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We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a
diamond nitrogen-vacancy (NV) center at cryogenic temperature. Coherent quantum control is an essen-
tial tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital
states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence.
We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extract-
ing the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital
states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the
acoustic waves. We find agreement between our measurements, quantum master-equation simulations,
and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an
expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the
drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-
wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find
good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence
times. We discuss the outlook for orbital decoherence protection.

DOI: 10.1103/PRXQuantum.5.030336

I. INTRODUCTION

Quantum coherent control strategies can be used to both
study and mitigate decoherence. This idea, along with
the associated opportunities for quantum technologies, has
spurred the development of high-fidelity quantum con-
trol over superconducing [1], atomic [2], and quantum
dot [3] systems, among many others. Coherent control of
solid-state defect spins has enabled the development of
decoherence protection schemes [4–8] that can aid in pre-
cision sensing [9,10] and quantum networking [11–19].
Here, we use an acoustic wave resonator at cryogenic tem-
perature to demonstrate coherent control of the excited
orbital states in a diamond nitrogen-vacancy (NV) cen-
ter in the strong-driving limit and we explore orbital
resonance-based decoherence mitigation.
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Strain and electric fields can couple to the orbital states
of a defect, limiting quantum coherence while also cre-
ating opportunities for coherent control. On the negative
side, electric field fluctuations from nearby charge traps
provide the leading source of spectral diffusion in NV
centers [20], which is problematic for quantum network-
ing applications that rely on frequency-matched photon
emission. On the positive side, both static electric fields
[21,22] and quasistatic strains [23] have been used to
tune NV-center optical transitions. Dynamical strains can
also be used for quantum control: they can be combined
with optical pulses to generate coherent Raman side-
bands [24,25] and manipulate spin [26]. Two recent results
in other defects demonstrate the use of orbital interac-
tions for quantum control. In the first, researchers have
used the strong strain-orbit interaction in silicon-vacancy
(SiV) defects in diamond to achieve spin control via
dynamic strain [27]. In the second, researchers have used
electric fields to control a combined orbital-spin ground-
state transition in the neutrally charged NV center [28].
Given that mitigating spectral diffusion remains an ongo-
ing challenge for using NV centers as quantum networking
nodes and that coherent control can often be leveraged
for decoherence protection, we can naturally ask: can

2691-3399/24/5(3)/030336(9) 030336-1 Published by the American Physical Society

https://orcid.org/0000-0002-7326-8230
https://orcid.org/0000-0003-3151-2968
https://orcid.org/0000-0003-4355-6730
https://orcid.org/0000-0001-5186-5889
https://orcid.org/0000-0003-4343-8523
https://ror.org/05bnh6r87
https://ror.org/05bnh6r87
https://ror.org/05bnh6r87
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.030336&domain=pdf&date_stamp=2024-08-19
http://dx.doi.org/10.1103/PRXQuantum.5.030336
https://creativecommons.org/licenses/by/4.0/


B.A. McCULLIAN et al. PRX QUANTUM 5, 030336 (2024)

coherent orbital control protect NV centers against spectral
diffusion?

In this work, we demonstrate coherent control within the
negatively charged NV-center excited-state orbital-doublet
manifold using gigahertz-frequency acoustic waves. We
study the resulting coherent dynamics of the associated
optical transitions. We observe orbital Rabi oscillations
driven by a resonant multiphonon mechanism and quan-
tify the coherence of the orbital states under acoustic
drive. The orbital Rabi oscillations are well described by a
strong-driving Hamiltonian [29,30] and the Rabi frequency
measured in the time domain is consistent with the spectro-
scopic splitting of the optical transitions in the frequency
domain. We numerically verify that our simple Hamilto-
nian model produces these same dynamics using quantum
master-equation simulations and we analytically describe
them using a direct calculation of the orbital Rabi fre-
quency with both a Landau-Zener transfer matrix approach
as well as a perturbative approach in the Floquet picture.
We characterize the coherence of the acoustically driven
orbital states, finding at least a factor-of-2 enhancement of
the coherence time. Finally, we discuss orbital-coherence
enhancement by making an analogy with continuous-wave
spin dynamical decoupling.

II. STRAIN-ORBITAL AND ACOUSTIC ORBITAL
INTERACTIONS

We probe the acoustic driving of the excited-state
orbital doublet using a tunable laser that is resonant
with the spin-preserving zero-phonon optical transitions.
These transitions couple the orbital-singlet spin-triplet
(3A2) ground states {|0〉 , |±1〉} to orbital-doublet spin-
triplet (3E) excited states {|E1,2〉 , |Ex,y〉 , |A1,2〉} at around
1.945 eV (637.2 nm) [31], as shown in Fig. 1(d). Given
that the transitions do not flip the spin state, it suffices to
consider the ms = 0 states. An unstrained NV center has
C3,v point-group symmetry and degenerate |0〉 ↔ |Ex,y〉
transition energies. The linear polarization of the laser can
be rotated to selectively address the orthogonal transition
dipoles that link the ms = 0 ground and excited states, as
shown by the red and blue arrows in Fig. 1(a). Persis-
tent static strain in the diamond lifts this degeneracy. In
the basis {|Ex〉 , |Ey〉}, the interaction of the orbital excited
states with static strain is given by

H = VA11 + VE1σz + VE2σx, (1)

where 1, σz, and σx are the identity matrix and the z and x
Pauli matrices, respectively. The Vλ are strain-deformation
potentials of Jahn-Teller [32] symmetry λ.

We generate the acoustic control field using a high-
overtone bulk-mode acoustic resonator (HBAR) fabricated
from single-crystal diamond [33], shown schematically
in Fig. 1(a) (for fabrication details, see the Supplemen-
tal Material [34]). Gigahertz-frequency electrical driving
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FIG. 1. A bulk acoustic wave resonator on diamond for acous-
tic orbital control. (a) A ZnO transducer (orange) excites the
diamond (gray) high-overtone bulk-mode acoustic resonator
(HBAR) with gigahertz-frequency uniaxial σzz-strain standing
waves throughout the diamond bulk (red and blue lobes). A
single bulk NV center (blue unit cell) is optically excited and
fluorescence is collected through the diamond surface opposite
the ZnO transducer. Dipoles x (red arrow) and y (blue arrow),
corresponding to the |0〉 ↔ |Ex〉 and |0〉 ↔ |Ey〉 transitions, lie
in a plane (yellow) normal to the NV-center C3,v symmetry axis.
(b) S11 measurement of the electromechanical response of the
HBAR device measured at room temperature. (c) The quality
factor of the mode used for experiments is about 700. (d) The
energy-level manifold for an NV center at low temperature. A
resonant laser (red arrows) excites spin-preserving optical tran-
sitions, while acoustic driving (blue arrows) couples the orbital
excited states.

of the HBAR at one of the resonance modes shown in
Figs. 1(b) and 1(c) results in a standing longitudinal strain
wave between the [001] diamond surfaces, which act as
acoustic mirrors. The dynamic uniaxial strain introduces
time-dependent terms into the Hamiltonian [25]:

H(t) =
(
VA1 + A1 cos(ωmt)

)
1

+
(
VE1 + E1 cos(ωmt)

)
σz + VE2σx, (2)
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where A1 (E1) is the dynamic strain driving amplitude of
A1 (E1) symmetry and ωm is the acoustic drive frequency.
The geometry of our HBAR and NV center produces no
dynamic E2-symmetric potential. The acoustic drive fre-
quency for all our experiments is ωm = 2π × 1.296 GHz.

III. ACOUSTICALLY DRIVEN ORBITAL STATES:
FREQUENCY DOMAIN

We begin by measuring the zero-phonon-line opti-
cal transitions of a single bulk NV center using
photoluminescence-excitation (PLE) spectroscopy [38]
(for experimental details, see the Supplemental Material
[34]). All photoluminescence measurements are taken at
zero applied magnetic field and at a temperature of 7 K. We
tune a resonant laser across the two ms = 0 transition fre-
quencies with the polarization set to excite both transitions
equally while collecting the phonon sideband emission.
We observe two peaks corresponding to the |0〉 ↔ |Ex,y〉
transition frequencies [Fig. 2(a)] due to frequent reini-
tialization of the ground-state spin of the defect to |0〉
[23].

We then perform the same measurement in the pres-
ence of acoustic driving (0.63 mW to the transducer) and
observe the emergence of coherent Raman sideband tran-
sitions at detunings of ±nωm with respect to the undriven
resonance frequencies [24,25]. The sidebands result from
A1 modulation, allowing for optical transitions when the
energy of one laser photon ± n acoustic phonons matches
the undriven transition energies [39]. The sidebands are
resolved since ωm exceeds the line width of the optical
transitions of the defect. We perform these measurements
on several NV centers until we find one with an undriven
|Ex〉 ↔ |Ey〉 splitting that is an integer multiple of the
standing wave generated by our acoustic drive.

Matching a multiple of our acoustic drive frequency
to the strain splitting of the defect allows us to reso-
nantly couple the orbital states. The acoustic modes of
our HBAR have a spacing (16 MHz) set primarily by the
thickness (500 µm) of the diamond substrate. The acoustic
mode spacing is considerably smaller than the line width
of the optical transitions of the defects in the diamond
(approx 100 MHz). Thus, we can select an acoustic mode
for which an integer multiple of the acoustic driving fre-
quency will match the orbital transition frequency. The
splitting between |Ex〉 and |Ey〉 for the defect shown in

Fig. 2 is % = 2
√

V2
E1

+ V2
E2

= 6.41 GHz and % ≈ 5ωm.
Our spectroscopy measurements provide a readout of the
coupling strength. As we increase the acoustic drive power,
we observe splitting of the PLE lines caused by reso-
nant n-phonon driving of the |Ex〉 ↔ |Ey〉 orbital transition
[Fig. 2(b)]. This Autler-Townes splitting is the spectral sig-
nature of orbital Rabi oscillation and the line splitting gives

(a)

(b)

(c) (d)

FIG. 2. Acoustically driven photoluminescence-excitation
(PLE) spectroscopy. (a) PLE-spectroscopy measurements with
the laser polarization set to couple to both orbital transitions,
collected with no acoustic drive (blue trace) and weak acoustic
drive (red trace), showing the emergence of resolved sideband
transitions. The inset shows the sequence used for PLE-
spectroscopy measurements: 1-µs green laser, 5-µs red laser and
readout, 7-µs acoustic drive, 500-ms collection at each red-laser
frequency. (b) Acoustic power dependent PLE spectroscopy with
the laser frequency swept across both |Ex,y〉 reveals sideband
evolution and the emergence of Autler-Townes splitting. (c)
Simulated spectroscopy near the undriven |0〉 ↔ |Ex〉 transition
frequency is in good agreement with (d) higher resolution
spectroscopy measurements. As depicted in (d), the orbital Rabi
rate &R can be read off as a mode splitting. The acoustic mode
frequency ωm is 2π × 1.296 GHz and the splitting between |Ex〉
and |Ey〉 is % = 6.41 GHz.

the Rabi-oscillation frequency &R. This oscillation origi-
nates from the E1 driving in the presence of a nonzero VE2
[25]. In a dressed-state picture, it is interpreted as a reso-
nant multiphonon transition between the states |Ex, m〉 and
|Ey , m + 5〉, where m is the number of phonons dressing
the optical transition.

We characterize the strength of the acoustic drive by
comparing the spectroscopic splitting with simulation. We
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collect a series of acoustic power dependent PLE scans in
the vicinity of the undriven |Ex〉 frequency in Fig. 2(d). For
each acoustic power, we fit the peak locations of the split
spectrum and extract &R. We find agreement between the
measured spectrum and quantum master-equation simula-
tions of the acoustically driven PLE spectrum [Fig. 2(c)]
using the QuTiP PYTHON software [40] (see the Supple-
mental Material [34]) for the Hamiltonian given in Eq. (2).
Thus, we can convert the applied acoustic drive power into
a dynamic strain potential in units of gigahertz.

IV. ACOUSTICALLY DRIVEN ORBITAL STATES:
TIME DOMAIN

We also study orbital Rabi oscillations in the time
domain, which allows us to directly characterize Rabi
frequencies and associated coherences. The orbital Rabi
frequencies measured in Fig. 2(c) correspond to oscilla-
tion periods of a few nanoseconds, which is sufficiently
fast that several oscillations will occur during the 12-ns
excited-state lifetime [41,42]. Our scheme for measuring
time-domain orbital Rabi oscillations is given in Fig. 3(a).
We create an excited-state population primarily in the
orbital state |Ex〉 by setting the laser frequency resonant to
the |0〉 ↔ |Ex, m〉 transition and setting the polarization to
minimize coupling into |Ey , m + 5〉. We resonantly excite
the NV center with intense 1-ns-duration optical pulses
that populate the excited state in a time that is shorter
than the orbital dynamics. Given the fact that the acous-
tic drive is always on, longer pulses would be unable to
selectively populate only one orbital state. Separate opti-
cal Rabi-oscillation measurements with the laser tuned to
the |0〉 ↔ |Ex〉 transition without acoustic driving confirm
that we achieve a significant excited-state population with
a 1-ns-long optical pulse (see the Supplemental Material
[34]).

Time-domain measurements of acoustically driven
orbital Rabi oscillations are shown in Figs. 3(b)–3(d). We
record a histogram of photon arrivals relative to the onset
of the excitation pulses for various acoustic drive powers.
We observe a roughly exponential decay of photolumi-
nescence as the defect undergoes spontaneous emission
to the ground state. Dividing out the spontaneous emis-
sion response leaves us with an oscillatory residual, shown
in Figs. 3(e)–3(g) as a percentage of the photolumines-
cence (PL) rate, which allows us to measure the orbital
oscillations out to longer time scales than the spontaneous
emission lifetime. We attribute the visibility of these oscil-
lations to imperfect emission polarization selection rules
of the two optical transitions and the efficiency with which
photons emitted from each orbital branch exit the diamond
and couple to our photon detector [20,43]. Thus, these
residuals represent a direct time-domain measurement of
the orbital Rabi oscillations. We fit the residuals to a decay-
ing sinusoid of the form y(t) = A cos(&Rt)e−t/T2,Rabi to

determine &R and the orbital Rabi-coherence time T2,Rabi.
We observe a nonmonotonic evolution of &R with acoustic
drive power that matches the behavior found in spec-
troscopy. The full set of time-domain measurements and
residuals is given in the Supplemental Material [34].

V. PERTURBATIVE EXPANSION IN VE2

The particular NV center in our experiment has VE2 &
VE1 , which, as detailed in the Supplemental Material [34],
allows us to derive a simple model for the Exy manifold,
including an expression for &R, which is nonperturbative
in the drive strength.

The crux of the calculation involves transforming to a
rotating frame and introducing a Floquet ansatz. Second-
order perturbation theory in VE2 then maps the dynamics
onto an undriven two-level system,

i∂t

(
u0
v0

)
=

(
δ &0

&0 −δ

) (
u0
v0

)
. (3)

Here, u0 and v0 are the dominant frequency components of
the Floquet wave function. Up to small corrections, |u0|2
and |v0|2 correspond to the probabilities of being in the
|Ex〉 and |Ey〉 state. The parameters are

δ = VE1 − nωm

2
+

∑

s '=0

|&s|2

sωm
, (4)

&s = VE2Js−n

(
2E1

ωm

)
, (5)

where Js(x) is the Bessel function of order s. A special case
of Eq. (5) is &0 = VE2J−n(2E1/ωm). At vanishing drive,
δ(E1 = 0) = VE1 − nωm/2 + V2

E2
/nωm and &0(E1 = 0) =

0. At strong drive, δ(E1 → ∞) = VE1 − (nωm)/2 and
&0(E1 → ∞) = 0. Leading corrections are discussed in
the Supplemental Material [34].

The Rabi frequency corresponds to the splitting between
the eigenenergies of this equation,

&R = 2
√

δ2 + &2
0. (6)

One can also consider dynamics. If we start at time t = 0
with the defect in the |Ex〉 state, the probability of being in
the |Ey〉 state at time t is

Py(t) =
&2

0

&2
0 + δ2

sin2 &Rt/2. (7)

This expression is similar to Rabi’s formula for the time
dependence of a spin driven by a resonant microwave field
[44]. Here, &0 and δ play the role of the driving field and
the detuning, respectively.
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FIG. 3. Time-domain orbital Rabi oscillations. (a) The scheme for measuring orbital Rabi oscillations in the time domain.
A 1-ns-duration excitation-laser pulse tuned resonantly to the undriven |0〉 ↔ |Ex, m + 0〉 transition with polarization set to minimize
coupling into |Ey , m + 5〉 excites into the |Ex〉 orbital manifold. Continuous-wave acoustic driving causes orbital Rabi oscillations
between the |Ex〉 and |Ey〉 orbital states. The collected photoluminescence (PL) rate from |Ex〉 is larger than the rate from |Ey〉. (b)–(d)
Histograms of time-tagged photon counts relative to the repeated 1-ns-duration red-laser pulses for acoustic drive powers Pm = (b) 14.5
mW, (c) 8.4 mW, and (d) 4.9 mW. The inset shows the pulse sequence: 2-µs green laser, 200 repetitions of 1-ns red laser with 100 ns
of delay between red pulses. Each histogram contains 2 min of collected counts. (e)–(g) Extracted residual oscillations for each acous-
tic power. Fits to decaying sinusoids (black trace) are used to extract the orbital Rabi frequency &R and the orbital Rabi-coherence
time T2,Rabi: (e) &R = 331 ± 7 MHz, T2,Rabi = 5.0 ± 1.3 ns; (f) &R = 474 ± 2 MHz, T2,Rabi = 12.8 ± 2.4 ns; (g) &R = 336 ± 1 MHz,
T2,Rabi = 9.5 ± 1.1 ns. The error bars in (d)–(f) are determined assuming that the photon collection is shot-noise limited.

VI. ORBITAL RABI FREQUENCY AND
COHERENCE

We compare the frequency and time-domain measure-
ments of &R versus the acoustic drive power. As shown in
Fig. 4(a), they agree, confirming that our spectroscopy and
time-domain measurements are probing the same effect.
At small E1, the Rabi splitting is largely insensitive to
the drive—% ≈ 5ωm—and hence one expects &R ∼ E5

1
for small E1. The Rabi splitting never exceeds 600 MHz,
regardless of the drive strength. Physically, this corre-
sponds to the fact that the orbital state cannot flip in a
time that is shorter than half a period of the acoustic drive.
This limitation is a consequence of the fact that the acous-
tic drive does not directly connect the orbital states but,
instead, modulates their energies.

We take several approaches to model our experimental
results. The most numerically exact of these is a quan-
tum master-equation simulation of the frequency-domain
response for a defect with the Hamiltonian given in Eq.
(2) (see the Supplemental Material [34]). The blue-shaded
region of Fig. 4(a) is the simulated range of &R as we
vary the acoustic drive power, assuming a 1% measure-
ment error in the strain and optical-dipole orientation of

our defect. The data also agree very well with the second-
order perturbation theory (SOPT) from Sec. V [black trace
in Fig. 4(a)]. This perturbative approach is simpler than
the master equation and gives some insight into the role
being played by different components of the static strain.
For example, the peaks and troughs are roughly located at
the maxima and minima of |&0| and the value of &R at the
minimum is set by δ.

Hamiltonians of the same form as Eq. (2) have been
studied in a wide variety of contexts, including supercon-
ducting qubits [45], quantum dots [46], and NV-center
spins [47,48], with particular interest in the strong-driving
limit. In this limit, the amplitude of the drive 2E1 is
large compared to both the splitting % and the drive fre-
quency ωm and one can then interpret Eq. (2) as a periodic
sequence of Landau-Zener (L.Z.) crossings. During one
half-cycle, the coefficient of σz in Eq. (2) sweeps from a
large positive value to a large negative value. As detailed in
the Supplemental Material [34], one can approximate this
with a linear sweep and derive analytic expressions for the
orbital Rabi frequency [red trace in Fig. 4(a)], which are
valid in the strong-drive limit, E1 ! % = 6.41 GHz. This
Landau-Zener model explains the oscillations observed in
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(a)

(b)

FIG. 4. The orbital Rabi-oscillation frequency and coherence.
(a) &R measured by spectroscopy (blue points) and in the time
domain (orange points). The frequency-domain Lindblad sim-
ulation of &R (blue-shaded region) for ±1◦ of uncertainty in
defect dipole orientation and ±1% uncertainty in %. The second-
order perturbation theory in VE2 , given by Eq. (6) (black trace),
is in good agreement with the measurement for the full range
of drive amplitudes. The Landau-Zener transfer-matrix method
(red trace) is a strong-drive approximation, valid at large E1. (b)
Measured T2,Rabi values (red points) extracted from the decay of
acoustically driven orbital residual oscillations [Figs. 3(e)–3(g)].
The simulated decay time of the orbital coherence for 35-MHz
standard deviation Gaussian-distributed electric field fluctuations
(series of traces). The model has a strong dependence on % and
the data are best described by using a value that is 1.5% above the
nominal % = 6.41 GHz, which is within our experimental error
in measuring %.

Fig. 4(a) as interference terms coming from sequential
crossings [29].

Measuring orbital Rabi oscillations in the time domain
allows us to extract the orbital Rabi-coherence time T2,Rabi
from the exponential decay of the time-domain residu-
als. We plot the extracted T2,Rabi versus &R in Fig. 4(b).
The orbital Rabi coherence decays on the few-to-several
nanoseconds time scale, depending on the acoustic power.
These time scales are similar to NV-center optical Ram-
sey coherence times that have been previously reported
[49], suggesting a common origin. The coupling of our
mechanical resonator to the orbital transition is sensitive to

fluctuations that detune the orbital splitting from the mul-
tiphonon acoustic drive frequency. Thus, the orbital Rabi
coherence decays as a result of electric field fluctuations
that are transverse to the NV-center symmetry axis [50].
Comparatively, optical Ramsey measurements are sensi-
tive to fluctuations that change the ground-to-excited-state
transition energy, which includes fluctuations both along
and transverse to the NV-center symmetry axis.

The decay of orbital Rabi oscillations can be understood
using a model based on Eq. (3). Here, we assume that
orbital decoherence results from fluctuations in the elec-
tric field environment of the defect that modify the strain
terms in Eqs. (4) and (5): VE1 → VE1 + Ex and VE2 →
VE2 + Ey . A common source of such fluctuations is shot-
to-shot variation of the charge-trap environment of the
defect caused by the 532-nm laser, the same fluctuations
that are responsible for spectral diffusion [20]. We simulate
the orbital Rabi decoherence by averaging an ensemble of
sinusoidal quantum trajectories described by Eq. (7) with a
random set of electric field fluctuations Ex, Ey drawn from
a Gaussian distribution with a 35-MHz width (see the Sup-
plemental Material [34]). Though the lifetime of diamond
charge traps can be of order 10 ms under no illumination
[51], our application of about 107 charge repump pulses
causes frequent change in the charge-state environment.
We record fewer than one photon per charge repump and
thus assume that the charge-trap-environment fluctuations
are uncorrelated in our coherence simulations. As shown in
Fig. 4(b), the result is quite sensitive to the splitting %. For
E1 < 6 GHz, we find reasonable agreement with our mea-
surements if we increase % by 1.5% from its nominal value
of 6.41 GHz. This deviation is within the experimental
uncertainty of our spectroscopic measurement of %. At our
largest drive strengths, the decay time seems to be better
fitted by a model where % is a fraction of a percent below
its nominal value. This discrepancy could potentially be
resolved by using a more sophisticated model for the elec-
tric field fluctuations or by including further decoherence
mechanisms.

VII. CONCLUSIONS AND OUTLOOK

Previously, we have proposed the use of acoustic driving
to engineer optical transition frequencies that are protected
against transverse electric field noise [25]. Additionally,
our prior work indicates that many bulk NV centers are
dominated by spectral-diffusion sources transverse to the
defect symmetry axis [50]. Together, these results suggest
that orbital driving can mitigate spectral diffusion for some
NV centers. Measuring orbital Rabi oscillations in the time
domain is an essential first step toward such a decoherence
protection scheme.

In the current study, we find modest decoherence protec-
tion. The decoherence time is a nonmonotonic function of
the drive strength and for this defect can be enhanced by at
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least a factor of 2. The model in Sec. V lets us understand
this nonmonotonic behavior by making an analogy with
the physics of a spin in a magnetic field under continu-
ous microwave driving. For such a spin system, increasing
the drive amplitude creates dressed states that are robust
against magnetic field fluctuations, resulting in continuous-
wave dynamical decoupling [5–7]. In Eq. (3), fluctuations
of VE1 are akin to magnetic field noise, shifting the detun-
ing δ between the two states. Fluctuations of VE2 play the
role of both field- and amplitudelike noise, shifting both
δ and the transition-matrix element, &0. As the acoustic
drive power is varied, the decoherence is dominated by
one or the other source of fluctuations. When &R is large,
the fluctuations of VE2 dominate; and when &R is small,
fluctuations of VE1 are most important. Thus, for this NV
center, acoustic driving of the orbital states is limited to
a modest improvement of the orbital coherence, since the
two contributions to decoherence are not simultaneously
negated.

Developing an orbital control scheme that mitigates all
transverse fluctuations is possible by varying the device
geometry. The bottleneck for our scheme is the reliance
on a static VE2 strain to couple the orbital states [Eq. (2)],
which results in VE2 fluctuations entering as amplitudelike
noise in the decoherence process. Engineering a resonator-
defect geometry that provides direct off-diagonal driving
can result in a drive amplitude that is independent of the
static strain terms, allowing for full decoherence mitiga-
tion. Additionally, electric field control of the orbital states
[28,52] can be leveraged for pulsed orbital driving and to
tune the orbital splitting [21,53]. Our acoustic orbital driv-
ing technique can be applied to any defect system with
an orbital multiplet; e.g., some species of divacancies in
silicon carbide that have the same orbital structure as the
NV center in diamond [54] Additionally, the group-IV
split-vacancy defects in diamond have an orbital-doublet
ground state [55–57] that can be manipulated acoustically.
Overall, coherent orbital control will enable researchers
to apply the robust toolbox of continuous-wave dynami-
cal decoupling protocols to engineer dressed orbital states.
Such dressed states can have coherent single-photon emis-
sion with improved frequency stability for defect-based
quantum networking schemes.
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Narrow-linewidth tin-vacancy centers in a diamond waveg-
uide, ACS Photonics 7, 2356 (2020).

[57] N. H. Wan, T.-J. Lu, K. C. Chen, M. P. Walsh, M. E.
Trusheim, L. De Santis, E. A. Bersin, I. B. Harris, S. L.
Mouradian, I. R. Christen, E. S. Bielejec, and D. Englund,
Large-scale integration of artificial atoms in hybrid pho-
tonic circuits, Nature 583, 226 (2020).

030336-9

https://doi.org/10.1126/science.1119678
https://doi.org/10.1103/PhysRevA.100.022337
https://doi.org/10.1103/PhysRevA.82.033839
https://doi.org/10.1103/PhysRevA.103.022415
https://doi.org/10.1126/science.1255541
https://doi.org/10.1103/PhysRevApplied.18.064011
https://doi.org/10.1073/pnas.2305621120
https://arxiv.org/abs/2405.16280
https://doi.org/10.1103/PhysRevLett.97.083002
https://doi.org/10.1103/PhysRevX.7.021046
https://doi.org/10.1103/PhysRevX.9.031022
https://doi.org/10.1021/acsphotonics.0c00833
https://doi.org/10.1038/s41586-020-2441-3

	I.. INTRODUCTION
	II.. STRAIN-ORBITAL AND ACOUSTIC ORBITAL INTERACTIONS
	III.. ACOUSTICALLY DRIVEN ORBITAL STATES: FREQUENCY DOMAIN
	IV.. ACOUSTICALLY DRIVEN ORBITAL STATES: TIME DOMAIN
	V.. PERTURBATIVE EXPANSION IN VE2
	VI.. ORBITAL RABI FREQUENCY AND COHERENCE
	VII.. CONCLUSIONS AND OUTLOOK
	. ACKNOWLEDGMENTS
	. REFERENCES

