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Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Coronary artery disease (CAD), a prevalent form of 
CVD, is typically assessed using catheter coronary angiography (CCA), an invasive, costly procedure with associated risks. 
While cardiac computed tomography angiography (CTA) presents a less invasive alternative, it suffers from limited temporal 
resolution, often resulting in motion artifacts that degrade diagnostic quality. Traditional ECG-based gating methods for CTA 
inadequately capture cardiac mechanical motion. To address this, we propose a novel multimodal approach that enhances 
CTA imaging by predicting cardiac quiescent periods using seismocardiogram (SCG) and ECG data, integrated through a 
weighted fusion (WF) approach and artificial neural networks (ANNs). We developed a regression-based ANN framework 
(r-ANN WF) designed to improve prediction accuracy and reduce computational complexity, which was compared with 
a classification-based framework (c-ANN WF), ECG gating, and US data. Our results demonstrate that the r-ANN WF 
approach improved overall diastolic and systolic cardiac quiescence prediction accuracy by 52.6% compared to ECG-based 
predictions, using ultrasound (US) as the ground truth, with an average prediction time of 4.83 ms. Comparative evaluations 
based on reconstructed CTA images show that both r-ANN WF and c-ANN WF offer diagnostic quality comparable to US-
based gating, underscoring their clinical potential. Additionally, the lower computational complexity of r-ANN WF makes 
it suitable for real-time applications. This approach could enhance CTA’s diagnostic quality, offering a more accurate and 
efficient method for CVD diagnosis and management.

Keywords  Cardiovascular disease · Cardiac computed tomography angiography (CTA) · Seismocardiography (SCG) · 
Electrocardiography (ECG) · Ultrasound (US) · Artificial neural network (ANN)

Introduction

Cardiovascular disease (CVD) results in the loss of more 
than 17.9 million lives annually, as reported by the World 
Health Organization (WHO) [1]. CVDs are disorders of the 
heart and blood vessels that affect people of all ages, ethnici-
ties, and backgrounds. In the United States alone, approxi-
mately 18.2 million people suffer from coronary artery dis-
ease (CAD), the most common type of CVD, contributing 
to more than 610,000 deaths annually [2]. The current gold 
standard for the assessment of coronary blood vessel block-
age is catheter coronary angiography (CCA), a procedure 

that involves the insertion of catheters into coronary vessels 
[3]. While CCA provides high-resolution images of coro-
nary vessels, its invasive nature [4] and associated costs [5] 
present non-trivial risks for the patients.

Cardiac computed tomography angiography (CTA), an 
alternative to CCA for CVD evaluation, utilizes a computed 
tomography (CT) scanner and intravenous contrast agent 
to produce high-resolution, three-dimensional representa-
tions of coronary vessels. CTA offers several advantages, 
including reduced invasiveness, leading to fewer complica-
tions, quicker procedures, and lower costs, while potentially 
achieving diagnostic image quality like that of CCA [6, 7]. 
As a result, CTA serves as an effective diagnostic tool that is 
particularly suitable for individuals with low to intermediate 
CVD risk. However, CTA suffers from limited temporal res-
olution, which affects the diagnostic quality of reconstructed 
images due to motion artifacts. This hinders the widespread 
adoption of CTA as the mainstream diagnostic tool for CVD 
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evaluation, making it imperative to increase the accuracy of 
cardiac quiescent period prediction during CTA acquisition.

Accurate detection of cardiac quiescence is essential 
for CVD diagnosis, as it directly improves the quality of 
imaging techniques like cardiac CTA. By precisely identi-
fying the heart’s quiescent phases, during which it remains 
relatively motionless, clearer and more accurate diagnostic 
images can be obtained. This enhancement in image quality 
significantly increases the reliability of CVD diagnosis and 
leads to better patient outcomes. Therefore, the ability to 
predict cardiac quiescence represents a significant advance-
ment in cardiovascular diagnostics.

Presently, real-time electrocardiography (ECG) is rou-
tinely used for CTA gating due to readily identifiable ECG 
features, such as the QRS complex and R-peaks [8] as shown 
in Fig. 1. The salient characteristics are summarized in 
Table 1. While ECG effectively measures cardiac electrical 
activity, it does not adequately capture the inherent mechani-
cal motion of the heart, rendering it suboptimal as a trigger-
ing mechanism for CTA. Moreover, the considerable variety 
of ECG gating functions found in the literature underscores 
a lack of conformity and standardization in this approach 
[9–11]. These limitations have spurred investigations into 
other modalities, such as seismocardiography (SCG) [12] 
and ultrasound (US) [13].

Previous studies have explored the potential of SCG 
as a predictor of cardiac quiescence. SCG records car-
diac mechanical vibrations through the placement of an 
accelerometer on the chest wall and accurately depicts 

the mechanical state of the heart [14]. Key characteris-
tics of an SCG signal are illustrated in Fig. 2 and further 
elaborated in Table 2. An SCG patient-specific template 
approach combined with heart rate prediction was utilized 
to identify and detect cardiac quiescence [15]. The SCG-
based gating strategy demonstrated greater accuracy in 
predicting systolic and diastolic quiescent periods than 
traditional ECG-based gating. While SCG-based cardiac 
gating is promising, several limitations must be addressed 
to standardize its use. One major limitation is the suscep-
tibility of SCG signal quality to noise, primarily due to 
the high sensitivity of accelerometers to motion artifacts 

Fig. 1   A labeled ECG wave-
form. Salient ECG features such 
as the P wave, QRS complex, 
T-wave, systole, and diastole 
are depicted. The systolic and 
diastolic QPs are highlighted 
along with the duration from the 
R-peak to the QP centers, Δtsecg 
and Δtdecg, respectively

Table 1   Summary of key ECG 
salient features

ECG terms Description

R, Q, S, T, P ECG waveform components representing electrical activity
Δtsecg Interval between R wave and onset of systolic quiescence
Δtdecg Interval between R wave and onset of diastolic quiescence
Systole Contraction phase of the heart (R wave to end of T wave)
Systolic quiescence (SQ) Period during systole when the heart exhibits minimal motion
Diastole Relaxation phase of the heart (after T wave until next R wave)
Diastolic quiescence (DQ) Period during diastole when the heart shows minimal motion

Systole 

HS1 HS2 

Diastole

SQ DQ 

MC

IVC

AO
RE

AC

MO

RF

Fig. 2   A labeled SCG waveform. Salient SCG features such as heart 
sounds (HS1 and HS2), mitral valve closing (MC), aortic valve open-
ing (AO), rapid ejection (RE), aortic valve closing (AC), mitral valve 
opening (MO), and rapid filling (RF) are depicted. The systolic and 
diastolic QPs are highlighted along with Δtsscg and Δtdscg
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[16]. Additionally, even in patient-specific approaches, 
failure to detect SCG waveforms may occur due to distor-
tion of heart sound peaks, stemming from physiological 
variability, leading to incorrect cardiac quiescence predic-
tions [17, 18].

While SCG effectively measures the true mechanical 
state of the heart and is cost-effective, waveform inconsist-
ency prevented its adoption over traditional ECG-based 
cardiac QP prediction. Additionally, at higher heart rates, 
ECG-based quiescence predictions were more accurate as 
compared to SCG [19]. Combining SCG and ECG could 
enhance cardiac quiescence prediction by leveraging the 
strengths of both modalities. This integrated approach 
aims to overcome the limitations of each individual modal-
ity, potentially leading to more accurate and reliable car-
diac assessments.

These findings provide an empirical foundation for mul-
timodal cardiac quiescence prediction frameworks. This 
paper builds upon earlier work involving a SCG-based 
quiescence prediction method and a weighted fusion 
(WF), SCG-ECG-based classification artificial neural 
network (ANN) framework (c-ANN WF) [20]. Building 
upon this work, a modification of the previously utilized 
weighted fusion framework is implemented using a regres-
sion approach, henceforth referred to as the r-ANN WF. 
The primary aim of this study is to determine whether 
the r-ANN WF can achieve comparable or improved pre-
diction accuracy relative to the c-ANN WF while offer-
ing reduced computational time enabling real-time clini-
cal applications. Additionally, a blinded observer study 
validates the results by comparing the accuracy of the 
r-ANN framework with c-ANN, ECG, and US prediction 
frameworks.

Methods

Subjects and Data Acquisition

We collected trimodal cardiac data, including ECG, SCG, 
and US measurements, from two groups: 11 healthy sub-
jects (mean age: 26; age range: 22–48; female/male ratio: 
4/7) and 17 subjects with cardiac abnormalities (mean age: 
62; age range: 31–80; female/male ratio: 8/10). The Emory 
University Institutional Review Board approved the data col-
lection, and each patient provided full written informed con-
sent [17, 20]. The first subset of data includes synchronous 
ECG and SCG signals (Figs. 1 and 2), along with simultane-
ously acquired US and ECG signals. These data were col-
lected using a custom trimodal system [20] in conjunction 
with a commercial ultrasound machine, the SonixTOUCH 
Research Scanner (Analogic, Peabody, MA, USA). Addi-
tionally, a set of cardiac signal data was collected using a 
modified data acquisition approach, wherein a BIOPAC 
MP150 (BIOPAC Systems Inc., Goleta, CA, USA) system 
simultaneously acquired SCG-ECG signals [17]. During the 
data acquisition process, synchronous SCG-ECG signals 
were recorded in 10-s bursts at a rate of 1.2 kHz during sub-
ject breath-hold. B-mode US data of the apical four-chamber 
view of the heart were acquired at a rate of 50 Hz using the 
commercial ultrasound machine. Simultaneously, another set 
of ECG data was collected at a rate of 200 Hz. These two 
sets of ECG data helped synchronize and align the US and 
SCG data.

For the acquisition and reconstruction of retrospective 
CTA data, two CT scanners were used, namely, the Sie-
mens Somatom Definition dual-source 64-slice CT scanner 
and the Siemens Force dual-source 192-slice CT scanner 

Table 2   Summary of key SCG 
salient features

SCG terms Description

MC (mitral closure) Mitral valve closure; onset of systole
AO (aortic opening) Aortic valve opens; blood ejected from left ventricle
RE (rapid ejection) Rapid ejection of blood into aorta and pulmonary artery
Systole Cardiac cycle phase wherein the heart muscles contract, 

pumping blood out of the chambers
Systolic quiescence (SQ) Period of minimal motion during systole
AC (aortic closure) Aortic valve closure; end of systole
MO (mitral opening) Mitral valve opens; onset of diastole
RF (rapid filling) Rapid filling of ventricles from atria
Diastole Cardiac cycle phase wherein the heart muscles relax, 

allowing the chambers to fill with blood
Diastolic quiescence (DQ) Period of minimal motion during diastole
HS1 (first heart sound) Closure of mitral and tricuspid valves
HS2 (second heart sound) Closure of aortic and pulmonary valves
Δtdscg Interval between HS2 and onset of diastolic quiescence
Δtsscg Interval between HS1 and onset of systolic quiescence
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(Siemens Corp., Erlangen, Germany). Subsequently, two 
radiologists evaluated the diagnostic quality of the recon-
structed CTA data for 17 patients with underlying cardiac 
defects in a blinded observer study.

Preprocessing Data

The preprocessing steps closely follow those described in 
previous work [19]. To address issues such as baseline drift 
and high-frequency noise, commonly present in raw ECG 
and SCG signals, we applied a 256th-order finite impulse 
response (FIR) low-pass filter. This filter, configured with a 
Hamming window and a cutoff frequency of 50 Hz, effec-
tively conditioned both ECG and SCG signals, preserving 
the QRS complex in the ECG signal and the high-frequency 
heart sounds (HS1 and HS2) in the SCG signal. Next, we 
utilized a notch filter with a center frequency of 0 Hz and a 
bandwidth of 1 Hz to eliminate DC signals, thereby remov-
ing any remaining baseline drift [19]. To empirically evalu-
ate the necessity of these steps, we conducted a comparative 
analysis using two models: r-ANN WF and c-ANN WF. The 
models were trained and tested both with and without the 
preprocessing steps, and their performances were compared. 
The B-mode US images underwent Gaussian noise removal 
and contrast enhancement. Additionally, the acquired and 
preprocessed signals were synchronized with one another, 
ensuring their alignment and coherence for subsequent anal-
ysis and interpretation.

US‑Based Cardiac Quiescence Baseline

The baseline for quiescence is defined as the minimum 
magnitude of the velocity vector corresponding to the 
interventricular septum (IVS) in the B-mode US data. This 
magnitude is computed using the phase-to-phase deviation 
measure [21]. To enhance the reliability of the identified 
quiescent periods, we implement a patient-specific voting 
mechanism. Previously described in analogous research, this 
mechanism contributes to the robustness and accuracy of 
quiescence period determination within our study frame-
work [15].

SCG‑Based and ECG‑Based Quiescence Prediction

SCG‑Based Quiescence Prediction

An overview of previously demonstrated methods used for 
the detection and prediction of cardiac quiescence using 
SCG signals [15, 19] is presented. SCG signals contain 
significant heart sound features which are closely associ-
ated with systolic and diastolic quiescent periods, exhib-
iting temporal proximity distinct from that of the ECG 
signal. The selection of the first and second heart sounds 

(HS1 and HS2) is based on their critical roles in the car-
diac cycle. HS1 precedes the systolic quiescent period, 
while HS2 follows it just before the diastolic quiescent 
period. These heart sounds are strongly correlated with the 
quiescent periods, making them essential for accurate pre-
diction in our analysis using the SCG signal. To leverage 
this, the approach utilizes temporal windows as an initial 
search space within the SCG signal. Window parameters, 
such as length and position within the cardiac cycle, are 
specifically designed to extract the waveforms associated 
with HS1 and HS2, based on statistical findings from pre-
vious studies. Normally, HS1 is lower in frequency and 
lasts longer than HS2 heart sound [22]. The average dura-
tions of the S1 and S2 components are approximately 0.14 
s and 0.11 s, respectively [23]. These characteristics are 
crucial for accurately identifying the temporal windows 
that best capture the relevant cardiac sounds within the 
SCG signal [15].

Next, two heart sound-associated waveforms are gener-
ated through the application of the Hilbert transform [24] 
to capture the temporal characteristics and high-frequency 
components present in the SCG signal. Then, a heart rate-
based phase delay function is computed to characterize 
the relationship between the delay observed between the 
peaks in the heart sound-based waveforms and the US-
based quiescent periods. Notably, heart rate is predicted 
using a linear regression-based technique, given that 
the heart rate for upcoming cardiac cycles is unknown. 
Previous studies have demonstrated a linear relationship 
between quiescent phases (expressed as a percentage of 
the cardiac cycle) derived from both SCG and echocar-
diography, in relation to heart rate [25]. By establishing 
a relationship between cardiac quiescence (in percent-
age phase) and heart rate (bpm), the timing of quiescent 
phases across varying heart rates is predicted, which is 
crucial for optimizing image acquisition during quiescent 
periods. This approach facilitates the prediction of qui-
escent periods, denoted as Pscg, during patient-specific 
SCG-based cardiac gating.

ECG‑Based Quiescence Prediction

Currently, real-time ECG constitutes the gold standard 
during prospective CTA gating, predominantly due to 
identifiable ECG features such as the QRS complex and R 
peaks. For ECG-based cardiac gating, the piecewise func-
tion of the Siemens Force scanner was used based on sali-
ent features to generate ECG-based results for this fusion 
gating framework [17, 26]. The interval from the R-peak 
to the start of the QP, shown in Fig. 1, is predicted every 
cardiac cycle. The quiescence prediction derived from the 
CTA ECG gating function is denoted by Pecg.
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r‑ANN Prediction Framework

The fusion r-ANN prediction framework utilizes prob-
ability coefficients, wecg and wscg, as weights to optimally 
combine predictions from both ECG (Pecg) and SCG (Pecg) 
signals, respectively. These probability weights are critical 
because they represent the relative confidence of each sig-
nal’s prediction. By incorporating these estimates, the model 
dynamically adjusts the influence of each signal in the final 
prediction, improving accuracy. While the ECG-SCG mod-
ule does not directly output predictions, it provides key fea-
tures for the ANN to generate these probability values. This 
approach ensures that the final quiescent period prediction 
is a weighted average, maximizing accuracy by leveraging 
both signals.

Feature Extraction and Selection

Patient-specific features were extracted from the preproc-
essed ECG and SCG signals after normalizing cardiac cycle 
lengths. Previous research has shown the effectiveness of a 
comprehensive feature set, including heart rate (HR), heart 
rate variability (HRV), wavelet-based features, signal-to-
noise ratio, and power spectrum coefficients, for cardiac 
quiescence prediction [19]. To reduce computational com-
plexity for real-time processing, recent studies identified a 
revised feature set [27]. This selection process pinpointed 
specific features that enhance predictive accuracy, as out-
lined in Table 3.

Initially, a feature set consisting of ten features was 
derived from the ECG and SCG signals. The ECG features 
include HR, HRV, signal-to-noise ratio, discrete wavelet 
transform (DWT) coefficients, and autoregressive coeffi-
cients (AR5(7) and AR6(7)) [28]. The SCG features include 
power spectral density of HS1 and HS2, short-term Fourier 
transform (STFT) coefficients [29], and DWT coefficients 
[30]. Principal component analysis (PCA) was applied to 
this feature set to evaluate the contribution of each feature 
to the overall model accuracy [31]. Based on the outcomes 
of this analysis, four final features were selected—two from 

the ECG signal and two from the SCG signal. The selected 
features for the ECG signal were AR5(7) and AR6(7), and 
for the SCG signal, they were the variance from the STFT 
coefficients and the mean of the DWT coefficients. Only 
eigenvalues accounting for less than 20% of the largest 
eigenvalues were discarded. Additional figures pertaining 
to the features are included (Online Resource 1).

Next, linear discriminant analysis (LDA) was applied 
to assess the ability of the extracted features to differen-
tiate between SCG-based and ECG-based QP predictions 
[32]. LDA maximizes the ratio of between-class to within-
class variance, ensuring optimal separability. Four features 
were used as input, and since the data has two classes, LDA 
reduced the feature space to a single dimension (LDA com-
ponent 1), as shown in Fig. 3. The resulting scatter plot 

Table 3   Details of the extracted features from the ECG and SCG signals

Feature set Originated signal Computed features Number 
of features 
extracted

Extracted features References

Autoregressive model (ARecg) ECG Coefficients of AR model 2 5th and 6th coefficients of 
order 7 AR model

[28]

Short-time Fourier transform 
(STFTscg)

SCG Mean and variance of fre-
quency spectrum

1 Variance of STFT coefficients [29]

Discrete wavelet transform 
(DWTscg)

SCG Mean and variance of coeffi-
cients generated using Coif5 
mother wavelet

1 Mean of DWT coefficients [30]

Fig. 3   Linear discriminant analysis (LDA) of features: the plot illus-
trates the separation between two classes based on the first LDA 
component derived from four features. The classes are represented by 
different markers and colors (ECG: red triangles, SCG: blue circles). 
Despite the original four-dimensional feature space, the LDA reduc-
tion shows how the features contribute to distinguishing between the 
two classes in a one-dimensional space
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shows some degree of class separation, but the overall data 
distribution suggests a non-linear nature to the problem. 
This finding supports the use of neural networks, which are 
well-suited to model complex, non-linear relationships by 
leveraging hypersurfaces in the feature space. Despite the 
original four-dimensional complexity, LDA’s reduction to 
one dimension still preserves meaningful class separabil-
ity, validating the robustness of the chosen features. These 
features were subsequently used as input into the ANN for 
further analysis. The features successfully demonstrated 
the most significant impact on predicting accuracy, thereby 
reducing the dimensionality of the input space while retain-
ing critical information for the model.

Training and Testing

This study involved two distinct subject cohorts: 11 healthy 
individuals and 17 with cardiac conditions, as detailed in 
the acquisition section. The data is partitioned into train-
ing, validation, and testing sets, utilizing a leave-one-out 
method within each cohort, with a 4:1 ratio for testing and 

training data. The model is trained on data from the subject 
cohort, excluding the data from the subject under evaluation. 
A fourfold cross-validation approach is used within each 
cohort, repeated 10 times for the validation dataset. Table 4 
provides details on training/testing conditions and the ANN 
architecture.

Artificial Neural Network Configuration

An overview of generating an SCG-ECG derived fusion 
QP is detailed in Fig. 4. The pipeline starts by extracting 
features from ECG and SCG signals, which are then fed into 
an artificial neural network (ANN) module. Next, prediction 
weights for both signals, wecg and wscg, derived from the 
ANN module are subsequently combined with the ECG and 
SCG quiescent period predictions, Pecg and Pscg. The r-ANN 
fusion framework utilized in this research is structured with 
an input layer, 2 hidden layers, and an output layer. Specifi-
cally, the ANN configuration in this study is a three-layer 
feed-forward network. The input to the ANN consists of a 
set of four features extracted from both the ECG and SCG 
signals. The ANN produces outputs in the form of prob-
ability coefficients, which in turn provide weights for the 
fusion of ECG and SCG predictions, detailed in Fig. 5 and 
summarized in Table 5. The following Eq. (1) is utilized 
to combine the r-ANN derived weights and SCG-ECG QP 
predictions, to generate the final weighted fusion QP, FQP:

The hidden layers utilize hyperbolic tangent-sigmoid and 
log-sigmoid activation functions, while the outer layer uti-
lizes the softmax activation function. The tansig activation 
function is mathematically represented as:

(1)FQP = Pscg ∗ wscg + Pecg ∗ wecg

Table 4   Summary of ANN architecture details

Component Details

Number of input features 4 (selected from ECG and SCG signals)
Number of output neurons 2 (weights for ECG and SCG predic-

tions)
Size of training set Average of 5271 cardiac cycles per 

subject
Size of test set Average of 1368 cardiac cycles per 

subject
Training data selection Subset of size four times the testing 

dataset, selected blindly to avoid over-
training

Fig. 4   ANN-based cardiac gating framework. In the upper branch, 
STFT and DWT coefficients are extracted from the preprocessed 
SCG signals. In the lower branch, AR coefficients are extracted from 
preprocessed ECG signals. Next, the features are input into the ANN 

module to generate wecg and wscg, which is then combined with Pecg 
and Pscg, respectively, leading to the computation of the fusion pre-
diction value, FQP
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The log-sigmoid activation function is given by:

The output layer uses the softmax activation function 
which converts the output logits into probability weights, 
ensuring that the sum of all probabilities equals 1, is given 
as follows:

This architecture was trained using the Adam optimizer, 
which is widely recognized for its efficiency and robustness 
in model optimization [33]. Additionally, the cross-entropy 
loss function is utilized to quantify the model’s performance.

The regression approach adopted in this study allows the 
ANN to predict continuous values, specifically the timing 
of quiescent periods in milliseconds, rather than discrete 
class labels. In this context, regression is coupled with the 
ANN by directly feeding the network with the US-derived 
quiescent periods as target values during training, as shown 
in Fig. 4. This approach differs from traditional classifica-
tion tasks (c-ANN) where the output would be a categorical 
label, such as “systolic” or “diastolic.” By using a regression 

(2)tansig(x) =
2

1 + e−2x
− 1

(3)logsig(x) =
1

1 + e−x

(4)softmax(zi) =
ezi

∑n

j=1
ezj

framework, the ANN learns to map input features (extracted 
from ECG and SCG signals) to a continuous output repre-
senting the exact timing of quiescent phases within the car-
diac cycle. This eliminates the need for classification labels, 
as the focus shifts from predicting categorical outcomes to 
estimating precise temporal intervals, thereby enhancing 
the model’s applicability in scenarios where exact timing 
is critical for minimizing motion artifacts in CTA imaging.

Results

The efficacy of the r-ANN multimodal framework is meas-
ured through performance metrics including the quantifi-
cation of errors associated with quiescence predictions 
generated by artificial neural networks (ANNs) and the com-
parison of computational time to prior work. The follow-
ing subsections detail the prediction results, computational 
times, and comparison of CTA grades.

Quiescence Prediction Accuracy

The quiescence prediction accuracy is primarily depend-
ent on the prediction error (in milliseconds), defined as the 
absolute difference between the predicted quiescent timing 
and that of the subject-specific US-derived ground truth. The 
degree of degradation of the reconstructed CTA images is 

Fig. 5   Architecture of the 
regression-based artificial 
neural network (r-ANN WF) 
used in the study. The network 
consists of an input layer with 4 
features, two hidden layers with 
3 neurons each, and an output 
layer with 2 neurons. The output 
neurons provide the probability 
weights (wscg and wecg) for the 
fusion of SCG and ECG predic-
tions

Table 5   Summary of ANN outputs and optimization details

Component Description Values/details

ANN outputs Outputs used for the fusion of ECG and SCG predictions, interpreted 
as coefficients or scores

Two outputs (wecg and wscg)

Fusion function Function that combines ECG and SCG predictions using the weights 
from the ANN outputs

Fusion prediction = wecg * Pecg + wscg * Pscg

Activation functions Functions used in the hidden and output layers of the ANN Hidden 1: tansig; hidden 2: logsig; output: softmax
Optimization Method used to train the ANN and optimize the model’s performance Adam optimizer
Loss function Function used to quantify the performance of the model during train-

ing
Cross-entropy loss function

Output units The unit of the final outputs from the ANN module Milliseconds
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sensitive to mistiming during the predicted quiescent peri-
ods. The prediction errors of the regression-based ANN 
framework (r-ANN WF) are compared to those of the pre-
diction times from the ECG gating framework, SCG gating 
framework, and previously established classification-based 
ANN framework (c-ANN WF). Figure 6 compares the aver-
age prediction error (in milliseconds) for all cardiac cycles 
for diastole- and systole-based QPs for a subset of patients. 
Comparisons were conducted across various computational 
frameworks, including ECG, SCG, r-ANN WF, and c-ANN 
WF. Table 6 in the supplementary material (Online Resource 
1) contains the comparison of diastolic and systolic error tim-
ings across all healthy and cardiac patients. On average, the 
r-ANN WF prediction framework improved overall diastolic 
and systolic cardiac quiescence prediction by 52.6% com-
pared with ECG-based predictions when both are compared 
against the quiescence baseline, B-mode echocardiography. 

There was an improvement of 7.8% in QP accuracy when 
comparing the r-ANN WF to the c-ANN WF. The cumula-
tive prediction errors across all patients per framework are 
ECG-based (75.26 ms), SCG-based (41.08 ms), c-ANN WF 
(45.74 ms), and r-ANN WF (42.26 ms), as depicted in Fig. 7.

Computational Time

The computational complexity of the r-ANN WF is com-
pared with that of the c-ANN WF. The number of input 
features (N) during both the forward and backward passes of 

Fig. 6   Comparison of predicted quiescence error timings across mul-
tiple frameworks. a Prediction error timings (in milliseconds) are 
compared across a subset of patients based on diastole prediction 

values. This is done across ECG, SCG, r-ANN, and c-ANN. b Sys-
tole prediction error timings (in milliseconds) across the ECG, SCG, 
r-ANN, and c-ANN

Fig. 7   Cumulative quiescence prediction errors (in milliseconds) for 
all subjects, depicted in a box plot. Median values (highlighted in 
yellow) with interquartile ranges are shown. ECG-based predictions 
exhibited the highest error, while SCG-based predictions, c-ANN 
WF, and r-ANN WF display comparable error rates. The r-ANN WF 
demonstrates less variability and median prediction error values as 
compared to c-ANN WF framework

Table 6   Comparison of computational times for prediction of qui-
escent periods between c-ANN WF and r-ANN WF frameworks, 
across varying number of cardiac cycles as input implemented using 
C +  + and MATLAB

Number 
of cardiac 
cycles

C +  + implementation MATLAB

c-ANN WF 
(millisec-
onds)

r-ANN WF 
(millisec-
onds)

c-ANN WF 
(millisec-
onds)

r-ANN WF 
(millisec-
onds)

1 5.61 4.83 26.55 21.72
10 5.65 4.90 27.83 22.36
100 7.21 5.48 30.42 25.59
1000 8.64 6.25 30.87 26.81
10,000 11.83 10.14 34.29 28.08
100,000 37.27 32.93 107.49 99.01
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ANN prediction is a primary factor of determination, where 
the complexity is O(N). It should be noted that this does 
not include latency associated with feature extraction-based 
functions. The computational times for a QP prediction for 
a cardiac cycle, averaged across all patients, are 5.61 ms 
and 4.83 ms for the c-ANN WF and the r-ANN WF, respec-
tively, when implemented using C +  + . Additionally, when 
the algorithms were implemented in MATLAB (MATLAB 
version 9.13.0 (R2022b), Natick, MA, MathWorks, Inc.), the 
computational times were 26.55 ms for the c-ANN WF and 
21.72 ms for the r-ANN WF. While these gains are modest, 
they may be the difference between the feasibility of real-
time implementation or lack thereof. The reduction in com-
putational time with r-ANN WF across platforms supports 
the improvement of real-time prediction models. The experi-
ments were conducted on an Intel (core i7 10th gen, Intel 
Corporation, Santa Clara, CA, USA) laptop with an Nvidia 
graphics card (Nvidia Corporation, Santa Clara, CA, USA).

Comparison of CTA Grades

To assess the predictive accuracy of cardiac quiescence-
based gating approaches, we reconstructed the CT volumes 
using phases derived from ECG, c-ANN WF, r-ANN WF, 
and baseline US quiescence predictions. These recon-
structions were performed for a cohort of cardiac patients 
comprising 17 individuals. The diagnostic image quality 
of the left main (LM), left anterior descending (LAD), 
left circumflex (LCX), and right coronary arteries (RCA) 
was evaluated by two board-certified cardiothoracic 

radiologists (hereafter referred to as observer 1 and 
observer 2) in a blinded observer study. The radiologists, 
with five (observer 1) and six (observer 2) years of sub-
specialized experience in cardiac imaging, respectively, 
were unaware of the source of the phase predictions. Rat-
ings were assigned using a Likert response format where 
1 = excellent, 2 = good, 3 = adequate, and 4 = non-diagnos-
tic. Tables 4 and 5 (Online Resource 1) provide a detailed 
breakdown of the individual diagnostic quality assess-
ments made by the two observers. The average grades 
assigned by observer 1 for the US, ECG, c-ANN WF, and 
r-ANN WF were 2.1 (p = 0.0315), 2.5, 2.3 (p = 0.0802), 
and 2.2 (p = 0.041), respectively. Similarly, the average 
grades given by observer 2 for the US, ECG, c-ANN, and 
r-ANN were 1.7 (p = 0.0028), 2.1, 1.9 (p = 0.089), and 1.7 
(p = 0.041), respectively. Significance testing was per-
formed using the two-sided Wilcoxon signed-rank test 
with a significance level (α) of 0.05. Figure 8 presents a 
histogram illustrating the distribution of grades across the 
reconstructed volumes for each modality, recalling that 
a lower average Likert scale value corresponds to supe-
rior diagnostic quality. To assess the level of concord-
ance between observer 1 and observer 2, the unweighted 
Cohen’s kappa test was used, yielding a calculated value 
of 0.3208 (p < 0.05). This kappa value, as per the estab-
lished criteria delineated by Landis and Koch [34], denotes 
a level of agreement deemed fair. This blinding process 
was critical to mitigating potential bias, as the radiolo-
gists did not know whether they were evaluating images 
derived from US, ECG, or SCG predicted phases. Their 

Fig. 8   Categorical comparisons 
between observer 1 (a) and 
observer 2 (b) interpretations 
are depicted using histo-
grams. Categories (US, ECG, 
c-ANN WF, and r-ANN WF) 
are assessed on a Likert scale 
(1 = excellent, 2 = good, 3 = ade-
quate, 4 = non-diagnostic)



	 Journal of Imaging Informatics in Medicine

assessments were focused solely on the quality of the 
reconstructed images, providing an objective measure of 
the efficacy of the r-ANN prediction framework.

Discussion

This study explores the benefits of utilizing a regression-
based ANN for cardiac quiescence prediction to enhance 
CTA prospective gating, a key diagnostic tool for CVD eval-
uation. The analysis compares the r-ANN WF framework 
with ECG, SCG, and c-ANN WF methods, each offering 
distinct merits and limitations. Understanding their relative 
advantages is vital for optimizing the accuracy and effi-
ciency of CTA gating procedures. Prior research has exten-
sively validated echocardiography as a reliable predictive 
tool for assessing cardiac quiescence [21, 35]. However, 
during this study, US gating was not feasible due to the lack 
of CT-compatible US transducers. Commercial US transduc-
ers cause streak artifacts that compromise CT scan quality. 
Therefore, in this investigation, US-based data primarily 
serve as baseline measurements of cardiac quiescence and 
provide a comparative analysis against predictions derived 
from SCG and ECG signals.

Existing methods, such as retrospective and prospective 
ECG gating, often suffer from delays in data processing and 
lack the capability for real-time application. In contrast, 
the r-ANN WF model combined with real-time prediction 
can be utilized to generate predictions based on individual 
patient data. By combining SCG and ECG, the r-ANN WF 
model provides a more robust and comprehensive predic-
tion, improving the accuracy of quiescent period detection 
compared to models relying solely on ECG or SCG.

The use of regression models allows r-ANN to directly 
predict the timing of quiescent phases in milliseconds, pro-
viding a precise estimate of the cardiac cycle’s quiescent 
periods. This level of accuracy is crucial for reducing motion 
artifacts in CTA images. The results highlight the significant 
impact of preprocessing on model performance. Specifically, 
the removal of preprocessing steps led to a notable decrease 
in model accuracy. For instance, the accuracy improve-
ment of the r-ANN WF model over ECG-based predictions 
reduced from 52.6 to 46.3% when compared to the c-ANN 
model. Additionally, while the performance gap between 
the r-ANN and c-ANN models remained approximately 
7%, there was an average decrease of 8.6% in individual 
prediction accuracy without preprocessing. Therefore, care-
ful consideration of preprocessing techniques is essential to 
improve diagnostic outcomes.

Accurate quiescent period predictions allow CTA systems 
to synchronize image capture with heart motion, minimizing 
artifacts and enhancing the diagnostic quality of coronary 
artery reconstructions. The r-ANN WF proved to be more 

computationally efficient with an average prediction time 
of 4.83 ms, as compared to the c-ANN WF which has a 
prediction time of 5.61 ms when implemented using C +  + . 
Additionally, Table 6 contains the comparison of compu-
tational efficiency for c-ANN WF and r-ANN WF with an 
increase in the number of cardiac cycles, across C +  +—and 
MATLAB-based implementations.

The cardiac cycle numbers chosen for input are arbitrary, 
designed to reflect the range of prediction times expected 
during real-time data processing. This efficiency stems 
mainly from the direct prediction of quiescent timings, 
eliminating the need for additional classification steps. For 
clinical implementation in prospective cardiac CTA gating, 
the r-ANN WF’s lower computational complexity makes it 
highly suitable for real-time processing.

Among the four quiescence prediction frameworks, the 
baseline US-based method consistently achieved the high-
est average diagnostic quality, while the ECG-based method 
consistently showed the lowest. The observer study suggests 
that the US gating model is promising for CTA gating. Both 
the r-ANN WF and c-ANN WF frameworks perform closer 
to the US-based framework and surpass the conventional 
ECG framework. Furthermore, the diagnostic grades from 
the observer study indicate that the r-ANN’s performance is 
comparable to the c-ANN framework.

A limitation of the observer study is the small sample 
size of patients and limited patient demographics. This 
restricts the generalizability of our findings across broader 
populations. Future studies should include a larger and more 
diverse cohort to validate the robustness of the r-ANN WF 
model across different demographic groups and clinical set-
tings. Additionally, while the r-ANN WF improves overall 
prediction accuracy within the weighted fusion framework, 
its performance for outlier cases remains an area of con-
cern. Specifically, ECG- or SCG-based prediction methods 
have shown higher accuracy for certain patient profiles, sug-
gesting that the r-ANN WF may need further optimization 
or hybridization with other models to handle these edge 
cases more effectively. Further investigation is warranted 
to explore how patient-specific factors such as age, gender, 
and comorbidities might influence the model’s predictions. 
Incorporating these factors into the model or creating a strat-
ified approach could improve the r-ANN WF’s adaptability 
and accuracy.

This work emphasizes the significance of alternative 
cardiac CTA gating methodologies based on prediction 
accuracy and computational complexity. The modified 
SCG-ECG framework can potentially be utilized for car-
diac quiescence prediction. This study also presents the 
potential integration of SCG into clinical practice as a more 
accurate alternative to ECG for predicting cardiac quies-
cence. In the future, SCG could be implemented through 
the placement of accelerometers on the chest, like EKG 
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leads. This innovation would enable real-time quiescence 
prediction to gate CT scanners, enhancing the quality of 
cardiac imaging and improving patient outcomes by reduc-
ing motion artifacts and increasing diagnostic precision. 
Furthermore, multimodal SCG-based frameworks have 
emerged as advantageous in scenarios where the utilization 
of an US-based gating framework faces feasibility chal-
lenges, such as incompatible CT transducers and the need 
for US or echocardiography technologists.

Conclusions

In summary, this study has investigated the feasibility of 
a regression-based multimodal framework that combines 
SCG and ECG data through ANNs for predicting cardiac 
quiescent periods. The introduction of r-ANN WF improved 
cardiac quiescence prediction accuracy in addition to com-
putational efficiency when compared with c-ANN WF; fur-
thermore, the decreased prediction time renders it suitable 
for real-time applications in cardiac CT gating. Comparable 
diagnostic accuracy in the observer study was also observed 
across the US and r-ANN WF-based CT reconstructions. 
As CVD remains a leading cause of death worldwide, the 
findings of this research could lead to a method that poten-
tially improves patient care and clinical practice. Further 
investigations of this multimodal framework may result in 
the adoption of r-ANN WF as a feasible improvement over 
traditional ECG gating in cardiac CTA acquisition.
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