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Multi-Channel Conversational Speaker Separation
via Neural Diarization

Hassan Taherian

Abstract—When dealing with overlapped speech, the perfor-
mance of automatic speech recognition ( ASR) systems substantially
degrades as they are designed for single-talker speech. To enhance
ASR performance in conversational or meeting environments, con-
tinnous speaker separation (CSS) is commonly employed. How-
ever, USS requires a short separation window to aveid many
speakers inside the window and sequential grouping of discontinu-
ous speech segments. To address these limitations, we introdoce
a new multi-channel framework called “speaker separation via
neural diarization™ (S5SNI} for meeting environments. Our ap-
proach utilizes an end-tv-end diarization system to identify the
speech activity of each individual speaker. By leveraging estimated
speaker boundaries, we generate a sequence of embeddings, which
in turn facilitate the assignment of speakers to the outputs of a
multi-talker separation model. SSND addresses the permutation
ambignity issue of talker-independent speaker separation during
the diarization phase through location-based training, rather than
during the separation process. This unigue approach allows mul-
tiple non-overlapped speakers to be assigned to the same outpuat
stream, making it possible to efficiently process long segments—a
task impossible with CS5. Additionally, SSNID is naturally suitable
for speaker-attributed ASR. We evaluate our proposed diarization
and separation methods on the open LibriCSS dataset, advancing
state-of-the-art diarization and ASR results by a large margin.

Index  Terms—DMulti-channel speaker diavization, conver-
sational speaker separation, location-hased training, multi-speaker
speech recognition.

I. INTRODUCTION

ALKER-INDEPENDENT speaker separation systems are

increasingly tailored to address more realistic scenar-
ios [1]. One such environment is conversational or meeting set-
tings. Conversational speech is characterized by its extended du-
ration, an arbitrary number of participating speakers, and varying
degrees of speech overlap. To address the challenges posed
by conversational speech, the notion of continuous speaker
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separation (C55) has been introduced [2]. CSS is designed to
process long audio recordings and manage overlapped speech
involving an arbitrary number of speakers. In the CSS approach,
an audio recording is broken into shorter, partially overlapping
segments, typically ranging from 2-3 seconds. Each segment
should contain at most two speakers. By doing so, the C5S5 task
is simplified to a two-talker concurrent speaker separation task
foreach segment. During the separation process, each segment is
treated independently, resulting in two estimated speech signals.
In cases where segments contain no overlapped speech, the
processing reduces to speech enhancement, and the enhanced
signal is mapped to one of the two streams, while the other
generates a zero signal. As CSS produces two speech estimates
for each segment, there is a requirement to group the estimates
of the current segment with those in the previous segment.
Sequential grouping, also referred to as “stitching™, is essential
for handling same-talker speech that spans multiple segments.
This is commonly achieved by comparing the separation results
in the overlapped regions belween consecutive segments.

Since its inception, the CSS framework has been the subject
of numerous studies aiming to enhance various components [3],
[4], [5], [61, [71, [8]. In [3], a modulation factor based on the
segment overlap ratio is introduced to dynamically adjust a
separation loss. Chen et al. [4] proposed an early exit mechanism
in Transformer layers for multi-channel speaker separation,
speeding up inference by exiting when successive layer outputs
are similar. Li et al. [5] proposed a dual-path separation model
that leverages inter-segment information through a memory
embedding pool. Wang et al. [6] employed a multi-stage sirat-
egy, combining a multi-input single-output (MIS0) separation
model with deep learning based beamforming followed by a
posi-filtering network. Extending upon this approach, the study
in [8] integrates multi-input multi-output (MIMO) separation,
incorporating a multi-resolution loss [7].

Despite the significant progress, the CSS framework faces
several challenges. The first challenge is its limited segment
size, stemming from the requirement that each segment must
contain no more than two speakers [2]. A shorter segment length
creates a bigger difficulty to group the separated ullerances
of the same talker over a period of time. When processing
single-talker segments, a separation model occasionally fails to
isolate the speaker in one stream with the other stream silent.
Consequently, a speaker is erroneously splil into two streams,
adversely impacting downstream speech applications like au-
tomatic speech recognition (ASR) as they process each stream
as originating from a distinct speaker |[7]. To capture longer
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speech ulterances, two recent studies introduced new training
criteria based on permutation-invariant training (PIT) [9], [10],
[117. In [10], the authors proposed “Graph-PIT™, an extension
of PIT that can separale a varying number of speakers from a
two-lalker separation model. This model employs graph coloring
to optimally assign multiple speakers to two streams. Zhang
etal. [11] introduced Group-PIT, which organizes a long refer-
ence signal into ulterance groups, employing the PIT criterion
tor these groups instead of individual utterances.

The second CSS challenge lies in the stitching process. Typi-
cally, the overlap between neighboring segments is set to 50% of
the segment length to provide an adequate context for aligning
adjacent segments. However, this approach introduces com-
putational inefficiency since each segment is processed twice.
Moreover, spectral distance based stitching is prone (o errors,
resulting in the misalignment of adjacent segments.

The third challenge arises when dealing with long recordings,
e.g. a one-hour meeting involving many participants. While
stitching can group a continuous single-talker signal in con-
secutive frames, it does not address the challenge of grouping
discontinuous signals of the same talker, e.g.. how Lo group the
utterance of a talker in the first 5 minutes of a one-hour meeting
and the utterance of the same talker in the last five minutes of the
meeting. The grouping of discontinuous utterances of the same
talker is crucial for subsequent tasks such as speaker-attributed
ASR.

In this paper, we present a new framework, termed “speaker
separation via neural diarization” (SSND), for mulli-channel
conversational speaker separation. Unlike the traditional ap-
proach to speaker diarization comprising the stages of speech
activity detection, speaker embedding extraction, and clustering,
S5ND demarcates the speech activities of individual speakers
by employing a deep neural network (DNN) for end-to-end
diarization. Leveraging the estimated utterance boundaries from
neural diarization, we generate a sequence of speaker embed-
dings. These embeddings, in tum, facilitate the assignment
of speakers to two output streams of the separation model.
The SSND approach tackles the permutation ambiguily issue
of talker-independent separation during the diarization phase,
rather than during separation. This distinction permits non-
overlapped speakers to be assigned to the same output stream,
enabling the processing long recordings missing from standard
CS58. Furthermore, there is no stitching in S5ND, and hence
duplicate processing of segments is eliminated, resulting in
computational efficiency. Another advantage of SSND lies in
the inherent integration of speaker separation and diarization,
enabling sequential grouping of the discontinuous utterances of
the same talker.

For embedding extraction, we utilize EEND with an encoder-
decoder-based attractor calculation module (EEND-EDA) [12],
but extend EEND-EDA to multi-channel scenarios with a dif-
ferent training criterion that can handle a larger number of
speakers. Specifically, we propose to use location-based training
(LBT) [13] to resolve permutation ambiguity in speaker diariza-
tion. We show that that LBT significantly outperforms the PIT
criterion for diarization of many speakers. Our S5ND framework
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achieves state-of-the-art diarization and ASR results, surpassing
all existing CSS based methods on the open LibriCSS dataset [2].

The rest of the paper is organized as follows. In Section I,
we describe our proposed multi-channel diarization model, and
the SSND framework. We present the experimental setup in
Section IT1, and evaluation and comparison results in Section TV,
Concluding remarks are provided in Section V.

II. ALGORITHM DESCRIPTION
A, Multi-Channel Diarization

Speaker diarization traditionally employs a clustering-based
approach [14], [15]. This approach revolves around grouping
speaker embeddings, such as x-vectors [16], into clusters. Such
a method usually involves three distinct stages. First, a speech
activity detection model is utilized to identify speech intervals.
Then, speaker embeddings are extracted, and finally a clustering
technique such as spectral clustering (SC) is applied. However,
this method has its limitations. Tts stages are independent and
cannot be trained jointly to minimize diarization errors. Plus,
clustering methods struggle with speaker overlaps, as they as-
sume a single speaker within a segment.

End-to-end neural diarization (EEND) has been introduced
to streamline the diarization process by using a single neural
network model [17]. Unlike clustering-based diarization, the
EEND method can handle speaker overlaps. Furthermore, by
incorporating an encoder-decoder-based attractor calculation
(EDA) [12]. EEND can handle an unknown number of speak-
ers. For a sequence of frame-wise x,, where ¢ = [1,... ,T7,
EEND encodes these into a series of embeddings, e, € R¥,
via a DNN-based encoder. From these frame-wise embeddings,
the EDA module derives a number of attractors a. for ¢ =
[1,...,C] speakers. Subsequently, speech activity probabilities,
o = lm.pa, ... o], are derived by taking the dot product
of the frame-wise embeddings and the speaker-wise atiractors,
tollowed by applying a sigmoidal function. Finally, the speech
activities of different speakers are estimated by using a decision
threshold 7.

EEND is formulated for monaural recordings. In this study, we
extend EEND-EDA to multi-channel recordings by integrating
spatial features. Fig. 1 illustrates our proposed multi-channel
EEND-EDA (MC-EEND) model. Our model utilizes both spec-
tral and spatial features [18]. For spectral features, we utilize
log-Mel filterbanks, while for spatial features, we employ the
inter-channel phase difference (IPDY) between the reference mi-
crophone and the other microphones. For each pair of micro-
phones, the cosine and sine of the TPD are concatenated. These
IPD features are then processed through a series of convolutional
blocks, each of which is composed of a convolutional layer, a
PReL.U activation function, and a group normalization layer.
Subsequently, the processed IPD features are concatenated with
the log-Mel feamres. The combined features are fed to the EEND
encoder, which comprises several Transformer layers without
positional encodings. To derive speaker attractors using EDA,
we shuffle the order of the embeddings.
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Schematic diagram of the proposed MC-EEND with location-based

For EEND to be effective in real-world applications, it must
be trained in a talker-independent manner to accommodate
untrained speakers. Much like talker-independent speaker sepa-
ration, the difficulty lies in aligning diarization output layvers with
the respective speaker labels. Without proper output-speaker as-
signment, EEND training would not converge due to conflicting
gradients. This is known as the permutation ambiguity prob-
lem [9], [19]. Previous smdies employ PIT to tackle this problem
by analyzing the losses across all possible output-speaker pair-
ings [12], [17]. However, unlike speaker separation where the
number of concurrent speakers can be reasonably limited to two
or three, diarization may involve many speakers. Using PIT in
such cases becomes problematic as it has factorial or polynomial
training complexity [20], [21], making it inefficient for a large
number of speakers,

In this study, we introduce LBT [13] for diarization. We
employ the spatial locations of speakers to determine output-
speaker assignments. Given a polar coordinate system with the
microphone array's center as the origin, we define the diarization
loss function as:

T
1
Leenp = EEH{I}«:JJ;J (n

where ¥, = [ug,. ¥s,.- .. , 48] represents the binary speaker
label vector for frame £, This vector is arranged in ascending
order according to speaker azimuths relative to the microphone
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array [13]. The binary cross entropy function, H (., .), is defined
as:
c
H(Y,p) = = e logpes + (1 — yeu) log(1 — peg).

e=1
(2)

LET, or azimuth-based training specifically, has a linear com-
putational complexity [13], making it efficient to train end-to-
end diarization systems with many speakers. In the EDA mod-
ule, attractors are trained using attractor existence probabilities,
denoted as g, (see Fig. 1). The attractor probabilities are calcu-
lated by using a fully connected layer, followed by sipmoidal
activation, The EDA module’s loss function is described as:

Lepa = C';-HH”’{"] 3)
where [ € R“*! is a binary vector with its first C' elements set
to 1 and its final element set to (. The total loss for MC-EEND
is expressed as:

Lp = Leevp + Lepa- (4)

B. Speaker Separation Via Newral Diarization (SSND)

Our S5ND framework uses the MC-EEND diarization model,
However, the SSND approach can be coupled with any diariza-
tion model. Within this framework, we assume that the number
of concurrent speakers al each frame does not exceed two, as
more than two speakers rarely talk simultaneously in real-world
conversations [2], [22]. To represent each speaker, we extract
speaker embeddings from the MC-EEND encoder. Specifically,
for each speaker, we average the embedding vectors over all the
frames when the speaker is active with all others silent, which
may be discontinuous:

- 1 ﬁﬂ.l = 1.‘
e =7 g ec Where {;a;rf,c —0 ford £e. O
Here, g, represents the estimated speech activities derived from
MC-EEND and T, is the number of frames where only speaker ¢
is active. Fig. 2(a) illustrates the embedding extraction process.

Based on extracted speaker embeddings, we create two se-
quences in the following manner. Using the order of diarized
speech activities, each speaker-active interval is assigned to one
of two embedding sequences. For such an interval, the extracted
embedding of the corresponding speaker is assigned to every
frame of the interval as illustrated on the left side of Fig. 2{h). We
initially assign the first interval to the first embedding sequence.
At the onset of a current interval, if both sequences are silent,
we check whether the underlying speaker of the current interval
is the same as that of the previously ended interval. I yes,
the current interval is assigned to the same sequence as the
previously ended sequence; if not, the interval is assigned to the
other sequence. If only one sequence is silent, the current interval
is assigned to this sequence. This procedure is illustrated in
Fig. 2(b). We note that this assignment of speaker-active intervals
to two embedding sequences guarantees no overlap between the
intervals assigned to each sequence regardless of the number of
speakers, as long as no more than 2 talkers speak simultaneously.
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sequences and feeding to speaker saparation along with mixture signal,

For silent frames, we use a zero embedding vector &,y. The
resulting two embedding sequences are then fed to a separation
network along with the multi-channel mixture signal, as shown
in Fig. 2(b).

We employ two architectures for the separator network (see
Fig. 2(b}), both of which operate in the short-time Fourier trans-
form (STFT) domain. The first architecture, TF-GridNet [23],
processes time-frequency units in a grid-like manner. TF-
GridNet consists of several blocks, each with three main compo-
nents. The first two components utilize bi-directional long short-
term memory (BLSTM) to process full-band spectral features
within each frame and the temporal information within each fre-
quency. The last component incorporates a self-attention mod-
ule, to process full-band information across frames to caplure
long-range contexts. The second architecture, SpatialNet [24],
processes spectral and temporal information similarly o TF-
GridNet but employs only narrow-band and cross-band modules.
The narrow-band module employs multi-head self-attention,
while the cross-band module uses convolutional layers.

Similar to the embedding sequences, we create two output
streams for separated speech signals as illustrated in Fig. 2(b).
Clean speech signals are assigned to a stream based on the cor-
responding speaker embedding assignment. For silent frames,
we use a zero signal. We train the separator model with an £,
norm loss on the real and imaginary components of the estimated
signal and target signal at the reference microphone [25], with
an additional magnitude loss term [26]:

L (5.5) =3 > (0.5, ©
n=1
£(88) = |80 -st o+ |5 - 5“}”1
-

{b)

Proposed S5ND framework: () embedding exiraction with MC-EEND based on estimated non-overlapped frames, and (b) consiructing embedding

where S and S denote the estimated and clean speech signals in
the STFT domain. Superscripts - and ¢ denote real and imaginary
parts, |. | computes magnitude, and ||. ||; indicates £; norm.

In the proposed SSND framework, the separator network
resolves the permutation ambiguity problem by using the em-
bedding sequences for output-speaker assignment. Unlike CSS
based on PIT where the number of outputs is equal to the num-
ber of speakers, this approach allows multiple non-overlapped
speakers to share the same output stream. As a result, SSND
can handle long recordings containing numerous speakers. It is
worth noting that our approach differs from research on per-
sonalized speech enhancement [27] and speaker separation [28]
that use embeddings for speaker extraction. In these studies,
speaker embedding does not change over a stream. In contrast,
speaker embedding in our approach may change corresponding
to a speaker change (e.g., over the first stream of Fig. 2(h)).

11I. EXPERIMENTAL SETUP
A. Datasets

We assess the proposed approach for both diarization and
multi-speaker ASR tasks using the LibriCSS corpus [2]. This
corpus is structured into ten one-hour sessions. Each session
is further subdivided into six ten-minute mini-sessions, which
are characterized by varying speech overlap levels, These levels
include 05 (no overlap with short pauses ranging from 0.1-0.5
seconds between utterances), O L (no overlap with long pauses
lasting between 2.9-3.0 seconds), and then speaker overlap at
105, 20%, 30%, and 40%. Every recording in the dataset was
sampled at 16 kHz. The recordings for LibriCS5S were drawn
trom the LibriSpeech development set. To capture real room
acoustics, utterances were replayed through loudspeakers, and
recorded by a circular microphone array with six microphones
positioned in a circle with a radius of 4.25 cm and an additional
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central microphone. We designate the center microphone as
the reference microphone. For speaker diarization and speech
recognition, we adopt session-wise evaluation by utilizing every
mini-session for assessment, and all 10 sessions are used for
evaluation.

To generate training data for diarization, we simulate meeting-
style conversations based on a recipe in LibriCSS'. Each session
includes eight speakers, with two utlerances for each speaker.
These clean speech signals originate from the Librispeech train-
ing set [29]. The speaker overlap ratio is chosen randomly
from 0 to 45%. Furthermore, silences varying from 0.5 to 3.0
seconds are inserted between neighboring utterances witha 0.26
probahbility. On average, the sessions generated for diarization
training have a duration of 3 minutes. We employ simulated
room impulse responses (RIRs) with reverberation time (Ta0)
chosen in the range of 0.2 and (.6 seconds. Speaker azimuths
are randomly generated and maintain a minimum separation of
5 degrees. We adjust the sound levels between the speakers in
the range of —3.5 to 3.5 dB. We also add simulated diffuse noise
with the signal-to-noise ratio (SNR) in the range of 10 to 30 dB,
where all reverberant speech utterances are considered as the
signal in the SNE calculation.

To generate training data for speaker separation, we use
the same recipe but opt for shorter sessions. Each session in
our data generation has 1-2 utlerances per speaker, chosen at
random with each utterance under 10 seconds. Overlap ratios
are randomly selected between (0.4 to (L5, Silence intervals,
randomly varying from 0.5 to 1.0 seconds, are inserted with
a probability of (.05, To generate target speech signals, clean
speech is convolved with the direct-path (anechoic) signal at
the reference microphone. To train the separation model, each
mixture is divided into 5-second segments. O these, 11%
contain a single speaker, and the remaining 89% feature two.
Prior to mixing the training utterances, we use our diarization
model to extract an embedding vector for each speaker from
the reverberant utterances of the speaker. This is done to ensure
that embedding vectors accurately represent the corresponding
speakers, as using mixture utterances may not produce adequate
single-talker frames (o extract quality speaker embeddings for
training purposes.

B. Diarization Training and Evaluation Metrics

For the EEND encoder, we employ eight stacked Transformer
blocks, each equipped with 16 attention heads without positional
encodings. These encoder blocks generate K = 256 dimen-
sional frame-wise embeddings. The window size for STFT is
sel to 25 ms with a window shift of 10 ms, and the square
root of the Hann window is used as the analysis window. A
512-point discrete Fourier transform is employed, resulting in
the extraction of 257-dimensional complex spectra. For speciral
features, we extract a 23-dimensional log-Mel filterbank, which
is subsequently concatenated with those of the seven preceding
and seven succeeding frames. As for spatial features, we process

! available online at: hitps:github.com/jsall2020- asrdiarfjsalt2020_simulate
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IPD features through seven convolutional blocks, having chan-
nel configurations of (8, 8, 16, 16, 32, 32, 32). These blocks use
kernel sizes of (3, 5) and strides of (1, 2) along the time and
frequency axes, respectively, except for the initial block which
employs a kemnel size of (15, 1). These log-Mel features are
subsequently concatenated with the spatial features. All input
features are normalized to have zero mean and unit variance.

We use the Adam optimizer for training the diarization model
with the learning rate of 0,001, which is coupled with the Noam
scheduler [30] including 125 K warm-up steps. We set the
number of speakers to 8 for both training and testing. During
diarization training, we use segments of 4-minute duration to
ensure that all speakers are active within each segment. Sessions
shorter than 4 minutes are zero padded at the end. To process
long audio segments, we reduce the number of frames in each
batch via subsampling with a factor of 5, resulting in a 50-ms
frame shift for training. For speech activity decisions, we use
a threshold of = = 0.5, To avoid generating exceedingly short
segments, a 31-frame median filter is applied.

Diarization performance is evaluated using the NIST di-
arization error rate (DER) [31], which calculates the combined
durations of missed speech, false alarm, and speaker confusion
errors, divided by the total duration of speech. We use a (-second
collar tolerance at utterance boundaries.

C. Separation Training and Evaluation Metrics

Our separation models employ the following DNN architec-
tures:

* A TF-GridNet featuring 4 blocks, a 192-unit BLSTM, a

kernel size of 4, a stride of 1, and [J = 48 channels.

* Alarge TF-GridNet with 6 blocks, a 256-unit BLSTM, and
1) = 64 channels.

* A SpatialMNet with 12 blocks, I} = 192 channels, narrow-
band hidden dimensions of 384, and cross-band hidden
dimensions of 16.

The STFT parameters for the TF-GridNet models are set
to a window length of 32 ms and shift of 10 ms. For the
SpatialNet model, the window length and shift are set to 32 ms
and 16 ms, respectively. Both setups extract 257-dimensional
complex spectra for the 16 kHz sampling rate. We modify
the TF-GridMNet and SpatialNet models to incorporate speaker
embedding sequences with a mixture signal. Specifically, we
divide the input encoder layer, a two-dimensional convolution
for TE-GridNet and a one-dimensional convolution for Spatial-
Metl, each with I channels, into two separate encoders. The two
encoders, with IJ — 2 and 2 channels, process the mixture signal
and the embedding sequences, respectively. The outputs of these
two encoders are then stacked and fed into the subsequent blocks
of each network.

Before training, the sample variance of each mixture segment
is normalized to 1.0, and the corresponding scaling factor is
applied to the clean target sources. We employ the Adam opti-
mizer, with the £; norm of gradients capped at 1.0. The learning
rate is initialized to 0,001, and halved if no improvement in
validation loss is observed over three epochs. All models use
mixed precision to expedite training.
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TABLET
DER RESULTS (I¥ %) OF COMPARISON INARIZATION SYSTEMS ON LIBRICSS

Owerlap Ratio

Separation Method Diarization Method All
0s oL 0% 20%  30%  40%

- X-vector + SC [34] 9.29 1025 1404 1876 2382 2743 1819
Mask-based MVDR [2]  X-vector + 5C 1149 1342 1163 1422 1698 1618 1418
MIMO-BF-MISO [37]  X-vector + SC 9.33 10.4 8.97 9532 1166 954 9.9

MISO-BF-MISO [6] DOA-based [38] 11.95 1069 1125 1222 1304 1431 1236

- RPN [34] 45 9.1 8.3 6.7 11.6 14.2 9.5

- TS-VAD [34] 6.0 4.6 6.6 13 10.3 9.5 16

- TS-SEP [39] - - - - - - 6.49

- SC-EEND (PIT) 232 2348 2955 271 3494 3522 3036

- MC-EEND (PIT) 756 657 5.09 7.18 844 1217 8.5

- MC-EEND (LBT} 494 612 3.36 4.09 488 505  4.68

For the multi-speaker ASR. evaluation, two pretrained ASR
maodels from ESPnet are employed [32]. The first ASR. model
is an end-to-end Transformer-based system [33], [34]. This
model is equipped with 12 self-attention blocks in the encoder
and 6 in the decoder, and trained on the 960 h Librispeech
corpus. The second ASR model? is a conformer-based system,
leveraging self-supervised learning (S5L) features derived from
WavLM [35]. This ASE model achieves a WER of 1.9% on the
clean test set of LibriSpeech. We refer to the first ASE model as
E2E and the second as E2E-55L.

We report multi-speaker ASR performance using concate-
nated minimum-permutation word error rate (cpWER) [36].
This metric evaluates speaker-attributed ASR and is computed
by sequentially joining all the utterances of each separated
and target speaker. Following this joining, all speaker pairs
are scored. The permutation yielding the lowest WER is then
selected.

We also conduct the continuous-input evaluation of Lib-
riCSS [2]. For this evaluation, each 10-minute mini-session
recording, is pre-segmented into segments spanning 60 to 120
seconds. Each of these segments includes 8 to 10 otterances.
The objective here is to accurately recognize all the utterances
within a segment in a speaker-agnostic manner. While the ASR
backend evaluates both streams individually, it combines the
decoding results to determine the final WER. For this evaluation,
we employ the detault ASR backend from the LibriCS5 dataset
for consistent comparisons with other algorithms.

TV. EvALUATION RESULTS AND COMPARISONS

A, Diarization Resulis

Table I presents the DER results for the proposed MC-EEND
maodels and comparison baselines on LibriCS5. To provide a

2 Available online at; https:/Muoggingface cofespnet/simplenier_librispeach_
asr_train_ssr_conformer?_wavlm_large_raw_en_bpeS000_sp

comprehensive perspective on these results, we compare our
MC-EEND models with a number of other diarization methods,
all of which have been evaluated on the same LibriCSS cor-
pus. The x-vector+SC diarization method |34] achieves 18.19%
DER. This diarization method can be combined with CS5-based
separation for DER reduction. Here, clustering is performed for
both separated streams concurrently, as speaker segments can be
assigned to either separated stream. Raj et al. [34] reported that
using mask-based minimum variance distortionless response
(MVDR) beamforming [2] prior to diarization improves DER
resulis.

We have conducted experiments using a more powertul C55-
based separation model. Specifically, we employ the MIMO-BF-
MISC model [37] for separation. This model is based on MIMO
complex spectral mapping through a TF-GridiNet architecture.
Additionally, it includes a beamformer and an enhancement
model for post-filtering. As part of post-processing, the sep-
aration model performs speaker localization to reduce speaker
splitting errors. Coupling this separation model and x-vector+5C
cuts DER by half, resulting in a 8.29% absolute DER reduction.

The next baseline employs a diarization model that relies on
direction of arrival (DOA) estimation [38]. This model utilizes
a C55-based MISO-BF-MISO system [6] to perform speaker
separation, estimate the DOA for each separated speaker, and
then group the separation results across segments according
to the DOA estimates. Region proposal network (RPN) is su-
pervised method that integrates both segmentation and em-
bedding extraction steps into one neural network, oplimizing
them jointly [40]. After obtaining the embeddings, they are
clustered using K-means clustering based on the oracle number
of speakers.

Another notable diarization baseline is target-speaker voice
activity detection (T5-VATY), a two-stage method [41]. Tni-
tially, diarization estimates are obtained using a clustering-based
method. Subsequently, a DNN is employed to refine these ini-
tial diarization estimates. Specifically, the DNN model takes
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Fig. 3. Companson of diarzation loss curves ( Dppyp) in training and valida-
tion with LBT and PIT criteria.

acoustic features along with representative embeddings for each
speaker as inputs and generates frame-level activities for each
speaker. To address the permutation ambiguity problem, TS-
VAD arranges the DNN outputs based on the order of input
embeddings, and assumes the knowledge of the total number
of speakers in a meeting. TS-VAD achieves strong diarization
results in the CHiIME-6 challenge [41].

An extension to TS-VAD is target-speaker separation (TS-
SEP), which combines speaker diarization and separation into
a unified process [39]. More specifically, TS-S5EFP exiends the
final output laver of TS5-VAD to generate time-frequency masks
for individual speakers. To achieve robust diarization and sepa-
ration, TS-SEP incorporates several additional technigues. First,
it employs weighted prediction error (WPE) for speech derever-
beration [42] before mask estimation. Second, TS-SEP applies
mask-based MVDR beamforming, and the resulting masks are
further refined through guided source separation (GSS) [43].
This baseline achieves a 6.49% DER.

Compared to all the aforementioned baselines, our proposed
MC-EEND trained with LBT achieves a 4.68% DER. surpass-
ing all other diarization methods. It is worth stressing that
MC-EEND attains these results without employing any speech
separation technigques. Furthermore, MC-EEND is a single-stage
system, making it easier (o train than multi-stage diarization
methods that depend on other modules. The results also demon-
strate that MC-EEND generalizes well to real conversational
recordings, despite using only simulated RIRs for training.

For reference, we have also trained an MC-EEND diarization
maodel using the PIT criterion. To accommodate training for 8
speakers, we employ a PIT criterion that leverages the Hungarian
algorithm [21] with an O(C*) computational complexity. From
Table I we observe that the MC-EEND model with LBT signifi-
cantly outperforms that with PIT. Fig. 3 displays the diarization
loss curves for LBT and PIT, and it is evident from the curves that
the diarization loss for LBT is considerably lower. This suggests
that the PIT criterion may be suboptimal when dealing with a
larger number of speakers.

To investigate this further, we have trained a single-channel
EEND (SC-EEND), which is based on the original
EEND-EDA [12], using the PIT criterion. Table T indicates
that SC-EEND with the PIT criterion yields poor separation
performance. This is consistent with the findings from other
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TABLE IT
DER {IN %) FOR [NFFERENT FRAME SHIFTS AND [MARIZATION THRESHOLDS.
M1, FA AND CF REFER T MISSED SPEECH, FALSE ALARM, AND CONFUSION
Errops, RESPECTIVELY

Frame Shift  Threshold DER M1 Fa CF
30 ms =05 4.68 1.86 216 (.66
40 ms T=10.5 4.97 1.51 287 059
50 ms r=10.5 5.72 1.50 366 0.56
30 ms =03 798 084 648 066
40 ms =103 7.41 069 628 044
S0 ms =103 762 053 698 011

studies [12], [44] reporting the poor performance of PIT-based
EEND models for many speakers.

B. Diarization Tuning for S55ND

We extract speaker embeddings for SSND from our MC-
EEND model trained with LBT. Prior 1o the extraction of em-
beddings, we fine-tune our MC-EEND model to achieve optimal
cpWER results. Of the three diarization errors—missed speech,
confusion, and false alarm—the first two are particularly detri-
mental for ASR. Missed speech errors lead to deletion errors,
while confusion errors result in a deletion error for one speaker
and an insertion error for the other speaker. In contrast, false
alarm errors do not contribute to cpWER because ASR systems
do not generate recognition hypotheses for silent frames. Addi-
tionally, we have empirically observed that overly strict segment
boundaries contribute to deletion errors at the beginning and
ending of an utterance. Therefore, tolerating false alarm errors
can be a strategic choice to improve ASRE performance.

To enhance SSND performance, one can tune the diarization
threshold () as well as frame shift. Table 1T provides diarization
errors using different frame shitts and threshold values. From the
table the best DER is obtained at the smallest shift (30 ms) with
T = (.5, With this setting, missed speech and false alarm errors
appear balanced. When we lower the threshold to 0.3, there is a
marked reduction in missed speech errors, but at the expense of
increased false alarm errors.

In terms of combined missed speech and confusion errors, the
best setting is a 50 ms frame shift and + = 0.3. Consequently,
we adopt this MC-EEND setting for subsequent separation and
ASR experiments.

C. Segment Size and Shift Analysis for S5ND

In this section, we investigate the influence of segment size
and shift on the performance of SSND. This analysis utilizes
the TF-GridNet and SpatialNet architectures, and an E2E ASR
method with oracle utterance boundaries. The cpWER results
for various segment sizes and shifts processed through SSND
are shown in Fig. 4.

The default CS5 segment size and shift (2.4/1.2 seconds)
offer limited contextual information and lead to subpar cpWER
performance, particularly with TF-GridNet. 1t is important to
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TABLE Il
CPWER RESULTS (IN %) FOR DNFFERENT SEPARATION AND DMARIZATION METHODS

Owverlap Ratio

Separation Method Diarization Method ASR Ave
0s 0oL 0¥ 205 305 40%
Unprocessed Crracle E2E 523 519 1143 1931 2846 3832 1972
MIMO-BF-MISO [37] Crracle EZE 345 3.87 3.15 4.46 535 5.76 4.44
S5ND (TF-GridNet Large) Oracle E2E 4.51 4.M 374 428 313 539 4.58
SSND (SpatialNet) Oracle EZE 4.04 kA 337 354 4.51 466 4.04
SSND (TF-GridMet Large) Oracle E2E-S5L 251 234 246 255 o, 293 264
S5ND (SpatialNet) Cracle EZE-S5L 228 2138 236 227 268 247 242
Unprocessed Kevector + 5C EZE 13.95 12.2 0.2 2964 3506 4181 27.01]
Mask-based MVDR (2] X-vector + 5C EZE B78 1307 1051 1537 1754 1763 1413
MIMO-BF-MISO [37] K-vector + SC EIE T.05 B.05 731 248 1081 1003 E76
SSND (TF-GridNet Large) MC-EEND (r = 0.5} EZE 3.11 4.88 3.35 6.89 7.08 Q.25 6.84
SSND (TF-GridNet Large) MC-EEND (7 = 0.3) E2E 597 374 469 532 618 728 569
SSND (SpatialNet) MC-EEND (r = (L3} EZE 5.56 352 3.98 476 5.58 6.55 5.13
SSND (TF-GridNet Large) MC-EEND (r =03) E2ESSL 377 202 256 329 2378 411 336
S5ND (SpatialNet) MC-EEND (r = 0.3} EZE-85L  3.67 1.97 2.46 306 352 4.07 3.22
s i F=1 SSND (SpatialNat) 0. Speaker-Attributed ASR Results
] EER SSND (TFGridNet) In this section, we present the speaker-attributed ASR re-
sults on the LibriCSS dataset. Table 111 displays the cpWER
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Fig. 4. Effect of segment size and segment shift on cpWER in 85ND.
note that our approach uses no stitlching, meaning these cp-
WERs are not due to potential stitching errors. For SS5ND
using the TF-GridNet model, increasing the segment size up
to 30 seconds (ie. 12 times the default CS5 segment size)
results in improved performance. This finding is significant as
it suggests the model ability to process longer segments without
compromising performance. Interestingly, in scenarios with no
overlap between adjacent segments, e.g., segment sizefshift of
5/5 seconds, cpWER remains good. This observation implies
that one can reduce the computational cost for SSND with little
performance degradation. In the case of SSND with SpatialNet,
increasing the segment size improves ASR performance up to
10 seconds. For longer segments (20 seconds and 30 seconds),
performance starts to decline. This trend may be attributed to the
lack of a full-band self-attention module and recurrent layers in
SpatialNet to capture long-range contextual information. Based
on the results in Fig. 4, we adopt a segment size/shift of 30/27
seconds for TF-GridNet models and 5/4 seconds for SpatialNet
in the subsequent experiments.

results using various separation and diarization methods. For
comparisons, we establish a strong baseline using a C58 method
based on MIMO-BE-MISO built on TF-GridNet [37]. To obtain
cpWER results with oracle utterance boundaries for the MIMO-
BE-MIS0O system, the cross-correlation function between the
separated audio streams and the reference utterances is used (o
determine channel assignments accurately.

A notable observation is that the MIMO-BF-M150 method re-
duces cpWER by a large margin—from 19.72% to 4.44%—over
the unprocessed mixtures when coupled with E2ZE ASR using or-
acle utterance boundaries. Furthermore, SSND with TF-GridMNet
Large produces ASR results on par with MIMO-BF-MISO,
while S5ND with SpatialNet surpasses the performance of both
models. Using EZE-S5L ASR, we achieve excellent recognition
results for the TF-GridNet and SpatialNet SSND models, with
2.64% and 2.42% cpWER respectively. These resulls are close
to the clean transcription level of 1.9%. Interestingly, we ob-
serve that the difference in performance berween TF-GridNet
and SpatialNet becomes marginal when E2E-SSL is used for
ASR.

Using estimated speaker boundaries provided by diarization,
we notice a significant increase in cpWER for the MIMO-
BF-MIS0 system coupled with clustering-based diarization, to
an 8.76% cpWER. However, this performance remains sub-
stantially better than the mask-based MVDR result at 14.13%
cpWER.

For S5ND using the TF-GridNet Large model, there is a small
increase in cpWER to 5.69% over oracle speaker boundaries.
The impact of diarization tuning becomes evident when an
MC-EEND diarization model is employed with — = 0.5, de-
grading cpWER 1o 6.84%. SSND with SpatialNet surpasses the
performance of TF-GridNet Large, reaching a 5.13% cpWER.
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TABRLE TV
PERFORMANCE COMPARISONS OF SPEAKER-ATTRIBUTED ASR SYSTEMS ON
LIBRICSS DATASET
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TABLE ¥V
WER RESULTS (IN %) OF COMPARISON SYSTEMS FOR CONTINUGUS-INPUIT
EvVALUATION ON LIBRICSS USING DEFAULT ASR BACKEND

Ref. Separation Diarization ASR cpWER
[28] C55 DOA-based TDNN-F [34] 12,98
[24] 58 X-vector + SC EXE 12.7
[45] - - SA-ASR 116
[46]  Speakerbeam TS-¥AD EZE 18.8
[46] GSS TS-VAD EXE 1.2
[39] TS-SEP EZIE 6,42
[ TS-SEP E2E-85L 536
Ours SSND (SpatialNet) EZE 5.13
Ours SSND (SpatialNet) E2E-SSL k i ]

Ovetlap Ratio Ave
08 oL 0% 0% 0% 4%
Unprocessed 154 115 217 el M3 405 2506
55
MYDHR 2] 1 9.7 134 151 w7 20 1529
Confommer [47] 114y T 126 135 176 19.4 13.83
MISO-BF-MISO [&] 775 74 B4 97 113 266
TP-GradNet 90 108 10 104 120 129 1083
MIMO-BE-MISO [37] &8 68 A7 69 R4 an 743
SSNTY
TF-GradNet 79 74 7R T 98 03 &30
SpatialMet 7.2 6.5 6.7 fifi B3 B.6 7.33

Moreover, using E2E-SSL for ASR yields a marked improve-
ment in cpWER for both TF-GridNet Large and SpatialNet
maodels, achieving cpWERs of 3.36% and 3.22% respectively.

We compare the speaker-attributed performance of the pro-
posed SSND model with other representative algorithms in
Table TV, The CS5-based MISO-BF-MIS0 system coupled with
DOA-based diarization and a hybrid ASE model [34] reports
a 12.98% cpWER [38]. Another system outlined in [34] em-
ploys mask-based MVDR, x-vector+5C diarization, and E2E
ASR, and achieves a 12.7% cpWER [34]. A single-channel
EZE speaker-attributed ASR system [45] derives diarization
estimates from the internal state of the recognizer, and achieves
a 11.6% cpWER. The system in [46] uses TS-VAD for diariza-
tion and reports the cpWER scores of 18.8% and 11.2% for
single- and multi-channel setups utilizing a speakerbeam and
(G55, respectively. Finally, the TS-SEP system [39] reaches the
cpWER values of 6.42% and 5.36% with E2E and E2E-55L
ASR, respectively. The cpWER results in Table IV demonstrate
that our proposed SSND model surpasses all previous results,
achieving the remarkable cpWER scores of 5.13% and 3.22%
for E2E and E2E-55L, respectively. Our results establish a new
state-of-the-art benchmark for speaker-attributed ASRE on the
LibriCSS dataset.

E. Speaker-Agnosrtic ASR Results

This section assesses our SSND model using the continuous-
input evaluation of the LibriC5S dataset. Additionally, we com-
pare with other works using the default ASR backend. Itis impor-
tant to note that these results do not incorporate diarization since
the segment boundaries (with several utterance from ditferent
speakers) are provided for this evaluation, so the corresponding
ASR is referred (o as speaker-agnostic. The system in [47]
estimates real-valued time-frequency masks using a conformer
architecture,

Table ¥V presents the continuous-input evaluation results of
the proposed SSND and comparison methods. The results show
that our S5ND based on TF-GridNet significantly outperforms
the corresponding CS5-based system. This can be attributed
to the utilization of a larger context—30 seconds as opposed
to the 2.4 seconds used in CS5. Using SpatialNet, our SSND

results show a further improvement over TF-GridNet, achieving
7.33% WER on average and surpassing the performance level of
the best-performing CSS system using MIMO-BE-MISO [37].
It should be noted that, unlike MIMO-BFE-MIS0, the SSND
system does not perform additional processing such as beam-
forming and localization. On the other hand, S5ND makes use
of speaker embedding sequences as additional inputs.

V. CONCLUDING REMARKS

In this paper, we have proposed a new multi-channel diariza-
tion model, MC-EEND, which produces state-of-the-art diariza-
tion performance on the LibriCSS dataset. We find that PIT
falls short when diarizing many speakers. With multi-channel
recordings, we demonsirate that the LBT criterion effectivel y re-
solves the permutation ambiguity problem in talker-independent
diarization.

Furthermore, we have introduced the SSND framework, a
novel approach that seamlessly integrates speaker diarization
with speaker separation, making it well-suited for speaker-
attributed ASR. Our SSND framework achieves state-of-the-art
performance for speaker-attributed ASR, as well as speaker-
agnostic ASR (standard C85), on the LibriCSS dataset. Unlike
C55, the SSND framework is capable of processing long seg-
menis regardless the number of participating speakers. S5ND
avoids stitching needed in CSS and ensures thal consecutive
segments are sequentially organized.

Future research will extend MC-EEND to causal and real-time
implementation and moving speakers, and connect to speaker
localization and tracking. Additional research is also needed to
deal with many speakers in a single-channel setup.
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