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Abstract

Federated learning is a popular collaborative learning
approach that enables clients to train a global model without
sharing their local data. Vertical federated learning (VFL)
deals with scenarios in which the data on clients have dif-
ferent feature spaces but share some overlapping samples.
Existing VFL approaches suffer from high communication
costs and cannot deal efficiently with limited overlapping
samples commonly seen in the real world. We propose a prac-
tical VFL framework called one-shot VFL that can solve the
communication bottleneck and the problem of limited over-
lapping samples simultaneously based on semi-supervised
learning. We also propose few-shot VFL to improve the
accuracy further with just one more communication round
between the server and the clients. In our proposed frame-
work, the clients only need to communicate with the server
once or only a few times. We evaluate the proposed VFL
framework on both image and tabular datasets. Our methods
can improve the accuracy by more than 46.5% and reduce
the communication cost by more than 330× compared with
state-of-the-art VFL methods when evaluated on CIFAR-10.
Our code is available at https://nvidia.github.
io/NVFlare/research/one-shot-vfl.

1. Introduction
Federated Learning (FL) is a distributed learning method

that enables multiple parties to collaboratively train a model

without centralizing their raw data. Therefore, the clients

can retain control over their own data assets. FL has received

significant attention and has become a major research topic

due to its capability to build real-world applications where

datasets are isolated across different organizations/devices

while preserving data governance and privacy [18, 14].

Existing approaches primarily focus on horizontal feder-
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Figure 1. An example of data splitting in a two-client VFL setting.

ated learning (HFL), where the data from different clients

share the same feature space but have different samples [32].

One application of HFL is that smartphone users collabo-

ratively train a next-word prediction model for the smart

keyboard [10]. In HFL, the clients are expected to learn

common knowledge from heterogeneous data distributions

and produce a global model by aggregating the updates of

local models. Hence, the main challenge of HFL is data

distribution heterogeneity and under cross-device scenarios,

limited computation resources.

Vertical federated learning (VFL), on the other hand,

focuses on scenarios in which the data on clients have

different feature spaces but share some overlapping sam-

ples [32]. In addition, the true labels can reside on a third-

party server [25] as shown in Fig. 1. For example, a credit

bureau collaborates with an e-commerce company and a

bank to train a model to estimate a user’s credit score. In

this case, only the credit bureau has the credit score of the

users which will not be shared with the e-commerce com-

pany and the bank. VFL is mostly deployed in cross-silo

scenarios, and the computation power is usually not a major

concern [14]. However, VFL faces two unique challenges.

First, VFL requires the clients to communicate with the

server for each iteration (rather than after several epochs

under HFL) of training, which introduces extremely high
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communication costs. It is also notable that iterative commu-

nications require reliable communication channels between

the server and the clients, which is usually expensive. In

addition to the high communication cost, the other major

challenge of VFL is that the number of overlapping sam-

ples may be limited. For example, two hospitals in different

countries are not expected to have a large number of overlap-

ping patients. The model trained with limited overlapping

samples likely cannot achieve reliable performance.

Furthermore, VFL is currently not as well explored as

HFL. Some existing works can reduce the communication

cost by reducing the communication frequency or compress-

ing the communicated data [20]. However, most methods

only achieve limited reduction from one local update to mul-

tiple while still requiring heavy iterative communications.

Other works focus on improving the performance with lim-

ited overlapping samples [15, 30]. Notably, both challenges

are bottlenecks of applying VFL in realistic scenarios and

leaving either one unsolved hinders the deployment of VFL

in the real world. To the best of our knowledge, there is no

work aiming at solving these two challenges simultaneously.

In this paper, we propose one-shot VFL, which is a

communication-efficient VFL algorithm that can achieve

high performance with minimal overlapping samples. In

one-shot VFL, the clients are guided to conduct local semi-

supervised learning (SSL) using both the overlapping sam-

ples and the unaligned samples to train well-performing

feature extractors. Under one-shot setting, the clients only

need to conduct two upload operations and one download

operation for the training session, which drastically reduces

the communication cost and frequency. We further propose

few-shot VFL as an extension of one-shot VFL. Few-shot

VFL expands the supervised dataset on clients to improve the

performance of the local feature extractors. Compared with

one-shot VFL, clients in few-shot VFL conduct one more

time of uploading and downloading but can achieve better

performance, especially when the number of overlapping

samples is small.

Our key contributions are summarized as follows:

• We propose a communication-efficient VFL algorithm

called one-shot VFL. To the best of our knowledge, one-
shot VFL is the first algorithm that can simultaneously

address the challenges of high communication cost and

limited overlapping samples.

• We propose few-shot VFL that can improve the perfor-

mance further under settings with minimal overlapping

samples.

• We empirically evaluate the performance of one-shot
VFL and few-shot VFL with different data modalities,

including image data and tabular data. The results show

that our methods improve the accuracy by more than

46.5% and reduce the communication cost by more than

330× compared with the state-of-the-art (SOTA) VFL

methods on CIFAR-10.

2. Background and Related Work

Vertical Federated Learning. Vertical federated learning

(VFL) [25, 28] is the concept of collaboratively training a

model on a dataset where the clients share some common

samples but with different features on each client. VFL was

first introduced in [11], where a federated logistic regression

algorithm is proposed. SecureBoost [4] proposed a secure

federated tree-boosting approach in the VFL setting and

provided theoretical proof that it achieves the same level of

accuracy as its centralized counterparts. Some other gradient

boosting tree approaches for VFL include Pivot [29] and

VF2Boost [7]. A federated random forest was also studied

in [21]. In addition to tree-based methods, other machine

learning algorithms such as linear regression [34] and lo-

gistic regression [12, 20] have been investigated under VFL

settings. However, these algorithms are usually incapable of

handling complex tasks such as computer vision (CV) and

natural language processing (NLP), in which Deep Neural

Networks (DNN) are preferred. On the neural network side,

SplitNN [28] was proposed to collaboratively train neural

networks by splitting a neural network among participants

and exchanging gradients and representations in each iter-

ation. FATE [19] implemented a framework that supports

DNN in VFL. Even though FATE improves the model’s ca-

pacity in VFL by supporting DNN, it still requires frequent

communication between the participants for each iteration

of training and therefore incurs significant communication

costs as in previous VFL methods.

To reduce the communication cost, FedBCD [20] was

proposed to leverage stale gradients for conducting local

training such that participants can decrease the communi-

cation frequency from one local update to multiple updates.

However, frequent iterative communication is still required

for the whole training process. The other challenge is that

the common samples across clients are usually limited in

the real world, and training under such constraints may not

achieve acceptable accuracy. FedCVT [15] proposes to ex-

pand the training samples by estimating representations and

labels but does not address the bottleneck of communication

cost.

In contrast, our proposed one-shot VFL and few-shot VFL

are capable of solving the challenges of communication cost

and limited common samples simultaneously.

Privacy in VFL. Privacy has become a concern of VFL

since it was proposed because the clients need to send repre-

sentations to the server for training, and privacy protection

in VFL is well-explored. [11] presents a secure protocol
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that is managed by a third party, the coordinator, by em-

ploying privacy-preserving entity resolution and an additive

homomorphic encryption scheme. To improve data privacy

and model security, FATE [19] applies a hybrid encryption

scheme in the forward and backward stages of training. To

defend the label inference attack, [22] proposes manipulat-

ing the labels following certain rules, which can be seen as a

variant of label differential privacy (label DP) [3, 8] in VFL.

Our paper focuses on the performance and communication

efficiency of VFL. However, our method does not require

the clients and the server to share additional information

compared with existing VFL methods and is orthogonal to

existing privacy-protecting techniques, which can be directly

applied to our method.

Semi-supervised Learning (SSL). SSL aims at training

a model with partially labeled data, especially when the

amount of labeled data is much smaller than the unlabeled

ones. There have been many SSL algorithms proposed

over the years. SSL algorithms can be broadly categorized

as consistency regularization [1, 24], pseudo-label meth-

ods [17, 23, 9, 26], and generative models [16, 6]. Con-

sistency regularization is based on the assumption that if a

realistic perturbation is applied to a data point, the prediction

conducted by the trained model should not change signif-

icantly. MixMatch [2] applies consistency regularization

along with entropy minimization and generic regularization

and can achieve similar accuracy as fully supervised training

approaches. Pseudo-labeling has become a component of

many recent SSL techniques [23]. Such methods leverage

the trained model to generate pseudo labels for the unla-

beled data so that the labeled training dataset is expanded.

Generative models (e.g., VAE [16]) are trained to generate

images from the data distribution and can be transferred to

downstream tasks for a given task with targets.

Existing works [13, 35, 36, 31] apply SSL to FL to solve

the real problem that the clients may not have enough la-

beled data. FSSL [13] learns inter-client consistency be-

tween multiple clients and splits model parameters for the

server with labeled data and clients with unlabeled data

separately. SemiFL [5] is the most recent work applying

FixMatch [26] to FL to improve the generalization of the

global model. However, these methods focus on Horizontal

Federated Learning (HFL), where the clients have the same

feature space. Our work focuses on VFL settings where most

clients have only partial features and no labels. In addition,

existing deep SSL methods focus on imaging applications,

while VFL has more potential for other types of data, such

as tabular or multi-modal models combining imaging with

other data types.

3. Problem Definition
Suppose K clients and a server collaboratively train a

model. There is an overlapped dataset1 across all clients

with size No: {xo,i, yo,i}No
i=1. The feature vector xo,i ∈ Rd

is distributed among K clients {xk
o,i ∈ Rdk}Kk=1, where dk is

the feature dimension of client k. For simplicity, the aligned

dataset {xk
o,i ∈ Rdk}No

i=1 on client k is denoted as Xk
o , and

the set {Xk
o }k∈[K] is denoted as Xo. Besides Xk

o , each client

k also possesses Nk local samples {xk
u,i ∈ Rdk}Nk

i=1 which

is denoted as Xk
u that is “unaligned” with other clients. The

server has the true label of the overlapping samples {yo,i}No
i=1

which is denoted as Yo. An example of data splitting in the

two-client setting is shown in Fig. 1.
Each client (says the k-th) learns a representation extrac-

tor fk(.; θk) to extract representations and the server learns
a classifier fc(.; θc) to classify the representations uploaded
by clients. The collaborative training problem can be formu-
lated as

min
Θ

L(Θ;Xo, Yo) �
1

No

No∑
i=1

g(θ1, ..., θK , θc;xo,i, yo,i), (1)

where Θ = [θ1; ...; θK ; θc]. g(.) denotes the loss function

formulated as:

g(θ1, ..., θK , θc;xo,i, yo,i) = g
(
fc

(
h1
o,i ◦ ... ◦ hK

o,i

)
, yo,i

)
,

(2)

where ◦ stands for the concatenation operation, and hk
o,i is

the representation extracted by the local model on client k:

hk
o,i = fk(x

k
o,i; θk). (3)

For simplicity, the set of representations of the aligned data

extracted by client k {hk
o,i}No

i=1 is denoted as Hk
o . The objec-

tive of each party k is to find the optimal θk without sharing

local data {xk
o,i}No

i=1 and parameter θk. The objective of the

server is to optimize θc without sharing θc and true labels

Yo.

4. Methods
To reduce the communication cost and improve the model

performance under the settings with limited overlapping

users, we propose two VFL methods called one-shot VFL

and few-shot VFL, respectively.

4.1. One-shot Vertical Federated Learning

We first propose one-shot VFL, in which the clients ex-

pect to receive partial gradients from the server only once.

The intuition of one-shot VFL is that we can extract suf-

ficient information that will guide clients to conduct local

1We assume the alignment between overlapping samples is known as a

priori. In some applications private set intersection could be used before

running VFL to find the sample alignment.
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Figure 2. Workflow of one-shot VFL. The clients conduct two times

of uploading and one time of downloading.

training from the received partial gradients. The workflow of

one-shot VFL is shown in Fig. 2. First, the clients (e.g., the

k-th) extract representations of the overlapping data Hk
o and

send the representations to the server ( 1 ). Then, the server

aligns and aggregates the received representations from all

clients and computes loss with the true labels. After that,

the server conducts back-propagation to compute the partial

gradients of local representations ∇Hk
o
Loss and sends the

partial gradients and the number of classes C of the global

classification task to corresponding (i.e., the k-th) clients

( 2 ). After the k-th client receives the partial gradients, it

conducts k-means on the partial gradients and assigns the

overlapping samples Xk
o temporary labels Ŷ k

o using the clus-

tering index of corresponding gradients ( 3 ). The intuition

behind clustering is that the partial gradients of the same

class should have similar directions while the partial gradi-

ents of different classes should have higher diversity. By

clustering the partial gradients, the clients can infer informa-

tion about true labels on the server to guide local training.

With the temporary labels assigned to the overlapping sam-

ples, the clients conduct semi-supervised learning based on

Xk
u and {Xk

o , Ŷ
k
o } to get updated W ′

k ( 4 ). After the k-th

client completes the local semi-supervised learning, it de-

rives new representations Hk
o
′

by computing fk(X
k
o ;W

′
k)

and sends Hk
o
′

to the server ( 5 ). Finally, the server aligns

and aggregates the received new representations {Hk
o
′}k to

get new global representations H ′
o and finetunes the classifier

Wc using {H ′
o, Yo} ( 6 ).

The detailed algorithm of one-shot VFL is shown in Algo-

rithm 1. It is notable that during the whole training process,

the clients only need to upload representations to the server

twice and download gradients from the server once, which

is the reason we call it one-shot VFL. With such a signifi-

cant reduction from iterative download/upload to one-shot,

we overcome the communication bottleneck in VFL. Mean-

while, local SSL conducted by clients fully utilizes the data

of users that are unique to each client and improves the per-

formance under realistic settings with limited overlapping

samples.

Algorithm 1 One-shot and few-shot VFL. mode is

"few_shot" if the server is executing few-shot VFL; Xk
o

and Xk
u are aligned dataset and unaligned dataset of client

k; Yo is the set of true labels of overlapping samples on the

server; C is the number of classes in the task; The K clients

are indexed by k; B is the minibatch size; Es and Ec are

the number of epochs of the server and clients; ηs and ηc
are learning rate of the server and clients; g(.) and lssl(.)
are loss functions defined in Eq. (1) and Eq. (4); Uploading

happens in ←; Downloading happens in ←.

Server executes:
1: initialize θc;

2: for each client k ∈ [K] in parallel do
3: Hk

o←fk(X
k
o ; θk); � 1 in Fig. 2

4: end for
5: for k = 1, ...,K do
6: ∇Hk

o
Loss←∇Hk

o
g
(
fc

(
H1

o,i ◦ ...HK
o,i

)
, Yo

)
; � 2 in Fig. 2

7: end for
8: for each client k ∈ [K] in parallel do
9: ClientUpdate(∇Hk

o
Loss, C); � 3 4 in Fig. 2

10: Hk
o←fk(X

k
o ; θk); � 5 in Fig. 2

11: if mode == "few_shot" then
12: Hk

u←fk(X
k
u ; θk);

13: end if
14: end for
15: if mode == "few_shot" then
16: for k = 1, ...,K do
17: {p̂ku,i}i∈|Hk

u|←InferProb
({Hk

o }k, Hk
u

)
;� Defined in Alg. 2

18: ClientUpdateFewshot({p̂ku,i}i∈|Hk
u|); � Defined in Alg. 2

19: Hk
o←fk(X

k
o ; θk);

20: end for
21: end if
22: B〈,B† ← (split H1

o ◦ ... ◦HK
o and Yo into batches of size B);

23: for epoch i from 1 to Es do
24: for batch bh ∈ B〈, by ∈ B† do
25: θc ← θc − ηs∇θcg (fc (bh) , by); � 6 in Fig. 2

26: end for
27: end for
ClientUpdate(∇Hk

o
Loss, C):

28: Ŷ k
o ← k-means(∇Hk

o
Loss, C); � 3 in Fig. 2

29: B�,B�,B† ← (split Xk
u , X

k
o , Ŷ

k
o into batches of size B);

30: for epoch i from 1 to Ec do
31: for batch bu ∈ B�, bo ∈ B�, by ∈ B† do
32: θk ← θk − ηc∇θk lssl (θk; bu, bo, by); � 4 in Fig. 2

33: end for
34: end for
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Local SSL. In one-shot VFL, the clients conduct semi-

supervised learning (SSL) based on Xk
u and {Xk

o , Ŷ
k
o }. For

different types of data, the detailed SSL algorithms are differ-

ent. The training objective of the k-th client can be abstracted

into

lssl

(
θk;X

k
u , X

k
o , Ŷ

k
o

)
= ls

(
θk;X

k
o , Ŷ

k
o

)
+λulu

(
θk;X

k
u

)
,

(4)
where ls(.) is the supervised training loss, lu(.) is the un-
supervised training loss, λu controls the trade-off between
the supervised loss and unsupervised loss. In this paper, we
focus on two types of data: image data and tabular data,
which are common use cases of VFL. Plenty of SSL algo-
rithms [26, 2] have been proposed for image recognition, and
we apply FixMatch [26] for the clients conducting SSL on
image data, which is a widely applied SSL algorithm in im-
age recognition. On the other hand, in order to fit DL to the
task of tabular data SSL, we modify the augmentation meth-
ods in FixMatch and propose our FixMatch-tab algorithm for
local SSL of tabular data. We modify the weak augmentation

Figure 3. Features are randomly masked for data augmentation.

α(.) and strong augmentation A(.) in FixMatch to adapt it
to the tabular data. For weak augmentation, we randomly
generate a binary mask m with the same shape of the data
point. Each element of m is sampled from a Bernoulli dis-
tribution. We replace the masked elements with the mean
value of the corresponding elements of local data. For the
strong augmentation, we add noise to the masked samples.
Thus, when we train a data point x in FixMatch-tab, we first
sample a binary mask m for both weak and strong augmen-
tation and sample a noise vector n for strong augmentation
where

mi ∼ B(1, rm),

ni ∼ N(0, σ2),
(5)

rm is the expected ratio of elements that are masked and σ2

is the variance of the noise. Then, the weak augmentation α
and strong augmentation A(.) for this sample in FixMatch-
tab are formulated as

α (x) = m⊗ x+ (1−m)⊗ x̄,

A (x) = α (x) + n,
(6)

where x̄ = 1
N

∑
j∈[N ] xj and N is the number of local

samples.

4.2. Few-shot Vertical Federated Learning

Even though one-shot VFL can achieve high performance

of the global model with extremely low communication cost,

we consider improving the performance further by paying

with a few more rounds of communication. The key factor to

Figure 4. A client does not have enough information to generate

reasonable pseudo labels from either the left or right part of the

image alone during local semi-supervised learning (SSL).

Algorithm 2 Local SSL training process with expanded

labeled dataset in few-shot VFL. H
[K]\{k}
o stands for

H1
o◦, ..., ◦Hk−1

o ◦Hk+1
o ◦, ..., ◦HK

o

InferProb
({Hk

o }k, Hk
u

)
:

1: for k = 1, ...,K do � This is executed only by once

2: θkc ← argminθ g
(
fk
c

(
Hk

o ; θ
)
, Yo

)
; � Optimize with SGD, 2

in Fig. 5

3: end for
4: θc ← execute line 22-27 in Alg. 1; � 2 in Fig. 5

5: Ĥ
[K]\{k}
u ← T

(
Hk

u , H
k
o , H

[K]\{k}
o

)
; � 3 in Fig. 5

6: for i = 1, ..., |Hk
u | do

7: p̂ku,i ← compute Eq. (8) and Eq. (9); � 4 in Fig. 5

8: end for
9: return {p̂ku,i}i∈|Hk

u|;
ClientUpdateFewshot({p̂ku,i}i∈|Xk

u|):

10: Xk
uc ← sample from Xk

u with probability {p̂ku,i}i∈|Xk
u|; � 5 in

Fig. 5

11: Ŷ k
uc ← fk

(
Xk

uc; θk
)
; � 5 in Fig. 5

12: Xk
o
′ ← Xk

o ∪Xk
uc; Ŷ k

o
′ ← Ŷ k

o ∪ Ŷ k
uc;

13: Xk
u
′ ← Xk

o \Xk
uc;

14: B�,B�,B† ← (split Xk
u
′
, Xk

o
′
, Ŷ k

o
′ into batches of size B);

15: for epoch i from 1 to Ec do
16: for batch bu ∈ B�, bo ∈ B�, by ∈ B† do
17: θk ← θk − ηc∇θk lssl (θk; bu, bo, by); � 6 in Fig. 5

18: end for
19: end for

improve SSL performance is to have a larger labeled dataset.

Thus, we propose to expand the supervised learning dataset

on clients in VFL. One intuitive idea is to assign pseudo

labels from local predictions to the unlabeled data points if

those predictions have a high confidence. By doing this, we

would only need to modify the local training procedure of

one-shot VFL without introducing additional communication

cost. However, there is one potential problem this method

cannot solve. Considering a toy example shown in Fig. 4.

Two clients participate in training an image classification

task, and each client has access to half of each image. If the

two shapes on the image are the same, the image is positive

and negative if both shapes are different. If we want to

improve the performance by enlarging the labeled dataset,
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Figure 5. The server judges whether local samples contain enough information to generate accurate pseudo labels in few-shot learning. The

clients conduct local SSL with the expanded labeled dataset.

the key is to generate pseudo labels with high accuracy.

However, in this toy example, it is impossible for the clients

to generate reasonable pseudo-labels based on only half of

the images since they do not have enough information to

infer the true label of the image.
To solve this problem, we propose few-shot VFL as

shown in Algorithm 1. The main difference with one-shot
VFL is that the server in few-shot VFL estimates the miss-
ing part of the representations for each client’s unaligned
data which shall expand their labeled datasets. The detailed
pipeline of lines 17-18 in Algorithm 1 is shown in Fig. 5. In
this section, we focus on VFL with two clients (A & B), but
the proposed method can be naturally extended to the sce-
nario where there are more than two clients. When the server
receives the representations HA

u of client A’s unaligned data

( 1 in Fig. 5), it estimates the missing representations ĤB
u

of corresponding samples on client B (does not exist for

unaligned data) with a transform layer T ( 3 in Fig. 5) as

ĤB
u = T (HA

u , HA
o , HB

o ). (7)

The details of T (.) will be introduced later. Then for each
unaligned sample (says the i-th), the server produces predic-

tions {ŷAu,i, ŷA,B
u,i } and probabilities {pAu,i, pA,B

u,i } following

ŷA
u,i = argmax

j
fA
c (HA

u,i; θ
A
c )j ,

pAu,i = max
j

fA
c (HA

u,i; θ
A
c )j ,

ŷA,B
u,i = argmax

j
fc(H

A
u,i ◦ ĤB

u,i; θ
A,B
c )j ,

pA,B
u,i = max

j
fc(H

A
u,i ◦ ĤB

u,i; θ
A,B
c )j .

(8)

where fA
c (.) is an auxiliary classifier whose input is hA

u,i.

θAc and θA,B
c are trained ( 2 in Fig. 5) based on the overlap-

ping samples. If the predictions {ŷAu,i, ŷA,B
u,i } based on local

and estimated global representations are the same with high
confidence, the local representation hA

u,i contains enough
information and should be given a pseudo label during the
local SSL on client A. To reduce the noise from mislead-
ing pseudo labels, the server sets a probability p̂Au,i for each

unaligned sample to be given a pseudo-label during local
training following

p̂Au,i = 1
(
ŷA
u,i = ŷA,B

u,i

)
1
(
pAu,i > t

)
1
(
pA,B
u,i > t

)
pA,B
u,i . (9)

The intuition is that the higher the confidence, the local

representation hA
u,i is predicted to be the same label as the

global representation hA
u,i ◦ ĥB

u,i, the larger a probability p̂Au,i
is given to the i-th unaligned sample on client A for assigning

a pseudo label during local training. In the following, we

will introduce the representation transform layer T (.) and

local SSL with probability set {p̂Au,i}i.

Efficient Representation Estimation. We design the rep-
resentation transform layer utilizing a scaled dot product
attention (SDPA) function formulated as

ĤB
u = T (HA

u , HA
o , HB

o )

= softmax(
HA

u ⊗HA
o

T

√
d

)⊗HB
o ,

(10)

where ⊗ is matrix multiplication operator, and d is the di-

mension of representation. With T (.), Each missing rep-

resentation is estimated through the weighted sum over

representations of overlapped samples. The weight matrix

WA = softmax(
HA

u ⊗HA
o

T

√
d

) reflects the similarity between

the representation to be estimated and the aligned represen-

tations in client A.

We apply the SDPA function rather than a generative

model (e.g., GAN) to estimate representations for two rea-

sons. First, the generative model has to be trained on the

representations of overlapping samples. However, the num-

ber of overlapping samples could be too small in real life

to train a generator with good performance. Second, when

there are K clients, the server needs to train K generators,

which introduces heavy computational overhead. By apply-

ing the SDPA function to estimate representations, we can

overcome the problem of limited overlapping samples and

improve the computational efficiency of our estimation.
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Local SSL with Expanded Supervised Dataset. After the

client A receives {p̂Au,i} ( 4 in Fig. 5), it samples a subset

denoted as XA
uc from XA

u with probabilities {p̂Au,i}. For each

sample xA
uc,i in XA

uc, client A assigns the pseudo label ŷAuc,i
as the prediction of the local model that was learned using
SSL on client A. For simplicity, the set of pseudo labels

ŷAuc,i is denoted as Ŷ A
uc. In such a way, client A expands the

supervised data via SSL. Hence, the objective of SSL ( 6 in
Fig. 5) on client A can be formulated as

lssl
(
θ;XA

u \XA
uc, X

A
o ∪XA

uc, Ŷ
A
o ∪ Ŷ A

uc

)

=ls
(
θ;XA

o ∪XA
uc, Ŷ

A
o ∪ Ŷ A

uc

)
+ λulu

(
θ;XA

u \XA
uc

)
.

(11)

5. Evaluation

5.1. Experimental setup

We evaluate our proposed one-shot VFL and few-shot

VFL on both image and tabular data. As stated before,

we focus on and evaluate two-client scenarios in this pa-

per, which is a common experimental setup in most VFL

literature[20, 21]. We compare our methods with two SOTA

VFL methods aiming at reducing communication cost and

solving the problem of limited overlapping samples, respec-

tively.

Baselines. We compare our proposed algorithm with

vanilla VFL and two SOTA VFL methods. (1) FedBCD [20]
aims at reducing the communication cost. In vanilla VFL,

clients conduct one iteration of training after one time of

inter-party communication. FedBCD allows clients to con-

duct multiple iterations of local training using the stale partial

gradients of representations received in the last communi-

cation. (2) FedCVT [15] is a semi-supervised learning ap-

proach that improves the performance of VFL using limited

overlapping samples. FedCVT leverages representation esti-

mation and pseudo-label prediction to expand the training

set to improve the model’s representation learning. However,

it still suffers from high communication cost.

Datasets. To evaluate our VFL methods under different

VFL settings, we use both image data and tabular data for

experiments. We use CIFAR-10 for image classification and

UCI_credit_card dataset [33] for prediction of default of

credit card clients. For CIFAR-10, we follow [20, 15] to

split an image into two halves. For UCI_credit_card dataset,

we follow FATE [19] to assign ten attributes to one client

and the rest to the other client. To mimic the settings in

which limited samples are overlapping, we randomly sample

No samples from the dataset as the aligned dataset. For

the rest of the samples we evenly and randomly separate

them into two sets, and one client has access to the assigned

attributes/halves of images of one set.

Hyperparameter Configurations. To evaluate our meth-

ods under settings with different sizes of overlapping sam-

ples, we set No = {256, 512, 1024, 2048} for CIFAR-10

and No = {1000, 2000} for UCI_default_credit. We set B
as 32 for both datasets. Learning rates ηs and ηc are set to be

0.01. For FedBCD, we set Q as 5. We set σ as 0.1 and rm as

0.2 for tabular data augmentation. For CIFAR-10, we allow

the baselines to continue training even after convergence to

try to achieve a decent accuracy. For UCI_default_credit, we

stop the training of baselines when there is no improvement

in accuracy in the last 20 rounds. We use WideResNet20 as

the backbone model for CIFAR-10 and a two-layer MLP for

UCI_default_credit.

Evaluation metrics. (1) Utility metric (Accuracy &
AUC): We use the test data accuracy of the classifier on

the server to measure the performance of VFL on CIFAR-

10. For UCI_default_credit, we apply Area under the ROC

Curve (AUC) as the utility metric. A smaller accuracy or

AUC means a less practical utility. (2) Communication
metric (Communication cost/times): We use the times of

communication between the clients and the server and the

total data volume of communication cost to evaluate the

communication efficiency of VFL.

5.2. Experimental results

Accuracy v.s. Communication Cost. The results of

CIFAR-10 are shown in Tab. 1. It is shown that compared

with vanilla VFL, one-shot VFL improves the accuracy by

more than 45% while reducing communication cost by more

than 330×. FedBCD reduces communication cost compared

with Vanilla VFL. However, it does not improve the accu-

racy of the model, and the communication reduction is not

comparable with one-shot VFL. It is notable that FedCVT

cannot achieve significant accuracy improvement compared

with vanilla VFL, because the true label is extremely limited

in our realistic setting. With extremely limited true labels, it

is hard for the server of FedCVT to conduct SSL using only

the estimated representations and pseudo labels.

Few-shot VFL improves the accuracy further with higher

communication cost compared with one-shot VFL. However,

the communication reduction is still significant compared

with baselines. In both one-shot VFL and few-shot VFL,

clients train representation extractors first, then the server

trains the classifier. To improve the accuracy further, we

conduct end-to-end vanilla VFL after completing few-shot

VFL to finetune the global model on CIFAR-10. It is shown

that end-to-end finetuning can improve the accuracy further.

Even though the finetuning requires more communication

rounds, it is still much more efficient compared with the

baselines and offers the clients an option to further improve

the performance.

The results of UCI_default_credit dataset are shown in

Fig. 6. Even though the task of credit card default detection
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Table 1. Results of accuracy and communication on CIFAR-10. Best accuracy is shown in bold and best communication cost in bold italic.

Overlap size 256 512 1024 2048

Acc

(%)

Comm

times

Comm

cost

(MB)

Acc

(%)

Comm

times

Comm

cost

(MB)

Acc

(%)

Comm

times

Comm

cost

(MB)

Acc

(%)

Comm

times

Comm

cost

(MB)

Vanilla VFL 31.47 8000 262 35.33 16000 524 42.71 32000 1047 50.75 64000 2094

FedCVT [15] 31.83 8000 262 35.12 16000 524 42.38 32000 1047 48.2 64000 2094

FedBCD [20] 31.45 1600 53 35.43 3200 105 41.93 6400 209 49.75 12800 419

One-shot VFL 78.23 3 0.79 81.12 3 1.6 85.25 3 3.1 86.13 3 6.3
Few-shot VFL 78.93 5 26.4 83.03 5 27.2 85.68 5 28.7 87.23 5 31.9

Few-shot VFL

+finetune
80.37 805 52.6 84.05 965 58.6 86.35 1805 87.7 87.49 2005 97.4

0 2000 4000 6000 8000 10000
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0.74

0.75
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0.74
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(b) Overlap size = 2000(a) Overlap size = 1000

 Vanilla VFL  FedCVT  FedBCD

 One-shot VFL(ours)   Few-shot VFL(ours)

A
U

C

Communication cost (KB)

A
U

C

Communication cost (KB)

Figure 6. Compared results of AUC v.s. communication cost on

UCI_default_credit.

is much simpler than image classification, which does not

require a large amount of data to learn, our one-shot VFL

can still achieve AUC higher than all the baselines in both

settings. One-shot VFL can reduce the communication cost

by more than 32×, 33×, and 10× compared with Vanilla

VFL, FedCVT, and FedBCD, respectively, under the setting

with 2000 overlapping samples. Few-shot VFL increases the

communication cost slightly compared with one-shot VFL,

but it can improve the AUC further.

Accuracy v.s. Times of Communication. Besides the

communication cost, the times of communication needed

between the clients are also an important metric to evaluate

the communication efficiency. If the clients are required

to communicate with the server continually (e.g., vanilla

VFL), a stable and reliable communication channel between

the server and a client will be necessary. In addition, if a

client cannot upload its update to the server in one round of

training due to network outage, all the other clients have to

wait for it, which is extremely detrimental to the robustness

and efficiency of the system. As shown in Tab. 1 and Fig. 7,

only three times of communications are needed for one-shot

VFL, and the clients conduct SSL locally without waiting for

the response from the server, which improves the efficiency

significantly. FedBCD reduces the times of communication,

but it is still not comparable to one-shot and few-shot VFL.

In addition, continual communication between clients are

still required for FedBCD, which cannot solve the bottleneck

of communication efficiently. Few-shot VFL improves the

accuracy further with only two additional times of communi-

cation between the clients and the server. During finetuning,

the clients need to continually communicate with the server

for multiple rounds. However, the clients do not need to com-

municate during as many rounds as for the other baselines.

In practice, our one-shot and few-shot VFL can be used as

pre-training techniques to achieve higher performance while

significantly reducing the communication cost.

02468 1000 2000 3000
0.72

0.73

0.74

0.75

02468 2000 3000 4000
0.73

0.74

0.75

0.76

0.77

(b) Overlap size = 2000(a) Overlap size = 1000

 Vanilla VFL  FedCVT  FedBCD

 One-shot VFL(ours)   Few-shot VFL(ours)

A
U

C

#Communication times

A
U

C

#Communication times

Figure 7. Compared results of AUC v.s. number of communication

times on UCI_default_credit.

6. Conclusions and Future Work
In this paper, we propose one-shot VFL that applies SSL

to solve two critical problems of VFL: high communication

cost and limited overlapping samples common in the real

world. In one-shot VFL, the clients only conduct two times

of uploading and one time of downloading and can achieve

higher accuracy than the SOTA VFL approaches. We also

propose few-shot VFL to improve the performance further by

paying with one more round of communication. We evaluate

our methods on imaging data and tabular data, and the results

demonstrate that our methods can improve the model perfor-

mance under the settings with limited overlapping samples

and reduce the communication cost significantly.

In the future, we will evaluate our VFL methods in multi-

modal settings combining different data types. In addition,
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we note that data privacy preservation is a significant con-

cern of deploying FL in real life [27, 29]. Our methods do

not require the clients and the server to share additional in-

formation compared with existing VFL methods besides the

number of classes, which is common knowledge for both the

server and clients in most settings. Existing defense meth-

ods [22, 8] can be directly incorporated into our approaches

to improve privacy. In this paper, we follow most previous

VFL literature [20, 19] and evaluate on two-client scenarios.

We will explore multi-party settings in future work. Our

code is publicly available2.
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