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ABSTRACT. We review different (reduced) models for thin structures using
bending as principal mechanism to undergo large deformations. Each model
consists in the minimization of a fourth order energy, potentially subject to
a nonconvex constraint. Equilibrium deformations are approximated using
local discontinuous Galerkin (LDG) finite elements. The design of the discrete
energies relies on a discrete Hessian operator defined on discontinuous functions
with better approximation properties than the piecewise Hessian. Discrete
gradient flows are put in place to drive the minimization process. They are
chosen for their robustness and ability to preserve the nonconvex constraint.
Several numerical experiments are presented to showcase the large variety of
shapes that can be achieved with these models.

Keywords: Nonlinear elasticity; plate deformation; folding; prestrain metric;
discontinuous Galerkin; reconstructed Hessian; numerical simulations

AMS Subject Classification: 65N12, 656N30, 74K20, 74G65

1. INTRODUCTION

Deformations of thin materials are widely observed in nature, from the snap-
ping of the venus flytrap [29, 62] to the natural growth of soft tissues in leaves and
flowers [35, 69, 13, 47]. They also appear in a variety of man-made applications
[41, 42]. Some thin structures, called bilayers, are made of two thin layers of differ-
ent materials that react differently to external stimuli (changes in temperature or
humidity, electrical or chemical stimuli, etc.). Examples include the bimetal strips
in thermostats, microactuators [38, 11], and plywood panels in climate-responsive
architectures [52] inspired from the morphology of conifer cones. Bending of thin
sheets can also occur when folding is present; examples of this include origami
and flexible structures [63, 49]. We refer to the review paper [47] for additional
examples.
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2 LARGE DEFORMATIONS OF PLATES

All the phenomena listed above can be modelled as thin limits of hyperelastic
materials. A thin structure of thickness s endowed with a hyperelastic energy F
is approximated by its two dimensional midplane endowed with a limiting energy
as the thickness vanishes. A hierarchy of reduced models for elastic deformations
is described in [33], in which the type of the model depends on the scaling of the
elastic energy F, with the thickness s of the plate. The scaling E; ~ s corresponds
to stretching, the scaling E, ~ s* corresponds to bending, and the scaling Ey ~ s°
corresponds to the von Kérmén theory of plate bending. Each of these reduced
energies are the I-limit of E,. We refer to [46] for the membrane theory, to [34, 32,
30] for the bending theory, and to [31, 33] for the von Kdrmén theory. In particular,
cluster points of sequences of minimizers of {Es}s>0 are minimizers of the I'-limit.

In this work, we are mainly interested in the bending regime, namely when the
hyperelastic three dimensional energy

(1) Es(u) = /Qx(_s ) W(Vu(X)G_%(x))dx

scales like the cube of the thickness of the plate Q x (—35,5). Here, Q is the

midplane of the thin structure, u: Q x (-3, 3) — R3 is a deformation of the plate,
G is a prescribed Riemannian metric (deformations satisfying the target metric G

are stress-free), and W is some energy density function satisfying [32]

o W € CO(R3*3), W € C? in a neighborhood of SO(3);

e W is frame indifferent: W (F) = W(RF) for all F € R3*3 and all R €
SO(3);

e W(F) > Cdist?(F,S0(3)) for all F € R3*3 and W (F) =0 if F € SO(3),

where SO(3) denotes the special orthogonal group of rotations in R®. In this work,
we restrict our considerations to the St. Venant-Kirchhoff stored energy, see (8).

The prestrain metric G characterizes the material. From the third property of
the energy density, we see that when G is the identity matrix, the minimum of the
hyperelastic energy (1) (without boundary conditions or external forces) is zero and
is achieved by rigid motions. That is, at equilibrium, the plate is stress free and
flat. When the Riemannian curvature tensor of G is not identically zero, then the
minimum of the hyperelastic energy is strictly positive [48]. In this case, there is no
stress-free configuration. The plate is then said to be non-Euclidean or prestrained
and generally exhibits more complex equilibrium shapes.

In 1850, Kirchhoff [40] obtained a reduced energy that can be formally obtained
assuming that the material deformation reads

(2) u(zy, 2, x3) = y(x1, x2) + 23v(21, T2),

where v is the normal to the deformed midplane y(€2). This assumption, used
by Love [50], is usually referred to as (nonlinear) Kirchhoff-Love ansatz in the
literature, although it is not due to Kirchhoff [32]. When the thickness s of the
plate is small, it is convenient to derive reduced models for the deformation y of
the midplane Q. In [28], see also [13], the Kirchhoff-Love assumption (2) is made
for prestrained plates. The resulting model consists of the sum of a stretching and
a bending component multiplied by different powers of the plate thickness s. We
derive a similar energy referred to as the preasymptotic energy to express that it is
obtained upon assuming that s is small but not vanishing. To do this, we follow
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[48] and assume that

®) Gloraas) = (4757 0 ).

i.e. G is uniform within the thickness and no stretching occurs in the direction
orthogonal to the plane. The function g : @ — R?*? is assumed to be symmetric
and uniformly positive definite.

The vanishing thickness limit of prestrained materials has been studied in several
works. When G is the identity matrix, as mentioned above, a reduced energy was
obtained formally by Kirchhoff [40]. Much later, an ansatz-free derivation was
obtained via I'-convergence in the seminal work [32]. The limiting energy involves
the second fundamental form of the midplane deformation and is finite only for
isometric immersions.

For the derivation in the general case, namely when G is not the identity matrix,
we refer to [48, 13, 14, 51, 15]. The first I-convergence results for prestrained
plates were obtained in [48] for target metrics as in (3), and later extended to more
general metrics in [14]. In both cases, the metric is assumed to be independent of
the thickness and uniform throughout the thickness. For the particular metric given
in (3), the limiting energy involves the second fundamental form of the midplane
deformation and is finite only for isometric immersion of the two dimensional target
metric g. In [17] a formal derivation based on a modified Kirchhoff-Love assumption
(2) of the reduced model is provided.

Bilayer materials are composed of two thin layers of materials with different prop-
erties. External (thermal, electrical or chemical) stimuli correspond to a prestrain
metric

(4) G = (Is £ ¢sN)" (Is £ sCN),

where the product s¢ describes the lattice mismatch between the layers, and N
encodes the inhomogeneity and anisotropy of the bilayer. When actuated, the
material deforms to relax its internal stress and can typically undergo large defor-
mations even with relatively small stimuli. The reduced model for bilayer plates
was derived via I'-convergence in [64] and formally explained in [7] for a metric of
the form (4). The limiting energy penalizes deviations of the second fundamental
form of the midplane from a spontaneous curvature Z which depends on the mis-
match between the two layers (i.e. on ¢ and N). In this model, as in the others
when G = I3, the energy is finite only when the deformations are isometries.

The ability of the plate to fold along creases was incorporated in [6]. It considers
hyperelastic materials with G = I3 assumed to be weakened in a neighborhood of
a curve % C £ modelling a crease. Assuming an asymptotic behavior of the defect
width and strength (see (28)), the limiting model reduces to the original model
without the crease, except that jumps on the deformations gradients are allowed
across the crease without suffering any energetic penalty. Note that in principle,
any plate - with an isometry constraint or prestrain, a single layer or a bilayer -
can have folding. However, only the case of a single layer plate with isometry has
been derived rigorously so far.

Motivations and Novelties. One of the goals of this paper is to review different
models for the deformation of plates, including single layer and bilayer plates, plates
with an isometry constraint as well as general prestrain metric constraints, and
plates with folding along some curves inside the domain. Although emphasis is
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made on the pure bending of plates, the preasymptotic regime, in which both the
bending and the stretching/shearing of the plate are considered, is also analyzed.
To give an intuitive derivation, the reduced two dimensional energies are obtained
formally using a (modified) Kirchhoff-Love assumption for the deformation of the
three dimensional plate. However, as mentioned above, ansatz-free limiting energies
have been obtained via I'-convergence for most cases.

A second goal is to collect in one place the numerical methods proposed recently
by the authors and collaborators for the approximation of near minimizers of the
discrete energies. These methods are based on a local discontinuous Galerkin (LDG)
approach for the space discretization and a gradient flow for the minimization of
the discrete energy. This methodology has already been successfully applied to a
wide range of problems, see for instance [17, 22, 6]. Moreover, the I'-convergence as
the mesh size goes to zero of the discrete energies obtained using LDG is analyzed
in [16], [18], [22], and [6] for the preasymptotic, prestrain, bilayer, and folding case,
respectively. Note that other discretizations are also possible. We refer to [20, 21, 8]
for approaches using the symmetric interior penalty discontinuous Galerkin method,
and to [4, 7, 9, 5] for a method based on Kirchhoff elements.

This work also offers several novel contributions. We present a recently devel-
oped algorithm for the preasymptotic model, extend the existing algorithms to
time-dependent input data, present a uniform treatment of folding effects, and in-
troduce an accelerated algorithm that drastically improves the performance of the
unconstrained discrete gradient flows. We perform new and challenging simula-
tions highlighting the various types of deformations that can be achieved with the
models, as well as the versatility of the code.

Outline. The rest of this paper is organized as follows. In Section 2, we formally
derive the various two dimensional models for the deformation of thin structures
and discuss how to incorporate forcing and boundary conditions into these models.
In Section 3, we present the spatial discretization of the two dimensional ener-
gies based on the LDG method, including the introduction of a discrete Hessian
operator - the key component of the method. The discrete gradient flows put
forward to minimize the discrete energies are described in Section 4, which also
includes strategies to produce good initial deformations and to potentially improve
the convergence rate of the iterative processes. Section 5 is devoted to numerical
experiments demonstrating the variety of deformations that can be achieved.

Notation. In what follows, we will denote by I, the identity matrix in R™*"™.
Moreover, for a multivariate function, we write 0; the partial derivative with respect
to the *" variable. Uppercase letters and bold lowercase letters will be used for
matrix-valued and vector-valued functions, respectively, and subindices will denote
their components. For instance, the (¢,j) component of M : R™ — R™*"2 will
be denoted M;; : R™ — R, 1 < ¢ < n; and 1 < j < ny, while the jth component,
of v : R™ — R" will be denoted v; : R™ — R, 1 < j < n. Furthermore, for
d : R™ — RPX™, ®; : R™ — R™ will denote the jth row of &, 1 < j < n. For
® : R™ — R™*™ the divergence operator is applied row-wise, namely [div(®)]; =
Z;’;l 0;(®;;) for i = 1,2,...,m. Finally, we use the notation A : B to denote the
Euclidean scalar product between two tensors A, B and |.| for the corresponding
Frobenius norm. For the particular case of vectors, the Euclidean scalar product
between v,w € R" is instead denoted by v - w.
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2. MATHEMATICAL MODELS

In this section, we provide a formal but intuitive derivation of two dimensional
models for three dimensional thin hyperelastic structures. References to rigorous
derivations of the bending model with isometry and prestrain constraint and of
the bilayer model via I'-convergence can be found in Sections 2.2, 2.3, and 2.4,
respectively. The thin structure is denoted Q, := Q x (—=%,%) C R?, where s > 0
stands for the thickness of the structure and Q C R? is a open, bounded domain
with Lipschitz boundary which represents the midplane (see the diagram on the
left of Figure 1). A deformation of the plate is denoted by u : 2, C R® — R3 while
its restriction to the midplane is denoted y : 2 C R? — R? (see the diagram on the
right of Figure 1). For later use, we also introduce the unit normal vector to the
surface y(£2) at the point y(x’)

0 ") x 0 !
v(x') = 1Y(X/) x 2Y(X/) 7
|01y (x') x D2y ()]
and the first and second fundamental forms of the surface y(€2)
5)  Iy)=(Vy)'Vy and T(y):=—(V'y) Vv=(yy v);,
Here V' denotes the gradient with respect to the variable x’ € Q C R2.

x €Q,

FIGURE 1. The undeformed reference plate (left) and the deformed
midplane (right).

In all the models presented below, the structure is endowed with an energy
favoring deformations with Cauchy-Green strain tensor (Vu)? Vu matching a given
target metric G : 2y — R3*3 (symmetric and positive definite), i.e. for which the
strain tensor
(Vu)Ivu -G

2

is as close to zero as possible. Note that e(Vu) = 0 signifies that the first fundamen-
tal form of the deformed surface u(Q;) is G and that u is an isometric immersion of
G. Whether a given n dimensional Riemannian manifold has an isometric immer-
sion into RY is a long standing problem in differential geometry, see for instance
[37, 25]. By the Nash-Kuiper embedding theorem [56, 43, 44], there always exists
an isometric immersion u : Q; — R? of G in WH*°(€,). However, the deformation
u cannot be orientation preserving unless the Riemannian curvature tensor of G is
identically zero, see [47] and the references therein.

(6) e(Vu) :=

2.1. Bending of Isotropic Thin Structures. We start by considering thin struc-
tures endowed with the isotropic hyperelastic energy

(7) B.(wi= [ W(Vao)dx

where W : R3*3 — R is the St. Venant-Kirchhoff stored energy density function
defined by

A _ FTF— 14
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Here F' := Vu is the deformation gradient assumed to satisfy the orientation condi-
tion det(Vu) > 0, e(F) is the Green-Lagrange strain tensor corresponding to G = I3
in (6), and A and p are the Lamé constants. As we shall see below, deformations
for which F;(u) scales like s correspond to a stretching of the midplane (membrane
theory), while bending occurs when FE,(u) scales like s3 (bending theory).

Note that in absence of other constraints such as boundary conditions or external
forcing, energy (7) is minimized on SO(3), i.e. when the deformations are isometries:

(Vu)IVu=1I; inQ,.

2.2. Limiting Model and Modified Kirchhoff Assumption. Two dimensional
models for hyperelastic thin structures are derived in [32]. It is shown that when
bending is the chief mechanism of deformations, the energy E, must scale like s>
and

I'-lims 3E, = E

s—0t
where for y : Q — R3
(9)
3 / 2u[I(y (x))|* + 24 tr(I(y(x")))* | dx’,  when I(y) = I
+o0, otherwise.

Part of the I'-convergence argument provided in [32] is based on the construction
of a recovery sequence given for x’ € Q and x3 € (=3, 5) by

(10) ux,z3)=yx)+ |23+ ST )\tr (]I(y(x’)) %mg v(x')

=:B(x’)

for a midplane deformation y :  — R3 with finite energy E(y) < oo. This
indicates that the two dimensional model (9) requires that the fibers orthogonal to
the midplane are not stretched homogeneously on 2. This differentiates the theory
in [32] from the standard Cosserat (or Kirchhoff-Love) theory based on the ansatz

u(x, a3) = y(x') + wav(x)

and leading to the same two dimensional energy improperly scaled with coefficient

A instead of Qi’f:‘A in front of the trace term [34, 32].

2.2.1. Preasymptotic. We follow [17] and provide a formal derivation of the preasymp-
totic energy for thin structures with non-vanishing but small thickness under as-
sumption (10) on the deformations. We are interested in deformations where bend-
ing is the chief mechanism and thus also fix 0 < s < 1 and assume that

(11) Ey(u) < As?

for a constant A independent of s. We recall that V' stands for the gradient with
respect to x’ €  C R? so that

1
Vu= |Vy+z3Vv+ §x§V'(ﬂu), v+ a3pr|.
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Because 0;y -v =0 for i = 1,2 and vTv = 1, we have
viVy=0, (Vy)Y'v=0, v'Vv=0, (Vv)iv=0,
and thus

(Vy)'Vy 0

T\7yy —
(Vu)* Vu = 0 1

+ 3 0 28

(V'y)IV'v+ (V)IV'y 0 ]

2
+ 23

(V)'V'v + %(V’%’);V’(ﬁ'/) +5(V'(Br)"V'y é(V’(ﬁV))TV]
WV (Bv) 8?
+ O(x3).
We rewrite the above expression using the first and second fundamental forms (5)

of the deformed midplane y(€2). In addition, we take advantage of the symmetry
of the second fundamental form to obtain

(12) (Vu)!'Vu — Iy = Ay + 22345 + 2243 + O(23),
where
A, = {I(y)o— Iy 8} A [—]IO(Y) g] )
A (V'v)'V'v + 5(Vy)'V' (Br) + 5(V'(Bv)) " V'y - 5(V'(Bv)) v
P vV (By) g2 '

Using this relation in the energy density (8) with F' = Vu, we obtain
W (V) :% (\A1|2 Vo dzg Ayt Ay + 422 As)? + 2224, 1 Ay + O(xg))

A
+3 (tr(A1)2 + dagtr(Ay)tr(Ag) + 4xitr(Ag)? + 22tr(A))tr(A43) + O(x%)) .

Note that the terms with odd power of x3 vanish when integrating x3 on (-3, 3)
to derive an expression of the energy (7). Thus, we get

M 2, 8 2, 8 /
By (u) :7/9 A + S 4+ Ay A ) dx

A 3 3
+2 / <s tr(A;)? + %tr(Ag)z + SGtr(Al)tr(Ag)> dx’ + O(s%).

Q

The terms with Ay : A3z and tr(A;)tr(As) are of higher order. Indeed, thanks to
the scaling assumption (11), we have

A1 IAng/ S (/ |A1|2dx') </ |A32dX/> S (/ |A3|2dX/) <4A) S,
Q Q Q Q 2

1

where ( Jo |As]2dx’ ) ® s independent of s. A similar argument holds for the trace

terms. As a consequence, in view of the definitions of A; and As in (12), the
expression (5) for the first and second fundamental forms, and the definition of
in (10), we arrive at the final expression for the three dimensional energy per unit
volume s~ E,(u):

(13) sT By (u) = E9(y) + s EP(y) + O(s°),
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where
E‘S(y) = é /Q (2,u |I(y) — Ig|2 + Atr (I(y) — 12)2) dx’
EB(y) = 2—14 i <2u |]I(y)]2 + zjlf:\/\tr (I[(y))2> dx’

denote the stretching and bending energies, respectively.

2.2.2. Limiting Bending Model. We are now interested in taking the limit when
s — 0. We recall that we are assuming (11), which, as we shall see, implies that
the limiting plate deformation y can not stretch nor shear the midplane 2 but can
bend it to reduce its energy.

The starting point to derive the limiting energy as the thickness s vanishes is the
preasymptotic expression (13) for the energy. The bending regime condition (11)
implies that ES(y) = 0 and

. _ 1 2 20 2 ,
(14) E(y):= sl_1>r(r)1+ s Ey(u) = ﬂ/g (QM ’I[(y)‘ + 2};1_ )\tr (I[(y)) ) dx’.

Note that when ES(y) = 0,
Ily)=(Vy)'Vly=L ae inQ,

i.e. is an isometry and in particular y € [W1°°(Q)]?. Furthermore, for isometries
the following relations for the second fundamental form hold (see for instance [4]):

(15) |]I(y)’ = |V’V’y| =tr (H(y)) )

This allows to rewrite the limiting energy as

(16) By) =5 [ Vv,
2 Jo
when y € [H?(Q) N Wh>(Q)]? is an isometry, i.e. I(y) = I, and where a :=
()
?5(27&»'

2.3. Single Layer with a General Metric Constraint. Without additional
constraints such as boundary conditions, the minimum of energy (7) with density
(8) is achieved by the identity deformation u(x) = x, which is an isometry. In par-
ticular, the reference flat configuration is stress-free. We now consider prestrained
materials characterized by the presence of internal stresses in the flat configuration.
Examples are nematic glasses [53, 54], natural growth of soft tissues [35, 69], and
manufactured polymer gels [39, 41, 68].
We follow [48, 14] (see also [17]) and modify the energy (7) to read

(17) EP*(u) := / W(Vu(x)G(x)*%)dx,

Qs
where G : Q, — R3*3 is a given symmetric positive definite target metric and Gz
denotes the positive definite symmetric square root of the inverse G—! of G. Note
that the previous case is recovered when G = I3. Furthermore, when G is a metric
immersion, i.e. there exists a deformation u : ; — R3 such that

(18) (Vu)!'Vu=G ae. in Q,,
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we have
T
(Vu(x)a(x)*%) Vu(x)G(x)"F = I,
and thus u is a minimizer of EP' with EP™(u) = 0.
Following [28, 48], we further assume that G has the form

(19) G(x,z5) = ( 5(e) 9 ) X €Q, w5 € (—5/2,5/2),

where g : Q — R?*? is symmetric and uniformly positive definite. In other words,
the metric G is independent of the variable x3, is uniform throughout the thickness,
and no stretching is allowed in the vertical direction.

The I'-convergence of this model towards the two dimensional energy given below
is obtained in [48, 14]. Proceeding as in Section 2.2.1, an intuitive derivation of
the two dimensional I'-limit can be obtained, using again assumption (10). Indeed,
when 0 < s < 1, neglecting the O(s®) terms the three dimensional prestrain energy,
(17) satisfies

(20) sTIEP(u) = ES(y) + sEP (y) = EX(y),

where

) B =g [ (2ot - oo [+ (A - 9a2) ) ax
and

(22) EP(y):= i/g <2u ’g’%ﬂ(y)g’% g Qj’j;\)\tr (géﬂ(y)g§)2> dx'.

Note that we slightly abuse the notation by using EP™ to refer to both the three
dimensional and two dimensional prestrain energy. Which energy EP™ is referring
to will be clear from the context.

For the limit s 3FE,(u) to be finite as the thickness s goes to zero, the two
dimensional deformation y : 8 — R3 must satisfy the metric constraint

(23) (Vy)'Vy =g

and in that case
(24)

1 L 12, 2pA 1 1)
. -3 _ - - - B !
lim s Es(u)—24/ﬂ(2,u‘g M)yt o+ 5 (g 1l(y)g z) )dx.

Remark 1. Nash’s theorem guarantees that there exists an isometric immersion
of g into R0 [36], but whether or not there exists an isometric immersion into R3
depends on g. We refer to [37] for a discussion of positive and negative results for
metrics with specific properties. Note that the existence of y € H?(SQ) satisfying
(23) is equivalent to the boundedness condition (11) on Es. We refer to [48] for the
case where G has the form (19) and to [45] for a general Riemannian metric.

Comparing the limiting energy (24) with (14), we find that the isometry case
is recovered for ¢ = Is. However, in the case of isometries, the energy is further
reduced to (16) thanks to (15). When g # I, the second fundamental form of y
in (24) cannot be substituted by the Hessian of y. Nevertheless, Proposition 1 in
[17] and Proposition A.1 in [18] guarantee that for y € [H?(2)]® and g € [H*(Q) N
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L*>(Q)]2%2, up to an additive term only depending on g, the limiting energy (24)
is equal to

3
1 1 12 2u\ 1 1\2
2 -3 ! ! -3 -3 ! / -3 /
21 mE—l/Q ( u‘g (V'V'Ym)g + 2u+Atr (g (V'V'ym)g ) )dx,

where y,, is the m!" component of y. In addition, in view of the metric constraint

(23) we have y € [W1°°(Q)]3. As a consequence, the equilibrium deformations of
the thin limit of prestrained materials are deformations y € [H?(2) N W (Q)]3
satisfying I(y) = ¢ and minimizing

(25)

3
o 1 1 12 22U _1 _1\2
EP(y) =55 > /Q <2M’g 2(V'V'ym)g ™2 ot (9 2(V'V'ym)g 2) )dX’-
m=1

2.4. Bilayer Plates. We now discuss an anisotropic model where the three di-
mensional hyperelastic structure is a compound of two thin layers with different
mechanical properties. Each material exhibits a different response under external
stimuli, generating a material mismatch compensated by the bending of the struc-
ture. Temperature, humidity, pH, and electric current are typical external stimuli.
We refer for instance to [65, 38, 1, 3] for devices actuated by electric current and
to [52, 67] for humidity controlled materials.

From a mathematical point of view, this corresponds to a prestrain tensor of the
form

(26) G(x',x3) = (I3 + (sN)T (I3 + (sN) = I3 + 2(sN + (?s*N?, +x3 >0,

where the inhomogeneity and anisotropy of the bilayer material is encoded in the
tensor

with Ny/y : Q — R2X2 uniformly symmetric, n : @ — R, and m : Q — R2. Note
that the expression (26) does not reduce to the previous setting with target metric
(18).

The limiting model is derived in [64] via I-convergence when N = I3 and can
again be formally recovered using a modified Kirchhoff-Love assumption, namely

u(x’,x3) = y(x') + 23(1 £ eCs)v(x') + %z%d(x')y(x')

with
2 3\ A
ci= 21+ SA and d(x'):=—
21+ A 21+ A
Proceeding as in the previous section, the limiting energy as the thickness s goes
to zero is

1
— 2 — Nyryr
o Q( 1 |T(y) — 3¢ Narxc

tr (I[(x")) .

2uA
2, 2
2+ A

tr (H(y) — 3CNx’x’)2> dX/ + C

provided that y is an isometry, where the constant C' depends on u, A, (, and N,
but not on the deformation y. We refer to [7] for more details in the case y = 6
and A = 0.
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In what follows, we consider an equivalent limiting two dimensional energy
g/ M(y) — Z‘de’
2 Ja

for « > 0 and with Z(x') := 3(Nyxx. Note that Z acts as an intrinsic sponta-
neous curvature tensor favoring deformations with principal curvatures matching
the eigenvalues of Z. Now recall that the entries of the second fundamental form
II(y) are given by
Oy x 02 .
[]:[(y)]zjzazyyyzalywa 7’7]:1727
and is thus nonlinear in y. Taking advantage of relation (15) valid for isometries,
we have

(y)| = |[V'V'y]| and |01y x Ooy| =1,

which allows us to write

2
g/ (y) - Z‘2dx’ = g/ ‘V’V’yfdx’—a Z / 0;jy-(Ory x day) Zijdx/—I—g/ |Z|? dx'.
2 Jo 2 Jao Pmipie 2 Jo
Deformations of bilayer materials are thus deformations y € [H?(Q) N W1 (Q)]?
satisfying I(y) = I and minimizing

2
(27) EPl(y) = %/ |V’V’y|2dx’ -« Z / 0y - (Ory x Boy) Z;;dx’.
Q =179

2.5. Folding. We incorporate the capability for the plates to fold along a given
crease. In particular, we make structural assumptions leading to a limiting model
for which folding does not require any energy. We restrict our description to single
layer plates with isometry constraint (i.e. g = I). The derivation of the folding
model described here was originally proposed in [6]. Extensions to other mod-
els, although feasible, have not been treated in the existing literature. However,
numerical simulation are available in [22] for the bending of a bilayer plate with
folding.

Folding models are obtained by assuming that the thin structure has a material
defect in a cylindrical neighborhood of a C? curve ¥ C Q (the crease) splitting Q
in two parts and intersecting the boundary transversely. Let Qs = Q x (—s/2,s/2)
be as above and let Xy, := B(X,r) x (—s/2,5/2) be the location of the defect.
Here, for r > 0 to be determined, B(X,r) := Ugxex{z' € Q : |2/ — x| < r} (see
Figure 2).

The hyperelastic energy (7) in presence of a defect reads

EfM(y) = / fer (XYW (Vu(x))dx,
Qs

where f., : Q — (0,1] defined by

fer(¥) = expEn(x) +1 = xpEn(X)
is 1 away from B(¥,r) and ¢ in B(X,7) for 0 < ¢ < 1. Here xp(xn,) is the
characteristic function of B(X,r).

We assume the following asymptotic behaviors of r and e:
2

(28) limsup — < oo, limsup- < oo, and limsup
s—0t € s—ot T s—0t

er

5 =0
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FIGURE 2. Material with defect. (Left) Midplane domain 2 with
a crease ¥ and its tubular neighborhood B(X,r). (Right) Thin
domain ), with inflated crease X ..

They guarantee that the limiting deformations are globally Lipschitz and that fold-
ing is performed at no energy cost. The T-limit of s~3 E%!d under assumptions (28)
and in the bending regime s~ 3EPd < A < oo, is

fold _i/ 2 2pA 2 /_g/ Il 12yt
E¥M(y) = o o (2u|]1(y)\ +2u+/\tr(ﬂ(y)) dx’ = o Q\Eyvvyy dx’,

provided y € [H2(Q\ ) N Wh*(Q)]? is an isometry and where o = a(u, \) is
defined as in (16); see [6]. In particular, £ reduces to F in (16) when no creases
are present.

Although not rigorously justified, in the numerical section below we provide
experiments with multiple folding arcs not necessarily intersecting the boundary.
Also, we assume that the prestrain and bilayer energies can be modified similarly to
account for possible folding along a crease . Without modifying the notation but
with the understanding that ¥ = ) in the original cases (25) and (27), we redefine
fory € [H2(Q\ ) n Wi (Q)]?

(29)
3
1 1 _12 0 2uA 1 _1\2
Fpre — 9 e TAviAva 1 e TAviava 1 /
(Y) 2 mzz:l /Q\E ( 14 ’g (V \Y ym)g +2/1' T )\tr (g (V A% ym)g ) )dx
and

2
(30) EPi(y):=2 / V'V'y[* dx’ - a > / iy - (Ory X Day) Zijdx'.
2 Jos 521 s
2.6. Forcing Term and Boundary Conditions. To complete the model, it re-
mains to discuss how to incorporate external forces and boundary conditions.
In the presence of an external force f, : Q, — R3, the hyperelastic energy (7)

must be modified to read
Es(u) = / W (Vu(x))dx — / fs(x) - u(x)dx.
QS QS

In view of (11), the force applied to the three dimensional thin structure 2, =
Q x (—s/2,s/2) must satisfy

s/2
lim 5_3/ fo(x/',w3)dz3| < 00, x €.

s—0t —s/2
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This allows us to define f(x') := lim,_,o+ 3 fj/s% fs(x/, z3)dzs which yields
lim 5*3/ fo(x) - u(x)dx = / f(x') - y(x')dx’
s—0t Q Q

s

when using the modified Kirchhoff-Love ansatz (10) on the three dimensional de-
formation u.
Therefore, when external forces are present, the term

(31) Fly) = / B - y(x')dx!

must be subtracted from the energies EP*(y), EP*(y), and E*!(y) (scaled by s?
for the preasymptotic energy).

Different types of boundary conditions can be incorporated into the system. We
say that Dirichlet boundary conditions are imposed on I'? C 99 when

(32) y=¢ and Vy=& onlP?,

where ¢ : Q — R3 and ® : Q — R3*2 are sufficiently smooth, and with ® satisfying
the compatibility condition ®7® = g a.e. in . In the case where ¢(x) = (x,0)T
and ® = Ve, the boundary conditions (32) are referred to as clamped boundary con-
ditions. Mized boundary condition occurs when only the value of the deformation
on I'M C 09 is specified, that is

(33) y=¢ onIM

for some smooth function ¢ : Q — R3.

All the energy models are defined on [W1°°(2)]® and thus also on continuous
functions [CY(Q)]3. This means that pointwise boundary conditions can be enforced
on the deformations as well. Given a collection of points '’ := {x;,Xs,...,Xp}
lying on 9 and corresponding values {1, ®,,...,op} C R3 we set

y(xi)=¢; Vx; eI’

The free boundary case refers to the case where TP UTM UTP = ().

3. SPACE DISCRETIZATION

We now describe numerical methods based on finite element methods to approx-
imate minimizers of the preasymptotic energy EP™ in (20) and the limiting energies
EP™ in (29) and EP! in (30). We point out two difficulties addressed below: (i)
all the energies are defined on a subspace of [H?(Q2\ X)]® (recall that ¥ = () when
no creases are present) and thus conforming discretizations can only be achieved
by globally C° elements which are also C* on Q\ ¥; (ii) all but the preasymptotic
energy require the deformations to satisfy the metric constraint (23). The latter is
too rigid to be satisfied a.e. in 2 when using piecewise polynomial approximations.

Discontinuous Galerkin finite elements are put forward to circumvent the con-
formity requirement. In essence, discrete energies are designed by substituting the
Hessian of the deformation by a suitable discrete Hessian. It is worth pointing
out that discontinuous Galerkin elements are also preferred for their flexibility; in
particular, they are more efficient for the approximation of the metric constraint
[20, 21].
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We first set up the notation related to discontinuous Galerkin finite element
methods in Section 3.1. Then, in Section 3.2, we introduce a discrete Hessian
operator, the crucial ingredient in all the numerical schemes discussed in Section 3.3.

To simplify the notation, from now on we will write x instead of x’, and ac-
cordingly for the differential operators (e.g. V' will be denoted V). Moreover, the
variable of integration will no longer be indicated.

3.1. Discontinuous Galerkin Finite Elements. For the description of the method
we assume that the midplane @ C R? is a polygonal domain, but extensions to
general domains can be performed using standard techniques. Let {7x}r>0 be a
sequence of shape-regular but possibly graded partitions of {2 made of elements T,
either triangles or quadrilaterals, of diameter at most h. Hanging nodes are thus
allowed, and we assume that all the elements within each domain of influence have
comparable diameters [19]. Let &, := £ U EP denote the set of edges, where £
stands for the set of interior edges and 52 for the set of boundary edges. We also
define & }? to be the set of Dirichlet boundary edges and E}JLM to be the set of mixed
boundary edges.

In the presence of a crease X, we assume that the crease is well approximated by
the subdivision 7j, in the spirit of [6]. That is, the folding curve ¥ is approximated
by the piecewise linear curve

(34) Y = UL ey,

where £ := {e;}F., C &) is a collection of interior edges such that the endpoints
of each edge e; belong to X.

It will be convenient later to group all the active edges into two sets: 5)[3‘1 =
EQUEP UENM for the deformations and E5 == (E9\ £7) UEP for the gradient of
the deformations. These sets contain all the edges over which averages and jumps
will be computed. Notice that in the presence of a crease, the crease edges are not
included in the active edge set for the gradients to allow for discontinuous gradients.
As we shall see, this is the only difference between the schemes with and without
folding.

We define the diameter function h on 75, U&, UTT (recall that T'Y = {x;}1, are
the locations where pointwise boundary conditions are prescribed) by

hir := hy :=diam(T), VT € Tp, hl.:=h.:=diam(e), Ve € &,

> hr, i=12,...P

Tew;

1
h‘xi = hl = —_—:
#(wi)
where w; :={T € T, : x; € 0T}. The minimum mesh size is iy := mingper, hr.

We assume that the boundary regions I'” and I'™, where Dirichlet and mixed

boundary conditions are enforced, are exactly captured by all the subdivisions.
This means that for all h > 0 we have

IMP={e: ec&Pl and TM ={e: ec &M}

for some EP,EM C £P. We also assume that the locations I'? = {x;}£_,, where
pointwise boundary conditions are prescribed, are vertices of all the subdivisions.
To keep a uniform notation, we introduce various skeletons of the mesh 7j,

¢t=U{e:ee &} forae{0,D, M, val grad}.
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For an integer r > 0, let P,. and Q,- denote polynomials of total degree at most
r and degree at most r in each variable, respectively. We then define the finite
element space

(35) Vi i={on € I3Q): wuiroFreP, YT ETi},

Where P, is replaced by Q, if the subdivision 1s made of quadrilaterals. Here
Fr: T — T is the map from the reference element T (unit simplex for triangulation
and unit square for subdivisions made of quadrilaterals) to the physical element
T € Ty. In what follows, the deformation of the plate y will be approximated by a
discrete function y;, € [VF]? with k > 2.

The broken (elementwise) gradient of a scalar function v, € V¥ is denoted
Vivp. We use a similar notation for other differential operators, for instance
Divh = Vi, Vv, denotes the broken Hessian. Moreover, these operators are ap-
plied componentwise for vector-valued functions.

Let us now introduce the jump and average operators instrumental for discon-
tinuous Galerkin methods to relax conformity conditions. For each e € &) let n.
be a unit normal to e (the orientation is arbitrary but fixed once for all). With this
notation, we set for v, € V1 and e € &)

+ —_
fonll, = vf — iy {onbl, =

where v (x) 1= lim,_,o+ va(x £ on.) for any x € e. Note that if e = 9T N T3

with T1,T5 € T, then

[Vn]|.ne = Vh | DoT, + VR T NOT,

with ngy, the outward unit normal to 9T;, ¢ = 1,2. For edges on the boundary
e € £V, n. is the outward unit normal vector to 9 and [v3]|, = {vn} |, := vh. The
jumps and averages of non-scalar functions are computed componentvvlse

We introduce the mesh-dependent bilinear form (-, ~>H}2L(Q) defined for any vy, wy, €

Vi by
(on, wn) 2y = (Djvn, Djws) L2

+(h*1[thh], [Vhwh])Lz(Firad) 4 (h*3[vh]’ [wh])m(rxﬂl)
(36) + Z h;2vh(xi)wh(xi)

X erre
and we set

1/2
[onl bz () = (vns V1) 73 -

These definitions are extended componentwise to vector-valued functions.

3.2. Discrete Hessian. All the energies considered in this work involve the Hes-
sian of the deformation. Conforming approximations come at the price of using
costly and rigid C! finite element methods. Instead, we describe an LDG ap-
proach, which retains the simplicity of the discrete problem while not requiring C!
elements.

The proposed LDG methods consist of replacing the continuous Hessian D%y by
a suitable discrete (aka reconstructed) Hessian Hp,(yy) that we introduce now. The
discrete Hessian described here was originally proposed in [17] following ideas from,
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for example, [27, 26] but modified to possibly account for subdivision containing
non-affine elements.

For v, € [VK]3, we recall that D2vy, : Q — R3*2%2 is the piecewise Hessian of
vy,. Because v, does not belong to [H?(£2)]3, a better approximation of the Hessian
must account for the jumps of v, and Vv, across elements. To achieve this, we use
(local) lifting operators [10, 2, 23] . : [L2(e)]?> — [VY]?>*2 and b, : L2(e) — [V12]?*2
to construct representations of these jumps in L?(Q2). Given Iy, ly > 0, they are
defined for e € &, by

ro(g) € [VH]252 Are<¢>:rhzl{fh}ne-¢ € [V,
and
be(@) € [V2]2%2 /Q be(d) : mh = / (divry) -neg Y € [Vi2]252,

Note that the support of the liftings r. and b, is the union of the two elements
sharing e as an edge (which reduces to a single element if e is a boundary edge).

With these lifting operators, we can now define the discrete Hessian of a function
vy, € V§ as

Hp(vi) = Di(va) — Ru([Vion]) + Bu([vn))
(37) = Di(vh) — Z 7“6 thh Z b Uh
cegErad cegy

This definition is naturally extended to vector-valued functions in [V¥]? by compo-
nentwise application. For the remainder of this work, we set I; =l = k.

To motivate definition (37) of the discrete Hessian, we briefly sketch an argu-
ment showing a (weak) convergence property of H?(vy). Let 7 € [C§°(€2)]?*? and
let {vp}tns0 C VF be a sequence such that |vn|m2(q) < C for some constant C

independent of h and such that v, — v in L?(Q) as h — 0T for some v € H?().
On the one hand, notice that thanks to the regularity of v and the convergence of
v, to v, using two integrations by parts we have

/QD%:T:/Qudiv(div(r)) e/ﬁvhdiv(div(T)) as h— 0%,

On the other hand, using again two integrations by parts, we have for any T € Ty,

/T o div(div(r)) = Z / on04(05735)

i,j=1
[/ 0;(0;vp)Ti5 — / O;unTij(Mor); / vhajTij(naT)i}
i,j=1 or

= / D?vp i 7 — Vup - (Tnar) —|—/ vy div(T) - ngr.
T ar ar

Therefore, summing over the elements T' € 7}, and using the fact that 7 is smooth,
namely that [7] = {7} = 7 and similarly for div(7), we get

/vhdlv (div(r /thh T— Z /thh A7} ne+ Z /vh {dlv }ne
Q e

Eggrmd PEE‘”l
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If 7 were an admissible test function for the lifting operators, then the right hand
side of the last relation would be fQ Hj,(vp,) : 7 and we would conclude that for all
T € [CF ()]

/D2v:7'<—/Hh(vh):T as h — 0T,
Q Q

i.e. Hp(vy) converges weakly to D?v in L?(2)2*2. Because 7 does not belong
to szw in general, it remains to show that for the Lagrange interpolant Iy, :
[C8°(Q)]2%2 — [VE N HE(9)]2*2 we have

/QD,QLvh S(r=1IpT)— Z /[thh}-{r — Iyl n.+ Z [vn] {div(r — I7)}-ne — 0

grad val ¥ €
ecE; ec&y

and
Hy(vp) 1 (t—Ipt) — 0
Q
as h — 01, This fact follows from the uniform boundedness assumptions |vp, | H2(Q) <
C' and standard interpolation estimates. We refer to Lemma 2.4 in [18] for addi-
tional details when ¥ = () (see Appendix B for a proof in the free boundary case
and Appendix C for the Dirichlet boundary conditions case). The case ¥ # () is
derived similarly. Strong convergence properties are also available, for example, in
[18].

We now turn our attention to the boundary conditions and start by noting
that the Dirichlet/mixed boundary edges e € 5,? U SI{LV[ are incorporated in the
definition of the discrete Hessian. They do not influence the weak convergence
property sketched above (because 7 is compactly supported). However, the value
of the deformation and its gradient imposed on I'? UT'M must be added separately
for strong consistency [60]. To this end, we introduce the lifting of the boundary
conditions (32) and (33)

Li(®rs om) 1= — Z Te(®Pm) + Z be(¥m),
ecep eegPueM

where we recall that ®,,, stands for the m!® row of ®, m = 1,2,3. The discrete
Hessian operator accounting for the boundary condition is then chosen to be

(38) Hh(‘pma (I)m; yh,m) = Hh(yh,m) - Lh((I)ma Spm)
with the usual extension for vector-valued functions.
3.3. Discrete Energies. We are now in a position to describe the approximation

of the different energies EP*(y) (preasymptotic), EP*(y) (prestrain), and EPi(y)
(bilayer).

3.3.1. Preasymptotic Energy. We start with the preasymptotic energy
EP*(y) = ES(y) + s EP(y)

and approximate the stretching and bending components separately. For the stretch-
ing part, we simply replace the derivatives appearing in (21) by their piecewiese
counterparts and define for y;, € [VF¥]3

(39)

E; (yn) = g/ﬂ ‘g_% (Vayn) " Viyn — g)g_%

2 A\ _1 T -
—|—§/tr(g 2((Vayn) " Viyn—9)g
Q

1
2

).
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For the bending part, we first replace as in [13] the second fundamental form in EZ
by the Hessian. This step is not justified but taken for computational convenience.
We then take advantage of the discrete Hessian (38) and set for y;, € [V¥]3

2

Nl

3
L _1 _
Ef(Yh) ::ﬁ Z /Q ’g ZHh(QOma(I)m;yh,m)g
m=1

(40) )

pA _1 _1\?2
+12(2/~L+)\)mz_:1/gtr (9 2 Hp(Pm, P’ Yn.m)9g 2) ;
compare with (22). In the preasymptotic case ¥ = ) but for later use, we still
define the approximation of the bending energy and subsequent quantities using .

At this point neither EZ nor EP enforce weak continuity condition nor are the
boundary conditions (when I'P? UT™ UTF # ()) imposed properly. This is the
purpose of the stabilization term defined for y;, € [Vﬁ]?’ by

Y0 . -3 Y0, -3
Su(yn) = 7= [ynll 2o + o b7 (ya = @)L rpur

Y1, 1 Y1 —1
(41) g 2 VaynllZaeg s, + 5 072 (Vyn = ®)Zaep)
72 -
+ 5 Z h 2 yn(xi) — ¢il%
x;, €rP

where vg,71,72 > 0 are stabilization parameters. Note that a particularity of the
LDG method is that these parameters are not required to be sufficiently large.

It remains to incorporate possible external forces - see (31) - to arrive at the
following approximation of EP™

VS (yn) = Ei(yn) + s* (EF (vya) + Su(yn) = Flyn)) -
The discrete problem is thus to seek y; € [VF]3 such that

(42) yh € argmin BV (yn).
yr€[VE]?

The I-convergence of EY') to EP™ as h — 0T is proved in [16] when using con-
tinuous (rather than discontinuous) piecewise polynomial approximations of the
deformations and when ¥ = () (i.e. without folding).

3.3.2. Prestrain Energy. The approximation of the prestrain energy EP™ in (25)
directly follows from the above discussion since EP™® = EB. Accounting for the
potential external forces and boundary conditions, we thus set

(43) EX(yn) == Ef (yn) + Sn(yn) — F(yn)-

However, unlike the preasymptotic model, the deformations are required to satisfy

the metric constraint (23). We have already pointed out that when using polynomial

approximations, the metric cannot be satisfied everywhere in 2. We thus consider

the following relaxation of the constraint

(44) D) = 3 | [ (v 9y —)| <
T

TeTh
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for some € > 0 sufficiently small. This leads to the definition of the discrete admis-
sible sets

(45) ape = {yn € [VEP - DR () < e

With these notation, the discrete preastrained minimization problem originally
proposed in [17, 18] is to find y} € [V¥]? such that
(46) y; € argmin E}(yy,).

yrEATVEr

The I'-convergence of E}' to EP™ as h — 07 is proved in [18] for the case ¥ = ()
(i.e. without folding). Moreover, the case X # () is considered in [6] for the bending
problem with isometry constraint (i.e. g = I5) assuming that % in (34) is an exact
representation of the folding curve . Finally, it is worth mentioning that extension
to approximate curves obtained using isoparametric finite elements of degree k > 2
is investigated [8] for the linear bending problem, namely for the bending problem
without the isometry constraint which is suitable for small displacements.

3.3.3. Bilayer Energy. The bilayer energy (27) is composed of two terms: the bend-
ing term EP (with g = I5) approximated by E}f and the nonlinear term

2
N(y) =« Z /Qain' (Ovy x Oay) Zij.

ij=1
Note that both terms are fourth order terms, requiring the nonlinearity to be dis-
cretized with care. To motivate the proposed scheme, we first note that

(47) N() S lylla@ I Vylli-

which is bounded for deformations y € [H?(£2)]? satisfying the isometry constraint
VyTVy = I (and thus |Vy| € L>(f2)). In particular, the control on the nonlinear
term is only possible thanks to the isometry constraint.

The relaxation (44) of the metric constraint does not provide enough control.
Instead, we introduce an alternate discrete admissible set which guarantees a point-
wise control at all the barycenter x1 of the elements T in the subdivision 7:

(48) D™ (yp) := max |[(Vyn)" Vys — L](z7)| < e
TeTh

for e > 0 sufficiently small; compare with (44). This leads to the definition of the
discrete admissible set

(49) A = {Yh e [VE]P : DY (yy,) < E}.
The approximate constraint (48) implies (see [22])
1—e<|Oyn(zr)| <146, i=1,2,

so that |Vpyn(ar)| is uniformly bounded for all T € T;,. Whence, in order to
obtain a discrete version of (47), we approximate the nonlinear term N(y}) using
a l-point quadrature with quadrature points localized at the barycenter of each
element T € Ty,

2
N(y) =« Z Z T| [0i5y - (Ory x B2y) Zij| (x1).

1,j=1T€ET,



20 LARGE DEFORMATIONS OF PLATES

In addition, it would be tempting to replace the second derivatives 0;;y(xzr) by
the discrete hessian Hy, (y,,)(zr). However, estimates on the quadrature error would
require regularity of y beyond [H?(Q)]?. To circumvent this issue, we introduce the
L?(Q) projection Hy(yn) of Hy(yr) onto the piecewise constant tensors and set

Nalyn) i=a 32 S T [(a(yn)),; - (1yn x Dayn) Zis | (0r).

i,j=1TeTh
The discrete bilayer minimization problem is to seek y7 € [VZP such that

(50) y;, € argmin E}fil(yh)7
yieapy

where for yj, € [VK]3,
(51) Ep'(yn) := Ep (yn) + Sn(yn) — F(yn) — Na(yn)-

Note that the discrete minimization problem (50) was introduced in [22] following
ideas from [7, 9]. Moreover, the proof that E};’“ I'-converges to EP! as h — 0% can

be found in [22].

4. ENERGY MINIMIZATION: DISCRETE GRADIENT FLOWS

Now that we have established the discrete minimization problems, it remains to
discuss numerical procedures to construct approximate minimizers to each problem.

We recall that the considered energies are nonconvex and/or the minimization
problem is subject to a nonconvex constraint. Hence, we use a gradient flow for its
robustness and ability to approximately satisfy the type of nonconvex constraints
encountered in our context. These benefits come at the expense of slow convergence
towards minimizers.

Gradient flows require an initial condition, and their efficiency depends on both
the energy of the initial condition and, for constrained problems, how well the initial
condition satisfies the constraint. After introducing the (main) discrete gradient
flow, we discuss preprocessing algorithms to construct suitable initial deformations.
A bi-harmonic problem is advocated to enforce the boundary conditions (recall that
the boundary conditions are part of the energies) while an unconstrained gradient
flow is put forward for reducing the metric defect of the initial deformation.

For the unconstrained preasymptotic minimization problem and in the metric
preprocessing algorithm, an accelerated (Nesterov-type) algorithm considerably im-
proves the number of iterations required to achieve a near minimum. This is the
topic of the last part of this section.

4.1. Main Discrete Gradient Flows. Discrete gradient flows are used to mini-
mize the discrete energies introduced in Section 3.3. Note that we have two types
of minimization problems, namely an unconstrained minimization problem of the
form

min  Ej(yn
YrEVE]3 (va)

for the preasymptotic case and a constrained minimization problem of the form

min  Ep(yp), i € {aver, bary},
Yn€A}, .

for all the other cases.
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Gradient flows are chosen to minimize the different energies because of their
robustness (energy decreasing property). In all the cases, we advocate an H7 ()
gradient flow based on the mesh-dependent inner product (-, -) H2(Q) defined for any

v, wp € [VF]? by
(52) (Vs Wa)r2(0) = (Vi Wa)r2() + (Vi Wa) 2.

where (va, Wp) fr2(q) is given by (36). Here o = 0 if I'P # () and o = 1 otherwise to
ensure that (52) is indeed an inner product on [V§]? when no Dirichlet boundary
conditions are imposed. The gradient flow metric is thus

1/2
Ivallazo) = (Vh,Vh)Ifg(Q), vy, € [VF]3.

We detail below the discrete gradient flows for the different energies. In order to
simplify the discussion, we do not include the possible contribution from external
forces (in other words we assume that f = 0).

4.1.1. Preasymptotic Energy. We start with the unconstrained minimization prob-
lem (42) and recall that without external forces

EY¥(yn) = Ej (yn) + s> (Ef(}’h) + Sh(Yh)) .

A minimizing movements procedure is adopted to determine successive approxima-
tions reducing EY . The minimization process requires a pseudo time-step 7 > 0
and an initial guess y% € [V’;”'L]?’. Ideally, each iteration of the algorithm would read:
given y? € [V¥]3, find a deformation minimizing

1 n||2 re
vt (v = ¥ilge + B )

over [V§]3. Note that the Euler-Lagrange equation associated with the above mini-
mization problem is nonlinear, and solving it would entail using an iterative method.
Instead, we consider the following linearization

ST (yirt wn) ~ 0B (yiis vt wa) + % (OBE (it wa) + 8Su(y ™ wn) )

Here 0 EP (v, wy,) is the Gateau derivative of EP (see (40)) at vj, in the direction

Wi, 0EZ (y?; v, wy) is the following linearization at y} of the Gateau derivative

of EY (see (39)) at vy, in the direction wy,
W

_1 _1 _1 _
SER (yr; v, wh) = 5/9 2U(vh,Wr)g~ 2 1 g 2m(yp)g
Q

Nl

Nl=

).

I(vh, wp) = (thh)TVhwh—l—(thh)TVhwh and m(yp) == (VhyZ)TVhyZ—g,

A _1 _1 _1 e —
+Z tr (g 2[(vh, Wh)g Z)tr (9 m(yn)g
Q

where

and 05k (v, wy) is the Gateau derivative of Sy, (see (41)) at vy, in the direction
Wh.
With these notations, we define y; ™' € [VF]? to be solution of
(53)
P Y ey W) ) OB (i v wi)s® (SEL (virt wa) + Sy wa) ) = 0
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for all wy, € [VF]3. Note that (53) has a unique solution and the sequence of energies
LY (Yi)}nx0 is decreasing, i.e.

1 1
—Iyi ™ =il @ + BOR (i) < ED(7)
provided 7 is sufficiently small (proportional to Ay, and Ef’r}f(yg)_l). As a conse-

quence, we obtain ELy (ypt!) < EPY(yn) if ypt! # yjr. We refer to [16] for more
details, see also [18].

4.1.2. Prestrain Energy. The prestrain energy EL' = EP + S, appears simpler to
reduce because it does not include the problematic non-quadratic stretching energy
E;f . However, the metric condition appears as a constraint on the deformations,
which have to belong to the admissible set A}'c" (see (45)) for a prescribed € > 0.

Note that the metric constraint Vy?Vy = g is relaxed in A} and only needs
to be satisfied approximately. To achieve this, we compute increments in a (pseudo-
)tangent space of the constraint and rely on the H?(2) metric of the gradient flow
to guarantee that all the deformations generated by the gradient flow indeed belong
to A}YZ" for a specific choice of e.

Given a deformation y? € [VF]3, we define the (pseudo-)tangent space at y?! as
follows:

WAver (yit) := {wh e [VF3: / ((thh)thyz + (VhYZ)TVhWh) =0 VT'e 72}
T

Now, given a pseudo time-step 7 > 0 and an initial guess y$ € [Vﬁ]g, the discrete
gradient flow algorithm for the constrained minimization problem (46) consists in
computing successively yZH € [V¥]? such that yZ“ —yp € Wiver(yp) and

T—l(y;ﬂrl _ YZaWh)HfL(Q) + 5E}I;re(y;lz+1’Wh) =0 Vwye€ WZVQT(YZ)a

where
SEP(yptt wy) = 0EL (v wr) + 6Su(yp Tt wh).
In practice, the linear constraint encoded in W5Ve*(y7) is enforced using piecewise
constant Lagrange multipliers Ay, : Q — [V9]2%2 with AT = A,.
The resulting sequence of deformations is again energy decreasing, i.e.

1 n n T n I n
(54) —Iyi T = Vil + BT < ERC(vR)

irrespective of the choice of the pseudo timestep 7 > 0. Furthermore, because
yptt — yi € Waver(yn), we can show that the metric defect DEV" defined in (44)
is uniformly controlled, namely

(55 DR < DR +ar (B +e),  n=12..,

where the constant ¢; > 0 depends only on the constants in Poincaré-Friedrichs-
type inequalities and ¢3 > 0 depends on the input data (namely u, g, ¢, and @) as
well as the stabilization parameters g, 7v1. We refer to [18] for more details when
re=.

The control on the metric defect (55) implies that upon setting € = DV (y9) +
at (BY(y)) +c2), yi € AR for all n = 1,2,.... In particular, the recursive
algorithm produces a sequence of deformation in A?L‘jgr with decreasing energy as
desired.
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4.1.3. Bilayer Energy. It remains to discuss the constrained minimization problem
(50) associated with the bilayer energy

EPV = EP + S, — Ny,

see (51) (recall that f = 0). This case contains the two difficulties encountered
above: the Géateau derivative 5E,‘§“ is not bilinear due to the cubic term N} and
the minimization is subject to an approximate isometry constraint. Note that the
latter is enforced at the cells’ barycenters rather than in average, see (49).
Nevertheless, the algorithm considered in [22], which in turn is inspired from [9],

combines the ideas of the previous two cases. We define for y? € [VF]3 the set
Wy (yp) = {wh € [Vil* s [(Vawn) Viyh + (vhyz)thwh} (z7) =0 VT e Th}

and seek y? € [VF]3 such that y? —y7 € WP (y7) and
(56) 'yt =y W)z +OER (yi T wa) + 0Sk(yi T wa) = Na(yi wa)

for all wy, € Wzmy(yZ). Here

Nu(ypiwn)i=a Y Y |T] [(ﬁh(wh))ij (Ovyg, x doyp) Zij] (z7)

4,j=1T€Ts

+a > NI uli),, - (Orwn x 0ay7) Zis ] (21)

1,j=1T€eTh

2
+a 3 ST [(Enyn),, - @uyh x 0awi) Zig| ()
i,j=1T€Ts
so that (56) corresponds to an explicit treatment of the cubic term Nj. As in
the prestrain case, the linear constraint encoded in W3Ve*(y}) is enforced using
piecewise constant Lagrange multipliers Ap, : Q — [V9]2%2 with AT = A,,.

As it turns out, except for the mild requirement 7 < |In(hmin)| ™!, the explicit
treatment of IV}, does not affect the convergence property (in [7] its treatment was
implicit thereby requiring a fixed-point iteration at each step). In particular, the
energy decay property (54) holds for Eﬁil with a factor % instead of % in front of
the metric term and the isometry defect satisfies

(57) Dgary(YZ) S Dzary(nyL) + clT| log(hmln)| (Eh(yg) + 02) ) n= 1u 27 LR

where similarly to (55), the constant ¢; > 0 depends only on the constants in
Poincaré-Friedrichs-type inequalities while ¢o > 0 depends on the input data (in this
case Z, @, and ®) as well as the stabilization parameters o, y1. Refer to [22] for ad-
ditional details in the case I' = (). Again, this implies that all the iterations of the
algorithms belong to A?f‘;y provided that & > Dy (y9)+c17| log(hmin)| (En(y)) + c2).

4.2. Preprocessing Step. In this section we introduce a preprocessing strategy
which can be used to construct the initial deformation yg required by the gradient
flows detailed in Section 4. The estimates (55) and (57) for the metric defect
satisfied by the constraint minimization problem suggest that the initial condition
should satisfy approximately the boundary conditions (to reduce the energy) and
have a small metric defect. Therefore, the preprocessing strategy consists of two
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main modules dedicated to each aspect. Note that in some cases, a suitable initial
deformation is known a priori, as in the case of clamped boundary conditions and
isometry constraint (g = I), which are satisfied by the identity map y%(x1,22) =
(71, 22,0)T. However, in general, the initial deformation is not accessible.

Boundary Conditions Preprocessing. The BC preprocessing consists in solv-
ing a bi-Lapacian problem to obtain a deformation satisfying (approximately) the
prescribed boundary conditions. We seek an approximation of the solution to the
bi-Laplacian problem

A%y = f inQ
Vy = @& onIP
(58) y = ¢ onIPurM
y(x;) = ¢; forallx; €TF,

supplemented with the following natural boundary conditions

(D?j))n = 0 ondQ\TP
(59) { V(Aﬁg) ‘n = 0 ondQ\ (TPurM)

for m = 1,2,3. Note that f is a fictitious forcing term. Its value is irrelevant
but can be employed to obtain a non-planar deformation, namely a deformation
¥ = (y1,y2,y3) with y3 # 0, in particular when I'” = (). This happens to be critical
because the main discrete gradient flow preserves planar configurations (when f =
0) and can therefore not reach non-planar minimizers.
The approximation y, of y is obtained using an LDG approach, that is
¥n i= argmin Ep"(yn),
yreE[VE]3

where E}" is given by (43) with g = 6, A = 0, and g = I». In particular, the
solution y, is obtained upon solving the associated Euler-Lagrange equation.

Metric Constraint Preprocessing. The metric preprocessing aims at minimiz-
ing the metric defect Dj, i € {aver, bary}. It consists of minimizing the simplified
stretching energy

(60) Ey (yn) == %/Q )(Vth)TVth -9 i

over [VﬁP The stretching energy E5™ is not quadratic, but its reduction can

be performed using an H ,2L (Q) discrete gradient flow coupled with a linearization

similar to the one for EYY. Setting ¥ = ¥, the deformation obtained by the BC

preprocessing algorithm, recursively computes SIZ‘H € [VK]? as the solution to

(61) FAERT = Vi W) m o) T OB (v wh) =0 Vwy € [VE],

where 7 > 0 is a given (sufficiently small) pseudo time-step and where for v, wy, €
[ViI?

(5Eztr()~72;vh,wh) = / ((thh)thWh + (VhWh)TVth) : ((VhyZ)TVhS’Z — g) .

Q
The gradient flow produces iterates with decreasing energy provided that 7 is suf-
ficiently small compared to E5(y%)~! and hmyin, see [18]. Similar to the main

discrete gradient flow, one drawback of the metric constraint preprocessing is that
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planar configurations are local minimizers of (60) regardless of the target metric g,
see [17]. A non-planar deformation can nevertheless be obtained using a non-planar
initial deformation y9. Such an initial deformation can be generated, for instance,
by solving (58)-(59) with f # 0. Moreover, the metric constraint preprocessing does
not necessarily construct a deformation with finite energy E}"°. If needed, a bend-
ing term could be added to the energy (60) to generate iterates with a uniformly
bounded H? () semi-norm, see [18].

4.3. Accelerated Algorithm. It is well-documented that gradient flows exhibit
slow convergence towards minimizers. Several accelerated algorithms have been
introduced to improve the convergence rate of the standard gradient descent algo-
rithm, but they are mainly available for convex problems.

Below we design an accelerated algorithm suited for the minimization of the
preasymptotic energy and the stretching energy used in the preprocessing pro-
cess. The proposed algorithm is inspired by Nesterov’s original accelerated gradient
method [57], see also [58, 59].

Typical results for the minimization of functions f : R — R is an O(n~?)
convergence in f when f is a C' convex function with Lipschitz gradient. Here
n denotes the number of iterations. This is a significant improvement over the
standard gradient method for which the convergence rate is only O(n=1).

The Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) is an extension
to when f is the sum of two convex and lower-semicontinuous functions, one of class
C! with Lipschitz gradient and the other potentially non-smooth. The convergence
of the FISTA algorithm is also quadratic in the number of iterations, see [12] and
[24].

Inspired by the FISTA algorithm (case f; = 0), but adapted to the functional
setting, our accelerated algorithm for the minimization of the preasymptotic energy
EY, and the stretching energy ;" used in the metric constraint preprocessing
reads: Given y9 € [VF]3, set v = y9. Then for n =0,1,... do

a) Find y;'t! € [VF]? satisfying (53) or (61) with y? replaced by v7;
b) Set VZ"H = yZH + 77n+1(y2+1 —y}), where 1,41 = % and {tn}n>1
satisfies

1 1
t1=1 and t”+1:”t%+1+§ forn=0,1,....

As in the case of the main gradient flow, a linearization is performed at v} to avoid
a nonlinear system at each iteration.

Note that the accelerating algorithm does not have the energy decreasing prop-
erty that the gradient descent algorithm does. This can be observed experimentally,
see Figure 4 below. However, the algorithm does appear to converge when the ap-
propriate step size is chosen.

Finding analytic estimates for the convergence rate of the proposed algorithm
remains an open problem. In Section 5.1.2 we observe at least an O(n~2) conver-
gence rate and illustrate the significant gain when the accelerated version of the
algorithm is used.

4.4. Dynamics: Time Discretization. Several numerical experiments presented
in Section 5 are dynamical in the sense that the data (boundary conditions and
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external forces) vary over the time interval [0, T]. The minimizers of the different
energies y are thus time dependent as well.

For a positive integer M, we let At := T'/M be the physical time-step (as opposed
to the pseudo-time step used in the gradient flows) and consider the points t,, :=
mAt for m = 0,1,...,M. We assume that the elastic relaxation is faster than
the time relaxation, i.e. at each time step, the thin elastic structures have minimal
energies. In particular, the deformations yy, (t,,,) € [VF]3 at each time t,, are discrete
minimizers of the discrete energy defined using the input data evaluated at t = ¢,,.

The dynamic algorithm reads:

Initialization (¢ = 0): Obtain yf) using the BC preprocessing algorithm with the

prescribed conditions evaluated at ¢ = 0; Set yéo) = y,(f’ );

Dynamics (¢t € (0,7]): for m =1,2,...,M, do

i) Obtain 5y§lm) = yﬁ[”) - y,(lmfl) using the BC preprocessing algorithm with
the increment boundary conditions

V9™ = ®(ty,) — D(ty_1), on P
09" = @(tm) — @(tm-1), on TP UTM
0y, (xi) = @;(tm) — @i(tm—1), fori=1,2,...,P;
ii) Starting from y}j”% obtain yﬁ;”) using the metric preprocessing algorithm
to satisfy approximately the metric constraint;
iii) Starting from 5’§Lm), obtain yflm) using the (main) gradient flow to minimize
the discrete energy with the data evaluated at t = t,,.

It is important to point out that the BC preprocessing procedure embedded in

the dynamic algorithm above determines the increment 6y\™ := g™ — y(m=1

(rather than the preprocessed deformation y,{j") directly) by solving (58)-(59) with
incremental boundary conditions. This is done to take advantage of the previous
step and, in particular, to avoid using a costly metric preprocessing algorithm
starting from scratch at each time step.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of the different algorithms. All the
simulations are performed with g = 6 and A = 8 (note that u = 6 and A = 0 yield
the factor 1/2 for the bilayer case) and without any external force (i.e. f = 0) except
for the experiment in Section 5.3. The polynomial degree used for the approximated
deformations yj, is chosen to be k = 2, and, unless specified otherwise, we take
Y0 =71 = 1 and v, = 10 for the stabilization parameters. The main gradient flow
ends when

L) — Balyi)| < tol

for a prescribed tolerance tol specified for each numerical experiment below. For
the metric preprocessing we stop when

7! Eh(y;;“) —Ex3))| < tol or Di(y7) <&, i€ {aver,bary},
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for some tolerances tol and €o specified below. Finally, for the experiments in
Sections 5.1 and 5.3, where the domain 2 consists of the unit disc, we use a quadratic
mapping Fr in (35) to better approximate the domain.

5.1. Preasymptotic. We first consider two experiments using the preasymptotic
model. The first experiment illustrates the effect of the thickness of the plate on the
final configuration, while the second demonstrates the advantages of the Nesterov-
type acceleration discussed in Section 4.3. In both experiments the computational
domain {2 is a disc of radius one, and we use 7 = 0.01 for the gradient flow pseudo
time-step.

5.1.1. Disc with Oscillating Boundary. Our first experiment is inspired by [42, 47],
in which a hydrogel disc of negative Gaussian curvature is observed to develop
more oscillations along the boundary as its thickness is reduced. The material is
prestrained according to the metric

g=J"(g0¢),
where J is the Jacobian matrix for the change of variables (r,0) = {(z1,x2) from

polar to Cartesian coordinates and §(r,6) is the first fundamental form of the
following deformation

(62) y(r,0) = (rcos(f),rsin(f),0.2r* sin(66)).

This deformation corresponds to a disk with six wrinkles.

For the discretization, our subdivision consists of 1280 quadrilaterals and a total
of 34560 = 1280 - 9 - 3 degrees of freedom. The initial deformation y! is taken to
be the continuous Lagrange interpolant of (62). We set tol = 10~% for the stopping
criterion and run the experiment for s> = 107!, 1072, 103, and 0.

The computed deformations minimizing the preasymptotic energy EP™ are pro-
vided in Figure 3. In accordance with the laboratory experiments [42, 47], the
number of wrinkles increases from 0 to 6 as s decreases.

.
s~

FIGURE 3. Final configurations for the oscillating boundary ex-

periment. Left to right and top to bottom: s = 107!, 1072, 1073,
and 0.
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5.1.2. Accelerated Algorithm. This example illustrates the benefits of using the ac-
celerated algorithm introduced in Section 4.3 over our original gradient flow. This
time the material is characterized by a “bubble” metric with positive Gaussian
curvature, namely

sl (1 p))250 oo T _ p))2Z1T2
g(@n,22) = ( L+aTcos(5(1—7))*F  alpcos(5(l—r))?Es )

2
aZcos(T(1— )28z 14 aZcos(Z(1—r))2%

with r = /2% + 23 and a = 0.2.
The mesh for this experiment consists of 320 quadrilaterals and a total of 8640 =
320 -9 - 3 degrees of freedom. The initial deformation is taken to be the continuous

Lagrange interpolant of the shallow paraboloid —% + %. This gives a slight ini-
tial bending that allows the simulation to find a non-flat minimizer. (Recall from
Section 4.2 that the flat configuration is a local minimizer of the preasymptotic en-
ergy.) For the thickness of the material, we use the values s? = 1073, 1074, 107°,
and 0 and we set tol = 10~% as stopping criterion.

The discrete stretching energy Ef and bending energy s? (E,]L3 + Sp) along with
the number of iterations needed to reach the tolerance tol are reported in Table 1
when using the standard gradient flow and the accelerated algorithm. We observe
that the accelerated algorithm finishes in much fewer iterations for all values of the
thickness s. The approximate preasymptotic energy EL )y = Ej +s*(Ef} +5},) versus
the algorithm iteration number n is depicted in Figure 4 for the different values of s
considered. When using a standard gradient flow, we observe numerically that the
energy decay is like O(n~1), while the accelerated algorithm exhibits a decay similar
to O(n=2). The latter is the expected convergence rate when using Nesterov-type
accelerations.

Discrete Gradient Flow Accelerated Gradient Flow
52 Ef E{f Iterations E;f Ef Iterations
0 2.390e-4 0 17746 8.098¢-6 0 1007

1075 || 1.525e-4 | 2.685¢-4 26784 2.694e-4 | 3.990e-4 359

10~% || 4.479¢-5 | 5.951e-4 37799 6.350e-6 | 4.095e-4 896

1073 || 5.595e-5 | 2.843e-3 39533 3.920e-5 | 2.741e-3 664
TABLE 1. Final energy and number of iterations for different val-
ues of s2, with and without acceleration.

5.2. Bilayer and Folding. We consider here two experiments taken from [66],
referred to as diamond and bird in the following. They illustrate the rigidity, ro-
bustness, and great variety of shapes achievable with this technology. In these
examples, the computational domain consists of a collection of subdomains delim-
ited by creases where folding is allowed. The bilayer material is designed to yield a
piecewise constant spontaneous curvature tensor Z on each subdomain with o = 1.

In both experiments we set 7 = 0.1 for the gradient flow pseudo time-step and
tol = 1072 for the stopping criterion.
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FIGURE 4. Evolution of E¥Y during the minimization when using
the standard gradient flow and the accelerated algorithm. The
energy are reported for the first few iterations to illustrate better
the convergence of the acceleration.

5.2.1. Diamond. The diamond computational domain is provided in Figure 5 (left).
It consists of the square (—1.5,1.5) x (—1.5,1.5) rotated counter-clockwise by an
angle of /4. The two dashed red curves represent the creases. They are quadratic
Bézier curves with the origin as control point. The point z; is at distance 1/3 from
x; on the segment from x; to X3, and similarly for the three other points. We
denote by Z; € R?*? the spontaneous curvature associated with each subdomain
i €{1,2,3} and set

Zl = Zg = 06]2 and ZQ = 70.6]2.

The subdivision Ty, is depicted in Figure 5 (right). It consists of 449 quadrilaterals
with maximal mesh size 0.331678 (total of 13470 degrees of freedom, 12123 =
449-9-3 for the deformation yj and 1347 = 449-3 for the Lagrange multipliers used
to enforce the linearized isometry constraint). Moreover, the initial deformation
y9 is taken to be the identity map y?(Q) = Q x {0} for which EP! = 3.24 and
Dzary = 8.72497-10~ 2. The deformations obtained at several steps of the gradient
flow are provided in Figure 6, including the final (equilibrium) deformation reached
in 305 iterations. For the final deformation, the energy and isometry defect are
EP' = 0.679318 and D™ = 0.0334151, respectively.
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FIGURE 5. Computational domain (left) and subdivision (right)
for the diamond setting. The dashed red curves are creases across
which folding is possible.

FIGURE 6. Deformations for the diamond experiment. Left to
right and top to bottom: deformation obtained after 20, 70, 120,
305 (top view), and 305 (side view) iterations.
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5.2.2. Bird. The bird geometry is depicted in Figure 7. It consists of 26 curves: 17
for the boundary of © (black plain curves), 7 creases (red dashed curves), and 1
extra curve on the tail (black dotted curve) which is only used for the construction
of the subdivision (i.e. no folding is possible across this curve). All the curves are
quadratic or cubic Bézier curves, i.e. obtained using one or two control points. The
latter are chosen so that we obtain a geometry similar to [66]. In this example,
the piecewise constant spontaneous curvature tensors Zi, ..., Zg are given on each
subdomain by

0 0 0 0
Z1Z5<O 04)) ZQZ4(O _O3>? Z3:0'7‘[23

26:(8'2 8), Z7:<O(')7 8) and  Zs = Zo = —0.7L5.

FI1GURE 7. Computational domain for the bird experiment.

The mesh is constituted of 1468 quadrilaterals with maximal mesh size 0.690837
(total of 44040 degrees of freedom, 39636 = 1468 - 9 - 3 for the deformation y; and
4404 = 1468 - 3 for the Lagrange multipliers used to enforce the linearized isometry
constraint), see Figure 8. The initial deformation y! is again taken to be the
identity map y) (Q) = Q x {0} for which EP! = 12.9388 and Dzmy =3.0149-10714.
The deformation obtained after 100, 200, 500 and 2383 (final) iterations are given

in Figure 9. For the latter the energy is E}z“ = 4.2239 while the isometry defect is

Dy = 0.0529014.

It is worth pointing out that the equilibrium shape obtained is rather sensitive
to the value of the spontaneous curvature tensors. To illustrate this, a coefficient
—0.4 instead of —0.3 in Zs and Z,4 leads to an equilibrium deformation reported in
Figure 10. After 2383 iteration of the gradient flow, the deformation is similar to
the one obtained in Figure 9 (bottom-right), but the final deformation reached in
8085 iterations is quite different.
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<+

FIGURE 8. Mesh for the bird example.

A o
P

FIGURE 9. Deformations for the bird experiment. Left to right
and top to bottom: deformation obtained after 100, 200, 500, and
2383 iterations.

5.3. Single Layer with Time-Dependent Force. In this experiment, the do-
main 2 is the unit disc endowed with a prestrain metric corresponding to a half-
sphere, namely g = I(y) with

T
(63) Y(9617962)=(561,962,\/14-6—:6%—90%) , e=1073,

where the small parameter € is introduced to avoid singularities at the boundary
0. We study the effect of a uniform axial force directed towards the center of
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FIGURE 10. Deformations for the bird experiment when Z, =
Zy = [0,0;0,—0.4]. (Left) Deformation obtained after 2383 it-
erations; (right) final deformation reached in 8085 iterations.

the sphere. When the external force is sufficiently strong, we expect the sphere to
crush like when the pressure inside a thin spherical reservoir is significantly smaller
than the atmospheric pressure.

In this experiment, the external force is given by

t
1,%2),
ey ()

where v is the structure outward pointing normal and ¢ denote the time. We
prescribe a mixed boundary condition with deformation given by (x1,z9) =
(21,22, \/E)T on I'M = 9Q, which is compatible with (63).

The subdivision of € consists of 992 quadrilaterals with hanging nodes and of
maximal mesh size 0.194084 (total of 29760 degrees of freedom, 26874 =992 -9 - 3
for the deformation yj, and 2976 = 992 - 3 for the Lagrange multipliers used to
enforce the linearized metric constraint). It is finer near the boundary where more
stretching is expected. The initial deformation y? is taken to be the continuous
Lagrange interpolant of y in (63), see Figure 11, for which E}™ = 561.443 and
Diver = (.169394. The other numerical parameters are 7 = 0.2, tol = 1073, and
At = 5 so that t,, = mAt = 5m.

(64) f($1,$2,t) = —tu(:z:l’m2) —

FIGURE 11. Initial deformation for the half-sphere experiment.

For m =1,...,44, the equilibrium deformation is similar to the initial one given
in Figure 11. The number of gradient flow iterations are 1594 for m = 1 and
between 8 to 101 for 2 < m < 44. When m = 45, f(z1,29,tm) = —225v(21, 22)
and the object cannot sustain the corresponding force anymore. It collapses and
deforms all the way to a half-sphere in the opposite direction. In particular, the
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range of values for the third component of the deformation is [0.03094,0.97704] at
the first iteration and [—1.06951,0.03254] at the last iteration of the gradient flow
(81484). We refer to Figure 12 for the deformation obtained at different steps of
the gradient flow and to Table 5.3 for the corresponding energy metric defect.

Lods
L N
a3/

FIGURE 12. Deformation for the half-sphere experiment when t =
225 in the forcing term (64). Left to right and top to bottom:
initial deformation and deformation obtained after 400, 800, 1200,
and 81484 steps of the gradient flow.

n EII;TQ Dzver
0| 738.520 | 0.206666
400 | 711.633 | 0.245251
800 | 597.757 | 0.351605
1200 | 313.706 | 0.524551
81484 | 49.763 | 0.528641
TABLE 2. Prestrain energy £} and metric defect DEVe" at differ-
ent steps of the gradient flow for the half-sphere experiment when

t = 225, see Figure 12 for the corresponding deformations.
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5.4. Starshade Experiment. The starshade technology was developed as part
of the NASA exoplanet exploration program. Starshades are occulters external
to a telescope that shade the light from stars when imaging planets [55]. They
fold to minimize the space they occupy when transported in rockets and are easily
deployable when arrived at destination.

The mathematical model corresponds to the single layer case with isometry con-
straint and time-dependent boundary conditions mimicking compression (closing)
and decompression (opening). The geometry is taken from [61] and consists of a
dodecagon, see Figure 13. Inside the computational domain, there are 12 cubic

FIGURE 13. Domain for the starshade example.

Bézier curves as well as 6 straight lines (hexagon) across which folding is possible.
The red dashed curves correspond to valley folds while the blue ones are mountain
folds. The nodes of the dodecagon are given by

x; = (Rcos (%),Rsm (%)) i=1,2,...,12,

with R = 7, while the nodes of the hexagon are given by

zi:(rcos((i_Tl) ,;;) rsm((i_Tl)ﬂ—%)), 1=1,2,...,6,

with 7 = 0.8. For the curves, we use the following control points (i = ,6):

pivz(?)cos(@_%)ﬁsin((z—l ))
qy:(f)cos(% 2”4) 5sm((z—1 214))

o = (s (5 ) (07 )

q = (5cos (Q + %)’58111 (@ * @)

The first valley curve is obtained using z;, p}, q} and x, the first mountain curve
uses z1, p¥, g and xs, the second valley curve uses z», py, q5 and x3, and so
on.

0‘!

and
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For the boundary conditions, we compress the 6 valley points x;,1=1,3,5,7,9,11.
More precisely, we consider a dynamical setting by prescribing for+ = 1,3,5,7,9, 11,
the following time-dependent pointwise boundary condition for the deformation yy,

(65) p;(t) = (1 —2¢,1) (Rcos ((i_TlﬁT>,Rsin (@),O)T,

where ¢, = 0.25 is a compression ratio. Using the strategy described in Section 4.4,
we compute an approximate equilibrium deformation y}* at time ¢ = ¢,,, m =
0,1,..., M. Recall that this entails running the BC preprocessing for the variation
oyy =yp — yh’"—l imposing the pointwise conditions

dp; = —2crAt(Rcos (Q),Rsin <@),O>T, 1=1,3,5,7,9,11.

Note that at t = 0, ¢, = x; and in particular, the BC preprocessing with the above
boundary conditions results in a flat deformation which is conserved by the metric
preprocessing and gradient flow. In order to generate an out of plane deformation,
the boundary conditions for the initialization step (see case ¢ = 0 in Section 4.4)
are modified to be (65) for the valley points and ¢, = (x;,1.5)T for the 6 mountain
points x;, ¢ = 2,4,6,8,10,12.

The time-step for the time discretization is At = 0.05, and M = 35 steps are
Egrformed. The gradient flow parameters are 7 = 0.05 and tol = 0.1 while 7 = 0.01,
tol = 0.5, and £y = 0.5 are chosen for the metric preprocessing. The computational
domain subdivision consists of 620 quadrilaterals of maximum mesh size 1.20925
(total of 18600 degrees of freedom, 16740 = 620 - 9 - 3 for the deformation y, and
1860 = 620 - 3 for the Lagrange multipliers used to enforce the linearized isometry
constraint), see Figure 14. The penalty parameters are y9 = v = 72 = 10.

FIGURE 14. Mesh for the starshade example.

The equilibrium deformations obtained for several time ¢,, = mAt are reported
in Figure 15, see Figure 16 for corresponding side views.
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