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Hamiltonian learning using machine-learning models trained with continuous
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We build upon recent work on the use of machine-learning models to estimate Hamiltonian parameters
using continuous weak measurement of qubits as input. We consider two settings for the training of our
model: (1) supervised learning, where the weak-measurement training record can be labeled with known
Hamiltonian parameters, and (2) unsupervised learning, where no labels are available. The first has the
advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very
favorably to a larger number of qubits. The second requires the implementation of a physical model to
map the Hamiltonian parameters to a measurement record, which we implement using an integrator of
the physical model with a recurrent neural network to provide a model-free correction at every time step
to account for small effects not captured by the physical model. We test our construction on a system of
two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised
context and the unsupervised context. We demonstrate that the model benefits from larger training sets,
establishing that it is “learning,” and we show robustness regarding errors in the assumed physical model
by achieving accurate parameter estimation in the presence of unanticipated single-particle relaxation.
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I. INTRODUCTION

As the scale, complexity, and availability of quantum
devices continues to grow over the coming decades [1], the
ability to accurately characterize device parameters, espe-
cially unwanted effects, will become ever-more important.
For example, nonlocal errors such as crosstalk in large sys-
tems [2,3] can be problematic for quantum error correction
methods [4-8]. Detection of these unwanted effects is a
critical first step in mitigating them, with efforts to do so
complicated by the exponential scaling of the dimension
of the Hilbert space with system size and the challenges of
modeling increasingly complex systems.

Recent advances in the application of machine-learning
(ML) tools to quantum systems have shown promise in
overcoming some of these difficulties. Scalable ML mod-
els have been used to represent quantum states for state
tomography [9—14] and evolution [14,15], for learning
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unknown dynamics [16—18], and for learning device char-
acterization from measurements [19-23]. Increasingly, a
priori knowledge of a physical system has been combined
with ML models to increase accuracy and interpretabil-
ity [24]. The model-free nature of many ML solutions
has made them scalable and robust regarding many of
the common pitfalls of physical models, such as non-
Markovian dynamics [15,19-21]. There are trade-offs,
however, as more abstract models are generally less inter-
pretable, which limits the physical insights that can be
gleaned from them. Finding a balance between these two
competing properties, representability and interpretability,
is thus an important challenge.

In this work, we build upon recent advances in device
characterization applying ML models to the continu-
ous measurement of qubits [19-21]. In contrast with
the parameter-estimation approach in Ref. [19], where a
stochastic master equation (SME) is used as a trainable
model, our ML model learns a direct map from continuous
measurement inputs to the system parameters of interest.
In the case where the measurement records are associ-
ated with known device parameters (the case of supervised
learning), this approach has two advantages. First, the
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model is completely independent of any state representa-
tion (in contrast with approaches such as the approach in
Ref. [22]). The measurements need only provide enough
information to estimate the parameters of interest and not
the complete quantum state, potentially freeing the model
from the curse of dimensionality that comes from the expo-
nential scaling of the dimension of the Hilbert space and
thus making it more scalable.

Second, once the ML model is trained, parameter esti-
mation can be performed quickly even for systems with
parameters not seen during training. It can also benefit
from having been provided with many examples of noisy
measurement records associated with known true values
in the training set. This makes it possible for the model
to learn to distinguish between those features of measure-
ment records that vary with parameters and those that
are uncorrelated noise, thus potentially requiring fewer
measurements for estimation.

In the event that device parameters are not pro-
vided along with measurement records, an unsupervised
approach comparing the input with a measurement record
reconstructed from parameter estimates can be used. This
requires a map from parameter estimates to measurement
output, which is accomplished by addition of a layer com-
bining an integrator of the physical model with a recurrent
neural network (RNN) to provide a model-free correction
at every time step to account for unanticipated effects,
as long as they are consistent and small relative to the
dynamics driven by the parameters of interest. This uses
the capabilities of neural ordinary differential equations
(ODESs) found in other studies [15,25,26] but enhanced to
provide a completely-model-free correction not bound by
assumptions of linearity or Markovianity, with a projec-
tion step to return the corrected state to the manifold of
physical density operators [27]. The output of the model
is then the estimated solution to the unconditioned mas-
ter equation with learned corrections for effects beyond the
master equation, which can be compared with the mea-
surement records to update model parameters. While this
case is not completely model-free, it also does not make
rigid assumptions about the dynamics and remains capa-
ble of accurate parameter estimation in the presence of
unanticipated effects that would otherwise severely impact
accuracy. The ML model is not burdened with learn-
ing all of the physics; it just has to correct for small
effects the model may have missed, an approach known
as “discrepancy modeling” [28,29].

The fully unsupervised model can be viewed as a
denoising autoencoder [30] where the physical parameters
being estimated take on the role of the latent space, with
interpretability enforced by the presence of the physical
model in the decoder. The encoder is the map from mea-
surement records to parameters, and is the desired product
of the training to be used for fast and accurate parameter
estimation.

While the unsupervised model clearly has applications
for parameter estimation in cases where nothing is known
about the parameters of interest, the supervised approach
using just the encoder could still find applications for
systems where parameters are known at the time train-
ing data are generated, but a prediction routine is still
required in other circumstances, as would be the case for
detecting drift away from device calibration over time. We
apply both approaches to the specific problem of learning
one- and two-body Hamiltonian parameters in a two-qubit
system.

Finally, we contrast our work with recent methods for
Hamiltonian learning based on Gibbs state measurements
or real-time evolution [22,31-38]. In our work the model is
trained and performs predictions based on continuous mea-
surements modeled by a stochastic master equation rather
than Hamiltonian or deterministic-master-equation evolu-
tion combined with strong measurements. Our approach,
which is applicable to both Hamiltonian and Lindblad
parameters, requires that the parameters to be learned have
an observable impact on the continuous measurements,
and it does not use the preparation of a steady state or
energy eigenstate [22,32,38] or changing the dynamics
by adaptively changing the Hamiltonian [36] or intro-
ducing additional dynamics [34,35]. It is likely adaptive
approaches could enhance our learning as well. Finally,
the discrepancy modeling in our approach is unique in
that it allows the combination of knowledge of the phys-
ical system with model-free machine learning to increase
estimation accuracy and ML model interpretability.

This article is organized as follows. In Sec. II, we
describe the physical system of interest to us, which is
given by two qubits that are weakly measured. In Sec. 111,
we describe our ML models and their supervised and unsu-
pervised training. In Sec. IV, we show results for the
performance of the models. In Sec. V, we summarize our
results and discuss possible future extensions of this work.

II. PHYSICAL SYSTEM

Our physical system of interest is that of two qubits with
fixed position in a microwave cavity as illustrated in Fig. 1.

FIG. 1. The physical system of two qubits in a microwave cav-
ity subjected to a Rabi drive Q2 and subject to single-particle
relaxation with rate y,; and dephasing due to weak-measurement
back action with rate «.
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A single common mode of the cavity is coupled to the
computational degree of freedom of the qubits, and they
are coherently driven on resonance with a Rabi drive of
frequency 2. A two-qubit interaction term is present with
magnitude €. A weak measurement tone [39,40] is applied
to the cavity to probe the qubit state in one of the {X, Y, Z}
directions for each qubit, with measurement-back-action
dephasing rate . On adiabatic elimination of the cavity
mode [41], which we assume has dynamics evolving at a
rate much faster than timescales relevant to the qubits, we
can describe the system with the SME [42,43]

2
dp = ~ilH, pldi + ) _ DIL(p)dt

i=1

2
+3 \/gH[Li]w)de”, (1a)
i=1

2
Q
H = ZEXHLGZ]Zz, (1b)

i=1

where {X;, Y}, Z;} is the set of Pauli operators for qubit i €
{1,2}, D[LI(p) = LpL" — L {LTLp + pLTL} is the Lind-
blad superoperator, H[L](p) = Lp + pL" — pTr[p(L +
LT)] is the measurement superoperator, n is the effi-
ciency of the measurement, and L; = /k C;, where C; €
{X:,Y;,Z;} is the weak-measurement operator. Here we
have suppressed the dependence on ¢ for p, and we have
adopted the normalization convention A = 1.

The stochastic differential equations (SDEs) for the
measurement records are given by

dr; = \/gTr [,o (Li + L,T)]dt aw, 2)

where r; is the weak-measurement record for qubit i €
{1,2} and the independent Wiener increments dW}i) are
the same as those appearing in Eq. (la). This is com-
parable to the system studied in Ref. [19], except gen-
eralized to two qubits and with the addition of the two-
qubit interaction term in Eq. (1b). We also consider cases
where the weak-measurement operator L; is different for
each qubit.

The unconditioned master equation is obtained by one
averaging over all possible trajectories of the Wiener
processes and is given by

2
dp = —i[H,pldt + ) DIL(p)dr,  (3a)
i=1

ar = 17 (1 1)

(3b)

III. MACHINE-LEARNING MODEL

A. Preliminaries

We briefly review the kinds of architecture used in this
work. For a more-detailed overview, see Appendix A.

RNNs [44] are a class of artificial neural networks
designed to recognize patterns in sequences of data. Unlike
traditional neural networks, which assume all inputs (and
outputs) are independent of each other, RNNs are charac-
terized by their ability to retain information from previous
inputs in the sequence through internal memory, making
them ideal for tasks involving sequential data.

Traditional RNNs struggle to learn and retain informa-
tion over long sequences due to problems such as the
contribution of information decaying over time [45]. This
makes it hard for the network to maintain long-term depen-
dencies. Long-short-term-memory (LSTM) networks [46]
are a type of RNN architecture designed to address the
issue of long-term dependencies in sequence data. In this
work, we use LSTM-based models to model trajectories of
weak measurements.

We now describe a common design recipe used in
tasks performing unsupervised translation of data from
one domain to another, often referred to, collectively, as
the “family of encoder-decoder models.” These are also
called “sequence-to-sequence models” when working with
sequential data. Such models produce an arbitrary length,
context-dependent sequence, given an input sequence. The
length of the input sequence need not match the length of
the output sequence, and individual elements of the input
sequence need not have one-to-one correspondence with
individual elements of the output sequence.

The key idea is to use the encoder network to obtain a
compact representation of the input sequence (often called
the “context vector”). This representation is then passed
to the decoder network to produce an output sequence by
adding it to the hidden state in the decoder. This is an
extremely general framework, and potentially any neural
network can be used in such an arrangement (see Fig. 2).

In our unsupervised setup, the encoder is an LSTM that
returns the master-equation parameters as the context. The
decoder is a numerical ODE integrator implemented as an
RNN.

Input —»{ Encoder ]—{ Encoder ]—{ Encoder }

Context

Vector

[ Decoder ]—{ Decoder ]—»[ Decoder ]—»Output

FIG. 2. A high-level description of the encoder-decoder
design recipe.
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FIG. 3. Full ML model. Voltage records are measured from
the cavity system producing noisy averaged voltage records (i),
and these are sent through a neural network encoder (ii) produc-
ing system parameters as output (iii). These parameters are used
by the flex integrator decoder (iv) to produce noise-free voltage
estimates (V).

B. Model description

Our objective is to train a ML model to estimate the
physical master-equation parameters in Eqs. (1a) and (1b)
by observing the weak-measurement records described by
Eq. (2). Input data are provided for training of the ML
model in the form of a collection of averaged weak-
measurement records, where the average is over some
number of records d to reduce the effects of diffusive noise.
The output of the model is either (1) the physical master-
equation parameters of interest in the supervised case,
where labeled training data are available, or (2) the pre-
dicted measurement record satisfying the unconditioned
master equation [Egs. (3a) and (3b)] in the unsupervised
case, where true parameters are not available. The former
configuration can be interpreted as an encoder mapping
noisy trajectories to estimated parameter values, while the
latter configuration adds a decoder that takes the estimated
parameters as input and produces a predicted solution to
the unconditioned master equation. The full architecture is
shown in Fig. 3 and can be viewed as a denoising autoen-
coder taking noisy input trajectories and producing output
with the noise removed.

The encoder begins with an average pooling operation in
the time dimension to further smooth the trend component
of the voltages, followed by an LSTM layer [47] to process
the sequential input data and consolidate information from
multiple qubits into a single sequence. This is followed by
a feed-forward neural network of dense layers ending with
the parameter layer. The LSTM and feed-forward layers
constitute the neural network shown in Fig. 3(ii).

In the unsupervised case, interpretability of the latent
variables as parameters is enforced by use of them directly
in an enhanced numerical ODE integrator in the decoder
for the unconditioned master equation. The integrator is
implemented as an RNN with a custom cell that combines
a single step of Euler’s method with a correction produced
by a standard LSTM cell. This is shown in Fig. 4. The cor-
rection term is designed to compensate for unanticipated
dynamics in the physical model used by the numerical
integrator. The design leverages the concept of a neural
ODE [25] or an ODE-RNN [26,47], as it uses a neural
network to approximate corrections to the unconditioned
master equation as

dp = fmodel(t, 03 0) dt + fLsTm(2, 5 0) dt, “4)

where 6 is a set of ODE parameters, fiodel 1 the drift term
of the form of Eq. (3), and f{stm is an LSTM cell and as
such is a nonlinear, model-free function of the time, state,
and parameters.

The carry state used in the standard LSTM architec-
ture is passed between evaluations of f{ st at each time
point, which means information from the full history of
states is potentially available, allowing the modeling of
non-Markovian effects. We ensure that the output opera-
tor is a quantum state at each time step by restricting the
free parameters in the correction to have a Hermitian form
to enforce Hermiticity, by implementing a normalization
step to ensure that the trace is preserved, and by perform-
ing an orthogonal projection of the operator back onto the

/ \
ODE Integrator T
©—

-

LSTM Cell

NS

Ve @

FIG. 4. Details of the decoder RNN cell combining a standard
ODE integrator with an LSTM update.
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state space according to the algorithm presented in Ref.
[27]. In this respect, it is analogous to the approach used by
the time-dependent-variational-principle algorithm [48,49]
for modeling dynamics of matrix product states (MPSs)
[50,51].

We emphasize that the enhanced numerical integrator
primarily relies on a known physical model given by fodel
and uses the ML components in f] gy only to compensate
for discrepancies between this model and the experimen-
tal system, which are assumed to be small relative to the
known dynamics. As such, it could be categorized along
with other approaches in ML for discrepancy modeling
[28,29] that operate under the principle that small correc-
tions are easier to learn than the full dynamics. A similar
approach is taken to modeling non-Markovian dynam-
ics via RNNs in Ref. [15], although our approach differs
in that it combines discrepancy modeling with a com-
pletely general, nonlinear correction to the state evolution
based on a neural ODE. In addition, as suggested in the
outlook section of Ref. [15], our investigation focuses
on the situation where only a subset of the measure-
ment information necessary for full state reconstruction is
available, so training-data-volume requirements are sub-
stantially reduced.

Although the integrator used in the decoder for this
work is an Euler integrator for the unconditioned master
equation, this piece is completely modular in design and
can be replaced with any integrator for simulating quan-
tum dynamics. For example, a time-dependent-variational-
principle integrator using MPSs could be used for larger
systems that are approximated well by an MPS ansatz,
with the trainable decoder parameters accounting for errors
introduced by this approach. It should also be noted that,
since the output of the decoder is the solution to the uncon-
ditioned master equation, it contains an ODE integrator
rather than an SDE integrator. Once it has been trained,
however, it would be possible to switch to an SDE integra-
tor, for example, by one switching from an Euler integrator
to an Euler-Maruyama integrator, by simulating noise. The
model would then serve as a generative model that could
be useful for simulation purposes.

C. Model interpretation

The output of the decoder is the estimated solution to the
unconditioned master equation [Eq. (3b)], and the loss is
calculated as the mean squared error (MSE) between this
estimate and provided approximations of clean measure-
ments used as label values in the case where true parameter
estimates are not available. Thus, it is desirable that these
labels contain as little noise as possible, although estima-
tion can still occur with noisy labels, as seen in Sec. IV.
Clean label values are realized by one averaging over many
input groups sharing the same parameter values and using

this same average for all of the contributing input tra-
jectory groups during training. See Sec. IIID for more
details. In this way, the model can be viewed as a denoising
autoencoder [30], with denoised output provided for every
noisy input example, and with a latent space corresponding
to the physical parameters being estimated.

In our model, the parameters learned during training are
the various weights and biases of the neural networks in
the encoder and the decoder. Notably, we are not directly
estimating master-equation parameters during training, but
rather learning a function that maps noisy measurement
records to physical parameters. This approach differs from
that in Ref. [19], where the physical parameters are the
result of an optimization and no such function is learned.
One advantage of our approach is that it enables extremely
fast parameter estimation once the model is trained, even
when observing systems with parameter sets not included
in the training data. Furthermore, in the case where the
training data include true physical-parameter values, it
allows us to learn the map with the encoder only, bypass-
ing the need for a physical model entirely. In this case,
scaling is limited by the amount and type of training data
required, rather than system size. The amount of training
data required will vary by application, and requires further
investigation. Finally, learning a map for physical param-
eters as a function of measurement records allows the
possibility of fewer measurements being required for pre-
diction versus training as the model learns to account for
noise in the input data, as illustrated by results in Sec. IV
showing how estimation accuracy increases with training-
set size even when the number of input records is held
constant.

A second difference between our approach and that in
Ref. [19] is that when labeled training data are unavailable
and a physical decoder is necessary, the flexible correction
scheme in the decoder allows the model to compensate
for non-Markovian or nonlinear dynamics since it is not
bound by a Lindblad form, while still being informed by
the master equation for a first-order model of the dynamics.

D. Training and data

To generate the data for training, validation, and testing,
we use an Euler-Maruyama integrator to solve Eq. (2) for
both qubits for each of 40 values of € evenly spaced on
[0,2) with fixed 2 = 1.395 rad/ps, and the same num-
ber of 2 values evenly spaced on [1,5) with fixed ¢ =
1.0 rad/ps for a total of K = 80 (L2, €) pairs. For each
pair of values (€2, €;), N = 32000 measurement trajec-
tories are simulated for 7 = 4 ws. Half of the collection
of pairs of values (€2, €;), corresponding to every other
parameter pair, is used for training. The other half, corre-
sponding to parameters midway between training values,
is split evenly in the number of trajectories to be used
for validation and testing. This ensures the training set
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contains a disjoint set of parameter pairs from the vali-
dation and test set. The two end points of the validation
and test set are excluded from each end to ensure that the
training data extend slightly beyond the domain of vali-
dation and test values. Only weak-measurement records
are being used, and no strong measurements are being
performed.

Values of « =3.326 rad/ps and n = 0.1469 are
selected to be consistent with the example of supercon-
ducting qubits as found, for example, in Ref. [19], although
with a stronger measurement back action « after sim-
ulations showed a larger value offers a good balance
between dephasing rate and measurement noise. While
either 2 or € or both are treated as unknown parame-
ters and constitute the latent space of our model, it is
assumed in our simulations that ¥ and n are known with
high precision as they have already been calibrated. Our
approach can be used to perform this calibration step, since
the latent space of the model is not limited to Hamilto-
nian parameters and could support any combination of
Hamiltonian and Lindblad parameters as unknown vari-
ables. Alternatively, other calibration methods found in
the literature can be used to estimate them, such as in
Ref. [52]. It should be noted, however, that in practice
if calibration errors are present in the model values, the
degrees of freedom in the decoder should make parameter
estimation robust regarding these errors as demonstrated
in what is likely the more-challenging case of unantic-
ipated single-particle relaxation examined in Sec. IV C.
The impact on parameter-estimation accuracy is expected
to be small for small calibration errors. A study quan-
tifying this dependency is an interesting area for future
work.

During training, for each true parameter set 6 =
(R, €1), trajectory groups of a preset size d are ran-
domly selected from the full training set and their aver-
ages are provided as input values to the model, such that
each minibatch comprises M = N/d averaged trajecto-
ries {ij,k(t)};"lzl where X; 4 (1) = (1/d) X", rix (), rix(t) is
measurement record i for parameter set k, and / is a set
of trajectory indices of size d randomly selected from
1,2,...,N without replacement until all N trajectories are
used, which defines one epoch of training. In this way, each
minibatch consists of a different set of noisy trajectories
as input to maximize the diversity of training examples.
In the unsupervised case, for all j = 1,..., M, the value
x(f) to be used in the loss function is the average over
the full training set of trajectories associated with the true
parameter set 6, such that x;(f) = (1/N) Zf\i 1Tk (D).

To make the interpretation of our model as a denois-
ing autoencoder more concrete, we note that denoising
autoencoders are characterized by a corruption process
C(y|y) whereby noisy inputs y are generated for each
uncorrupted training example y [30]. In our case, the full
trajectory means x(f) takes on the role of y, approximating

the solution to the unconditioned SME, while the random
selection of much-smaller trajectory groups is the process
by which the corrupted data elements y are generated.

In the supervised case, the loss function is the MSE
between predicted parameter sets 6 and the provided true
values 6;:

ﬁ:piKXk:Hék—ekHz, 5)

where p is the dimension of 6, the number of param-
eters being estimated. This is further averaged over the
M groups of size d when multiple trajectory groups are
provided as input. In the unsupervised case, the loss func-
tion is the MSE between each x; and the estimated clean
measurement record:

1
~ MKN,

c 3 = MG OO

Jokt

(6)

where M denotes the model, ¢ is the time index, and
N, = T/At is the number of time points excluding the
initial condition.

During evaluation, validation and test error is evalu-
ated in a manner similar to how training minibatches are
selected, with groups of size d randomly chosen from the
full validation and test sets, followed by the calculation
of the MSE. This process is repeated 100 times and the
average is taken as the calculated MSE for each set. Note
that for some scenarios only one group will be available
as input, either because the data is noise free or because
the group size equals the dataset size, in which case the
shuffling has no effect.

Training is performed for multiple runs of 100 epochs,
with a learning rate of 3 x 1073 and a decay rate of 0.99
per epoch, with the learning rate reset after each run, con-
tinuing until the validation loss drops by less than 5% from
run to run, and for the last 20 epochs of the final run. Once
converged, the MSE is computed for the validation and test
sets. This entire process is performed 100 times, each with
a different random initialization of the model parameters.
The best model is considered to be the one with the small-
est validation loss after the final epoch, and this model is
used to evaluate the MSE for the test set. Hyperparameter
tuning for the model layer sizes is performed with a grid
search for a physical system with parameters distinct from
those in Sec. IV.

IV. EVALUATION

To fully assess the performance of the model, we eval-
uate two distinct cases: the encoder alone to evaluate the
case of labeled training data, and the full model for the
case where labels are not available. We consider a range of
trajectory group sizes d as well as noise-free data derived
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FIG. 5. Estimations of the parameter pair 6, = (S, €;) (top)
and the squared error (bottom) averaged over four noisy tra-
jectory groups of d = 4000 measurement records for a model
trained on clean data and noisy data, then evaluated on noisy
data. Shuffle-evaluated test-set MSEs are (8.67 x 1073, 5.83 x
10™*) and (4.94 x 1073, 4.87 x 10™*), respectively.

from an Euler integration of the unconditioned master
equation. The noise-free case is denoted by oo as the
number of trajectories in all tables.

To minimize the impact of the weak-measurement back
action via the parameter «, in Secs. IVA and IVB the

initial state is chosen to be spin-up in the directions of mea-
surement, and the X and Y directions are used for the first
qubit and the second qubit, respectively. A different con-
figuration is used in Sec. IV C, where more-diverse mea-
surements are needed to correct for unanticipated single-
particle relaxation not explicitly present in the decoder’s
physical model.

A. Supervised learning

First, we study the impact of noise in the training set
and how it helps or hinders the model’s performance when
predicting parameters from noisy data. We do this by per-
forming estimation with two models, one trained with
noise-free measurement values, and the other set trained
with eight groups of d = 4000 averaged measurement
records. Both models are then evaluated on a test set of
noisy, averaged measurement records with the same group
size d as the noisy training set. In both cases, the model
with the best validation loss on its respective validation set
out of 100 randomly initialized models is used.

Figure 5 shows an example of the error of the estimated
parameter pair 6; compared with truth for each of the 32 k
values in the trimmed test set. We see that for many specific
pairs and for the overall MSE, the model trained on the
noise-free measurements produces less-accurate estimates
than the model trained on noisy data. This is consistent in
the €2 and € errors. This suggests that the model learns to
account for noise, as expected, and training with noise on
the level of measurements used for prediction is beneficial.

Next we examine the impact of the training group size
d. Table I lists test-set MSEs for a number of training sets
where evaluation is done with the same group size d used
for training. The best and median were taken from the
list of results sorted according to validation loss, as this
is what would be known in practice during training. Here
we see a steady improvement as the number of trajecto-
ries in a group increases, and noise decreases, saturating
in the case where noise-free data are used for training and
evaluation. We note that this test differs from the test cor-
responding to the results in Fig. 5, where the model trained
without noise was evaluated on noisy data, as here we
consider only the case where training and test group sizes
are equal.

TABLE I. MSE pair for (€2, €) estimates on the supervised training set with only the encoder used.
d Best MSE Median MSE Mean MSE
2000 9.87 x 1073, 8.76 x 107* 9.72 x 1073, 8.71 x 1074 9.75 x 1073,9.79 x 1074
4000 4.94 x 1073,4.87 x 107 523 x1073,5.44 x 1074 5.62 x 1073,5.75 x 1074
8000 4.17 x 1073,2.74 x 10~ 2.94 x 1073,2.74 x 10~* 338 x1073,4.13 x 1074
16 000 2.19 x 1073, 2.06 x 10~ 1.40 x 1073,1.92 x 1074 1.80 x 1073,2.94 x 1074
00 1.01 x 1073, 2.04 x 1073 4.51 x 107%,4.82 x 1073 1.32 x 107, 5.68 x 1073

044080-7



KRIS TUCKER et al.

PHYS. REV. APPLIED 22, 044080 (2024)

TABLE II. MSE of (2,¢€) when d = 4000 trajectories are used to estimate parameters for differing training-set sizes N for an
unsupervised training set with fixed 2 and varying €. The values of k and 7 are assumed to be known exactly.

Median MSE

Mean MSE

N Best MSE

4000 1.51 x 1073, 1.12 x 1073
8000 327 x 1074,7.71 x 1074
16 000 1.83 x 107*,7.49 x 10~*
32000 8.14 x 107,7.16 x 1074

6.58 x 1074, 9.86 x 10~*
5.20 x 1074,7.94 x 10~*
3.20 x 1074, 8.41 x 1074
9.82 x 107%,8.15 x 10~*

8.33 x 1074, 1.08 x 1073
5.38 x 1074, 8.81 x 1074
3.07 x 1074, 8.38 x 10~
1.45x 1074, 8.12 x 10~

B. Unsupervised learning

We now consider the unsupervised case, where the
labels of the training data are not known, but it is assumed
that the physical model in the decoder is correct, i.e., we
are still not learning parameters for the drift function cor-
rection fistv, Which we consider in Sec. IVC. We are
therefore using the MSE in Eq. (6) as the loss function.

First we examine how parameter-estimation accuracy
for a fixed group size d = 4000 varies with the total
training-set size N. Table II shows (€2, €) test-set MSEs for
the case where 2 is unknown but fixed at a true value of
1.395 rad/ps and € is allowed to vary, for various training
set sizes N. The same test set containing 16 000 trajecto-
ries is used for each row. From the Table II, we see that
accuracy increases significantly as the amount of training
data increases, even though the groups being presented to
the model for parameter estimation remain the same. This
indicates that a greater diversity of noisy measurement
records when training results in models that can pro-
duce more-accurate parameter estimates when presented
with the same number of measurements when perform-
ing prediction. This motivates the use of N = 32 000 going
forward.

Next we consider the impact of group size d and
measurement-record time spacing Af on accuracy. Table
IIT shows (£2,¢€) test-set MSEs for the case where Q is
unknown but fixed at a true value of 1.395 rad/ps and €
is allowed to vary. It illustrates how extremely low test-
set MSEs are achievable for Q in this case, which is
expected given the high volume of training data available
for a single value. The accuracy of € estimates depends on
both the number of trajectories used to create each input
sequence and the time spacing at which measurements are

recorded. To evaluate measurement records with differing
time spacing, trajectories simulated with Az = 278 s are
subsampled to avoid the introduction of numerical integra-
tion error associated with simulations with a larger time
step.

Table IV shows test-set MSEs for the training set where
both @ and € are allowed to vary. This is a harder task
as the model has fewer training data for each unique 2
value, hence the loss in accuracy for that parameter. The
error in € remains roughly the same as or better than in
the fixed-Q2 case, with a best-case root-mean-square error
of around 1% of the median test value of €. Here we see
a roughly linear trend in the MSE versus d at smaller time
steps, as doubling of the number of trajectories in a group
roughly halves the MSE. This trend breaks down, how-
ever, for the At = 2% s case, suggesting a permissive
time-step threshold around At = 276 |us at or below which
the expected trend in accuracy versus input-data size is
realized.

C. Model correction

In this section we demonstrate the ability of the
decoder to correct for dynamics not explicitly considered
in the physical model [Eq. (1a)]). This is done by our
enabling training for the decoder LSTM parameters. For
the datasets, we simulate 30000 trajectories with fixed
Q = 1.395 rad/ps, which is known to the model, but
with varying unknown e, which is the parameter to be
estimated. We add a dissipative term for each qubit cor-
responding to the Lindblad operator D[,/ys0; ](p) in Eq.

1

(la), where y; = 0.1 and o;” = 5(X; — i¥;) is the single-

particle relaxation operator mapping the excited state to

TABLE III. MSE of (€2, €) estimates on the unsupervised training set with fixed 2 and varying € and N = 32, 000. The values of k

and 7 are assumed to be known exactly.

At=2"%ps

At=2"%ps

d At=2"%ps

2000 5.78 x 1073, 1.40 x 1073
4000 8.14 x 1073, 7.16 x 107*
8000 8.51 x 107°,3.42 x 1074
16 000 831 x 107°,1.57 x 107*
00 1.66 x 107%, 6.08 x 10~°

1.20 x 1074, 1.40 x 1073
1.66 x 1074,7.90 x 10~4
7.16 x 107°,3.63 x 10~*
1.66 x 1074, 1.57 x 10~*
721 x 1076, 1.04 x 107

122 x 1074,2.83 x 1073
1.19 x 1074,2.09 x 1073
8.02 x 107>, 1.82 x 1073
1.19 x 1074, 1.89 x 1073
1.52 x 107°,1.71 x 1073
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TABLE IV. MSE of (€2, €) estimates on the unsupervised training set with varying €2 and € and N = 32000. The values of x and n

are assumed to be known exactly.

At=2"%ps

At=2"%pus

d At=2"8ps

2000 1.12 x 1072, 8.01 x 1074
4000 5.87 x 1073, 4.56 x 1074
8000 3.08 x 1073,2.32 x 1074
16 000 1.68 x 1073,1.19 x 1074
00 1.25 x 1073,7.75 x 1076

1.10 x 1072,8.42 x 10~
6.46 x 1073,5.07 x 10~
2.98 x 1073,2.87 x 10~
1.11 x 1073, 1.63 x 10~*
1.76 x 107°,7.07 x 1073

123 x 1072,2.12 x 1073
6.39 x 1073, 1.68 x 1073
3.34 x 1073, 1.46 x 1073
1.58 x 1073, 1.39 x 1073
1.14 x 1074, 1.23 x 1073

the ground state. Note that while the choice of a single
unknown parameter is made in this section to provide a
clear and straightforward demonstration, the model still
supports multiple possible parameters to be estimated in
addition to the decoder degrees of freedom.

+ no correction
A corrected
141 — truth

1.6

+*
w
0 2 4 6 8 16 12 14
Kk
0.52 1
0.50 1
0.48
S 0.46
I
> 0.44 1
Q
0.42 1
no correction
0.40 4
—— corrected
038 1 — truth

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

FIG. 6. Estimate of € (top) and P(Y; = 0) when € = 1.7 (bot-
tom) and measurement is in the X direction with spin-up in the Z
direction as the initial state for both qubits for training data sim-
ulated with single-particle relaxation rate y; = 0.1 but a model
that does not explicitly account for y;. Results are shown for
the physical model alone and with a correction learned by the
decoder LSTM.

In this case, we take a more-diverse set of measure-
ments, simulating 10 000 trajectories measuring in each of
the X, ¥, and Z directions for both qubits, and relaxing «
to one fourth the value used in the last section to reduce
measurement back action. Spin-up in the Z direction is the
initial state for each qubit. This more-cautious approach to
measurement is warranted if completely unknown effects
are expected to be present. More information about the
type of phenomenon, but not necessarily the magnitude,
could allow a more-targeted measurement scheme, but
here we keep it general. The trajectory group size d used
for each input was 5000, and the best of 20 randomly
initialized models was selected for the results in this
section.

The results of the parameter estimation with and without
the correction are shown in Fig. 6 and Table V. Here we see
that single-particle relaxation has introduced a significant
bias to the estimated € parameters when unaccounted for
in the model, but the decoder LSTM has successfully cor-
rected for the effect, returning the MSE to a value much
closer to where it would have been had the physical model
explicitly accounted for it.

V. CONCLUSIONS

We have proposed a machine-learning model based on
a denoising autoencoder capable of direct estimation of
physical parameters in a system modeled by a stochas-
tic master equation from weak-measurement records. The
model is capable of learning in a supervised context and an
unsupervised context, and it can accurately predict param-
eters for systems not seen in the training data. While
leveraging the use of a master-equation integrator to enable
unsupervised learning, the autoencoder is robust regarding

TABLE V. MSE of € estimates obtained for different y; values
in the model. The final column shows the results when learning
is enabled for the free parameters in the decoder to account for
the unanticipated term y,. The measurement-time spacing At =
278 us.

d ys = 0.1 ys = 0.0 ys = 0.0 4 correction
5000 2.84 x 1073 0.142 3.59 x 1073
00 2.12 x 107° 0.145 3.26 x 107
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unanticipated dynamics not included in its physical model.
We have demonstrated this in the case of unanticipated
Lindblad dissipative terms. Previous work established that
LSTM models are capable of learning dynamics beyond
unknown Lindbladian dissipation [15,21], and it will be an
interesting subject for future work to examine the robust-
ness of our model regarding the presence of unanticipated
non-Markovian and nonlinear dynamics in the training
data.

Another potential subject for future investigation is the
ability of the model to estimate parameters for much-larger
systems in the supervised context, where it may not neces-
sarily be subject to the exponential scaling of the Hilbert
space with system size that often limits other approaches
to parameter estimation.
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APPENDIX A: RECURRENT NEURAL
NETWORKS

In this appendix, we describe RNNs in additional detail.
Our presentation is mostly standard and closely follows the
treatment in Ref. [54].

RNNs are a class of models which use a cycle within
their network structure such that the output of a unit
depends in some manner on its own output at some pre-
vious step, so they have an underlying recursive structure
[44]. This structure allows RNNs to model sequences of
data where information at the current index depends on

® ® ® ® O
D = Sededed
5 &b 80

FIG. 7. Basic architecture of an RNN. The model on the left
can be thought of as “unrolling” itself in time.

information processed in the past. While the term “recur-
rent neural networks” refers to a general class of models
that share this recursive pattern, in the ML literature,
it is used to refer to a specific kind architecture with
a simple cyclic pattern (sometimes also called “Elman
networks”) [55].

The model operates as follows (see Fig. 7). Given an
input vector x;, where ¢ is an index over the sequence to
be modeled, we first multiply x; by a weight matrix W and
pass the result through a nonlinearity g to produce values in
a hidden layer 4;. However, unlike feed-forward networks,
we supplement this value with values from previous hid-
den layers 4,1, multiplied by a weight matrix U as well.
This can be summarized as

h = g(Uhi—1 + Wxy). (A1)

Additionally, each unit of the RNN can produce an output

1, which can be parameterized as follows:

e =f Vhy), (A2)

where f is usually taken to be a softmax function and V

is a weight matrix. This network is then trained through

an analogue of backpropagation that unrolls the sequence

along its index referred to as “backpropagation through
time” [56-58].

In practice, it has been observed that such networks can
be hard to train for longer sequence lengths. This is mainly
due to the “bottleneck” caused by the previous hidden
state vector s;_; having to summarize all of the relevant
information at the current index inside a fixed-size vector.
Another difficulty encountered is due to repeated multipli-
cations of small values in backpropagation through time
causing poor gradient flow to steps further back in time
(referred to as the “vanishing-gradient problem” [45]).

LSTMs are a commonly used extension of RNNs to
tackle the shortcomings pointed out above [46]. The cen-
tral idea is to gain more-precise control over information
being allowed to flow through the network. In addition to
the hidden state, an additional so-called memory cell (also
called the “cell state”) is computed, which, like the hidden
state, allows the flow of information along the length of the
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TABLE VI. MSEs for random-forest models with row-major input flattening and column-major input flattening, respectively.

Median MSE

Mean MSE

d Best MSE

2000 235 %x1073,2.63 x 1073
4000 1.23 x 1073, 1.31 x 1073
8000 749 x 1074,7.34 x 1074
16 000 3.36 x 1074,3.26 x 1074
00 234 x 1074,3.48 x 1073

413 x 1073,4.08 x 1073
344 x 1073,3.52 x 1073
1.61 x 1073,1.68 x 1073
1.47 x 1073,1.50 x 1073
1.54 x 1073,1.37 x 1073

441 x 1073,4.52 x 1073
3.69 x 1073,3.70 x 1073
1.86 x 1073, 1.86 x 1073
1.65x 1073, 1.71 x 1073
1.75 x 1073, 1.79 x 1073

sequence. The memory cell is designed such that informa-
tion can be added to it or subtracted from it. See Ref. [30]
for details of how this is done.

APPENDIX B: BASELINE—RANDOM FORESTS

To justify our choice of using LSTMs as the backbone
of our proposed architecture, we provide a comparison
using random forests [59] for the encoder-only experi-
ments described in Sec. IVA with. We choose a com-
parison against random forests because they have been
shown to have robust off-the-shelf performance across a
wide variety of tasks [60]. In this appendix we give a brief
overview of random forests and a comparison with results
in Table I, which justify the use of neural network-based
architectures in our subsequent experiments.

1. Model description

Here we provide a brief overview of the random-forest
model, closely following the treatment in Ref. [61]. Deci-
sion trees are simple tree-based models that make decisions
by recursively partitioning the input feature space into
regions and then returning the label or output associated
with that region. While decision trees are often robust
regarding noisy features and exhibit a high degree of inter-
pretability, they can grow to large depths, thereby overfit-
ting the training set [61]. This effect is often addressed by
learning a random forest, i.e., a collection (ensemble) of
decision trees, each of which is constructed independently
by training on a random subset of the data, in addition to
using some random choices in the algorithm. This intro-
duces diversity among the trees, preventing the model from
becoming too dependent on any single feature. For regres-
sion tasks (i.e., the output is continuous valued), as in this

work, the final prediction is typically the average of the
predictions made by each tree.

The combination of random sampling and majority vot-
ing (or averaging) is a technique known as “bagging” (or
“bootstrap aggregating”) [62]. Random forests use bag-
ging to create an ensemble that is more robust (reducing
uncertainty on the output) and less prone to overfitting
compared than single decision tree. Apart from their versa-
tility and robustness, random forests provide insights into
feature importance, helping to identify the most-influential
variables in the model.

2. Training setup

Our aim is to compare the prediction accuracy for € for
a fixed Q in the case of supervised learning between the
random-forest model and the model described in the main
text. To do so, we use the same procedure as described
in Sec. IV A. The training set contains averaged trajecto-
ries sampled randomly in groups of differing size d, and
the trajectories in the dataset correspond to 40 values of
€ evenly spaced on [0,2) for a fixed 2 = 1.395 rad/us.
The crucial hyperparameters for our method are the num-
ber of trees in the ensemble (set to 100) and the maximum
depth of each tree (set to 25). These were found via fivefold
cross-validation over the dataset.

A clear point of difference compared with the LSTM-
based model is the form of the input given to the random-
forest model. Unlike the LSTM model, input to the
random-forest model must be one dimensional. We use
the concept of “dimensionality” to refer to the number
of weak-measurement values at each time step. Our input
is two dimensional since we have a weak-measurement
value for each qubit. This dichotomy requires us to “ flat-
ten” the input values into a single dimension. This can

TABLE VII. MSE pair for € estimates on the supervised training set with only the encoder used. The first value is the MSE of the
random-forest model with column-major ordering, and the second value corresponds to the MSE of the LSTM-based model.

Median MSE

Mean MSE

d Best MSE

2000 2.63 x 1073, 1.47 x 1073
4000 1.31 x 1073,7.37 x 10~
8000 7.34 x 1074,4.39 x 1074
16 000 3.26 x 1074,1.83 x 10~*
o0 3.48 x 1072, 8.11 x 107

4.08 x 1073,1.51 x 1073
352 x 1073,7.16 x 1074
1.68 x 1073, 6.00 x 10~*
1.50 x 1073, 2.13 x 10~*
1.37 x 1073, 5.59 x 1073

452 x1073,1.63 x 1073
3.70 x 1073, 8.56 x 1074
1.86 x 1073,4.67 x 104
1.71 x 1073,2.68 x 104
1.79 x 1073,7.41 x 1073
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be done in two ways: either by keeping measurement val-
ues corresponding to a particular time step close together
(column-major order) or by concatenating the values of the
second qubit after all the values of the first qubit (row-
major order). We find that the choice of ordering makes
little difference to our results as we demonstrate next.

3. Results

We present the impact of the choice of input order in our
random-forest model in Table VI. We find the difference in
MSE values to be minimal.

We now compare the results of the random-forest model
in column-major order with the results of the LSTM model
in Table VII.

We find about an order-of-magnitude difference in the
MSEs achieved by the random-forest model compared
with the LSTM model. The trend of increased accuracy
with increasing size of d, also observed in the LSTM
results, continues to hold in this case. To get a better sense
of the uncertainty, we also present the mean MSEs and
their 1-standard-deviation error bars for both our models
in Fig. 8. The fact that our choice of “flattening” does
not affect the overall performance of the random-forest
model suggests that the difference in performance between
the random-forest model and the LSTM model could be
attributed to the LSTM-based model taking the sequential
nature of the data into account versus the random-forest
model treating each trajectory as just a high-dimensional
vector. We leave a thorough investigation of these issue to
future work.

We also provide a comparison of the number of param-
eters used in both our models in Table VIII. Since the
number of parameters in a random-forest model depends
on the depth of the trees, which in turn depends on the
complexity of the dataset, we report the maximum number
of parameters across all models obtained after training.

0.006 ——&— Row-Major
—— Column-Major
- LSTM
0.005
0.004
£ 0.003
w
0.002 I
0.001 - -[ I
0.000
50 100 150 200 250 300
d
FIG. 8. Mean MSEs and their 1-standard-deviation error bars

for the random-forest model with different input orderings and
the LSTM model.

TABLE VIII. Number of parameters used in the two models
studied.

Method Number of parameters
LSTM 1619316
Random forest 129380
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