2], which, in turn, was inspired from an earlier construction of hard-to-prove

tautologies in propositional logic by Tseitin [12].
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Unlike the Boolean monoid B (case of ordinary relations) and the monoid N of non-negative

integers (case of bags), however, we show that there are positive commutative monoids K for which

acyclicity is not a sufficent condition for the local-to-global consistency property for K-relations
to hold. We then go on to characterize the positive commutative monoids for which acyclicity is

both necessary and sufficient for the local-to-global consistency property to hold. In fact, we obtain

two different characterizations, a semantic one, which we call the inner consistency property, and
a combinatorial one, which we call the transportation property. The inner consistency property

asserts that if two K-relations have the same projection on the set of their common attributes, then

they are consistent (note that the converse is always true). The transportation property asserts

that every balanced instance of the transportation problem with values from K has a solution in

K; these concepts and the terminology are as in the well-studied transportation problem in linear

programming.

We then identify several different classes of monoids that possess the transportation property.

Special cases include the Boolean monoid B, the monoid N of non-negative integers, the monoid

R≥0
of the non-negative real numbers with addition, the monoids obtained by restricting tropical

semirings to their additive structure, various monoids of provenance polynomials, and the free

commutative monoid on a set of indeterminates. Furthermore, for each such class of monoids, we

give either an explicit construction or a procedure for computing a witness to the consistency of

two consistent K-relations.
After this extended investigation of classes of positive commutative monoids with the trans-

portation property, we revisit the broader question of characterizing the local-to-global consistency

property for collections of K-relations on acyclic schemas for arbitrary positive commutative

monoids K. By the “no-go examples" in the first part of the paper, we know that any such char-

acterization that applies to all positive commutative monoids must either require more than just

pairwise consistency or settle for less than global consistency.

In [3], the second scenario was explored. Specifically, by relaxing the notion of consistency

to what was called there consistency up to normalization, it was shown that the local-to-global

consistency property up to normalization holds precisely for the acyclic schemas. While this result

is a common generalization of the theorems by Vorob’ev [14] and by Beeri et al. [4] (because

for ordinary relations and for probability distributions the relaxed concept of consistency up to

normalization agrees with the standard one), it fails to generalize the local-to-global consistency

property for bags from [2]. Furthermore, the definition of this relaxed notion of consistency required

K to come equipped with a multiplication operation making it into a positive semiring, hence the

result in [3] does not apply to arbitrary positive commutative monoids.

Here, we explore the first scenario by introducing a stronger notion of consistency, which we call

consistency up to the free cover (the term reflects the role that the free commutative monoid plays in

the definition of this notion). First, we prove that the local-to-global consistency property with

consistency strengthened to consistency up to the free cover holds precisely for the acyclic schemas.

Second and perhaps unexpectedly, by exploiting the universal property of the free commutative

monoid, we establish that the notion of global consistency up to the free cover is absolute, in the

sense that global consistency holds up to the free cover if and only if it holds in the standard

sense. As a consequence, we have that for every positive commutative monoid K, a schema 𝐻 is

acyclic precisely when every collection of K-relations over 𝐻 that is pairwise consistent up to the

free cover is indeed globally consistent. Vice versa, every collection of K-relations that is globally
consistent is pairwise consistent up to the free cover. We view these results as an answer to the

question of characterizing the global consistency of relations for acyclic schemas in the broader

setting of relations over arbitrary positive commutative monoids.
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2 PRELIMINARIES
A commutative monoid is a structure K = (𝐾, +, 0), where + is a binary operation on the universe 𝐾

of K that is associative, commutative, and has 0 as its neutral element, i.e., 𝑝 + 0 = 𝑝 = 0 + 𝑝 holds

for all 𝑝 ∈ 𝐾 . A positive commutative monoid is a commutative monoid K = (𝐾, +, 0) such that for

all elements 𝑝, 𝑞 ∈ 𝐾 with 𝑝 +𝑞 = 0, we have that 𝑝 = 0 and 𝑞 = 0. We will only consider non-trivial
monoids, i.e., those whose universes have at least two elements.

As an example, the structure B = ({0, 1},∨, 0) with disjunction ∨ as its operation and 0 (false) as

its neutral element is a positive commutative monoid. Other examples of positive commutative

monoids include the structures N = (𝑍 ≥0, +, 0, ), Q≥0 = (𝑄≥0, +, 0), R≥0 = (𝑅≥0, +, 0), where
𝑍 ≥0

is the set of non-negative integers, 𝑄≥0
is the set of non-negative rational numbers, 𝑅≥0

is the set of non-negative real numbers, and + is the standard addition operation. In contrast,

the structure Z = (𝑍, +, 0), where 𝑍 is the set of integers, is a commutative monoid, but not a

positive one. Two examples of positive commutative monoids of different flavor are the structures

T = (𝑅 ∪ {∞},min,∞) and V = ( [0, 1],max, 0), where 𝑅 is the set of real numbers, and min and

max are the standard minimum and maximum operations. Finally, if 𝐴 is a set and P(𝐴) is its
powerset, then the structure P(𝐴) = (P(𝐴),∪, ∅) is a positive commutative monoid, where ∪ is

the union operation on sets.

An attribute 𝐴 is a symbol with an associated set Dom(𝐴), called its domain. If 𝑋 is a finite set

of attributes, then we write Tup(𝑋 ) for the set of 𝑋 -tuples, i.e., Tup(𝑋 ) is the set of functions that
take each attribute 𝐴 ∈ 𝑋 to an element of its domain Dom(𝐴). Note that Tup(∅) is non-empty as

it contains the empty tuple, i.e., the unique function with empty domain. If 𝑌 ⊆ 𝑋 is a subset of

attributes and 𝑡 is an 𝑋 -tuple, then the projection of 𝑡 on 𝑌 , denoted by 𝑡 [𝑌 ], is the unique 𝑌 -tuple
that agrees with 𝑡 on 𝑌 . In particular, 𝑡 [∅] is the empty tuple.

Let K = (𝐾, +, 0) be a positive commutative monoid and let 𝑋 be a finite set of attributes. A K-
relation over 𝑋 is a function 𝑅 : Tup(𝑋 ) → 𝐾 that assigns a value 𝑅(𝑡) in 𝐾 to every 𝑋 -tuple 𝑡

in Tup(𝑋 ). We will often write 𝑅(𝑋 ) to indicate that 𝑅 is a K-relation over 𝑋 , and we will refer to

𝑋 as the set of attributes of 𝑅. These notions make sense even if 𝑋 is the empty set of attributes,

in which case a K-relation over 𝑋 is simply a single value from 𝐾 that is assigned to the empty

tuple. Clearly, the B-relations are just the ordinary relations, while the N-relations are the bags or
multisets, i.e., each tuple has a non-negative integer associated with it that denotes the multiplicity
of the tuple.

The support of a K-relation 𝑅(𝑋 ), denoted by Supp(𝑅), is the set of 𝑋 -tuples 𝑡 that are assigned
non-zero value, i.e.,

Supp(𝑅) := {𝑡 ∈ Tup(𝑋 ) : 𝑅(𝑡) ≠ 0}. (1)

When this does not lead to confusion, we write 𝑅′ to denote Supp(𝑅). Note that 𝑅′ is an ordinary

relation over 𝑋 . A K-relation is finitely supported if its support is a finite set. In this paper, all K-
relations considered will be finitely supported, andwe omit the term; thus, from now on, aK-relation
is a finitely supported K-relation. When 𝑅′ is empty, we say that 𝑅 is the empty K-relation over 𝑋 .

If 𝑌 ⊆ 𝑋 , then the marginal 𝑅 [𝑌 ] of 𝑅 on 𝑌 is the K-relation over 𝑌 such that for every 𝑌 -tuple 𝑡 ,

we have that

𝑅 [𝑌 ] (𝑡) :=
∑︁
𝑟 ∈𝑅′ :
𝑟 [𝑌 ]=𝑡

𝑅(𝑟 ). (2)

The value 𝑅 [𝑌 ] (𝑡) is the marginal of 𝑅 over 𝑡 . In what follows and for notational simplicity, we will

often write 𝑅(𝑡) for the marginal of 𝑅 over 𝑡 , instead of 𝑅 [𝑌 ] (𝑡). It will be clear from the context

(e.g., from the arity of the tuple 𝑡 ) if 𝑅(𝑡) is indeed the marginal of 𝑅 over 𝑡 (in which case 𝑡 must

be a 𝑌 -tuple) or 𝑅(𝑡) is the actual value of 𝑅 on 𝑡 as a mapping from Tup(𝑋 ) to 𝐾 (in which case 𝑡

must be an 𝑋 -tuple). If 𝑅 is an ordinary relation or a bag (i.e., 𝑅 is a B-relation or an N-relation),
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then the marginal 𝑅 [𝑌 ] is the projection of 𝑅 on 𝑌 under set semantics or under bag semantics,

respectively.

Lemma 2.1. Let K be a positive commutative monoid and let 𝑅(𝑋 ) be a K-relation. The following
statements hold:
(1) For all 𝑌 ⊆ 𝑋 , we have 𝑅′ [𝑌 ] = 𝑅 [𝑌 ]′.
(2) For all 𝑍 ⊆ 𝑌 ⊆ 𝑋 , we have 𝑅 [𝑌 ] [𝑍 ] = 𝑅 [𝑍 ].

If 𝑋 and 𝑌 are sets of attributes, then we write 𝑋𝑌 as shorthand for the union 𝑋 ∪𝑌 . Accordingly,
if 𝑥 is an 𝑋 -tuple and 𝑦 is a 𝑌 -tuple with the property that 𝑥 [𝑋 ∩ 𝑌 ] = 𝑦 [𝑋 ∩ 𝑌 ], then we write 𝑥𝑦

to denote the 𝑋𝑌 -tuple that agrees with 𝑥 on 𝑋 and on 𝑦 on 𝑌 . We say that 𝑥 joins with 𝑦, and
that 𝑦 joins with 𝑥 , to produce the tuple 𝑥𝑦.
A schema is a sequence 𝑋1, . . . , 𝑋𝑚 of sets of attributes. A collection of K-relations over the

schema 𝑋1, . . . , 𝑋𝑚 is a sequence 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚) of K-relations, where 𝑅𝑖 (𝑋𝑖 ) is a K-relation
over 𝑋𝑖 , for 𝑖 = 1, . . . ,𝑚.

3 CONSISTENCY OVER MONOIDS
The following definitions directly generalize the standard notions of consistency for collections

of ordinary relations to collections of K-relations, where K is an arbitrary positive commutative

monoid.

Definition 3.1. Let K be a positive commutative monoid, let 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚) be a collec-

tion of K-relations over the schema 𝑋1, . . . , 𝑋𝑚 , and let 𝑘 be a positive integer. We say that the

collection 𝑅1, . . . , 𝑅𝑚 is 𝑘-wise consistent if for all 𝑞 ∈ [𝑘] and 𝑖1, . . . , 𝑖𝑞 ∈ [𝑚], there exists a K-
relation 𝑊 (𝑋𝑖1 · · ·𝑋𝑖𝑞 ) such that 𝑊 [𝑋𝑖 ] = 𝑅𝑖 holds for all 𝑖 ∈ [𝑞]. If 𝑘 = 2, we say that the

collection 𝑅1, . . . , 𝑅𝑚 is pairwise consistent. If 𝑘 =𝑚, we say that the collection 𝑅1, . . . , 𝑅𝑚 is globally
consistent. In all such cases we say that𝑊 (𝑋𝑖1 · · ·𝑋𝑖𝑞 ) witnesses the consistency of 𝑅𝑖1 , . . . , 𝑅𝑖𝑞 .

From Definition 3.1, it follows that if a collection of K-relations is (𝑘 + 1)-wise consistent, then it

is also 𝑘-wise consistent. In particular, if a collection of K-relations is globally consistent, then it is

also pairwise consistent. Our goal in this paper is to investigate when the converse is true. In other

words, we focus on the following question: under what conditions on the positive commutative

monoid K and on the schema 𝑋1, . . . , 𝑋𝑚 is it the case that every collection of K-relations of
schema 𝑋1, . . . , 𝑋𝑚 that is pairwise consistent is also globally consistent? Our investigation begins

by identifying a very broad necessary condition.

3.1 Acyclicity is Always Necessary
A hypergraph is a pair 𝐻 = (𝑉 , 𝐸), where 𝑉 is a set of vertices and 𝐸 is a set of hyperedges, each of

which is a non-empty subset of𝑉 . Every collection 𝑋1, . . . , 𝑋𝑚 of sets of attributes can be identified

with a hypergraph 𝐻 = (𝑉 , 𝐸), where 𝑉 = 𝑋1 ∪ · · · ∪ 𝑋𝑚 and 𝐸 = {𝑋1, . . . , 𝑋𝑚}. Conversely, every
hypergraph 𝐻 = (𝑉 , 𝐸) gives rise to a collection 𝑋1, . . . , 𝑋𝑚 of sets of attributes, where 𝑋1, . . . , 𝑋𝑚

are the hyperedges of 𝐻 . Thus, we can move seamlessly between collections of sets of attributes

and hypergraphs.

Acyclic Hypergraphs. The notion of an acyclic hypergraph generalizes the notion of an acyclic

graph. Since we will not work directly with the definition of an acyclic hypergraph, we refer the

reader to [4] for the precise definition. Instead, we focus on other notions that are equivalent to

hypergraph acyclicity and will be of interest to us in the sequel.

The primal graph of a hypergraph 𝐻 = (𝑉 , 𝐸) is the undirected graph that has 𝑉 as its set of

vertices and has an edge between any two distinct vertices that appear together in at least one
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hyperedge of 𝐻 . A hypergraph 𝐻 is conformal if the set of vertices of every clique (i.e., complete

subgraph) of the primal graph of𝐻 is contained in some hyperedge of𝐻 . A hypergraph𝐻 is chordal
if its primal graph is chordal, that is, if every cycle of length at least four of the primal graph of 𝐻

has a chord. To illustrate these concepts, let 𝑉𝑛 = {𝐴1, . . . , 𝐴𝑛} be a set of 𝑛 vertices and consider

the hypergraphs

𝑃𝑛 = (𝑉𝑛, {𝐴1, 𝐴2}, . . . , {𝐴𝑛−1, 𝐴𝑛}) (3)

𝐶𝑛 = (𝑉𝑛, {𝐴1, 𝐴2}, . . . , {𝐴𝑛−1, 𝐴𝑛}, {𝐴𝑛, 𝐴1}) (4)

𝐻𝑛 = (𝑉𝑛, {𝑉𝑛 \ {𝐴𝑖 } : 1 ≤ 𝑖 ≤ 𝑛}) (5)

If 𝑛 ≥ 2, then the hypergraph 𝑃𝑛 is both conformal and chordal. The hypergraph𝐶3 = 𝐻3 is chordal,

but not conformal. For every 𝑛 ≥ 4, the hypergraph 𝐶𝑛 is conformal, but not chordal, while the

hypergraph 𝐻𝑛 is chordal, but not conformal.

We say that a hypergraph 𝐻 has the running intersection property if there is a listing 𝑋1, . . . , 𝑋𝑚

of all hyperedges of 𝐻 such that for every 𝑖 ∈ [𝑚] with 𝑖 ≥ 2, there exists a 𝑗 ∈ {1, . . . , 𝑖 − 1} such
that 𝑋𝑖 ∩ (𝑋1 ∪ · · · ∪ 𝑋𝑖−1) ⊆ 𝑋 𝑗 .

Local-to-Global Consistency Property. We say that a hypergraph 𝐻 has the local-to-global consis-
tency property for relations if every collection of relations over 𝐻 that is pairwise consistent is also

globally consistent. This generalizes naturally to K-relations.

Definition 3.2. Let K be a positive commutative monoid, and let 𝑋1, . . . , 𝑋𝑚 be a listing of all the

hyperedges of a hypergraph 𝐻 . We say that 𝐻 has the local-to-global consistency property for K-
relations if every collection 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚) of K-relations that is pairwise consistent is also
globally consistent.

The main theorem in [4] is about B-relations.

Theorem 3.3 (Theorem 3.4 in [4]). Let𝐻 be a hypergraph. The following statements are equivalent:
(a) 𝐻 is an acyclic hypergraph.
(b) 𝐻 is a conformal and chordal hypergraph.
(c) 𝐻 has the running intersection property.
(d) 𝐻 has the local-to-global consistency property for relations.

Our first result states that the implication (d)⇒ (a) holds for K-relations, where K is an arbitrary

positive commutative monoid.

Theorem 3.4. Let K be a positive commutative monoid and let 𝐻 be a hypergraph. If 𝐻 has
the local-to-global consistency property for K-relations, then 𝐻 is an acyclic hypergraph.

To prove Theorem 3.4, one needs to find a more general construction than the one devised in [4]

since the construction given there uses some special properties of ordinary (set-theoretic) relations.

Our construction generalizes the one for bags in [2].

3.2 Acyclicity is Not Always Sufficient
In this section, we show that the acyclicity of a schema is not a sufficient condition for the local-to-

global consistency property to hold for arbitrary positive commutative monoids.

Let N2 = ({0, 1, 2}, ⊕, 0) be the positive commutative monoid with the set {0, 1, 2} as its universe
and addition rounded to 2 as its operation, i.e., 1 ⊕ 1 = 2 ⊕ 1 = 2 ⊕ 2 = 2, and 0 ⊕ 𝑥 = 𝑥 ⊕ 0 = 𝑥 for

all 𝑥 ∈ {0, 1, 2}. Let 𝑃3 be the path-of-length-3 hypergraph whose vertices form the set {𝐴, 𝐵,𝐶, 𝐷}
and whose edges form the set {{𝐴, 𝐵}, {𝐵,𝐶}, {𝐶, 𝐷}}. Clearly, 𝑃3 is an acyclic hypergraph.
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Proposition 3.5. The path-of-length-3 hypergraph 𝑃3 does not have the local-to-global consistency
property for N2-relations.

The proof of Proposition 3.5 will actually be subsumed by the main result of the next section.

4 THE TRANSPORTATION PROPERTY
As seen in the previous section, there exist positive commutative monoidsK for which acyclicity of a

hypergraph is not a sufficient condition for it to have the local-to-global consistency property forK-
relations. In this section we pursue sufficient conditions.

4.1 The Inner Consistency Property
LetK be a positive commutative monoid. It is not difficult to see that if 𝑅(𝑋 ) and 𝑆 (𝑌 ) are consistent
K-relations, then 𝑅 [𝑋 ∩ 𝑌 ] = 𝑆 [𝑋 ∩ 𝑌 ], i.e., 𝑅(𝑋 ) and 𝑆 (𝑌 ) have the same marginals on the set of

their common attributes. Motivated by this, we introduce the following two notions.

Definition 4.1. Let K be a positive commutative monoid. Two K-relations 𝑅(𝑋 ) and 𝑆 (𝑌 ) are
inner consistent if 𝑅 [𝑋 ∩ 𝑌 ] = 𝑆 [𝑋 ∩ 𝑌 ] holds. The inner consistency property holds for K-relations
if whenever two K-relations 𝑅(𝑋 ) and 𝑆 (𝑌 ) are inner consistent, then 𝑅(𝑋 ) and 𝑆 (𝑌 ) are also

consistent.

The main result of this section asserts that the inner consistency property holds for K-relations
if and only if every acyclic hypergraph has the local-to-global consistency property for K-relations.
Rather unexpectedly, it turns out that this last property is equivalent to just having it for the

path-of-length three hypergraph 𝑃3. To prove this, we will introduce a combinatorial property of

monoids.

Definition 4.2. Let K = (𝐾, +, 0) be a positive commutative monoid. The transportation problem
for K is the following decision problem: given two positive integers𝑚 and 𝑛, a column𝑚-vector 𝑏 =

(𝑏1, . . . , 𝑏𝑚) ∈ 𝐾𝑚
with entries in 𝐾 , and a row 𝑛-vector 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝐾𝑛

with entries in 𝐾 ,

does there exist an 𝑚 × 𝑛 matrix 𝐷 = (𝑑𝑖 𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]) ∈ 𝐾𝑚×𝑛
with entries in 𝐾 such

that 𝑑𝑖1 + · · · + 𝑑𝑖𝑚 = 𝑏𝑖 for all 𝑖 ∈ [𝑚] and 𝑑1𝑗 + · · · + 𝑑𝑚𝑗 = 𝑐 𝑗 for all 𝑗 ∈ [𝑛]? In words, this means

that the rows of 𝐷 sum to 𝑏 and the columns of 𝐷 sum to 𝑐 .

We view an instance 𝑏 = (𝑏1, . . . , 𝑏𝑚) and 𝑐 = (𝑐1, . . . , 𝑐𝑛) of the transportation problem as a

system of linear equations having 𝑚𝑛 variables and 𝑚 + 𝑛 equations. We represent the first 𝑚

equations horizontally and the next 𝑛 equations vertically, in accordance with the convention that

𝑏 is a column vector and 𝑐 is a row vector:

𝑥11 + 𝑥12 + · · · + 𝑥1𝑛 = 𝑏1
+ + +
𝑥21 + 𝑥22 + · · · + 𝑥2𝑛 = 𝑏2
+ + +
...

...
. . .

...

+ + +
𝑥𝑚1 + 𝑥𝑚2 + · · · + 𝑥𝑚𝑛 = 𝑏𝑚
q q q
𝑐1 𝑐2 𝑐𝑛

(6)

The term “transportation problem" comes from linear programming, where this problem has

the following interpretation. Suppose a product is manufactured in𝑚 different factories, where

factory 𝑖 produces 𝑏𝑖 units of the product, 𝑖 ∈ [𝑚]. The units produced have to be transported to 𝑛
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different markets, where the demand of the product at market 𝑗 is 𝑐 𝑗 units, 𝑗 ∈ [𝑛]. The question is

whether there is a way to ship every unit produced at each factory, so that the demand at each

market is met; thus, the variable 𝑥𝑖 𝑗 represents the number of units produced in factory 𝑖 that are

shipped to market 𝑗 , where 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛].
A necessary condition for an instance of the transportation problem to have a solution is that

this instance is balanced, i.e., 𝑏1 + · · · + 𝑏𝑛 = 𝑐1 + · · · + 𝑐𝑚 . In words, the total supply must be equal

to the total demand. This motivates the following notion.

Definition 4.3. Let K = (𝐾, +, 0) be a positive commutative monoid. We say that K has the

transportation property if for every two positive integers 𝑚 and 𝑛, every column 𝑚-vector 𝑏 =

(𝑏1, . . . , 𝑏𝑚) ∈ 𝐾𝑚
with entries in 𝐾 and every row 𝑛-vector 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝐾𝑛

with entries in 𝐾

such that 𝑏1 + · · · + 𝑏𝑚 = 𝑐1 + · · · + 𝑐𝑛 holds, we have that there exists an𝑚 × 𝑛 matrix 𝐷 = (𝑑𝑖 𝑗 :
𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]) ∈ 𝐾𝑚×𝑛

with entries in 𝐾 whose rows sum to 𝑏 and whose columns sum to 𝑐 ,

i.e., 𝑑𝑖1 + · · · + 𝑑𝑖𝑚 = 𝑏𝑖 for all 𝑖 ∈ [𝑚] and 𝑑1𝑗 + · · · + 𝑑𝑚𝑗 = 𝑐 𝑗 for all 𝑗 ∈ [𝑛].

The Boolean monoid B, the bag monoid N, and the the non-negative reals R≥0
will turn out to

have the transportation property.

4.2 Transportation Property and Acyclicity
We are now ready to state and prove the main result of this section.

Theorem 4.4. Let K be a positive commutative monoid. The following statements are equivalent:
(1) K has the transportation property.
(2) The inner consistency property holds for K-relations.
(3) Every acyclic hypergraph has the local-to-global consistency property for K-relations.
(4) The hypergraph 𝑃3 has the local-to-global consistency property for K-relations.

Proof. (1) =⇒ (2). Suppose that K has the transportation property. Let 𝑅(𝑋 ) and 𝑆 (𝑌 ) be two
inner consistent K-relations and let 𝑍 = 𝑋 ∩ 𝑌 . For each 𝑍 -tuple𝑤 in the support of 𝑅 [𝑍 ] = 𝑆 [𝑍 ],
let 𝑢1, . . . , 𝑢𝑚𝑤

be an enumeration of the 𝑋 -tuples that are in the support 𝑅′ of 𝑅 and extend 𝑤 ,

and let 𝑣1, . . . , 𝑣𝑛𝑤
be an enumeration of the 𝑌 -tuples that are in the support 𝑆 ′ of 𝑆 and extend𝑤 .

Let 𝑏𝑤 = (𝑏𝑤,1, . . . , 𝑏𝑤,𝑚𝑤
) be the column vector defined by 𝑏𝑤,𝑗 := 𝑅(𝑢 𝑗 ) for 𝑗 ∈ [𝑚𝑤], and

let 𝑐𝑤 = (𝑐𝑤,1, . . . , 𝑐𝑤,𝑛𝑤
) be the row vector defined by 𝑐𝑤,𝑖 := 𝑆 (𝑣𝑖 ) for 𝑖 ∈ [𝑛𝑤]. Since 𝑅 and 𝑆 are

inner consistent, we have that 𝑅(𝑤) = 𝑆 (𝑤), hence
𝑏𝑤,1 + · · · + 𝑏𝑤,𝑚𝑤

= 𝑐𝑤,1 + · · · + 𝑐𝑤,𝑛𝑤
. (7)

By the transportation property of K, there exists an𝑚𝑤 ×𝑛𝑤 matrix𝑀𝑤 = (𝑑𝑤 (𝑖, 𝑗) : 𝑖 ∈ [𝑚𝑤], 𝑗 ∈
[𝑛𝑤]) that has 𝑏𝑤 as column sum and 𝑐𝑤 as row sum. Let 𝑇 (𝑋𝑌 ) be the K-relation defined for

every𝑋𝑌 -tuple 𝑡 by𝑇 (𝑡) := 𝑑𝑤 (𝑖, 𝑗) where𝑤 = 𝑡 [𝑍 ] and 𝑖 and 𝑗 are such that 𝑡 [𝑋 ] = 𝑢𝑖 and 𝑡 [𝑌 ] =
𝑣 𝑗 in the enumerations of the tuples in 𝑅′ and 𝑆 ′ that are used in defining 𝑏𝑤 and 𝑐𝑤 . For any

other 𝑋𝑌 -tuple 𝑡 , set 𝑇 (𝑡) := 0. It follows from the definitions that 𝑇 is a K-relation that witnesses

the consistency of 𝑅 and 𝑆 .

(2) =⇒ (3). Assume that the hypergraph 𝐻 is acyclic and therefore it has the running intersection

property. Hence, there is a listing𝑋1, . . . , 𝑋𝑚 of its hyperedges such that for every 𝑖 ∈ [𝑚] with 𝑖 ≥ 2,

there is a 𝑗 ∈ [𝑖 − 1] such that 𝑋𝑖 ∩ (𝑋1 ∪ · · · ∪𝑋𝑖−1) ⊆ 𝑋 𝑗 . Let 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚) be a collection
of K-relations that is pairwise consistent. By induction on 𝑖 = 1, . . . ,𝑚, we show that there is

a K-relation𝑇𝑖 over 𝑋1 ∪ · · · ∪𝑋𝑖 that witnesses the global consistency of the K-relations 𝑅1, . . . , 𝑅𝑖 .
For 𝑖 = 1 the claim is obvious by taking 𝑇1 = 𝑅1. Assume then that 𝑖 ≥ 2 and that the claim is true

for all smaller indices. Let 𝑋 := 𝑋1 ∪ · · · ∪𝑋𝑖−1. By the running intersection property, let 𝑗 ∈ [𝑖 − 1]
be such that 𝑋𝑖 ∩ 𝑋 ⊆ 𝑋 𝑗 . By induction hypothesis, there is a K-relation 𝑇𝑖−1 (𝑋 ) that witnesses
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the global consistency of 𝑅1, . . . , 𝑅𝑖−1. First, we show that 𝑇𝑖−1 and 𝑅𝑖 are consistent. Since, by

assumption, the inner consistency property for K-relations holds, it suffices to show that 𝑇𝑖−1
and 𝑅𝑖 are inner consistent, i.e., that 𝑇𝑖−1 [𝑋 ∩ 𝑋𝑖 ] = 𝑅𝑖 [𝑋 ∩ 𝑋𝑖 ]. Let 𝑍 = 𝑋 ∩ 𝑋𝑖 , so 𝑍 ⊆ 𝑋 𝑗 by

the choice of 𝑗 , and indeed 𝑍 = 𝑋 𝑗 ∩ 𝑋𝑖 . Since 𝑗 ≤ 𝑖 − 1, we have 𝑅 𝑗 = 𝑇𝑖−1 [𝑋 𝑗 ]. Since 𝑍 ⊆ 𝑋 𝑗 ,

we have 𝑅 𝑗 [𝑍 ] = 𝑇𝑖−1 [𝑋 𝑗 ] [𝑍 ] = 𝑇𝑖−1 [𝑍 ]. By assumption, also 𝑅 𝑗 and 𝑅𝑖 are consistent, and if𝑊

is any K-relation that witnesses their consistency and 𝑍 = 𝑋 𝑗 ∩ 𝑋𝑖 , then 𝑅 𝑗 [𝑍 ] = 𝑊 [𝑋 𝑗 ] [𝑍 ] =

𝑊 [𝑍 ] = 𝑊 [𝑋𝑖 ] [𝑍 ] = 𝑅𝑖 [𝑍 ]. By transitivity we get 𝑇𝑖−1 [𝑍 ] = 𝑅𝑖 [𝑍 ], as was to be proved to

show that 𝑇𝑖−1 and 𝑅𝑖 are consistent. Now, let 𝑇𝑖 be a K-relation that witnesses the consistency

of 𝑇𝑖−1 and 𝑅𝑖 . We show that 𝑇𝑖 witnesses the global consistency of 𝑅1, . . . , 𝑅𝑖 . Since 𝑇𝑖−1 and 𝑅𝑖
are consistent and 𝑇𝑖 is a witness, we have 𝑇𝑖−1 = 𝑇𝑖 [𝑋 ] and 𝑅𝑖 = 𝑇𝑖 [𝑋𝑖 ]. Now fix 𝑘 ≤ 𝑖 − 1 and

note that 𝑅𝑘 = 𝑇𝑖−1 [𝑋𝑘 ] = 𝑇𝑖 [𝑋 ] [𝑋𝑘 ] = 𝑇𝑖 [𝑋𝑘 ], where the first equality follows from the fact

that𝑇𝑖−1 witnesses the consistency of 𝑅1, . . . , 𝑅𝑖−1 and 𝑘 ≤ 𝑖 − 1, and the other two equalities follow

from 𝑇𝑖−1 = 𝑇𝑖 [𝑋 ] and the fact that 𝑋𝑘 ⊆ 𝑋 . Thus, 𝑇𝑖 witnesses the consistency of 𝑅1, . . . , 𝑅𝑖 , which

was to be shown.

(3) =⇒ (4). This statement is obvious.

(4) =⇒ (1). Assume that the path-of-length-3 hypergraph 𝑃3 has the local-to-global consistency

property for K-relations. Let (𝑏1, . . . , 𝑏𝑚) and (𝑐1, . . . , 𝑐𝑛) be the two vectors of a balanced instance

of the transportation problem for K. Consider the associated system of equations as in (6). Let

𝑎 = 𝑏1 + · · · + 𝑏𝑚 = 𝑐1 + · · · + 𝑐𝑛 . If 𝑎 = 0, then 𝑏1 = · · · = 𝑏𝑚 = 𝑐1 = · · · = 𝑐𝑛 = 0 by the positivity of

K, and then setting 𝑥𝑖 𝑗 = 0 for all 𝑖 and 𝑗 we get a solution to (6). Assume then that 𝑎 ≠ 0. Based on

this instance, we first build three K-relations 𝑅(𝐴𝐵), 𝑆 (𝐵𝐶),𝑇 (𝐶𝐷), then we show that they are

pairwise consistent, and finally we show how to use any witness of their global consistency to

build a solution to the given balanced instance of the transportation problem. The three K-relations
are given by the following tables, where the third column is the annotation value from K for the

tuple on its left:

𝐴 𝐵 : 𝑅 𝐵 𝐶 : 𝑆 𝐶 𝐷 : 𝑇

𝑢1 0 : 𝑏1 0 0 : 𝑎 1 𝑢1 : 𝑏1
...

...
... 1 1 : 𝑎

...
...

...

𝑢𝑚 0 : 𝑏𝑚 1 𝑢𝑚 : 𝑏𝑚
𝑣1 1 : 𝑐1 0 𝑣1 : 𝑐1
...

...
...

...
...

...

𝑣𝑛 1 : 𝑐𝑚 0 𝑣𝑛 : 𝑐𝑛

As witnesses to the pairwise consistency of these threeK-relations, consider theK-relations defined
by𝑈 (𝑢𝑖 , 0, 0) = 𝑉 (1, 1, 𝑢𝑖 ) =𝑊 (𝑢𝑖 , 0, 1, 𝑣𝑖 ) = 𝑏𝑖 and𝑈 (𝑣𝑖 , 1, 1) = 𝑉 (0, 0, 𝑣𝑖 ) =𝑊 (𝑣𝑖 , 1, 0, 𝑢𝑖 ) = 𝑐𝑖 . By
construction, we have𝑈 [𝐴𝐵] = 𝑅 and𝑈 [𝐵𝐶] = 𝑆 , also𝑉 [𝐵𝐶] = 𝑆 and𝑉 [𝐶𝐷] = 𝑇 , and𝑊 [𝐴𝐵] = 𝑅
and𝑊 [𝐶𝐷] = 𝑇 . By the assumption that the hypergraph 𝑃3 has the local-to-global consistency

property for K-relations, there is a K-relation 𝑌 (𝐴𝐵𝐶𝐷) that witnesses the global consistency of

𝑅, 𝑆,𝑇 . Since 𝑌 [𝐵𝐶] = 𝑆 , for every tuple (𝑎, 𝑏, 𝑐, 𝑑) in the support 𝑌 ′
of 𝑌 , we have 𝑏 = 𝑐 = 0 or

𝑏 = 𝑐 = 1. Similarly, since 𝑌 [𝐴𝐵] = 𝑅, we have that if 𝑏 = 0 then 𝑎 = 𝑢𝑖 for some 𝑖 ∈ [𝑚], and since

𝑌 [𝐶𝐷] = 𝑇 , we have that if 𝑐 = 0 then𝑑 = 𝑣 𝑗 for some 𝑗 ∈ [𝑛]. Now, set𝑑𝑖 𝑗 := 𝑌 (𝑢𝑖 , 0, 0, 𝑣 𝑗 ) for every
𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. For every 𝑖 ∈ [𝑚] we have ∑𝑗 𝑑𝑖 𝑗 =

∑
𝑗 𝑌 (𝑢𝑖 , 0, 0, 𝑣 𝑗 ) =

∑
𝑖,𝑐,𝑑 𝑌 (𝑢𝑖 , 0, 𝑐, 𝑑) =

𝑅(𝑢𝑖 , 0) = 𝑏𝑖 , where the first equality follows from the choice of 𝑑𝑖 𝑗 , the second follows from

the above-mentioned properties of the tuples (𝑎, 𝑏, 𝑐, 𝑑) in the support 𝑌 ′
of 𝑌 , the third follows

from 𝑌 [𝐴𝐵] = 𝑅, and the last follows from the choice of 𝑅. Similarly, for every 𝑗 ∈ [𝑛] we have∑
𝑖 𝑑𝑖 𝑗 =

∑
𝑖 𝑌 (𝑢𝑖 , 0, 0, 𝑣 𝑗 ) =

∑
𝑎,𝑏,𝑗 𝑌 (𝑎, 𝑏, 0, 𝑣 𝑗 ) = 𝑇 (0, 𝑣 𝑗 ) = 𝑐 𝑗 , with very similar justifications for
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each step. This proves that 𝐷 = (𝑑𝑖 𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]) is a solution to the balanced instance of the

transportation property of K given by the vectors (𝑏1, . . . , 𝑏𝑚) and (𝑐1, . . . , 𝑐𝑛), which completes

the proof. □

Theorems 3.4 and 4.4 yield the following result.

Corollary 4.5. Let K be a positive commutative monoid that has the transportation property. For
every hypergraph 𝐻 , the following statements are equivalent:

(1) 𝐻 is an acyclic hypergraph.
(2) 𝐻 has the local-to-global consistency property for K-relations.

Since the transportation property holds for B and since the B-relations are the ordinary relations,
Corollary 4.5 contains the Beeri-Fagin-Maier-Yannakakis Theorem from [4] as a special case. In the

next section, we identify several different classes of positive commutative monoids that have the

transportation property; therefore, Corollary 4.5 applies to all such monoids.

5 TRANSPORTATION MONOIDS
We now turn to the question of identifying broad classes of positive commutative monoids that do

have the transportation property.

5.1 Expansions to Semirings and Standard Joins
A semiring is a structure K = (𝐾, +,×, 0, 1) such that:

• (𝐾, +, 0) and (𝐾,×, 1) are commutative monoids;

• × distributes over +, i.e., 𝑝 × (𝑞 + 𝑟 ) = 𝑝 × 𝑞 + 𝑝 × 𝑟 .
• 0 annihilates, i.e., 0 × 𝑝 = 𝑝 × 0 = 0.

An additively positive semiring is a semiring K = (𝐾, +,×, 0, 1) whose additive reduct (𝐾, +, 0) is
a positive monoid. If 𝑅(𝑋 ) and 𝑆 (𝑌 ) are two K-relations, then the standard K-join of 𝑅 and 𝑆 ,

denoted by 𝑅 ZK,S 𝑆 , is the K-relation𝑊 (𝑋𝑌 ) defined for every 𝑋𝑌 -tuple 𝑡 by the equation

𝑊 (𝑡) = 𝑅(𝑡 [𝑋 ]) × 𝑆 (𝑡 [𝑌 ]). We say that the inner consistency property holds for K-relations via the
standard K-join if the inner consistency property holds for K-relations and, moreover, the standard

K-join witnesses the consistency of two consistentK-relations. Clearly, ifK is the Boolean semiring

B, then the standard K-join coincides with the relational join. Unfortunately, if K is an arbitrary

positive semiring, then the standard K-join need not always be a witness to the consistency of two

consistent K-relations. This fails even for bags as pointed out in [2].

Our aim is to characterize the additively positive semirings K for which the inner consistency

property holds for K-relations via the standard K-join. We need two definitions. We say that K is

additively absorptive if for all 𝑝, 𝑞 ∈ 𝐾 it holds that 𝑝 + 𝑝 × 𝑞 = 𝑝 . We say that K is multiplicatively
idempotent if for all 𝑝 ∈ 𝐾 it holds that 𝑝 × 𝑝 = 𝑝 . It turns out that, if K is additively absorptive,

then K is additively positive. Indeed, suppose that 𝑝 and 𝑞 are two elements of 𝐾 such that 𝑝 +𝑞 = 0.

Then 𝑝 = 𝑝 + (𝑝 + 𝑞) = (𝑝 + 𝑝) + 𝑞 = 𝑝 + 𝑞 = 0, where the first and last equalities follow from

the assumption that 𝑝 + 𝑞 = 0, and the second and third equalities follow from associativity and

additive idempotence, respectively. Similarly, we get 𝑞 = (𝑝 +𝑞) +𝑞 = 𝑝 + (𝑞 +𝑞) = 𝑝 +𝑞 = 0, hence

𝑝 = 𝑞 = 0.

Proposition 5.1. Let K be a semiring. The following statements are equivalent.

(1) K is additively absorptive and multiplicatively idempotent.
(2) K is additively positive and the inner consistency property holds for K-relations via the standard
K-join.
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Examples of additively positive semirings to which Proposition 5.1 applies include the Boolean

semiring B, all bounded distributive lattices such as the max/min semirings (𝐴,max,min, 𝑎, 𝑏)
where (𝐴, ≤) is a totally ordered set with minimum 𝑎 and maximum 𝑏, and the Boolean positive

expressions up to equivalence.

5.2 Expansions to Semifields and Vorob’ev Joins
A semifield is a structure K = (𝐾, +,×, 0, 1) such that:

• K = (𝐾, +,×, 0, 1) is a semiring.

• For every element 𝑝 ≠ 0 in 𝐾 , there exists an element 𝑞 in 𝐾 such that 𝑝 × 𝑞 = 1 = 𝑞 × 𝑝;
since, as can be seen, this 𝑞 is unique, we write 1/𝑝 for 𝑞, and 𝑟/𝑝 for 𝑟 × (1/𝑝).

An additively positive semifield is a semifield K = (𝐾, +,×, 0, 1) in which the underlying additive

monoid (𝐾, +, 0) is positive. For two inner consistent K-relations 𝑅(𝑋 ) and 𝑆 (𝑌 ), the Vorob’ev K-
join of 𝑅 and 𝑆 , denoted by 𝑅 ZK,V 𝑆 , is the K-relation𝑊 (𝑋𝑌 ) defined for every 𝑋𝑌 -tuple 𝑡 as

follows:𝑊 (𝑡) = 𝑅(𝑡 [𝑋 ]) ×𝑆 (𝑡 [𝑌 ])/𝑅(𝑡 [𝑋 ∩𝑌 ]) = 𝑅(𝑡 [𝑋 ]) ×𝑆 (𝑡 [𝑌 ])/𝑆 (𝑡 [𝑋 ∩𝑌 ]) if 𝑅(𝑡 [𝑋 ∩𝑌 ]) =
𝑆 (𝑡 [𝑋 ∩ 𝑌 ]) ≠ 0, and𝑊 (𝑡) = 0 otherwise. The Vorob’ev K-join of two K-relations is well-defined
because 𝑅(𝑋 ) and 𝑆 (𝑌 ) were assumed to be inner consistent K-relations. We say that the inner
consistency property holds for K-relations via the Vorob’ev K-join if the inner consistency property

holds forK-relations and, moreover, the Vorob’evK-join witnesses the consistency of two consistent
K-relations.

Proposition 5.2. If K is an additively positive semifield, then the inner consistency property holds
for K-relations via the Vorob’ev K-join.

Two well known examples of positive semifields are the semiring R≥0 = (𝑅≥0, +,×, 0, 1) of
non-negative real numbers and its rational substructure Q≥0 = (𝑄≥0, +,×, 0, 1). Others examples

include the tropical semiring Tmin = ((−∞, +∞],min, +, +∞, 0), and its smooth variant, which is

called the log semiring.

5.3 Northwest Corner Method
Let K = (𝐾, +, 0) be a positive commutative monoid. Consider the binary relation ⊑ on 𝐾 defined,

for all 𝑏, 𝑐 ∈ 𝐾 , by 𝑏 ⊑ 𝑐 if and only if there exists some 𝑎 ∈ 𝐾 such that 𝑏 + 𝑎 = 𝑐 . The binary

relation ⊑ is reflexive and transitive, and is hence a pre-order, called the canonical pre-order of
K. We say that K is totally canonically pre-ordered if 𝑏 ⊑ 𝑐 or 𝑐 ⊑ 𝑏 for all 𝑏, 𝑐 ∈ 𝐾 , and weakly
cancellative if 𝑎 + 𝑏 = 𝑎 + 𝑐 implies 𝑏 = 𝑐 or 𝑏 = 0 or 𝑐 = 0 for all 𝑎, 𝑏, 𝑐 ∈ 𝐾 .

We will show that if a positive commutative monoid K is weakly cancellative and totally canoni-

cally pre-ordered, then K has the inner consistency property for K-relations. This will be achieved
by using the northwest corner method of linear programming for finding solutions for the trans-

portation problem, and hence witnesses of consistency. We say that the inner consistency property

holds for K-relations via the northwest (NW) corner method.
Intuitively, the NW corner method starts by assigning a value to the variable in the northwest

corner of the system of equations, eliminating at least one equation, and iterating this process by

considering next the variable in the northwest corner of the resulting system. Unlike the case of

linear programming, here we cannot subtract values; instead, we have to use the assumption that

the monoid is weakly cancellative and totally canonically pre-ordered.

Proposition 5.3. If K is a weakly cancellative and totally canonically pre-ordered positive commu-
tative monoid, then K has the inner consistency property for K-relations via the NW corner method.

The prime example to which Proposition 5.3 applies is the bag monoidN. Other examples include

the additive reduct of the log semiring, and its non-negative version that has domain [0, +∞].
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5.4 Powers, Polynomials, and Free Monoids
Let 𝐼 be a finite or infinite index set and let K = (𝐾, +, 0) be a monoid. The power monoid K𝐼

has

as elements the maps 𝑓 : 𝐼 → 𝐾 with addition 𝑓 + 𝑔 defined componentwise by the equation

(𝑓 + 𝑔) (𝑖) = 𝑓 (𝑖) + 𝑔(𝑖). The finite support power K𝐼
fin

is the substructure whose elements are the

maps of finite support. It is easy to check that if K is positive, then K𝐼
and K𝐼

fin
are positive as well.

Proposition 5.4. Let 𝐼 be a non-empty index set and let K be a positive commutative monoid. The
following are equivalent:

(1) K has the transportation property,
(2) K𝐼 has the transportation property,
(3) K𝐼

fin
has the transportation property.

Viewing a polynomial as an indexed collection of coefficients for its monomials, examples of

the form K𝐼
fin

include the monoids of polynomials with coefficients in K and variables in a set

of indeterminates 𝑋 , denoted by K[𝑋 ]. Their restriction to monomials of total degree 𝑑 are the

degree-𝑑 forms, and it is denoted by K[𝑋 ]𝑑 . If K is a semiring, then K[𝑋 ] can also be viewed

as a semiring. The special case N[𝑋 ] is called the most informative of the provenance semirings
(see [8]). In fact, the additive reducts of all provenance semirings considered in [8] have the form

K𝐼
fin

for some positive monoid K and hence have the transportation property. The monoid N[𝑋 ]1 of
linear forms with non-negative integer coefficients is isomorphic to the free commutative monoid

generated by 𝑋 (see Chapter 10 in [6]), denoted here by F(𝑋 ).

Proposition 5.5. For every set 𝑋 of indeterminates, the free commutative monoid generated by 𝑋
is isomorphic to N[𝑋 ]1, and it is a positive commutative monoid that has the transportation property.

The free commutative monoids F(𝑋 ) will reappear in Section 6.

5.5 Some Important Non-Examples
As we have seen, many important positive commutative monoids have the transportation property.

Unfortunately there are positive commutative monoids of different character that fail to have the

transportation property. Here we present a few such examples.

The first non-example was already defined in Section 3.2, i.e., the monoid N2 of natural numbers

with addition truncated to 2. Consider the N2-relations 𝑅(𝐴𝐶) and 𝑆 (𝐵𝐶) defined by 𝑅(𝑎1, 𝑐) =
𝑅(𝑎2, 𝑐) = 𝑆 (𝑏1, 𝑐) = 1 and 𝑆 (𝑏2, 𝑐) = 2, and no other tuples in their supports. It is easy to see that

this is a counterexample to the inner consistency property for N2-relations. Another non-example

with a similar counterexample is R1 = ({0} ∪ [1, +∞], +, 0), the non-negative reals with a gap. Note

that N2 is finite, while R1 is infinite.
Our third non-example involves a natural positive commutative monoid for which the failure of

the transportation property is conceptually significant as it corresponds to the deep fact of quantum

mechanics that there exist pairs of binary observables that cannot be jointly measured. This is a

manifestation of the Heisenberg uncertainty principle for positive-operator-valued measures [11].

Let 𝑛 ≥ 1 be a positive integer and let PSD𝑛 be the set of positive semidefinite matrices in

R𝑛×𝑛 with standard matrix addition. The properties of PSD matrices can be used to show that

this is a positive monoid. For 𝑛 = 2, there is an instance of the transportation problem involving

the (real) Pauli matrices 𝐼 , 𝑋 , 𝑍 that has no solution over PSD2, concretely the instance given by

𝑏 = ((𝐼 + 𝑋 )/2, (𝐼 − 𝑋 )/2) and 𝑐 = ((𝐼 + 𝑍 )/2, (𝐼 − 𝑍 )/2). This can be extended to all 𝑛 ≥ 2 by

padding the matrices with zeros. The bottom case PSD1 has the transportation property as it is

isomorphic to R≥0
.
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6 LOCAL CONSISTENCY UP TO A COVER
Here, we investigate whether there is a suitably modified notion of local consistency of K-relations
that has the effect of capturing the global consistency of K-relations for precisely the acyclic hyper-

graphs, but that applies to every positive commutative monoid. We achieve this by strengthening

the notion of locality.

6.1 Consistency up to a Cover
Let K be a positive commutative monoid. A cover of K is a positive commutative monoid K∗

such

that there is a surjective homomorphism ℎ from K∗
onto K. The identity cover is the cover where

K∗
is K itself and ℎ is the identity map. A cover of K is given by the pair (K∗, ℎ) of both objects; we

use the notation ℎ : K∗ 𝑠→ K to say that the pair (K∗, ℎ) is a cover of K. For the definitions of the
next paragraph, fix such a cover.

For a K-relation 𝑅(𝑌 ), an ℎ-lift of 𝑅 is a K∗
-relation 𝑅∗ (𝑌 ) such that ℎ(𝑅∗ (𝑡)) = 𝑅(𝑡) holds for

every 𝑌 -tuple 𝑡 , i.e., ℎ ◦ 𝑅∗ = 𝑅 holds. In most of the cases that follow, the cover will be clear from

the context, and we simply say that 𝑅∗ is a lift of 𝑅, without any reference to ℎ. Note that, since

the homomorphism ℎ is surjective onto K, every K-relation 𝑅 has at least one ℎ-lift 𝑅∗. Consider

the special case where ℎ : K∗ 𝑠→ K is a retraction, meaning that 𝐾 ⊆ 𝐾∗
and ℎ is the identity on 𝐾 ,

where 𝐾 and 𝐾∗
are the universes of K and K∗

, respectively; in this case, the direct ℎ-lift of 𝑅 is the

K∗
-relation 𝑅∗ defined by 𝑅∗ (𝑡) = 𝑅(𝑡), for every 𝑌 -tuple 𝑡 .
Definition 6.1. Let K be a positive commutative monoid, let ℎ : K∗ 𝑠→ K be a cover of K,

let 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚) be a collection of K-relations over the schema 𝑋1, . . . , 𝑋𝑚 , and let 𝑘 be a

positive integer. We say that the collection 𝑅1, . . . , 𝑅𝑚 is 𝑘-wise consistent up to the cover ℎ : K∗ 𝑠→ K
if there exists a collection 𝑅∗

1
, . . . , 𝑅∗𝑚 of ℎ-lifts of 𝑅1, . . . , 𝑅𝑚 that is 𝑘-wise consistent (as a collection

of K∗
-relations). If 𝑘 = 2, then we say that the collection 𝑅1, . . . , 𝑅𝑚 is pairwise consistent up to the

cover. If 𝑘 =𝑚, then we say that the collection 𝑅1, . . . , 𝑅𝑚 is globally consistent up to the cover. When

𝑘 =𝑚 = 2, we just say that 𝑅1 and 𝑅2 are consistent up to the cover.

It is worth pointing out that, in the definition of consistency up to a cover, not only the choice of

the cover ℎ : K∗ 𝑠→ K potentially matters, but also the choice of ℎ-lifts 𝑅∗
1
, . . . , 𝑅∗𝑚 matters.

The following simple but important observation about global consistency up to covers is key to

our development.

Proposition 6.2 (Absoluteness). Let K be a positive commutative monoid and let 𝑅1, . . . , 𝑅𝑚 be
a collection of K-relations. The following statements are equivalent.
(1) 𝑅1, . . . , 𝑅𝑚 is globally consistent,
(2) 𝑅1, . . . , 𝑅𝑚 is globally consistent up to every cover of K,
(3) 𝑅1, . . . , 𝑅𝑚 is globally consistent up to some cover of K.

In view of Proposition 6.2, we say that the notion of global consistency up to covers is absolute
as if it holds for some cover, then it holds for all covers. Unlike the global notion, the local notion is

not but at least 2/3 of Proposition 6.2 descend to local consistency.

Proposition 6.3. Let𝑘 be a positive integer, letK be a positive commutativemonoid, and let𝑅1, . . . , 𝑅𝑚
be a collection of K-relations. The following statements are equivalent.
(1) 𝑅1, . . . , 𝑅𝑚 is 𝑘-wise consistent,
(2) 𝑅1, . . . , 𝑅𝑚 is 𝑘-wise consistent up to some cover of K.

Let us point out that themonoidN2 of Section 5.5 and the counterexample to the inner consistency

property given there can be used to show that local consistency is not absolute in the sense that a

third clause with all covers cannot be added to Proposition 6.3.
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6.2 Local-to-Global Consistency up to Covers
The local-to-global consistency property up to a cover is defined to generalize Definition 3.2 as

follows:

Definition 6.4. Let K be a positive commutative monoid, let ℎ : K∗ 𝑠→ K be a cover of K, and let

𝑋1, . . . , 𝑋𝑚 be a listing of all the hyperedges of a hypergraph𝐻 . We say that𝐻 has the local-to-global
consistency property for K-relations up to the cover ℎ : K∗ 𝑠→ K if every collection 𝑅1 (𝑋1), . . . , 𝑅(𝑋𝑚)
of K-relations that is pairwise consistent up to the cover is globally consistent.

Recall that, by Proposition 5.5, the free commutative monoid F(𝑋 ) for a finite or infinite set of
indeterminates 𝑋 has the transportation property. In the statement of the following theorem, for

K = (𝐾, +, 0), let F(𝐾+) denote the free commutative monoid generated by the set 𝐾+
of non-zero

elements in 𝐾 seen as indeterminates. The free cover of K refers to the cover ℎ : F(𝐾+) 𝑠→ K
provided by the homomorphism ℎ from F(𝐾+) to K given by the universal property of F(𝐾+);
concretely, viewing F(𝐾+) as isomorphic to N[𝐾+]1, the homomorphism ℎ is the natural evaluation
map that takes the linear form 𝑓 ∈ N[𝐾+]1 to its evaluation in K on the indeterminates interpreted

by the corresponding element in 𝐾 . Clearly, ℎ is surjective onto 𝐾 , so ℎ : F(𝐾+) 𝑠→ K is indeed a

cover.

Theorem 6.5. Let K be a positive commutative monoid and let 𝐻 be a hypergraph. The following
statements are equivalent:
(1) 𝐻 is an acyclic hypergraph,
(2) 𝐻 has the local-to-global consistency property up to the free cover of K,
(3) 𝐻 has the local-to-global consistency property up to some cover of K.

Proof. Let 𝑌1, . . . , 𝑌𝑚 be a listing of the hyperedges of 𝐻 .

(1) =⇒ (2). Let 𝑅1 (𝑌1), . . . , 𝑅𝑚 (𝑌𝑚) be a collection of K-relations and assume that it is pairwise

consistent up to the free cover ℎ : F(𝐾+) 𝑠→ K. Let 𝑅∗
1
, . . . , 𝑅∗𝑚 be a collection of F(𝐾+)-relations

that are ℎ-lifts of 𝑅1, . . . , 𝑅𝑚 , respectively, and assume that the collection 𝑅∗
1
, . . . , 𝑅∗𝑚 is pairwise

consistent. By Proposition 5.5 and Corollary 4.5, the hypergraph 𝐻 has the local-to-global consis-

tency property for F(𝐾+)-relations, so the collection 𝑅∗
1
, . . . , 𝑅∗𝑚 is globally consistent. But, then,

the collection 𝑅1, . . . , 𝑅𝑚 itself is globally consistent by Proposition 6.2.

(2) =⇒ (3). This is obvious because the free cover is a cover.

(3) =⇒ (1). A close inspection of the proof of Theorem 3.4 shows that the construction gives a

collection of K-relations that is pairwise consistent up to every cover of K. □

7 CONCLUDING REMARKS
We conclude by describing a few open problems and directions for research motivated by the work

reported here.

As seen earlier, there are finite positive commutative monoids that have the transportation

property (e.g., B) and others that do not (e.g., N2). How difficult is it to decide whether or not

a given finite positive commutative monoid K has the transportation property? Is this problem

decidable or undecidable? The same question can be asked when the given monoid is finitely
presentable. Note that the transportation property is defined using an infinite set of first-order

axioms in the language of monoids. Thus, a related question is whether or not the transportation

property is finitely axiomatizable.

We exhibited several classes of monoids that have the transportation property. In each case,

we gave an explicit construction or a procedure for finding a witness to the consistency of two

consistent K-relations. In some cases (e.g., when the monoid has an expansion to a semifield), there
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is a suitable join operation that yields a canonical such witness. However, in some other cases (e.g.,

when the northwest corner method is used), no canonical such witness seems to exist. Is there a way

to compare the different witnesses to consistency and classify them according to some desirable

property, such as maximizing some carefully chosen objective function?

Finally, the work presented here expands the study of relations with annotations over semirings

to relations with annotations over monoids. As explained in the Introduction, consistency notions

only require the use of an addition operation (and not a multiplication operation). What other

fundamental problems in databases can be studied in this broader framework of relations with

annotations over monoids?
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