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Abstract The assimilation of radar reflectivity requires an accurate and efficient forward operator that links
the model state variables to radar observations. In this study, newly developed parameterized forward operators
(PFO) for radar reflectivity with a new continuous melting model are implemented to assimilate observed radar
data. To assess the impact of the novel parameterized reflectivity forward operators on convective storm
analysis and forecasting, two distinct sets of cycled assimilation and forecast experiments are conducted. One
set of experiments (ExpRFO) uses a conventional Rayleigh-scattering-approximation-based forward operator
(RFO) with hydrometeor classification, while the other uses the PFO (ExpPFO_New) for radar reflectivity with
a new continuous melting model. Eight high-impact severe convective weather events from the Hazardous
Weather Testbed (HWT) 2019 Spring Experiments are selected for this study. The analysis and forecast results
are first examined in detail for a classic tornadic supercell case on 24 May 2019, with the potential benefits
provided by the PFO then evaluated for all eight cases. It is demonstrated that ExpPFO_New provides more
robust results in terms of improving the short-term severe weather forecasts. Compared to ExpRFO,
ExpPFO_New better reproduces all observed supercells in the analysis field, yields a more continuous and
reasonable reflectivity distribution near the melting layer, and improves the strength of the cold pool compared
to observations. Overall, ExpPFO_New, initialized from the more accurate analysis fields, produces better
forecasts of reflectivity and hourly precipitation with smaller biases, especially at heavy precipitation
thresholds.

Plain Language Summary The efficient and effective ingestion of radar reflectivity observations
into convection-resolving models is critical because reflectivity provides explicit information about
hydrometeors within thunderstorms, revealing their development and evolution. Therefore, accurate formulas
that link what models predict and what radars observe are required. In this study, a new set of more-accurate
formulas has been implemented and tested for several high-impact thunderstorm events and compared to the
conventional formulas. We find that analyses derived using these new formulas more accurately depict the
precipitation melting process and improve the prediction of thunderstorms in terms of intensity, location, and
precipitation amount.

1. Introduction

Convective-scale numerical weather prediction (NWP) of high-impact severe weather events that produce flash
flooding, damaging winds, hail, tornadoes, and lightning and their attendant socioeconomic impacts remains
challenging in many regards. Among the primary challenges is the lack of accurate initial conditions that can fully
represent detailed storm structures. Weather radar networks can provide high temporal and spatial resolution
radar observations, such as radar reflectivity in horizontal polarization (Z, in mm® m™ or Z;; in dBZ), radial
velocity (v,), and polarimetric variables, which contain rich information on precipitation microphysics. Over the
past few decades, the assimilation of reflectivity using cloud analysis (Auligné et al., 2011; Hu et al., 2006),
physical initialization (Yang et al., 2006), latent heat nudging (Stephan et al., 2008), three/four-dimension
variational (3DVAR/4DVAR) methods (Gao et al., 2004; Gao & Stensrud, 2012; Sun & Wang, 2013; Wang
etal., 2013a, 2013b; Xiao et al., 2007), ensemble Kalman filtering (EnKF) methods (Dowell et al., 2011; Tong &
Xue, 2005; Yussouf et al., 2013; Zhang et al., 2004), or the hybrid EnKF and variational method (Gao &
Stensrud, 2014; Liu et al., 2008) has led to impressive achievements in updating the dynamical and hydrometeor
information for the model initial fields to improve convective storm forecasting.

LIU ET AL.

1 of 26


https://orcid.org/0000-0002-8343-0019
https://orcid.org/0000-0001-9999-5455
https://orcid.org/0000-0001-7841-3217
mailto:Peng.Liu-1@ou.edu
https://doi.org/10.1029/2024JD041458

NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Atmospheres 10.1029/20241D041458

Since radar reflectivity is a measurement of the power scattered by hydrometeors, a radar forward operator linking
the model state variables to radar observations is necessary when assimilating reflectivity. The forward operators
used in variational assimilation with tangent linear and adjoint models must be differentiable and efficient.
Assuming the Marshall-Palmer distribution of raindrop sizes, Sun and Crook (1997) proposed assimilating
reflectivity through the relation between the reflectivity, Z,, and the mixing ratio of rain (g,) and tested it in
simulated experiments using the 4DVAR method. Subsequently, this Z,—g, relation was used to assimilate
reflectivity in the 3DVAR and 4DV AR data assimilation system of the Weather Research and Forecasting (WRF)
model, showing a positive impact in numerous real convective weather events (Lin et al., 2021; Wang
et al., 2013a, 2013b; Xiao & Sun, 2007). However, this usefulness of the Z,—g, relation is limited due to the
neglect of ice-phase particles.

To effectively assimilate reflectivity data and capture the intricate details of convective storms in the initial field,
it is necessary to develop a reflectivity forward operator which considers the contribution of ice-phase particles,
particularly in the context of deep moist convection. Gao and Stensrud (2012) addressed this by developing a
reflectivity forward operator that includes three hydrometeor species (rain, snow, and hail/graupel), classified
based on a background temperature field. Initially implemented in a 3DV AR assimilation framework, this for-
ward operator was later extended to a hybrid three-dimensional ensemble-variational (3DEnVAR) data assimi-
lation system (Gao & Stensrud, 2014). Assimilating reflectivity using this forward operator across different
assimilation frameworks demonstrated improvements in the analysis and forecasting of convective storms (Chen
et al., 2021; Hu et al., 2023; Liu et al., 2021; Pan et al., 2018). However, all forward operators based on the
Rayleigh scattering approximation may be inadequate when applied to particles with an equivolume diameter
greater than one-sixteenth of the radar wavelength, especially for liquid and mixed-phased hydrometeors with
larger dielectric constants. Additionally, a hydrometeor classification scheme that depends on the background
temperature may lead to reflectivity discontinuities near the specified temperature layer due to artificially arbi-
trary classifications and inaccurate calculations of reflectivity for the melting species.

Wang and Liu (2019) introduced a reflectivity forward operator designed to consider mixed-phase particles. This
operator builds upon the melting model integrated into the polarimetric radar operator developed by Jung
et al. (2008). Its implementation in the WRF data assimilation system (WRFDA) yielded an analysis that closely
matched the observed reflectivity in terms of pattern and intensity. However, some challenges surfaced,
particularly in instances where reflectivity is observed, but zero or very small values for model hydrometeors
exist. In addition, the computation of numerous coefficients posed efficiency concerns for the operator.

In contrast to variational methods, the EnKF method, proven successful in numerous high-dimensional,
nonlinear, and non-Gaussian data assimilation applications, allows for the assimilation of radar data using more
complex forward operators. Based on the calculations for reflectivity of rain and ice particles by Smith
et al. (1975) and Smith (1984), using the assumptions of the Lin-Gilmore microphysics scheme (Gilmore
et al., 2004; Lin et al., 1983), Tong and Xue (2005) used the EnKF method to assimilate simulated reflectivity to
update hydrometeor variables (rain, snow, and hail-graupel) in an idealized case study. Following a similar
approach, Aksoy et al. (2009, 2010) and Dowell et al. (2011) assimilated observed reflectivity using the EnKF
method to improve the analysis and forecasts for real cases. Unlike the Gao and Stensrud (2012) reflectivity
operator, they employed a simpler method wherein snow is considered to have a wet (dry) surface when the
temperature is above (below) freezing (i.e., 0°C). Another development in this domain is the Efficient Modular
VOlume scanning RADar Operator (EMVORADO) by Zeng et al. (2016), designed for simulating reflectivity
and radial velocity. EMVORADO was subsequently implemented for assimilating reflectivity using the EnKF
method in the Consortium of Small-scale Modeling (COSMO) model (Bick et al., 2016; Gastaldo et al., 2021). In
addition, the forward operator originally designed for polarimetric radar data assimilation by Jung et al. (2008,
2010) has also been used to assimilate reflectivity in variety of studies (Park et al., 2023; Putnam et al., 2019,
2021; Tong et al., 2020).

While the EnKF method excels at assimilating reflectivity with more complex and accurate forward operators
compared to the variational method, it does come with certain limitations. These include a higher computational
cost, potential ensemble collapse, and a low rank of the ensemble covariance matrix leading to spurious long-
range correlations. Sensitivity to the selected ensemble samples is another drawback. Therefore, the varia-
tional method is widely employed in operational assimilation systems for its simplicity and efficiency. Despite its
advantages, current radar forward operators in variational assimilation systems often rely on assumed intercept
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parameters, presenting issues when dealing with melting or mixed-phase particles due to the Rayleigh approx-
imation. To address these challenges, Zhang et al. (2021) developed a set of parameterized forward operators
(PFOs) for polarimetric radar data in which radar variables were fitted to rigorous scattering calculations per-
formed using the T-matrix method for cloud droplets, cloud ice, rain, snow, graupel, hail, and mixed-phase
particles. Du et al. (2021) evaluated these PFOs for assimilating polarimetric radar data in a variational assim-
ilation approach for an idealized case, reducing the root mean square errors (RMSEs) of model state variables at
each analysis cycle. In the PFOs, a melting model was used to simulate melting particles (such as melting snow)
because most bulk microphysics schemes neglect melting particles. Liu et al. (2024) proposed a new melting
model implemented in the PFOs to enhance the representation of the melting layer. However, whether the new
PFOs, which excel in the simulation of radar variables, can also have advantages in data assimilation and forecast
experiments has not been explored so far and needs to be investigated and evaluated.

In this study, we assess the impact of assimilating reflectivity using the newly developed PFO in a 3DVAR
framework on short-term severe weather forecasts for eight high-impact convective events and compare them to
forecasts using a commonly used reflectivity forward operator based on the Rayleigh scattering approximation
and hydrometeor classification (RFO) (Gao & Stensrud, 2012). Our goal is to investigate whether and how the
assimilation of reflectivity with PFO can help improve the analyses and forecasts of these convective severe
weather events. The assimilation system settings are detailed in Section 2, including the configuration of the
3DVAR assimilation system and the specifications of the radar forward operators. Section 3 describes the
experimental design, model configuration, and the data used for assimilation and validation. Section 4 focuses on
the evaluation of the analysis and forecasting results. Conclusions are summarized along with a discussion
regarding future work in Section 5.

2. Assimilation System Setting
2.1. The 3DVAR Assimilation System

In this study, we employed the 3DV AR assismilation system following the approach outlined by Gao et al. (1999,
2004). This system, developed for convective-scale data assimilation, has been used at the Center for Analysis and
Prediction of Storms (CAPS) and the National Severe Storms Laboratory (NSSL) for many years (Gao, 2017; Hu
et al., 2023). The 3DV AR method aims to obtain optimal estimation of the analysis state by minimizing the cost
function:

J(x) = %(x - xb)TB_l (x—x")+ %[H(x) —yTRH®E) — y°] + J.(x), €))

where x and x® are the analysis or control and background vector, B and R are the background and observation
error covariance metrics, respectively, H is the nonlinear forward operator for observation data, and y° is the
observation vector. The term J.(x) is the penalty or weak constraint term; a divergence equation constraint was
used here. The basic analysis vector comprises six variables, including the wind components (&, v, and w), po-
tential temperature (), pressure (p), and water vapor mixing ratio (g,). In addition, the hydrometeor analysis
vector includes six variables: the mass mixing ratios of cloud droplets (g.), cloud ice (g;), rainwater (g,), Snow
(g5), graupel (q,), and hail (g,). To alleviate the high nonlinearity of the radar reflectivity forward operator and
accelerate minimization of the cost function, a power transformation function is applied to the g, and six hy-
drometeor variables following Yang et al. (2020) and Hu et al. (2023).

2.2. Forward Operators for Radar Data

In an assimilation system, the forward operator H is used to transform the model state variables in model space to
the observed variables in observation space. Reflectivity and radial velocity are assimilated in this study. The
forward operator for v, is described in Gao and Stensrud (2012) as follows:

v, = usin ¢ cos p + v cos ¢ cos yu + w sin y, 2)

where yu is the elevation angle and ¢ is the azimuth angle of the radar beam, and u, v, and w are the zonal,
meridional, and vertical components of the wind, respectively.
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The radar reflectivity for horizontal polarization Z,, represented in decibels (dBZ) is as follows:
Zy = 10 log (Z,). 3)

The radar reflectivity factor Z, (mm® m™>) is the sum of each species Z,(x):
Zy =, Z,(), €y

where x € (c, i, 1, 5, g, h) represents cloud droplets, cloud ice, rain, snow, graupel, and hail, respectively. The
forward operator developed by Gao and Stensrud (2012) with temperature-based hydrometeor classification
includes only three hydrometeor species (rain, snow, and graupel/hail), where graupel and hail are combined into
a single species. In contrast, the parameterized forward operators developed by Zhang et al. (2021) incorporate six
hydrometeor species (c, i, 1, s, g, h).

2.2.1. Rayleigh-Scattering-Approximation-Based Forward Operator (RFO) With Hydrometeor
Classification

The forward operator developed by Gao and Stensrud (2012) for the assimilation of reflectivity follows a power-
law relation and uses a background temperature for automatic hydrometeor classification. Based on the Rayleigh
scattering approximation, if the background temperature is higher than 5°C, the reflectivity factor of rain Z,(r)
(mm® m™?) can be given as follows:

7/4
ﬂ) , )

1 3/4
Z, (N~ Z, = 11.25x 4°> x 10" x (N_> x (
0. p,

where p, (kg m™) and g, (kg kg™") are the air density and mixing ratio of rain, respectively. When the intercept
parameter is assumed to be N,, = 8 X 10° in m™ and p, = 1000 in kg m™>, Equation 5 becomes

Z,(r) = 3.63 x 10° x (paq,)ms. This is equivalent to the Z,—g, relation derived by Sun and Crook (1997). If the
background temperature is lower than —5°C, the reflectivity of dry snow is calculated as follows:

|1<,|2 ) 2 » 2 1\ 0.4 7/4
Z(s) m — (7) zs=0.23><(p4> x11.25x43><1013x<—) x(—“ ) ; (6)
2
|Kw| Pr r NO,S P

where K; (|K;)* = 0.21) and K,, (|K,,)* = 0.93) are the dielectric constant factors of ice and water, respectively.

2
2
%(ﬁ—‘) is an approximation for the ratio of the dielectric constant factor between snow and water, which should

be more rigorously represented by ‘II(("‘;, where K, = (e,—1)/(e, + 2) and ¢, is the relative permittivity of

|
snow, calculated from mixing formulas such as the Maxwell-Garnett formulas (Maxwell-Garnett, 1904). When

Ny,=3X 10in m™* and p, = 100 in kg m™>, as is commonly assumed in bulk microphysics schemes, Equation 6

becomes Z,(s) = 9.80 x 108 x (paql\.)us. For hail, the reflectivity is calculated as follows:

K (o) A% L\ (o
ZiW~r =2 2) Z, =023 x (2] x11.25x 43 x 108 x [—) x 2] . 7
K, [*\p, Py No ),

When Ny, = 4 x 10*inm ™ and p,, = 900 in kg m~>, Equation 7 becomes Z,(h) = 4.33 x 101 x (p,g,)"". If the
background temperature lies between —5°C and 5°C, rain, hail, and wet snow are assumed to coexist. Using the
dielectric constant of water as that of wet snow, the reflectivity factor for wet snow can be given as follows:

1 3/4 0.4 7/4
Zy(s)~ Z, = 11.25 x 4% x 10'8 x <—) X (—) . 8)
NO,S TP
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Table 1

Summary of Selected Cases for Data Assimilation and Forecast Experiments

Date Primary affected states Hazardous weather Convective event description

1 May 2019 TX, OK Tornado, hail A multi-cell thunderstorm

6 May 2019 TX, OK, KS Damaging wind, hail Isolated to widely scattered severe thunderstorms

20 May 2019 TX, OK, KS Tornado, hail Tornadic supercell

21 May 2019 MO, AR Tornado, hail A mixed mode of storms including supercells and bowing line

22 May 2019 OK, KS, MO Tornado, hail Clusters of supercells

23 May 2019 TX, OK, KS Tornado, hail A cluster of strong storms

24 May 2019 TX, OK, KS Tornado, hail Clusters of supercells

28 May 2019 KS, MO, IA, IL Tornado, hail Isolated supercell, mesoscale convective complex

After substituting the presumed values for Ny ; and p,, Equation 8 becomes Z;(s) = 4.26 x 10! x(paqs)ljs.

Since the Rayleigh scattering approximation is valid only for particles that are spherical with sizes much smaller
than the radar wavelength (D < 4/16), these power-law operators will be flawed when calculating the reflectivity
contribution of large particles such as large hailstones and mixed-phase particles (Zhang, 2016). The treatment of
applying the dielectric constant of water as that of wet snow, or determining wet snow based on the background
temperature, also leads to a reflectivity discontinuity and inaccuracies near the melting layer.

2.2.2. Parameterized Forward Operator (PFO) With a New Continuous Melting Model

The PFOs for polarimetric radar data establish accurate and efficient relations between polarimetric radar vari-
ables and model state variables by deriving fits to robust T-matrix scattering calculations (Zhang et al., 2021). For
the purposes of this study, only the PFO for radar reflectivity is utilized for assimilation.

For rain, Z,(r) is fitted to polynomial functions of mass/volume-weighted mean diameters (D,,, mm), as shown in
Mahale et al. (2019):

Z,(r)~ W(=0.3078 + 20.87D,,, + 46.04D,, , — 6.403D;,  + 0.22481);’,)2, 9)

where W = p,g, in g m™ is the liquid water content and g, is in g kg~". For an exponential particle size dis-
tribution (PSD), the D,, (mm) can be defined using PSD moments as follows:

Dm,x (10)

1/3 1/4
— M4)c _ 4 =4 103paqx =4 lospaqx
TM; A ’

”prt,x ”prO

where A (mm™") is the slope parameter and N, (m—> mm™") is the intercept parameter, the hydrometeor density is
p, (g cm™), mixing ratio is g, (g kg™'), and number concentration is N, (m™3).

For a given melting species, the percentage of melting (f,,,), mixing ratio, number concentration, and density of
the melting species are estimated in a continuous melting model (Liu et al., 2024). Then, the D,), is calculated from
Equation 10, and the reflectivity factor Z,(x) (mm® m~>) is parameterized as a polynomial function of D,, and f,,,
as follows:

Zh(x) ~ Zx[aZ() (fm)() +az (ﬁnx)Dm,x +az (fmx)Dm,xz + azs (ﬁnx)DmJS]z’ (l 1)

where a, are fitting coefficients detailed in Tables 1 of Zhang et al. (2021). Z, is the 6th moment of the PSD as
follows:

= Mg, = 11.25x 10°24Lp, 3, (12)

p,

V4

X
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where the factor of 10° comes from the unit conversion as peising cm™, while D,, is in mm. By substituting D,,,
of Equation 10 into Equation 12, the following equation for Z, is obtained:

1\ 7/4
Z, = 1125 x 10 x 3 x [—]  x(Pa%) (13)
NO TPy

When fixed values of N, and p, typical of single-moment (SM) microphysics schemes (Gilmore et al., 2004; Lin
et al., 1983) are used, Equation 13 reduces to Equations 5—8. Compared to Equation 11, Equation 13 clearly
demonstrates the inaccuracies due to the Rayleigh approximation in the RFO.

Due to most bulk microphysics schemes failing to simulate melting hydrometeors, a melting model is used to
generate melting particles in the radar forward operators. Liu et al. (2024) proposed a new melting model to
estimate the mixing ratio and number concentration of melting species based on the geometric mean of rain and
dry species. In comparison to the melting model used in the original PFO by Zhang et al. (2021), this new melting
model allows for continuous changes in state parameters and radar reflectivity and provides more reasonable
estimates for mixing ratios and number concentrations of melting hydrometeor species and is easier to linearize.
In the melting model, the total mixing ratios ¢,,, and number concentration N, of the melting species x are
assumed to be

%)
Qe = (9:9x) > (14)
_ v
Nt,mx - (Nt,rNt,x) . (15)
The percentage of melting f,,. (also called the mass water fraction) is given as follows:

T = a./(a, + q,). (16)

The mixing ratio of water (g, ) and dry ice (g, ) Within the melting species are defined as follows:

Gnxlr
mxyr = oxJmx = 7, N> 17
G,y = Gy @ +a) 17

e = Ge(1 = ) = —(qq’"f’; 3 (18)

r X

Following Jung et al. (2008), the density of the melting species, p,,,, is parameterized as follows:

P = Pac(1 = fyux™) + P’ (19)

where p,, is the density of dry snow, hail, and graupel. More detail of the melting model can be found in Liu
et al. (2024).

3. Experimental Design and Data
3.1. Experimental Design

In this study, eight real cases with severe convection events (01, 06, 20, 21, 22, 23, 24, and 28 May 2019, see
Table 1) are chosen from the 2019 National Oceanic and Atmospheric Administration (NOAA) Hazardous
Weather Testbed (HWT) Spring experiments (Clark et al., 2020). These cases are used to assess the impact of
assimilating radar reflectivity with the PFO on short-term severe weather forecasts.

Two distinct sets of assimilation experiments are conducted. The first set, referred to as ExpRFO, utilizes the
Rayleigh-scattering-approximation-based forward operator with hydrometeor classification developed by Gao
and Stensrud (2012), as detailed in Section 2.2.1. This forward operator is also employed in the Warn-on-
Forecast-Hybrid (WoF-Hybrid) system for assimilating radar reflectivity (Carpenter, 2022; Gao & co-
authors, 2021). The second set, labeled ExpPFO_New, employs the PFO for radar reflectivity developed by
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Figure 1. Flowchart of the cycled data assimilation and forecast experiments. Conventional observations (Conv) and radar observations (Rad) are assimilated in 1-hr and

15-min intervals, respectively.

Zhang et al. (2021) with a new continuous melting model by Liu et al. (2024), as explained in Section 2.2.2. In
addition, an extra experiment (ExpPFO_4species) was conducted with the same settings as ExpPFO_New but
without cloud water and cloud ice to assess the impact of the additional species included in the PFO for one
convection case. The flowchart of the cycled data assimilation and forecast experiments is depicted in Figure 1.
For all eight cases, the model was initialized at 1800 UTC each day. After a 1-hr spin-up period, the first data
assimilation began at 1900 UTC, followed by cycled data assimilation in 15-min intervals until 2300 UTC with 3-
hr forecasts initiated at the top of the hour (2000, 2100, 2200, and 2300 UTC respectively).

In our analysis and forecast experiments, the WRF model version 3.7.1 (Skamarock et al., 2008) is utilized as the
forecast model. The model domain is configured with 601 X 601 grid points with a 1.5-km horizontal grid
spacing, while the vertical dimension comprises 51 eta levels, extending up to a model top at 50 hPa. The initial
and boundary conditions are obtained from the 3.0-km High-Resolution Rapid Refresh (HRRR) forecast product
at 1-hr intervals (Dowell et al., 2022). The physics parameterization schemes we used include the Milbrandt-Yau
double-moment microphysics scheme (Milbrandt and Yau, 2005a, 2005b), the Rapid Radiative Transfer Model
for General Circulation Models (RRTMG) for both long-wave and short-wave radiation schemes (lacono
et al., 2008), the unified Noah land surface model, and the Yonsei University planetary boundary layer physics
scheme (Hong et al., 2006). No cumulus parameterization scheme is employed.

3.2. Observational Data for Assimilation and Validation

For each case, the assimilated radar data includes radial velocity and reflectivity, while conventional observations
include data from surface stations, buoys, and soundings. All radar data are obtained from the NEXRAD Level-II
data repository at the National Centers for Environmental Information (NOAA, 2015). Prior to assimilation, the
raw radar data from Volume Coverage Patterns (VCPs) undergo quality control. This involves radial velocity de-
aliasing, removal of radar ground clutter, and elimination of non-meteorological and outlier reflectivity gates.
After quality control, radar data are linearly interpolated onto the model grid. In cases where reflectivity from
multiple radars exists at a model point, the largest reflectivity value is chosen.

The performance of the analyses and forecasts in this study is verified using composite radar reflectivity, surface
observations from the Oklahoma Mesonet (Brock et al., 1995) and Automated Surface/Weather Observing
Systems (ASOS), and the National Centers for Environmental Prediction (NCEP) Stage-IV hourly precipitation
data set. Before validation, observed radar reflectivity and precipitation data are linearly interpolated onto the
model grid. To obtain an accurate reflectivity simulation for comparison with observation, the PFO is used to
calculate the analyzed and forecast reflectivity for all experiments.

4. Results

To illustrate the impact of assimilating radar reflectivity with the newly developed PFO on short-term severe
weather forecasts, a detailed investigation of the 24 May case is first presented in Sections 4.1 and 4.2. The choice
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Figure 2. Horizontal cross-sections (a0-a3) at z = 3.0 km and vertical-sections (b0-b3) of observed (a0 and b0) and analyzed (al-b3) reflectivity at 2200 UTC on 24
May 2019. Panels (al, bl) display the analysis results from ExpRFO using the Rayleigh-scattering-approximation-based forward operator with hydrometeor
classification (RFO). Panels (a2, b2) and (a3, b3) display the results from ExpPFO_New and ExpPFO_4species using the parameterized forward operators for radar
reflectivity (PFO) included and without cloud water and ice, respectively. The black solid line in panels (al-b3) represents observed reflectivity contours (35 dBZ). The
black dashed rectangular box (A, B, and C) denotes the domain used for analysis and computation of the contoured frequency by the altitude diagram (CFAD) in the later
section. In panel (a0), the black line (B1-B2) indicates where vertical cross-sections are taken. In vertical-section panels, the 10°C (purple line), 0°C (red line), and
—10°C (blue line) isotherms are shown in panels (b1-b3).

of the 24 May case is motivated by two reasons: it was one of the highest-impact severe weather events of 2019
with 183 severe weather reports including 19 tornadoes. Most of these reports occurred within our analysis and
forecast domain, where high temporal and spatial resolution surface observations were available for verification.
On this day, a cold front extended from southern Texas through northeast Kansas. An influx of very moist air with
surface dewpoints around 21°C supported moderate to strong instability, and vertical wind profiles with 20—
25 m s~ effective bulk shear supported supercell development (SPC, 2019). Around 2300 UTC, a cluster of
supercells in northwest Texas moved across parts of southwest Oklahoma, and strong to severe storms were
observed from northern Oklahoma through eastern Kansas. Large hail, damaging wind gusts, and several tor-
nadoes were reported in these areas. To gain an overall understanding of the usefulness of the new reflectivity
forward operator, the aggregated evaluation of all eight severe weather events is shown in Section 4.3.

4.1. Analysis Results: 24 on May 2019
4.1.1. Reflectivity

The horizontal and vertical cross-section of reflectivity at 2200 UTC on 24 May 2019 from the cycled analysis of
ExpRFO, ExpPFO_New, and ExpPFO_4species is compared against observed reflectivity in Figure 2. A cluster
of convective cells are observed in northwest Oklahoma and southern Kansas (labeled Region A), well-developed
multiple supercells exist in northwest Texas (labeled Region B), and another multicell convective storm is present
in west Texas (labeled Region C). Overall, all three experiment analyses reproduce the observed convective cells
and supercells. However, the intensity of convective cells in Region A and supercells in Region B in ExpRFO and
ExpPFO_4species is significantly weaker than that in ExpPFO_New, which is closer to the observations
(Figures 2al-2a3). The vertical cross-section taken through the supercell cores in Region B allows a clearer
comparison between three experiments (Figures 2b0-2b3). In the vertical cross-section, three supercells with
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reflectivity exceeding 55 dBZ and echo tops close to 12 km are observed (Figure 2b0), but ExpRFO fails to
reproduce the leftmost one (Figure 2b1l). Notably, the model-predicted reflectivity values in ExpRFO are very
clearly missing above the 0°C isotherm in comparison with the observations, indicating that inaccuracies in the
description of larger particle reflectivity by RFO lead to a failure to reproduce all observed storms even after
multiple cycling analyses. ExpPFO_4species also show a weaker analysis for the leftmost storm (Figure 2b3).
Overall, ExpPFO_New greatly improved the analyzed reflectivity of supercells compared to ExpRFO, repro-
ducing all observed supercells effectively (Figure 2b2).

Contoured Frequency by Altitude Diagrams (CFADSs) provide a comprehensive representation of the distribution
of reflectivity at different altitudes and are used to compare analysis results with observations. CFADs of the
analyzed reflectivity at 2200 UTC are constructed for the regions indicated by the three black boxes A, B, and C in
Figure 2a0. In Region A, the observed reflectivity increases continuously with decreasing altitude, reaching a
maximum at 2 km AGL (Figure 3a0). In Regions B and C, where multiple supercells are present, the observed
reflectivity reaches a maximum before reaching the surface, exceeding 55 dBZ (Figures 3b0 and 3c0). In all three
regions, especially in Region A, ExpRFO shows jumps or discontinuities in reflectivity at about 4 km AGL near
the —5°C isotherm compared to the observed CFADs (Figures 3a1-3c1). As mentioned in Section 2.2, the RFO
achieves the effect of considering wet snow by increasing the dielectric constant, that is, the dielectric constant of
water was used for wet snow. However, since hydrometeor classification is determined by the background
temperature, for example, wet snow limited to between the —5°C and 5°C levels, it can easily lead to the issue of
different dielectric constants being used for the same kind of particles in the calculation of reflectivity. This results
in the discontinuity and inaccuracy of reflectivity near the melting layer. Additionally, the Rayleigh scattering
approximation is not valid for larger particles. For example, there is an underestimation of the reflectivity based
on the Rayleigh scattering approximation when the D,, of wet hail (f,,, = 80%) is between 5 and 20 mm, while an
overestimation is exhibited when the D,, of wet hail over 20 mm (see Figure 2a of Zhang et al., 2021). Conse-
quently, the maximum reflectivity analyzed by ExpRFO is less than observed in all three regions.

The PFOs are based on the results of accurate T-matrix scattering calculations and moderate the issue of un-
derestimation of the reflectivity of larger particles and overestimation of very large particles in the Rayleigh
scattering approximation. Therefore, the reflectivity analyzed by ExpPFO_New and ExpPFO_4species is more
accurate than that in ExpRFO and is closer to observations (Figures 3a2-3c3). ExpPFO_New and ExpPFO_4-
species employ a continuously varying melting model that is not directly dependent on the background tem-
perature, resulting in a more continuous and smooth reflectivity distribution although reflectivity values are
occasionally slightly larger than those observed. In essence, PFOs serve as fundamentally more accurate radar
forward operators than those based on the Rayleigh scattering approximation. This is further evident in the real-
case analysis results above. Compared with ExpPFO_4species, ExpPFO_New produces larger reflectivity near
the ground, which is closer to observations. This indicates that the inclusion of cloud water and ice improves the
analysis of reflectivity to some extent, despite not contributing significantly to reflectivity themselves.

4.1.2. Hydrometeors

In general, analysis results that yield reflectivity close to those observed imply a more reasonable distribution of
hydrometeors. Figure 4 shows the vertical cross-section of analyzed mixing ratios for rain and ice particles from
ExpRFO, ExpPFO_New, and ExpPFO_4species. The absence of ice-phase particles leads to the failure of the
storm analysis on the far-left side of the vertical cross-section in ExpRFO. This aligns with findings reported in
Liu et al. (2022), where the Rayleigh-scattering-approximation-based operator produces an overestimated rain-
water mixing ratio and underestimated snow and hail mixing ratios. ExpPFO_New reproduces the leftmost storm
well, primarily due to the adjustment of ice-phase particles, which results in more snow, graupel, and hail obtained
at the storm locations.

4.1.3. Temperature and Dew Point Temperature at 2 m

Assimilating radar observations through variational approaches primarily updates the wind field and hydrome-
teors in the analysis field and does not directly adjust the storm environment. After multiple cycled analyses,
differences in forward operators change microphysical processes through their effect on the adjustments of hy-
drometeors, which, in turn, affect the storm environment. The 2-m temperatures and dewpoint temperatures from
Oklahoma Mesonet and ASOS observations and three experiments are shown in Figure 5. In Regions A and B, all
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Figure 4. Vertical cross-sections of analyzed mixing ratios (g kg_l) for rain (g,) (al-a3), snow (g,) (b1-b3), graupel (¢,) (c1-¢3), and hail (g,) (d1-d3) at 2200 UTC on
24 May 2019, obtained from ExpRFO (al-d1), ExpPFO_New (a2-d2), and ExpPFO_4species (a3-d3) along the line B1-B2 in Figure 2.

experiments show warmer and drier results than the observations (Figures Sal—5a3, Sc1-5¢3), suggesting there is
a model error independent from the impacts of assimilation. Compared to ExpRFO, ExpPFO_New simulates
lower temperatures in these areas, especially in Region B, where ExpPFO_New minus ExpRFO exhibits a
temperature difference of more than 3°C (Figure 5b1). For the dew point temperature, the difference between
ExpRFO and ExpPFO_New is smaller compared to the difference in simulated temperatures, indicating that
ExpPFO_New has a smaller difference between the dew point and temperature than ExpRFO (Figure 5d1). In
Region A, the dew point temperatures of ExpPFO_New and ExpRFO are very close to each other, suggesting that
ExpPFO_New produces colder and wetter air at the surface, that is, a stronger cold pool, than ExpRFO. The
strength of the cold pool influences the degree of convergence and is critical to the development and evolution of
the storm.

4.2. Forecast Evaluation: 24 on May 2019
4.2.1. Reflectivity

Whether the advantage of the PFO in the analysis field carries over to benefit short-term forecasts is examined in
this section. An example of the forecast reflectivity field from ExpRFO, ExpPFO_New, and ExpPFO_4species
for the 3-hr forecast initiated at 2200 UTC, and the corresponding observations are shown in Figure 6. At 2300
UTC, 1 hr into the forecast, the results with ExpPFO_New successfully predict the mesoscale convective system
(MCS) in northwest Texas, while the forecast with ExpRFO produces two split convective clusters (Figure 6al,
6a2). At 0000 UTC, the observed reflectivity indicates that multiple supercells in northwest Texas merged with
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display the differences of ExpPFO_New minus ExpRFO and ExpPFO_New minus ExpPFO_4species, respectively. The black line represents observed reflectivity

contours (35 dBZ) in panels (al—d2).

clusters of convective cells in northwest Oklahoma to form an organized squall line (Figure 6b0). The forecasts of
all experiments face challenges in reproducing the observed squall lines completely, but the forecasts with
ExpPFO_New and ExpPFO_4species produce convective cells in slightly better agreement with the observations
than ExpRFO (Figures 6b2, 6b3 vs. Figure 6bl1).

To quantitatively evaluate the reflectivity forecast at different assimilation cycles, neighborhood equitable threat
scores (NETS) and bias scores (NBIAS) with a 6-km radius at three reflectivity thresholds are calculated in
Figures 7 and 8. Larger NETS values indicate higher forecast skill. For NBIAS, a value closer to 1 indicates a
smaller bias. A value of NBIAS greater than 1 indicates that there are more false alarms than misses, and less than
1 indicates that there are more misses than false alarms (Clark et al., 2010). Overall, the NETSs of ExpPFO_New
and ExpPFO_4species are greater than that of ExpRFO at different thresholds in most assimilation periods
(Figures 7e1-7e3). The most obvious improvement in reflectivity in ExpPFO_New compared to ExpRFO occurs
within the first hour of the forecasts, with the improvement diminishing after 1 hour. Additionally, larger NETS
values can be achieved after multiple cycles of assimilating radar data for all experiments. Correspondingly,
NBIAS gradually approaches 1 and becomes greater than 1 after multiple cycles of assimilation (Figures 8d1—
8d3). This may be due to phase errors and spurious cells existing in the forecast of all experiments.
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Figure 7. The neighborhood equitable threat score (NETS) with a 6-km radius for 0-3 hr composite reflectivity forecasts initiated at 2000 UTC (al-a3), 2100 UTC (b1-
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e3). ExpRFO, ExpPFO_New, and ExpPFO_4species are represented by black solid lines, red, and blue dashed lines, respectively.

4.2.2. Precipitation

The 3-hr accumulated precipitation from the forecasts of all experiments initiated at 2200 UTC is further
compared with observations in Figure 9. Two primary precipitation areas are observed in the model domain. One
is a northeast-southwest-oriented band of precipitation from the MCS in northwest Texas that merged with a
cluster of convective cells in northwest Oklahoma during its movement. The other is an isolated, relatively weak
precipitation band located in west Texas. All experiments do a good job forecasting the shape and location of the
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Figure 8. As in Figure 7, but for the neighborhood bias (NBIAS).
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two main precipitation bands. For the precipitation band across Texas and Oklahoma, the ExpRFO underpredicts
precipitation intensity with a northern bias compared to the observations (Figures 9a0, 9al). ExpPFO_New and
ExpPFO_4species improve the forecast of precipitation intensity by better matching the observations
(Figures 9a2 and 9a3). For the precipitation band in west Texas, all experiments overforecast the precipitation
amount compared to the observations, with ExpRFO showing the largest discrepancy.

The NETS and NBIAS with a 6-km radius for hourly precipitation at four thresholds are calculated to quanti-
tatively evaluate the performance of all experiments. As shown in Figure 10, ExpPFO_New and ExpPFO_4-
species achieve higher NETS than ExpRFO at all thresholds, with more significant improvements for heavy
precipitation (>10 mm hr™') (Figures 10e1-10e4). Notably, the improvement in precipitation forecasting by
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Figure 10. The neighborhood equitable threat score (NETS) with a 6-km radius for 1-hr accumulated precipitation forecasts initiated at 2000 UTC (al-a4), 2100 UTC

(b1-b4), 2200

UTC (c1—c4), 2300 UTC (d1-d4), and averaged over four cycles (el—e4) for the precipitation threshold of 1.0 mm (al—el), 2.5 mm (a2—2), 5.0 mm (a3—

e3), and 10.0 mm (ad4—e4). ExpRFO, ExpPFO_New, and ExpPFO_4species are represented by gray, red, and blue bars, respectively.

ExpPFO_New and ExpPFO_4species is not only evident at the 1-hr forecast but also at the 2-hr and 3-hr forecasts.
This is consistent with the analysis in Section 4.1.3. The assimilation of radar data using the PFO can better
improve the distribution of hydrometeors in the analysis field, which, in turn, affects other model characteristics
(e.g., cold pools), allowing the benefits on the analysis field to be consistently transferred to the forecasting of
precipitation. ExpPFO_New and ExpPFO_4species are relatively close to each other, which suggests that the
PFO can achieve higher NETS than the RFO without cloud water and ice.

For hourly precipitation, the mostly negative NBIAS values are gradually reduced with more data assimilation
cycles and reach minimums (i.e., close to 1) when the forecasts are initialized from 2200 UTC (Figures 11al—
11c4). More positive biases can be seen from the forecast results with all experiments after four assimilation
cycles, that is, initiated at 2300 UTC (Figures 11d1-11d4). Overall, the PFO significantly reduces the NBIAS of
hourly precipitation at all thresholds, especially at the 1-hr forecast. However, all experiments have issues with
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Figure 11. As in Figure 10, but for the neighborhood bias (NBIAS).

spurious precipitation, which is common when frequently assimilating radar data. Introducing more constraints,
assimilating zero reflectivity, or other methods may alleviate this issue in variational assimilation (Gan
et al., 2022; Li et al., 2023; Lin et al., 2021).

4.3. Evaluation Over All Eight Cases

The above exploration details the impact of the reflectivity PFO on the analysis and forecasts of the 24 May 2019
event. To provide a general picture about the performance of ExpPFO_New in comparison with ExpRFO, a
quantitative evaluation of all eight severe convection events described in Section 3.1 and Table 1 is presented in
this section.
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Figure 12. Horizontal cross-sections of observed (a0—d0) and analyzed (al-d2) reflectivity at z = 3.0 km at 2200 UTC on 1 May (a0-a2), 2200 UTC on 21 May (b0-b2),
2300 UTC on 22 May (c0—2), and 2200 UTC on 28 May (d0—d2) 2019. Panels (al—d1) and (a2—d2) display the analysis results from ExpRFO and ExpPFO_New. The
black solid line in panels (al—d2) represents observed reflectivity contours (35 dBZ).
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Figure 13. The Root mean square innovation (RMSI) for reflectivity (Z,, dBZ) at 15-min intervals during the data assimilation period. Panels (a—d) display cases of 1
May, 21 May, 22 May, and 28 May 2019, respectively. Panel (e) displays the result of aggregated over all eight cases. ExpRFO and ExpPFO_New are represented by
black solid lines and red dashed lines, respectively.

4.3.1. Analysis Results

The horizontal cross-section of observed and analyzed reflectivity for four cases is shown in Figure 12, and the
other cases can be found in the Supporting Information S1. Multiple types of convective cases show that
ExpPFO_New exhibits improved, closer-to-observation analysis of reflectivity than ExpRFO for cases of the
clusters of supercells (1, 20, 22, 24, and 28 May), except for the insignificant improvement for a mixed mode of
storms including supercells and squall lines (6, 21, and 23 May). The root mean square innovation (RMSI), which
gives a measure of the overall distance between the observations and the analysis (Aksoy et al., 2010), is
calculated for each case and averaged over all eight cases in Figure 13. Compared to ExpRFO, the ExpPFO_New
unsurprisingly exhibits smaller averaged RMSI across most assimilation periods (Figure 13). With the same
assimilation configuration, using the more accurate PFOs yields an analysis result that is more consistent with
observations. The old forward operator which classifies hydrometeors based on background temperature
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inevitably produces discontinuities and inaccuracies of reflectivity near the melting layer, such as the over-
estimation of reflectivity when treating dry snow as wet snow or the underestimation of reflectivity when treating
wet snow that has not fully melted as dry snow. The PFOs with the continuous melting model certainly improve
the discontinuity and inaccuracy of reflectivity near the melting layer.

4.3.2. Forecast Results

The NETS of each case and averaged over all cases for composite reflectivity from ExpRFO and ExpPFO_New at
different thresholds are compared in Figure 14. At the 30-min forecast, the NETS of ExpPFO_New are better than
those of ExpRFO, and then their difference gradually decreases with forecast time. After 1 hr, the NETS averaged
over the eight cases of ExpRFO and ExpPFO_New nearly overlaps. The difficulty in sustaining improvements
from the PFO beyond 1 hr may be related to significant model errors in the WRF model.

Figure 15 shows the NETS of hourly accumulated precipitation from ExpRFO and ExpPFO_New forecasts for
each case and averaged over eight cases. The ExpPFO_New improved NETS for hourly accumulated precipi-
tation at each threshold while reducing NBIAS (not shown), especially at the heavy precipitation threshold and in
the first forecast hour. This is consistent with the results from the single case of 24 May 2019 previously
described.

5. Conclusions and Discussion

This study investigates the impact of using newly developed parameterized forward operators (PFOs) for radar
reflectivity with a new continuous melting model in the variational data assimilation framework on short-term
severe weather forecasts. This new scheme is tested for eight high-impact convection events from HWT
Spring Forecast Experiments. To assess the benefits of using PFOs for analysis and forecasting, a comparison is
made with a widely used forward operator, which was developed based on the Rayleigh scattering approximation
(RFO) with hydrometeor classification. An additional experiment using PFO but without cloud water and ice is
performed to test the impact of the additional species. The study provides a detailed evaluation of the analysis and
forecast results for a specific tornadic supercell case on 24 May 2019 in Texas, Oklahoma, and Kansas. Sub-
sequently, the potential benefits of PFO are further assessed to offer a more comprehensive understanding of the
improvement in short-term forecasts across all eight cases examined.

The experiments (ExpRFO) using the RFO have some shortcomings in accurately reproducing observed
convective storms and supercells in the analysis field. This is attributed to inherent limitations in calculating radar
reflectivity for large particles like hail and mixed-phase particles. Additionally, ExpRFQO's reliance on back-
ground temperature for hydrometeor classification introduces discontinuities and inaccuracies in the analyzed
reflectivity, particularly near the melting layer. The cumulative effect of these limitations after multiple assim-
ilation cycles results in an underestimation of the cold pool strength in the analysis field. The experiments
(ExpPFO_New) using the PFO demonstrate some improvements in the analyzed reflectivity, successfully
reproducing all observed storms for the 24 May 2019 case. This success can be attributed to the improved ac-
curacy of the PFO, which is based on T-matrix scattering calculations rather than the Rayleigh scattering
approximation and better represents the reflectivity of large particles (D > 1/16). The new melting model
incorporated in the PFO, which is not directly dependent on background temperature, contributes to a more
continuous, smooth, and accurate distribution of reflectivity near the melting layer. The inclusion of cloud water
and ice in the PFO affects the analysis results, but only to a relatively small extent. The enhanced distribution of
hydrometeors by the PFO had a positive impact on strengthening the cold pool, resulting in improvements for
short-term severe weather forecasts in terms of NETS and NBIAS for forecast reflectivity and hourly accumu-
lated precipitation, particularly at heavy precipitation thresholds.

The overall improvement of ExpPFO across all eight cases is not as pronounced as in the single case of 24 May.
However, it consistently yields the best forecast skills in the first hour for composite reflectivity and hourly
accumulated precipitation forecasts at each threshold. The disappearance of the improvements with PFO in short-
range forecasts beyond 1 hour may be due to significant model errors as well as the lack of balanced analysis for
other model variables in the 3DVAR approach. This broader evaluation, including different convective events,
provides more evidence for the superiority of PFOs over the forward operator based on the Rayleigh scattering
approximation with hydrometeor classification. It should be clarified that the fundamental advantage of PFO lies
in its more accurate calculation of the backscattering amplitudes for all species, including liquid and ice particles
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Figure 14. The Neighborhood Equitable Threat Score (NETS) with a 6-km radius of composite reflectivity forecasts for thresholds with 20 dBZ (al—e1), 30 dBZ (a2—
€2), and 40 dBZ (a3—e3). Panels (al-a3), (b1-b3), (c1—c3), and (d1-d3) display the results averaged over four cycles from cases of 1 May, 21 May, 22 May, and 28 May
2019, respectively. Panels (e1—e3) display the result of aggregated over all eight cases. ExpRFO (black solid lines) and ExpPFO_New (red dashed lines) averaged over
eight cases.
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Figure 15. The Neighborhood Equitable Threat Score (NETS) with a 6-km radius of 1-hr accumulated precipitation forecasts for the threshold of 1.0 mm (al—-el),
2.5 mm (a2—e2), 5.0 mm (a3—e3), and 10.0 mm (ad4—e4). Panels (al-a4), (b1-b4), (c1—4), and (d1—d4) display the results averaged over four cycles from cases of 1
May, 21 May, 22 May, and 28 May 2019, respectively. Panels (e1—e4) display the result of aggregated over all eight cases. ExpRFO (black solid lines) and
ExpPFO_New (red dashed lines) averaged over eight cases.

as well as mixed-phase particles. The continuous melting model used as part of the PFO characterizes melting
mixed-phase species, addressing the limitation of microphysics schemes that include only rain and dry ice
species.

The use of PFOs based on double-moment (DM) microphysics schemes in this study focuses on updating the
mixing ratios of hydrometeors in the assimilation process. However, the full potential of this operator, which is
capable of simulating and assimilating polarimetric radar variables, is not fully utilized. For example, updating the
number concentrations of hydrometeors in the variational assimilation system is difficult and is not explored in
this study. Doing this requires model variable transformations due to the large dynamic range of variations in
number concentrations (Hu et al., 2023), though some research efforts, such as those involving the EnKF and
ensemble-3DVAR assimilation systems, have already explored updating number concentrations (Li et al., 2022;
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