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Abstract

In recent years, discriminative self-supervised methods
have made significant strides in advancing various visual
tasks. The central idea of learning a data encoder that is
robust to data distortions/augmentations is straightforward
yet highly effective. Although many studies have demon-
strated the empirical success of various learning methods,
the resulting learned representations can exhibit instability
and hinder downstream performance. In this study, we an-
alyze discriminative self-supervised methods from a causal
perspective to explain these unstable behaviors and propose
solutions to overcome them. Our approach draws inspi-
ration from prior works that empirically demonstrate the
ability of discriminative self-supervised methods to demix
ground truth causal sources to some extent. Unlike pre-
vious work on causality-empowered representation learn-
ing, we do not apply our solutions during the training pro-
cess but rather during the inference process to improve time
efficiency. Through experiments on both controlled image
datasets and realistic image datasets, we show that our pro-
posed solutions, which involve tempering a linear transfor-
mation with controlled synthetic data, are effective in ad-
dressing these issues.

1. Introduction

Learning generalized representation with unlabeled data

is a challenging task in various fields, but Self-Supervised

Learning (SSL) has recently demonstrated remarkable suc-

cess in learning semantic invariant representations without

labels [40, 41, 53]. There are two main types of self-

supervised learning (SSL) based on the pretext task used:

generative and discriminative SSL, with generative SSL re-

constructing altered or distorted data to its original input

[9, 28, 31, 59, 65, 71]and early discriminative SSL predict-

ing easily designed labels and task-specific representations

that are not very generalizable [25, 57, 75]. More recent
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Figure 1: During the training of discriminative SSL, align-

ing positive representations will be robust to the changes

applied as augmentations (red arrows). However, during the

inference stage, one small change in the data variable (such

as view angle) will result in an unexpected degradation on

downstream performance.

discriminative SSL trains the model to identify similari-

ties and differences between pairs of augmented examples

[7, 10, 11, 26, 29, 74]. The success of SSL in deep im-

age models has resulted in progress in other data modalities

[53, 52, 54, 61, 62] and attention-based models like trans-

formers [12, 8, 49, 72]. Recent discriminative SSL aims

to learn content and semantic invariant representations that

are robust to data augmentations, but the learned represen-

tations can be unstable when one subtle factor of the data

is changed to a value that is not accessible through all aug-

mentations. To avoid the high cost of incorporating all pos-

sible subtle changes during training, insights are needed to

uncover the root cause of instability and find a solution to

prevent performance deterioration during inference. Figure

1 summarizes this deterioration effect.

Causality [60] is a vital tool to investigate the causal
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relationships between variables in observational data, and

can uncover the underlying causal factors that explain un-

expected model behavior due to changes in the environ-

ment. Independent Component Analysis (ICA) is of-

ten used to disentangle sources in unsupervised training

[36, 37, 39, 43, 45], and causal analysis has been applied

in follow-up works [76, 67] to examine the empirical suc-

cess of SSL under an ICA framework. However, while

these works identify factors that contribute to SSL’s success,

they do not address the problem’s unstable mode, which

can cause a severe performance drop when underlying fac-

tors shift slightly to an unseen environment. Some works

[56, 27, 48] attempt to incorporate causality during the

training process to identify and alleviate the impact of such

shifts, but this approach is time-costly and only marginally

improves performance compared to non-causal SSL meth-

ods. A more time-efficient and accessible solution would be

to simply reverse the unstable shift during inference.

We aim to address the issue of unstable behavior during

the inference stage by building upon previous theories of

successful InfoNCE-facilitated contrastive SSL and extend-

ing it to all recent SSL methods with additional assump-

tions and constraints. Drawing inspiration from the rela-

tionship between the ground truth positive pairs distribu-

tion and learned positive pairs distribution, we demonstrate

that the approximated transformation between the ground

truth representations and learned representations is orthog-

onal to the augmentations applied during training. However,

a change in the data factor/variable that violates the condi-

tions for successful SSL can cause a corresponding shift in

the inferred representation, resulting in a decline in down-

stream performance. This change of data factor/variable can

be a change in the background, texture, or view angles etc.

To overcome this issue, we propose learning targeted trans-

formations that regularize the violating shift and restore per-

formance on the unseen data shift. This approach effec-

tively avoids the undesirable behavior and improves perfor-

mance on previously unseen data shifts.

To summarize, our contributions are following:

• Through the use of a comparable data generation pro-

cess in prior research, we show that All current SSL

techniques benefit from the alignment of positive pairs.

• Through our alternative derivation of the transforma-

tion matrix between the ground truth representation

and the learned representation, we have shown that the

augmentations applied during training are orthogonal

to the resulting matrix.

• By interpreting a change in the data variable causally,

we propose two solutions focusing on inference
to modify the negative shift in representation space

caused by such a change.

• We validate the proposed solutions by conducting ex-

periments on both controlled and realistic datasets,

providing evidence for their efficacy during the infer-

ence stage without retraining the pretrained models.

2. Related Work
Discriminative SSL learns invariant representations

from positive pairs of unlabeled data samples, but previous

attempts to use trivial labels like colors[75], rotations[25],

and patch positions[57] offer minimal benefits for complex

downstream tasks due to their easy augmentations. Recent

discriminative SSL apply random augmentations to gener-

ate two views of an image sample and train an encoder to

extract representations for maximizing similarity between

the paired augmentations. SimCLR and MoCo[10, 29] are

pioneer SSL works that maximize the cosine similariy be-

tween positive pairs and minimize the cosine similarity be-

tween negative pairs via optimizing the InfoNCE loss[58].

Immense resources are used to enforce a large number of

negative samples since a larger number can tighten the

upper bound of the mutual information between positive

pairs[58]. Later advancement of discriminative SSL ex-

cludes the notion of negative pairs by only aligning positive

pairs and preventing representation collapse through var-

ious regularizations. BYOL[26] predicts an Exponential-

Moving-Averaged (EMA) representation of one view with

a projected representation of another view. SimSiam[11]

maximizes similarity between a projected representation

and a detached representation of two positive samples. Un-

like previous work focusing optimization on an instance

level, Barlow Twins[74] encourages high similarity in cor-

responding feature dimensions and discourages redundancy

across different feature dimensions between two views of a

data sample. Detailed formulations are exhibited in A.

Mutual Information is a different perspective on the

behaviour of discriminative SSL. Referred to InfoMax

principle[51], the MI between different transformations of

a data sample is maximized via optimizing the InfoNCE

loss[2, 32, 44]. Though showing theoretical relation be-

tween optimizing InfoNCE and maximizing MI between

positive pairs, the underlying factors instructing the be-

haviour of different SSL methods are not explored. Non-

linear ICA[38], on the other hand, captures complex data

structures of SSL methods by disentangling underlying fac-

tors via minimizing the mutual information between learned

representations and the original data input[17, 73, 20].

Other works associate the nonlinear ICA objectives with the

contrastive SSL so the MI between positive pairs are maxi-

mized and negative pairs are minimized.

Other researchers have explored causality and causal
inference as a means of understanding the success of dis-

criminative SSL. Prior work has focused on partitioning the

InfoNCE loss to alignment between the positive pairs and
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uniformity between aggregations of all positive clusters[70].

By formulating a data generation process, [76] empirically

explains that networks optimized via InfoNCE infer an or-

thogonal transformation of the ground truth latent represen-

tations. Furthermore [67] validates that that augmentations

used in both generative and discriminative SSL isolate the

content factor from the style factor. Our theory and work

draw great inspirations from these two work. However, in-

stead of solely focusing on InfoNCE-driven SSL and two

factors, this work extends the framework to all recent dis-

criminative SSL methods and identifies reasons for unsta-

ble circumstances analytically. We also propose methods to

nullify the negative effects of unstable representations dur-

ing inference.

Domain Adaptation is a strategy to bridge the gap be-

tween the model performance on a source domain and that

on a target domain [4, 68]. Feature adaptation methods

try to learn a new feature representation that is more in-

variant to the domain shift[66, 19, 15, 50], while instance

adaptation methods try to reweight the importance of the

labeled source examples to better align with the target

domain[55, 6, 34]. Recent studies also implement a con-

trastive framework to learn a shared latent space between

the source and target domains by maximizing the agreement

between representations of corresponding samples while

minimizing the agreement between representations of non-

corresponding samples [69, 63, 42]. Unlike these works

focusing on adapting to a target domain for better perfor-

mance, we investigate the underlying causal factors for the

performance gap and based on the findings we propose easy

solutions to connect the gap.

3. Theory
In this section, we build on previous data generation pro-

cess [76, 67] (3.1) and show that current SSL techniques

benefit from the alignment of positive pairs (3.2). During

a deeper dive into the generation process, we show the re-

lation between the ground truth representations and the in-

ferred representations, and this relation is an linear transfor-

mation matrix that is orthogonal to the augmentations ap-

plied during training (3.3). Finally, we disclose the causal

reason for the unstable behaviour caused by a change in the

data variable during the inference stage and propose analyt-

ical solutions to address this unstable issue (3.4).

3.1. Problem formulation

Data generation is assumed to be a generation function

that takes ground truth latent representation as the input to

generate an observation data/image.

Formally, we assume that the marginal distribution of

sampling ground truth representations z ⊆ Z ∈ R
d1 w.r.t.

a class is uniform on a unit sphere Sd1−1. An injective gen-

eration function g(.) : Rd1 → R
d takes a ground truth rep-

V1 V2 c

z

V3

x

Figure 2: A causal graph for data generation process.

resentation and generate an observation sample x ∈ R
d,

x = g(z). Different variables, denoted as a set V = {Vi}
and class/content variable c, constitute the values of each di-

mension in the ground truth representation. These variables

can be direct causes or confounding factors, z = (c, {Vi}).
Specific examples include view angles, object size, back-
ground colors, etc. A simple causal graph depicts this re-

lationship is shown in Figure 2. So the general generation

process is as following:

p(z = (c, V∗)) ∼ 1

|Z| x = g(z) (1)

To sample a positive example w.r.t the same class, we

assume the conditional distribution is a von Mises-Fisher

(vMF) distribution [21]:

p(z̃ = (c, Ṽ∗)|z = (c, V∗)) = C−1
p eκ1z

�z̃ (2)

where Cp =
∫
eκ1z

�z̃dz̃ is a normalization constant and κ
is a concentration parameter.

Representation learning is a process that a feature en-

coder, f(.) : Rd → R
d2 , extracts representations from two

positive observations f(x̃) = f◦g(z̃), f(x) = f◦g(z) and a

distribution associated with the encoder f through h = f ◦g
is:

qh(z̃|z) = C−1
q (z)eκ2h(z̃)

�h(z) (3)

with Cq(z) =
∫
eκ2h(z̃)

�h(z)dz̃ be the normalization term.1

Optimizing any discriminative SSL objective will maximize

the similarity between these positive pairs. An example of

a well constructed objective is the InfoNCE loss:

LinfoNCE = E[−log
ef(x̃)

�f(x)/τ

ef(x̃)�f(x)/τ +
∑K

i=1 e
f(x−

i )�f(x)/τ
]

(4)

where x̃ is a positive example w.r.t. x in the obsevation

space and {x−
i }K1 are K samples from distributions of all

observations. The global minimum of (4) is reached when

1The mapping of representations on a hypersphere may be different to

Barlow Twins methodology, but as shown in [74], normalize representa-

tions on a unit sphere also works under Barlow Twins.
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the cosine similarity between positive pairs is maximized

and the cosine similarity between all negative pairs is mini-

mized. In the following section, we will show that discrim-

inative SSL including InfoNCE-driven and non InfoNCE-

driven (EMA and Siamese with a predictor) follows strict

rules of alignment to maximize the similarity.

3.2. Alignment in discriminative SSL

In this section we will combine theories stated in [76,

67, 70] so that the general factors of successful discirmina-

tive SSL can be summarized. Additionally, instead of fo-

cusing on just InfoNCE SSL variation and content block-

identifiability [35, 47], we extend the combined theory to

demonstrate that all discriminative SSL benefit from align-
ment between positive representations.

Theorem 3.1 With a data generation process described in
3.1, all discriminative SSL objectives have an alignment
loss function between positive pairs from the network:

Lalign = ‖f(x)− f(x̃)‖22 (5)

This is a weaker statement than Theorem 4.4 in [67] since

we only focus on the alignment term. For analysis on the

regularization term on the network entropy, see B.

Proof. For InfoNCE-driven SSL (SimCLR and MoCo), as

derived in [68, 76], the InfoNCE loss converges to an align-
ment term and a uniformity term as the number of negative

samples approaches infinity. (See B for full details).

For EMA-based SSL methods (BYOL), a predictor p
is associated with the online network so the SSL objec-

tive becomes L = E(x,x̃) ‖p ◦ f(x, θ) − f(x̃, ξ)‖22, where

ξt = αξt−1 + (1 − α)θt is target network parameter and

θ is the online network parameter. Denote p′ = p ◦ f . By

adding and subtracting p′(x̃, θ) we derive:

L = E
(x,x̃)

‖p′(x, θ)− p′(x̃, θ) + p′(x̃, θ)− f(x̃, ξ)‖22
= E

(x,x̃)
‖p′(x, θ)− p′(x̃, θ)‖22 + E

x̃
‖p′(x̃, θ)− f(x̃, ξ)‖22

−2 E
(x,x̃)

[(p′(x̃, θ)− p′(x, θ))�(p′(x̃, θ)− f(x̃, ξ))]

(6)

Since f(x, θ) and f(x̃, ξ) maps in the same space R
d2 , p

can be considered as a bijective linear transformation within

R
b2 . In fact, the performance difference between a linear

predictor and non-linear predictor is subtle. The global min-

imizer of (6) must align network output w.r.t to (x, x̃) with

the first term in (6) and align outputs from different net-

works with second term in (6). Hence completes the proof.

For Siamese network with a predictor (SimSiam), a sim-

ilar approach can refomulate the objective as it is a special

case when f(x̃, ξ) = f(x̃, θ) and a stop-gradient is

applied on the f(x̃, θ). Hence by substuting sg(f(x̃, θ))
with f(x̃, ξ) in (6), we complete the proof by:

L = E
(x,x̃)

‖p′(x, θ)− p′(x̃, θ)‖22
+ E

x̃
‖p′(x̃, θ)− sg(f(x̃, θ))‖22

−2 E
(x,x̃)

[(p′(x̃, θ)− p′(x, θ))�(p′(x̃, θ)− sg(f(x̃, θ)))]

(7)

Note that the third term in (6) and (7) can be formulated by

the differential entropy of H(p′(.)) hence prevent represen-

tation collapse.

For Barlow Twins, the diagonal of the cross-correlation

matrix Cii is the cosine similarity between positive pairs.

Hence completes the proof by:

d2∑

i

(1− Cii)
2 =

∑

i

(1− (f(x)�f(x̃))i/(d2 − 1))2 (8)

=
∑

i

(‖f(x)i − f(x̃)i‖22/(2 ∗ (d2 − 1))2 (9)

3.3. Transformation of the ground-truth factors is
orthogonal to the applied augmentations

By demonstrating that all discriminative SSL have a

alignment loss term, the transformation between the ground

truth representations and the inferred representations can be

derived as in [76]. But different to [76], our derivation of

minimization of cross entropy is assumed to be a lower

bound since we only include the alignment term and the

uniformity term is always positive [14, 5]. However, with

all SSL objectives there are additional terms to maximize

the output entropy of the model (some described in 3.2). So

optimizing SSL objectives as a complete loss function will

minimize the cross entropy E[H(p(.|z), qh(.|z))].

Theorem 3.2 By considering the generation conditional
distribution as p(z̃|z) = C−1

p eκ1z
�z̃, the inferred condi-

tional distribution qh(z̃|z) can match p(z̃|z) by minimizing
‖h(z)−h(z̃)‖22 and ∀z, z̃ : κz�z̃ = h(z)�z̃ with h = f ◦ g
or h = p ◦ f ◦ g maps onto a hypersphere with radius√
κ1/κ2.

The proof exactly follows Proposition 1 in [76] just with

minor modification on the concentration term κ and h so

that Theorem 3.2 can apply to non-InfoNCE SSL. A global

minimizer of the alignment term ‖h(z) − h(z̃)‖22 will also

minimize the cross entropy of between p(z̃|z) in (2) and

qh(z̃|z) in (3). This indicates that minimizers of SSL objec-

tive alignment maintain the dot product. Then we can use

Proposition 2 in [76] directly to show that h is an orthogo-

nal linear transformation.
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Theorem 3.3 Assume the data generation process (cf. 3.1),
a model parameterized by h = f ◦ g or h = p ◦ f ◦ g
(h : Rd1 → R

d2 ) that minimizes the alignment term in all
discriminative SSL objectives: ‖h(z)− h(z̃)‖22 as (15), h is
an orthogonal transformation: h(z̃) = Az̃ where A is an
orthogonal matrix.

The proof follows that a function h minimizes the align-

ment will also minimize the cross entropy between the

ground truth conditional distribution p(z̃|z) and the inferred

conditional distribution qh(z̃|z). Therefore if h is isomet-

ric w.r.t the dot product as indicated in Theorem 3.2 then

h(z̃) = Az̃ according to Proposition 2 in [76].

Theorem 3.4 Assume augmentations applied during the
training can be represented as a change in the ground truth
representations, i.e. x̃ = g(z̃(c, Ṽ ∗)) and change in data
variables induces a shift in the ground truth representations
δz = (c, Ṽ∗) − (c, V∗), then δz is in orthogonal to A i.e.
Aδz = 0 if a discriminative SSL objective is optimized.

Proof. With augmentations normally applied during SSL

such as color distortions, rotations, random cropping, and

etc., one can view the alteration as a change of a variable

in the data variable (color, view angles, sizes). This change

of variable under the generation framework described in 3.1

will result in a change in V = {Vi} since c is not changed.

Regardless of structure of the causal graph shown in Figure

2, the change in V can be reflected in the ground truth rep-

resentation space as z̃ = z+ δz. A global minimizer of any

discriminative SSL objective will minimize the alignment

term h(z) = h(z̃) = h(z+ δz). According to Theorem 3.3

we derive:

h(z) = Az = A(z+ δz) (10)

Aδz = 0 (11)

with A being a linear orthogonal matrix. This indicates that

the transformation A is learned to annul the change in data

variables or the effect of augmentations applied.

3.4. Reason and solutions for unstable change in
data variables

In section 3.3 we show that generalized representation is

robust to augmentations since A, the linear transformation

between the ground truth representation and inferred repre-

sentations, is orthogonal to augmentation applied during the

training. And if a change in the data variable reflects a shift,

δz, in the ground truth representations and the newly in-

ferred representation is stable, meaning δz will be absorbed

by the transformation matrix A, then the shift in the ground

truth representation corresponds to an augmentation that is

applied during the training. However, when δz appears in

the range of A and Aδz 
= 0, the resultant inferred rep-

resentation can be unstable and lead to performance drop

on downstream models (denote as D(z)). We quantify this

deterioration on D by:

m(D(h(z))stable)−m(D(h(z̃)unstable) (12)

where m(.) is a metric on an outcome of the downstream

task. In example of D being a linear classifier, m(.) can

be the probability of predicting the target class (prediction
score) or the proportion of correct predictions (accuracy).

In order to overcome this deterioration, we propose two

methods, namely Robust Dimensions and Stable Infer-
ence Mapping:

1. Robust Dimensions: Under a stable condition,

D(f(x))2 = D(Az), each dimension in the inferred

representation f(x) is a linear combination of dimen-

sions of the ground truth representation. The dimen-

sions contributing most to D() should be robust to

unstable shift δzunstable. In other words, most ro-

bust dimensions of f(x) should be also robust in f(x̃)
where x̃ = g(z + δzunstable) as some dimensions of

Aδzunstable will be zero. Hence identifying most im-

portant dimensions in f(x)stable and pass through the

same dimensions of f(x̃)unstable should alleviate the

deterioration by making m(D(h(z))stable){dim} =
m(D(h(z̃)unstable){dim} where {dim} is a set of most

robust dimensions. In example of D being a linear

classifier, the contribution of each dimension can be

calculated by W�
c f(x) where W�

c is the Jacobian of

the linear classifier w.r.t target class c.

2. Stable Inference Mapping: Since f(x)stable −
f(x̃)unstable = −Aδz, we can learn another linear

transformation F to absorb δz. Especially, we want

to learn Ff(z̃)unstable = FAz + FAδz such that

the additional F will not only set Aδz to 0, but also

make stable representation more robust to the unsta-

ble shift by assuring FA orthogonal to δzunstable in

addition to the augmentations applied during training.

Formally, we model a linear layer l(f(x̃)unstable) =
f(x)stable − f(x̃)unstable, hence during the inference

f(x) + l(f(x)) is used for downstream task.

Relation to Causal Inference Since we only have ob-

servations in the image space, we consider the augmenta-

tions or changes of a data variable as interventions on the

ground truth representations: x̃ = g(z̃|(c, do(Vi = vi)).
With an access to ground truth representation, we can eval-

uate treatment-control effect i.e. Pr(f(g(z̃|(c, do(Vi =
vstable))) − Pr(f(g(z̃|(c, do(Vi = vunstable))). Without

any access to the ground truth representations, we can eval-

uate the average treatment effect [33] by E[D(f(x)stable)−
2Note that in general f contains a projector. However we exclude the

notion of the projector to simplify the problem and [10, 29, 26] show that

a projector is not necessary in SSL.
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D(f(x̃)unstable)] via synthesizing manual data samples

x̃i = g(z̃|(c, do(Vi = vi)).

4. Experiments and Discussions

In this section we evaluate our solutions to unstable shift

in data variable on two datasets: Causal3DIdent and Ima-

geNet pretrained SSL and corresponding linear classifiers

as the downstream task.

4.1. Causal3DIdent

posspl class huebg huespl

posobj rotobj hueobj

Figure 3: Causal graph for V in Causal3DIdent.

[76] develops the dataset that 7 objects in the dataset

that each 224 × 224 image is associated with an object

class and a 10-dimensional latent representation. These

10 dimensions correspond to 10 data variables. A causal

graph imposed on these variables is shown in Figure 3. As

the dependency shown in Figure 3, an object is placed at

posobj = (x, y, z) with rotobj = (φ, θ, ψ) and hueobj un-

der a spot light at an angle posspl with color huespl on a

background with color huebg . Detailed information in C.

To simulate unstable change of variable that is not acces-

sible during the training, a range of some data variables is

hold out and hence this portion of data is treated as poten-

tial unstable samples that causes the performance drop on

the linear classifier. Since all data variables are truncated in

range [-1,1], we hold out the edge value(s) to further portray

’unexpected’ values during the inference time. We select 8

dimensions to intervene, namely: z in object position3, all

3 object rotation angles, spot light position, and all 3 hue

variables. Both training and testing data are sampled and

for detailed sampling procedures refer to C.

SSL Experiment Setup ResNet18[30] is the backbone of

the feature encoder f . Same augmentations in [10] are ap-

plied during training. An Adam optimizer with a learning

rate at 0.0001 and a weight decay at 0.00001 is optimized

for all discriminative SSL. Hyperparameters for each SSL

is presented in C. The dimension of the inferred representa-

tion space is set to 128. The network is trained for 20 epochs

on intervened data. Then a linear classifier is trained on the

frozen representations of the network with a same optimizer

for 10 epochs.

3Only z is altered because most of deep vision models are translation

invariant.

To illustrate the simulation results in the deterioration of

the downstream performance, for each testing data that has

the same data variable distribution as the training data, we

search in the ground truth representation space for 5 nearest

representations in the hold-out test distribution when n di-

mension of the testing data is shifted to a random value in

the hold-out range of corresponding data variable. Within

the corresponding 5 images representing a shift in n dimen-

sions that is not seen during the training, we record the low-

est performance to fulfill the deterioration scenario. In Fig-

ure 4 the score and accuracy are averaged over all combina-

tions of
(
8
n

)
. When n = 0, this indicates the performance of

SSL on the testing data with the same data variable distri-

bution as the training data. The performance is exceptional

since hold-out values of some data variables may be cov-

ered by the augmentations applied (z covered by random

cop, and hue colors covered by color distortions), A will

be orthogonal to changes in these data variables. In fact in

C we show that the performance difference between seen

distribution and unseen distribution in testing data is com-

paratively small. As illustrated in Figure 4, even when only

one variable is changed to a unseen value, there is a large

drop in both accuracy and prediction score ( 20% in accu-

racy and 30% in prediction score for SimCLR). With more

tangled changes in data variables, the unstable representa-

tions results in poorer downstream performance. Since the

selection of the data variables may be too complex due to

the dependency, we also validate the same issue on select-

ing only children nodes in Figure 3. And also we visualize

the latent shift between stable and unstable examples. See

C for more results.

Robust Dimensions For each pair of testing data xstable

with seen data variable distribution and the selected data

xunstable among the 5 nearest neighbours when changing

n dimensions to unseen distribution values, we apply the

Jacobian of the linear classifier w.r.t the target class W�
c

on the stable representation f(x)stable to identify the top

k most important dimensions and pass the same dimen-

sions of f(x̃)unstable to D to evaluate the performance. As

shown in Figure 5, the accuracy only deteriorate slightly

when top 90% most important features of f(x̃)unstable are

selected for the downstream task. This is true even when

all 8 variables are shifted. This suggests that A is orthogo-

nal to changes in ground truth representation z in most di-

mensions. This high percentage of dimensions may be due

to f optimizes the SSL objectives to a high level and the

augmentations applied covers some of the hold-out vari-

able values. Interestingly, there are cases where passing

the top k% (around 40%) important dimensions results in

higher performance than stable representations (unitervened

in Figure 5). However, as expected, including more less im-

portant dimensions where the unseen shift in the data vari-

able results in non-zero adjustment (Aδz 
= 0) initiates the
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(a) Deterioration in Accuracy (b) Deterioration in Score

Figure 4: Deterioration of unstable changing in data variables on all SSL. The more unexpected changes occur in the data

variables, the more severe the deterioration.

deterioration phenomenon we observe.

(a) Improvement on Accuracy

(b) Improvement on Score

Figure 5: By identifying and passing top k % important di-

mensions, the deterioration in both accuracy and prediction

score is significantly alleviated.

Stable Inference Mapping As shown in 3.4, a linear trans-

formation F : Rd2 → R
d2 is trained to cancel the effect

Aδz and also further improve the robustness of transforma-

tion on the ground truth representation Az. In this experi-

ment, we match each training data with a random member

in the 5 nearest representations when only one dimension is

changed to a unstable value. A linear layer is trained with

the same optimizer for 10 epochs on the training pairs. In

Table 1, all accuracy for unstable examples increases signif-

icantly (except SimSiam) after learning F. However, since

the f is very close to the global minimizer of the alignment

term, the improvement on stable examples cannot be ob-

served.

xstable x̃unstable

w/o F w/ F w/o F w/ F
SimCLR 0.996 0.998 0.833 0.889

MoCo 0.992 0.992 0.800 0.849

BYOL 0.996 0.998 0.886 0.920

SimSiam 0.998 0.999 0.919 0.928

Barlow Twins 0.991 0.995 0.818 0.862

Table 1: The effect of F on both stable and unstable sam-

ples.The accuracy is average over 3 random seeds.

Figure 6: Examples of ObjectNet dataset (1st row), Stylized

ImageNet dataset (2nd row), Synthetic dataset (3rd row).

4.2. ImageNet

To validate our findings on a larger scale and more real-

istic settings, we apply proposed solutions on ImageNet[16]

with various altered and synthetic datasets as unstable shift

in the data variable. See Figure 6 and D for more informa-

tion on ObjectNet, Stylized-ImageNet, Synthetic dataset.
ObjectNet[3] is a collection of objects that are intention-

ally placed at an unusual view angle and backgrounds, so

that the bias learned by the model with usual data variables

is more prominent when testing on ObjectNet. With focus-
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ing on 113 classes overlapping with ImageNet classes, we

evaluate our second proposed solution explicitly on Object-

Net since the shift presented in ObjectNet is very unstable

and it is very challenging to overcome the negative effect of

the shift.

Stylized ImageNet[24] change the style of original Im-

ageNet image to a random artistic style. With this drastic

shift in the data variable, the analysis of the first solution is

more insightful on the robustness of dimensions of A on a

very different shift in data variable.

Synthetic Data follows synthetic procedure in [18]

where object is masked on a background at a location with

a rotation angle. We explore the benefit of this synthe-

sized dataset at three modes: background, location, rota-
tion where the target variable is randomly sampled with the

other two variables fixed. Additionally, we explore texture
as an independent variable by masking ’texturized’ objects

in [23]. We set total number of updating steps per epoch as

100 with batch size 256. This means we select total number

of 512000 synthesized images every epoch.

Experiment Setup ResNet 50 pretrained on ImageNet and

a linear classifier fintuned via SimCLR, BYOL, and Sim-

Siam are tested with both proposed solutions. For Stable In-

ference Mapping, a linear layer is optimized with an Adam

optimizer for 10 epochs on the synthetic dataset.

Robust Dimensions For each of ImageNet validation data

sample, we stylized the image to a random artistic fash-

ion. We observe the dramatic performance difference be-

tween the ImageNet stable images and Stylized unstable

ImageNet images (xstable,xunstable). The result is shown

in Figure 7. For SimCLR, passing the top 10% important di-

mensions can close a small performance gap between stable

representations and unstable representations. Nonetheless,

all SSL seem to be sensible to the strong style change as

they shorten the difference between ImageNet to an mod-

est extent. This is as expected since the Stylized ImageNet

changes multiple variables to an extreme value.

Stable Inference Mapping As described in Synthetic
Data, we explore the benefit of our second proposed

method to evaluate on a dataset that most of samples are un-

stable according to learned A. At each training step, with

other variables randomly fixed, 10 images with random tar-

get variable values are generated. The pair with maximum

m(D(x)) − m(D(x̃)) is selected to train the linear trans-

formation. In Table 2, inferring F via controlling location

produces least improvement. This is expected since the net-

work is robust to translation by design. While background,

rotation, and texture improves the performance consider-

ably with the consideration on the training time. However,

in D we show that training the model longer using Sta-
ble Inference Mapping yield less favorable results since

the improvement is less significant and starts to saturate at

around 30 epochs.

(a) Improvement on Accuracy

(b) Improvement on Score

Figure 7: By identifying and passing top k % important di-

mensions, the deterioration in both accuracy and prediction

score is alleviated.

SimCLR BYOL SimSiam

w/o F 10.12 14.04 11.15

background 12.34 15.43 12.45

location 10.35 14.13 11.17

rotation 12.04 15.88 12.38

texture 12.79 15.06 13.11

Table 2: Comparison of inferring different F on ObjectNet

with a target data variable random trials.

5. Limitations

Though we identify the root cause of unstable infer-

ence for descriminative SSL by constructing a causal frame-

work inspired by the prior work, the proposed solutions

are constrained and limited to be applied on realistic appli-

cations. Robust Dimensions involves establishing a cor-

respondence between stable and unstable instances on a

one-to-one basis, enabling the identification of dimensions

contributing to stability. On the other hand, Stable In-
ference Mapping necessitates a collection of unstable in-

stances with a specific alteration in a particular group of

data variables. Within the Causal3dIdent dataset, both solu-

tions can be assessed using the same unstable instances. In

more realistic datasets, achieving a one-to-one correspon-

dence is feasible, and manipulation of one group of data

variables can be accomplished using synthetic data. How-

ever, any assessments with involving artificially generated

images might introduce some level of uncertainty. In a re-

alistic setup, since training samples are not directly observ-
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able during the inference stage, simple interventions on in-

ference samples may not effectively separate the unstable

variables from the stable ones. Consequently, the potential

benefits of the proposed solutions in realistic datasets are

undermined.

6. Conclusions
In conclusion, this paper has proposed a novel approach

to address the issue of unstable behavior during the infer-

ence stage in SSL methods. By building on the previous

theories of successful InfoNCE-facilitated contrastive SSL

and extending it to recent SSL methods, we have demon-

strated that a change in the data factor can result in a shift

in the inferred representation, leading to a decline in down-

stream performance. We have proposed learning targeted

transformations that regularize the violating shift and re-

store performance on the unseen data shift. Our experi-

ments on both controlled and realistic datasets have shown

the efficacy of our proposed solutions. These contributions

provide a better understanding of SSL methods and offer

a promising solution to the problem of unstable behavior

during the inference stage. We hope that our work will in-

spire further research in this area and lead to improved SSL

methods that are more robust to changes in data factors.
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