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s radar sensors become an integral component of Internet of Things
(IoT) systems, the challenge of high power consumption poses
a significant barrier, especially for battery-operated devices.
This article introduces NeuroRadar, a groundbreaking solution
that leverages a radar front-end capable of generating spike sequences,
which can be efficiently processed by energy-saving Spiking Neural
Networks (SNNs). We explore the innovative design and implementation
of NeuroRadar, showcasing its effectiveness in applications like gesture
recognition and human tracking. By achieving dramatically lower
power consumption compared to traditional radar systems, NeuroRadar
represents a new paradigm in energy-efficient IoT sensing.

The Internet of Things (IoT) is rapidly trans-
forming modern technology, with applications
spanning from smart homes and healthcare
monitoring to industrial automation and
intelligent transportation systems. Central to
many of these applications are radar sensors,
which provide essential functions such as
motion detection, gesture recognition, and
activity classification. However, the high power
consumption of radar hardware presents a
significant challenge, especially for battery-
operated IoT devices and wearables, where
energy efficiency and battery life are para-

mount. This challenge is further exacerbated
by the reliance on power-intensive artificial
neural networks (ANNs) for signal processing
in many smart sensing applications.

Recent advancements in neuromorphic
engineering have led to the development
of Spiking Neural Networks (SNNs)[1]
and dedicated neuromorphic circuits[2],
which more closely emulate the efficiency
of sensory signal processing found in
the brain. SNNs are designed to mirror
the pulse-based behavior of the human
nervous system, consisting of spiking
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neurons and the synaptic connections
between them. When realized on dedicated
neuromorphic circuits, SNNs demonstrate
exceptional energy efficiency, surpassing
traditional von Neumann computing units
by orders of magnitude[3]. This revolution in
neuromorphic computing has also spurred the
development of cutting-edge neuromorphic
sensing hardware, such as the energy-efficient,
fast-response event camera[4].

In this article, we explore NeuroRadar[5],
a novel low-power radar sensing system
that leverages the power of neuromorphic
sensing and computing. NeuroRadar draws
inspiration from neuromorphic sensors
that mimic mammalian sensory systems,
generating event-triggered outputs in
response to external stimuli, as illustrated
in Figure 1. Unlike traditional radars that
produce continuous frame-based outputs,
NeuroRadar generates spiking patterns upon
detecting motion in its environment. While
other so-called “SNN radars”[6,7] continue
to rely on traditional CPUs or digital signal
processing (DSP) units, NeuroRadar adopts
a fully neuromorphic architecture, process-
ing all information in the spike domain.
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SYSTEM OVERVIEW

NeuroRadar comprises three main compo-
nents: a sensor front-end, spike encoders,
and spike processors (Figure 1). The sensor
front-end detects ambient motion, and the
spike encoders convert these signals into
spike sequences, known as spike trains.
These spike trains are then processed
directly by energy-eflicient SNNG.

Sensor front-end
NeuroRadar employs a drastically simplified
RF front-end that eliminates most power-
intensive active RF components found in
traditional radars, retaining only a low-
power free-running oscillator. NeuroRadar
detects environmental changes using the
self-injection locking (SIL) principle[8],
where the oscillator’s frequency is modulated
by motion in the surrounding area. By
demodulating this frequency shift, the
system generates a baseband signal carrying
motion information. Despite its simplicity,
NeuroRadar maintains a reasonable level of
sensitivity due to the inherent properties of
the SIL architecture, which enhance signal
strength. Notably, the power consumption
of each RF front-end channel is just 240 uW
in an integrated circuit implementation.
However, a single SIL sensor cannot
provide angular resolution and accurate range
information, as it only senses environmental
motion. To overcome this limitation,
NeuroRadar draws inspiration from the
compound eyes found in certain biological
organisms[9], proposing an array of SIL
sensors with strategically selected carrier
frequencies. This design allows the system to
infer target direction by exploiting the phase
difference across the sensors and resolves
range ambiguity using frequency diversity.
The original NeuroRadar paper[5] includes
an optimization framework that determines
the number of sensors and their frequency
permutation for accurate target localization.

Spike encoder

To enable end-to-end SNN signal processing,
NeuroRadar uses an analog spike encoding
circuit that directly transforms baseband
signals into spike trains. The spike encoder
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FIGURE 1. Analogy between biological sensory systems and the NeuroRadar sensor.
NeuroRadar achieves energy-efficient sensing by emulating the structure and functionality of

these biological systems.

is based on a biological neuron model[10],
preserving all essential sensing information
within the spike sequences. The encoder
employs spike rate encoding, where the
firing frequency increases linearly with the
input signal amplitude. These spike encoding
circuits operate entirely in an event-driven
manner, generating spikes only when motion
is detected by the sensor front-end, as shown
in Figure 2. This ensures that the system
remains idle in the absence of motion,
further enhancing energy efficiency. The
spike sequences are then processed directly
by SNNs on neuromorphic computing
systems, eliminating the need for any non-
spike-based computing units. Figure 3
illustrates the implementation of a single-
channel SIL radar.

Spike processor

Once motion signals are converted into
multiple parallel spike trains, SNNs are
designed to process these spiking signals and
extract spatiotemporal features. The SNN
structure includes three main components:
spike buffering units, convolution layers,

and spike decoders (Figure 4).

« Spike Buffering Units: These units
consist of cascaded time delay units, each
imposing a consistent delay of a certain
number of clock ticks. The output spikes

then progress to the next-stage delay unit.
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FIGURE 2. Spike encoding circuit. The signal
from each SIL channel is encoded into two
spike trains, representing the positive and
negative parts respectively.
]

Once the input sequence is completed,
the spike buffering units concatenate the
outputs from all delay units, presenting the
spikes concurrently to the subsequent layer.

« Convolution Layers: After flattening the
temporal dimension of the input spike
sequences through the spike buffering
units, convolution layers extract the
spatiotemporal features of the spike
sequences.

o Spike Decoders: SNNs are trained so that
output values are represented by the spike
firing rate of neurons in the final layer.
Spike decoders, which are essentially low-
pass filters, convert the spike density into
continuous values that can be interpreted
by the sensing applications.
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This comprehensive SNN processing
workflow enables NeuroRadar to deliver
application-specific sensing results with
superior energy efficiency.

CASE STUDY

To demonstrate the capabilities of Neuro-
Radar, we conducted two case studies: hand
gesture recognition and human tracking. For
each case, we collected multi-channel spike
data and trained and tested the SNNs. The
SNN simulations were performed on the Intel
Loihi neuromorphic processor[2] using the
NengoDL framework[11]. In the Loihi imple-
mentation, the SNN operates on discretized
time steps, each corresponding to 1 ms.

Gesture Recognition

We first illustrate NeuroRadar’s ability to
perform hand gesture recognition. In this case
study, we defined a gesture set comprising 12
different gestures, as shown in Figure 5. The
gesture set includes diverse hand movements
within a 3D space (e.g., push, pull, left, right,
up, down), with some gestures requiring
simultaneous movement of both hands.

A three-channel NeuroRadar setup was
employed. Two antennas were placed on a
horizontal line, while the third antenna was
positioned above the horizontal line, forming
an equilateral triangle with the other two
antennas. Gestures were performed in front
of the antenna plane, facing the center of the
triangle. The spacing between antennas was
designed to be comparable to the displacement
of a hand during gestures, resulting in more
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FIGURE 3. Single-channel SIL radar system. The ambient motion modulates the oscillating
frequency of the SIL oscillator, which is then demodulated using a delay and mixing circuit. The
resulting signals are amplified and converted into spike trains by the amplifiers and spike encoders.
]

distinguishable signal patterns. The elevated
antenna provided richer information for
vertical hand movements, such as “swipe up”
or “swipe down”

A total of 2,400 samples were collected,
with 200 samples for each gesture. Each
gesture sample contained sequences of
spikes over a 1.5-second duration. The
samples were divided into a training set
(1,920 samples) and a test set (480 samples)
using a random 80/20 split.

NeuroRadar’s SNN achieved an accuracy
of 94.6% after running for 80 time steps.
This indicates that after the completion of
a gesture input, NeuroRadar requires only
80 ms to produce a reliable result, which is
sufficient for most applications. Table 1

summarizes the gesture recognition outcomes.

The power consumption of the RF front-
end and the SNN is merely 830 pW and
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FIGURE 4. SNN processing pipeline. All the processing is conducted in the spike domain.
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FIGURE 5. Gesture set definition. Gestures (1)-(8) are single-hand; (9)-(12) are double-hand.
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65 uW, respectively. Compared to other SNN-
based gesture recognition systems[6,7] that
still rely on traditional computing units (e.g.,
CPU or DSP) for radar signal pre-processing,
NeuroRadar achieves a power consumption
reduction between 78% and 93% in terms of
signal processing (pre-processing and SNN).

Human Tracking

The second case study focuses on local-
izing a single moving human in an indoor
environment. NeuroRadar employs a 6-sensor
array with diverse carrier frequencies to
achieve this. Since NeuroRadar detects only
moving targets, a volunteer was asked to
walk randomly within the radar’s field of
view. The maximum distance of the target
from the radar was approximately 6 meters,
with a viewing angle of about 90 degrees.
Ground truth for location and speed was
obtained using a commercial depth cam-
era (ZED-2i). We collected 3,600 seconds
of continuous data, which was then split
80/20 into training and testing datasets. The
continuous data was further segmented into
2-second short frames with a 75% overlap,
resulting in each short frame becoming a
training or test sample. This segmentation
yielded a total of 5,742 training samples
and 1,422 test samples.

Figure 6 displays the localization results
by combining the output from consecutive
frames. Similar to the gesture recognition
use case, the SNN requires enough timesteps
to produce a reliable result. The results show
that after approximately 150 timesteps,

a localization accuracy of 1 meter can

be achieved. The mean squared error for
speed estimation stabilizes at 0.25 m2/s2.
This indicates a tracking delay of 150 ms,



TABLE 1. Confusion matrix for gesture recognition

1 094

2 0.95

3 0.93

4 0.03 0.91

5 0.97

6 0.04 0.96
7

8 0.02

9 0.02 0.04

10 0.02 0.07 0.02 0.03
11

12

which is adequate for low-velocity indoor
applications. However, because the system
filters spike sequences to achieve continuous
values, some errors are inevitable, impacting
overall accuracy.

Thanks to its simple SIL structure and
power-efficient design, NeuroRadar con-
sumes only 2.03 mW of power (1.44 mW for
the front-end and 0.59 mW for the SNN).
Compared to Doorpler [12], another motion-
based surveillance radar system, NeuroRadar
achieves a 1-2 orders of magnitude reduc-
tion in front-end power consumption. The
combination of the SIL array and neural
network allows NeuroRadar to obtain richer
and more accurate sensing information. Un-
like Doorpler, which merely detects crossing
events and their direction, NeuroRadar offers
both location and speed estimation. Addi-
tionally, SNN processing significantly reduces
computational power, resulting in an overall
system power consumption reduction of 97%.

SUMMARY

In this article, we reviewed NeuroRadar,

a novel and pioneering approach in radar
systems that fully embraces the principles of
neuromorphic sensing. By jointly designing
analog hardware and spike-based signal
processing, NeuroRadar achieves exceptional
energy efficiency. Through case studies on
gesture recognition and human localization,
NeuroRadar has demonstrated its capabilities
while maintaining significantly lower power
consumption compared to traditional

radar systems. This research represents a
significant advancement, offering a unique
and innovative solution for radar sensing in
energy-constrained IoT devices. B
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FIGURE 6. NeuroRadar localization result.
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