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Heating and cooling in self-consistent many-body simulations
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We present a temperature-extrapolation technique for self-consistent many-body methods, which provides a
causal starting point for converging to a solution at a target temperature. The technique employs the Carathéodory
formalism for interpolating causal matrix-valued functions and is applicable to various many-body methods,
including dynamical mean-field theory, its cluster extensions, and self-consistent perturbative methods such
as the self-consistent GW approximation. We show results that demonstrate that this technique can efficiently
simulate heating and cooling hysteresis at a first-order phase transition, as well as accelerate convergence.
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I. INTRODUCTION

When conducting experiments in condensed-matter
physics, it is common practice to investigate the temperature
dependence of observables while keeping other parameters
constant. A particular example are specific-heat or transport
measurements, which are often used as a preliminary probe
to identify intriguing temperature-dependent behavior. For
example, in a first-order coexistence regime, heating and
cooling curves may reveal history-dependent hysteresis.

In theoretical calculations using self-consistent finite-
temperature field theories, changing the temperature of a
system is generally not practical because it causes a shift of
Matsubara frequencies [1,2]. Extrapolating the lowest Mat-
subara frequency during cooling can be problematic, resulting
in noncausal solutions. Therefore, implementing heating and
cooling protocols in self-consistent finite-temperature field
theories, in analogy to heating and cooling measurements in
experiment, is an unresolved issue.

Self-consistent finite-temperature simulation methods in-
clude nonperturbative techniques, such as the dynamical
mean-field theory (DMFT) [3] and its cluster variants
[4-7]; self-consistent perturbative methods, such as GW
[8—13], second-order perturbation theory [14—17], fluctuation-
exchange or T-matrix approximations [18,19], as well
as bold-line diagrammatic Monte Carlo methods [20-23];
and combinations of embedding theories with perturbation
theory [24-26].

In these methods, solutions are obtained through an iter-
ative process that involves starting with an initial guess and
continuing the process until self-consistency is achieved. The
number of iterations required to reach convergence is directly
related to how close the starting point is to the iteration fixed
point. A “good” starting point can significantly reduce the
computational effort required for the simulation, whereas a
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“bad” starting point may result in iterations that diverge, iter-
ate in limit cycles, or even converge to unphysical fixed points
[27]. In parameter regimes where first-order coexistence oc-
curs, multiple physical fixed points may exist [28-32].

This paper addresses the challenge of generating better
starting points and implementing heating and cooling
protocols in self-consistent many-body methods. It presents
a solution that guarantees a causal starting point by using a
converged solution at a different temperature. The proposed
method relies on the Carathéodory formalism [33] for
interpolating causal matrix-valued functions. Originally de-
veloped for analytic continuation of matrix-valued Matsubara
functions to real frequencies, this formalism can be extended
to temperature extrapolation, which involves evaluating an in-
terpolant at different Matsubara frequencies. We demonstrate
the effectiveness of this approach in obtaining improved
starting points in the context of DMFT and real-material
perturbation theory. Additionally, we examine heating and
cooling hysteresis in the context of a first-order phase
transition.

The paper proceeds as follows: In Sec. II we introduce
the formalism. Section III contains a brief description of a
pedagogical implementation of the method which we provide
as a supplement. Section IV contains results for temperature
extrapolation, convergence acceleration, and first-order hys-
teresis. Finally, Sec. V contains our conclusions.

II. METHOD

The central object of this paper is a causal matrix-valued
fermionic Matsubara function which may represent a Green’s
function, a self-energy, or a cumulant [34]. The Matsubara
function is expressed as a three-dimensional tensor, G;;(iw,),
which associates a matrix (identified by the indices i and
j) with every Matsubara frequency w, = 2n+ 1)w/8 (n
denotes an integer, 8 the inverse temperature). Its continua-
tion to the complex plane [33] is denoted G;;(Z). iG(Z) is a
Carathéodory function (up to a convention-dependent minus
sign), such that [iG(Z) + (iG(2))'1/2 is a positive semidefinite
matrix for any 7 in the upper half of the complex plane.

©2023 American Physical Society
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The matrix structure of G depends on the application.
Matrices may be scalar, diagonal, block-diagonal, or fully
dense. The scalar case typically appears in single-site
single-orbital cases, such as single-site DMFT. The diagonal
case is often encountered in momentum-space simulations,
such as cluster DMFT [4-7]. The general multi-orbital case
with dense matrices typically appears in real-material ab
initio calculations [25,26].

The frequency dependence of G is known at discrete
Matsubara frequencies w,. In the simplest case, the fre-
quencies are uniformly spaced positive fermionic Matsubara
frequencies w, = 2n+ ) /B, n=0,1,...,N — 1. More
generally, data are provided on a nonuniform frequency grid
using Chebyshev [35], intermediate representation (IR) [36],
Legendre [37], spline [38], or discrete Lehmann representa-
tion [39] schemes with associated Fourier transforms [40,41].
For both uniform and nonuniform grids, the derivations in
this section remain the same, with n denoting the index
that enumerates the Matsubara frequencies w,. Bosonic Mat-
subara response functions I1(Z) are not directly related to
Carathéodory functions. However, I1(z)Z and T1(Z)/Z* cor-
respond to Carathéodory functions [42], and Nogaki and
Shinaoka [43] recently investigated a related mapping of
bosonic functions.

Extrapolating in temperature requires the transformation of
one Matsubara grid to another one corresponding to a different
temperature. We propose to construct a causal matrix-valued
interpolant through G(iw,) and evaluating it at the Matsub-
ara points corresponding to the changed temperature grid to
realize the temperature extrapolation. Our approach assumes
that the causal matrix-valued functions G(Z) at two proximate
temperatures, § and ', share a similar analytical structure.
This allows us to approximate the unknown causal function
at B’ using known causal function at 8. Subsequently, the
unknown Matsubara function at 8’ can then be approximated
by evaluating the interpolant of the causal function at 8 on
the Matsubara grid corresponding to S’. The approximated
Matsubara function can later serve as the starting point for
the self-consistent calculation at 8’. From the expression

GE) = /dwf‘(w) , (1

I—w

we observe that the temperature dependence of G(Z) arises
solely from the spectral function A(w). Although extrapo-
lating A(w) along the temperature axis is possible, it is not
implemented in our current approach. We find that for the
Matsubara functions, the variation in Matsubara grids for dif-
ferent temperatures usually has a more significant impact on
its value compared with the changes in the spectral function
A(w). As a result, our temperature extrapolation approach
works effectively at least for nearby temperatures. In fact, em-
pirically, our extrapolation approach performs well even for
relatively large temperature differences, as long as the system
remains in the same phase, as demonstrated in Sec. IV C. The
method’s algorithmic steps follow those presented for analytic
continuation in Ref. [33], with the only distinction that the
interpolant is evaluated on the imaginary axis, rather than
just above the real axis. The major steps of the algorithm are
described below.

For a Carathéodory function F () = iG(Z), Z in the upper
half of the complex plane, we assume the values of F are
known at a set of points {Z,|[n =0, 1,..., N — 1}. A M0bius
transform

Z—1

Z+i
maps the upper half of the complex plane to the unit disk,
the real axis to the unit circle, and the Matsubara points to
points on the real axis. Since a Carathéodory function F is a
function defined on an open subset of the complex plane and
exhibits the property (F + FT)/2 being positive semidefinite,
C(z) = F(?) then defines a Carathéodory function on the unit
disk |z| < 1. The function C(z) is known at a set of points
{z,]Jn =0, 1, ..., N — 1} with the values of

@

Z

Co = C(za) = F(Z). 3)

The Cayley transform [44] and its inverse, defined as
S@) =~ C@I +C@I™, @
C@)=U+S@I'I - 5@, )

map the Carathéodory function C(z) to a matrix-valued Schur
function S(z) [45] and vice versa. A Schur function is de-
fined as a function S(z) on the unit disk with the property
[1S(@)|| < 1, where the matrix norm || - || is defined as the
largest singular value of S, or equivalently the largest eigen-
value of (SST)!/2.

The problem of interpolating the Carathéodory function
C(z) is thus converted into the problem of determining
an interpolant for the Schur function S(z), where S(z) is
known at N discrete points, given as S, = S(z,), with n =
0,1,...,N—1.

To identify the interpolant of the Schur function
S(z), we proceed to find a set of Schur functions
S%), S'(2), ..., 8"(z), ..., SY(z), where each Schur func-
tion $™(z) is known at N — m points z = Zyy, Zut1s - - - » IN—1
with the values of S' = §"(z,). SN (z) is an arbitrary Schur
function without any constraints. We require S° = S, such that
5%(z) serves as the desired interpolant for the Schur function
S(z).

To establish a connection between the two Schur functions
S™(z) and §™*1(z), a function B™(z) is introduced, enabling
a progressive determination of S°(z) starting from SV (z) [33].
The relationship between B (z) and $™(z) is given by

—';m('l(zf Z_;’;;;Bm(Z) =1"[s"() - 5]
x [1=spis"@]'R", (©)
with
L == smsr ™
R"=[I- s;;;*s,’:]%. (8)
An equivalent form of this relation is
S"@) = [[+V"@SE ] Vi@ + s, ©)
with
Vyre) = %(U”)*W(xwrl. (10)
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The relation between B”(z) and S”*!(z) reads
Sm+1(Z) — [1 _ KmeTil*% [Bm(Z) _ KWL]
x [ — K™ B"()]7'[I — K™ K™:, (1)

where K™ is an arbitrary matrix with ||[K™|| < 1.

The freedom in choosing arbitrary K°, K', ..., KN71,
along with SM(z), allows for a full coverage of all pos-
sible interpolants for S(z). The seemingly undetermined
quantities in the aforementioned equations are the val-
ues of {S)) |m=0,1,...,N —1}. Starting from the given
{SS |n=0,1,...,N—1}, as S,’,’”’l are entirely determined
by S and S} by proceeding from Eq. (6) to Eq. (11),
all §); can be acquired in the process of calculating
{(S"Im=0,1,....N=—lLin=m,m+1,...,N}fromm =
0tom = N — 1. After obtaining all S, and the corresponding
L™ and R™, one can reverse the procedure, transitioning from
Eq. (11) to Eq. (9), to compute $™(z) from S$”*!(z) with a
chosen S¥ (z) as the starting point, until the desired interpolant
5%(z) is attained. Finally, an interpolant for C(z) can be de-
rived using Eq. (5), and by multiplying —i and substituting z
with Z through the Mobius transform, the interpolant for G(Z)
is obtained.

For the purpose of this work, we take {Z,} = {iw,|n =
0,1,...,N — 1} along with the corresponding G(iw,) as the
input. Setting ' = iG, and with Egs. (2)-(4), we obtain the
constraints {(z,, S,)} for the interpolation problem of a Schur
function S(z). By taking K = 0 for all m, from Eq. (11), we
obtain S”*!(z) = B™(z) which leads to

m+1 __ Zm(l - Z:;,Zn)

— n[sm — gm I_SmTSm 71Rm 12
T = e LS = sl = sys R (2

according to Eq. (6). This equation offers a concrete way
to calculate all S}, starting from SS = §,. Subsequently, we
can obtain S}’ and the corresponding L™ and R™. Assume the
desired new Matsubara points for a different temperature g’
are {iw)|n=0,1,...,N — 1}. Using the Mobius transform,
the corresponding points in the domain of S(z) are obtained as
z,. By setting SV (z) = I, and using the obtained {S™, L™, R},
the values of S, = S°(z/) can be determined by proceeding
from Eq. (11) to Eq. (9). With the inverse Cayley transform
in Eq. (5) and G = —iF, the desired values of the causal
interpolant G(iw),,) at iw), are obtained as output.

III. IMPLEMENTATION

We provide a straightforward pedagogical implementation
of the algorithm in Ref. [46]. The code is written in the
python programming language, using no dependencies other
than numpy. Unlike related real-frequency analytic continua-
tion codes [33,47], we find that an implementation in standard
double precision was sufficient to perform all calculations,
and that the temperature extrapolation of noisy Monte Carlo
data presented no difficulties.

The implementation requires a Green’s function (or,
equivalently, self-energy or cumulant) G[n, i, j] = G;;(iw,)
as a three-dimensional tensor and w[n] = iw, as a one-
dimensional vector. After reading the data, all preprocessing
steps are performed until {S)', L™, R"} are obtained and
stored, as explained in Sec. II.

k=(m,0)

Im Z(iwp)
&

-10

-12

—e— conv: Bt=20
-14 —¢ conv: Bt=18
—o— extrapol: Bt=18

-16

0 1 2 3
Wn

FIG. 1. Imaginary part of a cluster DMFT [7] self-energy,
Im X(iw,), as a function of w, for the two-dimensional Hubbard
model at the antinodal point (77, 0) with U = 6¢ (see text for calcu-
lation setup). Converged data at B¢ = 18 (red crosses) and ¢ = 20
(black dots) along with temperature extrapolation (red circle) from
Bt = 18 to Br = 20. The labels of the extrapolation results indicate
the initial inverse temperature used for extrapolation.

The code also requires a set of frequencies wp[n] = iw),
provided as a one-dimensional vector. These frequencies
should correspond to the Matsubara points at the new temper-
ature B’. Using this data, the code evaluates the interpolated
Green’s function at the new Matsubara points and returns
G[n', i, j1 = G;j(iw),) as a three-dimensional tensor.

The Ref. [46] contain detailed instructions and usage ex-
amples for the code.

IV. RESULTS

We showcase results for the temperature extrapolation
technique applied to a range of typical self-consistent finite-
temperature methods. Sec. IV A investigates the accuracy and
convergence properties of the extrapolation technique. Sec-
tion IV B examines the convergence acceleration resulting
from an enhanced starting point provided by the extrapolation
technique. This study is conducted specifically within the
context of single-site DMFT and cluster DMFT calculations
for the Hubbard model, as well as the self-consistent GW
approximation for nickel oxide (NiO) real material calcula-
tions. Section I'V C presents a comparison between the method
introduced in this paper and other methods for generating
starting points. Section IV D demonstrates the occurrence of
hysteresis during heating and cooling processes at a first-order
phase transition, utilizing the extrapolation technique.

A. Temperature extrapolation

In this section, we provide an illustration of temperature
extrapolation in a cluster DMFT [7] calculation, as depicted
in Fig. 1. Specifically, we present the self-energy at the antin-
odal point (;r,0) for a simulation of the two-dimensional
Hubbard model [48]. The simulation was performed on a
16-site (4 x 4) cluster, and the continuous-time auxiliary
field impurity solver [49,50] was employed. The system was
solved at half filling, in the paramagnetic state, with no
next-nearest-neighbor hopping, and at an interaction strength
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FIG. 2. Difference |AlImX(iw,)/ImZ(iw,)| between the con-
verged self-energy at Br =20 and the extrapolation from the
converged self-energy at higher temperature, shown as a function of
the extrapolation inverse temperature for the three lowest Matsubara
frequencies w,, with n = 0, 1, 2 (see text for calculation setup).

of U = 6¢, which corresponds to a Mott insulating regime.
The self-energy in this regime exhibits a strong temperature
dependence, and various phases such as metallic, insulat-
ing, superconducting, and pseudogapped phases are in close
proximity [31,51,52]. For a comprehensive discussion of the
physics of this self-energy, we refer the reader to the extensive
literature on this system, including the reviews [7,48] and
references therein.

Figure 1 presents the fully converged, self-consistent imag-
inary part of the self-energy, ¥X(iw,), at Bt = 18 (red crosses)
and at Bt = 20 (black dots). Red circles illustrate the ex-
trapolation of the 8 = 18¢ self-energy to 8 = 20¢ using the
Carathéodory formalism. The extrapolated data aligns with
the converged points for all frequency points, except for the
lowest one. The discrepancy between converged data and ex-
trapolation data at 8 = 20z serves as an indicator of additional
correlations emerging in the system as it cools down.

Figure 2 demonstrates the deviation of the extrapolated
self-energy at the three lowest Matsubara frequencies at St =
20. The extrapolation is conducted using converged data at
Bt =10, 11, ..., 19. Notably, while the lowest frequency of
the self-energy exhibits significant deviations when extrap-
olated by a factor of two from Bt = 10 to Bt = 20, these
deviations rapidly diminish if the extrapolation interval (the
difference between the initial temperature and targeted tem-
perature) is reduced.

Figures 1 and 2 demonstrate that the Carathéodory struc-
ture of many-body functions can be effectively utilized to
extrapolate data in temperature.

B. Starting point and convergence

1. Convergence of the extrapolated starting
point away from phase transitions

A temperature extrapolation of this type can be used to im-
prove the starting point for the convergence of self-consistent
many-body methods, such as DMFT [28,53,54] and its cluster
extensions [4-7]. The DMFT equations are solved using a
fixed-point iteration scheme, in which an initial estimate of the

Bt =20
=0.0501 [ B | | e @ R =
-0.075 -
—-0.100 "
3-0125
3
&Ev -0.150
—o175] & N vy e A A
—-0.200 A =~ nonint_init: wo £ extrapol_init: wy, Bt=18
nonint_init: w1 extrapol_init: w1, Bt=18
—0.2251 & A nonint_init: wy /A~ extrapol_init: w,, Bt=18
1 2 3 4 5 6 7 8 9 10

iteration

FIG. 3. Cluster DMFT convergence of the imaginary part of the
local Green’s function Gj,. as a function of iteration for the three
lowest Matsubara frequencies at St = 20 (see text for calculation
setup). Convergence to the fixed point is shown for the noninteracting
starting point (filled symbols) and the starting point extrapolated
from the converged solution at 8¢ = 18 (open symbols). The labels
of the extrapolation results indicate the initial inverse temperature
used for extrapolation.

self-energy [commonly chosen as X(iw,) = 0] serves as an
initial guess for the iteration. The equations typically converge
rapidly if the initial starting point of the iteration is near the
stationary point. Since the computational effort is proportional
to the number of iterations required, a starting point closer to
the stationary point reduces the calculation time.

Figure 3 displays the imaginary part of the lowest three
frequencies of the local Green’s function, Giec(iw,), for a
typical cluster DMFT calculation away from phase transi-
tions, using noninteracting starting points (filled symbols) and
starting points derived from temperature extrapolation (open
symbols), as a function of iteration. The calculation setup
is identical to the one in Sec. IV A (a 16-site cluster in the
paramagnetic state with 8t = 20, U = 6¢, and at half filling).
A naive noninteracting starting point converges in approxi-
mately seven iterations. Moreover, a few additional iterations
are necessary to confirm that convergence has been achieved.
In contrast, a starting point generated by extrapolating from
higher to lower temperatures almost immediately yields a
converged result.

2. Dynamical mean-field theory convergence
near a phase transition

Self-consistent many-body methods are notoriously
slow to converge in the vicinity of phase transitions. This
can be illustrated at the example of a single-sitt DMFT
calculation on an infinite coordination number Bethe
lattice with bandwidth W = 4¢. The single-sitt DMFT
calculation exhibits a first-order phase transition between a
paramagnetic metal at weak interaction and low temperature
and a paramagnetic Mott insulator at large interaction and
higher temperature [54-60], as depicted in the inset of
Fig. 4. At an interaction strength U = 4.7t, the system is
insulating at high temperature, metallic at low temperature,
and both metallic and insulating solutions coexist in an
intermediate temperature regime. We show the convergence
of the imaginary-time Green’s function in the middle of
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FIG. 4. DMFT convergence of —G(8/2) on a half filled infinite-
coordination Bethe lattice with U = 4.7t and bandwidth W = 4¢ as
a function of iteration. The top and bottom panels display the insu-
lating (B¢ = 20.31) and metallic (Bt = 21.56) phases, respectively.
Atomic starting point: gray dots. Noninteracting starting point: black
dots. Extrapolated starting points: red circles and blue circles. Inset
shows the phase diagram adapted from Ref. [55]. The labels of the
extrapolation results indicate the initial inverse temperature used for
extrapolation. Iteration points with an interval of five are shown for
better visibility.

the imaginary time interval, —G(8/2), in Fig. 4, which is
related to the spectral density at the Fermi surface in the low-
temperature limit as A(w = 0) ~ —B8G(8/2), at temperatures
close to the two boundaries of the coexistence region.

At a temperature of ¢t = 20.31, the system exhibits Mott
insulating behavior. The upper panel of Fig. 4 shows that
hundreds of iterations are required to achieve convergence
when initiating from the noninteracting limit (black dots).
Similarly, starting with an extrapolation from a lower temper-
ature metallic solution in the coexistence region (blue circles)
results in slow convergence toward the insulating fixed point.
Conversely, the extrapolation from a higher-temperature insu-
lating phase converges rapidly (red circles). A starting point
derived from the atomic limit also leads to relatively fast
convergence (gray dots).

Conversely, at a temperature of 8t = 21.56 (Fig. 4, lower
panel), the system is in a metallic state. Convergence from an
“insulating” starting point requires hundreds of iterations to
reach convergence (red circles for the starting point extrapo-
lated from a higher-temperature insulating solution, and gray
dots for the atomic limit starting point). Convergence from a
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FIG. 5. Cluster DMFT convergence of the squared magnetic mo-
ment on the half filled three-dimensional Hubbard model (using a
34-site cluster with a doubled unit cell) at U = 6¢ and St = 3.3
(upper panel) and 3.5 (lower panel) as a function of iteration. Dots:
noninteracting starting point. Circles: temperature extrapolation. In-
set:] shows phase diagram adapted from Ref. [61]. M? at the first and
last iteration indicated by numbers. M2 corresponds to the values at
the last iteration of red or blue curves, which serves as a reference
for converged values. The labels of the extrapolation results indicate
the initial inverse temperature used for extrapolation.

metallic solution, like the noninteracting limit solution (black
dots), is substantially faster, and a starting point extrapolated
from a converged metallic solution at lower temperature leads
to even faster convergence (blue circles).

Figure 4 therefore shows that, even though all starting
points, including atomic, noninteracting, and extrapolated,
converge to the identical solution, extrapolation efficiently
accelerates convergence, provided that the extrapolated so-
Iution is in the same phase as the solution at the target
temperature. For extrapolation originating from a differ-
ent phase (at the boundary of phase transitions, solutions
with distinct properties become possible for two neighboring
temperatures), the extrapolated starting points still perform
better than the simplistic starting points corresponding to the
“wrong” phase, specifically, the noninteracting solution or the
atomic solution.

3. Cluster dynamical mean-field theory convergence
near a phase transition

At second-order phase transitions, critical slowing down,
rather than coexistence and hysteresis, is expected. This
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FIG. 6. GW convergence of the squared magnetic moment (left) and energy (right) near the AFM phase transition of NiO at 8 = 30 Ha ™!
(upper panel) and 8 = 31 Ha~! (lower panel) as a function of iteration. Calculations with unrestricted Hartree-Fock self-energy starting point
are represented by black dots, while calculations with temperature-extrapolated self-energy are denoted by red circles (indicating extrapolation
from higher temperature solutions) or blue circles (indicating extrapolation from lower-temperature solutions). The Hartree atomic units are
used. The labels of the extrapolation results indicate the initial inverse temperature used for extrapolation. Iteration points with an interval of
two are shown for better visibility. The values of M? and E at the first and last iterations are indicated by the numbers. The values of M2 and
E are determined as the values at the last iteration of red or blue curves (the symbols for the last iteration are not shown).

phenomenon leads to a slow convergence of the fixed-point
iteration. We illustrate this at the example of a half filled three-
dimensional Hubbard model treated within cluster DMFT
[62-64], calculated on a 34-site cluster with a doubled
unit cell. This model exhibits a phase transition between a
paramagnetic (PM) state at high temperature and an antifer-
romagnetic (AFM) insulator at low temperature, as depicted
in the inset of Fig. 5. The model has been studied extensively
within the context of ultracold atomic gases. In Fig. 5, we
examine two points, §t = 3.3 and gt = 3.5, in the ordered
phase at U = 61, near the AFM phase transition (the critical
point is at about 8¢ = 2.7). A starting point from temperature
extrapolation cannot completely overcome the slowing down
(since the self-energy itself exhibits strong temperature depen-
dence) but does lead to an acceleration of the convergence by
at least a factor of two, as illustrated by the convergence of the
squared magnetic moment shown in Fig. 5.

4. GW convergence of realistic many-body simulations

Finally, we turn to realistic simulations within a weak-
coupling framework. We show examples for periodic solid
NiO treated within the so-called GW approximation [8-13].
The GW approximation takes into account screening pro-

cesses via a renormalized, frequency-dependent interaction
but neglects the second-order exchange diagram. It is there-
fore mostly used for weakly correlated systems such as
semiconductors. In the calculation for NiO, a 4 x4 x4
cluster with a doubled unit cell along the [1,1,1] direction
and a fixed lattice constant a = 4.1705 A [65] is utilized.
The gth-dzvp-molopt-sr basis [66] along with the gth-pbe
pseudopotential [3] is employed. For the density fitting of
Coulomb integrals, the def2-svp-ri basis set is chosen as the
auxiliary basis [67]. Finite-size errors in the GW exchange
diagram are corrected using the Ewald probe-charge approach
[68,69]. The Coulomb integrals and noninteracting matrix ele-
ments are obtained from PYSCF [70]. To decrease the number
of frequencies utilized in the computation, the IR grid [36] is
employed. A comprehensive description of the methods and
implementation, in conjunction with the computational setup
for evaluating NiO, is extensively detailed in Refs. [12,71].
When applied to the antiferromagnetic materials NiO, the
GW method shows a continuous transition to an ordered state
with a nonzero staggered magnetization at low temperature.
Within the GW framework, the transition temperature
is situated near S8 =25 Ha~!. As illustrated in Fig. 6,
the convergence to this ordered state, initiated from an
unrestricted Hartree-Fock solution (black dots), is relatively
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FIG. 7. Comparison for different acceleration methods for a 16-
site cluster DMFT calculation for the Hubbard model at U = 6¢. All
temperature extrapolations are performed from B¢ = 20 to St = 40.
The labels of the extrapolation results indicate the initial inverse
temperature used for extrapolation. (a) The imaginary part of the
self-energy, Im X(iw,), at the antinodal point (7, 0) as a function
of w,. Converged data at Bt = 40: black dots; extrapolated data
via Carathéodory formalism: red circles; extrapolated data via tem-
perature feeding: green squares; extrapolated data via cubic spline
interpolation: orange diamonds. (b) The imaginary part of the local
Green’s function Gy, at the lowest Matsubara frequencies wy as
a function of iteration. Noninteracting starting point: black dots;
Carathéodory starting point: red circles; temperature feeding starting
point: green squares; cubic spline starting point: orange diamonds.

slow. This is evident in the convergence of both the squared
magnetic moment for Ni and the total energy. However,
when starting from extrapolated starting points (blue or
red circles), the convergence occurs at a significantly faster
pace, with an initial starting point akin to iteration 30 of the
Hartree-Fock-initialized convergence.

C. Comparison with other methods

By assuming the causal matrix-valued functions G(Z) at
nearby temperatures having a close analytical structure, we
introduce the temperature extrapolation for the Matsubara
functions by evaluating the interpolant of G(Z) of one tem-
perature B on the Matsubara grid for another temperature j’.
Besides the Carathéodory formalism, there are other inter-
polation methods available for the same purpose, warranting
comparative analysis. We compare the Carathéodory formal-
ism with a common alternative: cubic spline. For cubic spline,

additional constraints are needed at the boundaries to fix all
the coefficients for cubic polynomials. After obtaining the
spline, one could use the boundary cubic polynomial for
extrapolating values outside the original scope or force the
extrapolated segment to maintain the derivative values at the
boundary (for instance, performing linear extrapolation if we
set the boundary’s second derivative to zero). For the Mat-
subara functions under study, we find the “not-a-knot spline”
[72], which requires that the first two cubic polynomials at the
boundary be identical, to be superior to other boundary con-
straints. Therefore, we only show this type of cubic spline for
comparison, labeled as “spline.” In addition, we also compare
with a commonly used technique to accelerate temperature
scanning, where the result at 8 is directly used as a starting
point for B’ despite the mismatching of the Matsubara grids.
This approach is referred to as “temperature feeding” here
and is labeled as “feeding.” Given that the challenging part
of simulations often manifests at lower temperatures, this sec-
tion primarily focuses on the cooling process. Furthermore, as
B’ approaches B, all the discussed methods should provide
reasonably good starting points and converge more rapidly
than simpler methods, such as the noninteracting and Hartree-
Fock starting points. Hence, we engage with a relatively large
temperature difference here, setting 8’ to 2.

Figure 7 utilizes the identical 16-site cluster DMFT calcu-
lation setup for the Hubbard model as detailed in Sec. IV B,
albeit this instance involves an extrapolation from B¢ = 20
to Bt = 40. In Fig. 7(a), the imaginary part of self-energy at
the antinodal point is displayed. The extrapolated self-energy
via the Carathéodory formalism (red circles) closely aligns
with the fully converged self-energy (black dots) at all Mat-
subara frequencies. In contrast, extrapolated self-energy given
by the cubic spline (orange diamonds) exhibits mismatches
at the initial few low Matsubara frequencies. As anticipated,
the temperature-feeding method demonstrates discrepancies
across all Matsubara frequencies. Figure 7(b) illustrates the
different methods’ convergence behavior for the imaginary
part of the local Green’s function. Both the starting points
of the cubic spline and Carathéodory methods display im-
mediate convergence within the first two iterations, whereas
temperature feeding worsens convergence compared with the
noninteracting starting point. As observed in the inset, the
advantages of the Carathéodory method’s starting point over
cubic spline’s starting is about the same magnitude of Monte
Carlo errors, which obscures the distinction in convergence
between the two methods.

Figure 8 employs the same self-consistent GW calculation
setup for NiO as detailed in Sec. IV B but, in this case, we
extrapolate from 8 = 100 Ha~! to 8 = 200 Ha~'. Figure 8(a)
presents the imaginary time self-energy with fixed spin and
orbital indices at the I point. This imaginary time self-energy
is the self-consistently converged quantity utilized in our GW
code. For the extrapolation stage, we carry out the extrap-
olation in frequency space and then transform back to the
imaginary time space on the IR grid [36]. The Carathéodory
method (red circles) gives nearly perfect extrapolation in com-
parison with the fully converged self-energy, while the cubic
spline (orange diamonds) exhibits discrepancies at both 7 = 0
and T = B (see inset). The temperature-feeding method, as
anticipated, shows discrepancies over the entire time grid. We
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FIG. 8. Comparison for different acceleration methods for a self-
consistent GW calculation for NiO. All temperature extrapolations
are performed from g = 100 Ha™' to 8 =200 Ha~'. The labels
of the extrapolation results indicate the initial inverse temperature
used for extrapolation. (a) Imaginary time self-energy, Im X(7),
with fixed spin, momentum, and orbital indices. Converged data
at B =200 Ha™': black dots; extrapolated data via Carathéodory
formalism: red circles; extrapolated data via temperature feeding:
green squares; extrapolated data via cubic spline interpolation: or-
ange diamonds. (b) Convergence of the squared magnetic moment
as a function of iteration. Hartree-Fock starting point: black dots;
Carathéodory starting point: red circles; temperature feeding starting
point: green squares; cubic spline starting point: orange diamonds.
Iteration points with an interval of two are shown for better visibility.
The values of M? at the first and last iterations of the red and black
curves are indicated by the numbers. The value of M2 is determined
as the value at the last iteration of the red curve (the symbol for the
last iteration is not shown).

observe a similar behavior when performing extrapolation for
the time-ordered Green’s function G(t), where the analyti-
cal properties G;;(0%) + G;;j(B~) = —&;; (with fixed spin and
momentum indices) are significantly violated by the starting
points derived from the cubic spline and temperature feeding
methods. In contrast, these properties are preserved to a high
degree of precision for the starting point derived from the
Carathéodory method. Figure 8(b) demonstrates the conver-
gence behavior of different methods for the squared magnetic
moment. Both the starting points of the cubic spline and
Carathéodory methods exhibit superior convergence behavior
compared with the Hartree-Fock starting point and the tem-
perature feeding starting point, while the temperature feeding
starting point outperforms the Hartree-Fock starting point. In

0.040{ ~©- extrapol_init: higher T (smaller B) @
- extrapol_init: lower T (larger B) @;---rﬁ-”‘”"@ )

0.038 e
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S 0.036 g !
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FIG. 9. DMFT analysis of a half filled Bethe lattice with U =
4.7t and a bandwidth of 4z, displaying the hysteresis near Bt =
21. Points on the red curve utilize extrapolation from the nearest
higher temperature converged results as the starting points for the
calculation, while points on the blue curve employ extrapolation
from the nearest lower temperature converged results as the start-
ing points for the calculation. Inset shows phase diagram adapted
from Ref. [55].

this scenario, it can be observed that the Carathéodory starting
point converges faster than the cubic spline starting point by
one or two iterations [the interval between points shown in
Fig. 8(b) is two].

From the two test cases detailed above, we note that at
relatively large temperature differences, temperature feeding
can either accelerate or decelerate convergence. Both cubic
spline interpolation and Carathéodory formalism, when used
for extrapolation, are superior choices for the starting points,
with the Carathéodory formalism demonstrating a slight ad-
vantage. We stress that systems with a strongly divergent
self-energy will likely exhibit more evident superiority of the
Carathéodory method in comparison to cubic spline interpola-
tion. We also emphasize that, while cubic spline interpolation
proves effective in the specific example we examined, its
combination with IR coefficients results in a substantial loss
of accuracy and likely failure of a self-consistent calculation.

D. Heating and cooling

The possibility of obtaining a starting point for fixed-point
iteration by extrapolating from a nearby temperature point
allows us to smoothly change temperature in subsequent sim-
ulation, in analogy to “heating” and “cooling” measurements
in experiments. This capability is especially important at first-
order phase transitions, where multiple stable fixed points,
corresponding to the different phases, exist.

Such a heating and cooling process is shown in Fig. 9.
Shown is a coexistence region and hysteresis curve at the
example of the single-site DMFT on a Bethe lattice (the same
calculation setup as the one mentioned in Sec. IV B). We plot
the double occupancy, which is directly related to the potential
energy, as a function of inverse temperature 8. With start-
ing points extrapolated from higher temperature converged
results (red open circles), we find a transition from an insu-
lating phase with small double occupancy to a metallic phase
with large double occupancy around B¢ = 21.56. Conversely,
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with starting points extrapolated from lower temperature con-
verged results (blue open circles), we find a transition from
a metallic phase to an insulating phase around gt = 20.31.
Between those temperatures, both metal and insulator are
stable solutions of the fixed-point equations, indicating phase
coexistence [54-60,73].

V. CONCLUSIONS

The Carathéodory temperature extrapolation technique, in-
troduced in this paper, provides an effective way to accelerate
the convergence of self-consistent many-body calculations
for both model Hamiltonians and realistic systems. It allows
for smooth temperature variation in simulations, making it
suitable for studying heating and cooling processes in many-
body systems. The starting points provided by this method
are generally superior, especially in systems with phase tran-
sitions and convergence issues. The Carathéodory technique
therefore offers a versatile and efficient approach for studying
temperature-dependent properties in self-consistent many-
body calculations that should be adapted in any self-consistent
finite-temperature many-body simulation.

We note that “convergence acceleration” techniques such
as direct inversion in the iterative subspace (DIIS) [74-76]
and Anderson acceleration [77-80] are complementary to the
Carathéodory temperature extrapolation method employed in
this study. Convergence acceleration techniques work by ex-
trapolating from a set of initial iterations. The combination
of such techniques with the better starting points provided by
Carathéodory temperature extrapolation is therefore straight-
forward.
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