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Abstract. We consider the numerical approximation of Gaussian random
fields on closed surfaces defined as the solution to a fractional stochastic par-
tial di↵erential equation (SPDE) with additive white noise. The SPDE in-
volves two parameters controlling the smoothness and the correlation length
of the Gaussian random field. The proposed numerical method relies on the
Balakrishnan integral representation of the solution and does not require the
approximation of eigenpairs. Rather, it consists of a sinc quadrature coupled
with a standard surface finite element method. We provide a complete error
analysis of the method and illustrate its performances in several numerical
experiments.

1. Introduction

Random fields appear in many applications. A typical example is when uncer-
tainty is incorporated in mathematical models. The uncertainty in the parameters
reflects an intrinsic variability of the system or our inability to adequately charac-
terize all the data, for instance due to measurements. In a probability setting, the
uncertainty is modeled by random variables or more generally random fields. A
concrete example in the context of partial di↵erential equations (PDEs) is Darcy’s
flow, where the permeability is modeled as a log-normal random field [23, 56].
Many methods have been developed to solve stochastic partial di↵erential equa-
tions (SPDEs) or to compute statistics of their solutions. The most commonly
used are Monte Carlo-type methods [36, 25], the stochastic Galerkin method [35, 7]
and the stochastic collocation method [62, 5]. Common to all these methods is the
use of samples from random fields.

The standard approach to evaluate a random field is to use a truncated series
expansion, e.g. a Karhunen–Loève (KL) [48, 49] or Fourier expansion, thereby con-
sisting of only a finite number of random variables (this process is usually referred
to as the finite dimensional noise assumption in the random PDEs literature).

The truncated KL expansion is widely used in practice as it is the one min-
imizing the mean square error. In specific cases, the analytic expression of the
KL expansion is known, e.g. for random fields with separable exponential covari-
ance function on hyperrectangles (the eigenfunctions being (product of) sine and
cosine functions) [45, 50] or for isotropic Gaussian random fields (GRFs) on the
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sphere. Here the eigenfunctions are the spherical harmonics [52, 44] and are known
analytically. However, in general, the computation of KL expansions requires ap-
proximating eigenfunctions of an elliptic operator. We refer to [58] for an e�cient
algorithm (based on discontinuous finite elements) that can be used to approximate
the truncated KL expansion of a random field with prescribed mean field and co-
variance function defined on a Euclidean domain. In the case of GRFs on compact
Riemannian manifolds, a numerical method combining a Galerkin approximation
of the Laplace–Beltrami operator with a truncated Chebyshev series approximation
of the square-root of a covariance matrix is introduced in [43].

As an alternative to KL expansions, multilevel representations have been con-
sidered for e�cient simulation of random fields. We refer for instance to [8] for
(modified) spherical needlet-based representations of GRFs on the sphere or [37]
for wavelet-based representations of GRFs indexed by Euclidean domains, mani-
folds, or graphs.

In this work, we are interested in GRFs which belong to the so-called (Whittle–)
Matérn class, see (12). They are characterized as the solution to a fractional PDE
with additive white noise of the form

(2I ���)seu = ew, (1)

where  > 0, s > n�1

4
and � is a closed hypersurface in Rn (n = 2, 3).

This link between GRFs and fractional SPDEs was already observed in [60, 61]
for stationary fields on Rn and later extended in [47] to more general fields, including
GRFs on bounded domains. Numerical solvers for such fractional SPDEs can then
be used to approximate random fields, see for instance [12, 11, 26] for GRFs defined
in Euclidean domains, [40, 24] for GRFs on general manifold, and [14] for GRFs on
graphs. A list of recent applications of the SPDE approach to the approximation
of random fields can be found in [46].

We propose a numerical method for approximating the solution to (1) when
n�1

4
< s < 1; refer to Remark 2.1 for extensions to s � 1. The method relies on

the integral representation

(2I ���)�s ew =
sin(⇡s)

⇡

Z 1

0

µ�s((µ+ 2)I ���)�1 ew dµ. (2)

The improper integral is approximated by a sinc quadrature and a continuous linear
finite element method on an approximate surface � is put forward to approximate
the integrand at each sinc quadrature point.

Such a two-step numerical strategy (sinc quadrature coupled with a finite element
method) was originally proposed in [20] for Euclidean domains and  = 0. We refer
to [22, 19, 2] for several extensions and notably to [18] when the domain is a closed
hypersurfaces.

All the above mentioned work on fractional PDEs are for deterministic data.
Although the approximation of the solution to (1) considered in this work is similar
to the one introduced in [18, Section 3], realizations of the stochastic right-hand
side ew are not almost surely in L2(�). Whence, following [38], we replace ew by
a projection onto a conforming finite element space defined on �. The resulting
approximation is a Gaussian random vector with zero mean and a covariance ma-
trix given by a weighted finite element mass matrix. Alternatively in [13], which
considers the Euclidean setting, ew is approximated by an expansion with respect to
the discrete eigenfunctions of the conforming finite element approximation of the
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operator (2I���). Using a change of basis, the resulting approximation to ew can
be expressed in terms of the finite element basis functions and can then be used in
practice since both are equal in the mean square sense. This property is critical in
our analysis of the error in the mean square norm.

We now comment on the main novelties of this work.

• Compared to [13, 38], we improve on the convergence of the sinc quadrature
by deriving an exponential convergence rate with respect to the quadrature
spacing and in particular not depending on the finite element mesh size;
see Theorem 5.2 and 6.1 as well as the numerical validation in Remark 5.3.
This implies that the mesh size and the quadrature spacing can be chosen
independently.

• The abstract analysis proposed in [38] considers a finite element method
defined on the exact surface and provides strong error estimates. Instead,
we design and analyze a parametric finite element method on approximate
surfaces by taking into account the geometric error. Note that setting the
finite element on approximate (polygonal) surfaces facilitates the construc-
tion of the discrete system. In [40], the surface is restricted to a sphere but
strong and mean squared norm error estimates are derived for parametric
finite element methods on approximations of the sphere. In that case, the
approximation of the white noise strongly relies on the knowledge of the
eigenpairs for the sphere. Our analysis, accounts for the intricate influence
of the geometric error in the approximation of the eigenpairs for general C3

surfaces.
• Borrowing ideas from [13], we estimate the discrepancy between the mean
square norm of the exact solution and that of the proposed approximate
solution. Our analysis relies on the asymptotic behavior of the eigenvalues
of the Laplace–Beltrami operator (Weyl’s law) as well as the ability for
the finite element method to approximate the eigenvalues of (2I � ��).
However, the analysis in [13] relies on an assumption for the approximation
of individual eigenvalues (Assumption 2.6 in [13])

0 < e⇤�
j
� e�j  Ce�r

j
hq, q > 1, r > 0, (3)

where e⇤�
j
is the approximation of the jth eigenvalue e�j (see (19) and (46)).

To derive optimal convergence rates in the mean square norm, it appears
that one needs q = r = 2. With this choice of parameters, the constant C in
(3) may not be uniform with in j; see e.g. [32, Theorem 47.10]. In this work,
we do not rely on such assumption but rather derive a weaker but cluster
robust eigenvalue error estimate (Lemma 4.1) instrumental for the optimal
convergence rates in the mean square norm provided by Theorem 6.1. It
is worth pointing out that the cluster robust estimate of Lemma 4.1 is
used in [43, Appendix C] to guarantee (3) with a uniform constant C when
q = r = 2.

This paper is organized as follows. We start by recalling in Section 2 known re-
sults about random fields, including properties of their KL expansions. In Section 3,
we define our model problem (16) in Sobolev spaces and introduce the Dunford–
Taylor integral representation for the solution. The numerical method is introduced
in Section 4. The strong and mean square norm error estimates are discussed in
Sections 5 and 6, respectively. Theorem 5.2 (strong convergence) and Theorem 6.1
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(convergence in the mean square norm) are the main results of this work. Several
numerical experiments illustrating the e�ciency of the method and the influence of
s and  on resulting GRFs are provided in Section 7.

2. Random Fields

We start this section by recalling the notion of random fields. A natural ap-
proach to represent a random field is to consider its Karhunen–Loève expansion
formally described in Section 2.1, see [45] and references therein. However, this
representation is computationally challenging as it requires (an approximation of)
the eigenpairs of the associated covariance operator, see (5) below. Alternatively,
Matérn Gaussian random fields defined in Section 2.1.2 and considered in this work
are solutions to an SPDE with Gaussian white noise. This representation is critical
for the e�cient numerical method analyzed in this work.

2.1. Random Fields in Euclidean Domains. Let D ⇢ Rn, n = 1, 2, 3, be a
bounded domain and let (⌦,F ,P) be a complete probability space, where ⌦ is the
set of outcomes, F ⇢ 2⌦ is a �-algebra of events, and P : F ! [0, 1] is a probability
measure. Let u : D⇥⌦! R be a real-valued random field, namely u(x, ·) is a real-
valued random variable for each x 2 D. We suppose that u 2 L2(⌦)⌦L2(D), that
is u(·,!) 2 L2(D) P-a.e. in ⌦ and u(x, ·) 2 L2(⌦) a.e. in D. With a slight abuse of
notation1, we shall often consider u as a square integrable mapping u : ⌦! L2(D).
This means that u 2 L2(⌦;L2(D)), where for any Hilbert space H on D equipped
with the norm k · kH , the Bochner space L2(⌦;H) is defined by

L2(⌦;H) :=
�
v : ⌦! H : v is strongly measurable and kvkL2(⌦;H) < 1

 
(4)

with

kvk2
L2(⌦;H)

:= E
⇥
kvk2

H

⇤
:=

Z

⌦

kv(!)k2
H
dP(!) < 1.

We introduce ū : D ! R and covu : D ⇥ D ! R the mean and covariance
functions of u defined respectively by

ū(x) := E[u(x, ·)] for a.e. x 2 D,

and

covu(x,x
0) := E[(u(x, ·)� ū(x))(u(x0, ·)� ū(x0))] for a.e. x,x0 2 D. (5)

We say that u is weakly stationary if the mean field ū is constant and the covariance
function depends only on the di↵erence x� x

0, namely covu(x,x0) = c(x� x
0) for

some function c : D ! R. If in addition covu(x,x0) depends only on the Euclidean
distance |x� x

0| then u is said to be isotropic; see [1].
To motivate the representation of a random field by its Karhunen–Loève expan-

sion, see [45] and references therein, we suppose that u is such that covu in (5)
is continuous on D̄ ⇥ D̄. This is for instance the case when u is a Gaussian ran-
dom field with Matérn covariance, see Section 2.1.2 below, and D is convex; see
for instance [56, Lemma 11]. Then u can be represented by its Karhunen–Loève
expansion

u(x,!) = ū(x) +
1X

i=1

p
�i⇠i(!)�i(x), (6)

1For any Hilbert space H on D, the tensor product space L
2(⌦)⌦H is isomorphic to L

2(⌦;H)
defined in (4), see for instance [7].
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where the sum converges in L2(⌦;L2(D)). In (6), {(�i,�i)}1i=1
with

�1 � �2 � . . . ! 0 and

Z

D

�i(x)�j(x)dx = �ij

are the eigenpairs of the (compact, self-adjoint, positive semi-definite) Hilbert-
Schmidt integral operator Cu : L2(D) ! L2(D) defined for v 2 L2(D) by

(Cuv)(x) :=

Z

D

covu(x,x
0)v(x0)dx0, x 2 D.

That is, the eigenpair (�i,�i), i 2 N, satisfies the following eigenvalue problem
(Fredholm integral equation of the second kind)

Z

D

covu(x,x
0)�i(x

0)dx0 = �i�i(x), x 2 D. (7)

Moreover, the random variables {⇠i}1i=1
, which are given by

⇠i(!) :=
1p
�i

Z

D

(u(x,!)� ū(x))�i(x)dx, (8)

have zero mean, unit variance, and are pairwise uncorrelated:

E[⇠i] = 0 and E[⇠i⇠j ] = �ij .

In other words they are orthonormal in L2(⌦).

2.1.1. Properties of the KL Expansion. The KL series in (6) converges not only
in L2(⌦;L2(D)) but also in L2(⌦) pointwise in x 2 D. Indeed, since covu is
symmetric, continuous, and positive semi-definite, thanks to Mercer’s theorem [55]
we have

covu(x,x
0) =

1X

i=1

�i�i(x)�i(x
0), (9)

where the convergence is absolute and uniform on D ⇥D, and thus

Var [u(x, ·)] = covu(x,x) =
1X

i=1

�i�i(x)
2.

Now for any N 2 N, let

uN (x,!) := ū(x) +
NX

i=1

p
�i⇠i(!)�i(x) (10)

denote the truncated KL expansion with N terms, which satisfies the following
relation for any x 2 D

Var
⇥
uN (x, ·)

⇤
= E

⇥
(uN (x, ·)� ū(x))2

⇤

=
NX

i,j=1

p
�i
p
�j�i(x)�j(x)E[⇠i⇠j ]| {z }

=�ij

=
NX

i=1

�i�i(x)
2.
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Then for any x 2 D, thanks to Fubini’s theorem, relation (9), and the fact that
{�i}1i=1

forms an orthonormal basis of L2(D), we infer that

E
⇥
(u(x, ·)� uN (x, ·))2

⇤
= E

⇥
(u(x, ·)� ū(x) + ū(x)� uN (x, ·))2

⇤

= Var(u(x, ·))�Var(uN (x, ·))

=
1X

i=N+1

�i�i(x)
2 ! 0 as N ! 1 (11)

uniformly in x 2 D, from which we deduce that (6) holds for all x 2 D.
Using the fact that k�ikL2(D) = 1 for all i 2 N together with Fubini’s theorem,

we easily deduce from (11) the relation

ku� uNk2
L2(⌦;L2(D))

=
1X

i=N+1

�i.

Therefore, the mean square error between the random field u and its truncated
KL expansion uN is controlled by the decay of the eigenvalues, and the latter
depends on the smoothness of the covariance function. Estimates on the decay of
the eigenvalues can be found for instance in [34].

The truncated KL expansion (10) is the one minimizing the mean square error
in the sense that (cf. [35])

{(
p
�i⇠i,�i)}Ni=1

= argmin
{(⇣i, i)}N

i=1,
R
D
 i j=�ij

E

2

4
Z

D

 
u(x, ·)� ū(x)�

NX

i=1

 i(x)⇣i(·)
!2

dx

3

5 .

Finally, note that the KL representation (6) of u only requires the knowledge of
the mean field and the covariance function, i.e. of the first two moments of u. From
a modeling point of view, random fields can be generated by prescribing functions
ū and covu and building the representation (6) or (10). However, the di�culty
lies in the fact that not any function covu is admissible, in particular it needs to
be positive semi-definite. We will consider in the next section a specific family of
admissible covariance functions, see (12) below, and we refer to [29] for other classes
of functions.

2.1.2. Gaussian Random Fields. It is well-known that if u is a GRF2 then u is fully
determined by its mean and covariance functions [50]. Moreover, the KL expansion
of a GRF is given by (6), where the ⇠i are pairwise independent and follow a normal

distribution, i.e. ⇠i
i.i.d.⇠ N (0, 1).

In particular, we say that a GRF belongs to the Matérn family [53] if the covari-
ance function reads

covu(x,x
0) =

�2

2⌫�1�(⌫)
(|x� x

0|)⌫ K⌫ (|x� x
0|) , (12)

where �2 is the marginal variance, K⌫ is the modified Bessel function of the second
kind of order ⌫, � is the gamma function, and  and ⌫ are positive parameters
controlling the spatial correlation range and the smoothness of covu, respectively.

2We say that u is a Gaussian random field if the random vector (u(x1), u(x2), . . . , u(xM ))
follows a multivariate Gaussian distribution for any x1,x2, . . . ,xM 2 D and any M 2 N.
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Specifically, the underlying random field u is d⌫e � 1 mean square times di↵eren-
tiable. The covariance function (12) is usually re-parameterized using, for instance,
 =

p
2⌫/lc with lc the correlation length. Processes with covariance function as

in (12) have been used in many applications such as machine learning [57] and
spatial statistics [59], in particular in geostatistics [29]. Note that for ⌫ = 1/2, the
covariance function reduces to the exponential

covu(x,x
0) = �2 exp

✓
� |x� x

0|
lc

◆
(13)

while in the limit ⌫ ! 1 we get the squared exponential

covu(x,x
0) = �2 exp

✓
� |x� x

0|2

2l2
c

◆
. (14)

When D is convex, the covariance function (13) is only Lipschitz continuous and the
realizations of the underlying random field u are Hölder continuous with parameter
↵ < 1/2, namely u(·,!) 2 C0,↵(D̄) P-almost surely. Instead, we have covu 2
C1(D̄ ⇥ D̄) and u(·,!) 2 C1(D̄) P-almost surely when the covariance function is
given by (14), see [56].

It was observed in [60, 61] that the stationary (mean zero) solution u : Rn⇥⌦!
R to the SPDE

(2I ��)su = w, in Rn, P-almost surely, (15)

has the covariance function (12) with smoothness parameter ⌫ = 2s�n/2 and mar-
ginal variance �2 = �(⌫)�(⌫ + n/2)�1(4⇡)�n/2�2⌫ . Here, I denotes the identity
operator, � is the Laplacian operator, and w is Gaussian white noise with unit
variance. That is, w is a (so-called generalized) Gaussian random field satisfying

E
⇥
(w,')L2(Rn)

⇤
= 0 and Cov

�
(w,')L2(Rn), (w, )L2(Rn)

�
= (', )L2(Rn)

for all ', 2 L2(Rn), where (·, ·)L2(Rn) stands for the L2 inner product in Rn, see
for instance [46].

Instead of using a (truncated) KL expansion to simulate a GRF with covariance
function as in (12), we can thus solve the SPDE (15). Not only this latter approach
does not require the knowledge of the eigenfunctions of the covariance operator, but
it also permits several generalizations such as random fields on a bounded domain
or non-stationary random fields; we refer to [47] for the case 2s 2 N and to [13, 11]
for the general case s > n/4.

Remark 2.1. In the case s � 1, namely s = m + s̄ with m 2 N and s̄ 2 [0, 1),
the solution to (15) can be computed recursively as described in [40]: first solve the
m non-fractional SPDEs Lui = ui�1 for i = 1, . . . ,m, where L := (2I ��) and
u0 = w, and then solve the fractional SPDE Ls̄u = um.

2.2. Random Fields on Surfaces. The advantage of the SPDE approach is that
it can be straightforwardly generalized to random fields on surfaces [24], while this
is not the case when starting from the mean field and covariance function. For
instance, replacing the Euclidean distance |x� x

0| in (12) by the geodesic distance
between x and x

0 does not yield an admissible covariance function as it fails to be
positive semi-definite, see e.g. [33].

In this work, we are thus concerned with the numerical approximation of the
following SPDE: find eu defined on the closed hypersurface � ⇢ Rn (n = 2, 3) such
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that E[eu] = 0 almost everywhere on �, and satisfies

(2I ���)seu = ew, on �, P-almost surely, (16)

where I denotes the identity operator, �� is the Laplace–Beltrami operator,  is
a positive constant, and ew denotes Gaussian white noise with unit variance. The
meaning of the fractional power s > n�1

4
of the elliptic operator L := 2I��� will

be made precise in the next section. In statistics, the above equation models GRFs
on closed surfaces [47]. As above, s indicates the smoothness of the corresponding
covariance function while  controls the correlation range [13].

In what follows, we shall restrict the fractional power to the range s 2 (n�1

4
, 1),

and we mention that the recursive strategy described in Remark 2.1 can be used
when s � 1. We also write a . b when a  Cb, where C is a positive constant which
does not depend on a, b, or the discretization parameters. We say a ⇠ b if a . b and
b . a. We will use the notatione. for quantities defined on � and discrete functions in
space are denoted with capital letters. Finally, all the equations involving random
variables or random fields are to be understood in the P-almost surely sense.

3. Dunford–Taylor Formulation of (16)

The central SPDE (16) involves fractional powers of di↵erential operators on
surfaces. In this section, we make these notions precise and justify an integral
representation of the solution to (16). The latter is critical for the design and
analysis of the numerical algorithm proposed in Section 4.

3.1. Di↵erential Operators on Surfaces. We assume that � is a closed and
compact hypersurface in Rn (n = 2, 3) of class C3. The signed distance function
to � is denoted d : Rn ! R. The regularity of � translates into the regularity of
d, that is d 2 C3(N ), where N is a tubular neighborhood of � of width depending
on the curvatures of �, see [27]. Note that rd|� is normal to � and thus rd is an
extension to N of the normal to the surface �. With this at hand, one can define
the orthogonal projection operator P : N ! � by

P(x) := x� d(x)rd(x), x 2 N , (17)

which is instrumental to define normal extensions of quantities defined on �. More
precisely, for ev : � ! R, the extension is given by ev � P. By construction, these
extensions are constant in the normal direction rd.

The surface gradient (or tangential gradient) on � is the tangential component
of the regular gradient defined on N , i.e.

r�ev := (I �rd⌦rd)rv|� : � ! Rn, v := ev �P.

The components of the surface gradient r� are denoted Di, i = 1, . . . , n so that
when applied to a vector-valued function ev = (ev1, . . . , evn) : � ! Rn, the surface
gradient reads

r�ev := (Djevi)ni,j=1
.

Furthermore, the surface divergence and Laplace–Beltrami operator are given for
ev : � ! Rn and ev : � ! R by, respectively,

div�ev := trace(r�ev), ��ev := div�(r�ev).
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The functional space L2(�) stands for the space of measurable and square inte-
grable functions on �. It is a Hilbert space with scalar product and norm

(ev, ew)� :=

Z

�

ev ew, kevk2
L2(�)

:= (ev, ev)� .

We also define the Sobolev spaces

H1(�) :=
�
ev 2 L2(�) : |r�ev| 2 L2(�)

 

endowed with the norm

kevk2
H1(�)

:= kevk2
L2(�)

+ k|r�ev|k2L2(�)

and

H2(�) :=
�
ev 2 H1(�) : DiDjev 2 L2(�), i, j = 1, . . . , n

 

with

kevk2
H2(�)

:= kevk2
H1(�)

+
nX

i,j=1

kDiDjevk2L2(�)
.

Their dual spaces are denoted H�1(�) and H�2(�), respectively, and h·, ·iHl(�)

stands for the duality product, l = 1, 2.

3.2. Solution Operator. We are now in a position to define a shifted Laplace–
Beltrami problem associated with the SPDE (16), which formally corresponds to

taking s = 1. Given  > 0 and ef 2 H�1(�), we are interested in ũ 2 H1(�)
satisfying

2eu���eu = ef

in a weak sense. More precisely, we seek eu 2 H1(�) satisfying

a�(eu, ev) := 2
Z

�

euev +
Z

�

r�eu ·r�ev = h ef, eviH1(�), for all ev 2 H1(�). (18)

The Lax-Milgram theory implies that the above problem admits a unique solution
and we denote by T : H�1(�) ! H1(�) the solution operator T ef := eu. Because �
is of class C3, T is an isomorphism from L2(�) to H2(�); see [31, Theorem 3.3] and
[17, Lemma 3]. Whence, its inverse L := (2I ���) = T�1 is defined on H2(�).

3.3. Fractional Powers of Elliptic Operators. The operator T : H�1(�) !
H1(�) is compact thanks to the compact embedding H1(�) ⇢ H�1(�). Thus,
the Fredholm alternative guarantees the existence of an L2(�) orthonormal basis

of eigenfunctions { e j}1j=1
of its inverse L with non-decreasing positive eigenvalues

2 = e�1 < e�2  e�3  . . .. That is, the eigenpair (e�j , e j) 2 R+⇥H1(�), j = 1, 2, . . .,
satisfies

a�( e j , ev) = e�j
Z

�

e jev, for all ev 2 H1(�) (19)

with the eigenfunctions chosen so that

( e j , e i)� = �ij , for all i, j = 1, 2, . . . .
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In order to define fractional powers of the shifted Laplace–Beltrami operator
L = 2I � �� , we shall define the so-called dotted space as follows. The dotted
space Ḣr(�) for r � 0 is the set of functions ṽ 2 L2(�) such that

kevk2
Ḣr(�)

:=
1X

j=1

e�r
j
|(ev, e j)� |2 < 1. (20)

For negative indices, we define

Ḣ�r(�) :=

⇢⌧ 1X

j=1

cj e j , ·
�

Ḣr(�)

: {cj}1j=1
⇢ R,

1X

j=1

|cj |2e��r

j
< 1

�
, r > 0.

Here we have identified the duality product between Ḣ�r(�) and Ḣr(�) with the
L2(�) scalar product and set

⌧ 1X

j=1

cj e j ,
1X

j=1

dj e j

�

Ḣr(�)

:=
1X

j=1

cjdj , for
1X

j=1

dj e j 2 Ḣr(�).

For r 2 [0, 1], the dotted spaces Ḣ4r�2(�) are equivalent to the interpolation spaces
H4r�2(�) := (H�2(�), H2(�))r,2 obtained by the real interpolation method, see
[20]. To simplify the presentation, we will frequently use this equivalence, typically
to estimate the Hr(�) norm of a function by the Ḣr(�) norm defined in (20).
Moreover, we will simply write the duality pairing with h·, ·i in what follows.

The fractional powers L� , � 2 (�1, 1), of L are defined on Ḣr(�) using the

eigenpairs of L. For ev = h
P1

j=1
vj e j , ·i 2 Ḣr(�) we define

L�ev :=

⌧ 1X

j=1

e��
j
vj e j , ·

�
. (21)

We recall that we have identified the duality product between Ḣ�r(�) and Ḣr(�)
with the L2(�) scalar product so that when r � 0 we have

L�ev =
1X

j=1

e��
j
vj e j with vj := (ev, e j)� . (22)

Invoking the Lax-Milgram theory again, we see that L� : Ḣr(�) ! Ḣr�2�(�) is an
isomorphism and in view of the equivalence of spaces mentioned above,

L� : Hr(�) ! Hr�2�(�) is an isomorphism (23)

for � 2 (�1, 1) provided that

max {�2, 2� � 2}  r  min {2, 2� + 2} .

3.4. Regularity of the White Noise ew and the Solution eu. We have estab-
lished mapping properties of the fractional powers of L in the previous section. To
justify the SPDE (16), it remains to determine the regularity of the white noise ew.

Recall that (⌦,F ,P) is a complete probability space. We briefly sketch the proof
of [13, Proposition 2.3] which guarantees that for r > n�1

2
, ew satisfies

k ewk2
L2(⌦;H�r(�))

= E
⇥
k ewk2

H�r(�)

⇤
< 1, (24)
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i.e. ew 2 L2(⌦;H�r(�)). Consider the formal KL expansion of ew with respect to

the orthonormal eigenbasis { e j}1j=1
and write

ew =
⌦ 1X

j=1

⇠j e j , ·
↵
, (25)

where ⇠j are pairwise independent real-valued standard normally distributed ran-

dom variables, i.e. ⇠j
i.i.d.⇠ N (0, 1). Weyl’s law (see e.g. [39]) characterizes the

asymptotic behavior of the eigenvalues

e�j ⇠ j
2

n�1 for j = 1, 2, . . . . (26)

Whence, for r > n�1

2
there holds

k ewk2
L2(⌦;H�r(�))

⇠
1X

j=1

j
� 2r

n�1 . r

r � (n� 1)/2
, (27)

which guarantees that ew 2 L2(⌦;H�r(�)) as anticipated.
We can now link this regularity to the regularity of the solution to the SPDE (16)

thanks to the isomorphic property (23) of L� . Indeed, for � 2 (0, 1) and n�1

2
<

r  2, we have L�� ew 2 H2��r(�) P-almost surely. Moreover, (24) implies

kL�� ewkL2(⌦;H2��r(�)) . k ewkL2(⌦;H�r(�)) < 1
so that

L�� ew 2 L2(⌦;H2��r(�)) (28)

and in particular, for s 2 (0, 1) there exists a unique solution eu = L�s ew to (16) in
L2(⌦;H2s�r(�)).

We end this section by recalling our convention: expressions relating functions
from ⌦ to a Banach space are always understood P-almost surely.

3.5. Dunford–Taylor Integral Representation. The regularity (28) implies
that restricting s 2 (n�1

4
, 1) the solution eu = L�s ew to our model problem (16)

belongs to L2(⌦;H2s�r(�)) ⇢ L2(⌦;L2(�)) for any r 2
�
n�1

2
, 2s
�
. Under these

assumptions, we can proceed as in [20] and resort to a Dunford–Taylor integral
representation of eu to design a numerical algorithm for its approximation. The
next proposition justifies the integral representation (2) by extending [20, Theo-
rem 2.1].

Proposition 3.1. Let ew be a Gaussian white noise. For n�1

4
< s < 1, the expres-

sion

I( ew) := sin(⇡s)

⇡

Z 1

0

µ�s(µI + L)�1 ew dµ (29)

is in L2(⌦;L2(�)) and coincides with L�s ew, i.e.

L�s ew =
sin(⇡s)

⇡

Z 1

0

µ�s(µI + L)�1 ew dµ in L2(⌦;L2(�)).

Proof. We first show that the mapping

⌦ 3 ⇣ 7!
Z 1

0

µ�s(µI + L)�1 ew(·, ⇣) dµ 2 L2(�) (30)

is measurable. Recall that (24) establishes that ew 2 L2(⌦;H�r(�)) for r = n�1

2
+✏,

✏ > 0, and so r

2
< s < 1 for ✏ su�ciently small. In particular, the mapping
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⌦ 3 ⇣ 7! ew(·, ⇣) 2 H�r(�) is measurable. Consequently, the measurability of (30)
follows from the continuity (or boundedness) of the linear mapping

H�r(�) 3 ev 7!
Z 1

0

µ�s(µI + L)�1ev dµ 2 L2(�) (31)

discussed now.
Let ev 2 H�r(�) and set ef := L�r/2ev which belongs to L2(�) thanks to (23). We

compute

k(µI + L)�1evk2
L2(�)

= k(µI + L)�1Lr/2 efk2
L2(�)

=
1X

j=1

����
e�r/2
j

µ+ e�j

����
2

|f̃j |2,

where efj := ( ef, e j)� . We estimate the coe�cients
�� e�r/2

j

µ+e�j

�� for µ  1 and µ > 1

separately. When µ  1, we recall that r

2
< s < 1 and that the eigenvalues are

non-decreasingly ordered to deduce that

e�r/2
j

µ+ e�j
. 1, (32)

where the hidden constant depends only on e�1 = 2. Instead, when µ > 1, Young’s
inequality allows us to estimate

e�r/2
j

µ+ e�j
 µ

r

2
�1. (33)

Taking into account these two cases and using the fact that k efkL2(�) . kevkH�r(�),
we find that

k(µI + L)�1evkL2(�) . kevkH�r(�)

(
1, when µ  1,

µ
r

2
�1, when µ > 1.

(34)

Estimating the integral of this quantity separately for 0 < µ  1 and µ > 1, we
deduce that
����
Z 1

0

µ�s(µI + L)�1evdµ
����
L2(�)


Z 1

0

µ�sk(µI + L)�1evkL2(�)dµ . kevkH�r(�)

(35)
and the continuity of the mapping (31) follows. In turns this proves the measura-
bility of the mapping (30). The estimate

kI( ew)kL2(⌦;L2(�)) . k ewkL2(⌦;H�r(�)) (36)

is a direct consequence of (35).
We now show that the Dunford–Taylor integral I( ew) coincides with the spectral

definition (21) of L�s ew, namely L�s ew =
P1

j=1
e��s

j
⇠j e j with ew =

⌦P1
j=1

⇠j e j , ·
↵
.

We only provide a sketch of the proof since the arguments follow those in [41, 9],
see also [20, 22]. We start by noting that

e��s

j
=

sin(⇡s)

⇡

Z 1

0

µ�s(µ+ e�j)�1 dµ (37)
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so that for the partial sum ewN :=
P

N

j=1
⇠j e j , we have L�s ewN = I( ewN ). As a

consequence, we have

kL�s ew � I( ew)kL2(⌦;L2(�))

 kL�s ew � L�s ewNkL2(⌦;L2(�)) + kI( ewN � ew)kL2(⌦;L2(�))

. k ew � ewNkL2(⌦;H�r(�)),

where we used the mapping properties (23) of L�s, r/2 < s, and estimate (36) to
justify the last inequality. To estimate the di↵erence between ew and ewN , we resort
to Weyl’s law (26) to obtain

k ew � ewNk2
L2(⌦;H�r(�))

.
1X

j=N+1

j�
2r

n�1 ! 0 as N ! 1.

Combining the last two inequalities, we conclude that

kL�s ew � I( ew)kL2(⌦;L2(�)) = 0

as desired. ⇤

4. Numerical Scheme

We propose a numerical scheme based on the integral representation

eu = L�s ew =
sin(⇡s)

⇡

Z 1

0

µ�s(µI + L)�1 ew dµ (38)

of the solution to the SPDE (16).
The numerical approximation of eu consists of two steps. Following [38], we

approximate the white noise in a finite element space via projection. Then, the
integral representation (38) is approximated using a sinc quadrature combined with
a standard finite element method for the approximation of the integrand at each
quadrature point. We refer to [20, 22] for the original development and to [18] for
its extension to the fractional Laplace–Beltrami problem on surfaces. The results
in [20, 22, 18] do not apply in the present stochastic context.

We start with the construction of the finite element space.

4.1. Finite Element Methods on Discrete Surfaces. There exist several finite
element methods for problems defined on hypersurfaces, see for instance [17] and
the references therein. In this work, we consider parametric finite elements [30]
which are defined on an approximated surface � with the help of the projection
P = x� d(x)rd(x) mapping � to � assumed to be C3. Recall that d is the signed
distance function and is of class C3, see Section 3.1. This property guarantees that
the geometric inconsistency arising from replacing � by � does not a↵ect the finite
element method convergence rate. For deterministic right-hand sides, this is the
subject of Theorem 4.2 in [18]. The numerical study in [18] also shows that using
a generic continuous piecewise C2 lift [54, 16, 15] does not a↵ect the convergence
rate, noting that such lifting operator only provides the first order convergence for
the approximated surface.

Let � be an (n � 1)-dimensional polyhedral surface so that the vertices of �
lie on � (see [28] for more general assumptions). The analysis provided below
holds for a subdivision made of triangles or quadrilaterals. The former is possibly
more standard while the latter is the setting used in the numerical illustrations
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in Section 7 below. To incorporate both settings simultaneously, we denote by T
a triangular or quadrilateral subdivision of �. Given a subdivision with triangles
(resp. quadrilaterals), let ⌧̂ be the unit triangle (resp. square) and denote P the
set of linear (resp. bi-linear) polynomials defined on ⌧̂ .

For each ⌧ 2 T , we set F⌧ : b⌧ ! ⌧ , F⌧ 2 [P]n�1 to be the map from the reference
element to the physical element. We let cJ := cJ(T ) be such that

c�1

J
|x|  |DF⌧x|  cJ |x|, 8x 2 b⌧ , 8 ⌧ 2 T .

Furthermore, we denote by h⌧ , ⌧ 2 T , the diameter of ⌧ , h := max⌧2T h⌧ , and by
cq := cq(T ) the quasi-uniformity constant satisfying

h := max
⌧2T

h⌧ = cq min
⌧2T

h⌧ .

The maximum number of elements sharing the same vertex is

cv := cv(T ) := max
v vertex of T

#{⌧ 2 T : v is a vertex of ⌧}. (39)

The constants appearing in the analysis below (but hidden in “.”) may depend on
cJ , cq, and cv while the dependency on the mesh size h will be explicitly given. We
further assume that the geometry of � is su�ciently well approximated by �, i.e. h
is small enough, so that � ⇢ N and thus the lift P defined in (17) restricted to �
is a bijection. To simplify the notation in what follows, we introduce the operator
P : L1(�) ! L1(�) and its inverse P�1 : L1(�) ! L1(�) defined as follows. For
ev : � ! R we set (Pev)(x) := (ev � P)(x), x 2 �, while for v : � ! R we set
(P�1v)(x) := (v �P�1)(x), x 2 �.

Remark 4.1. It is possible to construct sequences of subdivisions with uniform
constants cJ , cq, and cv. We refer to [21] for uniform refinements and to [16, 15]
for local refinements by adaptive algorithms. A typical possibility is to start with an
initial polyhedral surface �0 and consider the sequence {�i := IiP(�i)}1i=1

, where
{�i} consists of uniform refinements and Ii is the corresponding nodal interpolant.

The finite element space associated with T is denoted V(T ) and reads

V(T ) := {v 2 H1(�) : v|⌧ � F⌧ 2 P, 8⌧ 2 T }.

Its dimension will be denoted by N := dim(V(T )).
We can now define the discrete operator LT := T�1

T : V(T ) ! V(T ) as the
discrete counterpart of L. Here TT : V(T ) ! V(T ) is defined by TT F := U where
U is the unique solution to

A�(U, V ) := 2
Z

�

UV +

Z

�

r�U ·r�V =

Z

�

FV, for all V 2 V(T ); (40)

compare with (18).
We also introduce � : �! R+ to be the ratio between the area element of � and

� associated with the parametrization P so that for ev 2 L1(�) we have
Z

�

ev =

Z

�

�Pev. (41)

The area ratio � satisfies

k�kL1(�) . 1, k1� �kL1(�) . h2 and k1� ��1kL1(�) . h2, (42)

see for instance [17].
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4.2. Lifted Finite Element Method on �. At several instances, it will be useful
to compare quantities defined on � with their finite element approximation on the
geometrically consistent lifted finite element space

eV(T ) := P�1V(T ) := {P�1V : V 2 V(T )}.

Of course the dimension of eV(T ) is dim(eV(T )) = dim(V(T )) = N .

The operator eLT : eV(T ) ! eV(T ) is defined as LT , but on the exact surface �.

That is, we set eLT := eT�1

T : eV(T ) ! eV(T ) where eTT : eV(T ) ! eV(T ) is defined by
eTT eF := eU with eU uniquely solving

2
Z

�

eU eV +

Z

�

r�
eU ·r�

eV =

Z

�

eF eV , for all eV 2 eV(T ). (43)

We denote by e⇧ : L2(�) ! eV(T ) the L2(�) projection onto eV(T ). It is defined
for ev 2 L2(�) by the relations

Z

�

( e⇧ev � ev)eV = 0, for all eV 2 eV(T ). (44)

The Bramble-Hilbert lemma guarantees the approximation property

k(I � e⇧)evkL2(�) + hk(I � e⇧)evkH1(�) . htkevkHt(�) (45)

for all ev 2 Ht(�) with t 2 [0, 2].
We now turn our attention to the eigenpairs of eLT . We define {(e⇤�

j
, e �

j
)}N

j=1
⇢

R+
⇤ ⇥ eV(T ) on the exact surface � as satisfying

2
Z

�

e �
j
eV +

Z

�

r�
e �
j
·r�

eV = e⇤�
j

Z

�

e �
j
eV , for all eV 2 eV(T ). (46)

The eigenfunctions are chosen to be L2(�) orthonormal, i.e.
Z

�

e �
i
e �
j
= �ij , i, j = 1, . . . , N. (47)

Error estimates for the eigenvalues approximations |e�j � e⇤�j |, j = 1, . . . , N , are
needed in the proof of the mean square norm error estimate derived in Section 6
below. We refer to [6, 10] for standard error estimates on Euclidean domains which
typically requires the mesh size to be su�ciently small, where how small depends on
the eigenvalue being approximated. Moreover, the constants involved in the error
estimates also depend on the magnitude of the eigenvalue being approximated. We
refer to [42] for cluster robust error estimates. As a corollary, we obtain the following
lemma and note that the provided estimate deteriorates for large eigenvalues, but
will nonetheless be su�cient for our analysis.

Lemma 4.1. For j = 1, . . . , N there holds

0  e⇤�
j
� e�j . e�je⇤�j h2, (48)

where the hidden constant does not depend on j nor on h.

Proof. The desired estimate follows from Theorem 3.1 in [42] which guarantees that
for j = 1, . . . , N , there holds

0 
e⇤�
j
� e�j
e⇤�
j

 sup
ev2span{ e l:l2{1,...,j}},

kevk
H1(�)=1

k(I � e⇧)evk2
H1(�)

. (49)
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Recall that e⇧ is the L2(�) projection onto eV(T ), the lifted finite element space, see
(44). It remains to estimate the right hand side using the approximation property

(45) of e⇧ to get

k(I � e⇧)evk2
H1(�)

. h2kevk2
H2(�)

. e�jh2,

where for the last inequality we used the fact that for vl :=
R
�
ev e l,

kevkH2(�) . kLevkL2(�) =

✓ jX

l=1

e�2
l
v2
l

◆1/2

. e�1/2
j

kevkH1(�).

Inserting the above two inequalities into (49) yields (48). ⇤
4.3. Approximations of the White Noise ew. In [40], a surface finite element is
proposed to approximate (16) on the sphere using a truncated KL expansion. For
more general surfaces, we follow [38] to construct a finite dimensional approxima-

tion of the white noise ew in the conforming finite element space eV(T ), namely we

approximate ew =
⌦P1

j=1
⇠j e j , ·

↵
by

fW :=
1X

j=1

⇠j e⇧ e j . (50)

To show that fW 2 L2(⌦;L2(�)) with

kfWk2
L2(⌦;L2(�))

= N = dim(eV(T )),

we follow the proof of [38, Lemma 2.4]. Invoking Fubini’s theorem and using the
orthonormality of the discrete eigenfunctions {e �

j
}N
j=1

defined in (46), we compute

kfWk2
L2(⌦;L2(�))

= E
 1X

j=1

⇠2
j
( e⇧ e j , e j)

2

�

�
=

1X

j=1

k e⇧ e jk2L2(�)

=
1X

j=1

NX

i=1

( e⇧ e j , e �i )
2

�
=

NX

i=1

1X

j=1

(e �
i
, e j)

2

�
=

NX

i=1

ke �
i
k2
L2(�)

= N.

(51)

We can now use the map P : L1(�) ! L1(�) to define the approximation to ew on
the discrete surface �, namely

W := �PfW 2 L2(⌦;L2(�)), (52)

where the multiplicative factor � is introduced to avoid geometric inconsistencies
when mapping back to �; see (41).

4.4. Computing the Approximate White Noise W . In this section, we discuss
how to compute the approximation W = �PfW of the white noise ew. We emphasize
that it involves the L2(�) projection of the continuous eigenfunctions e j defined in
(19), see (50).

The construction of the approximate solution Uk given in (60) below requires
the finite element approximation U l satisfying (61). In turn, the latter requires the
evaluation of

↵i :=

Z

�

W�i =

Z

�

�PfW�i, i = 1, . . . , N, (53)

where {�j}Nj=1
denotes the Lagrange nodal basis functions of V(T ).
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Using the mapping property (41) and the definition (50) of fW together with
(44), we write

↵i =

Z

�

fW (P�1�i) =
1X

k=1

⇠k

Z

�

e k(P
�1�i),

where we recall that ⇠k
i.i.d.⇠ N (0, 1). This implies that E[↵i] = 0, i = 1, . . . , N , and

E[↵i↵j ] =
1X

k=1

✓Z

�

e k(P
�1�i)

◆✓Z

�

e k(P
�1�j)

◆

=

Z

�

(P�1�i)(P
�1�j) =

Z

�

��i�j =: Mij , i, j = 1, . . . , N,

(54)

where we used the orthonormality of the eigenfunctions { e j}1j=1
. Hence, the vec-

tor ↵ := (↵1, . . . ,↵N )T satisfies ↵ ⇠ N (0,M), where M := (Mij)Ni,j=1
is the

�-weighted mass matrix associated to the Lagrange finite element basis {�j}Nj=1
.

As a consequence, if G denotes a Cholesky factor of M , i.e. GGT = M , the above
reasoning indicates that Gz with z ⇠ N (0, IN⇥N ) follows the same distribution as
↵ and could thus be used in place of ↵.

For the analysis below, we shall need a di↵erent representation of fW based on
the discrete eigenfunctions {e �

j
}N
j=1

defined on the exact surface �, see Section 4.2.
Namely, we set

fW :=
NX

j=1

⇠j e �j , (55)

where ⇠j
i.i.d.⇠ N (0, 1); compare with (50). The corresponding random data vector

is given by

↵ := (↵ 
i
)N
i=1

:=

✓Z

�

�PfW �i

◆N

i=1

.

In fact, ↵ follows the same distribution as ↵. To verify that this is true, let
R 2 RN⇥N be the matrix with entries

Rij :=

Z

�

�(P e �
i
)�j ,

so that ↵ 
i
= (RT ⇠)i for i = 1, . . . , N , where ⇠ := (⇠1, . . . , ⇠N )T . Recalling thatM is

the �-weighted mass matrix with entries Mij =
R
�
��i�j , using the orthonormality

property (47) we infer that M = RTR. Thus,

E[↵ (↵ )T ] = E[RT ⇠⇠TR] = M.

This shows that ↵ ,↵ ⇠ N (0,M).
Thanks to the eigenvalues approximation estimate (Lemma 4.1), we deduce es-

timates for keL�r/2

T
fW kL2(⌦;L2(�)) when r 2 (n�1

2
, 2s); compare with the estimates

(27) for ew. This is the object of the following lemma.

Lemma 4.2. For r 2 (n�1

2
, 2s), we have

keL�r/2

T
fW k2

L2(⌦;L2(�))
. r

r � (n� 1)/2
. (56)
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Proof. Using the expansion in the eigenfunction basis {e �
i
}N
i=1

of eLT (discrete

operator defined on the lifted space eV(T ), see (43)), we find that

keL�r/2

T
fW k2

L2(⌦;L2(�))
=

NX

j=1

(e⇤�
j
)�r =

NX

j=1

[(e⇤�
j
)�r � e��r

j
] +

NX

j=1

e��r

j
.

The approximation estimates for the eigenvalues (Lemma 4.1) yield

|(e⇤�
j
)�r � e��r

j
|  re��r�1

j
|e⇤�

j
� e�j | . h2e��r

j
e⇤�
j
. e��r

j
,

where for the last inequality we used the fact that e⇤�
j
 e⇤�

N
. h�2. Therefore, we

obtain

keL�r/2

T
fW k2

L2(⌦;L2(�))
.

NX

j=1

e��r

j
.

It remains to take advantage of the decay of the eigenvalues (26), see also (27), to
derive the desired estimate. ⇤

4.5. Finite Element Approximation for L�s
. The numerical scheme advocated

here for approximating (38) follows the original work in [19]. Although the scheme
is conceptually the same, its analysis must be extended, see Section 5.

With the change of variable y = ln(µ), so that µ = ey, we rewrite (38) as

eu = L�s ew =
sin(⇡s)

⇡

Z 1

�1
e(1�s)y(eyI + L)�1 ew dy.

The improper integral in y is approximated using a sinc quadrature with spacing
k > 0, i.e.

eu ⇡ euk := Q�s

k
(L) ew :=

k sin(⇡s)

⇡

NX

l=�M

e(1�s)yl(eylI + L)�1 ew, (57)

where

N :=

⇠
2⇡2

(s� (n� 1)/4)k2

⇡
, M :=

⇠
⇡2

(1� s)k2

⇡
(58)

and yl := kl, l = �M, . . . , N. This particular choice of N and M is motivated by the
analysis provided in Section 5.

The sinc quadrature approximation is stable as indicated by the following lemma.

Lemma 4.3. For all ev 2 L2(⌦;H�r(�)), there holds

kQ�s

k
(L)evkL2(⌦;L2(�)) . kevkL2(⌦;H�r(�)). (59)

In the interest of being concise, we do not provide a proof of this result since
estimate (59) follows from similar arguments leading to (36) (for a finite sum instead
of the integral).

The numerical approximation of (57) is based on [18]. We recall that an to

guarantee optimal convergence rate for the deterministic PDE (���)eu = ef , the
right hand side used in the numerical algorithm is chosen to be �P ef . In the present
context, this suggests the use of �PfW 2 L2(⌦;L2(�)) as introduced in Section 4.3,
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where fW is defined in (50). Consequently, the approximation Uk 2 L2(⌦;V(T )) to
eu is defined as

Uk := Q�s

k
(LT )(�PfW ) :=

k sin(⇡s)

⇡

NX

l=�M

e(1�s)ylU l, (60)

where U l := (eylI + LT )�1(�PfW ) 2 L2(⌦;V(T )) approximates eul := eul( ew) :=
(eylI + L)�1 ew, namely it satisfies

(eyl + 2)

Z

�

U lV +

Z

�

r�U l ·r�V =

Z

�

�(PfW )V, for all V 2 V(T ). (61)

In other words, recalling the discussion in Section 4.4 for the computation of the
approximate white noise, we have U l(x,!) =

P
N

j=1
ul

j
(!)�j(x) where the random

vector ul = (ul

j
)N
j=1

: ⌦! RN solves the linear system

Al
u
l = Gz. (62)

Here z ⇠ N (0, IN⇥N ), G a Cholesky factor of the weighted mass matrix M defined
in (54), and Al = (al

ij
)N
i,j=1

2 RN⇥N is given by

al
ij
:= (eyl + 2)

Z

�

�j�i +

Z

�

r��j ·r��i, i, j = 1, . . . , N.

Regarding the finite element error, we recall that Theorem 4.2 of [18] guarantees

that for ef 2 L2(�) with vanishing mean value and L = (���), there holds

kPQ�s

k
(L) ef �Q�s

k
(LT )(�P ef)kL2(�) . h2s ln(h�1)k efkL2(�)

provided h < e�1. This result readily extends to our current setting where the
operator L is 2I ��� and the right hand side has a stochastic component. More
precisely, we have

kPQ�s

k
(L)fW �Q�s

k
(LT )(�PfW )kL2(⌦;L2(�)) . h2s ln(h�1)kfWkL2(⌦;L2(�)), (63)

where now the hidden constant depends on . A similar estimate holds for the finite
element method defined on the lifted finite element space eV(T ) (see Section 4.2),

namely for the error between Q�s

k
(L)fW and Q�s

k
(eLT )fW .

4.6. Lifted Finite Element Method on �. As mentioned above, the approxi-
mation fW of the white noise defined in (55) will be needed for the analysis of the
method. More precisely, the mean square norm error estimate derived in Section 6
below involves the approximations Q�s

k
(eLT )fW and Q�s

k
(LT )(�PfW ) obtained

with the finite element methods defined on eV(T ) and V(T ), respectively. We end
this section by stating important results for these various approximations.

First, recalling that the random data vectors ↵ and ↵ based on fW and fW ,
respectively, follow the same Gaussian distribution, we have

kUkkL2(⌦;L2(�)) = kQ�s

k
(LT )(�PfW )kL2(⌦;L2(�)). (64)

Moreover, using the expansion in the eigenfunction basis {e �
i
}N
i=1

of eLT , the mean

square norm of Q�s

k
(eLT )fW is given by

kQ�s

k
(eLT )fW k2

L2(⌦;L2(�))
=

NX

j=1

Q�s

k
(e⇤�

j
)2. (65)
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Finally, we can show that the strong mean square error between PQ�s

k
(eLT )fW and

Q�s

k
(LT )(�PfW ) is controlled by the geometric error. The analysis follows from

the finite element error analysis in Section 4 of [18] and relies on the geometric error
estimate for the weak formulation as well as regularity properties for the discrete
operators, see Appendix A for the complete proof.

Lemma 4.4. There holds

kPQ�s

k
(eLT )fW �Q�s

k
(LT )(�PfW )kL2(⌦;L2(�))  C(h)h2,

where C(h) . 1 when n = 2 and C(h) . ln(h�1) when n = 3 provided that h < e�1.

5. Strong Error Estimate

In this section, we provide a mean square error estimate for the numerical ap-
proximation Uk in (60) to the solution eu of the model problem (16). We start with
the convergence of the sinc quadrature scheme for the continuous operator, i.e. the
discrepancy between eu = L�s ew in (38) and euk = Q�s

k
(L) ew expressed in (57). Then,

we address the finite element error between euk and eUk = P�1Uk on �. We note
that by considering the sinc quadrature error first, our final estimate for the error
eu� eUk improves the results of [13, 38].

5.1. Analysis of the Sinc Approximation. The following result establishes the
exponential convergence of the sinc quadrature approximation euk = Q�s

k
(L) ew to eu

in the strong mean square norm k.kL2(⌦;L2(�)).

Proposition 5.1. Assume that n�1

4
< s < 1 and set r = n�1

4
+ s so that ew 2

L2(⌦;H�r(�)). Let eu be the solution to (16) and let euk = Q�s

k
(L) ew be defined by

(57) with a sinc quadrature step k > 0. There holds

keu� eukkL2(⌦;L2(�)) . e�
⇡
2

k k ewkL2(⌦;H�r(�)).

Proof. We only sketch a proof of this results since it follows the same arguments
used in Theorem 3.2 of [19] except that the data ew belongs to L2(⌦;H�r(�)) rather
than L2(�).

Note that the specific choice of r is made so that not only ew 2 L2(⌦;H�r(�))
but also eu 2 L2(⌦;L2(�)), see Section 3.4. In particular, we have ev := L� r

2 ew 2
L2(⌦;L2(�)) satisfies ew = L

r

2 ev with kevkL2(⌦;L2(�)) . k ewkL2(⌦;H�r(�)). Hence, using
the eigenfunction expansion of ev it su�ces to investigate the quadrature error in
the scalar case, namely

e(e�) :=
����
Z 1

�1
ge�(y) dy � k

NX

l=�M

ge�(lk)

����

for all e� � e�1. Here, the integrand

ge�(z) := exp((1� s)z)(exp(z) + e�)�1e� r

2

arises from the relation

e(1�s)y(eyI + L)�1L
r

2 e j = ge�j

(y) e j .
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It is analytic in the complex strip {z 2 C : |Imz|  ⇡

2
} and exhibits the following

decay property (cf. [19, Lemma 3.1])

|ge�(z)| .
(
exp(�(s� r

2
)Re(z)), for Re(z) > 0,

exp((1� s)Re(z)), for Re(z)  0.
(66)

Hence, the fundamental theorem for the sinc approximation (Theorem 2.20 in [51])
ensures the error estimate

|e(e�)| . sinh(⇡2/(2k))�1e�⇡
2
/(2k) +

1

s� r/2
e�(s�r/2)Nk +

1

1� s
e�(1�s)Mk

. e�⇡
2
/k + e�[s�(n�1)/4]Nk/2 + e�(1�s)Mk,

(67)

where we used that r = n�1

4
+ s. The desired estimate follows with the choice of M

and N in (58), which ensures that the three exponents on the right hand side above
are balanced

e�[s�(n�1)/4]Nk/2 ⇡ e�⇡
2
/k ⇡ e�(1�s)Mk.

Hence, in view of (24) for a fixed r,

keu� eukkL2(⌦;L2(�)) .
�
max
e��e�1

|e(e�)|
�
k ewkL2(⌦;H�r(�)) . e�⇡

2
/kk ewkL2(⌦;H�r(�)).

The proof is complete. ⇤
Remark 5.1. Notice that the result of Proposition 5.1 holds for any choice of

r 2
✓
n� 1

2
, 2s

◆

which guarantees that both ew 2 L2(⌦;H�r(�)) and eu 2 L2(⌦;L2(�)), see Sec-
tion 3.4. Furthermore, recall that according to (27) we have k ewkL2(⌦;H�r(�)) ! +1
as r ! (n � 1)/2. This means that the error estimate provided by Proposition 5.1
deteriorates as s ! (n� 1)/4.

5.2. Strong Error Estimate. The strong convergence of the finite element algo-
rithm is discussed in this section. This result, together with the mean square norm
convergence discussed in the next section, are the main results of this work.

Theorem 5.2 (strong convergence). Assume that n�1

4
< s < 1. Let eu be the

solution to (16) and let Uk be the discrete approximation defined in (60). Then
there holds

keu� P�1UkkL2(⌦;L2(�)) . (ln(h�1))3/2h2s�(n�1)/2 + e�⇡
2
/k

provided h < e�1.

Proof. We split the error into the sinc quadrature error, the white noise approxi-
mation error, and the finite element error

keu� P�1UkkL2(⌦;L2(�))

 keu� eukkL2(⌦;L2(�)) + keuk � euN

k
kL2(⌦;L2(�)) + keuN

k
� P�1UkkL2(⌦;L2(�)),

(68)

where euN

k
:= Q�s

k
(L)fW with fW defined in (50).

The quadrature error is already estimated in Proposition 5.1 and reads

keu� eukkL2(⌦;L2(�)) . e�
⇡
2

k k ewkL2(⌦;H�r(�)), r =
n� 1

4
+ s.
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For the white noise approximation error, we take advantage of the eigenfunction
expansion and the stability of the sinc quadrature (Lemma 4.3, see also the first
inequality of (67)) to infer that

keuk � euN

k
k2
L2(⌦;L2(�))

= kQ�s

k
(L)( ew �fW )k2

L2(⌦;L2(�))

. ✏�2kL�(s�✏/2)( ew �fW )k2
L2(⌦;L2(�))

. ✏�2

1X

j=1

e��2s+✏

j
k(I � e⇧) e jk2L2(�)

,

where 0 < ✏ < 2s � (n � 1)/2 will be chosen below. The approximation property

(45) of e⇧ together with the property

k e jkHt(�) . kLt/2 e jkL2(�) . e�t/2j
k e jkL2(�) = e�

t/2

j
,

both with t = 2s � (n � 1)/2 � e✏, where ✏ < e✏ < 2s � (n � 1)/2 so that t 2 (0, 2),
yield

keuk � euN

k
k2
L2(⌦;L2(�))

. ✏�2h4s�(n�1)�2e✏
1X

j=1

e��(n�1)/2�(e✏�✏)
j

.

Since h < e�1, we choose e✏ = (2s � (n � 1)/2)/ ln(h�1) 2 (0, 2s � (n � 1)/2) and
✏ = e✏/2 and deduce, using Weyl’s law (26), that

keuk � euN

k
k2
L2(⌦;L2(�))

. ✏�2h4s�(n�1)�2e✏
1X

j=1

j�1�2(e✏�✏)/(n�1)

. ✏�3h4s�(n�1)�2e✏ . (ln(h�1))3h4s�(n�1).

(69)

It remains to estimate the finite element error. Note that in view of the change
of variable formula (41) and the estimates on the area ratio (42), we have

keuN

k
� P�1UkkL2(⌦;L2(�)) = k�1/2(P euN

k
� Uk)kL2(⌦;L2(�))

. kP euN

k
� UkkL2(⌦;L2(�))

= kPQ�s

k
(L)fW �Q�s

k
(LT )(�PfW )kL2(⌦;L2(�)).

(70)

Whence, (63) together with (51) yield

keuN

k
� P�1UkkL2(⌦;L2(�)) . h2s ln(h�1)N

1
2 . ln(h�1)h2s�(n�1)/2.

The desired estimate follows upon gathering the three error estimates. ⇤
Remark 5.2. Note that from Theorem 5.2, we can deduce the following stability
of the sinc quadrature applied to LT

kQ�s

k
(LT )(�PfW )kL2(⌦;L2(�))

. keukL2(⌦;L2(�)) + (ln(h�1))3/2h2s�(n�1)/2 + e�⇡
2
/k

(71)

and thanks to Lemma 4.4, the same hold for eLT

kPQ�s

k
(eLT )(fW )kL2(⌦;L2(�)) . keukL2(⌦;L2(�)) + (ln(h�1))3/2h2s�(n�1)/2 + e�⇡

2
/k.

(72)

Remark 5.3. In view of Theorem 5.2, we have improved the strong error esti-
mate from [13, Theorem 2.10] and [38, Proposition 2.2] by showing that the error
due to the sinc quadrature is independent of the mesh size h. This can be ver-
ified numerically. According to the proof of Proposition 5.1, it su�ces to check
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the error maxe��e�1
|e(e�)|. In Figure 1, we report the error |e(e�)|, e� 2 [2, 107],

when the fractional power is set to s = 0.75 and for the sinc quadrature spacing
k = 0.6. We observe that the error decays as the eigenvalue increases. Therefore,
maxe��2

|e(e�)| = |e(2)| and the sinc quadrature error is independent of the largest

eigenvalue3.

Figure 1. Log-log plot of sinc approximation error |e(e�)| for e� 2 [2, 107].

6. Mean Square Norm Error Estimate

In this section, we provide an error bound between the mean square norm of the
exact solution eu and that of its finite element approximation Uk. The main result
is the following theorem.

Theorem 6.1 (convergence in the mean square norm). Assume that n�1

4
< s < 1.

Let eu be the solution to (16) and let Uk be the approximation defined by (60). Then
there holds
����keuk

2

L2(⌦;L2(�))
� kUkk2L2(⌦;L2(�))

���� . log(h�1)3h4s�(n�1) + C(h)h2 + e�⇡
2
/k,

where C(h) is the constant that appears in Lemma 4.4.

Proof. Using the triangle inequality, we spilt the target error with the following five
error terms

����keuk
2

L2(⌦;L2(�))
� kUkk2L2(⌦;L2(�))

���� 
5X

i=1

Ei,

3We note that the monotonicity of the error |e(�̃)| depends on the choice of M and N with
respect to k. Here our simulation is based on the balanced scheme (58).
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where, thanks to (65), we have

E1 :=

����keuk
2

L2(⌦;L2(�))
� keukk2L2(⌦;L2(�))

���� =
����

1X

j=1

�e��2s

j
�Q�s

k
(e�j)2

�����,

E2 :=
1X

j=N+1

Q�s

k
(e�j)2,

E3 :=

����
NX

j=1

�
Q�s

k
(e�j)2 �Q�s

k
(e⇤�

j
)2
�����,

E4 :=

����kQ
�s

k
(eLT )fW k2

L2(⌦;L2(�))
� kQ�s

k
(LT )(�PfW )k2

L2(⌦;L2(�))

����,

E5 :=

����kQ
�s

k
(LT )(�PfW )k2

L2(⌦;L2(�))
� kUkk2L2(⌦;L2(�))

����.

Note that (64) guarantees that E5 = 0 so we only need to estimate each error
Ei, i = 1, . . . , 4.

1 For E1, the sinc quadrature error formula (67) together with (58) directly
implies that for r = n�1

4
+ s we have

|e��s

j
�Q�s

k
(e�j)| . |e(e�j)|e��r/2

j
. e�⇡

2
/ke��r/2

j

so that

|e��2s

j
�Q�s

k
(e�j)2| . e�⇡

2
/ke��r/2

j
(e��s

j
+Q�s

k
(e�j)) . e�⇡

2
/ke��r

j
,

where we used

Q�s

k
(e�j) .

1

s� r/2
e��r/2

j
(73)

with r = n�1

4
+ s to justify the last inequality. Consequently, we find that

E1 . e�⇡
2
/k

1X

j=1

e��r

j
. e�⇡

2
/kk ewk2

L2(⌦;H�r(�))
. e�⇡

2
/k.

2 We invoke again the stability of the sinc quadrature (73) with r = 2s�✏ with
✏ = (2s� (n� 1)/2)/ ln(h�1) together with Weyl’s law (26) to estimate E2

E2 . ✏�2

1X

j=N+1

e��(2s�✏)
j

. ✏�2

1X

j=N+1

j�2(2s�✏)/(n�1)

. ✏�3N1�(4s�2✏)/(n�1) . (log(h�1))3h4s�(n�1).



NUMERICAL APPROX OF GRFS 25

3 For E3, the stability of the sinc quadrature (73) along with the error estimates
on the approximation of the eigenvalues (Lemma 4.1) yield

Q�s

k
(e�j)�Q�s

k
(e⇤�

j
) =

k sin(⇡s)

⇡

MX

l=�N

e(1�s)yl

✓
1

eyl + e�j
� 1

eyl + e⇤�
j

◆

=
k sin(⇡s)

⇡

MX

l=�N

e(1�s)yl

e⇤�
j
� e�j

(eyl + e�j)(eyl + e⇤�
j
)


e⇤�
j
� e�j
e⇤�
j

✓
k sin(⇡s)

⇡

MX

l=�N

e(1�s)yl
1

eyl + e�j

◆

=
e⇤�
j
� e�j
e⇤�
j

Q�s

k
(e�j) . ✏�1e�1�s+✏/2

j
h2.

Here again ✏ = (2s�(n�1)/2)/ ln(h�1). Since 2  e�j  e⇤�
j
thanks to Lemma 4.1,

we deduce that

E3 .
NX

j=1

|Q�s

k
(e�j)�Q�s

k
(e⇤�

j
)||Q�s

k
(e�j) +Q�s

k
(e⇤�

j
)|

.
NX

j=1

|Q�s

k
(e�j)�Q�s

k
(e⇤�

j
)|✏�1e��s+✏/2

j
. ✏�2h2

NX

j=1

e�1�2s+✏

j

. ✏�2h2

NX

j=1

j(2�4s+2✏)/(n�1) . ✏�2h2N1+(2�4s+2✏)/(n�1) . (log(h�1))2h4s�(n�1).

4 We now focus on E4. Using the triangle inequality and Lemma 4.4 as well
as Remark 5.2, we have

E4 
����kQ

�s

k
(eLT )fW k2

L2(⌦;L2(�))
� kPQ�s

k
(eLT )fW k2

L2(⌦;L2(�))

����

+

����kPQ�s

k
(eLT )fW k2

L2(⌦;L2(�))
� kQ�s

k
(LT )(�PfW )k2

L2(⌦;L2(�))

����

. k1� �kL1(�)kQ�s

k
(eLT )fW k2

L2(⌦;L2(�))
+ C(h)h2,

where C(h) is as in Lemma 4.4 and where for the second term on the right hand side
we used (71) and (72). The geometric consistency (42) together with the stability
estimate (72) imply

E4 . h2 + C(h)h2 . C(h)h2.

The proof is complete by combing the estimates for Ei with i = 1, . . . , 5. ⇤

Remark 6.1. We note that for two dimensional surfaces (n = 2), the rate of
convergence is limited to O(h2) even when s > 3

4
. This O(h2) limitation is due to

the geometric approximation of the area k1��kL1(�) to derive the estimate for E4

in the proof of Theorem 6.1. We anticipate that the optimal order of convergence
O(h4s�(n�1)) can be obtained upon using higher order surface approximations. In
fact, when � is of class Cp+1 and polynomial of degree p are used to define the
approximation � of �, one has k1� �kL1(�) . hp+1 (see e.g. [28]).
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7. Numerical Illustration

In this section, we perform several numerical experiments to illustrate the pro-
posed numerical method. In particular, we compute the strong and mean square
norm errors as well as illustrate the e↵ect of the parameters s and  by plotting one
realization of the approximated random field Uk and by evaluating the covariance
covUk

(x,x0) at some points x,x0 2 �. Recall that Uk is a linear combination of
the {U l}N

l=�M, see (62), and that a realization U l(·,!) 2 V(T ) of U l is obtained by
solving the linear system (62) for a realization z(!) of z ⇠ N (0, IN⇥N ).

For the numerical error analysis, we focus on the error due to the finite element
discretization. Therefore, from now on, we set k = 0.6 for the quadrature spac-
ing and choose N and M according to (58), thus yielding (up to a multiplicative

constant) a sinc quadrature error of order e�⇡
2
/k ⇡ 7.1803 · 10�8. The numerical

implementation is based on the deal.ii library [3] and the visualization is done
with ParaView [4].

7.1. Gaussian Matérn Random Field on the Unit Sphere. In this first exam-
ple, we let � = S2 be the sphere in R3 parametrized using the spherical coordinates
(✓,') 2 [0,⇡] ⇥ [0, 2⇡), where ✓ and ' are the elevation angle (latitude) and az-
imuth angle (longitude), respectively. Using the spherical harmonic functions, see
for instance [52, 44, 40], the formal KL expansion (25) of the white noise can be
written

e!(x,!) =
D 1X

l=0

h
⇠1
l,0
(!)ql,0(✓)

+
p
2

lX

m=1

ql,m(✓)
�
⇠1
l,m

(!) cos(m') + ⇠2
l,m

(!) sin(m')
� i

, ·
E (74)

and the solution to the SPDE (16) reads

eu(x,!) =
1X

l=0

(2 + l(l + 1))�s

h
⇠1
l,0
(!)ql,0(✓)

+
p
2

lX

m=1

ql,m(✓)
�
⇠1
l,m

(!) cos(m') + ⇠2
l,m

(!) sin(m')
� i

, (75)

where the 2 + l(l + 1) are the eigenvalues of the operator L (multiplicity 2l + 1).
Here

⇠i
l,m

i.i.d.⇠ N (0, 1), l 2 N0 := N [ {0}, m = 0, . . . , l, i = 1, 2,

and x = (sin(✓) cos('), sin(✓) sin('), cos(✓)) 2 �. Moreover, for l 2 N0 and m =
0, . . . , l,

ql,m(✓) :=

s
2l + 1

4⇡

(l �m)!

(l +m)!
Pl,m(cos(✓))

with Pl,m(µ) the Legendre functions

Pl,m(µ) := (�1)m(1� µ2)
m

2
@m

@µm
Pl(µ), µ 2 [�1, 1],
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associated to the Legendre polynomials

Pl(µ) :=
1

2ll!

@l

@µl
(µ2 � 1)l, µ 2 [�1, 1].

Note that the (complex-valued) spherical harmonic functions are given in spherical
coordinates by yl,m(✓,') := ql,m(✓)eim' for l 2 N0 and m = 0, . . . , l and yl,m :=
(�1)mȳl,m for l 2 N and m = �l, . . . ,�1. Then for l 2 N0 and m = �l, . . . , l, yl,m
is an eigenfunction of the Laplace–Beltrami operator associated to the eigenvalue
l(l + 1). Finally, we mention that eu in (75) satisfies

keuk2
L2(⌦;L2(�))

=
1X

l=0

(2 + l(l + 1))�2s(2l + 1). (76)

7.1.1. Strong and Mean Square Norm Errors. We first compute the strong and
mean square norm errors given, respectively, by

kP eu� UkkL2(⌦;L2(�)) ⇠ keu� P�1UkkL2(⌦;L2(�))

and ���kũk2L2(⌦;L2(�))
� kUkk2L2(⌦;L2(�))

��� ,
where Uk is the approximation given in (60). However, these quantities cannot be
computed exactly in practice, and some approximations are required. First, we
accurately compute the norm of eu (still denoted keuk2

L2(⌦;L2(�))
below) using (76)

but keeping the first 100000 terms. For the other terms, we use the vanilla Monte
Carlo method with sample size K to compute the expected values. Now for the
strong error, since ũ involves an infinite sum, we replace it by euL = L�s ewL, where
euL and ewL are defined as in (74) and (75), respectively, but with the index l running
from 0 to some positive integer L. Then we have

keuLk2L2(⌦;L2(�))
=

LX

l=0

(2 + l(l + 1))�2s(2l + 1) (77)

and

k ewLk2L2(⌦;L2(�))
=

LX

l=0

(2l + 1) = (L+ 1)2, (78)

and we refer to [44] for an analysis of the truncation error kũ � ũLkL2(⌦;L2(�)).
Moreover, we need to have comparable samples for the (truncated) exact solution
euL and the approximation Uk. This would require the computation of ↵ with entries
given in (53), and thus the computation of the L2(�) projection of the eigenfunctions

onto the conforming finite element space eV(T ). In particular, we cannot use the
strategy described in Section 4.4, namely replace ↵ by Gz with z ⇠ N (0, IN⇥N )
and GGT = M . As an alternative, we follow [13] and replace Uk by UL,k obtained
by using the data vector with entries (�Pw̃L,�i)�, i = 1, . . . , N . To sum up, we
report below the errors

estrong :=

 
1

K

KX

i=1

kPũL(·,!i)� UL,k(·,!i)k2L2(�)

! 1
2

and

eweak :=

�����kũk
2

L2(⌦;L2(�))
� 1

K

KX

i=1

kUk(·,!i)k2L2(�)

����� ,



28 A. BONITO, D. GUIGNARD, AND W. LEI

as well as e� := k1 � �kL1(�), for di↵erent meshes and di↵erent values of the
parameters s and . Recall that according to Theorems 5.2 and 6.1, the theoretical
convergence rate is 2s� 1 for the strong error (up to a logarithm term) and 4s� 2
for the mean square error. In Table 1 we report the strong error estrong for L = 100
and K = 10000. In all cases we observe approximately the convergence rate O(h2)
predicted by Theorem 4.2 in [18] for smooth right-hand sides (in physical space), see
also Proposition 4.2 in [40]. In passing, we mention that numerical instabilities may
arise when L is large because of large values assumed by the Legendre functions Pl,m

(for instance P100,98(0) = �1.675 · 10184 and P100,100(0) = 6.666 · 10186). However,
we do not clearly observe such instability, see Figure 2.

s = 0.75 s = 0.9
N h e�  = 0.5  = 2  = 8  = 0.5  = 2  = 8
8 1.633 2.000 65.488 11.199 1.913 79.794 8.672 1.024
26 1.000 0.3032 23.258 5.418 1.294 27.780 4.007 0.677
98 0.541 0.0778 11.367 3.078 0.976 13.404 2.191 0.489
386 0.276 0.0194 4.550 1.334 0.532 5.328 0.916 0.247
1538 0.139 0.0048 0.244 0.202 0.192 0.180 0.070 0.061
6146 0.070 0.0012 0.097 0.097 0.095 0.029 0.028 0.028

Table 1. Error estrong using K = 10000 Monte Carlo samples and
L = 100 for the truncation of the white noise.

Figure 2. Errors estrong for  = 0.5 and di↵erent values of the
truncation parameter L using K = 10000 Monte Carlo samples.

Regarding the mean square error eweak, we report its value along with kUkk2L2(⌦;L2(�))

for di↵erent fractional powers s and the cases  = 2 and  = 8 in Tables 2 and 3,
respectively. These tables are supplemented with Figure 3 to better comprehend
the evolution of the mean square error as the meshsize varies. We observe that the
convergence rates observed numerically match the predictions from Theorem 6.1
when the finite element error is dominant, namely when s is small (i.e. the solution
is not smooth) or when  is large (i.e. the correlation length is small). In the other
cases, other sources of error like the Monte Carlo and the sinc quadrature errors
a↵ect the convergence with respect to h.
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s = 0.625 s = 0.75 s = 0.9
N h kUkk2 eweak kUkk2 eweak kUkk2 eweak

98 0.542 1.4399 1.4391 0.7554 0.2899 0.3738 0.0690
386 0.276 1.8060 1.0729 0.8751 0.1701 0.4103 0.03247
1538 0.139 2.0978 0.7812 0.9461 0.0992 0.4248 0.0180
6146 0.070 2.3210 0.5579 0.9903 0.0550 0.4336 0.0092
24578 0.035 2.4761 0.4028 1.0087 0.0366 0.4339 0.0089
Table 2. Mean square error eweak using K = 1000 when  = 2, in
which case kũk2

L2(⌦;L2(�))
is equal to 2.87891 for s = 0.625, 1.04528

for s = 0.75, and 0.44277 for s = 0.9.

s = 0.625 s = 0.75 s = 0.9
N h kUkk2 eweak kUkk2 eweak kUkk2 eweak

98 0.542 0.2605 1.1429 0.0813 0.1694 0.0203 0.0248
386 0.276 0.4684 0.9351 0.1329 0.1177 0.0303 0.0148
1538 0.139 0.6859 0.7175 0.1774 0.0732 0.0375 0.0076
6146 0.070 0.8741 0.5293 0.2083 0.0423 0.0415 0.0036
24578 0.035 1.0250 0.3784 0.2278 0.0229 0.0435 0.0015
Table 3. Mean square error eweak using K = 1000 when  = 8, in
which case kũk2

L2(⌦;L2(�))
is equal to 1.40341 for s = 0.625, 0.25063

for s = 0.75, and 0.04506 for s = 0.9.

Figure 3. Errors eweak for  = 2 (left) and  = 8 (right) using
K = 1000 Monte Carlo samples. The dashed lines indicate the
behavior predicted by Theorem 6.1.

7.1.2. E↵ect of the Parameters s and . The fractional power s determines the
regularity of the random field. To illustrate this, we give on Figure 4 one realization
of Uk for s = 0.55, 0.75, 0.95 using N = 1538 DoFs (h = 0.1391). For the color
map, blue indicates negative values while red indicates positive values, the range
of values being [�2.2614, 1.7720] for s = 0.55, [�1.1898, 0.6849] for s = 0.75, and
[�0.8278, 0.2587] for s = 0.95.
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Figure 4. Numerical solution Uk(·,!m) to Problem (16) on the
unit sphere when  = 0.5 and s = 0.55 (left), s = 0.75 (middle),
and = 0.95 (right).

To see the influence of the parameter , which is inversely proportional to the
correlation length, we compute the approximated covariance at di↵erent points,
namely

covUk
(x,x0) :=

1

K � 1

KX

i=1

�
Uk(x,!i)� Ūk(x)

� �
Uk(x

0,!i)� Ūk(x
0)
�
, (79)

where

Ūk(x) :=
1

K

MX

i=1

Uk(x,!i).

We take K = 10000 for both the approximation of the mean field Ūk and the
covariance function covUk

, but using two di↵erent sets of samples, and we take
N = 1538 DoFs (h = 0.139). The results are reported in Table 4. We observe
numerically that the smaller  the larger the covariance, and that the evaluation of
covUk

at pairs of points with the same (geodesic) distance yields comparable values.

s = 0.75 s = 0.9
 = 0.5  = 2  = 0.5  = 2

(x1,x2) 0.623685 0.005944 0.951398 0.004374
(x1,x3) 0.577621 0.001588 0.909999 0.000980
(x2,x3) 0.617366 0.004903 0.945554 0.003722

Table 4. Covariance function defined in (79) evaluated at the
following points: the South Pole x1 = (0, 0,�1), the point x2 =
(0, 1, 0) which lies on the Equator, and the North Pole x3 =
(0, 0, 1).

7.2. Gaussian Matérn Random Field on a Torus. Here the surface � is a
torus with parametrization

(x, y, z) = ((R+ r cos(✓)) cos(�), r sin(✓), (R+ r cos(✓)) sin(�)) (80)

for ✓,� 2 [0, 2⇡). In what follows, we set r = 0.5 and R = 2. One realization
for the case  = 0.5 is given on Figure 5 for s = 0.55, 0.75, 0.95 using N = 5120
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(h = 0.1386). As above, blue indicates negative values while red stands for pos-
itive values, the range of values being in this case [�2.6314, 3.0533] for s = 0.55,
[�1.5083, 1.5491] for s = 0.75, and [�1.2159, 0.7646] for s = 0.95.

Figure 5. Numerical solution to Problem (16) on the torus de-
fined in (80) when  = 0.5 and s = 0.55 (left), s = 0.75 (middle),
and s = 0.95 (right).

As for the sphere, we evaluate the covariance function covUk
at di↵erent points

and for di↵erent values of the parameters s and , see Table 4 for the results
obtained when N = 1280 (h = 0.2757). As above, we observe that the covariance
is inversely proportional to  and the inverse of the geodesic distance between the
two points.

s = 0.75 s = 0.9
 = 0.5  = 2  = 0.5  = 2

(x1,x2) 0.377470 0.015192 0.505575 0.010112
(x1,x3) 0.360484 0.006877 0.497597 0.005097
(x2,x3) 0.401743 0.017716 0.529588 0.011722

Table 5. Covariance function defined in (79) evaluated at the fol-
lowing points: x1 = (1.5, 0, 0), x2 = (2, 0.5, 0), and x3 = (2.5, 0, 0)
which correspond to the cases � = 0 and ✓ = ⇡, 0,⇡/2, respectively.

Appendix A. Proof of Lemma 4.4

We follow the argument from Section 4 of [18]. Note that from the definition of
Q�s

k
, we have

PQ�s

k
(eLT )fW �Q�s

k
(LT )(�PfW ) =

k sin(⇡s)

⇡

NX

l=�M

e(1�s)ylElfW 

where El : eV(T ) ! V(T ) is given by

El := P (µlI + eLT )
�1 � (µlI + LT )

�1(�P ) (81)
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with µl := eyl and yl are the sinc quadrature points; see (57). The decomposition
of the operator El

El = (µlI + LT )
�1[(µlI + LT )P � �P (µlI + eLT )](µlI + eLT )

�1

= LT (µlI + LT )
�1(P eTT � TT �P )eLT (µlI + eLT )

�1

µl(µlI + LT )
�1(1� �)P (µlI + eLT )

�1

=: E1

l
+ E2

l
.

is instrumental in the error analysis below.
The next result recall estimate for some terms in the above decomposition. We

refer to Lemma 4.5 in [18] for more details.

Lemma A.1. Let p 2 [�1, 1] and q 2 R be such that p + q 2 [0, 2]. Then for any

µ > 0 and any eF 2 eV(T ) there holds

keLT (µI + eLT )
�1 eFkH�p(�) . µ�(p+q)/2keLq/2

T
eFkL2(�). (82)

Moreover, for any F 2 V(T ) we have

kLT (µI + LT )
�1FkL2(�) . µ�1/2kFkH1(�) (83)

and
k(µI + LT )

�1FkL2(�) . µ�1kFkL2(�). (84)

We also note that the arguments leading to (34) but using expansions based on
the discrete eigenpairs imply that if r 2 ((n� 1)/2, 2s) and µ > 0 we have

k(µI + eLT )
�1 eFkL2(�) . keL�r/2

T
eFkL2(�)

(
1, when µ  1,

µ
r

2
�1, when µ > 1.

(85)

for any eF 2 eV(T ).
To prove Lemma 4.4, it su�ces to show that

Si := k
NX

l=�M

µ1�s

l
kE i

l
fW kL2(⌦;L2(�))  C(h)h2, i = 1, 2. (86)

which we do now by estimating each term separately.
We start with S2 and let r 2 (n�1

2
, 2s). Thanks to (84), the geometric error (42),

and (85), we obtain

S2 . h2keL�r/2

T
fW kL2(⌦;L2(�))

✓ X

µl1

kµ1�s

l
+
X

µl>1

kµ�s+r/2

l

◆
,

The estimate of keL�r/2

T
fW kL2(⌦;L2(�)) provided by Lemma 4.2 in conjunction with

�s+ r/2 < 0, yield

S2 . h2keL�r/2

T
fW kL2(⌦;L2(�)) . h2,

which is the desired estimate in disguised (with C(h) . 1).
For S1, we first estimate the discrepancy between eUT := eTT eF and UT := TT �P eF

for any eF 2 eV(T ). By definition, see (40), UT satisfies

A�(UT , V ) =

Z

�

�P eFV
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for any V 2 V(T ). In turn, the change of variable formula (41) together with the
definition of eUT imply

A�(UT , V ) =

Z

�

eF (P�1V ) = a�(eUT , P
�1V )

upon realizing that P�1V 2 eV(T ). Consequently, we find that

2
Z

�

(P eUT � UT )V +

Z

�

r�(P eUT � UT ) ·r�V

= A�(P eUT , V )� a�(eUT , P
�1V )

= 2
Z

�

(P�1��1 � 1)eUT (P
�1V ) +

Z

�

r�
eUT · eEr�(P

�1V ),

where the error matrix eE satisfies keEkL1(�) . h2 (see e.g. [17, Corollary 33]). We

now set V = P eUT �UT so that with Cauchy-Schwarz inequality and the geometric
consistency (42), we get

k(P eTT � TT �P ) eFkH1(�) = kP eUT � UT kH1(�) . h2keUT kH1(�)

. h2k eFkH�1(�). (87)

We next estimate kE1

l
fW kL2(⌦;L2(�)) distinguishing two cases.

1 If µl > 1, we apply successively (83), (87) and (82) (with p = 1 and q =
�min{1, r}) to get

kE1

l
fW kL2(⌦;L2(�)) . µ

min

n
� 1

2
,
r

2
�1

o

l
h2keLq/2

T
fW kL2(⌦;L2(�))

. µ
r

2
�1

l
h2keLq/2

T
fW kL2(⌦;L2(�)),

where we used that µ�1/2

l
 µr/2�1

l
if r > 1.

2 If 0 < µl  1, we set again q = �min{1, r}. Using to the relation LT (µlI +
LT )�1 = I � µl(µlI + LT )�1 and (84) we have

kLT (µlI + LT )
�1FkL2(�)

 kFkL2(�) + µlk(µlI + L)�1FkL2(�) . kFkL2(�).

Moreover, (87) implies that

k(P eTT � TT �P ) eFkH1(�) . h2k eFkHq(�),

while (82) with p = �q reads

keLT (µlI + eLT )
�1 eFkHq(�) . keLq/2

T
eFkL2(�).

Gathering the above three estimates yields

kE1

l
fW kL2(⌦;L2(�)) . h2keLq/2

T
fW kL2(⌦;L2(�)).

and as a consequence

S1 . h2keLq/2

T
fW kL2(⌦;L2(�))

✓ X

µl1

kµ1�s

l
+
X

µl>1

kµ�s+r/2

l

◆

. h2keLq/2

T
fW kL2(⌦;L2(�)).
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Recall that q = �min(1, r) and so we now argue depending on whether r  1
(which can only happen when n = 2) and r > 1. When r  1, we have q = �r
and thus S1 . h2 by Lemma 4.2. For r > 1, i.e. q = �1, we write r = 1 + ✏ with
✏ 2 (0, 2s� 1) and we invoke an inverse inequality to write

S1 . h2�✏keL�(1+✏)/2

T
fW kL2(⌦;L2(�)) .

1 + ✏

1 + ✏� (n� 1)/2
h2�✏,

where we applied Lemma 4.2 for the second inequality. To conclude, we choose
✏ = (2s � 1)/ ln(h�1) yielding S1 . h2 for n = 2 and S1 . ln(h�1)h2 for n = 3.
The proof is now complete.
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[40] Erik Jansson, Mihály Kovács, and Annika Lang. Surface finite element approximation of

spherical Whittle–Matérn Gaussian random fields. SIAM J. Sci. Comput., 44(2):A825–A842,
2022.

[41] Tosio Kato. Fractional powers of dissipative operators. J. Math. Soc. Japan, 13:246–274,
1961.

[42] Andrew V. Knyazev and John E. Osborn. New a priori FEM error estimates for eigenvalues.
SIAM J. Numer. Anal., 43(6):2647–2667, 2006.

[43] Annika Lang and Mike Pereira. Galerkin–Chebyshev approximation of Gaussian random fields
on compact Riemannian manifolds. BIT Numer. Math., 63(51), 2023.



36 A. BONITO, D. GUIGNARD, AND W. LEI

[44] Annika Lang and Christoph Schwab. Isotropic gaussian random fields on the sphere: reg-
ularity, fast simulation and stochastic partial di↵erential equations. Ann. Appl. Probab.,
25(6):3047–3094, 2015.
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