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Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. Coronary artery disease (CAD), a prevalent form of
CVD, is typically assessed using catheter coronary angiography (CCA), an invasive, costly procedure with associated risks.
While cardiac computed tomography angiography (CTA) presents a less invasive alternative, it suffers from limited temporal
resolution, often resulting in motion artifacts that degrade diagnostic quality. Traditional ECG-based gating methods for CTA
inadequately capture cardiac mechanical motion. To address this, we propose a novel multimodal approach that enhances
CTA imaging by predicting cardiac quiescent periods using seismocardiogram (SCG) and ECG data, integrated through a
weighted fusion (WF) approach and artificial neural networks (ANNs). We developed a regression-based ANN framework
(r-ANN WF) designed to improve prediction accuracy and reduce computational complexity, which was compared with
a classification-based framework (c-ANN WF), ECG gating, and US data. Our results demonstrate that the -rANN WF
approach improved overall diastolic and systolic cardiac quiescence prediction accuracy by 52.6% compared to ECG-based
predictions, using ultrasound (US) as the ground truth, with an average prediction time of 4.83 ms. Comparative evaluations
based on reconstructed CTA images show that both -rANN WF and c-ANN WF offer diagnostic quality comparable to US-
based gating, underscoring their clinical potential. Additionally, the lower computational complexity of -rANN WF makes
it suitable for real-time applications. This approach could enhance CTA’s diagnostic quality, offering a more accurate and
efficient method for CVD diagnosis and management.

Keywords Cardiovascular disease - Cardiac computed tomography angiography (CTA) - Seismocardiography (SCG) -
Electrocardiography (ECG) - Ultrasound (US) - Artificial neural network (ANN)

Introduction that involves the insertion of catheters into coronary vessels

[3]. While CCA provides high-resolution images of coro-

Cardiovascular disease (CVD) results in the loss of more
than 17.9 million lives annually, as reported by the World
Health Organization (WHO) [1]. CVDs are disorders of the
heart and blood vessels that affect people of all ages, ethnici-
ties, and backgrounds. In the United States alone, approxi-
mately 18.2 million people suffer from coronary artery dis-
ease (CAD), the most common type of CVD, contributing
to more than 610,000 deaths annually [2]. The current gold
standard for the assessment of coronary blood vessel block-
age is catheter coronary angiography (CCA), a procedure
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nary vessels, its invasive nature [4] and associated costs [5]
present non-trivial risks for the patients.

Cardiac computed tomography angiography (CTA), an
alternative to CCA for CVD evaluation, utilizes a computed
tomography (CT) scanner and intravenous contrast agent
to produce high-resolution, three-dimensional representa-
tions of coronary vessels. CTA offers several advantages,
including reduced invasiveness, leading to fewer complica-
tions, quicker procedures, and lower costs, while potentially
achieving diagnostic image quality like that of CCA [6, 7].
As aresult, CTA serves as an effective diagnostic tool that is
particularly suitable for individuals with low to intermediate
CVD risk. However, CTA suffers from limited temporal res-
olution, which affects the diagnostic quality of reconstructed
images due to motion artifacts. This hinders the widespread
adoption of CTA as the mainstream diagnostic tool for CVD
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Fig. 1 A labeled ECG wave-
form. Salient ECG features such
as the P wave, QRS complex,
T-wave, systole, and diastole
are depicted. The systolic and
diastolic QPs are highlighted
along with the duration from the
R-peak to the QP centers, At'y,

and Atdecg, respectively
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Table 1 Summary of key ECG
salient features

ECG terms

Description

R,Q,S. TP
At

ecg
A,

Systole

Systolic quiescence (SQ)
Diastole

Diastolic quiescence (DQ)

ECG waveform components representing electrical activity
Interval between R wave and onset of systolic quiescence
Interval between R wave and onset of diastolic quiescence
Contraction phase of the heart (R wave to end of T wave)
Period during systole when the heart exhibits minimal motion
Relaxation phase of the heart (after T wave until next R wave)
Period during diastole when the heart shows minimal motion

evaluation, making it imperative to increase the accuracy of
cardiac quiescent period prediction during CTA acquisition.

Accurate detection of cardiac quiescence is essential
for CVD diagnosis, as it directly improves the quality of
imaging techniques like cardiac CTA. By precisely identi-
fying the heart’s quiescent phases, during which it remains
relatively motionless, clearer and more accurate diagnostic
images can be obtained. This enhancement in image quality
significantly increases the reliability of CVD diagnosis and
leads to better patient outcomes. Therefore, the ability to
predict cardiac quiescence represents a significant advance-
ment in cardiovascular diagnostics.

Presently, real-time electrocardiography (ECG) is rou-
tinely used for CTA gating due to readily identifiable ECG
features, such as the QRS complex and R-peaks [8] as shown
in Fig. 1. The salient characteristics are summarized in
Table 1. While ECG effectively measures cardiac electrical
activity, it does not adequately capture the inherent mechani-
cal motion of the heart, rendering it suboptimal as a trigger-
ing mechanism for CTA. Moreover, the considerable variety
of ECG gating functions found in the literature underscores
a lack of conformity and standardization in this approach
[9-11]. These limitations have spurred investigations into
other modalities, such as seismocardiography (SCG) [12]
and ultrasound (US) [13].

Previous studies have explored the potential of SCG
as a predictor of cardiac quiescence. SCG records car-
diac mechanical vibrations through the placement of an
accelerometer on the chest wall and accurately depicts
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Fig.2 A labeled SCG waveform. Salient SCG features such as heart
sounds (HS1 and HS2), mitral valve closing (MC), aortic valve open-
ing (AO), rapid ejection (RE), aortic valve closing (AC), mitral valve
opening (MO), and rapid filling (RF) are depicted. The systolic and
diastolic QPs are highlighted along with At',, and Atdscg

the mechanical state of the heart [14]. Key characteris-
tics of an SCG signal are illustrated in Fig. 2 and further
elaborated in Table 2. An SCG patient-specific template
approach combined with heart rate prediction was utilized
to identify and detect cardiac quiescence [15]. The SCG-
based gating strategy demonstrated greater accuracy in
predicting systolic and diastolic quiescent periods than
traditional ECG-based gating. While SCG-based cardiac
gating is promising, several limitations must be addressed
to standardize its use. One major limitation is the suscep-
tibility of SCG signal quality to noise, primarily due to
the high sensitivity of accelerometers to motion artifacts
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Table2 Summary of key SCG
salient features

SCG terms

Description

MC (mitral closure)
AO (aortic opening)
RE (rapid ejection)
Systole

Systolic quiescence (SQ)
AC (aortic closure)

MO (mitral opening)

RF (rapid filling)

Diastole

Diastolic quiescence (DQ)
HS1 (first heart sound)
HS2 (second heart sound)
A,

At®

scg

Mitral valve closure; onset of systole
Aortic valve opens; blood ejected from left ventricle
Rapid ejection of blood into aorta and pulmonary artery

Cardiac cycle phase wherein the heart muscles contract,
pumping blood out of the chambers

Period of minimal motion during systole
Aortic valve closure; end of systole
Mitral valve opens; onset of diastole
Rapid filling of ventricles from atria

Cardiac cycle phase wherein the heart muscles relax,
allowing the chambers to fill with blood

Period of minimal motion during diastole

Closure of mitral and tricuspid valves

Closure of aortic and pulmonary valves

Interval between HS2 and onset of diastolic quiescence
Interval between HS1 and onset of systolic quiescence

[16]. Additionally, even in patient-specific approaches,
failure to detect SCG waveforms may occur due to distor-
tion of heart sound peaks, stemming from physiological
variability, leading to incorrect cardiac quiescence predic-
tions [17, 18].

While SCG effectively measures the true mechanical
state of the heart and is cost-effective, waveform inconsist-
ency prevented its adoption over traditional ECG-based
cardiac QP prediction. Additionally, at higher heart rates,
ECG-based quiescence predictions were more accurate as
compared to SCG [19]. Combining SCG and ECG could
enhance cardiac quiescence prediction by leveraging the
strengths of both modalities. This integrated approach
aims to overcome the limitations of each individual modal-
ity, potentially leading to more accurate and reliable car-
diac assessments.

These findings provide an empirical foundation for mul-
timodal cardiac quiescence prediction frameworks. This
paper builds upon earlier work involving a SCG-based
quiescence prediction method and a weighted fusion
(WF), SCG-ECG-based classification artificial neural
network (ANN) framework (c-ANN WF) [20]. Building
upon this work, a modification of the previously utilized
weighted fusion framework is implemented using a regres-
sion approach, henceforth referred to as the r-rANN WF.
The primary aim of this study is to determine whether
the r-ANN WF can achieve comparable or improved pre-
diction accuracy relative to the c-:ANN WF while offer-
ing reduced computational time enabling real-time clini-
cal applications. Additionally, a blinded observer study
validates the results by comparing the accuracy of the
r-ANN framework with c-ANN, ECG, and US prediction
frameworks.

Methods
Subjects and Data Acquisition

We collected trimodal cardiac data, including ECG, SCG,
and US measurements, from two groups: 11 healthy sub-
jects (mean age: 26; age range: 22-48; female/male ratio:
4/7) and 17 subjects with cardiac abnormalities (mean age:
62; age range: 31-80; female/male ratio: 8/10). The Emory
University Institutional Review Board approved the data col-
lection, and each patient provided full written informed con-
sent [17, 20]. The first subset of data includes synchronous
ECG and SCG signals (Figs. 1 and 2), along with simultane-
ously acquired US and ECG signals. These data were col-
lected using a custom trimodal system [20] in conjunction
with a commercial ultrasound machine, the SonixTOUCH
Research Scanner (Analogic, Peabody, MA, USA). Addi-
tionally, a set of cardiac signal data was collected using a
modified data acquisition approach, wherein a BIOPAC
MP150 (BIOPAC Systems Inc., Goleta, CA, USA) system
simultaneously acquired SCG-ECG signals [17]. During the
data acquisition process, synchronous SCG-ECG signals
were recorded in 10-s bursts at a rate of 1.2 kHz during sub-
ject breath-hold. B-mode US data of the apical four-chamber
view of the heart were acquired at a rate of 50 Hz using the
commercial ultrasound machine. Simultaneously, another set
of ECG data was collected at a rate of 200 Hz. These two
sets of ECG data helped synchronize and align the US and
SCG data.

For the acquisition and reconstruction of retrospective
CTA data, two CT scanners were used, namely, the Sie-
mens Somatom Definition dual-source 64-slice CT scanner
and the Siemens Force dual-source 192-slice CT scanner
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(Siemens Corp., Erlangen, Germany). Subsequently, two
radiologists evaluated the diagnostic quality of the recon-
structed CTA data for 17 patients with underlying cardiac
defects in a blinded observer study.

Preprocessing Data

The preprocessing steps closely follow those described in
previous work [19]. To address issues such as baseline drift
and high-frequency noise, commonly present in raw ECG
and SCG signals, we applied a 256th-order finite impulse
response (FIR) low-pass filter. This filter, configured with a
Hamming window and a cutoff frequency of 50 Hz, effec-
tively conditioned both ECG and SCG signals, preserving
the QRS complex in the ECG signal and the high-frequency
heart sounds (HS1 and HS2) in the SCG signal. Next, we
utilized a notch filter with a center frequency of 0 Hz and a
bandwidth of 1 Hz to eliminate DC signals, thereby remov-
ing any remaining baseline drift [19]. To empirically evalu-
ate the necessity of these steps, we conducted a comparative
analysis using two models: -rANN WF and c-ANN WF. The
models were trained and tested both with and without the
preprocessing steps, and their performances were compared.
The B-mode US images underwent Gaussian noise removal
and contrast enhancement. Additionally, the acquired and
preprocessed signals were synchronized with one another,
ensuring their alignment and coherence for subsequent anal-
ysis and interpretation.

US-Based Cardiac Quiescence Baseline

The baseline for quiescence is defined as the minimum
magnitude of the velocity vector corresponding to the
interventricular septum (IVS) in the B-mode US data. This
magnitude is computed using the phase-to-phase deviation
measure [21]. To enhance the reliability of the identified
quiescent periods, we implement a patient-specific voting
mechanism. Previously described in analogous research, this
mechanism contributes to the robustness and accuracy of
quiescence period determination within our study frame-
work [15].

SCG-Based and ECG-Based Quiescence Prediction
SCG-Based Quiescence Prediction

An overview of previously demonstrated methods used for
the detection and prediction of cardiac quiescence using
SCG signals [15, 19] is presented. SCG signals contain
significant heart sound features which are closely associ-
ated with systolic and diastolic quiescent periods, exhib-
iting temporal proximity distinct from that of the ECG
signal. The selection of the first and second heart sounds
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(HS1 and HS2) is based on their critical roles in the car-
diac cycle. HS1 precedes the systolic quiescent period,
while HS2 follows it just before the diastolic quiescent
period. These heart sounds are strongly correlated with the
quiescent periods, making them essential for accurate pre-
diction in our analysis using the SCG signal. To leverage
this, the approach utilizes temporal windows as an initial
search space within the SCG signal. Window parameters,
such as length and position within the cardiac cycle, are
specifically designed to extract the waveforms associated
with HS1 and HS2, based on statistical findings from pre-
vious studies. Normally, HS1 is lower in frequency and
lasts longer than HS2 heart sound [22]. The average dura-
tions of the S1 and S2 components are approximately 0.14
s and 0.11 s, respectively [23]. These characteristics are
crucial for accurately identifying the temporal windows
that best capture the relevant cardiac sounds within the
SCG signal [15].

Next, two heart sound-associated waveforms are gener-
ated through the application of the Hilbert transform [24]
to capture the temporal characteristics and high-frequency
components present in the SCG signal. Then, a heart rate-
based phase delay function is computed to characterize
the relationship between the delay observed between the
peaks in the heart sound-based waveforms and the US-
based quiescent periods. Notably, heart rate is predicted
using a linear regression-based technique, given that
the heart rate for upcoming cardiac cycles is unknown.
Previous studies have demonstrated a linear relationship
between quiescent phases (expressed as a percentage of
the cardiac cycle) derived from both SCG and echocar-
diography, in relation to heart rate [25]. By establishing
a relationship between cardiac quiescence (in percent-
age phase) and heart rate (bpm), the timing of quiescent
phases across varying heart rates is predicted, which is
crucial for optimizing image acquisition during quiescent
periods. This approach facilitates the prediction of qui-
escent periods, denoted as P,_,, during patient-specific
SCG-based cardiac gating.

scg?

ECG-Based Quiescence Prediction

Currently, real-time ECG constitutes the gold standard
during prospective CTA gating, predominantly due to
identifiable ECG features such as the QRS complex and R
peaks. For ECG-based cardiac gating, the piecewise func-
tion of the Siemens Force scanner was used based on sali-
ent features to generate ECG-based results for this fusion
gating framework [17, 26]. The interval from the R-peak
to the start of the QP, shown in Fig. 1, is predicted every
cardiac cycle. The quiescence prediction derived from the
CTA ECG gating function is denoted by P,,.
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r-ANN Prediction Framework

The fusion r-ANN prediction framework utilizes prob-
ability coefficients, w,., and w;,, as weights to optimally
combine predictions from both ECG (P,.,) and SCG (P,,)
signals, respectively. These probability weights are critical
because they represent the relative confidence of each sig-
nal’s prediction. By incorporating these estimates, the model
dynamically adjusts the influence of each signal in the final
prediction, improving accuracy. While the ECG-SCG mod-
ule does not directly output predictions, it provides key fea-
tures for the ANN to generate these probability values. This
approach ensures that the final quiescent period prediction
is a weighted average, maximizing accuracy by leveraging
both signals.

Feature Extraction and Selection

Patient-specific features were extracted from the preproc-
essed ECG and SCG signals after normalizing cardiac cycle
lengths. Previous research has shown the effectiveness of a
comprehensive feature set, including heart rate (HR), heart
rate variability (HRV), wavelet-based features, signal-to-
noise ratio, and power spectrum coefficients, for cardiac
quiescence prediction [19]. To reduce computational com-
plexity for real-time processing, recent studies identified a
revised feature set [27]. This selection process pinpointed
specific features that enhance predictive accuracy, as out-
lined in Table 3.

Initially, a feature set consisting of ten features was
derived from the ECG and SCG signals. The ECG features
include HR, HRYV, signal-to-noise ratio, discrete wavelet
transform (DWT) coefficients, and autoregressive coeffi-
cients (ARs(7) and AR¢(7)) [28]. The SCG features include
power spectral density of HS1 and HS2, short-term Fourier
transform (STFT) coefficients [29], and DWT coefficients
[30]. Principal component analysis (PCA) was applied to
this feature set to evaluate the contribution of each feature
to the overall model accuracy [31]. Based on the outcomes
of this analysis, four final features were selected—two from

Table 3 Details of the extracted features from the ECG and SCG signals

LDA of ECG and SCG features

A ECG
0.8 SCG

0.6 [

0.4

| @O 0O @80 A A AMA A A A A

-2 -1 0 1 2 3 4 5 6 7 8
LDA Component 1

Fig.3 Linear discriminant analysis (LDA) of features: the plot illus-
trates the separation between two classes based on the first LDA
component derived from four features. The classes are represented by
different markers and colors (ECG: red triangles, SCG: blue circles).
Despite the original four-dimensional feature space, the LDA reduc-
tion shows how the features contribute to distinguishing between the
two classes in a one-dimensional space

the ECG signal and two from the SCG signal. The selected
features for the ECG signal were AR5(7) and AR4(7), and
for the SCG signal, they were the variance from the STFT
coefficients and the mean of the DWT coefficients. Only
eigenvalues accounting for less than 20% of the largest
eigenvalues were discarded. Additional figures pertaining
to the features are included (Online Resource 1).

Next, linear discriminant analysis (LDA) was applied
to assess the ability of the extracted features to differen-
tiate between SCG-based and ECG-based QP predictions
[32]. LDA maximizes the ratio of between-class to within-
class variance, ensuring optimal separability. Four features
were used as input, and since the data has two classes, LDA
reduced the feature space to a single dimension (LDA com-
ponent 1), as shown in Fig. 3. The resulting scatter plot

Feature set Originated signal Computed features Number Extracted features References
of features
extracted
Autoregressive model (AR,.,) ECG Coefficients of AR model 2 5th and 6th coefficients of [28]
order 7 AR model
Short-time Fourier transform SCG Mean and variance of fre- 1 Variance of STFT coefficients [29]
(STFT,,) quency spectrum
Discrete wavelet transform SCG Mean and variance of coeffi- 1 Mean of DWT coefficients [30]

(DWT,,)

mother wavelet

cients generated using Coif5
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shows some degree of class separation, but the overall data
distribution suggests a non-linear nature to the problem.
This finding supports the use of neural networks, which are
well-suited to model complex, non-linear relationships by
leveraging hypersurfaces in the feature space. Despite the
original four-dimensional complexity, LDA’s reduction to
one dimension still preserves meaningful class separabil-
ity, validating the robustness of the chosen features. These
features were subsequently used as input into the ANN for
further analysis. The features successfully demonstrated
the most significant impact on predicting accuracy, thereby
reducing the dimensionality of the input space while retain-
ing critical information for the model.

Training and Testing

This study involved two distinct subject cohorts: 11 healthy
individuals and 17 with cardiac conditions, as detailed in
the acquisition section. The data is partitioned into train-
ing, validation, and testing sets, utilizing a leave-one-out
method within each cohort, with a 4:1 ratio for testing and

Table 4 Summary of ANN architecture details

Component Details

Number of input features 4 (selected from ECG and SCG signals)

2 (weights for ECG and SCG predic-
tions)

Number of output neurons

Size of training set Average of 5271 cardiac cycles per

subject

Size of test set Average of 1368 cardiac cycles per

subject

Subset of size four times the testing
dataset, selected blindly to avoid over-
training

Training data selection

training data. The model is trained on data from the subject
cohort, excluding the data from the subject under evaluation.
A fourfold cross-validation approach is used within each
cohort, repeated 10 times for the validation dataset. Table 4
provides details on training/testing conditions and the ANN
architecture.

Artificial Neural Network Configuration

An overview of generating an SCG-ECG derived fusion
QP is detailed in Fig. 4. The pipeline starts by extracting
features from ECG and SCG signals, which are then fed into
an artificial neural network (ANN) module. Next, prediction
weights for both signals, w,., and w,.,, derived from the
ANN module are subsequently combined with the ECG and
SCG quiescent period predictions, P, and P,.,. The rANN
fusion framework utilized in this research is structured with
an input layer, 2 hidden layers, and an output layer. Specifi-
cally, the ANN configuration in this study is a three-layer
feed-forward network. The input to the ANN consists of a
set of four features extracted from both the ECG and SCG
signals. The ANN produces outputs in the form of prob-
ability coefficients, which in turn provide weights for the
fusion of ECG and SCG predictions, detailed in Fig. 5 and
summarized in Table 5. The following Eq. (1) is utilized
to combine the r-ANN derived weights and SCG-ECG QP
predictions, to generate the final weighted fusion QP, Fp:

ey

The hidden layers utilize hyperbolic tangent-sigmoid and
log-sigmoid activation functions, while the outer layer uti-
lizes the softmax activation function. The tansig activation
function is mathematically represented as:

FQP = Pscg * W‘vcg + Pecg * Wecg

Template-Matching SCG based QP Pscg
algorithm [15] prediction (Pse,)
*
P, scg Wscg
_________________ |
SCG Extract STFT AND : Weighted fusion | |
Signal DWT coefficients . output (Wseg @and | | Predicted SCG
' Wecg) : weight (Wscg ) Weeg
f <+ Far
|
1 Predicted ECG Pecg
ECG Extract AR 1 weight (Wecg)
Signal coefficients 1
ANN module Poog™ Wecg
Linear Piecewise ECG based QP
Function [23] prediction (Pecy) Wecg

Fig.4 ANN-based cardiac gating framework. In the upper branch,
STFT and DWT coefficients are extracted from the preprocessed
SCG signals. In the lower branch, AR coefficients are extracted from
preprocessed ECG signals. Next, the features are input into the ANN
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module to generate w,,, and w,.,, which is then combined with P,
and P, respectively, leading to the computation of the fusion pre-

diction value, F, op
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Fig.5 Architecture of the
regression-based artificial
neural network (r-ANN WF)
used in the study. The network
consists of an input layer with 4
features, two hidden layers with
3 neurons each, and an output
layer with 2 neurons. The output
neurons provide the probability
weights (w,., and w,,.,) for the

scg ecg

fusion of SCG and ECG predic-

ECG and SCG features

3 Layer ANN

. : Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
tions 1 (4 nodes) (3 nodes) (3 nodes) (2 nodes)
I
I b
Table 5 Summary of ANN outputs and optimization details
Component Description Values/details
ANN outputs Outputs used for the fusion of ECG and SCG predictions, interpreted  Two outputs (w,,, and w,.,)

as coefficients or scores

Fusion function
from the ANN outputs

Activation functions Functions used in the hidden and output layers of the ANN

Optimization
Loss function

ing
Output units

Function that combines ECG and SCG predictions using the weights

Function used to quantify the performance of the model during train-

The unit of the final outputs from the ANN module

. C * .
Fusion prediction=w, ., * P, + Wy, * Py

Hidden 1: tansig; hidden 2: logsig; output: softmax

Method used to train the ANN and optimize the model’s performance Adam optimizer

Cross-entropy loss function

Milliseconds

tansig(x) = _2 2

£ I +e 2 @
The log-sigmoid activation function is given by:

logsig(x) = 3)

1+e>

The output layer uses the softmax activation function
which converts the output logits into probability weights,
ensuring that the sum of all probabilities equals 1, is given
as follows:

s
softmax(z;) = ——— (4)

e

This architecture was trained using the Adam optimizer,
which is widely recognized for its efficiency and robustness
in model optimization [33]. Additionally, the cross-entropy
loss function is utilized to quantify the model’s performance.

The regression approach adopted in this study allows the
ANN to predict continuous values, specifically the timing
of quiescent periods in milliseconds, rather than discrete
class labels. In this context, regression is coupled with the
ANN by directly feeding the network with the US-derived
quiescent periods as target values during training, as shown
in Fig. 4. This approach differs from traditional classifica-
tion tasks (c-ANN) where the output would be a categorical
label, such as “systolic” or “diastolic.” By using a regression

framework, the ANN learns to map input features (extracted
from ECG and SCG signals) to a continuous output repre-
senting the exact timing of quiescent phases within the car-
diac cycle. This eliminates the need for classification labels,
as the focus shifts from predicting categorical outcomes to
estimating precise temporal intervals, thereby enhancing
the model’s applicability in scenarios where exact timing
is critical for minimizing motion artifacts in CTA imaging.

Results

The efficacy of the -rANN multimodal framework is meas-
ured through performance metrics including the quantifi-
cation of errors associated with quiescence predictions
generated by artificial neural networks (ANNSs) and the com-
parison of computational time to prior work. The follow-
ing subsections detail the prediction results, computational
times, and comparison of CTA grades.

Quiescence Prediction Accuracy

The quiescence prediction accuracy is primarily depend-
ent on the prediction error (in milliseconds), defined as the
absolute difference between the predicted quiescent timing
and that of the subject-specific US-derived ground truth. The
degree of degradation of the reconstructed CTA images is
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i sce
[ r-ANN WF
[ c-ANN WF
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Fig.6 Comparison of predicted quiescence error timings across mul-
tiple frameworks. a Prediction error timings (in milliseconds) are
compared across a subset of patients based on diastole prediction

sensitive to mistiming during the predicted quiescent peri-
ods. The prediction errors of the regression-based ANN
framework (r-ANN WF) are compared to those of the pre-
diction times from the ECG gating framework, SCG gating
framework, and previously established classification-based
ANN framework (c-ANN WF). Figure 6 compares the aver-
age prediction error (in milliseconds) for all cardiac cycles
for diastole- and systole-based QPs for a subset of patients.
Comparisons were conducted across various computational
frameworks, including ECG, SCG, r-ANN WF, and c-ANN
WE. Table 6 in the supplementary material (Online Resource
1) contains the comparison of diastolic and systolic error tim-
ings across all healthy and cardiac patients. On average, the
r-ANN WF prediction framework improved overall diastolic
and systolic cardiac quiescence prediction by 52.6% com-
pared with ECG-based predictions when both are compared
against the quiescence baseline, B-mode echocardiography.

Table 6 Comparison of computational times for prediction of qui-
escent periods between c-ANN WF and r-ANN WF frameworks,
across varying number of cardiac cycles as input implemented using
C+ +and MATLAB

Number C+ +implementation MATLAB
of cardiac
c-ANN WF r-ANN WF  c-ANN WF r-ANN WF
cycles - s o o
(millisec- (millisec- (millisec- (millisec-
onds) onds) onds) onds)
1 5.61 4.83 26.55 21.72
10 5.65 4.90 27.83 22.36
100 7.21 5.48 30.42 25.59
1000 8.64 6.25 30.87 26.81
10,000 11.83 10.14 34.29 28.08
100,000 37.27 32.93 107.49 99.01
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Fig.7 Cumulative quiescence prediction errors (in milliseconds) for
all subjects, depicted in a box plot. Median values (highlighted in
yellow) with interquartile ranges are shown. ECG-based predictions
exhibited the highest error, while SCG-based predictions, c-ANN
WEF, and r-ANN WF display comparable error rates. The -rANN WF
demonstrates less variability and median prediction error values as
compared to c-ANN WF framework

There was an improvement of 7.8% in QP accuracy when
comparing the -rANN WF to the c-ANN WEF. The cumula-
tive prediction errors across all patients per framework are
ECG-based (75.26 ms), SCG-based (41.08 ms), c-ANN WF
(45.74 ms), and -ANN WF (42.26 ms), as depicted in Fig. 7.

Computational Time
The computational complexity of the -rANN WF is com-

pared with that of the c-ANN WF. The number of input
features (N) during both the forward and backward passes of
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ANN prediction is a primary factor of determination, where
the complexity is O(N). It should be noted that this does
not include latency associated with feature extraction-based
functions. The computational times for a QP prediction for
a cardiac cycle, averaged across all patients, are 5.61 ms
and 4.83 ms for the c-ANN WF and the r-ANN WF, respec-
tively, when implemented using C + +. Additionally, when
the algorithms were implemented in MATLAB (MATLAB
version 9.13.0 (R2022b), Natick, MA, MathWorks, Inc.), the
computational times were 26.55 ms for the c-:ANN WF and
21.72 ms for the -rANN WEF. While these gains are modest,
they may be the difference between the feasibility of real-
time implementation or lack thereof. The reduction in com-
putational time with r-ANN WF across platforms supports
the improvement of real-time prediction models. The experi-
ments were conducted on an Intel (core i7 10th gen, Intel
Corporation, Santa Clara, CA, USA) laptop with an Nvidia
graphics card (Nvidia Corporation, Santa Clara, CA, USA).

Comparison of CTA Grades

To assess the predictive accuracy of cardiac quiescence-
based gating approaches, we reconstructed the CT volumes
using phases derived from ECG, c-ANN WF, r-ANN WF,
and baseline US quiescence predictions. These recon-
structions were performed for a cohort of cardiac patients
comprising 17 individuals. The diagnostic image quality
of the left main (LM), left anterior descending (LAD),
left circumflex (LCX), and right coronary arteries (RCA)
was evaluated by two board-certified cardiothoracic

Fig.8 Categorical comparisons

radiologists (hereafter referred to as observer 1 and
observer 2) in a blinded observer study. The radiologists,
with five (observer 1) and six (observer 2) years of sub-
specialized experience in cardiac imaging, respectively,
were unaware of the source of the phase predictions. Rat-
ings were assigned using a Likert response format where
1 =excellent, 2 =good, 3 =adequate, and 4 =non-diagnos-
tic. Tables 4 and 5 (Online Resource 1) provide a detailed
breakdown of the individual diagnostic quality assess-
ments made by the two observers. The average grades
assigned by observer 1 for the US, ECG, c-ANN WF, and
r-ANN WF were 2.1 (p=0.0315), 2.5, 2.3 (p =0.0802),
and 2.2 (p=0.041), respectively. Similarly, the average
grades given by observer 2 for the US, ECG, c-ANN, and
r-ANN were 1.7 (p=0.0028), 2.1, 1.9 (»p=0.089), and 1.7
(p=0.041), respectively. Significance testing was per-
formed using the two-sided Wilcoxon signed-rank test
with a significance level (a) of 0.05. Figure 8 presents a
histogram illustrating the distribution of grades across the
reconstructed volumes for each modality, recalling that
a lower average Likert scale value corresponds to supe-
rior diagnostic quality. To assess the level of concord-
ance between observer 1 and observer 2, the unweighted
Cohen’s kappa test was used, yielding a calculated value
of 0.3208 (p <0.05). This kappa value, as per the estab-
lished criteria delineated by Landis and Koch [34], denotes
a level of agreement deemed fair. This blinding process
was critical to mitigating potential bias, as the radiolo-
gists did not know whether they were evaluating images
derived from US, ECG, or SCG predicted phases. Their

r-ANN WF

ECG c-ANN WF

between observer 1 (a) and
observer 2 (b) interpretations
are depicted using histo-

grams. Categories (US, ECG,
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assessments were focused solely on the quality of the
reconstructed images, providing an objective measure of
the efficacy of the r-ANN prediction framework.

Discussion

This study explores the benefits of utilizing a regression-
based ANN for cardiac quiescence prediction to enhance
CTA prospective gating, a key diagnostic tool for CVD eval-
uation. The analysis compares the -rANN WF framework
with ECG, SCG, and c-ANN WF methods, each offering
distinct merits and limitations. Understanding their relative
advantages is vital for optimizing the accuracy and effi-
ciency of CTA gating procedures. Prior research has exten-
sively validated echocardiography as a reliable predictive
tool for assessing cardiac quiescence [21, 35]. However,
during this study, US gating was not feasible due to the lack
of CT-compatible US transducers. Commercial US transduc-
ers cause streak artifacts that compromise CT scan quality.
Therefore, in this investigation, US-based data primarily
serve as baseline measurements of cardiac quiescence and
provide a comparative analysis against predictions derived
from SCG and ECG signals.

Existing methods, such as retrospective and prospective
ECG gating, often suffer from delays in data processing and
lack the capability for real-time application. In contrast,
the -ANN WF model combined with real-time prediction
can be utilized to generate predictions based on individual
patient data. By combining SCG and ECG, the -rANN WF
model provides a more robust and comprehensive predic-
tion, improving the accuracy of quiescent period detection
compared to models relying solely on ECG or SCG.

The use of regression models allows r-ANN to directly
predict the timing of quiescent phases in milliseconds, pro-
viding a precise estimate of the cardiac cycle’s quiescent
periods. This level of accuracy is crucial for reducing motion
artifacts in CTA images. The results highlight the significant
impact of preprocessing on model performance. Specifically,
the removal of preprocessing steps led to a notable decrease
in model accuracy. For instance, the accuracy improve-
ment of the -rANN WF model over ECG-based predictions
reduced from 52.6 to 46.3% when compared to the c-ANN
model. Additionally, while the performance gap between
the r-ANN and c-ANN models remained approximately
7%, there was an average decrease of 8.6% in individual
prediction accuracy without preprocessing. Therefore, care-
ful consideration of preprocessing techniques is essential to
improve diagnostic outcomes.

Accurate quiescent period predictions allow CTA systems
to synchronize image capture with heart motion, minimizing
artifacts and enhancing the diagnostic quality of coronary
artery reconstructions. The r-ANN WF proved to be more

@ Springer

computationally efficient with an average prediction time
of 4.83 ms, as compared to the c-:ANN WF which has a
prediction time of 5.61 ms when implemented using C+ +.
Additionally, Table 6 contains the comparison of compu-
tational efficiency for c-ANN WF and r-ANN WF with an
increase in the number of cardiac cycles, across C+ +—and
MATLAB-based implementations.

The cardiac cycle numbers chosen for input are arbitrary,
designed to reflect the range of prediction times expected
during real-time data processing. This efficiency stems
mainly from the direct prediction of quiescent timings,
eliminating the need for additional classification steps. For
clinical implementation in prospective cardiac CTA gating,
the -ANN WF’s lower computational complexity makes it
highly suitable for real-time processing.

Among the four quiescence prediction frameworks, the
baseline US-based method consistently achieved the high-
est average diagnostic quality, while the ECG-based method
consistently showed the lowest. The observer study suggests
that the US gating model is promising for CTA gating. Both
the -rANN WF and c-ANN WF frameworks perform closer
to the US-based framework and surpass the conventional
ECG framework. Furthermore, the diagnostic grades from
the observer study indicate that the r-ANN’s performance is
comparable to the c-ANN framework.

A limitation of the observer study is the small sample
size of patients and limited patient demographics. This
restricts the generalizability of our findings across broader
populations. Future studies should include a larger and more
diverse cohort to validate the robustness of the -rANN WF
model across different demographic groups and clinical set-
tings. Additionally, while the -rANN WF improves overall
prediction accuracy within the weighted fusion framework,
its performance for outlier cases remains an area of con-
cern. Specifically, ECG- or SCG-based prediction methods
have shown higher accuracy for certain patient profiles, sug-
gesting that the -rANN WF may need further optimization
or hybridization with other models to handle these edge
cases more effectively. Further investigation is warranted
to explore how patient-specific factors such as age, gender,
and comorbidities might influence the model’s predictions.
Incorporating these factors into the model or creating a strat-
ified approach could improve the r-rANN WF’s adaptability
and accuracy.

This work emphasizes the significance of alternative
cardiac CTA gating methodologies based on prediction
accuracy and computational complexity. The modified
SCG-ECG framework can potentially be utilized for car-
diac quiescence prediction. This study also presents the
potential integration of SCG into clinical practice as a more
accurate alternative to ECG for predicting cardiac quies-
cence. In the future, SCG could be implemented through
the placement of accelerometers on the chest, like EKG
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leads. This innovation would enable real-time quiescence
prediction to gate CT scanners, enhancing the quality of
cardiac imaging and improving patient outcomes by reduc-
ing motion artifacts and increasing diagnostic precision.
Furthermore, multimodal SCG-based frameworks have
emerged as advantageous in scenarios where the utilization
of an US-based gating framework faces feasibility chal-
lenges, such as incompatible CT transducers and the need
for US or echocardiography technologists.

Conclusions

In summary, this study has investigated the feasibility of
a regression-based multimodal framework that combines
SCG and ECG data through ANNSs for predicting cardiac
quiescent periods. The introduction of -rANN WF improved
cardiac quiescence prediction accuracy in addition to com-
putational efficiency when compared with c-ANN WF; fur-
thermore, the decreased prediction time renders it suitable
for real-time applications in cardiac CT gating. Comparable
diagnostic accuracy in the observer study was also observed
across the US and r-ANN WF-based CT reconstructions.
As CVD remains a leading cause of death worldwide, the
findings of this research could lead to a method that poten-
tially improves patient care and clinical practice. Further
investigations of this multimodal framework may result in
the adoption of -rANN WF as a feasible improvement over
traditional ECG gating in cardiac CTA acquisition.
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