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Subsystem symmetry, spin-glass order, and criticality from random measurements
in a two-dimensional Bacon-Shor circuit
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We study a 2D measurement-only random circuit motivated by the Bacon-Shor error correcting code. We find
a rich phase diagram as one varies the relative probabilities of measuring nearest-neighbor Pauli XX and ZZ
check operators. In the Bacon-Shor code, these checks commute with a group of stabilizer and logical operators,
which therefore represent conserved quantities. Described as a subsystem symmetry, these conservation laws
lead to a continuous phase transition between an X-basis and Z-basis spin-glass order. The two phases are
separated by a critical point where the entanglement entropy between two halves of an L x L system scales as
L1In L, a logarithmic violation of the area law. We generalize to a model where the check operators break the
subsystem symmetries (and the Bacon-Shor code structure). In tension with established heuristics, we find that
the phase transition is replaced by a smooth crossover, and the X - and Z-basis spin-glass orders spatially coexist.
Additionally, if we approach the line of subsystem symmetries away from the critical point in the phase diagram,

some spin-glass order parameters jump discontinuously.
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I. INTRODUCTION

Random circuits provide a platform for exploring quantum
dynamics and quantum algorithms, revealing how informa-
tion propagates and how entanglement evolves [1-5]. They
provide simple examples of quantum dynamical systems [6,7]
and also act as models of noisy hardware [8]. A central insight
has been the establishment of analogies between thermody-
namic phase transitions and the behavior of quantum circuits
consisting of both random unitary operations and measure-
ments [7,9-23]. As one varies model parameters, such as the
probabilities of various gates or measurements, these quan-
tum circuits can exhibit different phases characterized by
distinct entanglement scalings, which are separated from each
other by continuous phase transitions. As exemplified in Refs.
[24-26], quantum circuits consisting of only measurements
can also exhibit rich phase diagrams when the measurements
performed at different time steps do not commute with each
other. Apart from certain examples [19,20,24,25,27], the dy-
namical systems evolving under measurement-only quantum
circuits have not been systematically explored beyond one
dimension. In this paper, we focus on a two-dimensional
(2D) measurement-only circuit on a square lattice where we
are able to explore the role of both global symmetries and
“subsystem” symmetries in quantum dynamics. We analyze
the phase transitions in this circuit using a detailed analysis of
order parameters and correlation functions. We find that our
2D model displays intriguing behaviors that are not seen in
1D measurement-only circuits.

Our model is motivated by the Bacon-Shor code [28],
which is a quantum error correcting code on a 2D square
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lattice that relies upon repeated measurement of check op-
erators. Also known as gauge operators, these are a set of
noncommuting local operators, which can be used to detect
errors without scrambling the stored quantum information.
In the Bacon-Shor code, the check operators consist of the
product of any two nearest-neighbor Pauli X operators on a
horizontal bond, and the product of any two nearest-neighbor
Pauli Z operators on a vertical bond [Fig. 1(a)]. We will

denote these check operators as X X and g While the check

operators do not commute with one another, they do com-
mute with the Bacon-Shor stabilizer group, generated by the
products of Z operators along any two horizontal rows, and
the products of X operators along any two vertical columns
[Figs. 1(b) and 1(c)]. Both the Bacon-Shor stabilizers and
the check operators commute with logical operators: A prod-
uct of Z’s along a single row or a product of X’s along
a single column [Figs. 1(b) and 1(c)]. We will consider a
model where the check operators are randomly measured.
The fact that these checks commute with the stabilizers and
logic operators can be considered as a symmetry. The logical
operators and the Bacon-Shor stabilizers are symmetry gener-
ators. After reorganizing these operators, there is effectively
an independent symmetry generator for every row and every
column. Since the action of each generator is concentrated
only on a lower-dimensional subsystem (i.e., the spins in a
single row or a single column), these are referred to as sub-
system symmetries. This designation distinguishes them from
global symmetries, which act on all degrees of freedom or
local symmetries, which involve only a single site.

In quantum mechanics, a state is changed by the act of
measuring it. This feature is extremely powerful: One can
build a general-purpose quantum computer that solely uses
a sequence of measurements to process information [29,30].
In this manner, random measurements introduce stochastic
dynamics. In our first numerical experiment, we randomly

©2023 American Physical Society
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FIG. 1. The Bacon-Shor error correction model on a square lattice with qubits on the vertices [(a)—(c)], and the phase diagram of our

measurement-only random circuit (d). (a) The operators X X on horizontal bonds and ; on vertical bonds are check operators. [(b), (c)] A

product of X operators along two adjacent columns and a product of Z’s along two adjacent rows are the Bacon-Shor code stabilizers, which
can be formed from products of check operators, but commute with all checks. The check operators also commute with the logical operators,
products of X/Z operators along a single column/row. These logical operators generate the subsystem symmetries. (d) Parameter space of

our model. We measure 2-qubit operators: X X, g, Z7Z ,’; with probabilities p; pa, p1p2, P12, P1D2, Where p; and p, run from O to 1, and

pj =1 — p;. The solid red lines at p, = 0, 1 illustrate the regions of parameter space having the Bacon-Shor code structure with subsystem

symmetries, and the blue dots correspond to critical points.

measure the Bacon-Shorg checks with probability p;, and the

X X checks with probability p; = 1 — p;. We study the prop-
erties of the steady-state ensemble produced by this quantum
Markov chain [31].

We characterize the steady-state ensemble using spin-glass
order. In the limit of applying only X X checks (p; = 0), each
row develops a perfect X spin-glass order and similarly, only
applying é checks (p; = 1) leads to a perfect Z spin-glass
order along columns. As we vary pi, the ensemble displays
a phase transition at p; = 1/2 from an independent X spin-
glass order along each horizontal row for p; < 1/2 and an
independent Z spin-glass order along each vertical column
when p; > 1/2. This form of order was used by Sang and
Hseih to characterize the behavior of a 1D system [19], and it
will be explained in detail in Sec. IV A. We characterize the
ordered phases and the phase transition at p; = 1/2.

In addition to looking at spin-glass order, we calcu-
late the entanglement entropy between two halves of the
system. Such entanglement based measures are analogous
to thermodynamic quantities like specific heat: They show
divergences/discontinuities at phase transitions with critical
exponents that encode universal features of the model and are
independent of the microscopic details. Away from p; = 1/2,
we find that the entanglement entropy has an area-law scaling
S ~ L, where L is the linear size of our square array. At
p1 = 1/2, we instead see S ~ L1n L, which is referred to as a
logarithmic violation of the area law. We explain the structure
of the spin-glass order and the behavior of the entanglement
entropy in terms of the subsystem symmetries of the model.

In a recent paper [20], Lavasani et al. studied a model,
which (in certain limits) maps onto our random Bacon-Shor
code. They discovered the entanglement scaling described
above, but did not explore the possibility of spin-glass or-
der (which would be a nonlocal order in their model, and
would not have been natural). Another related model was
studied by Lavasani et al. [24] and Sriram et al. [25]. They
considered a 2D model on a honeycomb lattice where one

randomly measures noncommuting two-site checks, chosen
so that each hexagonal plaquette has a conserved quantity.
Hence their model contains a subsystem symmetry, but of a
very different form than the Bacon-Shor code. Their model
contains a topologically ordered spin-liquid phase (with area-
law entanglement entropy, S ~ L) and a critical phase (with
entanglement entropy scaling S ~ LInL). Neither of those
phases display any spin-glass order.

After characterizing the random Bacon-Shor code, we

break the subsystem symmetry by allowing); and Z Z checks,
with probability proportional to p, [Fig. 1(d)]. In this case,
the only symmetries are global symmetries, generated by the
product of X operators of all spins in the system and its

Z-operator counterpart. With these extra § and Z Z check op-

erators, we find that the spin-glass order is no longer confined
to rows or columns, and that the X and Z spin-glass orders
can coexist. At the extreme limits of applying only X X ,};
checks, we get a perfect global X spin-glass order whereas
in the limit of applying only ZZ ,; checks, we get a perfect
global Z spin-glass order. One can continuously pass from the
region of the phase diagram dominated by the X spin-glass
order to the region dominated by the Z spin-glass order with-
out encountering a phase transition. There is some qualitative
similarity with the critical point separating the liquid and gas
phases of water where one can circumvent the thermodynamic
singularity by taking an appropriate path through the parame-
ter space.

One important caveat with this analogy is that we find
discontinuities as p, — 0. An infinitesimal breaking of the
subsystem symmetry leads to a discontinuous change in the
spin-glass order parameters, which describe X correlations
between rows or Z correlations between columns. The X
spin-glass order in a single row (or Z spin-glass order in
a single column) changes continuously. In other words, an
infinitesimal p, leads causes the independent spin-glass orders
in individual columns and rows to merge into a global two-
dimensional spin glass.
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Through our study, we learn that some prior heuristics
have limitations. Our model (even with the broken subsystem
symmetry) features a bipartite frustration graph. That means,

the check operators divide into two sets: {X X, f(} and {ZZ, ;}.

Within each set, the operators commute with each other, but
any operator from one set anticommutes with at least one
operator from the other set. In the context of 1D models,
Ippoliti et al. [26] conjectured that this feature would ensure
a phase transition as one varied the probabilities of measuring
the various operators. Our model instead shows a crossover,
unless we impose the subsystem symmetry.

II. MODEL AND NOTATION

We consider a square L x L grid of qubits. The qubits
do not evolve under any Hamiltonian, and instead the only
dynamics comes from measurements. At each time step, we

2,227, % with
probabilities p;p,, p1p2, P1P2, P1D2, Where p; and p, run
from O to 1, and p; = 1 — p;. The resulting parameter space
is conveniently visualized by the square in Fig. 1(d). At each
corner, only one type of operator is measured.

We start with a random state in the Bacon-Shor code space
and use the stabilizer formalism in Sec. III to calculate how
the state evolves under each measurement. We will use (O) or
(¥ |Ol¥r) to denote an expectation value in a single state, and
O or @ to denote the ensemble average. In our numerics,
each ensemble average corresponds to time averages over 32
independent runs, each starting with a different initial state.
Each run contains 100L?> measurement “time” steps.

Each qubit is labeled by indices (i, j), where i and j are
integers between 1 and L. We will use Greek letters to denote
the 2D coordinate, so a Pauli operator on such a qubit will
be designated X; ; or X,. Following the notation of matrices,
we will consider the first index, i to specify a row, while
J specifies a column. This is opposite to the convention of
Cartesian coordinates.

Note that we can map p, — 1 — p, by rotating the lattice
by 90 degrees. We can also map p; — 1 — p; by simulta-
neously rotating the lattice and swapping X <> Z. Thus the
entire phase diagram can be constructed from one quadrant.

measure a random 2-qubit check operator: X X

Symmetries

The system always possesses two global symmetries: The
products over all sites, ], H?le,-, j and T[4, H?le,; i
commute with all check operators. On the red lines shown
in Fig. 1(d), corresponding to p, =0, 1, the system has
additional subsystem symmetries. When p, = 0, all of the
check operators commute with the Bacon-Shor stabilizer
generators, [ [, X; ;X;x and [[; Z;Z;; where j # k. On this
high-symmetry line, the checks also commute with the logic
operators, [ [; X;; and [[; Z;. These operators are illustrated
in Figs. 1(b) and I(c). Note that the Bacon-Shor stabilizers
are products of the logical operators.

The same structure is found when p, = 1, but with X and
Z reversed. For simplicity, in our numerics we always choose
our initial state to be an eigenstate of the relevant symmetry
operators.

III. CALCULATION TECHNIQUE
A. Stabilizer formalism

We use the quantum trajectories approach in the stabilizer
formalism to simulate the dynamics [21]. In the stabilizer for-
malism, the many-body quantum state of L? qubits is specified
by L? linearly independent and mutually commuting operators
called stabilizer generators [9].

Each of these stabilizer generators is a Pauli string and the
many-body quantum state is a simultaneous eigenstate of all
the generators. For our calculation, we do not need to keep
track of the eigenvalues, which are all +1. One can inter-
pret our results as an average over all such possibilities. The
instantaneous stabilizer group formed by taking all possible
products of the stabilizer generators should not be confused
with the Bacon-Shor stabilizer group, which describes the
symmetries when p, = 0, 1.

At each time step we randomly measure a check operator

XX, g ZZ,or i) on a random bond on the lattice according
to probabilities p; and p, defined in Sec. II. Based on the
measurement, we update the generators.

Each generator has the form g =[], XO’}‘*ZZ”‘ where the
n’s and m’s can be 0 or 1. Thus the stabilizer can be stored as
alength 2L? binary string V containing the n’s and m’s. In this
representation two operators commute if they share an even
number of nonzero entries, after the X and Z entries of one of
them are swapped. The generators are linearly independent if
the L? x 2L? matrix of the V’s is of full rank, modulo 2. This
property can readily be checked by row reduction.

The expectation value of a Pauli operator/string O can be
easily calculated: If O commutes with all of the instantaneous
stabilizer generators, then it must be a product of them, and
|[vr) is an eigenstate. Thus (¥ |O|y) = £1. Conversely, sup-
pose O anticommutes with at least one generator g. (Pauli
operators, which do not commute instead anticommute.) Then
(V|0ly) = (¥1g0g|¥) because g|y) = £|), Since g and O
anticommute, we conclude (O) = 0.

When we randomly choose to measure a check operator
S during our dynamics, one of two scenarios is possible: (1)
If § commutes with all of the generators of the instantaneous
stabilizer group, then S belongs to this stabilizer group and the
measurement does not change the state. (2) If § anticommutes
with generators gi, g2, --gu, the effect of the measure-
ment can be captured by replacing the generators g; —
S and g; — g1g; for j > 1 in the instantaneous stabilizer
group. The generators that initially commute with S will be
unchanged.

B. Order Parameter

Our model always has global symmetries generated by
[1, X» and [], Z,. The single spin operators X, and Zz an-
ticommute with these global symmetry generators and thus
the expectation values (X,) and (Zg) vanish in the long time
limit. Consequently, the lowest-order correlation function,
which can be used to characterize the states in our ensemble
are the two-point functions (X,Xg) and (Z,Zg). As argued
in Sec. lIT A, for a given state, these expectation values are
either 0,1, or —1—corresponding to the two spins being un-
correlated, aligned, or anti-aligned in the appropriate basis.
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We calculate the ensemble average X,p = (X,Xg)?, which
measures the degree of correlation between the two spins,
irrespective of the sign. Z,5 = (Z4Zg)? plays the same role in
the Z basis. We use superscripts of ¢ or r when the correlation
functions are between spins on the same column or row.

A nonvanishing correlation function Xyg (or Z.p) at large
distances indicates a spin-glass order. We refer to the spin-
glass order detected by X, g (Z4p) as the X spin-glass (Z spin-
glass) order.

Equivalently, to detect the spin-glass orders, one can use
the classic Edwards-Anderson order parameter [32], which
is the average of Xyg or Z,g for all pairs of sites o and B
in the entire system (for a spin-glass order with respect to a
global symmetry) or within a subsystem (for a spin-glass order
with respect to a subsystem symmetry). Sang and Hsieh used
this approach to describe the spin-glass order in a 1D random
circuit [19].

In principle, one could consider six different correlation
functions: XX, XY,XZ,YY,YZ, ZZ, which can be written
as matrix elements of a 3 x 3 symmetric tensor. Of these,
the XX and ZZ correlators are most relevant: The opera-
tors X,Zg, X,Yg, and Z,Yy all anticommute with one of the
global stabilizers [, X, or [ ], Z,, and hence have vanishing
expectation values. For a single realization, the Y corre-
lator (Y,Yg) can be expressed as (Y,Yg) = —(XoX3)(ZoZp)
due to the properties of the instantaneous stabilizer group in
this model. By the Cauchy-Schwartz inequality, ((Y,Y3)2)* <

(XoXp)*(ZoZg)? = XopZ4p. Thus we cannot have Y spin-
glass order without having both X and Z order. We will
therefore not report on the Y correlators.

We can always choose our instantaneous stabilizers to sep-
arately involve products of Pauli X operators or products of
Pauli Z operators: We call these X stabilizers and Z stabiliz-
ers respectively. A useful observation is that (X,Xg)? =1 is
equivalent to the statement that the only Z stabilizers, which
pass through site « also pass through site 8, and vice versa.
This observation is a corollary of the fact that (X()(Xﬁ)2 =1
if and only if X,Xg commutes with every stabilizer genera-
tor. The stabilizers, which anticommute with X, Xz are the Z
stabilizers, which pass through only « or 8, but not both.

When p, = 0, the Bacon-Shor code stabilizers (either a
product of two columns of X operators or two rows of Z
operators) are part of the stabilizer group. Thus (X, Xz)> = 0
unless @ and B lie on the same row. Similarly, (ZOZZ[;)2 =0
unless the spins lie on the same column. (For p, # 0, 1, no
such constraints are present.) The natural interpretation of
this row-only X spin-glass order, or column-only Z spin-glass
order, is that each row or column forms an independent spin
glass.

We find that in the presence of the subsystem symmetry
(p2 =0, 1), the X and Z spin-glass orders are mutually exclu-
sive, When the subsystem symmetry is explicitly broken (by
taking p, # 0, 1), the two-types of spin-glass order coexist as
we will show later.

C. Entanglement Entropy and Mutual Information

In addition to the spin-glass order parameter, we char-
acterize the states in our ensemble via their entanglement

properties. In particular, we split the system in half by a
vertical cut, and calculate the resulting entanglement entropy.
We then explore how this entanglement scales with system
size.

For computational simplicity, we use the second Renyi en-
tropy, Sgz = — InTrp3, where py is the density matrix formed
by tracing over half the system. We calculate this entropy in
the stabilizer formalism by truncating the L? x 2L? matrix
of the stabilizers generators to an L? x L? matrix, tracing
over half of the sites in the system. We calculate the rank
R of this truncated matrix. The entropy is given by Sgg =
R —L?/2[1,10].

As already argued, the entanglement entropy acts like a
thermodynamic variable, and will display discontinuities or
cusps at phase transitions. It can also distinguish between
certain types of states. For example, a great deal of work
has been devoted to studying phase transitions between “area
law” and “volume law” phases in systems of dimension
d [9-12,17,20,21,26,33-46]. In the area-law phases, the en-
tanglement entropy between regions of size L scales as L™,
corresponding to the area of the boundary. The entanglement
entropy in volume-law phases instead scales as LY. An in-
tuitive heuristic is that local measurements favor area-law
phases, while longer-range measurements and unitary gates
favor volume-law phases. Most of the previous work focuses
on d = 1. In our case, we focus on d = 2. As we will see
later, our model exhibits an interesting phase diagram without
a volume-law phase.

In addition to entanglement entropy, we can also consider
the mutual information between two qubits, Z,g = So + Sg —
Squp. Here S, is the entanglement entropy between qubit o
and the remainder of the system. The quantity S,yg is the
entanglement entropy between the two spins and the rest of
the system. The mutual information captures the correlations
between the two qubits. In our system, it carries the same
information as the spin-correlation functions, and Z can be
taken as a basis independent measure of the spin-glass corre-
lations. More precisely, our system has the global symmetries,
generated by [[; ;X;; and [];;Z; ;, that forbid single-site
operators to appear as instantaneous stabilizers. Together with
the fact that the instantaneous stabilizers group is generated
by X and Z stabilizers, the mutual information Z,g between
the two sites o and B can be written as Z,4 = In 2((X(,(X,g)2 +
(ZaZp)?).

IV. RESULTS

A. Behavior on high-symmetry line, p, = 0

We first consider the bottom red line in Fig. 1(d) where
p> = 0. Along this line, we measure horizontal X X checks
with probability 1 — p; and vertical g checks with probability
p1. As discussed in Sec. IT A these operators commute with
the Bacon-Shor stabilizers and logical operators. The result-
ing subsystem symmetries exclude all two-point correlation
functions (X, Xg) along a column or (Z,Zg) along a row. This
implies that in the X basis, the rows appear independent while
in the Z basis, the columns appear independent. These sym-
metry constraints are properties of each individual element
of the ensemble and do not require ensemble averaging to
observe.
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FIG. 2. Long-range spin-spin correlators in the X basis along
rows X" = L2 Zij (X; ;X j+1,2)? and in the Z basis along columns
Z¢=L"7 Zij (Z; jZi11)2,;)?, as a function of probability p;, along
the high-symmetry line p, = 0 for a L x L system of size L = 36.
The system has X correlations along rows for p; < 0.5 and Z cor-
relations along columns for p; > 0.5. The point p; = 0.5 is critical
and there the value of the correlator is set by finite size effects. Inset:
Spatial dependence of the X correlator X} = L™> 2 (X X js)?
at the critical point as a function of distance § for a system of size
L = 60. The red solid line is a power law fit to the curve, 0.495~18!,

We calculate the ensemble averaged long-range spin corre-
lators in the X basis along rows X" = L™ 3", (X; jXi j11,2)?

and in the Z basis along columns Z¢ = L2 >ii i iZivipn )
as we vary p; from 0O to 1 in a 36 x 36 lattice. The super-
scripts r and ¢ indicate correlations along a row and column
respectively. The result is shown in Fig. 2. For p; < 0.5,
we find X" #£ 0, indicating a spin-glass order in the X basis
along rows. For p; > 0.5, we instead find Z¢ # 0, indicating
a spin-glass order in the Z basis along columns. As argued
below, the apparent nonzero value of X7, Z¢ at p; = 0.5isa
finite-size effect, and the two orders are never simultaneously
present. Due to the subsystem symmetries, the X spin-glass
order (Z spin-glass order), if present, is separately developed
on each row (column).

To elucidate the behavior at p; = 0.5, the inset of Fig. 2
shows the spatial dependence of the X correlator, Xj =

L2y, ; (XijXi j+5)* as a function of distance & for a larger
(L = 60) system. We see a power-law decay where XY ~
0.4967, with y, = —1.81(5). If we extrapolate to long dis-

tances, Xy, vanishes indicating the absence of X spin-glass

order. The Z correlator Z{ = L2 ) i Zivs iZi, ;)% along the
columns exhibits the same scaling behavior. From this behav-
ior, we conclude that p; = 0.5 is a critical point between a Z
spin-glass-ordered and X spin-glass-ordered state. To further
demonstrate the criticality, in Fig. 3, we show that the spin-
glass order parameter obeys a scaling form X" = L% g((p; —
0.5)L'/"), where g is a scaling function. Following the scaling
collapse procedure in Ref. [11], we find critical exponents
7: = 1.6(3) and v = 0.77(22). Within error bars, y, = 7,, and
our value of v agrees with the one found in Ref. [20] by
considering entropy scalings.

We also calculate the half-cut bipartite entanglement en-
tropy Sgg of the system as we vary p; for different system
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FIG. 3. Scaling collapse near the critical point p; = 0.5, p, =
0, showing that X" = L~ 7xg((p; — 0.5)L'/") for , = 1.6 and v =
0.77, where g is a scaling function.

sizes. We observe that the system obeys area-law entangle-
ment entropy (Sgg o L) for all values of p; except at the
critical point, p; = 0.5. At p; = 0.5, we instead find Sgp
LInL as shown in Fig. 4. In 1D critical points, a logarithmic
violation of area-law entanglement (Sgg o In L for a system
size of L) is a common feature, which is often associated
with conformal symmetry. In 2D, this logarithmic violation
of the area law, i.e. Sgg o« LIn L, is more unusual. This scal-
ing previously was found in Fermi liquids [47] and some
monitored/nonunitary dynamical systems [20,21,48,49]. In
our model, the scaling behavior Sgg ~ LInL results from
the subsystems symmetry, which gives our model a 1D-
like character: The order parameters X" and Z¢ correspond
to independent ordering along each row or column. These
rows/columns simultaneously become critical at p; = 0.5.
Thus it is natural to interpret the L In L entanglement scaling
as being due to ~L independent 1D critical chains, each of
which have In L entanglement.
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15 o’
-—-.ep; =05 o
14 o p, =04 “.,.'
,0
iz
131 ",/'
X 4
Y
12+ "v.
.
‘f’.
11+ x'
o o © 9,—6 O 0 0 O 00 0000000000000
1.0F P
.
&"
09/°.° ‘
25 3.0 35 4.0 InL

FIG. 4. Half cut bipartite entanglement entropy divided by sys-
tem size Sgg/L as a function of In L, where L is the system size of
an L x L square lattice ranging from L = 12 to L = 66. The solid
blue circles show Sgg /L at the critical point (p;, p>) = (0.5, 0). The
dashed red line is a straight line fit showing logarithmic growth of
See/L, violating the area law at criticality. The open black circles
show Sge/L at (py, p2) = (0.4,0). The entropy saturates to a con-
stant value, showing area law.
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FIG. 5. Long-range spin-spin correlators in the X and Z ba-
sis along rows (X7, Z") and columns (X¢, Z¢) as a function of
probability p;, with p, = 0.5 for an L x L system of size L = 36.
Along this line, the correlations are isotropic: Column and row
orders are of equal strength. Near p; = 0.5, the X and Z orders
coincide. Inset shows spatial dependence of the X correlator X, =
L_2 Z[./ (X,‘JX[‘_/'_'_(;‘)Z and the Z correlator Zg = L_z Zij (Zi,_/ZH—b]_j)z
at the point (p;, p2) = (0.5,0.5) as a function of distance §. The
red solid line is an exponential fit to the curve, 0.6e~'*% 4 0.06.
The correlations fall off exponentially and saturate at a system-size
independent value of 0.06.

It is a remarkable feature of quantum mechanics that the
rows appear independent if one only looks at the X component
of the spins. Conversely, the columns appear independent if
one only looks at the Z component. Criticality appears simul-
taneously in each of these bases.

B. Without subsystem symmetry, p, = 0.5

We now consider the case where p, # 0, 1. This breaks all
the subsystem symmetries that were present when p, =0, 1.
To illustrate the generic behavior, we fix p, = 0.5 and vary p,
from O to 1. As will be demonstrated in Sec. IV C, other values
of p, # 0, 1 show qualitatively similar behavior. Section IV C
also discusses continuity (or the lack there-of) as p, — 0, 1.

For p, = 0.5 measurements along horizontal and vertical
bonds are equally probable. As illustrated in Fig. 1(d), we
measure {Z Z, é} with probability p; and {X X, );} with proba-
bility 1 — p;. There are no constraints on the allowed form of
the X or Z spin-glass order. Each order can exist along rows,
columns, and diagonally.

In Fig. 5 we show the ensemble averaged long-range corre-
lators in the X and Z basis along rows (X", Z”) and columns
(X€, Z¢). Without the subsystem symmetry, the X spin-glass
order and Z spin-glass order exist identically along both rows
and columns. The X order is peaked at p; = 0, while the Z
order peaks at p; = 1. Despite the superficial similarity with
Fig. 2, the point p; = 0.5 is not a critical point. Both order
parameters are nonzero at p; = 0.5: The X order smoothly
falls to zero as one increases p;, and the Z order behaves
similarly as one decreases p.

To demonstrate that the order parameters are finite at
(p1, p2) = (0.5,0.5), in the inset of Fig. 5, we plot the
spatial dependence of the X and Z correlators along rows,

X =L Zi’j (X; ;X j+s)% and Z5 = L2 Zi’j (Z: ;Z; j+5)*
The correlation functions fall off exponentially (~0.6¢~!-36%)
for small § and saturate at a finite value of Xy, Zf =~
0.06 for large 5. The long-range behavior is independent of
system size as long as L > 5. We also calculated the Y cor-
relator Y = L2 2. (Yi;Yi j+s)*. We find that there is no
long-range Y spin-glass order.

There are three forms of averaging in calculating these
correlation functions: (1) For a given state, a quantum me-
chanical expectation value corresponds to the average result
after many measurements of identical systems. (2) We are
performing a spatial average, summing over i and j in cal-
culating (X; ; X; j+5)2. (3) We are ensemble averaging over
multiple states. It is useful to identify the role of each of
these in determining which correlation functions are zero and
which are nonzero. If we take a single state, and fix two
sites, o and B, then (as previously explained) (XO,X,g)2 will
be 0 or 1. Spatial averaging then gives a real number, which
represents the fraction of correlated sites. We find that for
large system sizes the quantities are self-averaging, meaning
that the spatial average of a single realization approaches the
ensemble average, as we increase system size.

This self-averaging property implies that behavior of the
ensemble can be understood by studying a single typical state,
and the coexistence of X and Z spin-glass order at (p;, p2) =
(0.5, 0.5) demonstrates that these orders can be found in each
individual state. As already explained, we find no Y spin-glass
order, indicating that in any given state the X -correlated spins
are distinct from the Z-correlated spins.

To further elucidate this structure, we recall that
(XoXg) # 01if and only if all Z stabilizers, which pass through
o also pass through B. Given that we are in an area-law phase,
we can find a basis in which the only linearly independent
long-range stabilizers are the global symmetries [ [, Z, and
1, X« The remaining generators are short ranged, and can
be classified as either Z type or X type, depending on which
operators they are constructed from. Thus for well-separated
a and B, (X, Xg) # 0 if and only if there are no short-range
Z generators passing through either of the two sites. An anal-
ogous argument applies to (Z,Zg).

For (Y, Yg) to be nonzero, there would need to be no short-
range generators of any type passing through both sites. A
simple counting argument implies there can be at most two
sites with only the global [ ], Z, and [ ], X, stabilizers going
through them and no short range stabilizers touching them. In
the thermodynamic limit, this results in no Y order.

We refer to a site with no short-range Z-stabilizer gener-
ators as a X site, and one with no short-range X -stabilizer
generators as a Z site. All other sites have both X and Z
short-range stabilizer generators. In the Appendix we show
typical distributions of the X and Z sites. They are uni-
formly distributed, forming clusters whose size corresponds
the length scale over which the correlation functions decay.
The X clusters and Z clusters are interdigitated, and there is no
global phase separation. At p; = 0.5, p, = 0.5, the density of
X sites is 1/4, as is the density of Z sites. This implies that the
long-range correlators take the value (X,Xg)> = (1/4)> ~
0.06 for well-separated sites & and 8, which is consistent with
Fig. 5.
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As mentioned in the Introduction, Ippoliti et al. [26]
introduced the concept of a frustration graph to organize
their thinking about random circuits. In the frustration graph,
each check operator is a node. Two nodes are connected if
they anticommute. Our frustration graph is bipartite, with p,
controlling the weight given to the disconnected subgraphs

formed respectively from measuring {X X,;((} and {ZZ, g}

operators. Previous examples with a bipartite frustration graph
in 1D models displayed phase transitions [26]. Our 2D model
instead shows a smooth crossover (except in the presence of
subsystem symmetries), demonstrating the lack of a direct
connection between the phase diagram and frustration graph
topology in higher dimensions.

The bipartite entanglement entropy obeys an area law for
all values of p; when p, = 0.5. In fact, the system shows
area-law behavior for all values of (p;, p;) except at the two
critical points (p; = 0.5 and p, = 0, 1) where weseean LIn L
scaling.

C. Along p; = 0.25 and p, = 0.5

So far we have been considering fixed values of p, and
varying pi, making horizontal cuts in the phase diagram in
Fig. 1(d). We complete our understanding by varying p, and
making vertical cuts along fixed values of p; = 0.25,0.5.
The parameter p, quantifies the distance from the subsystem
symmetry lines at p, = 0, 1.

Figure 6 shows the long-range X correlators along rows
(X") and columns (X°) for different values of p,. Figure 6(a),
where p; = 0.25, illustrates the generic situation, away from
the critical point. Figure 6(b) with p; = 0.5 instead shows the
approach to criticality. In these plots, X" and X are nearly
identical at nonzero p,. By considering systems of different
sizes, we have established that for p, # 0 the discrepancy
between order along rows and columns is due to finite-size
effects and statistical noise.

At p, =0 the X order along columns vanishes (X¢ =
0, see Sec. IVA). With p; = 0.5, X° smoothly approaches
zero as we approach the critical point by tuning p, — 0.
Conversely, for p; = 0.25 we find (in the limit L — o0) a
discontinuity [Fig. 6(a)]. This discontinuous jump can be
understood as follows. With p, =0 and p; < 0.5, there is
effectively an independent and uncorrelated X spin-glass or-
der for every row i, associated with the subsystem symmetry
generated by [] ].Z,-, j- Once p, becomes finite (while p; <
0.5), this subsystem symmetry is broken down to a global
symmetry generated Hi, ;Zi.j- The existing X spin-glass or-
ders in all rows now couple to each other and merge into a
two-dimensional X -spin-glass.

V. SUMMARY AND OUTLOOK

Randomly measuring noncommuting observables causes
a quantum system to evolve. In the thermodynamic limit,
discontinuities and singularities are found in the properties
of the resulting ensembles. These points of nonanalyticity
are analogous to thermodynamic phase transitions. As in
thermodynamics, both dimensionality and symmetries are
crucial to understand the universal behavior of dynamical sys-
tems undergoing both unitary evolution and measurements. So
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FIG. 6. (a) Long-range spin correlators in the X basis along rows
X, and columns X, as a function of p, for py =0.250onan L x L
system with L = 36. A" remains nearly constant even as p, — 0.
The order is roughly isotropic, X¢ ~ X", when p, # 0, but X jumps
discontinuously to 0 when p, — 0. Inset: Blue solid line shows the
region of the phase diagram probed here (varying p, at p; = 0.25).
(b) Long-range spin correlators in the X basis along columns X¢,
and in Z basis along rows Z’, as a function of p, for p; = 0.5 on an
L x L system with L = 36. Both orders continuously go to zero
as p, — 0. Inset: Blue solid line shows the region of the phase
diagram probed here (varying p, at p; = 0.5). Error bars represent
the standard error in the mean.

far, the bulk of prior work in this direction has focused on
the entanglement properties of 1D systems [9-12,17,26,33—
46,50]. Our paper is part of a lively program to enlarge this
scope [20,21,24,25].

Our 2D model contains a number of symmetries, which
grow with system size (a subsystem symmetry). This feature
has important implications for its phase diagram and critical
behavior.

We consider a measurement-only random circuit inspired
by the Bacon-Shor error correcting code [28]. This circuit is
a natural starting point, as it involves only nearest-neighbor

, §, Z 7, and é As we vary the prob-
abilities of measuring these operators we obtain a rich phase
diagram of spin-glass ordered phases—with features that are
not seen in 1D models.

Symmetry plays an important role in our 2D model. When
we only measure X X and ; (p2 = 0), the system contains a
large number of symmetries/conservation laws: the product
of X operators along any one column is conserved. Similarly,
the product of Z operators along any row is conserved. As we
vary pi, the system undergoes a continuous phase transition
from an X -basis spin glass along rows to a Z-basis spin glass
along columns. We identify a critical point at p; = 0.5 where

two qubit operators, X X
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both spin-glass orders vanish in the thermodynamic limit and
the entanglement entropy scales as S ~ LIn L.

We interpret this L In L scaling behavior, often referred to
as the logarithmic violation to the area law, as being due to
a decoupling into 1D chains. Remarkably, in the Z basis the
columns form these chains, while in the X basis the rows form
these chains. Criticality occurs simultaneously in these two
channels.

When we supplement the X X and ; measurements with §

and Z Z operators, the subsystem symmetries are broken. We
find that the system now shows a smooth crossover between
X and Z basis spin-glass orders. The spin-glass orders can
coexist along both rows and columns. Without subsystem
symmetries, even though the frustration graph remains bipar-
tite, there is no criticality and the system always displays an
area-law entanglement entropy.

The system displays discontinuities as one approaches the
high-symmetry line at p, = 0. Away from the critical point
some spin-glass order parameters discontinuously jump to
zero as p; — 0. This is analogous to a first-order phase
transition.

An important feature of our study is that, like Sang and
Hsieh [19], we go beyond studying the entanglement proper-
ties of the quantum states, and consider the spin correlation
functions. This allows us to develop a physical understand-
ing of the properties of the ensemble. Similar analysis can
be applied to many of the other examples in the literature
[9,12,20,26,50], although some cases show topological order,
requiring the use of string operators rather than the simple
two-point functions used here.

One interesting feature of our model is that, aside from
the critical points, it always yields states with area-law en-
tanglement. Such behavior is expected when one measures
sufficiently local operators. It would be interesting to char-
acterize the minimal set of operators, which would lead to a
volume-law phase in 2D.

The behavior of 2D measurement-only random circuits
is richer than their 1D counterparts. By virtue of the larger
connectivity there can exist symmetries in 2D systems without
clear analogs in 1D. Our subsystem symmetry is such an
example. In our model, this symmetry has dramatic effect,
leading to discontinuities in the spin-glass order, and convert-
ing a crossover into a phase transition. It would be interesting
to understand if other forms of subsystem symmetries lead to
similar behavior.
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APPENDIX: SNAPSHOTS OF SPIN-GLASS ORDER

Here we introduce a technique to visualize the spin-glass
order in a given quantum state. We draw a grid of colored
cells, each one represents a single spin. We color the cells ac-
cording to the stabilizer generators, which have support at that
location: White cells have no short-range Z stabilizers passing

through them. Black cells have no short-range X stabilizers
passing through them. Gray cells have both short-range X and
Z stabilizers. In the language of Sec. IV B, the white cells cor-
respond to X sites, and the black cells correspond to Z sites.

By construction, any two X sites («, B) will be X cor-
related, namely <XaXﬁ)2 = 1. Similarly, Z sites will have
<ZaZ5>2 = 1. Because of the area-law entanglement, these
are the only long-range correlations: In the visualizations,
there are no long-range X correlations involving grey cells or
black cells; there are no long-range Z correlations involving
grey cells or white cells. There can, however, be short-range
correlations of these sorts.

We refer to each visualization as a “snapshot”. Figure 7
shows snapshots of typical states for a variety of pi, p;. In
all cases we consider a 36 x 36 system, and run our dy-
namics for a large number of timesteps before producing the
visualization.

As we discussed in Sec. IV B, the spin-glass order is self
averaging and thus a spatial average on a typical state is
representative of the ensemble average.

The top row of Fig. 7 shows the snapshots when p, = 0.5.
Figure 7(a) shows the case where p; = 0.25. Most sites are
X correlated (white) here and spread throughout the entire
system. There are no black sites, which shows that there are
no long-range Z correlations. Figure 7(c) similarly shows
the case when p; = 0.75 where the system is dominated by
Z-correlated sites (black) with no X-correlated sites (white)
present.

Figure 7(b) shows the snapshot when p; = 0.5. Both white
and black colored sites are randomly spread throughout the
system, which shows how the X and Z spin-glass orders
coexist in the system. (Although in any given state, the
sites participating in the X order are distinct from the sites
participating in the Z order.) Roughly 1/4 of the sites are
white. For any two distant sites, the probability of them being
X correlated would be (1/4)*> &~ 0.06. This agrees with the
asymptotic behavior of the correlation function shown in the
inset of Fig. 5.

In the bottom row of Fig. 7, we show snapshots when p, =
0.02. These points are close to the subsystem symmetry line
but are still area-law entangled. Figures 7(d) and 7(f) show
the states with dominant X correlations and Z correlations
respectively. The number of white and black sites are nearly
identical to what is seen when p, = 0.5 [Figs. 7(a) and 7(c)],
confirming the results of Fig. 6(a) where the spin-glass orders
are only weakly dependent on p,. However, we see that the
uncorrelated gray clusters display interesting asymmetries:
They are more horizontal for p; = 0.25 and more vertical
when p; = 0.75. This elongation is an intuitive consequence
of the different probabilities of measuring horizontal or ver-
tical check operators. The asymmetry can also be seen in
the short-range spin correlation functions—although the long-
range correlation functions are rotationally symmetric.

Figure 7(e) shows the case where p; = 0.5. While we see
both X-correlated (white) and Z-correlated (black) sites ran-
domly spread throughout the system, the image is dominated
by the uncorrelated gray sites. This is a visual indicator of
the feature of Fig. 6(b) where the X and Z spin-glass orders
continuously fall to zero as p, — 0. As we make p, smaller,
we will continue to see more and more uncorrelated sites.
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FIG. 7. Snapshots of typical long time quantum states for a system size 36 x 36 for different values of p;, p,. (a) py = 0.25, p, = 0.5,

(b) pr=0.35,p,

=0.5, (¢) p1 =0.75, p, = 0.5, (d) p; =0.25, p, =0.02, () p; =0.5, p, =0.02, and (f) p; =0.75, p, = 0.02. Each

colored cell represents a single spin. White cells have no short-range Z stabilizers passing through them, and are therefore X correlated
with one another. Black cells have no short-range X stabilizers passing through them, and are Z correlated. Gray cells have both short-range X
and Z stabilizers. While this coloring captures all long-range correlations, there may be additional short-range correlations.
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