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ABSTRACT

Continuous speaker separation aims to separate overlapping
speakers in real-world environments like meetings, but it often falls
short in isolating speech segments of a single speaker. This leads
to split signals that adversely affect downstream applications such
as automatic speech recognition and speaker diarization. Existing
solutions like speaker counting have limitations. This paper presents
a novel multi-channel approach for continuous speaker separation
based on multi-input multi-output (MIMO) complex spectral map-
ping. This MIMO approach enables robust speaker localization by
preserving inter-channel phase relations. Speaker localization as a
byproduct of the MIMO separation model is then used to identify
single-talker frames and reduce speaker splitting. We demonstrate
that this approach achieves superior frame-level sound localiza-
tion. Systematic experiments on the LibriCSS dataset further show
that the proposed approach outperforms other methods, advancing
state-of-the-art speaker separation performance.

Index Terms— MIMO complex spectral mapping, continuous
speaker separation, robust speaker localization.

1. INTRODUCTION

In the presence of speech overlap, the performance of automatic
speech recognition (ASR) systems degrades drastically as they are
tailored for single-talker speech. To tackle this, various approaches
have been proposed. Some utilize end-to-end multi-talker ASR for
direct transcription of overlapped speech [1, 2], while others inte-
grate speaker separation with diarization [3, 4] or employ continu-
ous speaker separation (CSS) [5, 6, 7]. The latter, in particular, is
designed for processing long audio recordings and handling over-
lapping speech with a variable number of speakers. CSS divides
an audio stream into shorter, partially overlapped segments, typi-
cally around 2-3 seconds long, which contains a maximum of two
speakers. This partitioning facilitates a two-talker separation model
for each individual segment. The separation model processes each
segment independently and produces two estimated signals for each
segment. When dealing with segments without overlapped speech,
the model focuses on speech enhancement. In these cases, the en-
hanced signal is mapped to one of the outputs, while the other output
generates a zero signal. Finally, the adjacent segments are stitched
together to ensure that any single-talker utterance spanning two seg-
ments can be integrated into the same output stream.

This research was supported in part by an National Science Foundation
grant (ECCS-2125074), a research contract from Meta Reality Labs, the Ohio
Supercomputer Center, and the Pittsburgh Supercomputer Center (NSF ACI-
1928147).

However, when processing single-talker segments, a separation
model sometimes fails to isolate the speaker in one stream and main-
tain silence in the other stream. This results in speech mistakenly
split into two streams and creates residual speech signals in the
stream that is supposed to produce no speech. These split signals
harm downstream speech applications, such as ASR or speaker di-
arization, as the residual signals are processed as if they originated
from a valid talker. To mitigate the speaker splitting issue, Wang
et al. utilized a supervised speaker counting (SC) network to detect
single-talker segments in order to suppress residual speech [8, 9].

When multiple microphones are available, spatial information
could be leveraged for speaking counting or addressing the speaker
splitting issue. Standard localization techniques like generalized
cross-correlation with phase transform (GCC-PHAT) [10] can be
applied to determine the number of speakers. However, the accu-
racy of these techniques suffers in noisy-reverberant conditions due
to spurious or broad peaks in the cross-correlation dimension. In a
recent study, we introduced multi-input multi-output (MIMO) com-
plex spectral mapping to estimate the target signal at all microphones
simultaneously, which achieved strong separation performance [11].
MIMO complex spectral mapping retains inter-channel phase rela-
tions, which can be utilized for accurate direction of arrival (DOA)
estimation.

Assuming speakers are still within each segment, we propose to
use speaker localization as the byproduct of MIMO separation to de-
tect the frames originating from the same speaker in order to reduce
speaker splitting. This approach is based on the observation that
multiple speakers cannot occupy the same location at the same time.
We show that localization using MIMO complex spectral mapping
produces superior frame-level localization results. Moreover, exper-
iments on the LibriCSS corpus [5] demonstrate that the proposed
approach yields better separation performance than other competi-
tive methods, achieving a new state-of-the-art on this open dataset.

The paper is structured as follows: Section 2 covers related
works. The proposed algorithm is detailed in Section 3. Experimen-
tal setup and results are presented in Sections 4 and 5, respectively.
We conclude in Section 6.

2. RELATED WORKS

Most works on deep learning-based speaker localization predomi-
nantly focus on single-talker scenarios (See [12] for a recent review).
Typically, these methods leverage deep neural networks (DNNs) to
directly estimate the DOA. For instance, [13] employs a DNN to
process phase components from the Short-Time Fourier Transform
(STFT) across all microphones, subsequently generating posterior
probabilities for each DOA class.
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Fig. 1: Schematic diagram of MIMO-BF-MISO system and pro-
posed stream merging method.

For multi-speaker localization, a common assumption is that the
number of speakers is known. [14] employs a DNN to estimate the
DOAs of two speakers. Instead of utilizing a multi-label classifica-
tion approach, they estimate speaker-specific DOAs and their pos-
terior probabilities through a source-splitting mechanism. For sit-
uations where the number of speakers is unknown, solutions range
from employing dedicated DNNs for speaker counting [15] to train-
ing systems that combine speaker counting and localization [16].

Another approach involves separating and enhancing noisy mix-
ture signals and subsequently using traditional signal processing
techniques for DOA estimation. This indirect approach sidesteps the
need for additional DNN-based DOA estimation, reducing compu-
tational overhead. They also isolate each speaker in the mixture into
its own output stream, thereby facilitating the application of single-
talker localization [17, 18]. Wang et al. [18] utilizes a DNN to
estimate monaural time-frequency (T-F) masks for speech enhance-
ment. These estimated masks help identify T-F units dominated by
the target speaker and selectively use them for localization. Such
T-F units contain cleaner phase information, enabling more accurate
localization. This information serves as a weighting mechanism
alongside the phase from noisy-reverberant multi-channel input
signals in a GCC-PHAT algorithm to estimate the DOA. An ex-
tension to this approach is to use multi-input single-output (MISO)
complex spectral mapping to directly estimate both the magnitude
and phase components of the target speaker at a reference micro-
phone [8, 19, 20]. While this method offers better estimated phase
quality, it comes with higher computational costs. This is because
the enhanced phase from all microphones is needed for localization,
requiring the MISO model to be applied as many times as the num-
ber of microphones. Additionally, inter-channel phase relations are
not guaranteed to be preserved in the enhanced signals.

In contrast, MIMO complex spectral mapping estimates the en-
hanced phase from all microphones at once while retaining inter-
channel phase relations. This enables the use of enhanced phase
information from all microphones for localization with GCC-PHAT.
In this context, we demonstrate that MIMO complex spectral map-
ping achieves superior localization performance compared to both
MISO complex spectral mapping and masking-based GCC-PHAT
approaches.

3. PROPOSED ALGORITHMS

3.1. MIMO Complex Spectral Mapping

We employ MIMO complex spectral mapping to estimate both real
and imaginary (RI) components of the target signal across M micro-
phones using a multi-channel noisy mixture. Given a M -channel
mixture signal Y = [Y1, . . . , YM ] in STFT domain, the MIMO
separation model estimates the direct-path complex spectrograms

Fig. 2: DOA estimates and separated waveforms for a single-talker
segment from LibriCSS. The blue lines represent the audio wave-
forms, while the red dots represent frame-wise DOA estimates. The
model fails to isolate the speaker in one stream and maintain silence
in the other.

Ŝn
q , q ∈ [1, . . . ,M ] of target speaker n for each microphone. Our

approach employs TF-GridNet [21], which processes speech spec-
trograms in a grid-like fashion. In adapting the architecture to ac-
commodate the microphone count, we extend the output layer, in-
troducing a slight increase in computational overhead. We train the
model with an �1 norm loss on the RI components of the estimated
Ŝ = [Ŝ1, . . . , ŜM ] and target speech S = [S1, . . . , SM ], with an
additional magnitude loss term averaged across all microphones:

L(Ŝ,S) =
1

M

M∑
m=1

∥∥∥�(Ŝm)−�(Sm)
∥∥∥
1

+
∥∥∥�(Ŝm)−�(Sm)

∥∥∥
1
+

∥∥∥|Ŝm| − |Sm|
∥∥∥
1

(1)

where �(.) and �(.) extract real and imaginary parts, | . | computes
magnitude and ‖ . ‖1 computes �1 norm. For speaker separation, we
use the location-based training [22] criterion to tackle the permuta-
tion ambiguity problem [23].

For enhanced performance, we combine the MIMO separation
model with a multi-channel Wiener filter (MCWF) beamformer and
MISO speech enhancement [24, 21]. In each separation output, we
concatenate the beamformed signal with the RI components of the
mixture and estimated signals from all microphones. This combined
input is then fed into the enhancement model. The enhancement
model is trained using the aforementioned loss function. We denote
this model as MIMO-BF-MISO.

3.2. Speaker Localization and Stream Merging

We perform speaker localization with GCC-PHAT [12, 17, 18] to
attenuate speech residuals produced by the separation model. Fig. 1
illustrates the proposed stream merging method for MIMO-BF-
MISO. Instead of relying on the mixture signal, we leverage the
multi-channel estimated signals generated by the separation model
for speaker localization. MIMO complex spectral mapping yields
separated signals with cleaner phase information compared to the
mixture signal, all while preserving vital inter-channel cues. For
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Algorithm 1 Stream Merge Algorithm

1: candidate frames← []
2: for each frame t do
3: Find DOA for stream 1, θ̂1(t)
4: Find DOA for stream 2, θ̂2(t)
5: if |θ̂1(t)− θ̂2(t)| < 5◦ then
6: Append candidate frames with t
7: end if
8: end for
9: for each continuous interval in candidate frames with length
≥ 3 frames do

10: Merge two streams
11: Attenuate the weaker stream
12: end for

a given microphone pair (p, q), the GCC-PHAT coefficient at time
frame t and frequency bin f is defined as:

GCCjp,q(t, f, θ) =

cos

(
6 Ŝjp(t, f)− 6 Ŝjq(t, f)− 2π

f

N
fsτp,q(θ)

) (2)

where N represents the number of discrete-time Fourier transform
frequencies, fs is the sampling rate, and τp,q(θ) signifies the time de-
lay between microphones p and q for direction θ. The symbol j de-
notes the output stream index. Compared to mixture signal, the inter-
channel phase difference between estimated signals, 6 Ŝjp(t, f) −
6 Ŝjq(t, f) is more robust to reverberation and noise. The subsequent
step involves summing the GCC-PHAT coefficients across all micro-
phone pairs and frequency units. The direction θ that results in the
highest summation is deemed the estimated direction:

θ̂j(t) = argmax
θ

∑
(p,q),f

|Ŝjp(t, f)||Sjq(t, f)|GCCjp,q(t, f, θ). (3)

In Eq. (3), we include the magnitude of the estimated signals as a
weighting term to emphasize speech-dominant T-F units. Once we
acquire DOA estimates for both stream at each time frame, we iden-
tify frames where two streams likely originate from the same talker.
Fig. 2 illustrates an example of a single-talker segment processed
by the separation model where the segment is split into two output
streams with similar frame-wise DOA estimates. We merge contin-
uous frame intervals with minor DOA differences and attenuate the
weaker stream by multiplying it with a small constant. Algorithm 1
outlines the stream merging process for each segment.

4. EXPERIMENTAL SETUP

We evaluate the proposed method for conversational speech recog-
nition tasks using the LibriCSS corpus. This dataset comprises 10
hours of meeting-style speech recordings that include some overlap-
ping speech. Originally sourced from the LibriSpeech development
set, these recordings were played back through loudspeakers to sim-
ulate real-world room acoustics. The audio was captured using a
circular microphone array, consisting of six microphones arranged
in a circle with a 4.25 cm radius and one additional microphone in
the center. The LibriCSS corpus is divided into six sessions, each
featuring varying degrees of speech overlap: 0S (no overlap with
pauses of 0.1-0.5 seconds between utterances), 0L (no overlap with

Table 1: Comparison of localization accuracy for MIMO, MISO,
and masking-based GCC-PHAT on SMS-WSJ.

Localization Method Frame-level Utterance-level

MIMO GCC-PHAT 95% 100%

MISO GCC-PHAT 85% 99%

Masked-based GCC-PHAT 71% 100%

pauses of 2.9-3.0 seconds), and 10%, 20%, 30%, and 40% overlaps.
All recordings were made at a 16 kHz sampling rate.

We utilized the standard ASR system that comes with the Lib-
riCSS dataset. The corpus offers two evaluation setups: one focused
on individual utterances and another on continuous speech. In the
utterance-wise evaluation, the precise starting and ending points of
each spoken segment are given. The ASR system then evaluates
each separated audio signal on its own, choosing the one with the
lowest word error rate (WER) as the best. In the continuous speech
setup, the boundaries between utterances are not defined, and each
recording contains 8-10 utterances. Unlike the utterance-wise setup,
the decoded results from both separated audio are used to calculate
the final WER. For single-talker segments, this continuous approach
demands that one audio stream exclusively contains the speaker’s
voice, while the other must be completely silent. Otherwise, any
residual signal may introduce insertion errors into the evaluation.

To create training and validation data, we used the approach out-
lined in [8] using simulated room impulse responses (RIRs) [25, 26].
We generated 192K two-speaker audio mixtures with varying over-
lap ratios from the LibriSpeech dataset. These mixtures were pro-
cessed using 7-channel microphone array RIRs, matching the Lib-
riCSS recording setup. The RIRs were created in virtual rooms with
varying random dimensions, where the microphone array was cen-
trally located. Speaker positions were randomly selected from 360
possible angles, and the reverberation time ranged from 0.2 to 0.6
seconds.

For TF-GridNet, we employed 4 layers with a kernel size of
I = 4, a stride of J = 1, and embedding dimensions set at D = 48,
along with BLSTM hidden units of H = 192. We sequentially
trained the separation and enhancement networks using a learning
rate of 0.001. The frame length and shift for training were set at 32
ms and 8 ms, respectively. In the case of MISO models, the first
microphone served as the reference (q = 1), while for MIMO mod-
els, we used the estimated complex spectrograms from this same
microphone for ASR evaluation. We applied sample variance nor-
malization to the multi-channel input. For more accurate and stable
results in stream merging with localization, we used a larger frame
length of 256 ms and a frame shift of 128 ms.

The LibriCSS dataset lacks ground-truth speaker positions, so
to assess the localization accuracy of our MIMO separation model,
we use the SMS-WSJ dataset [28] instead. This dataset includes
two-speaker mixtures in reverberant conditions and has an 8 kHz
sampling rate. We train the MIMO separation model using the SMS-
WSJ array configuration, which features a circular array of six mi-
crophones evenly spaced on a 10 cm radius circle. For localization
evaluation, we opt for smaller frame lengths and shifts—specifically,
20 ms and 10 ms, respectively. Localization accuracy is determined
by the percentage of frames where the estimated DOA is within 5
degrees of the actual direction. This accuracy is averaged across
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Table 2: WER (%) results of comparison systems for utterance-wise and continuous evaluation on LibriCSS. ‘SC’ and ‘LOC’ denote the
speaker counting and localization methods used for stream merging, respectively.

Models Stream
Utterance-wise Continuous

Merging 0S 0L 10% 20% 30% 40% 0S 0L 10% 20% 30% 40%

Unprocessed – 11.8 11.7 18.8 27.2 35.6 43.3 15.4 11.5 21.7 27.0 34.3 40.5
BLSTM [5] – 8.3 8.4 11.6 16.0 18.4 21.6 11.9 9.7 13.4 15.1 19.7 22.0
Conformer [27] – 7.2 7.5 9.6 11.3 13.7 15.1 11.0 8.7 12.6 13.5 17.6 19.6
MISO-BF-MISO (UNet) [8] SC 5.8 5.8 5.9 6.5 7.7 8.3 7.7 7.5 7.4 8.4 9.7 11.3
MIMO-BF-MISO (UNet) [11] – 6.3 6.1 6.0 6.8 7.4 8.5 7.4 7.5 7.2 7.4 8.8 9.6

MISO-BF-MISO (TF-GridNet) – 6.1 6.3 5.9 6.1 6.7 7.8 8.0 8.4 7.4 7.1 9.0 9.3
MISO-BF-MISO (TF-GridNet) SC 5.7 5.8 5.6 5.9 7.1 8.0 7.0 6.8 6.7 6.9 8.5 9.5
MISO-BF-MIMO (TF-GridNet) – 6.1 6.3 5.9 6.1 6.9 8.0 8.0 8.2 7.7 7.1 8.8 9.7
MISO-BF-MIMO (TF-GridNet) SC 5.6 6.0 5.7 6.0 7.3 8.2 7.2 6.8 6.8 7.1 8.8 9.7
MISO-BF-MIMO (TF-GridNet) LOC 5.4 5.6 5.6 6.1 6.9 8.3 7.1 7.0 6.8 6.9 8.7 9.3

MIMO (TF-GridNet) – 7.5 7.4 7.3 8.3 9.6 10.3 9.2 12.2 9.9 10.1 11.9 12.2
MIMO (TF-GridNet) LOC 5.8 6.4 6.7 7.9 9.5 10.3 8.4 9.1 9.4 10 11.3 12.0
MIMO-BF-MISO (TF-GridNet) LOC 5.3 5.7 5.5 5.8 6.8 7.1 6.8 6.8 6.7 6.9 8.4 9.0

both speakers in the mixture, and we apply WebRTC1 voice activity
detector to exclude non-speech frames when calculating accuracy.

5. EVALUATION RESULTS

We begin by assessing the frame-level and utterance-level perfor-
mance of the MIMO complex spectral mapping for speaker local-
ization. For utterance-level localization, we aggregate the GCC co-
efficients across all frames to determine the DOA for each speaker.
When utilizing a MISO model to derive these coefficients, we per-
form separation multiple times by rotating the microphone order.
This trick only works for uniform circular arrays; for non-circular
arrays, a dedicated MISO model must be trained for each micro-
phone. For the masking-based GCC-PHAT, we followed [18] and
applied an ideal ratio mask [29] as a weighting term to the GCC
coefficients, using the multi-channel mixture signals in Eq. (2). As
Table 1 shows, the MIMO separation model achieves an impressive
95% frame-level accuracy, outperforming both the MISO separation
model and masking-based GCC-PHAT. This superior performance is
attributed to the MIMO models’ ability to simultaneously estimate
the target signal at all microphones, thereby preserving inter-channel
phase relations for more accurate DOA estimation. Not surprisingly,
all three methods perform similarly well in utterance-level localiza-
tion, as summing over all frames significantly sharpens the peak in
the accumulated GCC coefficients.

In Table 2, we evaluate the separation performance of our
proposed method for both utterance-wise and continuous ASR
evaluations using the LibriCSS dataset. For a comprehensive com-
parison, we report other competitive separation systems evaluated
with the default ASR of LibriCSS. The systems proposed in [5] and
[27] leverage BLSTM and conformer architectures, respectively, for
real-valued mask estimation. The MISO-BF-MISO system from
[8] employs MISO complex spectral mapping via a UNet model.
It incorporates an additional beamformer and MISO enhancement
model for post-filtering. Moreover, a dedicated SC network is uti-

1Available at: https://github.com/wiseman/py-webrtcvad

lized specifically for stream merging. This SC network performs
frame-wise three-class classification—counting 0, 1, or 2 speak-
ers—and is trained using cross-entropy. Segments identified as
single-talker are then merged, and the weaker stream is suppressed
by multiplying it with a small constant. In contrast, the system in
[11] mirrors MISO-BF-MISO but utilizes MIMO complex spectral
mapping for separation and excludes the SC network. To ensure a
fair comparison, we also trained a MISO-BF-MISO system using
TF-GridNet. For this TF-GridNet-based system, we observed that
applying SC leads to significant improvements in lower overlap ratio
conditions, which mainly consist of single-talker segments, albeit
with slight degradation under higher overlap conditions.

We also explored the efficacy of our proposed stream merging
method by training a MISO-BF-MIMO model that incorporates an
enhancement model with MIMO complex spectral mapping. We
found that both the localization method and the SC method per-
form similarly. This suggests that comparable performance can be
achieved without the need to train a separate SC network, simply by
using the localization method. Additionally, for MIMO separation
models that do not include post-filtering, our proposed stream merg-
ing method enhances performance to a large extent. Overall, we
achieved state-of-the-art results with a TF-GridNet based MIMO-
BF-MISO model that uses stream merging based on the localization
method.

6. CONCLUSIONS

We have proposed a novel approach to improve the performance of
continuous speaker separation. We utilize MIMO complex spectral
mapping to estimate the target signal at all microphones simultane-
ously, which retains inter-channel phase relations for accurate DOA
estimation. We then leverage the retained phase information from
all microphones for speaker localization with GCC-PHAT. We have
demonstrated that MIMO complex spectral mapping yields excellent
localization performance. We have further shown that our proposed
stream merging method improves continuous speaker separation per-
formance, advancing state-of-the-art performance on the LibriCSS
dataset.
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