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Abstract

Current deep leaming based multi-channel speaker sepa-
ration methods produce a monaural estimate of speaker sig-
nals captured by a meference microphone. This work presents
a new multi-channel complex spectral mapping approach that
simultaneously estimates the real and imaginary spectrograms
of all speakers at all microphones. The proposed multi-input
multi-output (MIMO) separation model uses a location-based
training (LBT) criterion to resolve the permutation ambiguity
in talker-independent speaker separation across microphones.
Experimental results show that the proposed MIMO separation
maodel outperforms a multi-input single-output (MISO) speaker
separation model with monaural estimates. We also combine
the MIMO separation model with a beamformer and a MISO
speech enhancement model to further improve separation per-
formance. The proposed approach achieves the state-of-the-art
speaker separation on the open LibriCSS dataset.

Index Terms: MIMO speaker separation, multi-channel com-
plex spectral mapping, location-based training.

1. Introduction

The field of multi-channel speech separation has witnessed sub-
stantial progress in recent years thanks to the employment of
deep neural networks (DNNs). Early studies on DNN-based
multi-channel speaker separation rely on combining monau-
ral speaker separation and conventional beamforming tech-
nigques [1, 2, 3, 4]. This approach typically utilizes a DNN to
estimate a monaural time-frequency (T-F) mask at each micro-
phone, and the masks are then combined to weigh spatial co-
variance matrices at the comesponding T-F units or segments.
The weighted covariance matrices are used to compute a steer-
ing vector for beamforming. Other studies make use of a neural
beamformer where the beamforming filters are directly learmed
through a DNN in either the time domain or frequency do-
main [5].

Most studies on mask-based beamforming use real-valued
masks, which only enhance the magnitude spectrogram of
a noisy mixture and leave its phase unchanged. However,
for momre accurate covarance matrix estimation, Wang et al.
employed single-input single-output (SIS0) complex spectral
mapping to jointly estimate the magnitude and phase of the tar-
get speech signal at each microphone independently [6]. The
estimated complex spectrograms are then used to compute the
spatial covariance matrices directly for beamforming.

This research was supported in part by an National Science Foun-
dation grant (ECCS-2125074), a research contract from Meta Reality
Labs, the Ohio Supercomputer Center, and the Pittsburgh Supercom-
puter Center (NSF ACI-1928147).

Recently, multi-input single-output (MISO) complex spec-
tral mapping has been proposed, and it achieves comparable
or better separation performance compared to masking-based
beamforming [7, &, 9]. With MISO complex spectral map-
ping, a DNN is trained to directly estimate the real and imag-
inary spectrograms of the target speaker at a reference micro-
phone from those of a multi-channel mixture. A MISO sep-
aration model can implicitly leam the spectral and spatial in-
formation for a fixed array geometry [7]. In [8] and [10], a
MIS0 maodel is proposed for binaural speaker separation where
the target speech signals at the left and right ears are esti-
mated individually. In another study, MISO complex spec-
tral mapping is integrated with minimum variance distortion-
less response (MY DR) beamforming and post-filtering to fur-
ther improve separation [9]. Although MISO complex spectral
mapping achieves strong speaker separation performance, it is
computationally expensive as the model needs to be applied as
many times as the number of microphones for spatial covari-
ance computation. Additionally, this approach requires speaker
alignment across microphones, as the outputs at different mi-
crophones may have different speaker permutations.

To reduce the computational cost of MISO-based beam-
forming, one straightforward way is to perform multi-input
multi-output (MIMO) speaker separation to estimate the tar-
get signal at all microphones simultaneously. Several stud-
ies have developed MIMO models for speech dereverbera-
tion and speaker separation [11, 12, 13, 14, 15]. Wang et
al. integrated a MIMO enhancement model with beamforming
and post-filtering for speech dereverberation [11]. The Beam-
TasMet, a time-domain separation network, is extended to pro-
duce spectro-temporal masks at all microphones and for all
speakers in [12]. The separated signals are then iteratively re-
fined by combining the Beam-TasNet and MVDR beamform-
ing. Fu et al. proposed a MIMO separation model to esti-
mate the direction of arrival and beamforming weights for each
speaker [13]. Other works have investigated the joint opti-
mization of speaker separation and speech dereverberation for
MIMO convolutional beamformers [14, 15].

Previous MIMO separation models typically use
permutation-invariant training (PIT) [16] to address the
permutation ambiguity problem in talker-independent speaker
separation. However, as we demonstrate in this paper, a
PIT-based MIMO separation model underperforms the cormre-
sponding MISO model. Furthermore, the se models have mostly
been evaluated in simulated environments, leaving their gen-
eralization to realistic recordings uncertain. In this study, we
propose a MIMO complex spectral mapping approach for both
speaker separation and speech dereverberation. Our approach
predicts the direct-path complex spectrograms of all speakers
at all microphones simultaneously. We train the MIMO
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Figure 1: Schematic diagram of (a) MISO-BF-MIS0 and (b) MIMO-BF -MIS0Q systems for two-speaker separation and dereverberation

separation model using location-based training (LBT) [17],
which significantly improves separation performance over
the widely-used PIT criterion for MIMO complex spectral
mapping. Our proposed MIMO separation model cutperforms
the MISO model and achieves the state-of-the-art results on the
recorded LibriCSS dataset [18]. Compared to MISO, MIMO
complex spectral mapping is conceptually and computationally
simpler. It also eliminates the need for source alignment across
different microphones and is expected to preserve inter-channel
cues better, hence facilitating downstream multi-channel
speech processing tasks such as localization.

2. System Description

In this section, we first describe the MISO-BF-MISO sys-
tem [9], which previously achieved the best results on the Lib-
riCSS dataset. Afterward, we will introduce our proposed ap-
proach, MIMO complex spectral mapping, for joint speech sep-
aration and dereverberation.

1. MISO-BF-MISO
Figure 1a depicts the MISO-BF-MISO system, which com-
prises a MISO separation model, a MVDRE beamformer, and
a MISO enhancement model for post-filtering. Given a M-
channel mixture signal ¥ = [¥',...,¥™] in short-time
Fourter transform (STFT) domain, the MISO separation model
estimates the direct-path complex spectrograms of NV speakers
5% n e [1,...,N] at the eference microphone g. The MISO
separation model is trained with the utterance-level PIT crite-
rion [16] to resolve the permutation ambiguity.

Next, the estimated complex spectrograms are used to com-
pute target ©5  and non-target @, covariance matrices for
MVDR beamforming [9]:

$s_(f) = % 3 Sult, )Sa(t, T

&v, (1) = 3 3. Valt. NValt. )", )

wheme S, = [Sh,.... 50 and Va(t, ) = Y (£, ) — Salt, )
are the complex STFT vectors of the estimated target and inter-

ference signals for speaker n at time ¢ and frequency f, espec-
tively. Symbol H denotes the Hermitian operator and T is the
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total number of frames. To derive covariance matrices, complex
spectrograms should be estimated at all microphones. For this
purpose, separation is performed M times by circularly shifi-
ing the microphone order to predict the direct-path signal for all
speakers at each microphone. Note that the microphone rotation
method only works for uniform circular arrays. For non-circular
arrays, a dedicated MISO model needs to be trained at each mi-
crophone. Furthermore, the outputs need to be aligned across all
microphones. Source alignment is done by aligning the outputs
at each non-reference microphone to the outputs at the reference
microphone based on their magnitude distance [9].

In the last stage, the beamforming results BF, ame stacked
with the multi-channel mixture signal and the estimated tar-
get signal for each speaker at the reference microphone, ie.
[BF,,Y 51|, for further enhancement. The second MISO
maodel only performs enhancement and does not need to resolve
the permutation ambiguity problem, as the problem has already
been msolved in the separation stage.

2.2, DNN Architecture

We employ the Dense-UNet architecture [19] for both MISO
separation and enhancement models. The meal and imagi-
nary components of the input signals are stacked and fed to
the Dense-UNet. The architecture comprises four downsam-
pling layers and four upsampling layers interleaved with nine
densely-connected convolutional neural network blocks. Each
dense block contains five convolutional layers with & = 76
channels, a kemel size of 3 x 3 and a stride of 1 = 1. After
the last dense block, we use a 1 » 1 convolutional layer with
@ = 2x N and O = 2 channels to produce complex spec-
trogram estimates for the MISO separation and enhancement
maodels, respectively. For mome information about the Dense-
UNet architecture, please refer to [19]. The MISO models are
trained with £3 norm loss of real and imaginary spectrograms of
estimated and target speech with an additional magnitude loss
term [20]:

£(3.5) = [»3) - %)+ [368) -39 e
+[jig1- 151 .

where R(.) and 5{.) extract real and imaginary parts, | . | com-
puies magnitude and || . ||, computes £1 norm.

)
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Figure 2: Generating low-resolution complex spectrograms
based on decoder layer k feature maps for N = 2 speakers.

2.3 MIMO Complex Spectral Mapping

The MIMO complex spectral mapping method allows a DNN to
estimate the complex spectrogram of target speech from all mi-
crophones using a multi-channel noisy mixture. The MIMO ar-
chitecture remains the same, except for an increase in the num-
ber of channels in the output layer to & = 2 M »x N. This ex-
tension adds only a negligible increase in the number of param-
eters of the MIMO model by 2 x N« O x (M — 1) compared to
a MISO model. To train the MIMO separation model, we gen-
eralize LBT [17] to incorporate the complex spectrogram esti-
mates from all microphones. The generalized LET loss function
is defined as follows:

N M
Lor(S, 8) = ﬁ Sy osesn)., @

n=1m=1

wheme Ay, Az, ..., Ax € [1,..., N]| are speaker indices sorted
in ascending order based on speaker azimuths or distances rela-
tive to the microphone array [17]. In this study, only the azimuth
criterion is considered for LBT.

Additionally, we propose an extension to the multi-
resolution LBT (MR-LBT) loss function [21] for MIMO sep-
aration models. With MR-LET, we estimate the complex spec-
trograms from low to high time and frequency resolution in de-
coder layers. Specifically, the channel dimension of the output
feature maps for every decoder layer is divided into N = M
real groups and N = M imaginary groups, each representing
a real or imaginary component of a microphone for a speaker.
The feature maps within each group are then averaged across
the channel dimension. At decoder layer &, a low-resolution
estimate of target speech in the STFT domain is created at all

microphone s:

S5 = (R il L REM DM @
where A%™ and I®™ are the averaged feature maps from
the real and imaginary groups of microphone m and speaker
7. Symbol i denotes the imaginary unit. Figue 2 illus-
trates the low-resolution estimation of complex spectrograms
for N = 2 speakers. Complementary LBET losses between

lower-resolution estimates and clean signals are calculated for
every decoder layer and added to the Eq. (3) loss:

Kg—1

I:.]_'ET(E, S+ Z ﬁLET{gk, gx“_klisll

k=1

(3)
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where K is the total number of decoder layers, and g™(.) isa
2D average pooling function with a kernel size of 2 = 2 and a
stride of 2 x 2, applied recursively for T iterations.

We also combine the MIMO separation model with a
MVDR beamformer and a MISO enhancement model to cre-
ate a MIMO-BE-MISO system. The proposed system is il-
lustrated in Figure 1b. The MISO enhancement model uses
[BF,,Y,5,] as inputs to predict §2. All MISO enhancement
maodels are trained using the loss function in Eqg. (2).

3. Experimental Setup

We validate the proposed separation models for conversational
speech mrecognition task in unmatched reverberant conditions.
The evaluation is performed using the LibriCSS corpus [18],
which contains 10 hours of partially overlapped utterances. The
utterances are taken from the Librispeech development set and
retransmitted with loudspeakers to capture real room reverber-
ation. The recording device is a circular array with M = 7
microphones and 4.25 cm radius. The LibriCSS corpus is di-
vided into 6 sessions with different overlap ratios: 08 (no over-
lap with a 0.1-0.5 s pause between utterances), OL (no overlap
with a 2.9-3.0 s pause between utterances), 10%, 20%, 30% and
40% overlaps.

We processed the LibriCS5 recordings using the continu-
ous speech separation (CS5) framework [18]. Each recording
was segmented using a sliding window of 2.4 s with a segment
shift of 1.2s. The CSS framework can handle any number of
speakers, with the assumption that there are at most N = 2
speakers within a segment. For segments without overlapped
speech, the model only performs dereverberation. In this case,
the input is mapped to the first output, and a zero signal is as-
signed to the second output. Finally, the processed segments are
concatenated using the stitching algorithm proposed by [18].

We used the default automatic speech recognition (ASR)
backend provided with the LibriCSS corpus [18]. The LibriCSS
corpus contains two ASR evaluation scenarios: utterance-wise
and continuous evaluations. In the utterance-wise scenario, the
ground-truth utterance boundaries are provided. The ASR back-
end scores each separated signal independently, and the one
with the lower word error rate (WER) is considered. In the con-
tinuous evaluation, the utterance boundaries are unknown, with
8-10 utterances in each recording. The decoding results from
both separated signals are combined to compute the final WER.

To generate the training and validation data, we followed
the setup described in [9] and used simulated room impulse re-
sponses (RIRs) [23, 24]. We created 192K two-speaker mix-
tures with different overlap ratios from the LibriSpeech dataset.
Each mixture was convolved with 7-channel microphone array
RIRs with the same array geometry as the LibriCSS recording
device. To generate RIRs, we positioned the sources in rectan-
gular rooms with random length, width, and height dimensions
ranging from 5x5x3 to 10104 meters. The microphone
array was placed in the center of the room, and the source posi-
tions were uniformly sampled from 360 candidate azimuth an-
gles in the range of -180°0 180° with a 1° resolution. The
reverberation time (T60) was randomly sampled between 0.2
and 0.6 s.

We trained the separation and enhancement networks se-
quentially, starting with a leaming rate of 0.001, which gradu-
ally decayed using a cosine annealing leaming rate scheduler.
For MISO models, we designated the first microphone as the
reference microphone (g = 1). For MIMO models, we used
the estimated complex spectrograms of the first microphone for



Table 1: WER results (in %) of comparison systems for utterance-wise and continuous evaluation with 7-channel array on LibriCSS. ‘SC’ refers to a
[frame-wise speaker counter which corrects separation errors for non-overlapped utterances. MIMO models introduce a slight computation overhead.
Our MISO and MIMO models require 195.21G and 195.32G multiply-accumulate (MAC) operations, respectively, to process a 2.4-second segment.

Utterance-wise Continuous

#Parameters  Criterion 0S OL 10% 20% 30% 40% 0S OL 10% 20% 30% 40%

Unprocessed - - 11.8 11.7 188 272 356 433 | 154 115 21.7 270 343 405
BLSTM [18] 21.8M PIT 8.3 8.4 116 160 184 21.6 | 119 9.7 134 15.1 19.7 220
Conformer [22] 58.7M PIT 7.2 7.5 9.6 11.3  13.7 15.1 11.0 8.7 126 135 176 19.6
MISO [9] 6.9M PIT 7.7 7.5 7.9 96 113 13.0 | 10.7 105 109 11.5 138 153
MISO-BF-MISO+SC [9] 13.8M PIT 5.8 5.8 5.9 6.5 7.7 8.3 7.7 7.5 7.4 8.4 9.7 113
MISO 6.9M MR-LBT 7.3 7.9 7.6 9.2 10.8 114 9.2 9.8 9.1 105 122 128
+SISO 13.7M 6.9 7.1 7.1 8.5 9.5 106 | 10.7 103 94 9.8 11.7 125
+MISO 13.8M 6.5 7.0 6.5 7.7 8.4 9.0 9.2 9.1 8.2 9.2 9.8 9.9
+BF-MISO 13.8M 6.5 6.8 6.5 7.4 8.4 8.8 96 100 88 86 104 10.2
MISO Large 14.6M MR-LBT 7.5 7.2 7.4 8.6 9.8 11.5 9.8 9.1 9.2 103 11.8 138
MIMO 6.9M PIT 105 11.8 109 128 137 16.1 | 165 17.7 155 163 17.8 202
MIMO+SC 6.9M PIT 8.1 9.4 86 109 125 154 | 85 8.3 89 103 127 147
MIMO 6.9M LBT 8.3 9.5 8.1 94 10.7 11.8 | 10.5 10.6 9.5 106 124 126
MIMO Large 14.6M PIT 6.4 7.0 7.8 9.6 11.7 135 | 95 88 105 114 136 16.0
MIMO Large+SC 14.6M PIT 6.4 6.8 75 96 117 140 | 79 7.3 87 10.0 127 14.6
MIMO Large 14.6M LBT 7.1 7.7 7.7 9.1 104 116 | 10.3 105 106 114 13.0 134
MIMO Large 14.6M MR-LBT 7.6 7.1 73 8.6 10.1 11.6 8.6 79 8.8 9.7 11.9 129
+MISO 21.5M 6.5 6.3 6.0 7.1 8.0 9.1 7.8 7.8 7.6 7.7 9.4 10.2
+BF-MISO 21.5M 6.3 6.1 6.0 6.8 7.4 8.5 7.4 7.5 7.2 7.4 8.8 9.6

ASR evaluation. Following [9], we included the spectral mag-
nitude of the mixture signal Y from the first microphone for all
MISO and MIMO models. As a comparison baseline, we also
report the results for a MIMO separation model trained with the
PIT criterion:

Lerr(S,S) =

1 N M .
NM v ‘ Z L(S3' s 84my)s  (6)

n=1m=1

where symbol U is the set of all permutations of N speakers
with ¢ referring to one permutation.

4. Evaluation Results

Table 1 compares our MISO and MIMO separation models with
other competitive methods for utterance-wise and continuous
evaluations on LibriCSS. The proposed systems in [18] and [22]
use BLSTM and conformer architectures, respectively, to es-
timate real-valued masks. The systems in [9] employ MISO
complex spectral mapping using a UNet model with a tempo-
ral convolutional network. To correct separation errors for seg-
ments without speaker overlaps, a dedicated speaker counting
(SC) network is used in [9]. It is observed that when a model
is trained on two-speaker mixtures, it sometimes emits an in-
telligible residual signal in the second output for single speaker
utterances, leading to more decoding errors. The SC network
counts the number of speakers at each frame and merges the
separated outputs for non-overlapped frames.

We observe that the MISO separation model trained with
MR-LBT obtains substantially better results than BLSTM, con-
former and PIT-based MISO. To further improve the WER
scores, we combine the MISO outputs with the reference micro-
phone mixture signal, i.e. [Y!, S,] to train a SISO enhancement
model. As shown in the table, the MISO-SISO model achieves
only marginal improvements over MISO. On the other hand, in-
cluding the multi-channel mixture and beamformer signals for
post-filtering in the MISO-BF-MISO system substantially im-
proves its performance. The MISO-MISO system yields com-
parable results to MISO-BF-MISO, indicating that the MISO
enhancement model is essential for further WER reduction.
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Our MIMO separation model trained with the PIT criterion
performs significantly worse than MISO separation models. To
investigate further, we incorporated a SC network to correct the
separation errors in the PIT-based MIMO model. The results
indicated a significant improvement in WER. However, even
with the SC network, the PIT-based MIMO model still pro-
duced worse estimates of target speech than MISO models, es-
pecially in higher overlap ratios. We also experimented with
a larger number of convolutional kernels (C' = 112) in the
PIT-based MIMO model, and the results suggest that increas-
ing the number of parameters can improve its performance. In
contrast, increasing the number of parameters for LBT-based
MISO and MIMO models resulted in smaller improvements in
performance.

Our best results are achieved with a large MIMO model
trained using the MR-LBT criterion, which exhibits excellent
speech recognition performance and outperforms even MISO
models. Despite being trained only on simulated RIRs, the
MIMO model trained with the MR-LBT criterion generalizes
well to real microphone array recordings. By combining the
MIMO separation model with the MVDR beamformer and the
MISO enhancement model, we achieve state-of-the-art results
on the LibriCSS dataset without the need for a SC network.
For instance, our MIMO-BF-MISO system achieves a WER
of 9.6% in continuous evaluation on a 40% overlap condition,
which is better than the MISO-BF-MISO system and does not
require circular shifting or source alignment.

5. Conclusions

In this study, we have proposed a MIMO complex spectral map-
ping approach for joint speech dereverberation and speaker sep-
aration. We have also extended multi-resolution LBT to MIMO
separation. Our experimental results demonstrate the impor-
tance of using the LBT criterion for training MIMO speaker
separation models. With lower computational complexity, our
proposed MIMO-BF-MISO system achieves the state-of-the-art
results on the LibriCSS dataset.
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