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The Internet of Things (IoT) is rapidly trans- 
forming modern technology, with applications 
spanning from smart homes and healthcare 
monitoring to industrial automation and 
intelligent transportation systems. Central to 
many of these applications are radar sensors, 
which provide essential functions such as 
motion detection, gesture recognition, and 
activity classification. However, the high power 
consumption of radar hardware presents a  
significant challenge, especially for battery-
operated IoT devices and wearables, where 
energy efficiency and battery life are para-

mount. This challenge is further exacerbated 
by the reliance on power-intensive artificial 
neural networks (ANNs) for signal processing 
in many smart sensing applications.

Recent advancements in neuromorphic 
engineering have led to the development 
of Spiking Neural Networks (SNNs)[1] 
and dedicated neuromorphic circuits[2], 
which more closely emulate the efficiency 
of sensory signal processing found in 
the brain. SNNs are designed to mirror 
the pulse-based behavior of the human 
nervous system, consisting of spiking 

neurons and the synaptic connections 
between them. When realized on dedicated 
neuromorphic circuits, SNNs demonstrate 
exceptional energy efficiency, surpassing 
traditional von Neumann computing units 
by orders of magnitude[3]. This revolution in 
neuromorphic computing has also spurred the 
development of cutting-edge neuromorphic 
sensing hardware, such as the energy-efficient, 
fast-response event camera[4].

In this article, we explore NeuroRadar[5], 
a novel low-power radar sensing system 
that leverages the power of neuromorphic 
sensing and computing. NeuroRadar draws 
inspiration from neuromorphic sensors 
that mimic mammalian sensory systems, 
generating event-triggered outputs in 
response to external stimuli, as illustrated 
in Figure 1. Unlike traditional radars that 
produce continuous frame-based outputs, 
NeuroRadar generates spiking patterns upon 
detecting motion in its environment. While 
other so-called “SNN radars”[6,7] continue 
to rely on traditional CPUs or digital signal 
processing (DSP) units, NeuroRadar adopts  
a fully neuromorphic architecture, process- 
ing all information in the spike domain.
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 s radar sensors become an integral component of Internet of Things 
(IoT) systems, the challenge of high power consumption poses 
a significant barrier, especially for battery-operated devices. 
This article introduces NeuroRadar, a groundbreaking solution 

that leverages a radar front-end capable of generating spike sequences, 
which can be efficiently processed by energy-saving Spiking Neural 
Networks (SNNs). We explore the innovative design and implementation 
of NeuroRadar, showcasing its effectiveness in applications like gesture 
recognition and human tracking. By achieving dramatically lower 
power consumption compared to traditional radar systems, NeuroRadar 
represents a new paradigm in energy-efficient IoT sensing.
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SYSTEM OVERVIEW
NeuroRadar comprises three main compo- 
nents: a sensor front-end, spike encoders, 
and spike processors (Figure 1). The sensor 
front-end detects ambient motion, and the 
spike encoders convert these signals into 
spike sequences, known as spike trains. 
These spike trains are then processed 
directly by energy-efficient SNNs.

Sensor front-end
NeuroRadar employs a drastically simplified 
RF front-end that eliminates most power-
intensive active RF components found in 
traditional radars, retaining only a low-
power free-running oscillator. NeuroRadar 
detects environmental changes using the 
self-injection locking (SIL) principle[8], 
where the oscillator’s frequency is modulated 
by motion in the surrounding area. By 
demodulating this frequency shift, the 
system generates a baseband signal carrying 
motion information. Despite its simplicity, 
NeuroRadar maintains a reasonable level of 
sensitivity due to the inherent properties of 
the SIL architecture, which enhance signal 
strength. Notably, the power consumption  
of each RF front-end channel is just 240 μW 
in an integrated circuit implementation.

However, a single SIL sensor cannot 
provide angular resolution and accurate range 
information, as it only senses environmental 
motion. To overcome this limitation, 
NeuroRadar draws inspiration from the 
compound eyes found in certain biological 
organisms[9], proposing an array of SIL 
sensors with strategically selected carrier 
frequencies. This design allows the system to 
infer target direction by exploiting the phase 
difference across the sensors and resolves 
range ambiguity using frequency diversity. 
The original NeuroRadar paper[5] includes 
an optimization framework that determines 
the number of sensors and their frequency 
permutation for accurate target localization.

Spike encoder
To enable end-to-end SNN signal processing, 
NeuroRadar uses an analog spike encoding 
circuit that directly transforms baseband 
signals into spike trains. The spike encoder 

is based on a biological neuron model[10], 
preserving all essential sensing information 
within the spike sequences. The encoder 
employs spike rate encoding, where the 
firing frequency increases linearly with the 
input signal amplitude. These spike encoding 
circuits operate entirely in an event-driven 
manner, generating spikes only when motion 
is detected by the sensor front-end, as shown 
in Figure 2. This ensures that the system 
remains idle in the absence of motion, 
further enhancing energy efficiency. The 
spike sequences are then processed directly 
by SNNs on neuromorphic computing 
systems, eliminating the need for any non- 
spike-based computing units. Figure 3 
illustrates the implementation of a single-
channel SIL radar.

Spike processor
Once motion signals are converted into 
multiple parallel spike trains, SNNs are 
designed to process these spiking signals and 
extract spatiotemporal features. The SNN 
structure includes three main components: 
spike buffering units, convolution layers,  
and spike decoders (Figure 4).

• 	 Spike Buffering Units: These units 
consist of cascaded time delay units, each 
imposing a consistent delay of a certain 
number of clock ticks. The output spikes 
then progress to the next-stage delay unit. 

Once the input sequence is completed, 
the spike buffering units concatenate the 
outputs from all delay units, presenting the 
spikes concurrently to the subsequent layer.

• 	 Convolution Layers: After flattening the 
temporal dimension of the input spike 
sequences through the spike buffering 
units, convolution layers extract the 
spatiotemporal features of the spike 
sequences.

• 	 Spike Decoders: SNNs are trained so that 
output values are represented by the spike 
firing rate of neurons in the final layer. 
Spike decoders, which are essentially low-
pass filters, convert the spike density into 
continuous values that can be interpreted 
by the sensing applications.

[HIGHLIGHTS]

FIGURE 1. Analogy between biological sensory systems and the NeuroRadar sensor. 
NeuroRadar achieves energy-efficient sensing by emulating the structure and functionality of 
these biological systems.
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FIGURE 2. Spike encoding circuit. The signal 
from each SIL channel is encoded into two 
spike trains, representing the positive and 
negative parts respectively.
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This comprehensive SNN processing 
workflow enables NeuroRadar to deliver 
application-specific sensing results with 
superior energy efficiency.

CASE STUDY
To demonstrate the capabilities of Neuro-
Radar, we conducted two case studies: hand 
gesture recognition and human tracking. For 
each case, we collected multi-channel spike 
data and trained and tested the SNNs. The 
SNN simulations were performed on the Intel 
Loihi neuromorphic processor[2] using the 
NengoDL framework[11]. In the Loihi imple-
mentation, the SNN operates on discretized 
time steps, each corresponding to 1 ms.

Gesture Recognition
We first illustrate NeuroRadar’s ability to 
perform hand gesture recognition. In this case 
study, we defined a gesture set comprising 12 
different gestures, as shown in Figure 5. The 
gesture set includes diverse hand movements 
within a 3D space (e.g., push, pull, left, right, 
up, down), with some gestures requiring 
simultaneous movement of both hands.

A three-channel NeuroRadar setup was 
employed. Two antennas were placed on a 
horizontal line, while the third antenna was 
positioned above the horizontal line, forming 
an equilateral triangle with the other two 
antennas. Gestures were performed in front 
of the antenna plane, facing the center of the 
triangle. The spacing between antennas was 
designed to be comparable to the displacement 
of a hand during gestures, resulting in more 

distinguishable signal patterns. The elevated 
antenna provided richer information for 
vertical hand movements, such as “swipe up” 
or “swipe down.”

A total of 2,400 samples were collected, 
with 200 samples for each gesture. Each 
gesture sample contained sequences of 
spikes over a 1.5-second duration. The 
samples were divided into a training set 
(1,920 samples) and a test set (480 samples) 
using a random 80/20 split.

NeuroRadar’s SNN achieved an accuracy 
of 94.6% after running for 80 time steps. 
This indicates that after the completion of 
a gesture input, NeuroRadar requires only 
80 ms to produce a reliable result, which is 
sufficient for most applications. Table 1  
summarizes the gesture recognition outcomes.

The power consumption of the RF front-
end and the SNN is merely 830 μW and  

65 μW, respectively. Compared to other SNN- 
based gesture recognition systems[6,7] that 
still rely on traditional computing units (e.g., 
CPU or DSP) for radar signal pre-processing, 
NeuroRadar achieves a power consumption 
reduction between 78% and 93% in terms of 
signal processing (pre-processing and SNN).

Human Tracking
The second case study focuses on local-
izing a single moving human in an indoor 
environment. NeuroRadar employs a 6-sensor 
array with diverse carrier frequencies to 
achieve this. Since NeuroRadar detects only 
moving targets, a volunteer was asked to 
walk randomly within the radar’s field of 
view. The maximum distance of the target 
from the radar was approximately 6 meters, 
with a viewing angle of about 90 degrees. 
Ground truth for location and speed was 
obtained using a commercial depth cam-
era (ZED-2i). We collected 3,600 seconds 
of continuous data, which was then split 
80/20 into training and testing datasets. The 
continuous data was further segmented into 
2-second short frames with a 75% overlap, 
resulting in each short frame becoming a 
training or test sample. This segmentation 
yielded a total of 5,742 training samples  
and 1,422 test samples.

Figure 6 displays the localization results 
by combining the output from consecutive 
frames. Similar to the gesture recognition 
use case, the SNN requires enough timesteps 
to produce a reliable result. The results show 
that after approximately 150 timesteps, 
a localization accuracy of 1 meter can 
be achieved. The mean squared error for 
speed estimation stabilizes at 0.25 m2/s2. 
This indicates a tracking delay of 150 ms, 

FIGURE 3. Single-channel SIL radar system. The ambient motion modulates the oscillating 
frequency of the SIL oscillator, which is then demodulated using a delay and mixing circuit. The 
resulting signals are amplified and converted into spike trains by the amplifiers and spike encoders.

FIGURE 4. SNN processing pipeline. All the processing is conducted in the spike domain.

FIGURE 5. Gesture set definition. Gestures (1)-(8) are single-hand; (9)-(12) are double-hand.
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which is adequate for low-velocity indoor 
applications. However, because the system 
filters spike sequences to achieve continuous 
values, some errors are inevitable, impacting 
overall accuracy.

Thanks to its simple SIL structure and 
power-efficient design, NeuroRadar con-
sumes only 2.03 mW of power (1.44 mW for 
the front-end and 0.59 mW for the SNN). 
Compared to Doorpler [12], another motion-
based surveillance radar system, NeuroRadar 
achieves a 1-2 orders of magnitude reduc-
tion in front-end power consumption. The 
combination of the SIL array and neural 
network allows NeuroRadar to obtain richer 
and more accurate sensing information. Un-
like Doorpler, which merely detects crossing 
events and their direction, NeuroRadar offers 
both location and speed estimation. Addi-
tionally, SNN processing significantly reduces 
computational power, resulting in an overall 
system power consumption reduction of 97%. 

SUMMARY
In this article, we reviewed NeuroRadar, 
a novel and pioneering approach in radar 
systems that fully embraces the principles of 
neuromorphic sensing. By jointly designing 
analog hardware and spike-based signal 
processing, NeuroRadar achieves exceptional 
energy efficiency. Through case studies on 
gesture recognition and human localization, 
NeuroRadar has demonstrated its capabilities 
while maintaining significantly lower power 
consumption compared to traditional 
radar systems. This research represents a 
significant advancement, offering a unique 
and innovative solution for radar sensing in 
energy-constrained IoT devices. n
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FIGURE 6. NeuroRadar localization result.
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	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12

1	 0.94								        0.03			   0.03

2		  0.95										          0.05

3			   0.93					     0.02	 0.05

4		  0.03		  0.91				    0.03				    0.03

5					     0.97				    0.03

6		  0.04				    0.96

7							       1.00

8	 0.02							       0.98

9	 0.02		  0.04						      0.92			   0.02

10	 0.02	 0.07		  0.02		  0.03		  0.03		  0.83

11											           0.98	 0.02

12							       0.02					     0.98

TABLE 1. Confusion matrix for gesture recognition


