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This is a survey on the theory of adaptive finite element methods (AFEMs), which are
fundamental in modern computational science and engineering but whose mathemat-
ical assessment is a formidable challenge. We present a self-contained and up-to-date
discussion of AFEMs for linear second order elliptic PDEs and dimension 3 > 1,
with emphasis on foundational issues. After a brief review of functional analysis and
basic finite element theory, including piecewise polynomial approximation in graded
meshes, we present the core material for coercive problems. We start with a novel
a posteriori error analysis applicable to rough data, which delivers estimators fully
equivalent to the solution error. They are used in the design and study of three AFEMs
depending on the structure of data. We prove linear convergence of these algorithms
and rate-optimality provided the solution and data belong to suitable approximation
classes. We also address the relation between approximation and regularity classes.
We finally extend this theory to discontinuous Galerkin methods as prototypes of
non-conforming AFEMs and beyond coercive problems to inf-sup stable AFEMs.
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1 Introduction: Overview of AFEMs
This is a survey on the theory of adaptive finite element methods (AFEMs), which
are fundamental in modern computational science and engineering. We present a
self-contained and up-to-date discussion of AFEMs for linear second order elliptic
PDE in dimension 3 > 1, with emphasis on foundational issues rather than applic-
ations of AFEMs. This paper builds on and expands the older surveys [Nochetto,
Siebert and Veeser 2009, Nochetto and Veeser 2012]. In fact, we decided to
incorporate several new aspects to the theory described below.

The paper develops the theory of AFEMs gradually and is meant to be access-
ible to advanced students and researchers interested in learning the fundamental
aspects of adaptivity and why AFEMs outperform classical FEMs. We quantify
the superior performance of AFEMs with precise mathematical statements rather
than simulations. We present very few numerical experiments to illustrate some
key (and new) algoritmic ideas and methods, but the paper is otherwise a tour in
the numerical analysis of adaptive approximation of linear elliptic PDEs.

By design this paper goes deep into some foundational aspects of AFEMs theory,
provides full discussions and proofs, as well as pointers to the main literature. We
consider the following model problem on a polyhedral domain ⌦ ⇢ R3 with 3 � 2

! [D] := � div(GrD) + 2D = 5 (1.1)

with general variable coe�cients (G, 2), forcing 5 2 ��1(⌦) and homogeneous Di-
richlet boundary conditions D = 0 on m⌦mostly, but not exclusively. IfV := �1

0(⌦)
and B : V⇥V! R is the bilinear form associated with (1.1), the weak form reads:

D 2 V : B[D, E] = h 5 , Ei 8 E 2 V. (1.2)

Given a conforming and shape regular partition T of ⌦, created by successive
refinement of a coarse mesh T0, let VT denote the space of continuous piecewise
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polynomial functions of degree = � 1 over T vanishing on m⌦. The Galerkin
approximation DT of D solves

DT 2 VT : B[DT , E] = h 5 , Ei 8 E 2 VT . (1.3)

This is a conforming approximation because VT ⇢ V. The aim of this paper is to:

• Design and analyze practical ways to estimate the error |D � DT |� 1
0 (⌦) := kr(D �

DT)k
!

2(⌦) in terms of so-called a posteriori error estimators, which are comput-
able quantities depending on the discrete solution DT and data D = (G, 2, 5 ).

• Design adaptive algorithms that equidistribute the local errors kr(D � DT)k
!

2() )
for all elements ) 2 T , thereby optimizing the computational e�ort; this is a key
step that makes complex 3d situations accessible computationally.

• Show that this strategy delivers a performance comparable with the best possible
in terms of degrees of freedom, which is a measure of computational complexity.
This is a delicate matter because it entails dealing with approximation classes
and their relation to regularity classes in terms of Besov and Lipschitz spaces.

• Present and analyze the bisection method for mesh refinement, one of the most
versatile techniques for local mesh refinement that guarantees shape regularity
and optimal complexity; the latter is instrumental for the previous point. Our
study includes conforming meshes as well as certain non-conforming meshes.

• Extend the theory to a range of important problems that fail to be conforming or
coercive. The first class is discontinuous Galerkin methods and the second one
is inf-sup stable FEMs. The former is a notorious example of non-conforming
approximation, whereas the second is non-coercive.

In achieving these goals we provide several new ideas and methods. We also refer
to the pertinent literature but we do not give a full list of references nor get into
comparisons of various approaches. It is not our intention to be comprehensive
but rather to cover basic aspects of adaptivity in depth at the expense of important
topics we do not touch upon. Some of them are:

• Adaptive eigenvalue approximation
• Goal oriented error analysis
• Non-conforming discretizations (except for discontinuous Galerkin)
• Coarsening or aggregation
• Anisotropic refinements
• ⌘?-adaptivity
• Tree approximation
• Other PDEs: convection-di�usion equations, nonlinear and evolution equations.

We devote the rest of this introduction to provide a roadmap to the rest of the
paper. In doing so, we introduce notation that will be used later and present some
topics in their most primitive form to render an early idea about how they fit and
interrelate.
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A posteriori error analysis. We refer to the books [Ainsworth and Oden 2000,
Verfürth 2013] for the classical theory. However, in contrast to most of the existing
literature, the current theory deals with forcing 5 2 �

�1(⌦). This allows for rough
data useful in applications, such as line Dirac masses, but also encompasses a new
approach to error estimation that leads to error-dominated estimator and oscillation
and prevents error overestimation; this extends [Kreuzer and Veeser 2021] to (1.1)
and polynomial degree = � 1. The new twist is the construction of a projection
operator %T : ��1(⌦) ! FT into a space of piecewise polynomials in T and on
its skeleton F , namely the set of all internal faces. Such an operator happens to be
locally stable on stars (or patches) lI of T for all vertices I 2 V of T :

k%T✓k��1(lI )  ⇠lStbk✓k��1(lI ) 8 ✓ 2 �
�1(lI). (1.4)

An important property of %T and its range FT is that for piecewise polynomial
coe�cients (G, 2), or in short discrete coe�cients, %T is invariant in the subspace
! [VT] of ��1(⌦) or equivalently

%T

�
! [E]

�
= ! [E] 2 FT 8 E 2 VT . (1.5)

It is worth realizing that ! [E] is made of two distinct parts. The first one is
absolutely continuous relative to the Lebesgue measure, namely � div(GrE) + 2E
in every element ) 2 T . The second part is singular and supported in the skeleton
F , namely [[GrE]] · n|�X� for every face � 2 F , where [[·]] is the jump across
�, n is a unit normal to �, and X� is the Dirac mass on �.

These two properties of %T have the following crucial consequences. Let

'T := ! [D � DT] = 5 � ! [DT] 2 �
�1(⌦) (1.6)

be the residual of the Galerkin approximation of (1.2). Using (1.5) yields

'T � %T'T = 5 � %T 5 .

This shows that 'T decomposes into a discrete, thus finite dimensional and com-
putable, PDE part %T'T = %T 5 � ! [DT] and an infinite dimensional component
5 �%T 5 , the so-called data oscillation that depends on 5 and can only be evaluated
with additional knowledge of 5 .

The nonlocal ��1-norm of 'T splits into local contributions on stars, whence 1

|D � DT |
2
�

1
0 (⌦)
⇡ k'T k

2
�
�1(⌦) ⇡

’
I2V

k'T k
2
�
�1(lI )

.

The discrete nature of %T'T allows us to derive a computable !2-weighted PDE
estimator [T(DT , I) equivalent to k'T k��1(lI ), which together with the remaining

1 Throughout this work, � . ⌫ signifies �  ⇠⌫with a constant⇠ independent of the discretization
parameters, and � ⇡ ⌫ stands for � . ⌫ and ⌫ . �.
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data oscillation oscT( 5 , I)�1 := k 5 � %T 5 k��1(lI ) gives the upper bound

|D � DT |
2
�

1
0 (⌦)
.

’
I2V

⇣
[T(DT , I)2

+ oscT( 5 , I)2
�1

⌘
.

It turns out that this estimate is sharp or, in other words, that there is no overestima-
tion of the error. To see this important and unique property of these new estimators,
we invoke (1.4) to write the local lower bounds

[T(DT , I) ⇡ k%T'T k��1(lI )  ⇠lStbk'T k��1(lI ),

oscT( 5 , I)�1 = k'T � %T'T k��1(lI )  (1 + ⇠lStb)k'T k��1(lI ).

Section 4 constructs the operator %T , and derives several important properties
such as its local quasi-best approximation and the above error-dominated a posteri-
ori bounds. The former guarantees the inequality for the local !2-projection ⇧T

k 5 � %T 5 k��1(lI ) . k 5 � ⇧T 5 k��1(lI ) . k⌘( 5 � ⇧T 5 )k!2(lI ),

which is the typical form of data oscillation provided 5 2 !2(⌦). However, this !2-
weighted oscillation is not bounded above by the error and is thus responsible for
potential overestimation. Section 4 proves further properties of [T(DT) such as its
reduction upon refinement and its localized discrete upper bound, as well as quasi-
monotonicity of oscT( 5 )�1 upon refinement. These properties, known for the stand-
ard !2-weighted estimator and oscillation, are thus retained by the new construction.

Section 4 also deals with the alternative error estimators that result from solving
local problems, using hierarchy, or imposing flux equilibration. We show that all
of them lead, essentially, to estimators equivalent to k'T k��1(lI ). Moreover, we
present an optimal framework to deal with non-homogeneous Dirichlet boundary
conditions as well as with Robin and Neumann boundary conditions.

Linear convergence of AFEMs. Local a posteriori error indicators are usually em-
ployed to mark elements (or set of elements) with largest indicators for refinement.
We are concerned with the most popular Dörfler marking (or bulk chasing): given
a parameter \ 2 (0, 1], select a set M ⇢ T such that

[T(DT ,M) � \ [T(DT); (1.7)

hereafter we define [T(DT ,M)2 :=
Õ
) 2M [T(DT ,))2 where [T(DT ,)) is the PDE

indicator associated with a generic element ) 2 T . Note that \ = 1 corresponds to
uniform refinement. In Section 5, we present three AFEMs in increasing order of
complexity regarding data D = (G, 2, 5 ) and prove their linear convergence.

The simplest algorithm, so-called GALERKIN, works for discrete D and is the
usual adaptive loop

SOLVE! ESTIMATE ! MARK! REFINE .

We assume SOLVE computes the exact Galerkin solution DT , so we refrain from
addressing linear algebra issues. The module ESTIMATE computes the a posteriori
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error indicator and the module MARK implements (1.7); in most of the paper we deal
with weighted !2-error indicators [T(DT) but we also address linear convergence
for alternative estimators. The module REFINE bisects marked elements and
perhaps a few more to keep meshes conforming (or ⇤-admissible if they are non-
conforming). We denote by |||D � DT |||⌦ the energy error associated with the bilinear
form B. This error is monotone with refinement but may stagnate. We thus exploit
the estimator reduction property with refinement, typical of [T(DT), to show that
the combined quantity

ZT(DT)2 := |||D � DT |||
2
⌦ + W [T(DT)2 (1.8)

contracts in every iteration of GALERKIN for a suitable scaling parameter W > 0.
This readily leads to linear convergence of both |D � DT |� 1

0 (⌦) and [T(DT).

We next keep the coe�cients (G, 2) discrete but allow for a general 5 2 ��1(⌦).
This is to prevent the multiplicative interaction between (G, 2) and D that occurs in
(1.1) if we were to approximate (G, 2). In contrast, the e�ect of 5 is linear in (1.1).
We show examples where |||D � DT |||⌦ may stagnate because the adaptive process
is dominated by oscillation oscT( 5 )�1 (preasymptotic regime). To compensate for
this fact, we design a one-step AFEM with switch as in [Kreuzer, Veeser and Zan-
otti n.d.], the so-called AFEM-SW, that proceeds as GALERKIN provided [T(DT)
dominates and otherwise reduces oscT( 5 )�1 separately. We show that, for suitable
a parameter W > 0, the combined quantity

ZT(DT)2 := |||D � DT |||
2
⌦ + W[T(DT)2

+ oscT( 5 )2
�1 (1.9)

contracts in every loop of AFEM-SW. This yields linear convergence of the error
|D � DT |�10(⌦) and the estimator ET(DT , 5 ) = [T(DT) + oscT( 5 )�1.

The third algorithm is the two-step AFEM, the so-called AFEM-TS, which allows
for general data D = (G, 2, 5 ). To handle the aforementioned nonlinear e�ect of
(G, 2) and also deal with general 5 , all data D are first approximated by a routine
DATA to a desired level of accuracy, which is adjusted at every step of AFEM-TS,
and then fed to GALERKIN which handles discrete data. Suitably combining the
accuracies of each intermediate module leads to linear convergence and optimal
complexity of GALERKIN within each loop. The structure of AFEM-TS is flexible
enough to easily handle discontinuous coe�cients (G, 2) with discontinuities that
may not be aligned with the mesh. This is because the approximation of (G, 2) by
discontinuous polynomials takes place in ! ?(⌦) for ? < 1.

It is worth stressing two important points. First the approximation of D is carried
out by a GREEDY algorithm, which is shown to perform optimally starting from any
refinement of T0. Second, the discontinuous piecewise polynomial approximations
(bG,b2) of (G, 2) may not respect, for polynomial degree � 1, the positivity bounds
associated with the coe�cients. This requires a nonlinear correction of the output
of GREEDY that restores positivity and does not deteriorate accuracy beyond a
modest multiplicative constant. We postpone the discussion of these two delicate
and technical processes to Section 7, which can be omitted in a first reading.
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Rate-optimality of AFEMs. Showing that AFEMs outperform classical FEMs is a
di�cult but important matter. This reduces to proving a superior relation between
the required degrees of freedom (or number of elements) for a desired accuracy; the
former is in fact an acceptable measure of complexity. Showing that AFEMs deliver
a performance comparable with the best entails the following basic ingredients:

• Nonlinear approximation classes: they classify functions in terms of the best
possible algebraic decay rate of approximation 4# (E)- of a given function E in
a given norm - with # number of elements; roughly speaking, we say E 2 AB if
4# (E)- . #�B. These classes are related to regularity classes (Sobolev, Besov,
and Lipschitz) along Sobolev embedding lines.

• Dörfler marking: If the oscillation oscT( 5 )�1 is dominated by the PDE estimator
[T(DT) for a given mesh T , then any conforming refinement T⇤ � T of T that
reduces [T(DT) by a substantial amount induces a refined set R := T \ T⇤ to
modify T into T⇤ satisfying (1.7), namely [T(DT ,R) � \ [T(DT).

• Minimality of M: If the subset M ⇢ T in (1.7) is minimal, then the cardinality
of M compares favorably to the cardinality of the best mesh with a comparable
error accuracy, thereby leading to rate-optimality of AFEM.

This is altogether the topic of Section 6. It is important to notice that membership
in AB is never used explicitly by AFEM to learn about problem (1.1) and improve
its resolution. The fundamental reason behind the superior performance of AFEM

relative to FEM lies in nonlinear approximation theory. We illustrate now this point
with the following insightful approximation example for 3 = 1 and - = !

1(0, 1)
[DeVore 1998, Kahane 1961]: let ⌦ = (0, 1), T# = {[G 9�1, G 9]}

#

9=1 be a partition
of ⌦, with

0 = G0 < G1 < · · · < G 9 < · · · < G# = 1,

and let E : ⌦ ! R be an absolutely continuous function to be approximated by
a piecewise constant function E# over T# . To quantify the di�erence between E
and E# we resort to the maximum norm and study two cases depending on the
regularity of E. We define E# (G) := E(G 9�1) for all G 9�1  G < G 9 and note that

|E(G) � E# (G)| = |E(G) � E(G 9�1)| 
π

G

G 9�1

|E
0(C)|3C.

• Case 1: ,1
1-Regularity. If D 2 ,1

1(0, 1) and G 9�1  G < G 9 , then

|E(G) � E# (G)|  ⌘ 9 kE0k!1(G 9�1,G 9 ) ) kE � E# k!1(⌦) 
1
#

kE
0
k!1(⌦)

for a uniform mesh. We thus deduce a rate #�1 using the same integrability !1

on both sides of the error estimate.

• Case 2: ,1
1 -Regularity. Let kE0k

!
1(⌦) = 1 and T# be a graded partition so that
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Ø
G 9

G 9�1
|E
0(C)|3C = 1

#
. Then, for G 2 [G 9�1, G 9],

|E(G) � E(G 9�1)| 
π

G 9

G 9�1

|E
0(C)|3C =

1
#

) kE � E# k!1(⌦) 
1
#

kE
0
k
!

1(⌦).

We thus conclude that we could achieve the same rate of convergence #�1 for
rougher functions with just kD0k

!
1(⌦) < 1. Three comments are now in order.

First, the contrast between Cases 1 and 2 is more dramatic for E(G) = G
U with

U 2 (0, 1) because Case 1 only yields the suboptimal rate kE � E# k!1(⌦)  #
�U.

Second, T# in Case 2 equidistributes the max-error, a concept that will permeate
our discussions later. Third, the optimal rate of Case 2 is due to the exchange
of di�erentiability with integrability along the critical Sobolev embedding line
between the left and right-hand sides of the error estimate (nonlinear Sobolev
scale), while Case 1 relies on the linear Sobolev scale with constant integrability.

We exploit and further elaborate these concepts in Section 6 to show rate-
optimality of the three algorithms GALERKIN,AFEM-SW,AFEM-TS, discussed in
Section 5, provided D and D belong to suitable approximation classes. We also
investigate the relation between these approximation classes with regularity classes,
allowing for discontinuous coe�cients, and present a rather complete discussion.

Mesh refinement. A key component of any adaptive algorithm, such as the three
AFEMs already described, is the routine REFINE which refines a current mesh T

into T⇤ to improve resolution. In Section 8 we study the bisection method, which
is the most popular method to refine simplicial meshes in R3 for 3 � 1. For
simplicity we focus our attention on this method, but most results apply to other
refinement strategies such as quad-trees (for quadrilaterals), octrees (for hexagons)
and red-green (for simplicial meshes). We do not insist on these extensions but
refer to [Bonito and Nochetto 2010] for details.

Given an initial gridT0 with a suitable labeling, the bisection method splits a given
simplex into two children. The rules for successive cutting of simplices, for instance
newest vertex bisection for 3 = 2, are such that the ensuing meshes are shape regular
(with a uniform constant only depending on T0 and 3). However, bisection may not
be completely local to keep conformity. The analysis of propagation of refinement
is a delicate combinatorial problem. It is easy to see by example, that bisecting
one element of large generation (i.e. number of bisections needed to produce it)
may require a chain of elements with length similar to the generation. Therefore,
the number of refined elements in one step cannot be bounded by the number of
marked elements. The following amazing estimate by [Binev, Dahmen and DeVore
2004] for 3 = 2 and [Stevenson 2008] for 3 > 2 shows that the cumulative e�ect
of bisection counting from T0 all the marked elements M 9 is quasi-optimal: there
exists a constant ⇡ > 0, depending on T0 and 3, such that

#T: � #T0  ⇡

:�1’
9=0

#M 9 . (1.10)
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This estimate is crucial for the study of rate-optimality of AFEM and is proved
in Section 8 for 3 = 2 and for both conforming refinement and ⇤-admissible
refinement. The latter is a systematic way to handle non-conforming meshes that
goes back to [Beirão da Veiga, Canuto, Nochetto, Vacca and Verani 2023]. It
associates a computable global index to hanging nodes and imposes a restriction to
them not to exceed a preassigned value⇤ � 0; if⇤ = 0 then the mesh is conforming.
Section 8 also discusses several interesting geometric properties of ⇤-admissible
meshes which turn out to be crucial for discontinuous Galerkin methods. Since
Section 8 is quite technical, it can be skipped in a first reading.

Discontinuous Galerkin methods. These methods, so-called dG, are the natural first
step to investigate the role of non-conformity in adaptivity, namely that the discrete
space of discontinuous piecewise polynomialsVT is no longer a subspace of�1

0(⌦).
To this end, we study the symmetric interior penalty dG method in Section 9 on
⇤-admissible partitions T of T0. Such dG methods exhibit some characteristic
and novel features with respect to conforming FEMs: the most notable one is the
presence of weighted jumps that stabilize the method and compensate for the lack of
�

1-conformity. We consider the formulation with lifting, which allows for minimal
regularity D 2 �1

0(⌦), and forcing 5 2 �
�1(⌦) despite that VT is not a subspace

of �1
0(⌦). The latter is possible because, within the framework of AFEM-TS, 5 is

approximated by a piecewise polynomial %T 5 for which the pairing with functions
in VT is meaningful.

The fact that jumps are not monotone upon refinement constitutes one of the
main obstructions for studying adaptivity for dG. To circumvent this issue we fol-
low [Bonito and Nochetto 2010], who in turn modified the original approach of
[Karakashian and Pascal 2007], and introduce the largest conforming subspaceV0

T

of VT . It turns out that, despite being coarser, V0
T

exhibits a local resolution com-
parable with VT because of key geometric properties of ⇤-admissible meshes that
control the degree of non-conformity of T . In addition, V0

T
is responsible for the

scaled jumps to be bounded by the PDE estimator [T(DT). Exploiting properties
of [T(DT), similar to the conforming case, leads to a quasi-orthogonality estimate
for the dG norm, a dG variant of the Pythagoras equality. This is instrumental to
prove a contraction property for the error plus scaled estimator and deduce conver-
gence for both GALERKIN and AFEM-TS. Moreover, we derive rate-optimality for
both algorithms provided D and D belong to suitable approximation classes. Such
classes are the same as for conforming AFEMs: in fact we prove that the approx-
imation classes for D using continuous and discontinuous piecewise polynomials
on ⇤-admissible meshes coincide.

Inf-sup stable AFEMs. The convergence and optimality theories developed in Sec-
tions 5 and 6 rely on the bilinear form in (1.2) being coercive. We remove this
strong restriction in Section 10 and consider uniformly inf-sup stable FEMs on
conforming refinements T9 of T0. The lack of an energy norm and its monotone
behavior upon refinement has been an obstacle for the study of this class of prob-
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lems. We follow the recent work by M. Feischl [Feischl 2022], who introduced
the following form of quasi-orthogonality between consecutive Galerkin solutions
D 9 2 V 9 , originally proposed in [Carstensen, Feischl, Page and Praetorius 2014] as
part of an abstract set of axioms of adaptivity:

9+#’
:= 9

kD:+1 � D: k
2
V  ⇠(#)kD � D 9 k2V 9 � 0, (1.11)

where⇠(#)/# ! 0 as # !1. This is our departing point to develop a variational
approach to prove linear convergence of D 9 provided data D is discrete; the latter
is reflected in an equivalence property between error and estimator (without oscil-
lation). This is the context of a GALERKIN routine, which is next used as a building
block together with DATA for a AFEM-TS that handles general data D. Moreover,
we prove rate-optimality for both algorithms, thereby extending Sections 5 and 6.

This discussion is rather abstract. We specialize it to the Stokes equations for vis-
cous incompressible fluids and mixed formulations of (1.1) using Raviart-Thomas-
Nedelec and Brezzi-Douglas-Marini elements. We thereby obtain convergence
and rate-optimality for AFEM-SW for the Stokes equations and AFEM-TS for mixed
methods with variable and possibly discontinuous coe�cients (G, 2).

We conclude with a complete proof of (1.11) following [Feischl 2022]. This is
a tour de force in applied linear algebra and is rather technical. It can be omitted in
a first reading.
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2 Linear Elliptic Boundary Value Problems: Basic Theory
In this section we examine the variational formulation of elliptic partial di�erential
equations (PDE). We start with a brief review of Sobolev spaces and their properties
and continue with two model boundary value problems that are instrumental in our
subsequent analysis. We next present the so-called inf-sup theory that characterizes
existence, uniqueness and stability of variational problems, and apply it to coercive
and saddle point problems. These two classes will play essential roles later.
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2.1 Sobolev spaces: scaling and embedding

Let ⌦ ⇢ R3 with 3 > 1 be a Lipschitz and bounded domain, and let : 2 N, 1 
?  1. The Sobolev space, :

?
(⌦) is defined by

,
:

?
(⌦) := {E : ⌦! R| ⇡UE 2 ! ?(⌦) 8|U |  :},

and is a Banach space with the norm

kEk
,
:
? (⌦) =

0

@
:’
9=1

|E |
?

,
9
? (⌦)

1

A

1
?

, |E |
,
9
? (⌦) =

✓π
⌦
|⇡

9

E |
?

◆ 1
?

.

The space, :

?
(⌦;R<) is the space, :

?
(⌦) of vector or matrix-valued functions. If

? = 2 we write �:(⌦) = , :

2 (⌦) and note that this is a Hilbert space. We denote
by �1

0(⌦) ⇢ �1(⌦) the completion of ⇠10 (⌦) within �1(⌦).
Sobolev spaces, :

?
(⌦) of fractional order : > 0 can be defined as well, by apply-

ing the real interpolation method between, [: ]

?
(⌦) and, [: ]+1

?
(⌦) (see [Bergh and

Löfström 1976] and [Adams and Fournier 2003] for the details). The subsequent
definitions and properties hold for Sobolev spaces of integer or fractional order.

The Sobolev number of, :

?
(⌦) is given by

sob(, :

?
) := : �

3

?

. (2.1)

This number governs the scaling properties of the semi-norm |E |
,
:
? (⌦), because

rescaling variables bG = 1
⌘
G for all G 2 ⌦, transforms ⌦ into b⌦ and E into bE, while

the corresponding norms scale as

|bE |
,
:
? (b⌦) = ⌘

sob(, :
? )
|E |
,
:
? (⌦).

2.2 Properties of Sobolev spaces

We summarize now, but not prove, several important properties of Sobolev spaces
which play a key role later. We refer to [Evans 2010, Gilbarg and Trudinger
2001, Grisvard 2011] for details. We use the notation õ! to denote a continuous
embedding.

Lemma 2.1 (Sobolev embedding) Let < > : � 0 and assume sob(,<

@
) >

sob(, :

?
). Then the embedding,<

@
(⌦) õ! ,

:

?
(⌦) is compact and

kEk
,
:
? (⌦)  ⇠kEk,<

@ (⌦) 8 E 2 ,
<

@
(⌦),

where ⇠ = ⇠(<, : , @, ?,⌦, 3).

We say that two Sobolev spaces are in the same nonlinear Sobolev scale if they
have the same Sobolev number; see Figure 2.1. We thus note that for compactness
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the space ,<

@
(⌦) must be above the Sobolev scale of , :

?
(⌦), i.e. sob(,<

@
) >

sob(, :

?
).

di�erentiability

1/summability

<

:

1/@1/?

,
:

?
(⌦)

,
<

@
(⌦)

0

sob(,<

@
(⌦)) = const

(slope = 3)

Figure 2.1. DeVore diagram [DeVore 1998]. The space , :

?
(⌦) is represented by

the point (1/?, :) in the first quadrant. The line sob(,<

@
) = const = sob(, :

?
), with

slope 3, may be called the (critical) Sobolev embedding line fir, :

?
(⌦). It represents

all Sobolev spaces having the same Sobolev number as , :

?
(⌦). Sobolev spaces

corresponding to points inside the gray region and on its boundary on the vertical
axis are compactly embedded in, :

?
(⌦). Spaces on the oblique and horizontal lines

emanating from ,
:

?
(⌦) are generally continuously, but not compactly embedded,

in , :

?
(⌦) with exceptions such as ? = 1. Note that indices : and < may take

non-integer values, corresponding to fractional Sobolev spaces.

The assumption on the Sobolev number cannot be relaxed. To see this, consider
⌦ to be the unit ball of R3 for 3 � 2 and set E(G) = log log |G |

2 for G 2 ⌦ \ {0}.
Then there holds E 2 ,1

3
(⌦) \ !1(⌦), but

sob(,1
3
) = 1 � 3/3 = 0 = 0 � 3/1 = sob(!1).

Therefore, equality cannot be expected in the embedding theorem. On the other
hand, consider 3 = 1 and the spaces ,1

1 (⌦) and !1(⌦). We see that sob(,1
1 ) =

sob(!1) = 0 but,1
1 (⌦) is compactly embedded in !1(⌦) in this case. This shows

that these two spaces are in the same nonlinear Sobolev scale and that the above
inequality between Sobolev numbers for a compact embedding is only su�cient.

Moreover, if 0 < U = sob(, :

?
)  1, then functions of, :

?
(⌦) are Hölder-U and

|E |
⇠

0,U(⌦)  ⇠ |E |, :
? (⌦) 8 E 2 ,

:

?
(⌦).



AFEM 13

This allows for the use of the standard Lagrange interpolation operator. We will
exploit this fact later in Section 3.

Lemma 2.2 (first Poincaré inequality) Let ⌦ ⇢ R3 be a bounded and Lipschitz
domain. Then there is a constant ⇠% = ⇠3 |⌦|

1/3 such that

kEk
!

2(⌦)  ⇠% krEk!2(⌦) 8 E 2 �
1
0(⌦). (2.2)

The same inequality is valid in,1
?
(⌦) for any 1  ?  1 provided E has vanishing

trace [Gilbarg and Trudinger 2001, p.158].

Lemma 2.3 (second Poincaré inequality) There exists ⇠% depending on ⌦ such
that

kE � Ek
!

2(⌦)  ⇠% krEk!2(⌦) 8 E 2 �
1(⌦), (2.3)

where E := |⌦|
�1

Ø
⌦ E. The best constant within the class of convex domains is

⇠% = 1
c

diam(⌦) [Payne and Weinberger 1960]. The same inequality is valid in
,

1
?
(⌦) for 1  ?  1. [Gilbarg and Trudinger 2001].

Lemma 2.4 (traces) Let ⌦ be Lispchitz. There exists a unique linear operator
) : �1(⌦)! !

2(m⌦) such that

k)Ek
!

2(m⌦)  2(⌦)kEk
�

1(⌦) 8 E 2 �
1(⌦),

)E = E 8 E |m⌦ 2 ⇠
0(⌦) \ �1(⌦).

The operator ) is also well defined on ,1
?
(⌦) for 1  ?  1. [Evans 2010,

Grisvard 1985]

Since )E = E |m⌦ for continuous functions, we write E for )E. The image of )
is a strict subspace of !2(m⌦), the so-called �1/2(m⌦). This is a Hilbert space if
equipped with the norm k6k

�
1/2(m⌦) := inf{kEk

�
1(⌦) | )E = 6}, and) is continuous

with respect to this norm, i.e.,

k)Ek
�

1/2(m⌦)  kEk� 1(⌦) 8 E 2 �
1(⌦). (2.4)

The definition of �1
0(⌦) can be reconciled with that of traces because

�
1
0(⌦) =

�
E 2 �

1(⌦) | E = 0 on m⌦}.

We point out that, in view of Lemma 2.2, the semi-norm |E |
�

1
0 (⌦) := krEk

!
2(⌦) is

a norm in �1
0(⌦). We let ��1(⌦) be the dual of �1

0(⌦), with corresponding norm

k 5 k
�
�1(⌦) := sup

E2� 1
0 (⌦)

h 5 ,E i

|E |
�1

0 (⌦)
. These definitions extend to any ? 2 (1,1).

Lemma 2.5 (Gauss divergence theorem) If n is the outer unit normal to ⌦, thenπ
⌦

divw =
π
m⌦

w · n 8w 2 ,1
1 (⌦;R3).
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Lemma 2.6 (Green’s formula) The integration by parts formula holdsπ
⌦

divw E = �
π
⌦
w · rE +

π
m⌦
E w · n 8 E 2 �

1(⌦), w 2 �1(⌦;R3).

2.3 Examples of boundary value problems

We consider two model elliptic problems in this paper. We start with the scalar
di�usion-reaction equation with variable coe�cients

! [D] := � div(GrD) + 2D = 5 in ⌦,
D = 0 on m⌦,

(2.5)

where ⌦ ⇢ R3 is a bounded domain with Lipschitz boundary, G 2 !1(⌦;R3⇥3) is
a di�usion tensor uniformly symmetric positive definite (SPD) over ⌦, i. e., there
exist constants 0 < U1  U2 such that

U1 |/ |
2
 /)G(G) /  U2 |/ |

2
8 G 2 ⌦, / 2 R3 , (2.6)

2 2 !
1(⌦), 2 � 0 is a reaction term, and 5 2 !

2(⌦) is a scalar load term.
To derive the variational formulation of (2.5) we let V = �

1
0(⌦) and V⇤ =

�
�1(⌦). Since �1

0(⌦) is the subspace of �1(⌦) of functions with vanishing trace,
asking for D 2 V accounts for the homogeneous Dirichlet boundary values in (2.5).
We next multiply (2.5) with a test function E 2 �1

0(⌦), integrate over ⌦ and use
Lemma 2.6 (Green’s formula), provided w = �GrD 2 �1(⌦;R3), to obtain

D 2 V : B[D, E] = h 5 , Ei 8 E 2 V. (2.7)

Here, B : V ⇥ V! R stands for the bilinear form

B[F, E] :=
π
⌦
rE · GrF + 2EF 8 E,F 2 V, (2.8)

and h·, ·i stands for the !2(⌦)-scalar product and also for a duality paring ��1(⌦)�
�

1
0(⌦). Since G is assumed to be symmetric, the bilinear form B is also symmetric;

however G does not have to be symmetric in general. Note that the weak form (2.7)
allows for fluxes w 2 !2(⌦;R3) and forcing 5 2 �

�1(⌦). We examine existence,
uniqueness and stability of (2.7) in Section 2.4 below.

We assume homogeneous Dirichlet boundary condition in (2.5) for simplicity
and because this will be our basic setting later. However, we could allow a non-
homogeneous Dirichlet condition in the sense of traces

)D = 6 on m⌦, (2.9)

for any given function 6 2 �
1
2 (m⌦). To write the companion variational formulation

to (2.7), we first introduce the subspace V(6) ⇢ �1(⌦) of functions E with trace
)E = 6 on m⌦, and then rewrite (2.7) as follows:

D 2 V(6) : B[D, E] = h 5 , Ei 8E 2 V(0). (2.10)
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Moreover, we could consider a Robin boundary condition for given functions 6 and
? on m⌦

GrD · n + ?D = 6 on m⌦, (2.11)

where n is the outer unit normal to ⌦. To figure out the variational formulation,
we now multiply the PDE in (2.5) by a test function E 2 �1(⌦) and integrate by
parts to find the following variant of (2.7)

D 2 �
1(⌦) : B[D, E] = ✓(E) 8E 2 �1(⌦), (2.12)

where for all E,F 2 �1(⌦)

B[F, E] :=
π
⌦
rE · GrF + 2EF +

π
m⌦
?EF, ✓(E) := h 5 , Ei +

π
m⌦
6E. (2.13)

We realize that (2.13) makes sense for ? 2 !1(m⌦), ? � 0 and 6 2 ��
1
2 (m⌦), the

dual space of �
1
2 (m⌦), whence the last integral in (2.13) means a duality pairing.

If ? = 0, then (2.13) reduces to the weak form of the Neumann boundary condition.
The second model problem is the Stokes system, which is the simplest model of

a stationary viscous incompressible fluid. Given an external force f 2 !2(⌦;R3),
let the velocity-pressure pair (u, ?) satisfy the momemtum and incompressibility
equations with no-slip boundary condition:

��u + r? = f in ⌦,
div u = 0 in ⌦,

u = 0 on m⌦.

(2.14)

For the variational formulation we consider two Hilbert spacesV = �1
0(⌦;R3) and

Q = !2
0(⌦), where !2

0(⌦) is the space of !2 functions with zero mean value. The
space �1

0(⌦;R3) takes care of the no-slip boundary values of the velocity. We
first multiply the momentum equation in (2.14) by v 2 V, assume u 2 �2(⌦;R3)
and use Lemma 2.6 (Green’s formula) component-wise. We next multiply the
incompressibility equation in (2.14) by @ 2 Q and integrate over ⌦. We end up
with the following variational formulation: find (u, ?) 2 V ⇥ Q such that

0[u, v] + 1[?, v] = h f , vi 8 v 2 V,

1[@, u] = 0 8 @ 2 Q.
(2.15)

Here the bilinear forms 0 : V ⇥ V! R and 1 : Q ⇥ V! R read

0[w, v] :=
π
⌦
rv : rw =

3’
8=1

π
⌦
rE8 · rF8 8 v, w 2 V.

and

1[@, v] := �
π
⌦
@ div v 8 @ 2 Q, v 2 V.

We observe that 0[w, v] does not require w 2 �2(⌦;R3) and that (2.15) makes
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sense for f 2 �
�1(⌦;R3); note that the second equation in (2.15) is always

satisfied for constant @ due to Gauss’ theorem, which explains the choice @ 2 Q.
Furthermore, (2.15) can be reformulated as (2.7), namely

(u, ?) 2 V ⇥ Q : B[(u, ?), (v, @)] = h f , vi 8 (v, @) 2 V ⇥ Q, (2.16)

with

B[(u, ?), (v, @)] := 0[u, v] + 1[?, v] + 1[@, u] .

We discuss existence, uniqueness and stability of (2.16) in Section 2.4.
We could formulate the Stokes system with other boundary conditions. First, we

may allow a non-homogeneous Dirichlet condition u = g for a given function g 2
�

1
2 (m⌦;R3) satisfying the compatibility condition

Ø
⌦ g · n = 0 imposed by Gauss’

theorem, and proceed as in the scalar case (2.10). Second, to deal with a Neumann
boundary condition, we introduce the stress tensor 2(u, ?) := 1

2

�
ru + ru)

�
� ?O

and the symmetric part of the velocity gradient 9(u) := 1
2

�
ru+ru)

�
. Then instead

of (2.14) we could write the strong form of the Neumann problem as

� div2(u, ?) = f , div u = 0, in ⌦
2(u, ?)n = g on m⌦,

(2.17)

and its weak form as (2.15) but with

V := {v 2 �1(⌦;R3) :
π
⌦
v = 0}, Q := !2(⌦), (2.18)

as well as bilinear form 0 and right-hand side

0[u, v] :=
π
⌦
9(u) : 9(v), ✓(v) := h f , vi +

π
m⌦

g · v (2.19)

for all v 2 V. Again, the last integral in (2.19) is to be interpreted as a duality
pairing for g 2 ��

1
2 (m⌦;R3).

2.4 Inf-sup theory

We present a functional framework for existence, uniqueness, and stability of
variational problems of the form (2.7) or (2.16). Throughout this section we let
(V, h·,·iV) and (W, h·,·iW) be a pair of Hilbert spaces with induced norms k · kV and
k · kW. We denote by V⇤ andW⇤ their respective dual spaces equipped with norms

k 5 kV⇤ = sup
E2V

h 5 , Ei

kEkV
and k6kW⇤ = sup

E2W

h6, Ei

kEkW
.

We write !(V;W) for the space of all linear and continuous operators from V into
W with operator norm

k⌫k!(V;W) = sup
E2V

k⌫EkW

kEkV
.
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The following result relates a continuous bilinear form B : V ⇥W ! R with an
operator ⌫ 2 !(V;W) [NeÃas 1962, Babu�ka 1971].

Theorem 2.7 (Banach-Ne�as) Let B : V⇥W! R be a continuous bilinear form
with norm

kBk := sup
E2V

sup
F 2W

B[E,F]

kEkVkFkW
. (2.20)

Then there exists a unique linear operator ⌫ 2 !(V,W) such that

h⌫E, FiW = B[E,F] 8 E 2 V, F 2 W

with operator norm

k⌫k!(V;W) = kBk.

Moreover, the bilinear form B satisfies the two conditions

8) there exists U > 0 such that UkEkV  sup
F 2W

B[E,F]

kFkW
for all E 2 V; (2.21a)

88) for every 0 < F 2 W there exists E 2 V such that B[E,F] < 0; (2.21b)

if and only if ⌫ : V!W is an isomorphism with

k⌫
�1
k!(W,V)  U

�1
. (2.22)

We consider now the abstract variational problem

D 2 V : B[D, E] = h 5 , Ei 8 E 2 W, (2.23)

The following result, due to NeÃas [NeÃas 1962, Theorem 3.3], characterizes
properties of the bilinear form B that imply that (2.23) is well-posed.

Theorem 2.8 (Ne�as) Let B : V ⇥W ! R be a continuous bilinear form. Then
the variational problem (2.23) admits a unique solution D 2 V for all 5 2 W⇤,
which depends continuously on 5 , if and only if the bilinear form B satisfies one
of the equivalent inf-sup conditions:

(1) There exists U > 0 such that

8) sup
F 2W

B[E,F]

kFkW
� UkEkV for some U > 0; (2.24a)

88) For every 0 < F 2 W there exists E 2 V such that B[E,F] < 0. (2.24b)

(2) There holds

inf
E2V

sup
F 2W

B[E,F]

kEkVkFkW
> 0, inf

F 2W
sup
E2V

B[E,F]

kEkVkFkW
> 0. (2.25)

(3) There exists U > 0 such that

inf
E2V

sup
F 2W

B[E,F]

kEkVkFkW
= inf
F 2W

sup
E2V

B[E,F]

kEkVkFkW
= U. (2.26)
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In addition, the solution D of (2.23) satisfies the stability estimate

kDkV  U
�1
k 5 kW⇤ . (2.27)

The equality in (2.26) might seem at first surprising but is just a consequence of
k⌫
�⇤
k!(V;W) = k⌫�1

k!(W;V). In general, (2.24) is simpler to verify than (2.26) and
U of (2.26) is the largest possible U in (2.24a). Since (2.22) shows that k⌫�1

k!(W,V)
is the best inf-sup constant U in (2.21a), we readily obtain the following result.

Corollary 2.9 (well posedness implies inf-sup) Assume that the variational prob-
lem (2.23) admits a unique solution D 2 V for all 5 2 W⇤ so that

kDkV  ⇠k 5 kW⇤ .

Then B satisfies the inf-sup condition (2.26) with U � ⇠�1.

We next apply these abstract results to two special but important cases. The
first class are problems with coercive bilinear form and the second one comprises
problems of saddle point type.

Coercive Problems. An existence and uniqueness result for coercive bilinear forms
was established by Lax and Milgram eight years prior to the result by NeÃas [Lax
and Milgram 1954]. Coercivity of B is a su�cient condition for existence and
uniqueness but it is not necessary. In this case, we assume V =W.

Corollary 2.10 (Lax-Milgram) Let B : V⇥V! R be a continuous bilinear form
that is coercive, namely there exists U > 0 such that

B[E, E] � UkEk
2
V 8 E 2 V. (2.28)

Then (2.23) has a unique solution that satisfies the stability estimate (2.27).

If the bilinear form B is also symmetric, i. e.,

B[E,F] = B[F, E] 8 E,F 2 V,

thenB is a scalar product onV. The norm induced byB is the so-called energy norm

|||E |||⌦ := B[E, E]
1/2

.

For the reaction-di�usion equation (2.5) the bilinear form given in (2.8) satisfies

0 < U1  U  kBk  U2 + k2k!1(⌦)⇠
2
%
, (2.29)

where ⇠% is the constant in Lemma 2.2 (first Poincaré inequality). Coercivity and
continuity of B, with constants 2B = U1 and ⇠B = kBk, in turn imply that the
energy norm ||| · |||⌦ is equivalent to the natural norm k · kV in V = �1

0(⌦):

2B kEk
2
V  |||E |||

2
⌦  ⇠B kEk

2
V 8 E 2 V. (2.30)

Moreover, it is rather easy to show that for symmetric and coercive B the solution
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D of (2.23) is the unique minimizer of the quadratic energy

� [E] :=
1
2
B[E, E] � h 5 , Ei 8 E 2 V,

i. e., D = argmin
E2V � [E]. In particular, the energy norm and the quadratic energy

play a relevant role in Sections 5, 6 and 9.
This framework applies to the scalar di�usion-reaction equation (2.7) with ho-

mogeneous Dirichlet condition. Since the full�1-norm k · k
�

1(⌦) and the seminorm
| · |

�
1
0 (⌦) are equivalent in the space V = �

1
0(⌦), according to Lemma 2.2 (first

Poincaré inequality), the bilinear form B in (2.8) is coercive and continuous in
view of (2.6) and 2 � 0. This framework applies as well to the non-homogeneous
Dirichlet problem (2.10), upon extending 6 to a function 6 2 �1(⌦) and rewriting
the problem in terms of F = D � 6 2 �1

0(⌦) and forcing ✓ = 5 � ! [6] 2 �
�1(⌦).

On the other hand, the bilinear formB in (2.13) associated with a Robin boundary
condition is coercive provided ? � ?0 on m⌦ (or at least on an open subset of m⌦)
with some constant ?0 > 0. This is a consequence of the norm equivalence

kEk
2
�

1(⌦) ⇡ |E |
2
�

1
0 (⌦)

+ kEk
2
!

2(m⌦) 8 E 2 �
1(⌦). (2.31)

For the Neumann problem, instead, we have ? = 0 in m⌦, whence B is coercive
whenever 2 > 0 in ⌦ (or at least in an open subset of ⌦). If 2 = 0 in ⌦, then B

is only coercive in the subspace of �1(⌦) of functions with vanishing meanvalue,
according to Lemma 2.3 (second Poincaré inequality). Existence, uniqueness and
stability is thus guaranteed by Corollary 2.10 (Lax-Milgram) provided the forcing
in (2.13) satisfies the compatibility condition ✓(1) = 0.

Saddle Point Problems. We consider now an abstract problem a bit more general
than (2.15), so the following results apply to the Stokes system (2.14).

Given a pair of Hilbert spaces (V,Q), we consider two continuous bilinear forms
0 : V ⇥ V ! R and 1 : Q ⇥ V ! R. If 5 2 V⇤ and 6 2 Q⇤, then we seek a pair
(D, ?) 2 V ⇥ Q solving the saddle point problem

0[D, E] + 1[?, E] = h 5 , Ei 8 E 2 V, (2.32a)

1[@, D] = h6, @i 8 @ 2 Q. (2.32b)

Problem (2.32) is variational and can be rewritten in the form (2.23)

(D, ?) 2 V ⇥ Q : B[(D, ?), (E, @)] = h 5 , Ei + h6, @i 8 (E, @) 2 V ⇥ Q, (2.33)

where B is the bilinear form

B[(D, ?), (E, @)] := 0[D, E] + 1[?, E] + 1[@, D] . (2.34)

Therefore, the saddle point problem (2.32) is well-posed if and only if B satisfies
the inf-sup condition (2.26). Since B is defined via the bilinear forms 0 and 1,
and (2.32) has a degenerate structure, it is not that simple to show (2.26) directly.
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However, the result is a consequence of the inf-sup theorem for saddle point
problems given by Brezzi in 1974 [Brezzi 1974].

Theorem 2.11 (Brezzi) The saddle point problem (2.32) has a unique solution
(D, ?) 2 V ⇥Q for all data ( 5 , 6) 2 V⇤ ⇥Q⇤, that depends continuously on data, if
and only if there exist constants U, V > 0 such that

inf
E2V0

sup
F 2V0

0[E,F]

kEkVkFkV
= inf
F 2V0

sup
E2V0

0[E,F]

kEkVkFkV
= U > 0, (2.35a)

inf
@2Q

sup
E2V

1[@, E]

k@kQkEkV
= V > 0, (2.35b)

where

V0 := {E 2 V | 1[@, E] = 0 8 @ 2 Q}.

In addition, there exists W = W(U, V, k0k) such that the solution (D, ?) is stable
�
kDk

2
V + k?k

2
Q

�1/2
 W
�
k 5 k

2
V⇤ + k6k

2
Q⇤
�1/2

. (2.36)

Combining Theorem 2.11 (Brezzi) with Corollary 2.9 (well posedness implies
inf-up) we infer the inf-sup condition for the bilinear form B in (2.34).

Corollary 2.12 (inf-sup of B) Let the bilinear form B : W ! W be defined by
(2.34). Then there holds

inf
(E ,@)2W

sup
(F ,A )2W

B[(E, @), (F, A)]
k(E, @)kWk(F, A)kW

= inf
(F ,A )2W

sup
(E ,@)2W

B[(E, @), (F, A)]
k(E, @)kWk(F, A)kW

� W
�1
,

where W is the stability constant from Theorem 2.11.

Assume that 0 : V⇥V! R is symmetric and let (D, ?) be the solution to (2.32).
Then D is the unique minimizer of the energy � [E] := 1

20[E, E] � h 5 , Ei under the
constraint 1[·, D] = 6 in Q⇤. In view of this, ? is the corresponding Lagrange
multiplier and the pair (D, ?) is the unique saddle point of the Lagrangian

! [E, @] := � [E] + 1[@, E] � h6, @i 8 E 2 V, @ 2 Q.

Stokes system. Theorem 2.11 (Brezzi) applies to the Stokes system (2.14) and
(2.15) once we verify the inf-sup property (2.35b) for the bilinear form 1[@, v] =
�
Ø
⌦ @ div v. This turns out to be equivalent to the following problem: for any

@ 2 !
2
0(⌦) there exists a w 2 �1

0(⌦;R3) such that

� divw = @ in ⌦ and |w |
�

1(⌦;R3)  ⇠(⌦)k@k
!

2(⌦). (2.37)

This non-trivial result goes back to NeÃas [Carroll, Du�, Friberg, Gobert, Grisvard,
NeÃas and Seeley 1966] and a proof can for instance be found in [Galdi 1994,
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Theorem III.3.1]. This implies

sup
v2� 1

0 (⌦;R3)

1[@, v]

|v |
�

1(⌦;R3)
�

1[@, w]

|w |
�

1(⌦;R3)
=
k@k

2
!

2(⌦)

|w |
�

1(⌦;R3)
� ⇠(⌦)�1

k@k
!

2(⌦).

Therefore, (2.35b) holds with V � ⇠(⌦)�1.
The inf-sup condition is satisfied also for the spaces V and Q defined in (2.18),

which are appropriate for the weak formulation (2.17) of the Neumann boundary
value problem. Indeed, given any @ 2 !2(⌦), we can split it as @ = (@ � @̂) + @̂
with @̂ := |⌦|

�1
Ø
⌦ @. Let w0 2 �

1
0(⌦;R3) be the function defined as in (2.37)

with @ replaced by @ � @̂, and let ŵ = 1
2 (@̂G, @̂H). Then, it is easily checked that the

function w = w̄ � |⌦|
�1

Ø
⌦ w̄ with w̄ = w0 + ŵ belongs to V and satisfies

� divw = @ in ⌦ and kwk
�

1(⌦;R3)  ⇠k@k!2(⌦).

2.5 ,
1
?
-regularity of reaction-di�usion equation

It will be useful later in Lemma 5.20 to know whether !1-coe�cients (G, 2) allow
for enhanced regularity beyond �1

0(⌦) for solutions D of (2.7). We can reformulate
this question as an extension of the Lax-Milgram theory that states that the solution
operator !�1 of (2.5) is an isomorphism between ��1(⌦) and �1

0(⌦); see Corollary
2.10 (Lax-Milgram).

This issue is well understood for the Laplace operator, i.e. G = O and 2 = 0. It is
known that for Lipschitz domains ⌦ ⇢ R3 , there exists ?0 = ?0(⌦) > 2 such that

krDk!?(⌦)   k 5 k, �1
? (⌦) 8? 2 [2, ?0], (2.38)

where  depends on ? (see for example [Jerison and Kenig 1995]); in particular,
?0 > 4 for 3 = 2 and ?0 > 3 for 3 = 3. Hereafter, ,�1

?
(⌦) denotes the dual space

of ,̊1
@
(⌦) – functions in,1

@
(⌦) with zero trace and @ = ?

?�1 . For G 2 !1(⌦,R3⇥3)
and 2 = 0, estimate (2.38) was first derived by [Meyers 1963] as a perturbation
result for the Laplacian; see also [Brenner and Scott 2008]. We now present a
simple proof for ? > 2 following [Bonito, DeVore and Nochetto 2013b]. Let

\(?) :=
1/2 � 1/?
1/2 � 1/?0

8? 2 [2, ?0], (2.39)

and note that \(?) increases strictly from 0 at ? = 2 to 1 at ? = ?0. Let  0 be the
constant  in (2.38) for ? = ?0 and, for any C 2 (0, 1), define

?⇤(C) := max{? 2 [2, ?0] :  \(?)
0 (1 � C)  1}. (2.40)

Lemma 2.13 (]1
p
-regularity) Let G 2 !1(⌦,R3⇥3) satisfy (2.6) with U1  U2,

2 2 !
1(⌦) be non-negative, and let ⌦ be Lipschitz. If 5 2 ,�1

?
(⌦) for some

? 2
⇥
2,min

�
?⇤

�
U1
U2

�
,

23
3�2

 �
, then the solution D 2 �1

0(⌦) of (2.7) satisfies

krDk!?(⌦)  ⇠(?)
⇣

1 + 2
�1
B
⇠(⌦)k2k!1(⌦)

⌘
k 5 k

,
�1
? (⌦) (2.41)
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with constant

⇠(?) =
1
U2

 
\(?)
0

1 �  \(?)
0

�
1 � U1

U2

�

and ⇠(⌦) = ⇠B⇠% where ⇠( is the constant in Lemma 2.1 (Sobolev embedding)
and ⇠% is the constant in Lemma 2.2 (first Poincaré inequality).

Proof. We first consider the principal part of the operator ! in (2.5), namely
we take 2 = 0. In fact, let the operator ( : ,̊1

?
(⌦) ! ,

�1
?

(⌦) be defined by
(E := � div

�
1
U2
GrE

�
. In order to prove (2.41) for (, we resort to a perturbation

argument for the Laplace operator )E := ��E.
The first task is to bound  in (2.38) in terms of  0 and ?. To this end, we recall

that the operator ) : �1
0(⌦)! �

�1(⌦) is an isomorphism with norm k)�1
k2 = 1.

Moreover, ) : ,̊1
?
(⌦)! ,

�1
?

(⌦) is also an isomorphism with norm k)�1
k ?0 =  0

according to (2.38) for ? = ?0, provided we adopt the norm kr · k!?(⌦) in ,̊1
?
(⌦).

By the real method of interpolation, we know that ,̊1
?
(⌦) = [�

1
0(⌦), ,̊1

?0
(⌦)] \(?),?

is the interpolation space between �1
0(⌦) and ,̊1

?0
(⌦) with parameter \(?) given

by (2.39). Hence, operator interpolation theory implies that ) : ,̊1
?
(⌦)! ,

�1
?

(⌦)
is an isomorphism with

 = k)�1
k ? =  \(?)

0 .

We regard ( as a perturbation of ) , define the operator & := ) � ( : ,̊1
?
(⌦)!

,
�1
?

(⌦), and observe that k&k ?  1 � U1
U2

because

h&E,Fi =
π
⌦

⇣
� �

1
U2

G
⌘
rErF 

⇣
1 �

U1

U2

⌘
krEk!?(⌦)krFk!@(⌦) F 2 ,̊

1
@
(⌦).

Therefore, the operator )�1
& : ,̊1

?
(⌦)! ,̊

1
?
(⌦) satisfies

k)
�1
&k ?  k)

�1
k ? k&k ?   

\(?)
0

⇣
1 �

U1

U2

⌘

as well as k)�1
&k ? < 1 for any ? 2

⇥
2, ?⇤(U1/U2)

�
in view of definition (2.40) of

?⇤(C). We conclude by the Neumann Theorem that the operator ( = )
�
� �)

�1
&

�
:

,̊
1
?
(⌦)! ,

�1
?

(⌦) is invertible and its norm is bounded by

k(
�1
k ?  k)

�1
k ? k� � )

�1
&k ? 

k)
�1
k ?

1 � k)�1
&k ?


 
\(?)
0

1 �  \(?)
0

�
1 � U1/U2

� .

This yields the asserted estimate for ( = � div
�

1
U2
GrE

�
.

Finally, we consider the operator ! in (2.5) with 2 < 0. If D 2 �1
0(⌦) is the

solution of (2.7) given by Corollary 2.10 (Lax-Milgram), rewrite (2.7) as follows

(D = � div
⇣ 1
U2

GrD
⌘
=

1
U2

( 5 � 2D) =
1
U2
6,
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and apply the preceding estimate for ( to infer that

k(
�1
6k
,̊

1
? (⌦) = krDk!?(⌦)  ⇠(?)k6k

,
�1
? (⌦)  ⇠(?)

�
k 5 k

,
�1
? (⌦) + k2Dk, �1

? (⌦)

�
.

It remains to estimate the last term on the right-hand side. Using Cauchy-
Schwarz in conjunction with Lemma 2.2 (first Poincaré inequality), i.e., kDk

!
2(⌦) 

⇠% krDk!2(⌦), and Lemma 2.1 (Sobolev embeddings), i.e., kFk
!

2(⌦)  ⇠kFk,̊ 1
@ (⌦) 

⇠( krFk!@(⌦) for @ = ?/(? � 1) � 23/(3 + 2), we see that

h2D,Fi  ⇠%⇠( k2k!1(⌦)krDk!2(⌦)krFk!@(⌦) 
⇠%⇠(

2B

k2k!1(⌦)k 5 k��1(⌦)krFk!@(⌦)

because of the stability estimate (2.27) with constant U = 2B . Since k 5 k
�
�1(⌦) 

|⌦|
?�2
2? k 5 k

,
�1
? (⌦), the asserted estimate (2.41) for 2 < 0 follows immediately.

3 A Priori Approximation Theory
We devote this section to discussing basic concepts about piecewise polynomial
approximation in Sobolev spaces over graded meshes in any dimension 3. We
start by introducing the Petrov-Galerkin method in an abstract setting (Sect. 3.1);
this motivates our interest in approximation results in Sobolev spaces. Hence, we
briefly discuss the construction of finite element spaces in Sect. 3.2, along with
polynomial interpolation of functions in Sobolev spaces in Sect. 3.3. This provides
local estimates adequate for the comparison of quasi-uniform and graded meshes for
3 > 1. We exploit them in developing the so-called error equidistribution principle
in Sect. 3.4 and the construction of suitably graded meshes via a greedy algorithm
in Sect. 3.6. We conclude that graded meshes can deliver optimal interpolation
rates for certain classes of singular functions, and thus supersede quasi-uniform
refinement.

In the second part of the section, we explore the geometric aspects of mesh
refinement for conforming meshes in Sect. 3.5 and nonconforming meshes in Sect.
3.7, but postpone a full and rather technical discussion until Sect. 8. We include
a statement about complexity of the refinement procedure, which turns out to be
instrumental later and will be proved in Sect. 8.

3.1 The Galerkin method: best approximation

In order to render the variational problem (2.23) computable, we let V# ⇢ V
and W# ⇢ W be subspaces with the same dimension # < 1 and consider the
Petrov-Galerkin approximation:

D# 2 V# : B[D# ,F] = h 5 , Fi 8F 2 W# . (3.1)

IfV# =W# this is called Galerkin approximation. Since (3.1) is a square algebraic
system, existence and uniqueness of D# 2 V# is equivalent to the kernel of the
corresponding linear discrete operator to be trivial. This leads to the following
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equivalent conditions for unique solvability [NeÃas 1962, Babu�ka 1971], see also
[Nochetto et al. 2009, Proposition 1].

Lemma 3.1 (discrete inf-sup condition) The following statements are equivalent:

1. for every 0 < E 2 V# there exists F 2 W# such that B[E,F] < 0;
2. for every 0 < F 2 W# there exists E 2 V# such that B[E,F] < 0;
3. the following discrete inf-sup condition holds with a constant V# > 0

inf
E2V#

sup
F 2W#

B[E,F]

kEkVkFkW
= inf
F 2W#

sup
E2V#

B[E,F]

kEkVkFkW
= V# ; (3.2)

4. inf
E2V#

sup
F 2W#

B[E,F]

kEkVkFkW
> 0;

5. inf
F 2W#

sup
E2V#

B[E,F]

kEkVkFkW
> 0.

This is a discrete version of Theorem 2.8 (NeÃas) and leads to the stability bound

kD# kV 
1
V#

k 5 kW⇤ . (3.3)

Therefore, V�1
#

acts as a stability constant for (3.1) and is thus desirable that it is
uniformly bounded below away from zero. This is always the case for coercive
problems because (2.28) is inherited within the subspaces V# =W# ⇢ V, whence
V# � U > 0. In contrast, a uniform lower bound for saddle point problems

V# � V > 0, (3.4)

requires compatibility between the subspacesV# andW# [Bo�, Brezzi and Fortin
2013].

If we now subtract (3.1) from (2.23), we obtain Galerkin orthogonality

B[D � D# ,F] = 0 8F 2 W# . (3.5)

This relation is instrumental to derive the following best approximation property
as well to develop a posteriori error estimates in Section 4.

Proposition 3.2 (quasi-best-approximation property) Let B : V ⇥ W ! R be
continuous and satisfy (3.2). Then the error D � D# satisfies the bound

kD � D# kV 
kBk

V#

min
E2V#

kD � EkV. (3.6)

Proof. We give a simplified proof, which follows Babu�ka [Babu�ka 1971,
Babu�ka and Aziz 1972] and yields the constant 1 +

kB k

V#
. The asserted constant is

due to Xu and Zikatanov [Xu and Zikatanov 2003].
Combining (3.2), (3.5), and the continuity of B, we derive for all E 2 V#

V# kD# � EkV  sup
F 2W#

B[D# � E,F]

kFkW
= sup
, 2W#

B[D � E,F]

kFkW
 kBkkD � EkV,
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whence

kD# � EkV 
kBk

V#

kD � EkV.

Using the triangle inequality yields

kD � D# kV  kD � EkV + kE � D# kV 

✓
1 +
kBk

V#

◆
kD � EkV

for all E 2 V# . It just remains to minimize in V# .

Corollary 3.3 (quasi-monotonicity) LetB : V⇥W! R be continuous and satisfy
(3.2). If V" is a subspace of V# , then for all E 2 V"

kD � D# kV 
kBk

V#

kD � EkV. (3.7)

Moreover, if V = W and B is symmetric and coercive with constants 2B  ⇠B ,
then for all E 2 V"

|||D � D# |||⌦  |||D � E |||⌦, kD � D# kV  ⇠ceakD � EkV, (3.8)

where ⇠cea :=
q
⇠B

2B
.

Proof. Inequality (3.7) is a consequence of the previous bound (3.6) upon taking
E 2 V" instead of V# . To show the left inequality in (3.8), we combine (2.28)
and (3.5)

|||D � D# |||
2
⌦ = B[D � D# , D � E]  |||D � D# |||⌦ |||D � E |||⌦, 8E 2 V" .

This together with the norm equivalence (2.30) gives the remaining inequality.

The significance of (3.6) is that we need to construct discrete spacesV# with good
approximation properties. We introduce next piecewise polynomial approximation,
which gives rise to the finite element method.

3.2 Finite element spaces

In this section we focus on the construction of the discrete spaces V# and W# .
We consider the bilinear forms B introduced in Section 2.3 with emphasis on the
di�usion-reaction case (2.8). We assume that ⌦ is a bounded polyhedral domain
⌦ ⇢ R3 and is partitioned into a conforming or non-conforming mesh T made of
simplices ) , which are assumed to be closed with non-overlapping interiors; thus,

⌦ =
ÿ

{) : ) 2 T }.

The reference element is denoted

)3 :=
�
G = (G1, . . . , G3) 2 R3 | 0  G8  1, 8 = 1, .., 3,

3’
8=1

G8  1
 
.
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We will discuss the construction of conforming meshes in Section 3.5 by the
bisection method and that of non-conforming meshes (constrained to the fulfillment
of an admissibility condition) in Section 3.7, both for 3 = 2. We will embark on a
thorough discussion in Section 8. We assume for the moment that T is an element
of a (possibly infinite) class T of conforming shape regular meshes. To define this
geometric concept, we denote by ⌘) the diameter of ) 2 T , by ⌘

)
the diameter of

the largest ball contained in ) , and impose the restriction

f := sup
T2T

sup
) 2T

⌘)

⌘
)

< 1. (3.9)

The constant f is refereed as the shape regularity constant of T.
Given a shape regular mesh T 2 T, we define the finite element space of

discontinuous piecewise polynomials of total degree up to = � 1

S=,�1
T

:= {E 2 !
2(⌦) | E |) 2 P=()) 8) 2 T };

and its globally continuous counterpart

S=,0
T

:= S=,�1
T
\ ⇠

0(⌦).

Note that S=,0
T
⇢ �

1(⌦) which makes it adequate for (2.7)-(2.8). We refer to Braess
[Braess 2007], Brenner-Scott [Brenner and Scott 2008], Ciarlet [Ciarlet 2002] and
Siebert [Siebert 2012] for a discussion on the local construction of this space (i.e.
Lagrange elements of degree = � 1) along with its properties. We denote by

VT := S=,0
T
\ �

1
0(⌦) (3.10)

the subspace of finite element functions which vanish on m⌦. Note that we do not
explicitly refer to the polynomial degree, which will be clear in each context.

We focus on the conforming piecewise linear case = = 1 (Courant elements),
but most results extend to non-conforming meshes or = > 1. In this vein, global
continuity can be simply enforced by imposing continuity at the set V of vertices I
of T , the so-called nodal values. However, the following local construction leads
to global continuity. If ) is a generic simplex of T , namely the convex hull of
{I8}

3

8=0, then we associate to each vertex I8 a barycentric coordinate _)
8

, which is
the linear function in ) with nodal value 1 at I8 and 0 at the other vertices of ) .
Upon pasting together the barycentric coordinates _)

I
of all simplices ) containing

the vertex I 2 V, we obtain a continuous piecewise linear function qI 2 S
1,0
T

as
depicted in Figure 3.1 for 3 = 2:

The set {qI}I2V of all such functions is the nodal basis of S1,0
T

, or Courant
basis. We denote by lI := supp(qI) the support of qI , from now on called star
associated to I, and by WI the interior skeleton of lI , namely the union of all the
faces containing I.

In view of the definition of qI , we have the following unique representation of



AFEM 27

I

qI

lI

I

Figure 3.1. (Left) Piecewise linear basis function qI corresponding to interior node
I; (Right) Support lI of qI and skeleton WI (in solid line)

any function E 2 S1,0(T )

E(G) =
’
I2V

E(I)qI(G).

The functions qI are non-negative and satisfy the partition of unity property’
I2V

qI(G) = 1 8 G 2 ⌦. (3.11)

If we further impose E(I) = 0 for all I 2 m⌦ \V, then E 2 �1
0(⌦).

For each simplex ) 2 T , generated by vertices {I8}
3

8=0, the dual functions
{_
⇤

8
}
3

8=0 ⇢ P1()) to the barycentric coordinates {_8}3
8=0 satisfy the bi-orthogonality

relation
Ø
)

_
⇤

8
_ 9 = X8 9 , and are given by

_
⇤

8
=

(1 + 3)2

|) |
_8 �

1 + 3

|) |

’
9<8

_ 9 8 0  8  3.

The Courant dual basis q⇤
I
2 S1,�1(T ) are the functions over T given by

q
⇤

I
=

1
+I

’
) 3I

(_)
I

)⇤j) 8 I 2 V,

where+I 2 N is the valence of I (number of elements of T containing I) and j) is
the characteristic function of ) . These functions have the same support lI as the
nodal basis qI and satisfy the global bi-orthogonality relationπ

⌦
q
⇤

I
qH = XIH 8 I, H 2 V .

Finally, we denote by N the Lagrange nodes of order = of a mesh T , and by
kI 2 S

=,0
T

the corresponding Lagrange basis of S=,0
T

; hence S=,0
T

= span{kI}I2N .
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3.3 Polynomial interpolation in Sobolev spaces

We wish to use the space VT defined in (3.10) as the discrete space V# in the
Galerkin method (3.1). If the bilinear form B satisfies an inf-sup condition with
constant VT > 0, we find a discrete solution DT 2 VT which satisfies the error
bound (3.6), i.e.

kD � DT kV 
kBk

VT

min
E2VT

kD � EkV.

In turn, the minimum on the right-hand side can be bounded from above by the
quantity kD � EkV for any chosen E 2 VT . This motivates the search for quasi-best
approximations of D in the norm ofV. One classical tool to generate approximations
to any given function is interpolation. Interpolation in VT is discussed next.

If E 2 ⇠0(⌦) we define the Lagrange interpolant �TE of E as follows:

�TE(G) =
’
I2N

E(I)kI(G),

and note that �TE = E for all E 2 S=,0
T

(i.e. �T is invariant in S=,0
T

). For functions
without point values, such as functions in �1(⌦) for 3 > 1, we need to determine
nodal values by averaging. For any conforming mesh T 2 T, the averaging process
extends beyond nodes and so gives rise to the discrete neigborhood

lT()) :=
ÿ
)
0
2T

)
0
\) <;

)
0

for each element ) 2 T along with the local quasi-uniformity properties

max
) 2T

#lT())  ⇠(f), max
)
0⇢lT () )

|) |

|) 0 |
 ⇠(f),

where f is the shape regularity coe�cient defined in (3.9). We will often write
l) is there is no confusion about the underlying mesh T . We shall also need the a
smaller subset, namely the set of elements sharing a face with a given element ) :

el) := elT()) :=
ÿ
)
0
2T

)
0
\) 2F

)
0
, (3.12)

where F is the set of all (3 � 1)-dimensional faces of the mesh T .
We introduce now one such operator �T due to Scott-Zhang [Brenner and Scott

2008, Scott and Zhang 1990], from now on called a quasi-interpolation operator.
We focus on polynomial degree = = 1, but the construction is valid for any =;
see [Brenner and Scott 2008, Scott and Zhang 1990] for details. We recall that
{qI}I2V is the global Lagrange basis of S1,0

T
, {q⇤

I
}I2V is the global dual basis,
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and supp q⇤
I
= supp qI for all I 2 V. We thus define �T : !1(⌦)! S1,0

T
to be

�TE :=
’
I2V

hE, q
⇤

I
iqI , (3.13)

If 0  B  2 (integer) is a regularity index and 1  ?  1 is an integrability index,
then we would like to prove the quasi-local error estimate

|E � �TE |, C
@ () ) . ⌘

sob(, B
? )�sob(, C

@ )
)

|E |, B
? (l) ) (3.14)

for all ) 2 T , provided 0  C  B, 1  @  1 are such that sob(, B

?
) > sob(, C

@
).

We first recall that �T is invariant in S1,0
T

, namely,

�TF = F 8F 2 S1,0
T
.

Since the averaging process giving rise to the values of �TE for each element) 2 T
takes place in the neighborhood l) , we also deduce the local invariance

�TF |) = F 8F 2 P1(l) )

as well as the local stability estimate for any 1  @  1

k�TEk!@() ) . kEk!@(l) ).

We may thus write

E � �TE |) = (E � F) � �T(E � F)|) 8) 2 T ,

where F 2 PB�1 is arbitrary (F = 0 if B = 0). It su�ces now to prove (3.14) in the
reference element b) and scale back and forth to ) ; the definition (2.1) of Sobolev
number accounts precisely for this scaling. We keep the notation ) for b) , apply the
inverse estimate for linear polynomials |�TE |, C

@ () ) . k�TEk!@() ) to E � F instead
of E, and use the above local stability estimate, to infer that

|E � �TE |, C
@ () ) . kE � Fk, C

@ (l) ) . kE � Fk, B
? (l) ).

The last inequality is a consequence of the inclusion , B

?
(l) ) ⇢ , C

@
(l) ) because

sob(, B

?
) > sob(, C

@
) and C  B. Estimate (3.14) now follows from the Bramble-

Hilbert lemma [Brenner and Scott 2008, Lemma 4.3.8], [Ciarlet 2002, Theorem
3.1.1], [Dupont and Scott 1980] or Proposition 6.34 below:

inf
F 2PB�1(l) )

kE � Fk, B
? (l) ) . |E |, B

? (l) ). (3.15)

This proves (3.14) for = = 1. The construction of �T and ensuing estimate (3.14)
are still valid for any = > 1 [Brenner and Scott 2008, Scott and Zhang 1990].

Proposition 3.4 (quasi-interpolant without boundary values) Let B, C be regu-
larity indices with 0  C  B  = + 1, and 1  ?, @  1 be integrability indices
so that sob(, B

?
) > sob(, C

@
). Then there exists a quasi-interpolation operator
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�T : !1(⌦)! S=,0
T

, which is invariant in S=,0
T

and satisfies

|E � �TE |, C
@ () ) . ⌘

sob(, B
? )�sob(, C

@ )
)

|E |, B
? (l) ) 8) 2 T . (3.16)

The hidden constant in (3.14) depends on the shape coe�cient of T0 and 3.

To impose a vanishing trace on �TEwe may suitably modify the averaging process
for boundary nodes. We thus define a set of dual functions with respect to an !2-
scalar product over (3 � 1)-subsimplices contained on m⌦; see again [Brenner and
Scott 2008, Scott and Zhang 1990] for details. This retains the invariance property
of �T on S=,0(T ) and guarantees that �TE has a zero trace if E 2 ,1

1 (⌦) does.
Hence, the above argument applies and (3.16) follows provided B � 1.

Proposition 3.5 (quasi-interpolant with boundary values) Let B, C, ?, @ be as in
Proposition 3.4. There exists a quasi-interpolation operator �T : ,1

1 (⌦) ! S=,0
T

invariant in S=,0
T

which satisfies (3.16) for B � 1 and preserves the boundary
values of E provided they are piecewise polynomial of degree  =. In particular, if
E 2 ,

1
1 (⌦) has a vanishing trace on m⌦, then so does �TE.

Remark 3.6 (fractional regularity) We observe that (3.16) does not require the
regularity indices C and B to be integer. The proof follows along the same lines
but replaces the polynomial degree = by the greatest integer smaller than B; the
generalization of (3.15) can be taken from [Dupont and Scott 1980].

Remark 3.7 (local error estimate for Lagrange interpolant) Let the regularity
index B and integrability index 1  ?  1 satisfy B � 3/? > 0. This implies
that sob(, B

?
) > sob(!1), whence , B

?
(⌦) ⇢ ⇠(⌦) and the Lagrange interpolation

operator �T : , B

?
(⌦)! S=,0

T
is well defined and satisfies the local error estimate

|E � �TE |, C
@ () ) . ⌘

sob(, B
? )�sob(, C

@ )
)

|E |, B
? () ), (3.17)

provided 0  C  B, 1  @  1 are such that sob(, B

?
) > sob(, C

@
). We point

out that l) in (3.14) is now replaced by ) in (3.17). We also remark that if E
vanishes on m⌦ so does �TE. The proof of (3.17) proceeds along the same lines as
that of Proposition 3.4 except that the nodal evaluation does not extend beyond the
element ) 2 T and the inverse and stability estimates over the reference element
are replaced by

|�TE |
,
C
@ (b) ) . k�TEk!@(b) ) . kEk!1(b) ) . kEk, B

? (b) ).

The following global interpolation error estimate builds on Proposition 3.4 and
relates to Fig. 2.1 (DeVore diagram).

Theorem 3.8 (global interpolation error estimate) Let 1  B  = + 1, C = 0, 1,
C < B, and 1  ?  @ satisfy A := sob(, B

?
) � sob(, C

@
) > 0. If E 2 , B

?
(⌦), then

|E � �TE |, C
@ (⌦) .

⇣ ’
) 2T

⌘
A ?

)
|E |
?

,
B
? (l) )

⌘ 1
?
. (3.18)
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Proof. Use Proposition 3.4 along with the elementary property of series
Õ
=
0= 

(
Õ
=
0
?/@

=
)@/? for 0 < ?/@  1.

Continuous vs discontinuous approximation of gradients. The preceding discus-
sion might induce us to believe that when dealing with Sobolev functions E 2 ,1

?
(⌦)

without pointvalues, namely 1  ?  3, global continuity of the quasi-interpolant
�TE might degrade the approximation quality relative to discontinuous approxim-
ations. The following instrumental result shows that this is not the case [Veeser
2016, Theorem 2]. It hinges on a new geometric concept: we say that a star lI
is (3 � 1)-faced connected if for any element ) ⇢ lI and (3 � 1)-face � ⇢ lI
containing I there is a sequence {)8}

<

8=1 such that

• any )8 is an element of lI for 0  8  <;
• any intersection )8 \ )8+1 is a (3 � 1)�face of lI for 8 = 0  8  < � 1;
• )0 contains � and )< = ) .

Notice that a star lI is (3 � 1)�faced connected if the set lI \⌦ is connected.

Proposition 3.9 (approximation of gradients) Let E 2 ,1
?
(⌦) for 1  ?  3.

Let T be a conforming mesh such that its stars are (3 � 1)-face-connected. Then
there exists a constant ⇠(f) depending on the shape regularity coe�cient f of
(3.9), the dimension 3 and the polynomial degree = � 1, such that

1 
min

F 2S=,0
T

kr(E � F)k!?(⌦)

min
F 2S=,�1

T

kr(E � F)k!?(⌦;T)
 ⇠(f), (3.19)

where krFk!?(⌦;T) stands for the broken norm over T .

The left inequality in (3.19) is obvious because S=,0
T
⇢ S=,�1

T
. In contrast, the

right inequality is delicate and relies on examining the quasi-interpolant (3.13)
[Veeser 2016, Theorems 1 and 22]. An important consequence of (3.19) is the
following localized version of (3.18):

Proposition 3.10 (localized quasi-interpolation estimate) Let 1 < B  = + 1,
1  ?  3 and A = sob(, B

?
) � sob(,1

@
) > 0. If E 2 ,1

@
(⌦), then

kr(E � �TE)k!@(⌦) .
⇣ ’
) 2T

⌘
?A

)
|E |
?

,
B
? () )

⌘ 1
?
, (3.20)

Proof. Since E� �TE = (E�F)� �T(E�F) for any F 2 S=,0
T

, combine Proposition
3.9 with Proposition 6.34 (Bramble-Hilbert for Sobolev spaces) to write

kr(E � �TE)k!@(⌦) . min
F 2S=,�1

T

kr(E � F)k!@(⌦) .
⇣ ’
) 2T

⌘
?A

)
|E |
?

,
B
? () )

⌘ 1
?
,

This concludes the proof.

The crucial di�erence between (3.20) and (3.18) is that the function E 2 ,1
@
(⌦)
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does not have to belong globally to , B

?
(⌦) but rather locally, namely E 2 , B

?
())

for every ) 2 T , to get optimal a priori error estimates. This property will find
several applications later. A special case of (3.20) for ? = @ = 2 and B = 2 reads

|E � �TE |
2
�

1(⌦) .
’
) 2T

⌘
2
)
|E |

2
�

2() ),

for E 2 �2(⌦;T ) := {F 2 �
1(⌦) : F |) 2 �

2()) 8) 2 T }.

Quasi-Uniform Meshes. We now apply Theorem 3.8 to quasi-uniform meshes,
namely meshes T 2 T for which all its elements are of comparable size ⌘, whence

⌘ ⇡ (#T )�1/3
|⌦|

1/3
⇡ (#T )�1/3

.

Corollary 3.11 (quasi-uniform meshes) Let 1 < B  = + 1 and E 2 �B(⌦). If
T 2 T is quasi-uniform, then

kr(E � �TE)k!2(⌦) . |E |� B(⌦)(#T )�(B�1)/3
. (3.21)

Remark 3.12 (optimal rate) If B = = + 1, and so E has the maximal regularity
E 2 �

=+1(⌦), then we obtain the optimal convergence rate in a linear Sobolev scale

kr(E � �TE)k!2(⌦) . |E |
�
=+1(⌦)(#T )�=/3 . (3.22)

The order �=/3 is just dictated by the polynomial degree = and cannot be improved
upon assuming either higher regularity that �=+1(⌦) or a graded mesh T . The
presence of 3 in the exponent is referred to as curse of dimensionality.

Example (corner singularity in 23). To explore the e�ect of a geometric singularity
on (3.21), we let ⌦ = (�1, 1)2

\ [0, 1]2 be a L-shaped domain and E 2 �1(⌦) be

E(A, \) = A
2
3 sin(2\/3) � A2

/4.

This function E 2 �1(⌦) exhibits the typical corner singularity of the solution of
��E = 5 with suitable Dirichlet boundary condition: E 2 �B(⌦) for B < 5/3.
Table 3.1 displays the best approximation error for polynomial degree = = 1, 2, 3
and a sequence of uniform refinements in the seminorm | · |

�
1(⌦) = kr · k

!
2(⌦).

This gives a lower bound for the interpolation error in (3.21).
Even though B is fractional, the error estimate (3.21) is still valid as stated

in Remark 3.6. In fact, for uniform refinement, (3.21) can be derived by space
interpolation between �1(⌦) and �=+1(⌦). The asymptotic rate (#T )�1/3 reported
in Table 3.1 is consistent with (3.21) and independent of the polynomial degree =;
this shows that (3.21) is sharp. It is also suboptimal as compared with the optimal
rate (#T )�=/2 of Remark 3.12.

The question arises whether the rate (#T )�1/3
⇡ ⌘

2/3 in Table 3.1 is just a
consequence of uniform refinement or unavoidable. It is important to realize that
E 8 �B(⌦) for B � 5/3 and thus (3.21) is not applicable. However, the problem
is not that second-order derivatives of E do not exist but rather that they are not
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⌘

linear quadratic cubic
(= = 1) (= = 2) (= = 3)

1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 3.1. Rate of convergence B in term of uniform mesh-size ⌘. We observe
an asymptotic error decay of about ⌘2/3 (i.e. B = 2/3), or equivalently (#T )�1/3,
irrespective of the polynomial degree =. This provides a lower bound for kE �
�TEk!2(⌦) and thus shows that (3.21) is sharp.

square-integrable. In particular, it is true that E 2 ,2
?
(⌦) if 1  ? < 3/2. We

therefore may apply Theorem 3.8 with, e.g., = = 1, B = 2, and ? 2 [1, 3/2) and
then ask whether the structure of (3.18) can be exploited, e.g., by compensating the
local singular behavior of E with the local mesh-size ⌘. This enterprise naturally
leads to graded meshes adapted to E.

3.4 Principle of error equidistribution.

We investigate the relation between local interpolation error and regularity for the
design of optimal graded meshes adapted to a given function E 2 �1(⌦) for 3 = 2.
We recall that ,2

1 (⌦) is in the same nonlinear Sobolev scale of �1(⌦), namely
sob(,2

1 ) = sob(�1), but,2
1 (⌦) ⇢ ⇠0(⌦) [Brenner and Scott 2008, Lemma 4.3.4],

and the Lagrange interpolant �TE is well defined and satisfies

kr(E � �TE)k!2() )  ⇠ |E |, 2
1 () ) =: 4T(E,)) 8) 2 T . (3.23)

We formulate a discrete minimization problem on the surrogate quantity e :=
(4T(E,)))) 2T 2 R# with# = #T : minimize the square of the total�1-error ⇢T(E)

⇢T(E)2 :=
’
) 2T

4T(E,))2

subject to the constraint ’
) 2T

4T(E,)) = ⇠ |E |
,

2
1 (⌦).

We idealize the problem upon allowing 4T(E,)) to attain any nonnegative real value
despite the fact that shape regularity of T entails geometric restrictions between
adjacent elements. We next form the Lagrangian

L[e, _] :=
’
) 2T

4T(E,))2
� _

 ’
) 2T

4T(E,)) � ⇠ |E |
,

2
1 (⌦)

!

,
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with Lagrange multiplier _ 2 R. We thus realize that the optimality condition reads

4T(E,)) =
_

2
8) 2 T

or that 4T(E,)) is constant overT . We rewrite this insightful conclusion as follows:

A graded mesh is quasi-optimal if the local error is equidistributed. (3.24)

This calculation yields

⇢T(E)2 =
_

2

4
# , ⇠ |E |

,
2

1 (⌦) =
_

2
# ,

whence

⇢T(E) = ⇠ |E |
,

2
1 (⌦)#

�1/2 (3.25)

is the optimal decay rate but with regularity E 2 ,2
1 (⌦) rather than �2(⌦); this

is the second instance of nonlinear approximation, namely mesh design tailored
to the specific function E at hand; the first one was in Section 1. The principle
of error equidistribution (3.24) was originally derived by Babu�ka and Rheinboldt
[Babu�ka and Rheinboldt 1978] for 3 = 1, and extended to 3 = 2 by Nochetto
and Veeser [Nochetto and Veeser 2012, Section 1.6], using an idealized continuous
minimization problem involving a meshsize function. The current formulation is
closer to applications and does not require a positive power of ⌘) in (3.23).

Remark 3.13 (point singularities) Corner singularities [Grisvard 1985] as well
as singularities due to intersecting interfaces [Kellogg 1974/75] are of the form

E(G) ⇡ A(G)W , 0 < W < 1, (3.26)

for 3 = 2. This implies E 2 ,2
1 (⌦) for all W and the decay rate (3.25) provided

T equidistributes the �1-error. Babu�ka et al [Babu�ka, Kellogg and Pitkäranta
1979] and Grisvard [Grisvard 1985] designed such meshes for corner singularities
using weighted �2-regularity. The preceding approach is more powerful in that it
does not require any characterization of the singularities, rather than E 2 ,2

1 (⌦),
and applies as well to line discontinuities for 3 = 2. We will come back to this
point in Section 6.

We consider now an important abstract variant of the discrete minimization
process leading to (3.24) that will be instrumental to understand the success of
greedy algorithms later. Suppose that 0 < @, ?  1, E 2 !@(⌦), - C

?
(⌦) is an

abstract regularity space with C = 1
?
�

1
@

> 0, and ⇢T(E)@ and 4T(E,))@ are
global and local !@-interpolation error indicators of E that satisfy the following
two abstract properties:

• Summability in ✓@: There exists a constant ⇠1 > 0 such that

⇢T(E)@
@
 ⇠

@

1

’
) 2T

4T(E,))@
@
; (3.27)
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• Summability in ✓?: There exists a constant ⇠2 > 0 such that’
) 2T

4T(E,))?
@
= ⇠ ?2 |E |

?

-
C
?(⌦)

. (3.28)

We intend to find conditions on a mesh T that minimize the global !@-error ⇢T(E)@
of E subject to the constraint (3.28). We again propose a Lagrangian

L[e, _] :=
’
) 2T

4T(E,))@
@
� _

 ’
) 2T

4T(E,))?
@
� ⇠

?

2 |E |
?

-
C
?(⌦)

!

.

The optimality condition for e reads

4T(E,))@ =
⇣
_

?

@

⌘ 1
@�?

8) 2 T ,

which is a third instance of error equidistribution and is thus consistent with (3.24).
We now resort (3.27) and (3.28) to arrive at

’
) 2T

4T(E,))@
@
= #

⇣
_

?

@

⌘ @
@�?

, ⇠
?

2 |E |
?

-
C
?(⌦)

= #
⇣
_

?

@

⌘ ?
@�?

,

whence

⇢T(E)@  ⇠1⇠2 |E |- C?(⌦)#
1
@�

1
?
. (3.29)

We see that the decay rate in (3.29) is �C = 1
@
�

1
?
< 0 and is just dictated by the

di�erent summabilities of (3.27) and (3.28). In the applications of (3.29) below,
C = B

3
will be proportional to a di�erentiability index B and the condition

0 = C �
1
?

+
1
@

=
B

3

�
1
?

+
1
@

will correspond to the spaces !@(⌦) and -
B

?
(⌦) being on the same nonlinear

Sobolev scale. This minimization process is an idealization that does not account
for mesh regularity of T , which in turn entail some geometric constraints in the
construction of T . A key question is whether estimates of the form (3.29) can be
achieved under practical but weaker conditions than (3.24). In Section 3.5 we will
study the bisection method, a flexible technique for conforming mesh refinement
with optimal complexity. In Section 3.6 we will present and analyze GREEDY,
a practical algorithm that implements these ideas and constructs quasi-optimal
conforming bisection meshes under the slightly stronger assumption

B �
3

?

+
3

@

> 0. (3.30)

Moreover, in Section 3.7 we will extend this analysis to non-conforming meshes.
We realize from (3.29) that, in order to maximize the error decay rate, we would

like to have ? as small as possible, even 0 < ? < 1. The range of @, ? does not
matter in the argument above and, despite the fact that @ � 1 in all applications
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below, the range of ? is only limited by that of B, which in turn depends on the
polynomial degree = � 1 in that 0 < B  = + 1.

We now return to the special case (3.23), namely @ = 2, ? = 1 and rE 2 !2(⌦).
As already shown in (3.23), in the nonlinear Sobolev scale

sob(,2
1 ) � sob(�1) =

⇣
2 �

2
1

⌘
�

⇣
1 �

2
2

⌘
= 0

we expect the best error decay

kr(E � �TE)k!2(⌦) . |E |
,

2
1 (⌦)(#T )�

1
2 ,

whereas the linear Sobolev scale yields the reduced order

kr(E � �TE)k!2(⌦) . |E |� B(⌦)(#T )�(B�1)/2

for B < 1 + W < 2 and E satisfying (3.26), where �T is the Lagrange interpolation
operator. The nonlinear Sobolev scale entails a trade of di�erentiability with integ-
rability: we gain up to di�erentiability B = 2 at the expense of lower integrability
? = 1 for polynomial degree = = 1. This trade-o� is at the heart of the optimal
estimate (3.25) and is represented in the so-called DeVore diagram in Fig. 2.1.

If the polynomial degree is = � 2, then the largest di�erentiability index is
B = = + 1, which for 3 = 2 leads to integrability index ? < 1:

⇣
B �

2
?

⌘
�

⇣
1 �

2
2

⌘
= 0 ) ? =

2
= + 1

< 1. (3.31)

To measure regularity of E, the corresponding Sobolev space must be replaced by
the Besov space ⌫=+1

?,?
(⌦) or the Lipschitz space Lip=+1

?
(⌦). We will introduce and

study these spaces in Section 6.8.

3.5 Conforming meshes: the bisection method

In order to approximate functions in, :

?
(⌦) by piecewise polynomials, we decom-

pose ⌦ into simplices. We briefly discuss the bisection method, an elegant and
versatile technique for subdividing⌦ in any dimension into a conforming mesh. We
also discuss briefly nonconforming meshes in §3.7. We present complete proofs,
especially of the complexity of bisection, later in §8.

We focus on 3 = 2 and follow [Binev et al. 2004], but the results carry over to
any dimension 3 > 2 [Stevenson 2008]. We refer to [Nochetto et al. 2009] for a
rather complete discussion for 3 � 2.

Let T denote a mesh (triangulation or grid) made of simplices ) , and let T be
conforming (edge-to-edge). Each element is labeled, namely it has an edge ⇢())
assigned for refinement (and an opposite vertex E()) for 3 = 2); see Figure 3.2.

The bisection method consists of a suitable labeling of the initial mesh T0 and a
rule to assign the refinement edge to the two children. For 3 = 2 we consider the
newest vertex bisection as depicted in Figure 3.2. For 3 > 2 the situation is more
complicated and one needs the concepts of type and vertex order [Nochetto et al.
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⇢())
)

E()) )2

)1

⇢()2)

⇢()1)

E()1) = E()2)

Figure 3.2. Triangle ) 2 T with vertex E()) and opposite refinement edge ⇢()).
The bisection rule for 3 = 2 consists of connecting E()) with the midpoint of ⇢()),
thereby giving rise to children )1,)2 with common vertex E()1) = E()2), the newly
created vertex, and opposite refinement edges ⇢()1), ⇢()2).

2009, Stevenson 2008]. More precisely, we identify a simplex ) with the set of its
ordered vertices and its type C by

) = {I0, I1, . . . , I3}C ,

with C 2 {0, . . . , 3 � 1}. Given such a 3-simplex ) we use the following bisection
rule to split it in a unique fashion and to impose both vertex order and type to its
children. The edge I0I3 connecting the first and last vertex of ) is the refinement
edge of ) and its midpoint Ī = I0+I3

2 becomes the new vertex. Connecting the
new vertex Ī with the vertices of ) other than I0, I3 determines the common face
( = {Ī, I1, . . . , I3�1} shared by the two children )1,)2 of ) . The bisection rule
dictates the following vertex order and type for )1,)2

)1 := {I0, Ī, I1, . . . , IC|     {z     }
!

, IC+1, . . . , I3�1|           {z           }
!

}(C+1) mod 3 ,

)2 := {I3 , Ī, I1, . . . , IC|     {z     }
!

, I3�1, . . . , IC+1|           {z           }
 

}(C+1) mod 3 ,
(3.32)

with the convention that arrows point in the direction of increasing indices and
{I1, . . . , I0} = ;, {I3 , . . . , I3�1} = ;. For instance, in 3d the children of ) =
{I0, I1, I2, I3}C are (see Fig. 3.3)

C = 0 : )1 = {I0, Ī, I1, I2}1 and )2 = {I3, Ī, I2, I1}1,

C = 1 : )1 = {I0, Ī, I1, I2}2 and )2 = {I3, Ī, I1, I2}2,

C = 2 : )1 = {I0, Ī, I1, I2}0 and )2 = {I3, Ī, I1, I2}0.

Note that the vertex labeling of )1 is type-independent, whereas that of )2 is the
same for type C = 1 and C = 2. To account for this fact the vertices I1 and I2 of
) are tagged (3, 2, 2) and (2, 3, 3) in Fig. 3.3. The type of ) then dictates which
component of the triple is used to label the vertex.

Bisection creates a unique master forest F of binary trees with infinite depth,
where each node is a simplex (triangle in 2d), its two successors are the two
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Figure 3.3. Refinement of a single tetrahedron ) of type C. The child )1 in the
middle has the same node ordering regardless of type. In contrast, for the child )2
on the right a triple is appended to two nodes. The local vertex index is given for
these nodes by the C-th component of the triple.

children created by bisection, and the roots of the binary trees are the elements of
the initial conforming partition T0. It is important to realize that, no matter how an
element arises in the subdivision process, its associated newest vertex is unique and
only depends on the labeling of T0: so the edge ⇢()) assigned for refinement (and
the opposite vertex E()) for 3 = 2) are independent of the order of the subdivision
process for all ) 2 F; see Lemma 8.1 in Sect. 8. Therefore, F is unique.

A finite subset F ⇢ F is called a forest if T0 ⇢ F and the nodes of F satisfy

• all nodes of F \ T0 have a predecessor;
• all nodes in F have either two successors or none.

Any node ) 2 F is thus uniquely connected with a node )0 of the initial triangu-
lation T0, i.e. ) belongs to the infinite tree F()0) emanating from )0. Furthermore,
any forest may have interior nodes, i.e. nodes with successors, as well as leaf
nodes, i.e. nodes without successors. The set of leaves corresponds to a mesh (or
triangulation, grid, partition) T = T (F ) of T0 which may not be conforming or
edge-to-edge.

We thus introduce the set T of all conforming refinements of T0:

T := {T = T (F ) | F ⇢ F is finite and T (F ) is conforming}.

If T⇤ = T (F⇤) 2 T is a conforming refinement of T = T (F ) 2 T, we write T⇤ � T

and understand this inequality in the sense of trees, namely F ⇢ F⇤.

Example. Consider T0 = {)8}
4
8=1 and the longest edge to be the refinement edge.

Figure 3.4 displays a sequence of conforming meshes T: 2 T created by bisection.
Each element )8 of T0 is a root of a finite tree emanating from )8 , which together
form the forest F2 corresponding to mesh T2 = T (F2). Figure 3.5 displays F2,
whose leaf nodes are the elements of T2.

Properties of Bisection. We now discuss several crucial geometric properties of
bisection. We start by recalling the concept of shape regularity. For any ) 2 T ,
we define
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Figure 3.4. Sequence of bisection meshes {T: }
2
:=0 starting from the initial mesh

T0 = {)8}
4
8=1 with longest edges labeled for bisection. Mesh T1 is created from T0

upon bisecting )1 and )4, whereas mesh T2 arises from T1 upon refining )6 and )7.
The bisection rule is described in Figure 3.2.
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Figure 3.5. ForestF2 corresponding to the grid sequence {T: }2
:=0 of Figure 3.4. The

roots of F2 form the initial mesh T0 and the leaves of F2 constitute the conforming
bisection mesh T2. Moreover, each level of F2 corresponds to all elements with
generation equal to the level.

⌘
)

⌘)

⌘) := diam())

⌘) := |) |
1/3

⌘
)

:= 2 sup{A > 0 | ⌫(G, A) ⇢ ) for G 2 )}.

Then

⌘
)
 ⌘)  ⌘)  f⌘

)
8) 2 T ,

where f > 1 is the shape regularity constant of (3.9). The next lemma guarantees
that bisection keeps f bounded.

Figure 3.6. Bisection produces at most 4 similarity classes for any triangle.

Lemma 3.14 (shape regularity) The partitions T generated by newest vertex bi-
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section satisfy a uniform minimal angle condition, or equivalently f is uniformly
bounded, only depending on the initial partition T0.

Proof. Each ) 2 T0 gives rise to a fixed number of similarity classes, namely 4
for 3 = 2 according to Figure 3.6. This, combined with the fact that #T0 is finite,
yields the assertion.

We define the generation (or level) 6()) of an element ) 2 T as the number of
bisections needed to create ) from its ancestor )0 2 T0. Since bisection splits an
element into two children with equal measure, we realize that

⌘) = 2�6() )/2
⌘)0 8) 2 T . (3.33)

Referring to Figure 3.5 we observe that the leaf nodes )9,)10,)11,)12 have gener-
ation 2, whereas )5,)8 have generation 1 and )2,)3 have generation 0.

The following geometric property is a simple consequence of (3.33).

Lemma 3.15 (element size vs generation) There exist constants 0 < ⇡1 < ⇡2,
only depending on T0, such that

⇡12�6() )/2
 ⌘) < ⌘)  ⇡22�6() )/2

8) 2 T . (3.34)

Labeling and Bisection Rule. Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initial labeling of edges and a
bisection rule. For 3 = 2 they are simple to state [Binev et al. 2004]. Given ) 2 T
with generation 6()) = 8, we assign the label (8+1, 8+1, 8) to) with 8 corresponding
to the refinement edge ⇢()). The following rule dictates how the labeling changes
with refinement: the side 8 is bisected and both new sides as well as the bisector
are labeled 8 + 2 whereas the remaining labels do not change. To guarantee that the
label of an edge is independent of the elements sharing this edge, we need a special
labeling for T0, due [Mitchell 1989, Theorem 2.9] and [Binev et al. 2004, Lemma
2.1] for 3 = 2:

edges of T0 have labels 0 or 1 and all elements ) 2 T have
exactly two edges with label 1 and one with label 0.

(3.35)

There is a variant for 3 > 2 due to [Stevenson 2008, Section 4]. It is not obvious
that labeling (3.35) exists, but if it does then all elements of T0 can be split into
pairs of compatibly divisible elements. We refer to Figure 3.7 for an example of
initial labeling of T0 satisfying (3.35) and the way it evolves for two successive
refinements T2 � T1 � T0 corresponding to Figure 3.4.

To guarantee (3.35) we can proceed as follows: given a coarse mesh of elements
) we can bisect twice each) and label the four grandchildren, as indicated in Figure
3.8 for the resulting mesh T0 to satisfy the initial labeling [Binev et al. 2004].

For 3 � 3 a general strategy of initial labeling is due to [Stevenson 2008, Section
4 - Condition (b)], who in turn improves upon [Maubach 1995] and [Traxler 1997]
and shows how to impose it upon further refining each element ofT0. We refer to the
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Figure 3.7. Initial labeling and its evolution for the sequence of conforming
refinements T0  T1  T2 of Figure 3.4.
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Figure 3.8. Bisecting each triangle of T0 twice and labeling edges in such a way
that all boundary edges have label 1 yields an initial mesh satisfying (3.35).

survey [Nochetto et al. 2009] for a discussion of this condition: a key consequence is

every uniform refinement of T0 gives a conforming bisection mesh. (3.36)

Condition (3.35) is still valid, and a construction by successive bisections similar,
but much trickier, than the one described for 3 = 2 can be performed to fulfil it;
yet for 3 = 3 the number of elements increases by an order of magnitude, which
indicates that (3.35) is a severe restriction in practice. Finding alternative, more
practical, conditions is an important problem.

Initialization of arbitrary triangulations. A novel initialization procedure that
can be applied to any conforming triangulation T0 has been recently proposed by
[Diening, Gehring and Storn 2023]; hereafter we present a short account of it.

The key concept is that of coloring the vertices of T0. A colored initial triangu-
lation in R3 is a pair (T0, 2), where 2 : VT0 ! {0, . . . , 3} is such that the colors
of all vertices of each ) 2 T0 are distinct. The color map 2 allows one to sort the
vertices of each initial element ) = {I0, . . . , I3}C 2 T0 so that

2(I 9) = 9 9 2 {0, . . . , 3} .

To refine a marked) 2 T0, one applies the Maubach bisection rule leading to (3.32),
and possibly adds a recursive closure, which is proven to terminate, to guarantee
the conformity of the final triangulation. The coloring property is conserved in this
process, and the conclusion of Theorem 3.16 below holds true, starting from any
initially colored triangulation T0.
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Unfortunately, not every initial triangulation can be colored. For instance, con-
sider in dimension 3 = 2 a patch of triangles sharing a common vertex. If color
0 is assigned to such inner vertex, then the outer vertices must take successively
colors 1 and 2, but if the number of triangles in the patch is odd there will be a
vertex which is not colorable.

To overcome this obstruction, [Diening et al. 2023] propose to use more colors,
and introduce the concept of generalized coloring: a pair (T0, 2) is a (# +1)-colored
triangulation if there exists an integer # � 3 and a mapping 2 : VT0 ! {0, . . . , #}
such that the colors of all vertices of each ) 2 T0 are distinct. Any initial T0 can be
colored in this generalized sense: indeed, after the initialization 2(I) = +1 for all
I 2 VT0 , one defines

2(I) := min (N0 \ {2(F) : [I,F] is an edge of T0}), I 2 VT0 ,

as the smallest color not already attained by a neighboring vertex. Then, one sets
# := max {2(I) : I 2 VT0}, and notes that # is bounded by the maximal number
of edges connected to a vertex of T0.

A generalized (# + 1)-colored triangulation (T0, 2) in R3 can be seen as a col-
lection of 3-simplices contained in a virtual, colored triangulation T

+

0 in R# . It
su�ces to add # � 3 virtual nodes to each simplex in T0, so that it becomes a
#-simplex, and attribute to these nodes the remaining # � 3 colors. Note that
these virtual simplices are only connected via their 3-subsimplices belonging to
T0. In the example mentioned above of a patch of triangles sharing a vertex, a
(3 + 1)-colored triangulation is defined as follows: a tetrahedron is built on top
of each triangle; the previously uncolorable vertex takes the new color 3, whereas
color 2 is attributed to the new vertices of the two tetrahedra sharing that vertex;
the new vertex of any other tetrahedron takes the color 3.

With the new triangulation T
+

0 at hand, one could apply the Mauback bisection
rule to it, which as a by-product would refine the initial triangulation T0. However,
[Diening et al. 2023] suggests a short-cut that refines directly T0, by invoking
an algorithm that bisects a :-simplex in dimension < > : . A further round of
recursive refinements may be needed to guarantee conformity. Diening, Gehring,
and Storn prove that the recursion terminates. In addition, for any (# + 1)-colored
initial triangulation, the conclusion of Theorem 3.16 below holds true also in this
case, with a constant ⇡ satisfying ⇡ . #3 .

The procedure REFINE . Given T 2 T and a selected subset M ⇢ T (the set of
marked elements), the procedure

[T⇤] = REFINE (T ,M)

creates a new conforming refinement T⇤ of T by bisecting all elements of M at
least once and perhaps additional elements to keep conformity.

Conformity is a constraint in the refinement procedure that prevents it from being
completely local. The propagation of refinement beyond the set of marked elements
M is a rather delicate matter, which we discuss later in Sect. 8. For instance, we



AFEM 43

show that a naive estimate of the form

#T⇤ � #T  ⇡ #M

is not valid with an absolute constant ⇡ independent of the refinement level. This
can be repaired upon considering the cumulative e�ect for a sequence of conforming
bisection meshes {T: }

1

:=0. This is expressed in the following crucial complexity
result due to [Binev et al. 2004] for 3 = 2 and [Stevenson 2008] for 3 > 2. We
present a complete proof later in Sect. 8.

Theorem 3.16 (complexity of REFINE ) If T0 satisfies the initial labeling (3.35)
for 3 = 2, or that in [Stevenson 2008, Section 4] for 3 > 2, then there exists a
constant ⇡ > 0 only depending on T0 and 3 such that for all : � 1

#T: � #T0  ⇡

:�1’
9=0

#M 9 .

If elements ) 2M are to be bisected 1 � 1 times, then the procedure REFINE can
be applied recursively, and Theorem 3.16 remains valid with⇡ also depending on 1.

Mesh Overlay. For the subsequent discussion it will be convenient to merge (or
superpose) two conforming meshes T1,T2 2 T, thereby giving rise to the so-called
overlay T1 � T2. This operation corresponds to the union in the sense of trees
[Cascón, Kreuzer, Nochetto and Siebert 2008, Stevenson 2007]. We next bound
the cardinality of T1 � T2 in terms of that of T1 and T2.

Lemma 3.17 (mesh overlay) Let T1,T2 2 T. The overlay T = T1 � T2 2 T is
conforming and

#T  #T1 + #T2 � #T0. (3.37)

For a proof we refer to [Cascón et al. 2008, Lemma 3.7] and to Proposition 8.15
below for a more general situation.

3.6 Constructive approximation

We now construct graded bisection meshes T for = = 1, 3 = 2 that achieve the
optimal decay rate (#T )�1/2 of (3.25) under the global regularity assumption

E 2 ,
2
?
(⌦), ? > 1. (3.38)

Therefore,,2
?
(⌦) is strictly above the Sobolev line for the space�1(⌦): sob(,2

?
) =

2 � 2
?
> 0 = sob(�1). Note that B = 1, ? > 1 and @ = 2 obey the restriction (3.30)

forrE 2 !2(⌦). In particular,,2
?
(⌦) is compactly embedded into�1(⌦) according

to Lemma 2.1 (Sobolev embedding).
Following [Binev, Dahmen, DeVore and Petrushev 2002] and [Gaspoz and Morin

2014], we use a greedy algorithm that is based on the knowledge of the element
errors and on bisection. The algorithm hinges on (3.24): if X > 0 is a given
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tolerance, the element error is equidistributed and within tolerance 4T(E,)) ⇡ X,
and the global error decays with maximum rate (#T )�1/2, then

X
2#T ⇡

’
) 2T

4T(E,))2 = |E � �TE |
2
�

1(⌦) . (#T )�1

whence #T . X�1; here �T stands for the Lagrange interpolation operator. With
this in mind, we impose 4) (E)  X as a threshold to stop refining and expect
#T . X�1. The following algorithm implements this idea.

Algorithm 3.18 (greedy algorithm) Given a tolerance X > 0 and a conforming
mesh T0, GREEDY finds a conforming refinement T � T0 of T0 by bisection such
that 4T(E,))  X for all ) 2 T : let T = T0 and

[T ] = GREEDY(T , X, E)
while M := {) 2 T | 4T(E,)) > X} < ;

T := REFINE (T ,M)
return T

Since,2
?
(⌦) ⇢ ⇠0(⌦), because ? > 1, we can use the Lagrange interpolant and

local estimate (3.17) with A = sob(,2
?
) � sob(�1) = 2 � 2/? > 0. We deduce

4T(E,)) . ⌘A
)
k⇡

2
Ek!?() ). (3.39)

We assess the quality of the resulting mesh in a slightly more general setting,
following [Bonito, Cascón, Mekchay, Morin and Nochetto 2016, Proposition 1 and
Corollary 1], needed later in Sections 6 and 7 for solution and data approximation
for any polynomial degree.

An abstract greedy algorithm. We consider a generic (possibly vector-valued)
function E 2 !@(⌦,R" ), with " � 1 and 1  @  1 and denote by 4T(E,)) =
kE � ⇧TEk!@() ) the abstract !@-local error for ) 2 T used in the GREEDY

procedure and by ⇢T(E) = kE � ⇧TEk!@(⌦) the global !@-interpolation error by
either continuous of discontinuous piecewise polynomials (the definition of ⇧TE

is irrelevant now). We formulate the following assumptions:

• Summability in ✓@: The errors {4T(E,))}) 2T satisfy

kEk
@

!
@(⌦) .

’
) 2T

4T(E,))@ . (3.40)

Rather than (3.38) we assume that E belongs to an abstract space -B
?
(⌦;T0) of

functions with di�erentiability index B 2 (0, =] and integrability index ? 2 (0,1]
piecewise over T0 with two crucial properties:

• Local error estimate: For A = B � 3

?
+
3

@
> 0 and all ) 2 T

4T(E,)) . ⌘A
)
|E |-B?() ) (3.41)
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• Norm subadditivity: For ? < 1, and obvious modification for ? = 1,’
) 2T

|E |
?

-
B
?() ) . |E |

?

-
B
?(⌦;T0). (3.42)

The space -B
?
(⌦;T0) will later be either a Sobolev space, B

?
(⌦;T0), a Besov space

⌫
B

?,?
(⌦;T0) or a Lipschitz space LipB

?
(⌦;T0), with piecewise regularity over T0;

the latter two will allow 0 < ? < 1. For the moment we do not need to be specific
and just rely on the two properties above.

Proposition 3.19 (abstract greedy error) Let T0 be an initial subdivision of ⌦ ⇢
R3 satisfying the initial labeling property (3.35) for 3 = 2, or its variant for 3 > 2.
Let " � 1, 0 < @, ?  1 and B �

3

?
+
3

@
> 0. Let E 2 !

@(⌦,R" ) satisfy
(3.40), (3.41) and (3.42). Then GREEDY(T0, X, E) terminates in a finite number of
iterations with local errors verifying 4T(E,))  X for all ) 2 T , and there is a
constant ⇠ = ⇠(?, @, B, 3,⌦,T0) such that the output T 2 T satisfies

kE � ⇧TEk!@(⌦)  ⇠ |E |-B?(⌦;T0)
�
#T � #T0

�� B3
. (3.43)

Proof. We proceed in several steps.
1 Termination. Since ⌘) decreases monotonically to 0 with bisection, so does
4T(E,)) in view of (3.41). Consequently, GREEDY terminates in finite number
: � 1 of iterations. Upon termination, the local errors satisfy 4T(E,))  X for all
) 2 T by construction, whence (3.40) implies

kE � ⇧TEk!@(⌦) . X(#T )
1
@
.

2 Counting. Let M = M0 [ · · · [M:�1 be the set of marked elements. We
organize the elements in M by size in a way that allows for a counting argument.
Let P 9 be the set of elements ) of M with size

2�( 9+1)
 |) | < 2� 9 ) 2�

9+1
3  ⌘) < 2�

9
3 ,

because ⌘) = |) |
1/3 for shape regular meshes T 2 T.

We first observe that all )’s in P 9 are disjoint. This is because if )1, )2 2 P 9

and )̊1 \ )̊2 < ;, then one of them is contained in the other, say )1 ⇢ )2, due to the
bisection procedure which works in any dimension 3 � 1; see Section 8. Hence,

|)1 | 
1
2
|)2 |

contradicting the definition of P 9 . This implies the first bound

2�( 9+1) #P 9  |⌦| ) #P 9  |⌦| 2 9+1
. (3.44)

In light of (3.41), we have for ) 2 P 9

X  4T(E,)) . 2�
9A
3 |E |-B?() ).
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Therefore, accumulating these quantities in ✓? and invoking (3.42) yields

X
? #P 9 . 2�

9A ?
3

’
) 2P 9

|E |
?

-
B
?() ) . 2�

9A ?
3 |E |

?

-
B
?(⌦;T0)

and gives rise to the second bound

#P 9 . X�? 2�
9A ?
3 |E |

?

-
B
?(⌦;T0). (3.45)

3 Cardinality. The two bounds for #P in (3.44) and (3.45) are complementary.
The first one is good for 9 small whereas the second is suitable for 9 large (think of
X ⌧ 1). The crossover takes place for 90 such that

2 90+1
|⌦| ⇡ X

�? 2�
90A ?
3 |E |

?

-
B
?(⌦;T0) ) 2 90 ⇡

⇣
|⌦|
�1
X
�?

|E |
?

-
B
?(⌦;T0)

⌘ 3
3+A ?

.

We now compute

#M =
’
9

#P 9 .
’
9 90

2 9 |⌦| + X
�?

|E |
?

-
B
?(⌦)

’
9> 90

(2�
A ?
2 ) 9 .

Since ’
9 90

2 9 ⇡ 2 90 ,
’
9> 90

(2�
A ?
3 ) 9 . 2�

A ? 90
3 ,

we can write

#M . |⌦|
1� 3

3+A ?
�
X
�1
|E |-B?(⌦;T0)

� 3?
3+A ?

.

We finally apply Theorem 3.16 (complexity of REFINE ) to arrive at

#T � #T0 . #M . |⌦|
A ?
3+A ?

�
X
�1
|E |-B?(⌦;T0)

� 3?
3+A ?

,

or equivalently

X . |⌦|
A
3 |E |-B?(⌦;T0)

�
#T � #T0

�� 3+A ?3?
.

4 Total error. Since 3+A ?

3?
= B

3
+

1
@

we deduce from Step 1

kE � ⇧TEk!@(⌦) . X(#T )
1
@ . |⌦|

A
3 |E |-B?(⌦;T0)(#T � #T0)�

B
3 ,

which is the desired estimate.

The output mesh T of GREEDY(T0, X, E) starting from T0 satisfies #T � 20#T0
for some 20 > 1, whence #T � #T0 �

�
1 � 1

20

�
#T and (3.43) yields

kE � ⇧TEk!@(⌦) . ⇠ |E |-B?(⌦;T0)
�
#T
�� B3

, (3.46)

where ⇠ depends on 20. It will be convenient in many applications of GREEDY,
to be discussed later in Sections 6 and 7, that the starting mesh be a conforming
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refinement of T0 to enhance its e�ciency. We will prove in Section 7.1 that (3.46)
remains valid.

It is instructive to realize that GREEDY is a practical algorithm that hinges on
the di�erent summabilities of (3.40) and (3.42), and delivers a global !@-error
consistent with (3.29) of Section 3.4. Moreover, the outcome graded grid T is
quasi-optimal but may not equidistribute the error, not even approximately.

We are now in a position to show that GREEDY constructs optimal graded meshes
for the interpolation error in �1(⌦) alluded to at the beginning of this section. To
this end, we let �T be the Lagrange interpolation operator for 3 = 2.

Corollary 3.20 (optimal N1-convergence rate) If E 2 �1(⌦) \ ,2
?
(⌦) for 1 <

?  2 and 3 = 2, then GREEDY yields graded bisection meshes T so that

|E � �TE |� 1(⌦) . |⌦|
1�1/?

k⇡
2
Ek!?(⌦)(#T )�1/2

.

Proof. We invoke Proposition 3.19 (abstract greedy error) and equation (3.46) for
rE 2 !

2(⌦,R2) with⇧TrF = r�TE and B = 1, @ = 2, ? > 1 whence B� 3
?
+
3

@
> 0.

Remark 3.21 (piecewise ]2
p
-smoothness) Since (3.39) is completely local for

3 = 2, we see from (3.42) that it su�ces for E 2 �1(⌦) to be piecewise in,2
?

over
the initial partition T0, namely ,2

?
(⌦;T0). It turns out that this statement is valid

for any dimension 3 � 2 in view of Proposition 3.9 (approximation of gradients).
We will revisit this issue in Section 6.8.

Remark 3.22 (case p < 1) We consider now polynomial degree = � 1. The
integrability ? corresponding to di�erentiability =+1 results from equating Sobolev
numbers:

= + 1 �
3

?

= sob(�1) = 1 �
3

2
) ? =

23
2= + 3

.

Depending on 3 � 2 and = � 1, this may lead to 0 < ? < 1, in which case,=+1
?

(⌦)
is to be replaced by the Besov space ⌫B

?,?
(⌦) for B < = + 1 or the Lipschitz space

Lip=+1
?

(⌦) [DeVore 1998]. We will discuss this matter in Section 6.8 and make the
abstract greedy setting precise.

Remark 3.23 (isotropic vs anisotropic elements) Since geometric singularities
are of the form (3.26) for 3 = 2, Corollary 3.20 (optimal �1-convergence rate)
shows that isotropic graded meshes are able to deliver optimal convergence rates
for 3 = 2. Unfortunately, this is no longer the case for 3 > 2 and anisotropic meshes
are necessary for optimal meshes. This topic is delicate is several respects. Deriv-
ing reliable and e�cient a posteriori error estimators is largely open for anisotropic
meshes; this is the subject of Section 4 for isotropic meshes. Even having such
estimators, building a theory of adaptivity is open; this is the subject of Sections 5,
6 and 10 for isotropic meshes. Finally, constructing anisotropic meshes based on a
posteriori information alone and that easily allow for refinement and coarsening is
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problematic. For these reasons we do not dwell on anisotropic refinement in this
survey.

3.7 Nonconforming meshes

More general subdivisions of ⌦ than those in §3.5 are used in practice. If the
elements of T0 are quadrilaterals for 3 = 2, or their multidimensional variant for
3 > 2, then it is natural to allow for improper or hanging nodes for the resulting
refinements T to be graded; see Figure 3.9 (a). On the other hand, if T0 is made
of triangles for 3 = 2, or simplices for 3 > 2, then red refinement without green
completion also gives rise to graded meshes with hanging nodes; see Figure 3.9 (b).
In both cases, the presence of hanging nodes is inevitable to enforce mesh grading.
Finally, bisection may produce meshes with hanging nodes, as depicted in Figure
3.9 (c), if the completion process is incomplete. All three refinements maintain
shape regularity, but for both practice and theory, they cannot be arbitrary: we need
to restrict the level of nonconformity. We discuss this next, starting with the case of
polynomial degree = = 1 [Bonito and Nochetto 2010, Beirão da Veiga et al. 2023].

P

P

P

Figure 3.9. Nonconforming meshes made of quadrilaterals (a), triangles with red
refinement (b), and triangles with bisection (c). The shaded regions depict the
domain of influence of a proper or conforming node %.

We say that a node % of T is a proper (or conforming) node if it is a vertex of all
elements containing %; otherwise, we say that % is an improper (nonconforming
or hanging) node. The set N of all nodes of T is thus partitioned into the set P of
proper nodes, and the set H = N \ P of hanging nodes.

A useful notion in dealing with hanging nodes is the global index of a node,
introduced in [Beirão da Veiga et al. 2023]: it measures the number of noncon-
forming refinements needed to generate a hanging node from proper nodes. To
define it, for any G 2 H which has been generated by the bisection of an edge
[G
0
, G
00
], let us set B(G) = {G

0
, G
00
}.

Definition 3.24 (global index of a node) The global index _(G) of a node G 2 N
is defined recursively as follows:

• if G 2 P, set _(G) = 0;
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• if G 2 H and B(G) = {G
0
, G
00
}, set _(G) = max(_(G 0), _(G 00)) + 1.

The set of all nodes of T is thus partitioned according to the value of the global
index: for any integer ; � 0, we set H; = {G 2 N : _(G) = ;}. Note that H0 = P.
An example of distribution of global indices for 3 = 2 is shown in Figure 3.10.

0

0

0

0

1 1

2

2

2
3

3

3
4

Figure 3.10. Example of distributions of proper nodes (red) and hanging nodes
(black), with associated global indices _.

We define the global index of the triangulation T by _(T ) := maxG2N _(G). The
level of nonconformity of the triangulations we are dealing with is controlled by
the following condition of admissibility.

Definition 3.25 (⇤-admissibility) Let ⇤ � 0 be an integer. A refinement T of T0
is ⇤-admissible if

_(T )  ⇤ . (3.47)

If _(T ) � 1, then T is nonconforming, but otherwise T 2 T is conforming if
_(T ) = 0. The collection of all ⇤-admissible partitions is denoted by T⇤.

⇤-admissibility has the following basic implications.

Proposition 3.26 (properties of ⇤-admissible partitions) Let ) be any element
of a ⇤-admissible partition T .

(i) If 4 ⇢ m) is an edge of ) , then 4 may contain at most 2⇤ � 1 hanging nodes.
(ii) If 4 ⇢ m) is an edge of some other element ) 0, then ⌘) 0 ' ⌘) , where the

hidden constants only depend on the shape of the initial triangulation T0 and
possibly on ⇤.

Proof. (i) stems from the fact that the edge may contain at most 2:�1 hanging
nodes of level : for 1  :  ⇤. To prove (ii) we observe that the length ratio |4̄ |

|4 |
,

where 4̄ is the edge of ) containing 4, is at most 2⇤, and we conclude invoking the
shape regularity of the partition.
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Figure 3.11. Plot of the basis function q% on the nonconforming triangulation
shown in Figure 3.10, for % equal to the upper right corner of the domain, after
using bisection to convert the lowest hanging nodes with global index 3 into a
proper node.

In the space VT of continuous piecewise-linear maps over T , functions are
uniquely defined by their values at the proper nodes of T . So it is natural to
introduce the canonical continuous piecewise-linear basis functions q% associated
with any proper node %. They satisfy

E =
’
%2P

E(%)q% 8 E 2 VT , (3.48)

and are defined by the conditions: q% 2 VT and

• q%(I) = 1 if I = %, q%(I) = 0 if I 2 P \ {%}.

The values of q% at the hanging nodes, hence everywhere in the domain, can be
reconstructed by linear interpolation as follows: assuming that q% has been defined
at all nodes of global index < ;, if I 2 H; and B(I) = {I

0
, I
00
}, then

q%(I) =
1
2

�
q%(I0) + q%(I00)

�
.

An example of basis function q% on a nonconforming triangulation is provided in
Figure 3.11.

The domain of influence of a proper node % is the set

lT(%) = supp(q%) ,

highlighted in grey in Figure 3.9; this notion was introduced in [Babu�ka and Miller
1987] in the context of  -meshes; see also [Bonito and Nochetto 2010]. To identify
elements ) 2 T contained in lT(%), we introduce for any node G 2 N the set P(G)
of the proper nodes influencing G, which is defined recursively as follows:

• initialize P(G) = {G};
• while P(G) \H < ;, if H 2 P(G) \H replace P(G) by (P(G) \ {H}) [ B(H).

Then, ) ✓ lT(%) if and only if % influences some vertex of ) , i.e., there exists a
vertex E of ) such that % 2 P(E).

One of the consequences of the⇤-admissibility assumption of T is the following
result, which says that all elements ) contained in lT(%) have comparable size.
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Proposition 3.27 (size of the domain of influence) There exists a positive con-
stant ⇠ = ⇠(T0,⇤), only depending on the shape of the initial triangulation T0 and
possibly on ⇤, such that for any % 2 P

diamlT(%)  ⇠ ⌘) 8) 2 T , ) ✓ lT(%) .

Proof. Elements in lT(%) having % as a vertex share in pairs an edge or a portion
of an edge, hence – as noted above – ⇤-admissibility implies the existence of a
characteristic size, say ⌘%, which is comparable to the diameter of each of them.
On the other hand, any ) ⇢ lT(%) not containing % has at least one vertex E) 2 H
such that % 2 P(E) ). Thus, there exists a sequence {H: : 0  :   } of
vertices satisfying H0 = E) , H = %, and H:+1 2 B(H:) for 0  : <  ; since
_(H:) � _(H:+1) + 1, necessarily   ⇤. Correspondingly, we can find a chain of
at most  elements, starting at ) and ending at an element containing %, which
share in pairs an edge or a portion of an edge. We deduce that ⌘) ' ⌘%, and
dist() , %) ' ⌘) , where the hidden constants may depend only on the shape of the
initial triangulation and on ⇤. The conclusion easily follows from these results.

We now turn to the case of polynomial degree = > 1; we refer to [Canuto and
Fassino 2023] for more details. The concept of hanging node is no longer solely
related to the geometry of the mesh, but also to the distribution of degrees of
freedom along the edges of the elements. For instance, consider a full edge 4
shared by two triangles ) and ) 0, and bisect ) 0 to create two new elements )1 and
)2 having 4 as a vertex. If we use quadratic Lagrangian elements, the midpoint G
of 4 carries a degree of freedom for the three elements that share it, so we do not
consider it as a hanging node; on the other hand, the nodes at distance 1

4 |4 | and 3
4 |4 |

from an endpoint of 4 are hanging nodes (despite they are vertices of no triangle)
since they do not carry a degree of freedom for the element ) . If we move to cubic
Lagrangian elements, then G becomes a hanging node, together with the nodes at
distance 1

6 |4 | and 5
6 |4 | from an endpoint of 4, whereas the nodes at distance 1

3 |4 | and
2
3 |4 | are not hanging nodes, since they carry a degree of freedom for each triangle
they belong to.

In general, for a partition T made of classical a�ne Lagrangian or Hermitian
elements, the hanging nodes are defined as follows.

• Given an element ) 2 T , the set P) of the proper nodes of ) is made of all
images of the reference =-lattice via the a�ne transformation. The set H) of the
hanging nodes of ) collects the points of m) that are not proper nodes of ) , but
are proper nodes of some other contiguous element ) 0. The set of all nodes of )
is N) := P) [H) .

• At the global level, if N =
–
) 2T N) is the set of all nodes of T , the set P ✓ N

of the proper nodes of T contains those nodes that are proper nodes for all
elements they belong to. The complementary set H := N \ P is the set of the
hanging nodes of T .

In other words, a hanging node of T is a point that carries a degree of freedom
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Figure 3.12. Triangulation after the three refinements in the case = = 2 (a) and in
the case = = 3 (b). Blue crosses represent the original degrees of freedom on the
initial conforming mesh. Red squares, green circles and orange triangles are used
for the degrees of freedom of the first, second and third refinement, respectively.
All nodes are proper, except those on the horizontal line, whose global index is
reported.

for some, but not all elements it belong to. With this definition of proper nodes,
representation (3.48) of continuous piecewise-linear maps extends to = > 1.

The global index _(G) of a node G 2 N is precisely defined as in Definition 3.24.
The set B(G) ⇢ N collects the endpoints of an interval [G 0, G 00], contained in the
skeleton of T , that has been bisected when G has been created, and contains no
other node inside.

Figure 3.12 provides two examples, for = = 2 and = = 3, of distributions of
hanging nodes and corresponding global indices, created by successive bisections
starting from an initial conforming partition.

The concept of ⇤-admissibility, given in Definition 3.25, remains unchanged for
= > 1. The statements in Proposition 3.26, too, extend to the higher order case; the
maximum number of hanging nodes on an edge being now$(=2⇤). Consequently,
the conclusion of Proposition 3.27 remains valid when = > 1 as well: there is a
constant ⇠ = ⇠(T0,⇤) such that

diamlT(%)  ⇠ ⌘) 8) 2 T , ) ✓ lT(%) . (3.49)

Remark 3.28 (quadrilateral and hexahedral partitions) It is readily seen that
the definitions of global index of a node and ⇤-admissible partition extend seam-
lessly to shape-regular meshes made of quadrilaterals refined by a quadtree strategy
(3 = 2) (see Fig. 3.9 (a) for an example), or by hexahedra refined by an octree
strategy (3 = 3). The same holds for heterogeneous partitions made of a com-
bination of simplices and hexahedra. All results reported above are valid for such
partitions. We refer to [Bonito and Nochetto 2010] for details.
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⇤-admissible meshes under refinement. Given a ⇤-admissible grid T , a subset M
of elements marked for refinement, and a desired number 1 � 1 of subdivisions to
be performed in each marked element, the procedure

T⇤ = REFINE (T ,M,⇤)

creates a minimal ⇤-admissible mesh T⇤ � T such that all the elements of M

are subdivided at least 1 times. In order for T⇤ to be ⇤-admissible, perhaps other
elements not in M must be partitioned. Despite the fact that admissibility is a
constraint on the refinement procedure weaker than conformity, it cannot avoid the
propagation of refinements beyond M. The complexity of REFINE is again an
issue which we discuss in §8.2: we show that Theorem 3.16 extends to this case.

Theorem 3.29 (complexity of REFINE for ⇤-admissible meshes) Let T0 be an
arbitrary conforming partition of ⌦, except for the bisection algorithm in which
case T0 satisfies the labeling (3.35) for 3 = 2 or its higher dimensional counterpart
[Stevenson 2008]. Then the estimate

#T: � #T0  ⇡

:�1’
9=0

#M 9 8: � 1

holds with a constant ⇡ depending on T0, 3, = and ⇤.

The following result about uniform refinements of⇤-admissible partitions will be
used in the sequel. The uniform refinement T⇤ of a partition T 2 T⇤ is the partition
obtained by bisecting 3 times each element of T . This implies, in particular, that
each edge of T is bisected once.

Proposition 3.30 (⇤-admissibility of uniform refinements) If T 2 T⇤ is a ⇤-
admissible partition and T⇤ is its uniform refinement, then T⇤ is ⇤-admissible.

Proof. A simple recursion argument on the global index of the hanging nodes
of T shows that after refinement each such node either becomes a proper node or
its global index is reduced by 1. At the same time, new nodes are created by the
refinement, whose global index is at most 1 plus the maximal global index of the pre-
existing nodes. In both cases, the maximal global index of T⇤ cannot exceed ⇤.

A simple consequence is the following result, which is useful to control the
meshsize between consecutive refinements.

Corollary 3.31 (bound on the refinements) REFINE with 1 = 1 never refines an
element of a ⇤-admissible partition T more than 3 times.

Proof. REFINE gives the smallest ⇤-admissible mesh T⇤ such that all the marked
elements of T have been refined. Since the uniform refinement of T remains
⇤-admissible, the minimality of T⇤ implies that no element of the marked set can
be refined more than d times.

We conclude by emphasizing that the polynomial interpolation and adaptive
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approximation theories of Sects. 3.3 and 3.6 extend to nonconforming meshes
with fixed level of incompatibility as well.

4 A Posteriori Error Analysis
Numerical solutions to a boundary value problem serve to approximate its unknown
exact solution. In such a context, it is of interest

• to quantify the error of the numerical solution, m
• to gain information for adapting the discretization to the exact solution

in a computationally accessible manner. These are the two goals of an a posteriori
error analysis, where the adjective ‘a posteriori’ hints to the fact that the numerical
solution itself can be involved. To achieve the two goals, the a posteriori analysis
individuates so-called error estimators that, ideally, are computable, split into local
contributions called indicators, and bound the error from above and below.

This section exemplifies such an analysis, considering the numerical solution of
the boundary value problem (2.5), i.e.

� div(GrD) + 2D = 5 in ⌦, D = 0 on m⌦,

with Lagrange elements of arbitrary fixed order = � 1. Throughout this section, we
adopt the notations and assumptions of previous sections for this model setting. In
particular, the exact solution D 2 �1

0(⌦) solves the variational problem (2.7) and,
given a simplicial conforming mesh T 2 T of ⌦ and finite element space

VT :=
�
E 2 S=,0

T
| E |⌦ = 0

 
⇢ �

1
0(⌦),

the Galerkin approximation solves

DT 2 VT : B[DT ,F] = h 5 ,Fi 8F 2 VT , (4.1)

with the bilinear form B from (2.8).
We stress that the analysis will be conducted under the regularity assumptions

G 2 !1
�
⌦;R3⇥3

�
, 2 2 !

1(⌦), 5 2 �
�1(⌦) = �1

0(⌦)⇤, (4.2)

used in Sect. 2.4 to establish existence and uniqueness of the exact solution. This
fact distinguishes the approach below, which builds on [Kreuzer and Veeser 2019],
from most other ones requiring additional regularity; cf., e.g., [Verfürth 2013].
Notably, this di�erence not only allows for covering more examples but is also
related to strengthening the relationship between error and estimator to a true
equivalence on any admissible mesh T 2 T.

It is useful to recall two di�erences between the forcing 5 and the coe�cients
(G, 2). First, while the exact solution D depends linearly on the forcing 5 , it depends
nonlinearly on the di�usion tensor G and on the reaction coe�cient 2. To state
the second di�erence, let D 2 �1

0(⌦) and note that the assumptions (4.2) on (G, 2)
imply the “missing” one 5 2 ��1(⌦). On the other hand, the assumptions on (�, 5 )
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imply only 2D 2 ��1(⌦) while the assumptions on (2, 5 ) imply only � div(GrD) 2
�
�1(⌦). These conditions are weaker than the “missing” one D 2 �1

0(⌦), and are
due to the multiplicative role of (G, 2) in the di�erential equation.

In order to elucidate the new twists allowing for (4.2), this section is organized
as follows. We start with steps of the a posteriori analysis that are common to the
‘classical’ and the new approach. We then illustrate the classical approach with
the standard residual estimator, and afterwards develop the new approach result-
ing in a modification of the standard residual estimator, called modified residual
estimator. Finally, we conclude by adapting the new approach to other techniques
of a posteriori error estimation and boundary conditions.

In what follows, the notation may or may not indicate the dependencies of a given
quantity. We shall balance readability and the importance of the dependence in the
given context. For example, in (4.1), the discrete solution depends not only on the
mesh T but also on the data ⌦, G, 2, and 5 in problem (2.5). We write T explicitly
because of its more prominent role in the a posteriori analysis. Let F := FT denote
the set of all interior (3 � 1)-dimensional faces of T . The letter ⇠ will be used
for a generic constant, with possibly di�erent values at each occurrence. If not
stated otherwise, it may depend on the shape regularity coe�cient f from (3.9),
the dimension 3, and the polynomial degree = in VT .

4.1 Error, residual and localization of residual norm

This section starts the a posteriori analysis by establishing that a suitable norm of
the so-called residual

• is equivalent to the error kr(D � DT)k
!

2(⌦) and
• admits a localization in the sense that it splits into suitable local contributions

depending on accessible quantities, i.e. on data D = (G, 2, 5 ) and the discrete
solution DT .

We do not consider computability yet — this important aspect will be addressed in
the following sections.

Replacing in the weak form (2.7) the exact solution D by its approximation DT ,
we define the residual 'T 2 �

�1(⌦):

h'T ,Fi = h 5 ,Fi � B[DT ,F] 8F 2 �
1
0(⌦).

We thus have a quantity that depends only on data D and the approximate solution
DT and relates to the error function D � DT as follows:

h'T ,Fi = B[D � DT ,F] 8F 2 �
1
0(⌦). (4.3)

Continuity and coercivity of the bilinear form B then provide a quantitative rela-
tionship between error and residual.

Lemma 4.1 (error and residual) The error of the approximation DT is equivalent
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to the residual norm. More precisely,

1
k⌫k
k'T k��1(⌦)  kr(D � DT)k

!
2(⌦) 

1
U

k'T k��1(⌦),

where kBk � U > 0 are, respectively, the continuity and coercivity constants of
the bilinear form B.

Proof. The error-residual relationship (4.3) yields the lower bound,

k'T k��1(⌦) = sup
F 2� 1

0 (⌦)

h'T ,Fi

krFk
!

2(⌦)
= sup
F 2� 1

0 (⌦)

B[D � DT ,F]

krFk
!

2(⌦)

 kBkkr(D � DT)k
!

2(⌦),

while the choice F = D � DT therein gives

Ukr(D � DT)k2
!

2(⌦)  B[D � DT , D � DT] = h'T , D � DTi

 k'T k��1(⌦)kr(D � DT)k
!

2(⌦)

and thus the upper bound.

Remark 4.2 (role of forcing vs role of coe�cients) In addition to the two di�er-
ences between right-hand side 5 and coe�cients (G, 2) mentioned in the introduc-
tion of this section, a third one implicitly arises in the proof of Lemma 4.1: the
coe�cients defining the bilinear form B are fixed, while the right-hand side 5 is
replaced by the residual 'T in (4.3), which varies with the mesh T .

Remark 4.3 (local lower estimate for the error) The proof of Lemma 4.1 shows
that the lower bound of the error hinges on the continuity of the bilinear form
B. Since the evaluation of B involves only local operators, one might expect that
there are also local lower bounds. This however depends on the interplay of the
underlying di�erential operator and the choice of the test space norm. Indeed,
in the case of the Poisson problem, i.e. G = O, 2 = 0, and the test space norm
kr · k

!
2(⌦), one easily sees that

k'T k��1(l)  kr(D � DT)k
!

2(l)

for any subdomain l ⇢ ⌦. This local lower bound however does not carry over to
the general case with 2 < 0 as the error function itself is bounded by its gradient
only through the global inequality in Lemma 2.2 (first Poincaré inequality). On the
other side, endowing the test space �1

0(⌦) with the full �1-norm k · k
�

1(⌦) yields

k'T k(� 1(l))⇤  max
�
U1, k2k!1(⌦)

 
kD � DT k� 1(l)

for any subdomain l ⇢ ⌦.
In line with [Carstensen et al. 2014], we shall not invoke local lower bounds to

derive convergence and rate optimality for the error of AFEM, although they might
appear useful or even crucial in other settings.
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Remark 4.4 (constants in error-residual relationship) Given the norm measur-
ing the error, that is the norm of the trial space, the choice of the test space norm
is important for the ensuing constants in the error-residual relationship; see, e.g.,
[Verfürth 2013, Sects. 4.3 and 4.6]. To avoid related additional technicalities and
di�culties, the test space is endowed with the straightforward norm kr · k

!
2(⌦).

Lemma 4.1 establishes the first goal that was set out at the beginning of this
section. We now turn to the second one, that is, we split the residual norm
k'T k��1(⌦) into local contributions. Note that the nature of the dual norm k ·k

�
�1(⌦)

makes this task less obvious than for integral norms as in the error kr(D�DT)k
!

2(⌦).
We start by recalling that the definition of the Galerkin approximation DT implies

that its residual is orthogonal to the discrete trial space VT = S=,0
T
\ �

1
0(⌦):

h'T ,Fi = 0 8F 2 VT .

Denote by V the set of vertices of T and by qI 2 S
1,0
T

the hat function with
qI(H) = XHI for all vertices H 2 V. In what follows, the partial orthogonality

h'T , qIi = 0 8 I 2 V (4.4)

will be crucial to split the nonlocal norm of the residual into local contributions.
The latter ones will be formulated in terms of the supports of the hat functions and,
thus, we associate to each vertex I 2 V the following subset and submesh:

lI := supp qI =
ÿ
) 2TI

) with TI := {) 2 T | ) 3 I}. (4.5)

These subsets, called stars, form a subdomain covering of⌦, viz. each interior l̊I is
a domain and ⌦ = [I2V lI . The overlapping index esssup

G2⌦ #{I 2 V | lI 3 G}

of this covering is bounded by (3 + 1).

Lemma 4.5 (localization of N�1-norm) Let ✓ 2 ��1(⌦) be an arbitrary linear
functional on �1

0(⌦).

(i) If h✓, qIi = 0 for all interior vertices I 2 V \⌦, then

k✓k
2
�
�1(⌦)  (3 + 1)⇠2

loc

’
I2V

k✓k
2
�
�1(lI )

where⇠loc depends only on the shape regularity coe�cientf from (3.9) and 3.
(ii) For any subdomain covering (l8)82� of ⌦ with finite overlapping index

⇠ovrl := esssup
G2⌦ #{8 2 � | l8 3 G}, we have’

82�

k✓k
2
�
�1(l8)

 ⇠ovrlk✓k
2
�
�1(⌦).

[Blechta, Málek and Vohralik 2020, Theorem 3.5] generalizes Lemma 4.5 to the
,
�1
?

-norm, 1 < ? < 1. Lemma 4.66 below provides an alternative localization
with di�erent local norms.
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Proof. 1 We start by showing statement (i). Thanks to the orthogonality of ✓,
we may write

h✓,Fi = h✓,F �
’
I2V

2IqIi,

where any 2I is an arbitrary constant if I 2 V \ ⌦ is an interior vertex and 0 if
I 2 V \ m⌦ is a boundary vertex. Using the partition of unity

Õ
I2V qI = 1 on ⌦,

we split the new test function

F �

’
I2V

2IqI =
’
I2V

(F � 2I)qI ,

into local contributions (F � 2I)qI 2 �1
0(lI), I 2 V. The constant 2I allows us

to counter the gradient generated by the cut-o� with qI . Indeed, the product rule,
0  qI  1, and |rqI |  ⇠(3)f⌘�1

)
on an element ) 2 T lead to

kr
�
(F � 2I)qI

�
k
!

2(lI )  kqIr(F � 2I)k!2(lI ) + k(F � 2I)rqI k!2(lI )

 kqI k!1(lI )krFk!2(lI ) + krqI k!1(lI )kF � 2I k!2(lI )

 krFk
!

2(lI ) + ⇠(3)f
✓

max
) ⇢lI

⌘
�1
)

◆
kF � 2I k!2(lI ).

If we choose 2I =
J

lI
F for interior vertices I 2 V \⌦, then Lemma 2.3 (second

Poincaré inequality) on reference stars implies

kF � 2I k!2(lI ) . diamlI krFk!2(lI ).

The same inequality follows for boundary vertices I 2 V \ m⌦ thanks to the fact
that F vanishes at least on one face of mlI \m⌦. Combing this with diamlI . ⌘)
for ) ⇢ lI , we thus obtain, for all local contributions, the stability bound

kr
�
(F � 2I)qI

�
k
!

2(lI )  ⇠lockrFk!2(lI ), (4.6)

where the constant ⇠loc depends only on 3 and f. Hence,

h✓,Fi = h✓,F �
’
I2V

2IqIi =
’
I2V

h✓, (F � 2I)qIi

gives

|h✓,Fi |  ⇠loc

’
I2V

k✓k
�
�1(lI )krFk!2(lI )


p
3 + 1⇠loc

 ’
I2V

k✓k
2
�
�1(lI )

!1/2

krFk
!

2(⌦)

and (i) is proven.

2 We verify statement (ii). For each index 8 2 �, define E8 2 �1
0(l8) ⇢ �1

0(⌦)
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by π
l8

rE8 · rF = h✓,Fi, 8F 2 �
1
0(l8).

We obtain h✓, E8i = krE8 k2
!

2(l8)
= k✓k2

�
�1(lI )

by arguments similar to the ones in

the proof of Lemma 4.1 (error and residual). The sum E :=
Õ
82� E8 is in �1

0(⌦)
with

krEk
2
!

2(⌦) 

π
⌦

��� ’
82�G

rE8(G)
���2 3G 

π
⌦

#�G
’
82�G

|rE8(G)|2 3G

 ⇠ovrl

’
82�

krE8 k
2
!

2(l8)
= ⇠ovrl

’
82�

k✓k
2
�
�1(lI )

,

where we denote the set of active indices in G 2 ⌦ by �G := {8 2 � | l8 3 G}.
Inserting this in’

82�

k✓k
2
�
�1(lI )

=
’
82�

h✓, E8i = h✓, Ei  k✓k��1(lI )krEk!2(⌦)

establishes the desired inequality.

Thanks to the partial orthogonality (4.4) and the properties of the star covering
lI , I 2 V, we readily obtain the following statement.

Corollary 4.6 (star localization of residual norm) The��1-norm of the residual
can be split into local contributions on stars:

1
3 + 1

’
I2V

k'T k
2
�
�1(lI )

 k'T k
2
�
�1(⌦)  (3 + 1)⇠loc

’
I2V

k'T k
2
�
�1(lI )

,

where ⇠loc depends only on 3 and the shape regularity coe�cient f.

The upper bound of the global residual norm in Corollary 4.6 employs the stars
lI , I 2 V, as local domains. The next remark assesses this choice by discussing
conceivable alternatives in terms of elements and domains of the type

l� :=
ÿ
) 2T�

) with T� := {) 2 T | ) � �}, (4.7)

where � 2 F is an interior face of T .

Remark 4.7 (star localization is minimal for d � 2) The use of stars in the loc-
alization of the global residual norm is a sort of minimal choice, except for the
special case 3 = 1 where elements can be used:

• If 3 = 1, point values are defined for functions in �
1(⌦). This allows an

upper bound with elements instead of stars as local domains. In fact, choosing
2I = F(I) for all interval endpoints, the function

Õ
I2V 2IqI amounts to the

Lagrange interpolant �TF 2 S
1,0
T
\ �

1
0(⌦), and we have (F � �TF)|� 2 �1

0(�)
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with kr(F � �TF)k
!

2(� ) . krFk!2(� ) for any interval � of the mesh T . Arguing
as in the proof of Lemma 4.5 (i) then gives

k'k
2
�
�1(⌦) .

’
� 2T

k'k
2
�
�1(� ).

• An upper bound where the stars are replaced by elements ) 2 T cannot hold
in general because it does not account for face-supported residual contributions.
For example, consider our setting with

3 � 2, G = O, 2 = 0, h 5 ,Fi =
π
�

@F, F 2 �
1
0(⌦)

where � 2 F and @ < 0 is !2-orthogonal to P=(�).

Then we have D < 0 = DT and therefore k'T k��1(⌦) > 0 but k'T k��1() ) = 0
for any ) 2 T .

• An upper bound with pairs l� , � 2 F , instead of stars cannot hold in general.
This can be shown by considering our setting with

3 = 2, G = O, 2 = 0, h 5Y ,Fi =
1
cY

2

π
⌫Y(I)

F, F 2 �
1
0(⌦)

where I 2 V is a vertex of a suitable triangulation T

for Y & 0. The limiting right-hand side is the Dirac measure in I, which,
formally, is not be seen by any k · k

�
�1(l� ), � 2 F . We thus have k'T k��1(⌦) !

1 but
Õ
� 2F k'T k��1(l� ) . 1; cf. [Tantardini, Veeser and Verfürth n.d.].

The bisection method for mesh refinement is element-oriented. It is therefore
advantageous to dispose of an element-indexed reformulation of the localization in
Corollary 4.6. For that purpose, we recall the notion of patches

l) :=
ÿ
)
0
2T

)
0
\) <;

)
0 (4.8)

and may use the following equivalence.

Lemma 4.8 (localization re-indexing) For any functional ✓ 2 ��1(⌦), we have’
I2V

k✓k
2
�
�1(lI )

⇡

’
) 2T

k✓k
2
�
�1(l) ) ,

where the hidden constants depend on 3 and the shape regularity coe�cient f.

Note that, in contrast to the localization itself, its re-indexing does not require
any orthogonality like h✓, qIi = 0 for all I 2 V \⌦.

Proof. For any vertex I 2 V, there is an element ) 2 T containing I. Then the
inclusion lI ⇢ l) yields the inequality k✓k

�
�1(lI )  k✓k��1(l) ). Hence,’

I2V

k✓k
2
�
�1(lI )



’
) 2T

k✓k
2
�
�1(l) ).
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To show the converse inequality, let) 2 T be any element and F 2 �1
0(l) ). Given

any vertex I 2 V \ l) , Lemma 2.2 (first Poincaré inequality) on l) implies the
stability bound

kr(FqI)k!2(lI\l) )  kqIrFk!2(lI\l) ) + kFrqI k!2(lI\l) )

 krFk
!

2(lI\l) ) + ⇠(3,f) max
) ⇢lI\l)

⌘
�1
)
kFk

!
2(l) )

. krFk
!

2(l) ).

We thus derive

h✓,Fi =
’

I2V\l)

h✓,FqIi 

’
I2V\l)

k✓k
�
�1(lI\l) )kr(FqI)k!2(lI\l) )

.

 ’
I2V\l)

k✓k
�
�1(lI )

!

krFk
!

2(l) )

and, since #(V \ l) ) is bounded in terms of the shape regularity coe�cient f,

k✓k
2
�
�1(l) ) .

’
I2V\l)

k✓k
2
�
�1(lI )

.

Summing over ) 2 T and taking into account that #{) 2 T | l) 3 I} is again
bounded in terms of f, concludes the proof.

4.2 Standard residual estimator and its flaws

Exploiting the results of Sect. 4.1, we derive an a posteriori upper bound of the
error in terms of the standard residual estimator and discuss its flawed sharpness.
This discussion will serve as the starting point for an improved a posteriori analysis
in the following sections.

The standard residual estimator needs the additional regularity

5 2 !
2(⌦) and G 2 ,1

1(⌦;R3⇥3) (4.9)

for the data in our model problem (2.5). Given the Galerkin approximation DT
from (4.1), it may be defined as follows, cf., e.g., [Verfürth 2013]:

E
std
T

:= E
std
T

(DT ,D) :=

 ’
) 2T

E
std
T

(DT ,D,))2

! 1
2

(4.10a)

with the local indicators

E
std
T

(DT ,D,))2 := ⌘) k 9(DT)k2
!

2(m) \m⌦) + ⌘
2
)
kA(DT)k2

!
2() ), (4.10b)

where

• the scaling factor ⌘) = |) |
1/3 measures the size of the element ) 2 T ,
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• 9(E) = 9T(E) is the jump residual given face-wise for E 2 VT by

9(E)|� :=
�
[[GrE]] · n)1

�
|� :=

�
(GrE)|)1 � (GrE)|)2

�
· n)1

= (GrE)|)1 · n)1 + (GrE)|)2 · n)2

where � 2 F , )1,)2 2 T are such that � = )1\)2, n)8 denotes the outer normal
of m)8 , 8 = 1, 2, and

• A(E) = AT(E) is the element residual, a function given for E 2 VT by

A(E)|) :=
�
5 � 2E + div(GrE)

�
|)

on any element ) 2 T .

Note that the definition itself already uses the extra regularity (4.9). For notational
simplicity, we shall write 9 and A instead of 9(DT) and A(DT) for the rest of this
section. Also, for any interior face � 2 F , we have � = )1 \ )2 with )1,)2 2 T .
If n)8 denotes the outer normal of m)8 , 8 = 1, 2, we set n� = n)1 . This particular
choice of n� is irrelevant as it does not a�ect the following definition of normal
jump of any vector-valued field g with well defined trace on �

[[g]] · n� := g |)1 · n)1 + g |)2 · n)2 .

Theorem 4.9 (upper bound with standard residual estimator) Suppose the ad-
ditional regularity (4.9) holds. Then the error is bounded by the standard residual
estimator:

kr(D � DT)k
!

2(⌦) . E
std
T
,

where the hidden constant depends on the coe�cients (G, 2), the shape regularity
coe�cient f, and 3.

Proof. As Lemma 4.1 (error and residual) and Corollary 4.6 (star localization of
residual norm) imply

kr(D � DT)k2
!

2(⌦) . k'T k
2
�
�1(⌦) .

’
I2V

k'T k
2
�
�1(lI )

and #{I 2 V | lI � )} = 3 + 1, it su�ces to establish

k'T k
2
�
�1(lI )

.
’
) ⇢lI

E
std
T

(DT , 5 ,))2 (4.11)

for any vertex I 2 V. To this end, let F 2 �1
0(lI). The extra regularity 5 2 !2(⌦)

and G 2 ,1
1(⌦;R3⇥3) allows for piecewise integration by parts, which leads to the

following !2-representation of the residual:

h'T ,Fi =
’
� 3I

π
�

9F +

’
) 3I

π
)

AF.
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In order to bound the right-hand side suitably, we use the scaled trace theorem

kFk
2
!

2(� ) 
|� |

|) |
kFk

2
!

2() ) +
2
3

|� | diam)

|) |
kFk

!
2() )krFk!2() ) (4.12)

for any face � ⇢ m) , see e.g. [Veeser and Verfürth 2009, Corollary 4.5], the
inequality

kFk
!

2(lI )  diamlI krFk!2(lI )

from Lemma 2.2 (first Poincaré inequality), and the two geometric relationships

diamlI . ⌘) whenever ) ⇢ lI , |� | diam) . |) | for � ⇢ m) .

We thus obtain

|h'T ,Fi | .

 ’
) 3I

⌘) kA k!2() ) + ⌘
1/2
)

’
� 3I, � ⇢)

k 9 k
!

2(� )

!

krFk
!

2(lI ).

As the number of faces and elements in the star lI is bounded in terms of the
shape regularity coe�cient f, we arrive at the desired bound (4.11) and the proof
is finished.

Remark 4.10 (alternative derivation of upper bound) The upper bound for the
standard residual estimator in Theorem 4.9 is often derived with a suitable inter-
polation operator, by-passing the localization of the ��1-norm in Lemma 4.5. That
approach is useful for the proof of Theorem 4.48 below and is presented therein.
Here we opted for using the localization of the ��1-norm in order to facilitate
the comparison with the following subsections. The approach at hand is also
convenient to keep the ensuing constants small; cf. [Veeser and Verfürth 2009].

An important question is the sharpness of the upper bound in Theorem 4.9. The
so-called a posteriori lower bounds provide some answer by trying to bound the
estimator in terms of the error. For many estimators, there arises however additional
terms of oscillatory nature. The following remark justifies the presence of such
terms for the case at hand.

Remark 4.11 (nonasymptotic overestimation) The lower bound

E
std
T
. kr(D � DT)k

!
2(⌦),

which would imply equivalence of error and estimator, cannot hold in general for
the following reason.

Fix a mesh T and a functional 5 2 ��1(⌦)\!2(⌦) and consider a sequence ( 5=)=
of functions in !2(⌦) with lim=!1 k 5 � 5=k��1(⌦) = 0. Then the sequences (D=)=
and (DT ,=)= of exact and Galerkin solutions on a fixed mesh T remain bounded.
The error sequence

�
kr(D= � DT ,=)k!2(⌦)

�
=

is therefore also bounded, while the
standard residual estimator Estd

T
(DT ,=, 5=) ! 1 becomes unbounded. Note that,

in the special case 5 = � div(GrE) + 2E with E 2 VT , we even have for the error
lim=!1 kr(D= � DT ,=)k!2(⌦) = 0.
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In other words: in certain cases, the standard residual estimator bounds almost
0 by almost 1 and a lower bound has to involve an additional term that cannot be
bounded by the error in general.

We shall define these additional terms with the help of the following local best
approximations. Let  be an element or face of T and < 2 N0 a polynomial
degree. Given E 2 !2( ), denote by ⇧ E := ⇧<

 
E the best approximation in

P<( ) with respect to the norm k · k
!

2( ). It is convenient to allow also for < = �1

with P�1( ) = {0} and ⇧(�1)
 

E = 0. Writing D = (G, 2, 5 ) for the data in problem
(2.5), the (<1,<2)-oscillation for the standard residual estimator is then given by

oscstd
T

(DT ,D)2 :=
’
) 2T

oscstd
T

(DT ,D,))2
, (4.13a)

with the local indicators

oscstd
T

(DT ,D,))2 := ⌘2
)
kA � ⇧<2

)
A k

2
!

2() ) + ⌘)

’
� ⇢m) \m⌦

k 9 � ⇧<1
�
9 k

2
!

2(� ). (4.13b)

Proposition 4.12 (partial lower bound) If 5 2 !2(⌦) and G 2 ,1
1(⌦;R3⇥3), the

standard residual estimator is bounded by error and oscillation:

E
std
T
. kr(D � DT)k

!
2(⌦) + oscstd

T
(DT ,D),

where the hidden constant depends on 3, the coe�cients G and 2, the shape
regularity coe�cient f as well as the oscillation degrees (<1,<2).

Proof. In light of Lemma 4.1 (error and residual) and Corollary 4.6 (localization
of residual norm), we may establish the claimed bound by bounding each indicator
with a corresponding local residual norm. To this end, we shall consider here
only the case of the oscillation degrees (<1,<2) = (0, 0). The general case can
be verified along the same lines with additional technicalities and is treated in the
proof of Lemma 4.28 below in a slightly di�erent context.

1 We start by bounding an arbitrary element residual ⌘) kA k!2() ), ) 2 T , in
terms of some local residual norm. To this end, we may try to invert the following
consequence of Lemma 2.2 (first Poincaré inequality):

k'T k��1() ) = sup
F 2� 1

0 () )

|h'T ,Fi |

krFk
!

2() )
= sup
F 2� 1

0 () )

Ø
)

AF

krFk
!

2() )
. ⌘) kA k!2() ),

the residual norm of which avoids involving the jump residual. We thus actually
ask for an equivalence of two di�erent smoothness norms. Such an equivalence
can hold only for special A , e.g., from a finite-dimensional space. Furthermore,
writing kA k2

!
2() )

=
Ø
)

A(A j) ) suggests the choice F = A j) , which is however not
admissible for the residual 'T as both A and the characteristic function j) do not
belong to �1

0(⌦). We shall overcome these issues by replacing A with its mean
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value ⇧0
)
A and j) with the element bubble

q) := (3 + 1)(3+1)
÷

I2V\)

qI . (4.14)

Thanks to
Ø
)

q) = ⇠3 |) | and the inverse estimate krFk
!

2() ) . ⌘�1
)
kFk

!
2() ) for

F = (⇧0
)
A)q) 2 �1

0()) \ P3+1()), we derive

k⇧0
)
A k
!

2() ) .
π
)

(⇧0
)
A)F  k(⇧0

)
A)j) k��1() )krFk!2() )

. ⌘�1
)
k(⇧0

)
A)j) k��1() )kFk!2() )  ⌘

�1
)
k(⇧0

)
A)j) k��1() )k⇧

0
)
A k
!

2() ),

whence

⌘) k⇧0
)
A k
!

2() ) . k(⇧
0
)
A)j) k��1() ). (4.15)

This implies the desired partial lower bound for the element residual by a perturb-
ation argument and the inequality kA � ⇧0

)
A k
�
�1() ) . ⌘) kA � ⇧0

)
A k
!

2() ), which
follows from another application of Lemma 2.2 (first Poincaré inequality):

⌘) kA k!2() )  ⌘) k⇧
0
)
A k
!

2() ) + ⌘) kA � ⇧
0
)
A k
!

2() )

. k(⇧0
)
A)j) k��1() ) + ⌘) kA � ⇧

0
)
A k
!

2() )

. kA j) k��1() ) + ⌘) kA � ⇧
0
)
A k
!

2() )

= k'T k��1() ) + ⌘) kA � ⇧
0
)
A k
!

2() ).

(4.16)

2 We bound an arbitrary jump residual k 9 k
!

2(� ), � 2 F , in a similar manner.
Note that here an interference of the element residual is unavoidable because the
support of nontrivial test functions have nonempty interior. We thus may try to
invert

k'T k��1(l� ) = sup
F 2� 1

0 (l� )

Ø
�

9F +
Ø
l�
AF

krFk
!

2(l� )
. ⌘

1
2
�
k 9 k

!
2(� ) +

’
) ⇢l�

⌘) kA k!2() ),

where also the scaled trace theorem (4.12) is used. To this end, we write X� for the
Dirac measure of the face �,

q� := 33
÷

I2V\�

qI (4.17)

for the face bubble of � and choose the test function F = (⇧0
�
9)q� 2 �1

0(l� ).

Using in addition kFk
!

2(l� ) . ⌘
1
2
�
kFk

!
2(� ) and (4.15), we deduce

k⇧0
�
9 k

2
!

2(� ) .
π
�

(⇧0
�
9)F +

’
) ⇢l�

π
)

(⇧0
)
A)F �

’
) ⇢l�

π
)

(⇧0
)
A)F



�����(⇧0
�
9)X� +

’
) ⇢l�

(⇧0
)
A)j)

�����
�
�1(l� )

krFk
!

2(l� )
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+

’
) ⇢l�

k⇧0
�
A k
!

2() )kFk!2() )

.

�����(⇧0
�
9)X� +

’
) ⇢l�

(⇧0
)
A)j)

�����
�
�1(l� )

⌘

�
1
2

�
k⇧0

�
9 k
!

2(� ),

whence

⌘

1
2
�
k⇧0

�
9 k

2
!

2(� ) .

�����(⇧0
�
9)X� +

’
) ⇢l�

(⇧0
)
A)j)

�����
�
�1(l� )

. (4.18)

Passing to the proper jump residual 9 , we arrive at the partial lower bound for the
jump residual:

⌘

1
2
�
k⇧0

�
9 k
!

2(� ) . k'T k��1(l� )

+ ⌘
1
2
�
k 9 � ⇧0

�
9 k
!

2(� ) +
’
) ⇢l�

⌘) kA � ⇧0
)
A k
!

2() ).
(4.19)

3 We square the bounds (4.16) and (4.19) from the previous steps and sum them,
respectively, over all elements and faces to conclude the claimed partial lower bound
with the help of Lemma 4.5(ii) (localization of ��1

�norm) and Lemma 4.1 (error
and residual).

The significance of Proposition 4.12 (partial lower bound) strongly depends on
the choice of the polynomial degrees (<1,<2) in the oscillation from (4.13). The
following two remarks address this important aspect.

Remark 4.13 (oscillation degrees - asymptotics) It is desirable that, under re-
finement, the oscillation in Proposition 4.12 (partial lower bound) converges to 0
at least as fast as the error. The maximal convergence order of the error under
uniform refinement is kr(D � DT)k

!
2(⌦) = $(⌘=) as ⌘! 0. In view of the scaling

factors and derivative orders appearing in jump and element residual, we are thus
led to require

<1 � = � 1 and <2 � = � 2.

One might hope that strict inequalities lead to higher order. Note however that, since
oscstd involves in general both discrete solution DT and data D = (G, 2, 5 ), this
will not be guaranteed without additional assumptions. Furthermore, increasing
<1 and <2 entails bigger hidden constants in the lower bounds (4.15) and (4.18),
as these bounds cannot hold for arbitrary !2-functions. Consequently, a potentially
higher asymptotic speed of the oscillation oscstd comes with a bigger constant in
front of it and, therefore, with diminished non-asymptotic significance.

Remark 4.14 (oscillation degrees - data oscillation reduction) In the particular
case of the Poisson equation, i.e. G = O and 2 = 0, and linear elements, i.e. = = 1,
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the oscillation with the degrees (<1,<2) = (0, 0) reduces to the data oscillation

oscstd
T

(DT ,D)2 =
’
) 2T

⌘
2
)
k 5 � ⇧0

)
5 k

2
!

2() );

it depends only on the data, here the right-hand side 5 . Note also that here the
regularity of 5 is determined by the regularity of the exact solution D.

For elements with degree = � 2, the choices (<1,<2) = (=�1, =�2) ensure that
for � 2 F

⇧=�1
�

�
[[rDT]] |� · n�

�
= [[rDT]] |� · n� and ⇧=�2

)
(�DT |) ) = �DT |) (4.20)

and so, again, oscillation reduces to data oscillation in 5 :

oscstd
T

(DT ,D)2 =
’
) 2T

⌘
2
)
k 5 � ⇧=�2

)
5 k

2
!

2() ).

If we add a reaction term, viz. we consider G = O and 2 = 1, we can again obtain
the reduction to data oscillation by increasing <2 to =.

For a more general operator with piecewise polynomial coe�cients

G 2 (S=G,�1
T

)3⇥3 and 2 2 S=2 ,�1
T

,

the choice

(<1,<2) =
�
=� + = � 1,max{=2 + =, =� + = � 2}

�
(4.21)

again reduces oscstd to data oscillation in 5 .
Finally, for a general operator without piecewise polynomial coe�cients (G, 2),

a reduction to data oscillation with piecewise polynomial best approximations as
before is not possible. The argument in Remark 4.13 suggests approximating the
general coe�cients with piecewise polynomial coe�cients satisfying

=G = = � 1 and =2 = = � 1.

As we shall see below in Sect. 4.8, the choice (4.21) with these values allows us
to bound oscstd in terms of krDT k!2(⌦), which is controlled by stability, and data
oscillation terms involving 5 and the coe�cients G and 2. Note however that the
nature of these data oscillation terms di�ers from the preceding reductions: e.g.,
the regularity of the coe�cients G and 2 is not determined by the exact solution D.

In the light of Remark 4.13 (oscillation degrees - asymptotics), one might hope
that the overestimation described in Remark 4.11 (nonasymptotic overestimation)
disappears under refinement. This can be ensured under suitable regularity as-
sumption but is not guaranteed in general as the following remark reveals.

Remark 4.15 (asymptotic overestimation) Considering a variant of the standard
residual estimator that allows for 5 2 ��1(⌦) and adaptive refinement, [Cohen,
DeVore and Nochetto 2012, Sect. 6.4] give an example where the error con-
verges asymptotically faster than the estimator; see also [Kreuzer and Veeser 2021,
Lemma 21].
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After having recognized the above flaws of the standard residual estimator, let
us conclude with an observation that will be the departure point of an improved
analysis.

Corollary 4.16 (equivalence for discrete data) Suppose all data D = (G, 5 , 2)
of problem (2.5) are piecewise polynomial, i.e. there are =G, =2 , = 5 2 N0 such that

G 2 (S=G,�1
T

)3⇥3 , 2 2 S=2 ,�1
T

, and 5 2 S
= 5 ,�1
T

.

Then error and standard residual estimator are equivalent:

kr(D � DT)k
!

2(⌦) ⇡ E
std
T
,

where the hidden constants depend only on 3, the coe�cients G and 2, the shape
regularity coe�cient f, and the degrees =G, =2 , and = 5 .

Proof. The upper bound follows from Theorem 4.9 (upper bound with standard
residual estimator), while Proposition 4.12 (partial lower bound) with

(<1,<2) =
�
=G + = � 1,max{=G + = � 2, =2 + =, = 5 }

�
.

yields the lower bound.

Motivated by the above discussion, one may define a variant of the standard
residual estimator, characterized by a splitting into two di�erent parts. More
precisely, choosing (<1,<2) according to Remark 4.14 (oscillation degrees - data
oscillation reduction), one may replace the local indicators in (4.10b) by

E
std
T

(DT , 5 ,))2 := [std
T

(DT ,))2
+ oscstd

T
(DT ,D,))2

, (4.22a)

where the first part, the so-called PDE indicator, is given by

[
std
T

(DT ,))2 := ⌘2
)
k⇧<2

)
A k

2
!

2() ) + ⌘)

’
� ⇢m) \m⌦

k⇧<1
�
9 k

2
!

2(� ) , (4.22b)

while the second part corresponds to the local oscillation from (4.13b); compare
with [Verfürth 2013, Theorems 1.5 and 4.7]. In this way,

• the PDE indicators are computable (in terms of the Galerkin approximation DT
and the local projections),

• the oscillation indicators typically have to be approximated by numerical quad-
rature,

• both types of indicators are, in general, not dominated by the error.

4.3 Discrete functionals and a posteriori error analysis

This section introduces the notion of discrete functionals and individuates prop-
erties in their approximation that are useful in a posteriori error analysis. The
realization of these properties distinguishes the subsequent approach, which is
adapted from [Kreuzer and Veeser 2021] and [Kreuzer et al. n.d.].
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The notion of discrete functionals and its local counterparts are of interest for at
least two reasons. The first one is that their��1-norm can be rather easily quantified,
as we shall see in Corollary 4.30 below. This property is related to Corollary 4.16
(equivalence for discrete data), which can be read in the following way: the standard
residual estimator is equivalent to the error whenever the residual is a discrete
functional. The second reason lies in the observation that an important part of the
residual, namely the application of the di�erential operator to a discrete function, is
itself of discrete nature. This feature is partially captured by the following definition
of discrete functionals with polynomial densities and is discussed in Remark 4.18.

Definition 4.17 (discrete functionals and meshed subdomains) Given<1 2 N0,
<2 2 N0 [ {�1}, let FT := F(T ) := F<1,<2(T ) denote the subspace

n
✓ 2 �

�1(⌦) | 8F 2 �1
0(⌦) h✓,Fi =

’
� 2F

π
�

@�F +

’
) 2T

π
)

@)F

with fixed @� 2 P<1(�), @) 2 P<2())
o

of discrete functionals, i.e., functionals that are given by piecewise polynomial
densities over elements and interior faces. We call (<1,<2) the degrees of the
discrete functionals.

A set l is a T -meshed subdomain if it is a subdomain of ⌦ and it is triangulated
by a submesh Tl ⇢ T , i.e. we havel = [) 2Tl) . A functional ✓ 2 ��1(⌦) is then
discrete in the meshed subdomain l whenever ✓ |

�
1
0 (l) 2 F(Tl). Here the faces

Fl := {� 2 F | � \ l < ;, � 6 ml}

involved in F(Tl) are interior to l; e.g., the subspaces F({)}), ) 2 T , do not
involve any faces. In accordance with (4.5), we use the abbreviations TI and FI for
TlI and FlI .

Alternatively, the local space F(Tl) can be obtained from the global space F(T )
by restriction:

F(Tl) = F(T )|
�

1
0 (l) :=

n
✓ |
�

1
0 (l) | ✓ 2 F(T )

o
. (4.23)

Remark 4.18 (di�erential operator and discrete functionals) The image of the
finite element space VT under the linear di�erential operator � div(Gr·) + 2· is
again a finite-dimensional space. For di�erential operators with piecewise poly-
nomial coe�cients G and 2, the above notion captures this by the property that
the application of such operators to discrete functions E 2 VT yields discrete
functionals. Indeed, if

G 2 (S=G,�1
T

)3⇥3 , and 2 2 S=2 ,�1
T
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with =G, =2 2 N0, piecewise integration by parts gives the representationπ
⌦
GrE · rF + 2EF

=
’
� 2F

π
�

[[GrE]] · n�F +

’
) 2T

π
)

�
2E � div(GrE)

�
F,

(4.24)

where, for any interior face � 2 F and any element ) 2 T ,

[[GrE]] · n� 2 P<1(�), 2E � div(GrE) 2 P<2())

with <1 = =G + = � 1 and <2 = max{=G + = � 2, =2 + =}. Note however that not
every functional in F<1,<2(T ) can be written in the form of (4.24). In fact, as the
representation of a discrete functional is made up of !2-scalar products on domains
that are mutually disjoint or of di�erent dimension, we have

dimF<1,<2(T ) = #F dimP<1 + #T dimP<2 , (4.25)

which is strictly greater than dimVT . This enlargement, which is implicitly used
in the proof of Lemma 4.12 (partial lower bounds), turns out to be convenient also
in the constructive approximation of discrete functionals.

In view of the aforementioned properties of discrete functionals, we may split
the residual into a discrete and a non-discrete part. Splitting the standard residual
estimator in the alternative local indicators (4.22) is in a similar spirit. To see this,
we introduce ⇧T✓ 2 �

�1(⌦) given by

h⇧T✓,Fi :=
’
� 2F

π
�

�
⇧<1
�
6

�
F +

’
) 2T

π
)

�
⇧<2
)
5

�
F, F 2 �

1
0(⌦), (4.26)

for all ✓ 2 ��1(⌦) admitting the representation

h✓,Fi =
’
� 2F

π
�

6F +

’
) 2T

π
)

5 F, F 2 �
1
0(⌦)

with suitable density functions 6 and 5 . Then the splitting of the alternative
indicators (4.22) corresponds to writing

'T = ⇧T'T + (� � ⇧T)'T . (4.27)

Moreover, Remark 4.14 (oscillation degrees - data oscillation reduction) discusses
in particular conditions for the identity

(� � ⇧T)'T = 5 � ⇧T 5 , (4.28)

which follows from the property that⇧T reproduces the functionals in Remark 4.18
(di�erential operator and discrete functionals); compare with (4.20), which in terms
of ⇧T reads ⇧T(�DT) = �DT , where � is now the distributional Laplacian.

The fact that the definition of ⇧T requires the extra regularity 5 2 !
2(⌦)
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and G 2 ,1
1(⌦;R3⇥3) not only excludes applications but, in light of Remark 4.11,

(nonasymptotic overestimation) entails overestimation. To circumvent this flaw, we
therefore aim at constructing a new approximation operator %T that is defined for
all functionals ✓ 2 ��1(⌦). Furthermore, we want this operator to be a projection
onto FT so that the counterpart

(� � %T)'T = 5 � %T 5

of (4.28) holds under the same conditions.
To summarize, our plan is to develop a quasi-optimal a posteriori error analysis

by constructing a locally computable, linear projection

%T : ��1(⌦)! FT ⇢ ��1(⌦)

onto the discrete functionals that induces a splitting

'T = %T'T + (� � %T)'T (4.29)

of the residual into a discretized residual %T'T , which can be easily quantified, as
well as an oscillatory residual (� � %T)'T , which under the conditions of Remark
4.18 (di�erential operator and discrete functionals) reduces to an oscillation of the
right-hand side 5 .

The proof of an upper bound of the error will then involve a triangle inequality
applied to the right-hand side of (4.29). The following remark provides criteria to
prevent overestimation in such a context, and is followed by a comparison of the
two approaches represented by (4.27) and (4.29).

Remark 4.19 (avoiding overestimation) Overestimation can be often avoided by
ensuring two relatively simple conditions. In order to discuss them informally,
consider the model inequality

| · |  | · |1 + | · |2, (4.30)

where | · |, | · |8 , 8 = 1, 2, are seminorms and denote the domain and kernel of | · |,
respectively, by dom | · | and ker | · | etc.

The first condition, the kernel condition, is that zero is not overestimated:

ker | · | ⇢ ker | · |1 \ ker | · |2 . (4.31a)

The second condition, the domain condition, is that a finite value is never bounded
by 1, or in other, still informal, words: if the evaluation of the left-hand side is
(or can be uniquely defined to be) a finite value, the same holds for the right-hand
side:

dom | · | ⇢ dom | · |1 \ dom | · |2. (4.31b)

[Kreuzer et al. n.d.] provide a precise version of the domain condition (4.31b),
show that, given inequality (4.30), the two conditions (4.31) are also su�cient for
equivalence, and discuss further applications of this viewpoint.
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In order to illustrate the application of Remark 4.19, let us consider only the
special case of the Poisson equation, i.e. G = O, 2 = 0, and linear elements, i.e.
= = 1. We start with the upper bound in terms of the standard residual estimator in
Theorem 4.9 and view it as a function of the right-hand side 5 . Then the domain
condition is violated as the left-hand side is defined for any 5 2 �

�1(⌦), while
the right-hand side is defined only for 5 2 !2(⌦). Also the kernel condition is not
verified: the left-hand side vanishes whenever 5 = ��E for some E 2 VT , while
the right-hand side vanishes only for 5 = 0. The splitting in the alternative local
indicators (4.22) does not worsen this situation, i.e. it does not add further instances
in which kernel and domain condition are missed. Note however that the oscillation
indicators alone are in conflict with the domain condition and, therefore, another
PDE indicator cannot cure the overestimation. Finally, for the outlined approach,
the splitting (4.29) and the required properties for the operator %T ensure both
kernel and domain condition.

4.4 Testing discrete functionals

The ��1-projection %T onto the discrete functionals FT will be defined by means
of a Petrov-Galerkin-type approach. This section prepares its definition by in-
dividuating a suitable test space V+

T
. The key property of V+

T
is that the dual

pairing h·, ·i in ��1(⌦) is nondegenerate on the product FT ⇥ V+

T
. Doing so, the

degrees (<1,<2) of the discrete functionals will be parameters that are omitted in
the notation. The construction of the test spaceV+

T
proceeds in two steps. First, we

locally associate to the degrees of freedom in FT certain functions on ⌦. For the
degrees of freedom on the skeleton, this will inolve a suitable extension operator.
Second, we turn the ensuing functions into admissible test functions with the help
of a cut-o�.

The degrees of freedom in FT are given by density polynomials over element
and faces. For an element ) 2 T , if we extend such a density polynomial @) by
0 o� ) , it is already a function on ⌦. For a polynomial @� associated with a face
� 2 F , we employ the following extension operator ⇢� mapping a function E on
� to a function on l� , the union of all elements ) containing �.

Given such an element ) ⇢ l� , write I0, . . . , I3 for its vertices, I3 being the
one opposite to �, denote by 1� := 1

3

Õ
3�1
8=0 I8 the barycenter of �, and set

�
⇢�E

�
(G) := E

 

q3(G)1� +

3�1’
8=0

qI8 (G)I8

!

G 2 ) ,

and extend by 0 o� l� . Note that the definition of ⇢� is a�ne invariant and does
not depend on the enumeration of the vertices of �. The next lemma collects two
useful properties of this extension operator.

Lemma 4.20 (extending from faces) Let � 2 F be a face. For any function
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E 2 !
2(�), we have

k⇢�Ek!2(l� ) . ⌘
1
2
�
kEk

!
2(� ),

where ⌘� stands for the diameter of � and the hidden constant depends only on
3 and the shape regularity coe�cient f. Furthermore, if E is a polynomial, then
⇢�E is a continuous piecewise polynomial of the same degree.

Proof. 1 In view of (⇢�E)2 = ⇢� (E2), we may show the inequality by verifyingπ
l�

⇢�F . ⌘�

π
�

F (4.32)

for any positive function F : � ! R, which amounts to !
1-stability. To this

end, we shall use a standard argument involving the following reference situation,
which slightly di�ers from the common one with )3 =

�
G = (G1, . . . , G3) 2 R3 |

0  G8  1,
Õ
3

8=1 G8  1
 

and 13 := (3 + 1)�1(1, . . . , 1) 2 R3 . Let the reference
face b� := )3�1 � 13�1 ⇢ R3�1 be a translation of )3�1 and let the reference
simplex b) ⇢ R3 be the convex hull of b� ⇥ {0} and the canonical basis vector
43 = (0, . . . , 0, 1) 2 R3 . The barycenter of b� ⇥ {0} is then the origin in R3 and
the barycentric coordinate of the vertex 43 of b) is G3 . Fixing an element ) with
) ⇢ l� , denote by ⌧) : b) ! ) a bi-a�ne map sending vertices of b� ⇥ {0} into
vertices of � and 43 into the vertex of) opposite to �, and write⌧� : b�⇥{0}! �

for the restriction ⌧) | b�⇥{0}. The pullbacks of ⇢�F and F satisfy

⌧
⇤

)
(⇢�F)(G 0, G3) = ⌧⇤

�
F(G 0, 0)

for all G = (G 0, G3) 2 b) =
�
H = (H0, H3) 2 b� ⇥R | 0  H3  1� |H0+ 13�1 |1

 
, where

|I
0
|1 =

Õ
3�1
8=1 |I

0

8
| stands for the ✓1-norm in R3�1. Consequently, the transformation

rule, the fact that the Jacobians of ⌧) and ⌧� are constant, the Fubini theorem,
F � 0, and |b� |/|b) | = |)3�1 |/|)3 | = 3 yieldπ

)

⇢�F =
|) |

|b) |
π
b) ⌧

⇤

)
(⇢�F) =

|) |

|b) |
π

b�
π 1� |G0+13�1 |1

0
⌧
⇤

�
F(G 0, 0) dG3 dG 0


|) |

|b) |
π

b� ⌧
⇤

�
F(·, 0) =

|) | |b� |
|b) | |� |

π
�

F = 3
|) |

|� |

π
�

F.

Since the hidden constant in |) |/|� | . ⌘� depends only on the shape regularity
coe�cient f, this implies the !1-stability bound (4.32) and so also the claimed
!2-stability is proven.

2 The second statement for polynomial arguments of ⇢� is a direct consequence
of its definition.

In view of the above di�erent treatment of elements and faces, we need two types
of cut-o� functions: one for elements denoted by q) and another one for faces
denoted by q� . Possible choices are the element and face bubbles from (4.14)
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and (4.17). Since other choices will be useful in Sect. 4.8 below, we shall rely
henceforth only on the following properties.

Assumption 4.21 (abstract cut-o�) The cut-o� functions q) , ) 2 T , and q� ,
� 2 F , satisfy

supp q) = ) , 0  q)  1, supp q� = l� , 0  q�  1,

and act in an a�ne-equivalent manner on the element level: there exists a finite-
dimensional linear spaceS+ ⇢ !1()3) of functions defined on the reference element
)3 such that ⌧⇤

)
q) does not depend on ) , ⌧⇤

�
q� does not depend on �, and

8) 2 T , 8@ 2 P<2()) ⌧
⇤

)
(@q) ) 2 S+,

8� 2 F , 8@ 2 P<1(�), 8) 2 T ⌧
⇤

)

⇣��
⇢�@

�
q�

�
|)

⌘
2 S+,

where ⌧) is a bi-a�ne map from the reference element )3 to the generic element
) and ⌧⇤

)
(E) = E � ⌧) denotes the pullback of a function E : ) ! R via ⌧) .

In the case of the bubble functions (4.14) and (4.17), Assumption 4.21 holds
with S+ = Pmax{<1+3�1,<2+3 }()3) as the extension operators ⇢� , � 2 F , preserve
the polynomial degree.

Lemma 4.22 (properties of cut-o�) If the cut-o� functions q) , ) 2 T , and q� ,
� 2 F , satisfy Assumption 4.21, then we have

k@k
!

2() ) . k@q
1/2
)
k
!

2() ) and kr(@q) )k
!

2() ) . ⌘
�1
)
k@q) k!2() )

for all @ 2 P<2()) as well as

k@k
!

2(� ) . k@q
1/2
�
k
!

2(� ) and kr
�
(⇢�@)q�

�
k
!

2(l� ) . ⌘
�1
�
k(⇢�@)q� k!2(l� )

for all @ 2 P<1(�). The hidden constants depend only on 3, the shape regularity
coe�cient f, the degrees (<1,<2) of the discrete functionals, and the space S+.

Proof. 1 To verify the first claimed inequality, we start by noting that, thanks to
supp q) = ) , we have q)3 := ⌧⇤

)
(q) ) > 0 in the interior of )3 . Hence, k · k

!
2()3)

and k · q
1/2
)3
k
!

2()3) are norms on P<2()3) and, thanks to dimP<2()3) < 1, are

equivalent. A standard round trip to the reference element and ⌧⇤
)
@ ⌧
⇤

)
q

1/2
)

=
⌧
⇤

)
(@q1/2

)
) thus yield

k@k
!

2() ) . ⌘
3/2
)
k⌧
⇤

)
@k
!

2()3) . ⌘
3/2
)
k⌧
⇤

)
@ ⌧
⇤

)
q

1/2
)
k
!

2()3)

. k@q1/2
)
k
!

2() ),

and the first claimed inequality is established. The third one is proved along the
same lines, but with a round trip to the reference face.

2 For the other claimed inequalities note that kr · k
!

2()3) and inf22R k ·�2k!2()3)
are equivalent norms on the finite-dimensional quotient space S+/R. Consequently,
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further round trips to the reference element give

kr(@q) )k
!

2() ) . ⌘
�1+3/2
)

kr⌧
⇤

)
(@q) )k

!
2()3) . ⌘

�1+3/2
)

inf
22R
k⌧
⇤

)
(@q) ) � 2k

!
2()3)

. ⌘�1+3/2
)

k⌧
⇤

)
(@q) )k

!
2()3) . ⌘

�1
)
k@q) k!2() )

and

kr
�
⇢� (@)q)

�
k

2
!

2(l� ) =
’
) ⇢l�

kr
�
⇢� (@)q)

�
k

2
!

2() )

. ⌘�1
�

’
) ⇢l�

k⇢� (@)q) k2
!

2() ) = ⌘
�1
�
k⇢� (@)q) k2

!
2(l� )

and the proof is completed.

These preparations lead to the following test space for discrete functionals.

Definition 4.23 (test space for discrete functionals) Using the cut-o� functions
from Assumption 4.21, we associate to the space FT of discrete functionals the
following test space:

V+

T
:= V+(T ) := span

⇣�
@) q) | @) 2 P<2()), ) 2 T

 
ÿ �

⇢� (@� )q� | @� 2 P<1(�), � 2 F
 ⌘

.

If l is a subdomain of ⌦ meshed by Tl , then V+(Tl) is the test space for F(Tl).

Similarly as for the space FT of discrete functionals, the test space over a
subdomain l meshed by Tl can be obtained from the global test space, namely

V+(Tl) = V+(T ) \ �1
0(l). (4.33)

4.5 A projection onto discrete functionals

Having the test space V+

T
from Definition 4.23 at our disposal, we are now ready to

construct a ��1-projection %T as suggested in Sect. 4.3. Like in the previous sec-
tion, the degrees (<1,<2) of the discrete functionals in FT are hidden parameters.

Definition 4.24 (projection onto discrete functionals) Given the discrete func-
tionals FT and the test space V+

T
, we define a projection %T : ��1(⌦)! FT by

h%T✓,Fi = h✓,Fi 8F 2 V+

T
. (4.34)

The well-posedness of this definition and algebraic properties of %T are verified
in the following Lemma 4.25. Moreover, a representation of %T in form of a
quasi-interpolation operator is given in Corollary 4.61 below.

The polynomial densities of %T✓ are denoted by %) ✓ := %T ,) ✓, ) 2 T , and
%�✓ := %T ,� , � 2 F , so that

h%T✓,Fi =
’
) 2T

π
)

%) ✓ F +

’
� 2F

π
�

%�✓ F. (4.35)
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In the next lemma we show in particular that %T is a local operator. In order
to formulate this, we shall use T -meshed local subdomains, i.e. T -meshed sub-
domains l for which there exists a mesh element ) 2 T with l ⇢ l) . For the
next lemma addressing algebraic properties of the operator %T , recall the notation
l� = [) 2T�) from (4.7) for an interior face � 2 F .

Lemma 4.25 (algebraic properties) The operator %T is a local linear projection
onto the subspace FT of discrete functionals. More precisely, for any local subdo-
main l meshed by T , there is a linear projection %l : ��1(l)! F(Tl) such that

%T✓ |��1(l) = %l
⇣
✓ |
�

1
0 (l)

⌘
2 F(Tl)

for all ✓ 2 ��1(⌦).

Proof. 1 We first show that the degrees of freedom in Definition 4.23 of V+

T
are

linearly independent. To this end, we fix an element ) 2 T , denote by �1, . . . , �;,
;  3 + 1 its faces that are in FT and write q0 := q) , q8 := q�8 and ⇢8 := ⇢�8 for
8 = 1, . . . , ;. We then claim that, for all @0 2 P<2())\{0} and all @8 2 P<1(�8)\{0},
8 = 1, . . . , ;, we have

U0@0q0 +

;’
8=1

U8⇢8(@8)q8 = 0 in ) =) U0 = · · · = U; = 0. (4.36)

In light of supp q) = ) and supp q� = l� , we observe q0 |m) = 0 and q8 |m) \�8 = 0
for 8 = 1, . . . , ;. We thus evaluate the hypothesis of (4.36) first on the faces
�1, . . . , �; and then in the element ) . This gives U8 = 0 for 8 = 0, . . . , ; and (4.36)
is verified.

2 Next, we discuss the well-posedness of (4.34). The linear independence
(4.36) and (4.25) lead to

dimV+

T
= #T dimP<2 + #F dimP<1 = dimFT . (4.37)

Thus, it su�ces to show the implication

✓ 2 FT : h✓,Fi = 0 8F 2 V+

T
=) ✓ = 0. (4.38)

For that purpose, let ✓ 2 FT and let @) , ) 2 T , and @� , � 2 F be the determining
polynomials. For any element ) 2 T , the choice F = @) q) 2 �1

0()) implies

0 = h✓,Fi =
π
)

(@) )2
q) , i.e. @) = 0.

Thus, ✓ does not have contributions from elements. Regarding faces, any choice
F =

�
⇢�@�

�
q� 2 �

1
0(l� ), � 2 F , therefore gives

0 = h✓,Fi =
π
�

(@� )2
q� , i.e. @� = 0,

and implication (4.38) is established. Combining (4.37) and (4.38), we have that
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the dual pairing in ��1(⌦) is nondegenerate on FT ⇥ V+

T
, which in turn ensures

that %T is well-defined. The Petrov-Galerkin character of the definition (4.34) then
ensures that %T is a linear projection onto FT .

3 It remains to show that %T is a local operator. Given any local subdomain l
meshed by Tl , we can apply the preceding proof to Tl instead of T . This shows
that the dual pairing in ��1(l) is nondegenerate on F(Tl)⇥V+(Tl) and ensures a
local projection operator %l : ��1(l) ! F(Tl). Taking into account (4.23) and
(4.33), we note

%T |��1(l) = %l ,

which completes the proof.

The verification of (4.38), which amounts to a proof of uniqueness, suggests the
following approach to compute %T✓, ✓ 2 ��1(⌦).

Remark 4.26 (local computation) Let ✓ 2 ��1(⌦). Recalling (4.35), the polyno-
mials %) ✓, ) 2 T , and %�✓, � 2 F can be computed by solving firstπ

)

%) ✓ @q) = h✓, @q) i 8) 2 T , @ 2 P<2()), (4.39)

and thenπ
�

%�✓ @q� = h✓, @q� i �
’
) ⇢l�

π
)

%) ✓ @q� 8� 2 F , @ 2 P<1(�). (4.40)

This amounts to two block-diagonal linear systems with, respectively, #T blocks of
size dimP<2 and #F blocks of size dimP<1 . Each block and each corresponding
right-hand side arises from local computations.

Remark 4.27 (star localization vs locality of VT) Stars lI , I 2 V, are meshed
local subdomains. Lemma 4.25 thus shows that, for any vertex I 2 V, there is a
linear projection %I : ��1(lI)! F(TI) such that

%T✓ |��1(lI ) = %I
⇣
✓ |
�

1
0 (lI )

⌘
2 F(TI)

for all ✓ 2 ��1(⌦). The stars also appear in the localizing upper bound of the
global residual norm in Corollary 4.6. As they are minimal subdomains therein,
cf. Remark 4.7, it may appear that a finer localization with smaller domains cannot
be exploited in a posteriori analysis. Although this is true in the context of upper
bounds, the increased locality of %T is useful in the context of lower bounds; see
the reduced lower bound (5.17), which follows from the interior vertex property
introduced in Definition 4.50, and is crucial to derive the contraction result (5.26).

We have already mentioned that we shall use %T to split the residual. In light
of the bounds for the residual norm in Corollary 4.6 (star localization of residual
norms), this should be done in a locally stable manner. In order to formulate and
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employ the local stability properties of %T , the following notation is useful. Given
a local subdomain l meshed by Tl , we define the V+(Tl)-discrete dual norm by

k✓kV+(Tl)⇤ := sup
F 2V+(Tl), krF k!2(l)=1

h✓,Fi ✓ 2 �
�1(l). (4.41)

In view of V+(Tl) ⇢ �1
0(l), we have k✓kV+(Tl)⇤  k✓k��1(l) for all ✓ 2 ��1(l).

Lemma 4.28 (local N�1-stability) The projection %T is locally ��1-stable: for
any local subdomain l meshed by Tl , we have

k%T kL(��1(l)) = sup
✓2F(Tl)

k✓k
�
�1(l)

k✓kV+(Tl)⇤
 ⇠lStb,

where⇠lStb = ⇠lStb(3,f,<1,<2) depends only on 3, the shape regularity coe�cient
f from (3.9), the degrees (<1,<2) of the discrete functionals and the space S+.

Proof. 1 We start by verifying the ’’-part of the claimed identity for the operator
norm. The definition of the operator norm leads to

k%l kL(��1(l)) = sup
✓2��1(l)

k%l✓k��1(l)

k✓k
�
�1(l)

 sup
✓2��1(l)

k%l✓k��1(l)

k✓kV+(Tl)⇤
.

We now notice that k✓kV+(Tl)⇤ = k%l✓kV+(Tl)⇤ in view of (4.41) and (4.34). Hence,

k%l kL(��1(l))  sup
✓2��1(l)

k%l✓k��1(l)

k%l✓kV+(Tl)⇤
= sup
✓2F(Tl)

k✓k
�
�1(l)

k✓kV+(Tl)⇤

because the projection %l is onto F(Tl).

2 Next, we show that k%T kL(��1(l)) is uniformly bounded. Let ✓ 2 F(Tl) be
a discrete functional, namely

h✓,Fi =
’
) 2Tl

π
)

@)F +

’
� 2Fl

π
�

@�F 8F 2 �
1
0(l).

We proceed in two steps that are quite similar to the classical standard residual
estimates. Arguing as in (4.11), and using Lemma 2.2 (first Poincaré inequality) in
the domain l of diameter about ⌘) for F 2 �1

0(l), we obtain

|h✓,Fi | .

 ’
) 2Tl

⌘
2
)
k@) k

2
!

2() ) +
’
� 2Fl

⌘� k@� k
2
!

2(� )

!1/2

krFk
!

2(l)

whence

k✓k
2
�
�1(l) .

’
) 2Tl

⌘
2
)
k@) k

2
!

2() ) +
’
� 2Fl

⌘� k@� k
2
!

2(� ). (4.42)

Here we do not exploit that ✓ is discrete in l; this will be crucial in the second
step, when we bound each term on the right-hand side, in a manner reminding
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the derivation of classical lower bounds. For any ) 2 Tl , we write V+())⇤ as
shorthand for V+({)})⇤ and exploit Lemma 4.22 (properties of cut-o�) to deduce

k@) k
2
!

2() ) .
π
)

(@) )2
q) = h✓, @) q) i  k✓kV+() )⇤ kr(@) q) )k

!
2() )

. k✓kV+() )⇤⌘
�1
)
k@) q) k!2() )  k✓kV+() )⇤⌘

�1
)
k@) k!2() ),

whence

⌘) k@) k!2() ) . k✓kV+() )⇤ . (4.43)

For an interior face � 2 Fl , we proceed similarly, taking into account also
Lemma 4.20 and that V+()) ⇢ V+(T� ) entails k✓kV+() )⇤  k✓kV+(T� ) for ) 2 T� .
We thus obtain

k@� k
2
!

2(� ) .
π
�

(@� )2
q� = h✓,

�
⇢�@�

�
q� i �

’
) ⇢l�

π
)

@)

�
⇢�@�

�
q�

. k✓kV+(T� )⇤ kr
�
(⇢�@� )q)

�
k
!

2(l� ) +
’
) ⇢l�

k@) k!2() )k(⇢�@� )q) k!2() )

. k✓kV+(T� )⇤⌘
�1
)
k
�
⇢�@�

�
q) k!2(l� ) . k✓kV+(T� )⇤⌘

�
1
2

)
k@� k!2(� ),

i.e.

⌘

1
2
�
k@� k!2(� ) . k✓kV+(T� )⇤ . (4.44)

The number of elements and interior faces in the local subdomain l is uniformly
bounded by 3 and the shape regularity coe�cient f. Hence, inequalities (4.43)
and (4.44) together with the inclusions V+()) ⇢ V+(Tl) for ) 2 Tl and V+(T� ) ⇢
V+(Tl) for � 2 Fl imply’

) 2Tl

⌘
2
)
k@) k

2
!

2() ) +
’
� 2Fl

⌘� k@� k
2
!

2(� ) . k✓k
2
V+(Tl)⇤ . (4.45)

Combing (4.42) and (4.45) shows that the ratio k✓k
�
�1(l)/k✓kV+(Tl)⇤ for ✓ 2 F(Tl)

is bounded by a universal constant depending on 3,f,<1,<2 and S+.

3 It remains to complete the proof of the claimed identity for the operator norm.
To this end, we first introduce an operator &l : �1

0(l)! V+(Tl) by

h✓,&lFi = h✓,Fi 8✓ 2 F(Tl).

As the one for %l , this definition is well-posed because the pair
�
F(Tl),V+(Tl)

�

is nondegenerate for the dual pairing of ��1(l); cf. (4.37) and (4.38) of the proof
of Lemma 4.25 (algebraic properties). By the Petrov-Galerkin character of the
definition, &l is a linear projection onto V+(Tl). Given arbitrary ✓ 2 ��1(l) and
F 2 �

1
0(l), the definitions of &l and %l imply

h%l✓,Fi = h%l✓,&lFi = h✓,&lFi,

that is &l = %
⇤
l

is the (Hilbert) adjoint to %l . In other words: the adjoint %⇤
l
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is a projection onto V+(Tl). With this, we can prove the missing inequality. Let
✓ 2 F(Tl) be discrete. In fact,

h✓,Fi = h%l✓,Fi = h✓, %⇤lFi ) k✓k
�
�1(l) = sup

F 2� 1
0 (l)

h✓, %
⇤
l
Fi

krFk
!

2(l)

leads to

k✓k
�
�1(l)  k✓kV+(Tl)⇤ k%

⇤

l
k
L(� 1

0 (l)) = k✓kV+(Tl)⇤ k%l kL(��1(l)).

This concludes the proof.

Remark 4.29 (failing global N�1-stability) For Lebesgue norms, local stability
of linear operators in terms of shape regularity entails that their respective global
stability is uniform under mesh refinement. The fact that the first part of Lemma 4.5
(localization of ��1-norm) needs a condition to be true, may lead one to suspect
that this implication might not be true in general for the ��1-norm. This suspicion
is confirmed by Example 4.63 below, where we show that k%T kL(��1(⌦)) can tend
to1 under mesh refinement.

The proof of Lemma 4.28 provides all nontrivial ingredients to allow the ap-
proximate computation of k✓k

�
�1(l) whenever ✓ 2 ��1(⌦) is discrete in l.

Corollary 4.30 (quantifying N�1-norms of discrete functionals) Let l ⇢ ⌦ be
a local subdomain meshed by Tl and ✓ 2 ��1(⌦) be discrete in l, given by the
polynomials @) for ) 2 Tl , and @� for � 2 Fl , where � 2 Fl are the interior
faces in l. We then have

k✓k
2
�
�1(l) ⇡

’
) 2Tl

⌘
2
)
k@) k

2
!

2() ) +
’
� 2Fl

⌘� k@� k
2
!

2(� ),

where the hidden constants depend on 3, the shape regularity coe�cient f, the
degrees (<1,<2) of the discrete functionals, and the space S+ appearing in As-
sumption 4.21.

Proof. This is a consequence of (4.42) and (4.45), the latter requiring ✓ to be
discrete, along with the fact that k✓kV+(Tl)⇤  k✓k��1

l)⇤ for any ✓ 2 ��1(l).

Corollary 4.31 (local near-best approximation) The projection %T yields local
near-best approximations: for any functional ✓ 2 ��1(⌦) and any local subdomain
l meshed by Tl , we have

k✓ � %T✓k��1(l)  ⇠lStb inf
j2F(Tl)

k✓ � jk
�
�1(l),

where ⇠lStb is the constant of Lemma 4.28 (local ��1 stability).

Proof. Fix a local subdomain l meshed by Tl and let j 2 F(Tl) be arbitrary.
Thanks to Lemma 4.25 (algebraic properties), we have %lj = j and

(✓ � %T✓) |� 1
0 (l) = (� � %l) ✓ |

�
1
0 (l) = (� � %l) (✓ � j) |

�
1
0 (l).
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As %l is a nontrivial projection on the Hilbert space ��1(l), [Szyld 2006] ensures

k� � %l kL(��1(l)) = k%l kL(��1(l))  ⇠lStb. (4.46)

Hence

k✓ � %T✓k��1(l)  ⇠lStbk✓ � jk��1(l)

concludes the proof because j 2 F(Tl) is arbitrary.

We illustrate the approximation of possible parts of the residual with the projec-
tion %T in a series of three remarks. For that purpose, the approximation quality
is to be measured with a local ��1(l)-norm, and it is instructive to compare with
the operator ⇧T from (4.26). Recall that the operator ⇧T is used implicitly in the
standard approach (see Sect. 4.2) to approximate the discrete functionals FT .

Remark 4.32 (approximating functions) For functions, the local error with %T

is uniformly dominated by the one with ⇧T . More precisely, if <2 � 0 and
✓ 2 �

�1(⌦) satisfies h✓,Fi =
Ø
⌦ 5 F where 5 2 ! ?(⌦) with ? > 23/(2 + 3), then

Corollary 4.31 (local near-best approximations) and ⇧T 5 =
Õ
) 2T(⇧<2

)
5 )j) 2

F(Tl) imply, for any local meshed subdomain l,

k✓ � %T✓k��1(l) . k 5 � ⇧T 5 k��1(l).

Observe that, although ✓ is a function, %T✓ is typically not a function. This property
might look undesirable but it is crucial for an advantage of %T over ⇧T and closely
related to the fact that the opposite inequality does not hold; cf. Remark 4.34 about
stability.

Furthermore, supposing 5 2 !2(⌦) and combining the preceding inequality with
Lemma 2.2 (first Poincaré inequality) gives

k✓ � %T✓k
2
�
�1(l) ) .

’
)
0⇢l)

⌘
2
)
k 5 � ⇧<2

)
0 5 k

2
!

2(l) 0 )
, (4.47)

which establishes that the local %T-oscillation of functions is uniformly dominated
by its classical ⇧T-counterpart but not vice versa.

In Sect. 7.3.1 this case is considered in the context of adaptive approximation.

Remark 4.33 (approximating admissible functionals) For functionals allowing
for the application of ⇧T , the local error with %T is again uniformly dominated by
the one with ⇧T . In view of the previous remark, let us consider only ✓ 2 ��1(⌦)
such that h✓,Fi =

Ø
⌃ 6F where 6 2 ! ?(⌃) with ⌃ := [

� 2F� and ? > 2(3 � 1)/3.
Note that we have again ⇧T✓ 2 F(Tl) as h⇧T✓,Fi =

Õ
� 2F

Ø
�

(⇧<1
�
6)F for all

F 2 �
1
0(⌦). Corollary 4.31 (local near-best approximations) thus ensures, for any

local meshed subdomain l,

k✓ � %T✓k��1(l) . k✓ � ⇧T✓k��1(l).

Moreover, supposing 6 2 !2(⌃) and combining the scaled trace theorem (4.12)
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with Lemma 2.2 (first Poincaré inequality) yields

k✓ � %T✓k
2
�
�1(l) ) .

’
� ✓l)
�*ml)

⌘� k6 � ⇧
<1
�
6k

2
!

2(� ).

Also this case will be revisited in the context of adaptive approximation, namely in
Sect. 7.3.3.

Remark 4.34 (stability of approximation) The error with %T is stable, while the
one with ⇧T is not. To see this by example, we restrict to (<1,<2) = (0, 0), fix
some interior face � 2 F and, for Y > 0 su�ciently small, consider

h✓Y ,Fi :=
π
⌦
5YF =

1
2Y

π
Y

�Y

π
�

F(H + Bn� ) 3H 3B, F 2 �
1
0(⌦),

where 5Y = (2Y)�1
j�Y is a multiple of the characteristic function of �Y := {G+Bn� |

G 2 �,�Y < B < Y}. As

h✓Y � X� ,Fi =
1
2Y

π
Y

�Y

π
�

π
B

0
mn�F(H + Cn� ) 3C 3H 3B


1
2Y

π
Y

�Y

π
�Y

|rF(G)| 3G 3B  |�Y |
1/2
krFk

!
2(⌦),

the functions (✓Y)Y>0 tend to the proper functional X� :

✓Y ! X� in ��1(⌦).

Combining the convergence with the local stability of %T , see (4.46), yields���k✓Y � %T✓Y k��1(l� ) � kX� � %TX� k��1(l� )

���  k(� � %T)(✓Y � X� )k
�
�1(l� )

. k✓Y � X� k��1(l� ) ! 0,

the stability of the error with %T . Furthermore, since %TX� = X� , the stability
entails here k✓Y � %T✓Y k��1(l� ) ! 0. For ⇧T however, the approximation on
the skeleton and in the volume are independent of each other. Hence, combining
⇧TX� = X� , which follows from (4.26), with limY!0 ⇧0

)
5Y = |� |/(2|) |) for the

two elements ) 2 T containing �, leads to

kX� � ⇧TX� k��1(l� ) = 0 < lim
Y!0
k✓Y � ⇧T✓Y k��1(l� ).

Measuring the error in weighted !2-norms instead of the ��1-norm results in a
more dramatic instability. Indeed, denoting by 1 and 0 the constant functions
on a simplex  equal to 1 or 0, the two sides translate in

⌘

1
2
�
k1� � ⇧0

�
1� k!2(� ) +

’
) 2T�

⌘) k0) � ⇧0
)

0) k!2() ) = 0,

lim
Y!0

 

⌘

1
2
�
k0� � ⇧0

�
0� k!2(� ) +

’
) 2T�

⌘) k 5Y � ⇧0
)
5Y k!2() )

!

= 1.
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Note that such a transformation of volume contributions into contributions on
the skeleton may occur by perturbation in the right-hand side or, in the opposite
direction, by an improvement of the Galerkin approximation thanks to refinement.

In view of this instability of ⇧T , the inequalities in the preceding Remarks 4.32
and 4.33 cannot be reversed - a fact that can be inferred also from Remark 4.19.

The above perturbations of X� are in the domain of ⇧T . For the functionals

hb✓Y ,Fi :=
π
�

F(H + Yn� ) 3H, F 2 �
1
0(⌦)

however, it is not clear how to directly apply ⇧T for Y < 0. To the contrary, the
approximations %T

b
✓Y are defined and stable around 0. Noteworthy, %T

b
✓Y uses

volume contributions to compensate for the displacement in the representation of
the singular contribution.

4.6 Discretized and oscillatory residual

We now turn to the proper a posteriori analysis, that is we shall derive upper and
lower bounds of the error, implementing the following plan, which is motivated in
Sect. 4.3. We use the projection %T onto discrete functionals FT to split the residual
into discretized and oscillatory parts. Then the quantification of the oscillatory
residual is reduced to data oscillation through suitable choices of the degrees
(<1,<2) of the discrete functionals. The discretized residual can be quantified in
various manners; see Sections 4.2 and 4.9 below.

We start by introducing indicators reflecting the announced splitting of the
residual into discretized and oscillatory parts. They are vertex-indexed and, given
I 2 V, defined by

E
abs
T

(I)2 := [abs
T

(I)2
+ oscT('T , I)2 with

[
abs
T

(I) := k%T'T k��1(lI ) and oscT('T , I) := k(� � %T)'T k��1(lI ).
(4.48)

Note that these quantities are not proper indicators: they still need to be quantified
in a computable manner. By using ‘abs’ (shorthand for ‘abstract’), we hint at the
fact that [abs

T
can be quantified by various approaches.

Lemma 4.35 (splitting of local residual norm) For any vertex I 2 V, the local
residual norm is equivalent to the abstract indicator from (4.48):

1
p

2⇠lStb

E
abs
T

(I)  k'T k��1(lI ) 
p

2Eabs
T

(I),

where ⇠lStb is the constant of Lemma 4.28 (local ��1 stability).

Proof. As announced, we use the linear projection %T in order to split the residual
into a discretized and an oscillatory part:

'T = %T'T + (� � %T)'T . (4.49)
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The upper bound of the local residual norm then readily follows from the triangle
inequality:

k'T k��1(lI )  [
abs
T

(I) + oscT('T , I) 
p

2Eabs
T

(I).

To show the lower bound, we exploit the local stability of %T , cf. (4.46), to obtain

[
abs
T

(I) = k%T'T k��1(lI )  ⇠lStbk'T k��1(lI )

and

oscT('T , I) = k(� � %T)'T k��1(lI )  ⇠lStbk'T k��1(lI ).

Squaring both inequalities, summing them, and then taking the square root finishes
the proof.

In many a posteriori analyses, this lemma is replaced by steps breaking a possible
true equivalence between error and estimator. Therefore, the following remark
points out the key ingredients.

Remark 4.36 (ensuring proper equivalence) The fact that the projection %T and
so also � � %T are linear and locally bounded operators precludes overestimation;
see also Remark 4.19. Comparing with Sect. 4.2 and ⇧T in (4.27), we see that the
local stability in ��1 is crucial to that end and, in view of Remark 4.34, requires
discrete functionals with contributions on the skeleton.

Next, we want to simplify the residual oscillations oscT('T , I), I 2 V, in the
spirit of Remark 4.14. This will be dependent on the coe�cients G and 2 of the
di�erential operator and involve the following ‘polynomial degrees’:

=G := min
n
: 2 N0 | G 2

�
S: ,�1
T

�
3⇥3

o
, (4.50a)

=2 := min
n
: 2 N0 [ {�1} | 2 2 S: ,�1

T

o
, (4.50b)

where we use the convention min ; = 1. We shall say that the di�erential operator
� div(Gr·) + 2(·) in (2.5) has discrete coe�cients whenever max{=G, =2} < 1,
otherwise it has nondiscrete coe�cients.

Lemma 4.37 (data oscillation reduction for discrete coe�cients) If the coe�-
cients � and 2 are discrete, the choices

<1 = =G + = � 1,

<2 = max{= � 2 + =G, e<2} with e<2 =
(
= + =2 , if 2 < 0,
0, otherwise

ensure that the oscillatory residual reduces to data oscillation of the right-hand
side:

(� � %T)'T = 5 � %T 5 .
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Proof. The choices for <1 and <2 yield, for any face � 2 F and any element
) 2 T ,

[[GrDT]] · n� 2 P<1(�) and div(GrDT)|) 2 P<2()).

Furthermore, if 2 < 0, we also have 2DT |) 2 P<2()) and the claimed identity
follows from � div(GrDT) + 2DT 2 FT .

Remark 4.38 (Poisson equation with linear elements) In the case of the Poisson
equation with linear elements, the choices in Lemma 4.37 lead to <1 = 0 and
<2 = 0. Alternatively, one may use <1 = 0 and <2 = �1 (recall we have set
P�1()) = {0}), cf. [Diening, Kreuzer and Stevenson 2016] or [Siebert and Veeser
2007]. The choice here leads to an oscillation for which the standard oscillation
indicators ⌘) k 5 � ⇧) 5 k) , ) 2 T , can be used as a surrogate; see also Remark
4.43 about surrogates.

If one of the coe�cients, G or 2, is nondiscrete, the range of the finite element
space VT under the di�erential operator � div(Gr·) + 2(·) consists of functionals
whose densities are not piecewise polynomial. Consequently, the oscillatory re-
sidual cannot be reduced to the oscillation 5 � %T 5 , or to any other oscillation
of 5 involving discrete functionals with piecewise polynomial densities. The next
result illustrates the idea of a non-perfect remedy, namely bounding the residual
oscillation defined in (4.48) in terms of data oscillation and discrete stability. For
its formulation, we define global ��1-oscillations by

oscT(✓)2 :=
’
I2V

oscT(✓, I)2
, ✓ 2 �

�1(⌦), (4.51)

which, in contrast to k(� � %T)✓k
�
�1(⌦), is bounded in terms of ✓; cf. Remark 4.29

(failing global ��1-stability).

Lemma 4.39 (surrogate data oscillation reduction) Let <G := min{=G, = � 1}
and <2 := min{=2 , = � 1} and define <1 and <2 as in Lemma 4.37, but replacing
=G and =2 , respectively, with <G and <2 . Given any approximations

bG 2 �S<G,�1
T

�
3⇥3

and b2 2 S<2 ,�1
T

,

we then have, for all vertices I 2 V,

oscT('T , I)  oscT( 5 , I) + ⇠lStb⇠(3,f)kG � bGk!1(lI )krDT k!2(lI )

+ ⇠lStb⇠(3,f)k⌘(2 � b2)k!1(lI )kDT k!2(lI )

and thus

oscT('T)2
 3 oscT( 5 )2

+
3(3 + 1)
U

2
k 5 k

2
�
�1(⌦)

⇣
kG � bGk2

!
1(⌦) + ⇠

2
%
⇠(3,f)k⌘(2 � b2)k2

!
1(⌦)

⌘

where ⇠lStb is the constant from Lemma 4.28 (local ��1-stability), ⌘ the meshsize
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function defined by ⌘|) = ⌘) for all) 2 T , U is the coercivity constant from (2.29),
and ⇠% is the constant in Lemma 2.2 (first Poincaré inequality).

The bounds of Lemma 4.39 are obviously not convenient if G or 2 are not
continuous. We therefore implement the underlying idea in Sect. 5.4 di�erently.

Proof. 1 To verify the local bound, let I 2 V be any vertex. By linearity of %T ,
we obtain

oscT('T , I)  oscT( 5 , I)

+ k(� � %T)
�
� div(GrDT)

�
k
�
�1(lI ) + k(� � %T)(2DT)k

�
�1(lI )

and it remains to bound appropriately the two terms involving the coe�cients G
and 2. As the definitions of <1 and <2 ensure � div(bGrDT) 2 FT , Corollary 4.31
(local near-best approximation), the scaled trace theorem (4.12) and Lemma 2.2
(first Poincaré inequality) give

k(� � %T)
�
� div(GrDT)

�
k
�
�1(lI )  ⇠lStbk � div

�
(G � bG)rDT k��1(lI )

. ⇠lStbkG � bGk!1(lI )krDT k!2(lI ).

As b2DT 2 FT thanks to the definition of <2, a similar argument using again
Lemma 2.2 and diamlI  ⇠⌘I on lI provides

k(� � %T)(2DT)k
�
�1(lI )  ⇠lStbk(2 � b2)DT k��1(lI )

 ⇠⇠lStbk⌘(2 � b2)k!1(lI )kDT k!2(lI ),

and the local bound is verified.

2 To show the global bound, we square the local bound and sum it over all
vertices I 2 V to obtain

oscT('T)2
 3

’
I2V

oscT( 5 , I)2
+ 3(3 + 1)⇠kG � bGk2

!
1(⌦)krDT k

2
!

2(⌦)

+ 3(3 + 1)⇠k⌘(2 � b2)k2
!
1(⌦)kDT k

2
!

2(⌦).

Hence, Lemma 2.2 (first Poincaré inequality) on ⌦ and discrete stability,

kDT k!2(⌦)  ⇠% krDT k!2(⌦) 
⇠%

U

k 5 k
�
�1(⌦),

finish the proof.

The following remarks set Lemma 4.35 (splitting of local residual norm) and
the accompanying results Lemma 4.37 and Lemma 4.39 on the reduction to data
oscillation in the context of adaptive algorithms.

Remark 4.40 (structure of splitting) Combing Lemma 4.35 (splitting of local
residual norms) with Lemma 4.37 or Lemma 4.39 about reduction to data oscillation
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thus provides an abstract estimator with the following two global parts:

[
abs
T

(DT)2 :=
’
I2V

[
abs
T

(DT , I)2

and, writing D = (G, 2, 5 ) for the data of the partial di�erential equation,

oscabs
T

(D)2 := oscT( 5 )2
,

oscabs
T

(D)2 := oscT( 5 )2
+ ⇠1 max

I2V

kG � bGk2
!
1(lI ) + ⇠2 max

I2V

k⌘(2 � b2)k2
!
1(lI ),

the latter provided (G, 2) are not discrete. It is important to note the di�erent nature
of these two parts. The first part [abs

T
(DT), the abstract PDE indicator,

• is strictly related to the structure of the underlying PDE,
• involves only discrete functionals from FI , and
• the evaluation of its local indicators [abs

T
(DT , I) requires the global computation

of the discrete solution DT .

In contrast, the second part oscabs
T

(D), the oscillation (indicator),

• depends only on the data D of the di�erential operator,
• involves non-discrete functionals, and
• the evaluation of its local indicators oscT( 5 , I), kG�bGk!1(lI ), k⌘(2�b2)k!1(lI ),
I 2 V, is completely local.

The respective properties ‘discrete nature’ and ‘local dependence’ of the two parts
are the key advantage over the whole local residual indicators k'T k��1(lI ), I 2 V,
and will be instrumental in the algorithmic design in Sections 5 and 6 below.

Remark 4.41 (minimal regularity and regularizing VT) It is worth noting that
the results in this section do not involve any regularity beyond (4.2) and that the
projection %T has a regularizing e�ect. In particular, we have

Im %T = FT ⇢ ��
1
2�Y(⌦) for any small Y > 0

thanks to the trace theorem in fractional Sobolev spaces. As a consequence,
most techniques for a posteriori error estimation can be directly applied to the
discretized residual%T'T , without any special twisting and under natural regularity
assumptions.

Remark 4.42 (reduction vs surrogate reduction) The kernel condition of Re-
mark 4.19 (avoiding overestimation) is not verified for the bounds in Lemma 4.39
(surrogate data oscillation reduction). These bounds may thus exhibit overestim-
ation and cannot be reversed. If we use the right-hand side of an overestimating
bound as a part of an estimator, we shall call that part a surrogate. This label marks
a crucial di�erence between the cases represented by Lemma 4.39 (surrogate data
oscillation reduction) and Lemma 4.37 (data oscillation reduction), which is free
of any overestimation.
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Remark 4.43 (surrogate data oscillation) Surrogates for data oscillation indic-
ators can be useful in order to provide more direct access for computation. For
example, if 5 2 !2(⌦), the bound (4.47) by the classical ⇧T-oscillation can be
approximated by numerical integration. In such a context, it is useful to take the
following points into account:

• Computable surrogates, i.e. computable upper bounds, for data oscillation indic-
ators are in general impossible. In fact, generic data from an infinite-dimensional
space will not be completely seen by the finite information available at any stage
of a computation; cf. also [Kreuzer and Veeser 2021, Lemma 2 and Corollary 5]
illustrating this fact for oscT( 5 ) with the help of orthogonality. Hence, comput-
able surrogates will hinge on additional a priori information on the given data.
We postpone a discussion of examples to Section 7.3.

• As a general rule, surrogates should be applied last. This avoids that other parts
of the estimators are also a�ected by overestimation; see Remark 4.46 (standard
vs modified residual estimator) below.

4.7 Modified residual estimation

In view of the splitting into PDE and oscillation indicators and the discussion on
the computability of the latter, it remains to quantify the abstract PDE indicators
[

abs
T

(DT , I), I 2 V. To this end, we can employ Corollary 4.30 (quantifying ��1-
norms of discrete functionals), resulting in a modification of the standard residual
estimator Estd

T
(DT ,D) from Section 4.2. Alternative quantifications by other tech-

niques of a posteriori error estimation are discussed in Section 4.9 below. Doing
so, for simplicity, we consider only the case given by the following assumption.

Assumption 4.44 (discrete coe�cients and discrete functionals) Suppose that
the coe�cients G and 2 in (2.5) are discrete and choose the degrees (<1,<2) of the
discrete functionals in FT according to Lemma 4.37 (data oscillation reduction for
discrete coe�cients).

For nondiscrete coe�cients, one essentially has to invoke Lemma 4.39 (surrog-
ate data oscillation reduction) instead of Lemma 4.37 in order to reduce to data
oscillation.

We shall employ the bisection method in order to refine the mesh. Since this
method is based upon the subdivision of elements, it is convenient to split the
estimator into contributions associated with elements and not with vertices as in
Sect. 4.6.

To define the modified residual estimator, we recall the representation (4.35)
of the ��1-projection %T , and we use Assumption 4.44 (discrete coe�cients and
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discrete functionals) to set

E
2
T

:=
’
) 2T

ET())2 with

ET())2 := ET(DT , 5 ,))2 := [T(DT ,))2
+ oscT( 5 ,))2

,

[T(DT ,))2 := ⌘)
’

� ⇢m) \m⌦

k [[GrDT]] · n� � %� 5 k
2
!

2(� )

+ ⌘
2
)
k%) 5 � 2DT + div(GrDT)k2

!
2() ),

oscT( 5 ,))2 := k 5 � %T 5 k
2
�
�1(l) ).

(4.52)

Clearly, this is a variant of the standard residual estimator in (4.10), where the
main di�erences are given by the corrections %� 5 , � 2 F , of the jump residual
and the replacement of 5 |) by %) 5 , ) 2 T , in the PDE indicator. As shown
by the following theorem and remarks, the modification leads to more accurate
a posteriori bounds.

Theorem 4.45 (modified residual estimator) Under Assumption 4.44, the modi-
fied residual estimator (4.52) is equivalent to the error: more precisely, we have

⇠!ET  kr(D � DT)k
!

2(⌦)  ⇠*ET ,

where the constants⇠* � ⇠! > 0 depend only on the coe�cients (G, 2), the shape
regularity coe�cient f from (3.9), the polynomial degree =, and 3.

Proof. To derive the upper bound, we use the ones of Lemma 4.1 (error and
residual), Corollary 4.6 (star localization of residual norm), Lemma 4.35 (split-
ting of local residual norms), Corollary 4.30 (quantifying ��1-norms of discrete
functionals) with stars and obtain

kr(D � DT)k2
!

2(⌦) . k'T k
2
�
�1(⌦) .

’
I2V

k'T k
2
�
�1(lI )

.
’
I2V

E
abs
T

(I)2 =
’
I2V

[
abs
T

(DT , I)2
+

’
I2V

oscT( 5 , I)2

.
’
I2V

’
) 2TI

[T(DT ,))2
+

’
I2V

oscT( 5 , I)2

with TI = {) 2 T | ) 3 I}. As a given mesh element appears in the star meshes
TI for at most 3 + 1 vertices, we have’

I2V

’
) 2TI

[T(DT ,))2
 (3 + 1)

’
) 2T

[T(DT ,))2

for the first sum and Lemma 4.8 (localization re-indexing) yields’
I2V

oscT( 5 , I)2 .
’
) 2T

oscT( 5 ,))2
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for the second sum. Inserting the last two inequalities in the previous one, we
conclude the upper bound:

kr(D � DT)k2
!

2(⌦) .
’
) 2T

[T(DT ,))2
+

’
) 2T

oscT( 5 ,))2 =
’
) 2T

ET())2
.

To show the lower bound, fix a mesh element ) 2 T . Applying the local lower
bounds in Corollary 4.30, Lemma 4.28 (local ��1 stability) and Lemma 4.1 on the
local meshed subdomain el) defined in (3.12) yields for the PDE indicator

[T(DT ,)) . k%T'T k��1( el) ) . k'T k��1( el) ). (4.53)

In the case of the oscillation indicator, we exploit �2DT + div(GrDT) 2 FT with
the help of Lemma 4.25 (algebraic properties) and apply Lemma 4.28 on the local
meshed subdomain l) :

oscT( 5 ,)) = k 5 � %T 5 k��1(l) ) = k(� � %T)'T k��1(l) ) . k'T k��1(l) ).

Thanks to el) ⇢ l) , combining the last two inequalities gives the desired local
lower bound

ET())2 = [T(DT ,))2
+ oscT( 5 ,))2

. k'T k��1( el) ) + k'T k��1(l) ) . k'T k��1(l) ).
(4.54)

As the number of patchesl) ,) 2 T , containing a given mesh element is uniformly
bounded by 3 and the shape regularity coe�cient f, summing this bound over all
mesh elements yields the global lower bound’

) 2T

ET())2 .
’
) 2T

k'T k
2
�
�1(l) ) . kr(D � DT)k2

!
2(⌦)

with the help of Lemma 4.5 (localization of ��1 norm) and Lemma 4.1. Thus the
equivalence of error and estimator is established.

A detailed comparison of the modified residual estimator with the standard one
is in order.

Remark 4.46 (modified vs standard residual estimator) We compare the mod-
ified residual estimator (4.52) with the standard one given by (4.10a) and the local
split indicators (4.22). As a common characterizing feature, both residual estimat-
ors use properly scaled !2-norms of jump and element residual, ready for numerical
integration. However, we observe the following di�erences:

• while the modified estimator ET is defined under the natural regularity assump-
tions (4.2), the standard estimatorEstd

T
requires G 2 ,1

1(⌦;R3⇥3) and 5 2 !2(⌦)
in addition;

• while the modified estimator ET is truly equivalent to the error, the standard
estimator may may overestimate it, limited however by Proposition 4.12 (partial
lower bound).
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By the domain test in Remark 4.19 (avoiding overestimation), we know that these
two points are interrelated. However, also the kernel test is at play in the overes-
timation. Indeed, revisiting the proof of Theorem 4.9 (upper bound with standard
residual estimator), we can replace the scaled !2-norms of the element residuals
on a star lI by kA k

�
�1(lI ) and the resulting vertex-oriented variant of the residual

estimator with unsplit local indicators is defined for all 5 2 ��1(⌦). Overestim-
ation can, however, still occur non-asymptotically as well as asymptotically; cf.
[Cohen et al. 2012]. Indeed, in the case of the Poisson equation and linear finite
elements, the kernel test is obviously not satisfied. This shows that the splitting in
jump and element residual is quite delicate and highlights the crucial role of the
modifications of the standard residual estimator: not only do they allow for stability
in line with Remark 4.34 (stability of approximation) but also imply the kernel test.

To conclude this comparison, let us illustrate the second point of Remark 4.43
(surrogate data oscillation), namely that surrogates should be applied last. Using
(4.47) in Remark 4.32 (approximating functions), we may replace in the modified
residual estimator the��1-oscillation oscT( 5 ) by the standard oscillation oscstd

T
( 5 ),

which can be readily approximated with numerical integration. Doing so, we first
split the residual with %T and then apply ⇧T to obtain the surrogate. Note however
that, if we apply ⇧T earlier to split the residual, the crucial modifications will not
appear and, therefore, also the PDE indicator of the standard residual estimator
exhibits overestimation.

4.8 Bounds for corrections and reduction of PDE estimator

In the following sections we shall use the modified residual estimatorET from (4.52)
in adaptive algorithms. In their convergence analyses, not only its relationship with
the error is important, but also its relationship with the norm kr(DT⇤ � DT)k

!
2(⌦)

of (possible) corrections, where DT⇤ is the Galerkin approximation to D over some
refinementT⇤ ofT . This section establishes corresponding upper and lower bounds,
as well as related results about the global PDE indicator

[T(DT , 5 )2 :=
’
) 2T

[T(DT ,))2 (4.55)

and the global oscillation

oscT( 5 )2 :=
’
) 2T

oscT( 5 ,))2
. (4.56)

When it is important to indicate that the oscillations are measured in ��1, we use
the notation

oscT( 5 )�1 and oscT( 5 ,))�1.

Let T⇤ be a conforming mesh that is a refinement of T , i.e. for any element
) 2 T , there exists a submesh T⇤,) of T⇤ such that ) = [{)⇤ : )⇤ 2 T⇤,) }. The



92

Galerkin approximation in VT⇤ is characterized by

DT⇤ 2 VT⇤ : B[DT⇤ ,F] = h 5 ,Fi 8F 2 VT⇤ .

Hence, the discrete solution DT on the original mesh T is not only a Galerkin
approximation to the exact solution D satisfying (2.7) but also to DT⇤ . The norm
kr(DT⇤ � DT)k

!
2(⌦) of the correction therefore can be viewed as the error in ap-

proximating DT⇤ on the mesh T . This viewpoint suggests considering the variant

h'T ,Fi = B[DT⇤ � DT ,F] 8F 2 VT⇤ (4.57)

of the error-residual identity (4.3) and introducing the discrete dual norm

k'T k(VT⇤
)⇤ := sup

F 2VT⇤

h'T ,Fi

krFk
!

2(⌦)
(4.58)

of the residual as a counterpart of k'T k��1(⌦). Arguing as in the proof of
Lemma 4.1 (error and residual), we thus readily obtain the following quantitat-
ive relationship between the correction and the residual.

Lemma 4.47 (correction and residual) If T⇤ is a refinement of the mesh T , the
norm of the correction DT⇤ � DT is equivalent to the discrete residual norm. More
precisely,

1
kBk
k'T k(VT⇤

)⇤  kr(DT⇤ � DT)k
!

2(⌦) 
1
U

k'T k(VT⇤
)⇤

where kBk � U > 0, are, respectively, the continuity and coercivity constant of the
bilinear form B.

We first exploit the upper bound in Lemma 4.47. As the inclusion VT⇤ ⇢ �
1
0(⌦)

implies

k'T k(VT⇤
)⇤  k'T k��1(⌦), (4.59)

Theorem 4.45 (modified residual estimator) immediately yields the upper bound

kr(DT⇤ � DT)k
!

2(⌦)  ⇠*ET(DT , 5 ). (4.60)

This bound however appears to be not accurate in view of the use of (4.59). We
shall sharpen it by following the line of its proof but exploiting the full orthogonality

h'T ,Fi = 0 8F 2 VT (4.61)

with suitably tuned Scott-Zhang interpolation [Scott and Zhang 1990].
In order to prepare the use of this interpolation, denote by N the Lagrange nodes

of order = of the mesh T and by F and F⇤, respectively, the (3 � 1)-dimensional
faces of T and T⇤, including boundary ones. Given a node I 2 N , fix a face �I 2 F
such that �I contains I and the following conditions are met:

I 2 m⌦ =) �I ⇢ m⌦,
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{� 2 F \ F⇤ | � 3 I} < ; =) �I 2 F⇤.

Furthermore, denote by k⇤
I

the polynomial in P=(�I) satisfying

8H 2 N

π
�I

k
⇤

I
kH = XHI ,

where {kH}H2N is the Lagrange basis of S=,0
T

, and define

�TF =
’
I2N

✓π
�I

k
⇤

I
F

◆
kI . (4.62)

The two conditions on the fixed face �I then ensure, respectively,

F 2 �
1
0(⌦) =) �TF 2 VT , (4.63a)

F 2 VT⇤ and ) 2 T \ T⇤ =) �TF = F on ) . (4.63b)

In particular, ifF 2 VT⇤ , its approximation �TF 2 VT is an admissible test function
and coincides with F whenever possible. Finally, �T has the following stability and
approximation properties, where the hidden constants depend only on 3, =, and the
shape regularity coe�cient f: for any element ) 2 T and any face � 2 F ,

kr�TFk!2() ) . krFk!2(l) ), (4.64a)

kF � �TFk!2() ) . ⌘) krFk!2(l) ), (4.64b)

kF � �TFk!2(� ) . ⌘
1
2
�
krFk

!
2(l� ). (4.64c)

The sharpening of the simple upper bound (4.60) lies in the fact that only a part
of the estimator in (4.52) will be invoked. To formulate this, we define

ET(DT , 5 , eT ) :=

0

@
’
) 2eT

ET(DT , 5 ,))2

1

A
1/2

(4.65)

where eT ⇢ T is a subset of elements in T . In the same vein, we shall denote
[T(DT , 5 , eT ) and oscT( 5 , eT ).

Theorem 4.48 (upper bound for corrections) Let Assumption 4.44 hold and let
T⇤ be a refinement of the mesh T . The correction DT⇤ � DT is bounded in terms of
the indicators of the refined elements T \ T⇤:

kr(DT � DT⇤)k!2(⌦) 
e
⇠*ET

�
DT , 5 ,T \ T⇤

�
,

where the constant e
⇠* > 0 depends only on the dimension 3, the coe�cients G

and 2, the polynomial degree =, and the shape regularity coe�cient f from (3.9).

Proof. 1 Localization and splitting of the residual norm. In light of Lemma 4.47,
it su�ces to bound the discrete residual norm k'T k(VT⇤

)⇤ . Given F 2 VT⇤ , we
prepare the localization of the residual by full orthogonality (4.61) and split it with
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help of the projection %T on discrete functionals:

|h'T ,Fi | = |h'T ,F � �TFi |

 |h%T'T ,F � �TFi | + |h 5 � %T 5 ,F � �TFi |,

where we used the identity ' � %T' = 5 � %T 5 in the last step. In light of

ET(DT , 5 ,T \ T⇤)2 = [T(DT , 5 ,T \ T⇤)2
+ oscT( 5 ,T \ T⇤)2

,

it remains to bound the two terms with discretized residual %T'T and the oscillation
of 5 appropriately.

2 Bounding the discretized residual. We adopt the notation (4.35) for the
densities of %T , and exploit the piecewise nature of the discretized residual and the
local invariance (4.63b) of �T to deduce

h%T'T ,F � �TFi

=
’

) 2T\T⇤

0

@
π
)

(%) 'T)(F � �TF) +
1
2

’
� ⇢m) \m⌦

π
�

(%�'T)(F � �TF)

1

A .

Invoking the local approximation properties (4.64b) and (4.64c) of �T leads to the
desired bound for the discretized residual:

|h%T'T ,F � �TFi | .
’

) 2T\T⇤

[T(DT , 5 ,)) krFk
!

2(l) )

. [T
�
DT , 5 ,T \ T⇤

�
krFk

!
2(⌦).

3 Bounding the oscillation. We need to split the oscillation into suitable local
contributions and first proceed similarly to the proof of Lemma 4.5 (localization
�
�1 norm) (i). Writing

F � �TF =
’
I2V

(F � �TF)qI and ⌦0 :=
ÿ

) 2T\T⇤

) ,

we have (F � �TF)qI 2 �1
0(lI \⌦0) thanks to (4.63b) and, for any ) ⇢ lI \⌦0

kr
�
(F � �TF)qI

�
k
!

2() )  kqIr(F � �TF)k
!

2() ) + k(F � �TF)rqI k!2() )

 kr(F � �TF)k
!

2() ) + ⇠(3)fkrFk
!

2(l) )

. krFk
!

2(l) )

by means of 0  qI  1, |rqI |  ⇠(3)f⌘�1
)

, (4.64a), and (4.64b). Hence, we get

|h 5 � %T 5 ,F � �TFi | 

’
I2V

|h 5 � %T 5 , (F � �TF)qIi |



’
I2V

k 5 � %T 5 k��1(lI\⌦0)kr
�
(F � �TF)qI

�
k
!

2(lI\⌦0)

.
’
I2V

k 5 � %T 5 k��1(lI\⌦0)krFk!2([) ✓lI\⌦0l) )
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.

 ’
I2V

k 5 � %T 5 k
2
�
�1(lI\⌦0)

!1/2

krFk
!

2(⌦).

Since ’
I2V

k 5 � %T 5 k
2
�
�1(lI\⌦0) 

’
) 2T\T⇤

k 5 � %T 5 k
2
�
�1(l) ),

the oscillation of 5 is therefore bounded by

|h 5 � %T 5 ,F � �TFi |  oscT( 5 ,T \ T⇤)krFk!2(⌦)

and the proof is complete.

Proposition 4.12 (partial lower bound) as well as Lemma 4.35 (splitting of local
residual norm) illustrate that the test spaceV+

T
is closely related to lower bounds for

the error. This observation suggests establishing lower bounds for the correction
kr(DT � DT⇤)k!2(⌦) by ensuring conditions like

V+(Tl) ⇢ V(T⇤),

where l is a T -mesh subdomain. Inspecting the construction of V+

T
, we realize

that such conditions can be achieved if max{<1,<2}  = � 1 and the cut-o� is
implemented with hat functions of a virtual refinement of T .

Lemma 4.49 (cut-o� by refined hat functions) Let T+ be the minimal bisection
refinement of T such that the relative interior of each element ) 2 T and each face
� 2 F of the original mesh T contains at least one vertex from T+. Then there exist
hat functions q) , ) 2 T , and q� , � 2 F , in S1,0(T+) satisfying Assumption 4.21 if
max{<1,<2}  = � 1.

Proof. The details of the proof depend on bisection and we therefore restrict to
the case 3 = 2; for 3 > 2, the following reference situation used to define the
hat functions is replaced by several ones with “tagged” reference simplices. Letb) = )2 be the reference element in R2 with the standard enumeration of its verticesbI0 = 0,bI1 = 41, andbI2 = 42. Furthermore, let bT+ be the mesh obtained by applying
5 bisections so that vertices in the interiors of b) and of its faces are generated.
Denote by bqb) , bq� 0, � 0 ⇢ b) , the four hat functions in S1,0(bT+) associated with these
generated vertices. Given an arbitrary element ) 2 T , let �) denote the bi-a�ne
map ) ! b) preserving the numbering of the vertices for bisection and define the
pull-backs

q) := �⇤
)

�bqb)
�
, q� |) := �⇤

)

�bq�) (� )
�
, � ⇢ ) ,

and extend by 0 o�) orl� . As the extension operators ⇢� preserve the polynomial
degree, see Lemma 4.20 (extending from faces), max{<1,<2}  = � 1, and�

�
�1
)

(b)+) | b)+ 2 bT+ =
�
)+ 2 T+ | )+ ⇢ )

 
,
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the hat functions q) , ) 2 T , and q� , � 2 F , then satisfy Assumption 4.21 with
⌧) = ��1

)
and S+ = S=,0(bT+).

Definition 4.50 (interior vertex property) A mesh element ) 2 T satisfies the
interior vertex property with respect to T⇤ � T whenever each interior face � ⇢
m) \ m⌦ of ) and each element in el) (defined in (3.12)) have in their relative
interiors at least one vertex from T⇤.

A set M ⇢ T satisfies the interior vertex property with respect to a refinement
T⇤ � T if each element ) 2M satisfies the interior vertex property.

The interior vertex property is valid upon enforcing a fixed number 1 of bisections
(1 = 3, 6 for 3 = 2, 3). An immediate consequence is the following lower bound
for corrections.

Theorem 4.51 (lower bound for corrections) Suppose G is piecewise constant
over T and 2 = 0, define %T with the help of the cut-o� functions in Lemma 4.49,
and denote by M the subset of elements in T satisfying the interior vertex property
with respect to T⇤. Then’

) 2M

ET(DT , 5 ,))2
 ⇠kr(DT � DT⇤)k

2
!

2(⌦) +
’
) 2M

k 5 � %T 5 k
2
�
�1(l) ),

where ⇠ depends on 3, the shape regularity coe�cient f, the coe�cients (G, 2),
and on the polynomial degree =.

Proof. 1 We first show a local bound with the PDE indicator [T(DT ,)). In view
of G 2 S0,�1

T
and 2 = 0, we choose <1 = = � 1 and <2 = = � 2 as the degrees for

the discrete functionals. We can thus apply Lemma 4.49 and construct %T with
the refined hat functions. Let ) 2 M and so, using the interior vertex property
and the notation associated with el) in (3.12), we deduce V+(eT) ) ⇢ V(T⇤,)) :=
V(T⇤) \ �1

0(el) ), where eT) := {) 2 T | ) ⇢ el) }. Combining this with inequality
(4.45) and Definition 4.24 (projection onto discrete functionals), we conclude

[T(DT ,)) . k%T'T kV+(eT) )⇤ = k'T kV+(eT) )⇤  k'T kV(T⇤,) )⇤ .

2 To collect the local bounds of the first step, we first show that, for any
✓ 2 V(T⇤)⇤, ’

) 2T

k✓k
2
V(T⇤ ,) )⇤

 (3 + 2)k✓k2V(T⇤)⇤ .

To this end, we just repeat the proof of Lemma 4.5 (localization of ��1-norm),
replacing the spaces �1

0(l8) and �
1
0(⌦), respectively, with V(T⇤,)) and V(T⇤).

Hence, squaring and summing the bound of the first step as well as using Lemma 4.1
(error and residual) yield’

) 2M

[T(DT ,))2 .
’
) 2M

k'T k
2
V(T⇤,) )⇤ . kr(DT⇤ � DT)k2

!
2(⌦). (4.66)



AFEM 97

3 We finally prove the claimed bound by simply inserting (4.66):’
) 2M

ET(DT , 5 ,))2 =
’
) 2M

�
[T(DT ,))2

+ oscT( 5 ,))2�

 ⇠kr(DT⇤ � DT)k2
!

2(⌦) +
’
) 2M

oscT( 5 ,))2

and the proof is finished.

Remark 4.52 (oscillation and correction) In general, fixing first the finer mesh
T⇤, it is impossible to bound oscillation indicators oscT( 5 ,)) by some suitable
correction. Indeed, these indicators can contain contributions to 5 and so to 'T of
“arbitrarily high frequency”, while the correction can control only contributions of
the residual 'T with frequencies representable over T⇤; cf. (4.58).

Monotonicity properties of the error |D � DT |� 1
0 (⌦) = kr(D � DT)k

!
2(⌦) and the

PDE error estimator [T(DT) = [T(DT , 5 ) with respect to T would be useful but fail
to hold. To investigate this issue, we consider two admissible meshes T ,T⇤ 2 T,
the latter being a refinement of the former T⇤ � T , and a third admissible meshbT  T . We further assume that data D = (G, 2, 5 ) is discrete over bT in the sense
that D 2 DbT where

DbT :=
⇥
S=�1,�1bT

⇤
3⇥3
⇥ S=�1,�1bT ⇥ FbT

and D does not change in the transition from T to T⇤ irrespective of the degree of
local refinement; in particular 5 = %bT 5 2 FbT . We will later denote discrete data

as bD = (bG,b2, b5 ) to distinguish it from exact data D, and to study their discrepancy,
but we prefer to keep the simple notation D = bD now because there is no reason
for confusion. In particular, this implies that the bilinear form in (2.8) and forcing
function are the same for both Galerkin solutions DT 2 VT and DT⇤ 2 VT⇤ , whence
the energy errors are monotone according to (3.8)

|||D � DT⇤ |||⌦  |||D � DT |||⌦,

but not |D � DT |� 1
0 (⌦). Moreover, [T(DT) is not monotone because the discrete

solution DT 2 VT changes with the mesh. It is thus useful to quantify the behavior
of [T(DT) in terms of T and DT following [Cascón et al. 2008]; see also [Morin,
Siebert and Veeser 2008]. We do this next.

The first lemma exploits the structure of the PDE residual estimator, namely the
presence of a positive power of the local meshsize, and expresses the reduction
of [T⇤(E, 5 ) relative to [T(E, 5 ) for fixed functions E 2 VT and 5 2 FT . This
quantitative property is instrumental in studying convergence of AFEMs for coercive
problems in Section 6 as well as discontinuous Galerkin methods in Section 9 and
inf-sup stable problems in Section 10.

Lemma 4.53 (reduction property of the estimator) If the elements of M ⇢ T
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are bisected at least 1 � 1 times to refine T into T⇤, and _ = 1 � 2�1/3 , then

[T⇤(E, 5 ,T⇤)
2
 [T(E, 5 ,T )2

� _ [T(E, 5 ,M)2
8E 2 VT , 5 2 FT . (4.67)

Proof. Given ) 2 T , we rewrite (4.52) as follows

[T(E,))2 = ⌘) 9T(E,))2
+ ⌘

2
)
AT(E,))2

with [T(E,)) = [T(E, 5 ,)) and

9T(E,))2 = 9T(E, 5 ,))2 =
’
� 2F

� ⇢m)

k [[GrE]] · n� � %T 5 k
2
!

2(� ),

AT(E,)) = AT(E, 5 ,)) =k%T 5 + div(GrE) � 2Ek
!

2() ),

where 5 = %T 5 = %T⇤ 5 2 FT does not change from T to T⇤. We readily have’
)⇤ 2T⇤, )⇤ ✓)

[T⇤(E,)⇤)
2
 [T(E,))2

.

because ⌘)⇤  ⌘) for all )⇤ ⇢ ) and )⇤ 2 T⇤. If, in addition, ) is bisected at least
1 times, then any such )⇤ satisfies ⌘)⇤  2�

1
3 ⌘) , whence’

)⇤ 2T⇤, )⇤ ✓)

[T⇤(E,)⇤)
2
 2�

1
3 [T(E,))2

.

Therefore, adding over ) 2 T we obtain

[T⇤(E)
2 =

’
) 2T

’
)⇤ 2T⇤, )⇤ ✓)

[T⇤(E,)⇤)
2
 2�

1
3

’
) 2M

[T(E,))2
+

’
) 2T\M

[T(E,))2

which implies the assertion (4.67).

The next result complements Lemma 4.53 in that it expresses the Lipschitz
continuity of [T(E, 5 ) with respect to the argument E 2 VT for fixedT and 5 2 FT .

Lemma 4.54 (Lipschitz property of the estimator) Let T and 5 2 FT be fixed.
There exists a constant ⇠Lip proportional to k�k!1(⌦) + k2k!1(⌦) such that

|[T(E, 5 ) � [T(F, 5 )|  ⇠Lip |E � F |� 1
0 (⌦) 8E,F 2 VT . (4.68)

Proof. Since [T(E) = [T(E, 5 ) is the ✓2-norm of the vector ([T(E,)))) 2T 2 R#T ,
applying the triangle inequality gives��
[T(E) � [T(F)

��2  ’
) 2T

��
[T(E,)) � [T(F,))

��2



’
) 2T

⌘)

��
9T(E,)) � 9T(F,))

��2 + ⌘2
)

��
AT(E,)) � AT(F,))

��2
.

We first consider the jump terms and apply again the triangle inequality followed
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by an inverse estimate to find that��
9T(E,)) � 9T(F,))

��2  ’
� 2F

� ⇢m)

k [[Gr(E � F)]] · n� k2
!

2(� )

. ⌘�1
)
kGk2

!
1(⌦)kr(E � F)k2

!
2(l) ),

where l) is the patch of ) . A similar reasoning for the element residuals yields��
AT(E,)) � AT(F,))

��2 . k2(E � F)k2
!

2() ) + k div(Gr(E � F))k2
!

2() )

. k2k2
!
1(⌦)k(E � F)k2

!
2() ) + ⌘

�2
)
kGk2

!
1(⌦)kr(E � F)k2

!
2() ),

because � is piecewise polynomial. Finally, adding over ) 2 T and applying
Lemma 2.2 (first Poincaré inequality) concludes the proof.

Since the estimator [T(E, 5 ) depends explicity on %T 5 , and %T 5 may change
with T , it is crucial to account for the variations of [T(E, 5 ) while keeping T and
E 2 VT fixed. This is the purpose of our next result.

Lemma 4.55 (estimator dependence on discrete forcing) Let T and E 2 VT be
fixed. Then there exists a constant ⇠Lip such that

|[T(E, 5 ) � [T(E, 6)|  ⇠Lip

 ’
) 2T

k 5 � 6k
2
�
�1(l) )

!1/2

8 5 , 6 2 FT . (4.69)

Proof. We proceed elementwise, as in Lemma 4.54, except that after applying the
triangle inequality we end up with the weighted !2-norms

⌘
2
)
k 5 � 6k

2
!

2() ) + ⌘) k 5 � 6k
2
!

2(m) ), 8) 2 T .

Extending these norms to patches l) and its interior faces f) , and appealing to
Corollary 4.30 (quantifying ��1-norms of discrete functionals), we deduce

⌘
2
)
k 5 � 6k

2
!

2(l) ) + ⌘) k 5 � 6k
2
!

2(f) ) ⇡ k 5 � 6k
2
�
�1(l) ),

Adding over ) 2 T finishes the proof.

In the subsequent applications of Lemma 4.54 the discrete coe�cients (G, 2) may
change with the change of the supporting mesh bT but they will always be uniformly
bounded in !1(⌦); hence the constant ⇠Lip is uniformly bounded as well. Upon
combining Lemmas 4.53, 4.54 and 4.55 we obtain the following crucial property.

Proposition 4.56 (estimator reduction) Given T 2 T and a subset M ⇢ T of
elements marked for refinement, let REFINE be the procedure discussed in Section
3.5 that bisects the elements of M at least 1 times and T⇤ = REFINE

�
T ,M

�
be

the resulting conforming mesh. Let the coe�cients (G, 2) be discrete and fixed.
Then for _ = 1� 2�1/3 , for all E 2 VT , E⇤ 2 VT⇤ , 5 2 FT , 5⇤ 2 FT⇤ , and any X > 0

[T⇤(E⇤, 5⇤,T⇤)
2
 (1 + X)

�
[T(E, 5 ,T )2

� _ [T(E, 5 ,M)2�
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+ 2(1 + X
�1)⇠2

Lip

 

|E⇤ � E |
2
�

1
0 (⌦)

+

’
)⇤ 2T⇤

k 5⇤ � 5 k
2
�
�1(l)⇤ )

!

,

where ⇠Lip is the constant in Lemmas 4.54 and 4.55.

Proof. For any X > 0, write

[T⇤(E⇤, 5⇤,T⇤)
2
 (1 + X)[T⇤(E, 5 ,T⇤)

2
+
�
1 + X

�1��
[T⇤(E⇤, 5⇤,T⇤) � [T⇤(E, 5 ,T⇤)

�2

and apply Lemma 4.53 to the first term and Lemmas 4.54 and 4.55 to the second
one combined with a triangle inequality.

We finish this section by investigating the behavior of the global oscillation under
refinement.

Lemma 4.57 (quasi-monotonicity of oscillation) If 5 2 ��1(⌦) and T ,T⇤ 2 T
with T⇤ � T , then

oscT⇤( 5 )  ⇠osc oscT( 5 ),

where ⇠osc depends only on the shape regularity coe�cient f and 3.

Proof. Given ) 2 T , let )⇤ 2 T⇤ such that )⇤ ⇢ ) . Since T⇤ is a refinement of T ,
this implies that the patch lT⇤()⇤) in T⇤ around )⇤ is contained in the patch lT())
in T around ) . Thanks to Lemma 4.31 (local near-best approximation), we derive

oscT⇤( 5 ,)⇤)
2 = k(� � %T⇤) 5 k

2
�
�1(lT⇤

()⇤))
 ⇠

2
lStbk(� � %T) 5 k2

�
�1(lT⇤

()⇤))

and therefore, with the help of (ii) of Lemma 4.5 (localization of ��1-norm),’
)⇤ ⇢)

oscT⇤( 5 ,)⇤)
2
 ⇠

2
lStb⇠ovrlk(� � %T) 5 k2

�
�1(lT () )) = ⇠

2
lStb⇠ovrl oscT( 5 ,))2

,

where⇠ovrl is bounded in terms of the shape regularity coe�cient f and 3. Hence,
summing over ) 2 T yields

oscT⇤( 5 )
2 =

’
) 2T

’
)⇤ ⇢)

oscT⇤( 5 ,)⇤)
2
 ⇠

2
lStb⇠ovrl oscT( 5 )2

and the proof is finished.

4.9 Alternative estimators

In Sect. 4.7 we used the ��1-projection %T to derive a posteriori bounds for the
error in the spirit of the standard residual estimator. The goal of this section is to
illustrate that the approach with %T can be combined also with other techniques of
a posteriori error estimation, generalizing and expanding the discussion in [Kreuzer
and Veeser 2021, Sect. 4] with the ��1-projection %T .

Alternative techniques have been developed with the desire to reduce or even
circumvent that constants spoil the relationship between error and estimator. In the
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framework of the aforementioned approach, we shall see that the various techniques
based upon

• local (discrete) problems,
• hierarchy,
• flux equilibration

amount to di�erent ways of quantifying a local norm of the discretized residual
%T'T . This observation is useful for comparing the techniques and for a common
treatment in the following sections about adaptive algorithms.

As in Sect. 4.7 on modified residual estimation, we shall consider only the case
given by Assumption 4.44 (discrete coe�cients and discrete functionals). For the
hidden constants in the results of this section, it is useful to keep in mind Remark 4.4
(constants in error-residual relationship).

Theorem 4.45 (modified residual estimator) analyzed an element-indexed version
of the residual estimator. For the sake of simplicity, we shall refrain here from such
an element-indexed setting and remain in the vertex-indexed setting of the abstract
analysis of Sect. 4.6. In order to facilitate the comparison with the other estimators
below, we o�er the following vertex-indexed variant of Theorem 4.45. For I 2 V,
we set FI := {� 2 F | I 2 �} and TI := {) 2 T | I 2 )}. Given the Galerkin
approximation DT from (4.1), define the PDE indicator by

[
res
T

(DT) :=
’
I2V

[
res
T

(DT , I)2 with

[
res
T

(DT , I)2 :=
’
� 2FI

⌘� k%�'T k
2
!

2(� ) +
’
) 2TI

⌘
2
)
k%) 'T k

2
!

2() ),
(4.70a)

where 'T = 5 + div(GrDT) � 2DT 2 ��1(⌦) is the residual and %� , � 2 F

and %) , ) 2 T yield the polynomial densities of %T ; see Definition 4.24. The
vertex-indexed modified residual estimator is then

E
res
T

:= E
res
T

(DT , 5 )2 := [res
T

(DT)2
+ oscT( 5 )2

. (4.70b)

Theorem 4.58 (vertex-indexed modified residual estimator) Suppose Assump-
tion 4.44. The modified residual estimator (4.70b) is equivalent to the error:

min{1,⇠L,res}

⇠
¢

lStb⇠3
E

res
T
. kr(D � DT)k

!
2(⌦) . max{1,⇠U,res}⇠3⇠locE

res
T
,

while its PDE indicator (4.70a) is locally equivalent to the discretized residual: for
all vertices I 2 V,

⇠L,res[
res
T

(DT , I)  k%T'T k��1(lI )  ⇠U,res[
res
T

(DT , I).

Here, ⇠L,res and ⇠U,res are the hidden constants of Corollary 4.30 on stars, ⇠¢lStb
is the stability constant of %T on stars from Lemma 4.28, ⇠loc is the constant
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from Corollary 4.6, ⇠3 =
p

2(3 + 1), and the hidden constants depend only on the
error-residual relationship in Lemma 4.1.

Proof. Local equivalence is a reformulation of Corollary 4.30 (quantifying ��1-
norms of discrete functionals) on stars. The global bounds follow by combining
local equivalence with Lemma 4.1 (error and residual), Corollary 4.6 (star localiz-
ation of residual norm), and Lemma 4.35 (splitting of local residual norms).

Adjoint projection
The projection %T relates residual 'T and discretized residual %T'T . In order to
exploit this relationship on the test space �1

0(⌦), we shall need the adjoint %⇤
T

to
the projection %T . Curiously, operators employed in this vein appeared first; see,
e.g., [Morin, Nochetto and Siebert 2003] and [Veeser 2002].

Given F 2 �1
0(⌦), the function %⇤

T
F can be directly defined by requiring

%
⇤

T
F 2 V+

T
: h✓, %

⇤

T
Fi = h✓,Fi 8✓ 2 FT (4.71)

This definition is well-posed thanks to Lemma 3.1 (discrete inf-sup condition)
and Lemma 4.25 (algebraic properties), especially (4.37) and (4.38). Clearly,
%
⇤

T
is a linear projection onto the finite-dimensional subspace V+

T
⇢ �

1
0(⌦). A

representation as interpolation operator will be derived in Corollary 4.61 below.
Using both definitions of %T and %⇤

T
, we see that they are actually adjoint:

h%T✓,Fi = h%T✓, %
⇤

T
Fi = h✓, %⇤

T
Fi 8✓ 2 �

�1(⌦), F 2 �1
0(⌦). (4.72)

Consequently, Lemmas 4.25 and 4.28 (local ��1 stability) show that %⇤
T

is a local
operator with

k%
⇤

T
k
L(� 1

0 (l)) = k%T kL(��1(l))  ⇠lStb. (4.73)

The choice ✓ = 'T in (4.72) leads to

h%T'T ,Fi = h%T'T , %
⇤

T
Fi = h'T , %

⇤

T
Fi 8F 2 �

1
0(⌦),

where the two identities show that the discretized residual %T'T can be analyzed
with discrete test functions in V+

T
only, cf. the norm equivalence in Lemma 4.28.

Restricting to discrete test functions in V+

T
= Im %

⇤

T
, we obtain:

h%T'T ,Fi = h'T ,Fi 8F 2 V
+

T
. (4.74)

An estimator based upon local problems
Local dual norms can be quantified by solving local problems. Requiring com-
putability of these solutions leads to finite-dimensional or discrete local problems.
In other words, we lift the residual to local and finite-dimensional extensions of
the finite element space. Starting with [Babu�ka and Rheinboldt 1978], this idea
was used to soften the impact of constants in the relationship between error and
estimator; cf. [Verfürth 2013, Remark 1.22] for more references.

Within the approach of Sections 4.1 and 4.6, we can use local discrete problems
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to quantify the local ��1-norms of the discretized residual %T'T . In this manner,
constants arise only due to the localization of the residual norm and to the splitting
into discretized and oscillatory residual by the ��1-projection %T .

We start by introducing the vertex-oriented PDE indicator. Given the Galerkin
approximation DT from (4.1), set

[
lpb
T

(DT) :=
’
I2V

[
lpb
T

(DT , I)2 with [
lpb
T

(DT , I) := krEI k!2(lI ), (4.75a)

where EI 2 V+(TI) is the solution of the local problemπ
lI

rEI · rF = h'T ,Fi 8F 2 V
+(TI). (4.75b)

Note that this problem is discrete for dimV+(TI) < 1 and therefore can be solved
up to machine precision. The resulting estimator is then

E
lpb
T

:= E
lpb
T

(DT , 5 )2 := [lpb
T

(DT)2
+ oscT( 5 )2

. (4.75c)

Theorem 4.59 (estimator based on local problems) Under Assumption 4.44 the
estimator (4.75) based on local problems is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound so that

1
⇠
¢

lStb⇠3
E

lpb
T
. kr(D � DT)k

!
2(⌦) . ⇠

¢

lStb⇠3⇠locE
lpb
T

and, for all vertices I 2 V,

[
lpb
T

(DT , I)  k%T'T k��1(lI )  ⇠
¢

lStb[
lpb
T

(DT , I)

where ⇠¢lStb is the stability constant of %T on stars from Lemma 4.28, ⇠loc from
Corollary 4.6, ⇠3 =

p
2(3 + 1) and the hidden constants depend only on the error-

residual relationship in Lemma 4.1.

Proof. It su�ces to show the local equivalence for the PDE indicator; cf. The-
orem 4.58 (vertex-indexed modified residual estimator) and note ⇠¢lStb � 1. Let
I 2 V be any vertex. In view of (4.74), the definition of EI 2 V+(T ) readily
implies

[
lpb
T

(DT , I) = krEI k!2(lI ) = k%T'T kV+(T)⇤ .

Hence Lemma 4.28 on the local ��1-stability of %T yields the asserted local
equivalence of PDE indicator and discretized residual %T'T .

A stable biorthogonal system for FT ⇥ V+

T

Stable biorthogonal systems induce linear bounded projections, which enjoy near-
best approximation thanks to the Lebesgue lemma. Supposing Assumption 4.21
(abstract cut-o�), we now outline the construction of such a system for the finite-
dimensional product FT⇥V+

T
. The constructed system will induce both projections
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%T and its adjoint %⇤
T

. This generalizes the bi-orthogonal system in [Kreuzer
and Veeser 2021, Sect. 3.4] to arbitrary degrees of the discrete functionals and
provides an alternative approach to %T , its local stability as well as its computation.
Furthermore, we use it for devising an hierarchical estimator.

The construction is implemented in an a�ne equivalent manner and our first
step consists in setting-up a suitable reference biorthogonal system. Let b) := )3 be
the reference element, b� := )3�1 ⇥ {0} ⇢ b) be the reference face, and denote the
polynomial degrees in FT by <1 2 N0 and <2 2 N0. Writing

 1 := dimP<1(b�),  2 := dimP<2(b)),

assume that we are given orthonormal bases @( b� ,1), . . . , @( b� , 1) 2 P<1(b�) and

@(b) ,1), . . . , @(b) , 2) 2 P<2(b)) in the sense thatπ
b� @( b� ,:)@( b� ,;)q b� = X:;,

π
b) @(b) ,:)@(b) ,;)qb) = X:; . (4.76)

for all admissible : , ;, i.e. : , ; 2 {1, . . . , 1} or {1, . . . , 2} depending on the
underlying domain. These bases induce the reference functionals

b
✓( b� ,:)(F) :=

π
b� @( b� ,:)F,

b
✓(b) ,:)(F) :=

π
b) @(b) ,:)F,

on �1(b)), which in turn span the reference space bF. In order to define comple-
menting test functions, let b⇢ be the extension operator (4.4) associated with the
reference face b� adapted to the current situation with the only element b) , and,
given some E 2 !2(b)), define b

&E 2 P<2 byπ
b) @
�b
&E

�
qb) =

π
b) @E 8@ 2 P<2 . (4.77)

We thus define the reference test functions

bF(b) ,:) := @(b) ,:)qb) , : = 1, . . . , 2,

bF( b� ,:) := bE( b� ,:) �
�b
&bE( b� ,:)

�
qb) , : = 1, ..., 1,

(4.78)

with bE( b� ,:) :=
�b⇢@( b� ,:)

�
q b� . Note bF( b� ,:) < 0. Writing b� := {(b�, :) | : =

1, . . . , 1} [ {(b) , :) | : = 1, . . . , 2}, we then have

bF8 2 bV+ :=
n�b⇢@1

�
q b� + @2qb) | @1 2 P<1 , @2 2 P<2

o

for all 8 2 b� and the biorthogonality

88, 9 2 b� hb✓8 , bF 9i = X8 9 (4.79)

thanks to (4.76) and (4.77). We thus dispose of a biorthogonal system in the
reference product bF ⇥ bV+.

Using pull-backs with some minor tweaks, this reference biorthogonal system
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induces a global biorthogonal one. To this end, we employ bi-a�ne maps ⌧� ,
⌧) , and ⌧() ,� ). Here, e.g., given a pair () , �) 2 T ⇥ F with � ⇢ ) , the map
⌧() ,� ) is bi-a�ne and sends vertices into vertices such that ⌧() ,� )(b)) = ) and
⌧() ,� )(b�) = �. The fact that these maps are only unique up to some renumbering
of the vertices is irrelevant as all objects in the reference situation on (b) , b�) are
invariant under such renumberings. We denote the respective inverse maps of ⌧� ,
⌧) , and ⌧() ,� ) by �� , �) , and �() ,� ). Motivated by the transformation rule, we
introduce the scaled pull-backs, for � 2 F ,) 2 T , : admissible,

@(� ,:) :=

 
|b� |
|� |

! 1
2

�
⇤

�
@( b� ,:), @() ,:) :=

 
|b) |
|) |

! 1
2

�
⇤

)
@(b) ,:),

(4.80)

of the reference orthonormal bases in (4.76). These lead to the basis

✓(� ,:)(F) :=
π
�

@(� ,:)F, ✓() ,:)(F) :=
π
)

@() ,:)F, (4.81)

of FT , while the associated test functions are given again through pull-backs:

F() .:) :=

 
|b) |
|) |

! 1
2

�
⇤

)
bF(b) ,:), F(� .:) |) :=

 
|b� |
|� |

! 1
2

�
⇤

() ,� )bF( b� ,:) (4.82)

for all ) 2 T , � 2 F with � ⇢ ) and all admissible : . Note that F(� .:) 2 �
1
0(⌦).

Finally, we introduce the index set

� :=
�
F ⇥ {1, . . . , 1}

�
[
�
T ⇥ {1, . . . , 2}

�
.

and observe that F8 2 V+

T
for all 8 2 �.

Lemma 4.60 (biorthogonal system) The pairs (✓8 ,F8), 8 2 �, provide a stable
biorthogonal system of the product FT ⇥V+

T
: indeed, h✓8 ,F 9i = X8 9 for all 8, 9 2 �

and, writing �I := {((, :) 2 � | ( 3 I} for all I 2 V,’
82�I

k✓8 k��1(lI )krF8 k!2(lI )  ⇠
¢

bOS,

where the constant ⇠¢bOS depends only on 3, <1, <2 and the shape regularity
coe�cient f from (3.9).

Proof. 1 We first establish the biorthogonality. Thanks to the transformation
rule, the scaled pull-backs (4.80) indeed form local orthonormal bases of %<1(�),
� 2 F , and %<2()), ) 2 T :π

�

@(� ,:)@(� ,;)q� =
π

b� @( b� ,:)@( b� ,;)q b� = X:; ,
π
)

@() ,:)@() ,;)q) = X:; (4.83)

for all admissible : and ;. This orthonormality, combined with the local supports
of the pairs (✓8 ,F8), 8 2 �, shows the biorthogonality, except for the cases when
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() , �) 2 T ⇥ F with � ⇢ ) and : , ; are admissible. Here transformation rule and
the definition of b

& imply

h✓() ,:),F(� ,;)i =
π
)

@() ,:)F(� ,;) =

 
|) | |b� |
|b) | |� |

! 1
2 π

b) @(b) ,:)bF( b� ,;)

=

 
|) | |b� |
|b) | |� |

! 1
2 π

b) @(b) ,:)

⇣bE( b� ,;) �
�b
&bE( b� ,;)

�
qb)
⌘
= 0

and biorthogonality is verified.

2 It remains to show the stability bound for any vertex I 2 V. Given 8 2 �I , we
have either 8 = () , :) with ) 2 T or 8 = (�, :) with � 2 F . On the one hand, the
functional ✓8 satisfies

k✓() ,:)k��1(lI ) . ⌘) or k✓(� ,:)k��1(lI ) . ⌘
1
2
�

since, by passing to the reference element and using orthonormality (4.83), (a
variant of the) Poincaré inequality (2.2) and the trace inequality on b) , we have

h✓() ,:),Fi =
π
)

@() ,:)F =

 
|) |

|b) |
! 1

2 π
b) @(b) ,:)⌧

⇤

)
F



 
|) |

|b) |
! 1

2

k@(b) ,:)k!2(b) )k⌧
⇤

)
Fk

!
2(b) )

.

 
|) |

|b) |
! 1

2 ✓π
b) |@(b) ,:) |

2
qb)
◆
kr(⌧⇤

)
F)k

!
2(b) ) . ⌘) krFk!2() )

or, with ) 2 T such that ) � �,

h✓(� ,:),Fi =
π
�

@(� ,:)F =

 
|� |

|b� |
! 1

2 π
b� @( b� ,:)⌧

⇤

() ,� )F



 
|� |

|b� |
! 1

2

k@( b� ,:)k!2( b� )k⌧
⇤

() ,� )Fk!2( b� )

.

 
|� |

|b� |
! 1

2 ✓π
b� |@( b� ,:) |

2
q b�
◆
kr
�
⌧
⇤

() ,� )F
�
k
!

2(b) )

.

 
|� | |b) |
|b� | |) |

! 1
2

⌘) krFk!2() ) . ⌘
1
2
�
krFk

!
2() ).
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On the other hand, we obtain that the function F8 verifies

krF() ,:)k!2() ) =

 
|b) |
|) |

! 1
2

kr
�
�
⇤

)
bF(b) ,:)

�
k
!

2() ) . ⌘
�1
)
kbF(b) ,:)k!2(b) ) . ⌘

�1
)

or

krF(� ,:)k!2() ) =

 
|b� |
|� |

! 1
2

kr
�
�
⇤

() ,� )bF(b) ,:)

�
k
!

2() )

. ⌘�1
)

✓
|) |

|� |

◆ 1
2

kbF(b) ,:)k!2(b) ) . ⌘
�

1
2

�
.

Using these inequalities to bound k✓8 k��1(lI )krF8 k!2(lI ), summing over all 8 2 �I
then establishes the stability bound as the cardinality #�I is uniformly bounded in
terms of the shape regularity coe�cient f.

Corollary 4.61 (projections as interpolation operators) The biorthogonal sys-
tem (✓8 ,F8), 8 2 �, induces the ��1-projection %T from Definition 4.24 and its
adjoint %⇤

T
. Indeed, we have

%T✓ =
’
82�

h✓,F8i✓8 and %
⇤

T
F =

’
82�

h✓8 ,FiF8

for all ✓ 2 ��1(⌦) and F 2 �1
0(⌦). The stability of the biorthogonal system then

provides an alternative proof of the ��1-stability on stars of both projection %T

and %⇤
T

, entailing ⇠¢lStb  ⇠
¢

bOS.

Proof. 1 We only show the identity for %T ; the one for %⇤
T

can be verified along
the same lines. The biorthogonality in Lemma 4.60 readily implies*’

82�

h✓,F8i✓8 ,F 9

+
=

’
82�

h✓,F8ih✓8 ,F 9i = h✓,F 9i 8 9 2 � .

As F 9 ,æ 2 � is a basis of V+

T
, we conclude the claimed identity for %T .

2 To verify the stability statement, we again restrict ourselves to the case of
the projection %T . Observe first that the proof of the stability of the biorthogonal
system does invoke the local stability of %T . Thanks to the representation of %T

and the stability of the biorthogonal system in Lemma 4.60, we have

h%T✓,Fi =
’
82�I

h✓,F8ih✓8 ,Fi  ⇠
¢

bOSk✓k��1(lI )krFk!2(lI ),

where �I := {((, :) 2 � |( 3 I}. The proof is finished.

The following two remarks illustrate the practical and theoretical usefulness of
the representation formulae.



108

Remark 4.62 (alternative computation of VT) A by-product of Corollary 4.61
is a way of computing %T✓ for a given functional ✓ 2 ��1(⌦) that “diagonalizes”
the approach in Remark 4.26. In fact, given reference orthonormal bases as in
(4.76), we can compute the functionals ✓8 , 8 2 �, and test functions F8 , 8 2 �, by
means of the formulae (4.78), (4.80), (4.81), (4.82) whence, evaluating h✓,F8i,
8 2 �, everything in the representation of %T✓ in Corollary 4.61 is at our disposal.

Example 4.63 (global instability of VT and V⇤
T) While the projections %T and

%
⇤

T
are locally stable, both may become globally unbounded under mesh refinement.

To see this, recall (4.73), note k%T kL(��1(⌦)) = k%
⇤

T
k
L(� 1

0 (⌦)) and, following the
spirit of an example in [Tantardini et al. n.d.], consider

F :=
’

I2V\⌦

qI 2 �
1
0(⌦).

Then, for all quasi-uniform meshes T with shape regularity coe�cient f, there is
a constant ⇠ depending on f and quasi-uniformity such that

k%
⇤

T
k

2
L(� 1

0 (⌦))
�

kr(%⇤
T
F)k2

!
2(⌦)

krFk2
!

2(⌦)

� ⇠
#{) 2 T | ) \ m⌦ = ;}
#{) 2 T | ) \ m⌦ < ;}

. (4.84)

Obviously, the last term tends to1 under uniform refinement.

To prove (4.84), we proceed in several steps, mostly hiding constants depending on
quasi-uniformity of T and, as usual, the shape regularity coe�cient f and 3.

1 We first bound krFk
!

2(⌦) from above. Noting that

F = 1 on
ÿ

)\m⌦=;

) ,

the bound krqI k!1() ) . ⌘�1
)

readily implies

krFk
2
!

2(⌦) =
’

)\m⌦<;

krFk
2
!

2() ) . #{) 2 T | ) \ m⌦ < ;} ⌘3�2
T

, (4.85)

where ⌘T stands for the meshsize of T .

2 The lower bound for kr(%⇤
T
F)k

!
2(⌦) is more involved. We start by showing

the following representation for any ) 2 T with ) \ m⌦ = ;:

%
⇤

T
F |) = �⇤

)
bE (4.86)

with the fixed function

bE :=
’

(b) ,:)2b�

✓π
b) @(b) ,:)

◆
bF(b) ,:) +

’
(� 0,:)

 
|�
0
|

|b� |
! 1

2 ✓π
b� @( b� ,:)

◆
bF(� 0,:) 8 P0,

where the indices of the second sum vary according to � 0 ⇢ b) , : = 1, . . . , 1 and
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bF(� 0,:) is given by (4.82) with the transformation �(b) ,�
0). Note first that, thanks to

F = 1 on ) and (4.80), the coe�cients in the expansion of %⇤
T
F |) satisfy

h✓() ,:),Fi =
π
)

@() ,:) =

 
|) |

|b) |
!1/2 π

b) @(b) ,:)

and, for any � ⇢ ) ,

h✓(� ,:),Fi =
π
�

@(� ,:) =

 
|� |

|b� |
!1/2 π

b� @( b� ,:).

Combining these identities with (4.82) yields the claimed identity (4.86) and it
remains to verify bE 8 P0. Suppose bE = 2 2 R. As a consequence, for any face
�
0
⇢ b) and : 2 {1, . . . , 1}, we have

2 = bF(� 0,:) = |b� |1/2 |� 0 |�1/2bF( b� ,:) = |b� |1/2 |� 0 |�1/2
2.

As not all faces of the reference simplex have the same volume, this yields 2 = 0.
From (4.78) and (4.76), we infer that the coe�cients in the definition of bE vanish.
In particular,

Ø
b) @(b) ,:) = 0 for all : = 1, . . . , 2 means b

&1 = 0, where b
& is the

operator given in (4.77). This however is a contradiction because the restriction ofb
& to P<2 is injective. Hence, bE 8 P0 is proven.

3 We are ready to show the bound for kr(%⇤
T
F)k

!
2(⌦). Given any element

) 2 T with ) \ m⌦ = ;, we pass to the reference element to exploit the previous
step and obtain

kr(%⇤
T
F)k

!
2() ) = kr(�⇤

)
bE)k

!
2() ) & ⌘

3/2�1
)

krbEk
!

2(b) )

with krbEk
!

2(b) ) > 0 independent of ) . Consequently,

kr(%⇤
T
F)k2

!
2(⌦) �

’
)\m⌦=;

kr(%⇤
T
F)k2

!
2() ) & #{) 2 T | ) \ m⌦ = ;} ⌘3�2

T

because T is quasi-uniform. Combining this lower bound with the upper bound
(4.85) of the first step, we conclude (4.84).

A hierarchical estimator
Like estimators based upon local problems, hierarchical estimators aim at softening
the impact of constants in the lower bound, with the di�erence that they are explicit.
While global higher order extensions were used originally, [Bornemann, Erdmann
and Kornhuber 1996] use an extension tailored to the residual structure and derive
an upper bound with indicators testing the residual with a basis of the extension.
One may expect that such explicit indicators come at the price of increased constants
in the upper bound. For the following example, this expectation is confirmed by
the inequality ⇠¢lStb  ⇠

¢

bOS.
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Given the Galerkin approximation DT from (4.1), the hierarchical PDE indicator
is defined by

[
hier
T

(DT) :=
’
I2V

[
hier
T

(DT , I)2 with [
hier
T

(DT , I) := max
82�I

|h'T ,F8i |

krF8 k!2(lI )
(4.87a)

with � and �I as in Lemma 4.60 (biorthogonal system). Note that the test functions
F8 , 8 2 �, are available, cf. Remark 4.62, and therefore [hier

T
(DT) is explicit. The

resulting estimator is then

E
hier
T

:= E
hier
T

(DT , 5 )2 := [hier
T

(DT)2
+ oscT( 5 )2

. (4.87b)

Theorem 4.64 (hierarchical estimator) Suppose the coe�cients G and 2 are dis-
crete. The hierarchical estimator (4.87) is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound:

1
⇠
¢

lStb⇠3
E

hier
T
. kr(D � DT)k

!
2(⌦) . ⇠

¢

bOS⇠3⇠locE
hier
T

and, for all vertices I 2 V,

[
hier
T

(DT , I)  k%T'T k��1(lI )  ⇠
¢

bOS[
hier
T

(DT , I),

where ⇠¢lStb is the stability constant of %T on stars from Lemma 4.5, ⇠loc from
Corollary 4.6, ⇠3 =

p
2(3 + 1), and the hidden constants depend only on the

error-residual relationship in Lemma 4.1.

Proof. It su�ces to verify the local equivalence for the PDE indicator; cf. The-
orem 4.58 (vertex-indexed modified residual estimation). Its lower bound simply
follows from (4.74): for all 8 2 �I , we have

|h'T ,F8i | = |h%T'T ,F8i |  k%T'T k��1(lI )krF8 k!2(lI ).

To show its upper bound, let F 2 �1
0(lI) and, with the help of Corollary 4.61

(projections as interpolation operators) and Lemma 4.60 (biorthogonal system),
we derive

h%T'T ,Fi =
’
82�I

h'T ,F8ih✓8 ,Fi



’
82�I

h'T ,F8i

krF8 k!2(lI )
krF8 k!2(lI )k✓8 k��1(lI )krFk!2(lI )

 ⇠
¢

bOS [
hier
T

(DT , I) krFk!2(lI )

and the local equivalence is established.

Remark 4.65 (di�erent test functions) The hierarchical estimator (4.87) does not
generalize the one in [Bornemann et al. 1996] as it uses slightly di�erent test
functions for edges. The given framework however applies to their variant, too; cf.
[Kreuzer and Veeser 2021, Sect. 4.1].
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Alternative localization and residual splitting
Lemma 4.5 (localization of ��1-norm) is not well suited for reducing or avoiding
constants in the upper bounds. The following modification however allows this.

We replace the local spaces �1
0(lI), I 2 V, with

WI :=

(�
F 2 �

1(lI) |
Ø
lI
F = 0

 
, if I 2 V \⌦,�

F 2 �
1(lI) | F = 0 on mlI \ m⌦

 
, if I 2 V \ m⌦,

endow them with the norm kr · k
!

2(lI ), and denote by W⇤
I

the respective dual
spaces endowed in turn with

k✓kW⇤I := sup
�
h✓,Fi | F 2 WI , krFk!2(lI )  1

 
. (4.88)

Lemma 4.66 (alternative localization of N�1-norm) Let ✓ 2 ��1(⌦) be any lin-
ear functional.

(i) If h✓, qIi = 0 for all interior vertices I 2 V \⌦, then

k✓k
2
�
�1(⌦)  (3 + 1)

’
I2V

kqI✓k
2
W⇤I

.

(ii) We have ’
I2V

kqI✓k
2
W⇤I
 (3 + 1)⇠2

lock✓k
2
�
�1(⌦),

where ⇠loc is the constant in Lemma 4.5 (i).

Proof. The proof is essentially a regrouping of the arguments in Lemma 4.5,
where the constant ⇠loc in the stability bound (4.6) now arises in the proof of the
lower bound from the following argument: we have

kqI✓kW⇤I  ⇠lock✓k��1(lI ). (4.89)

thanks to
hqI✓,Fi = h✓, qIFi  k✓k��1(lI )kr(FqI)k!2(lI )

 ⇠lock✓k��1(lI )krFk!2(lI ),

for all F 2 WI .

The question arises whether the inequality (4.89) between the two local dual
norms can be reversed. The following lemma reveals that this is only partially
possible, covering discrete functionals as arguments.

Lemma 4.67 (partial equivalence for local dual norms) If I 2 V \ ⌦ is an in-
terior vertex, the functional ✓ = q�1

I
satisfies

kqI✓kW⇤I = 0 and k✓k
�
�1(lI ) > 0.

Furthermore, for any vertex I 2 V,

k✓k
�
�1(lI )  ⇠FkqI✓kW

⇤
I
8✓ 2 F(TI),
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where the constant ⇠F depends only on 3, the shape regularity coe�cient f, and
the degrees <1 and <2 of the discrete functionals.

Proof. 1 We show the claims on the functional ✓ = q
�1
I

for an interior vertex
I 2 V \⌦. By the definition ofWI , we have, for all F 2 WI ,

hqI✓,Fi =
π
lI

F = 0,

whence qI✓ 2 W⇤I with kqI✓kW⇤I = 0.
To verify that ✓ = q

�1
I
2 �

�1(lI), we write 3I := dist(·, mlI) for the distance
function of the star boundary and shall use the weighted Poincaré inequality

8F 2 �
1
0(lI) kF3

�1
I
k
!

2(lI ) . krFk!2(lI ),

which follows from the Hardy inequality; cf. [Sacchi and Veeser 2006, Lemma 3.6].
Consequently, exploiting also 3I  qI on lI , we obtain, for all F 2 �1

0(⌦),

h✓,Fi =
π
lI

(q�1
I
3I)(F3�1

I
)  |lI |

1/2
kF3

�1
I
k
!

2(lI ) . |lI |
1/2
krFk

!
2(lI ).

This and h✓, qIi = |lI | ensure ✓ 2 ��1(lI) with k✓k
�
�1(lI ) > 0.

2 We start the proof of the asserted inequality by checking that k · k
�
�1(lI ) is

a norm on F(TI). To this end, consider @� 2 P<1(�), � 2 FI and @) 2 P<2()),
) 2 TI such that, for all F 2 �1

0(lI),

0 = h✓,Fi :=
’
� 2FI

π
�

@�F +

’
) 2TI

π
)

@)F.

We need to show ✓ = 0. Testing with F 2 �1
0()), ) 2 TI , the fundamental lemma

of the calculus of variations yields @) = 0 for all ) 2 TI . Similarly, testing now
with F 2 �1

0(l� ), � 2 FI , gives @� = 0 for all � 2 TI . Thus, ✓ = 0 holds.

3 Next, we check that also kqI · kW⇤I is a norm on F(TI). This time, consider
@� 2 P<1(�), � 2 FI and @) 2 P<2()), ) 2 TI such that, for all F 2 WI ,

0 = hqI✓,Fi :=
’
� 2FI

π
�

qI@�F +

’
) 2TI

π
)

qI@)F,

and again, we need to conclude ✓ = 0. If I 2 V \ m⌦ is a boundary node, we
obtain ✓ = 0 by the arguments of the previous step. We are thus left with the
case I 2 V \ ⌦ of interior nodes. Given F 2 �1(lI), we set 2F :=

J

lI
F and

2✓ = |lI |
�1
hqI✓, 1i, and observe

0 = hqI✓,F � 2F i = hqI✓ � 2✓ ,F � 2F i = hqI✓ � 2✓ ,Fi.

Hence, testing with F 2 �1
0()), ) 2 TI , we deduce qI@) = 2✓ on each ) 2 TI .

This is however only possible if 2✓ = 0 and @) = 0 for all) 2 TI . Therefore, testing
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with F 2 �1
0(l� ), � 2 FI , yields @� = 0 for all � 2 FI and ✓ = 0 is established in

general.

4 To conclude the asserted inequality, note that F(TI) has finite dimension and,
for a fixed polynomial degrees <1 and <2, is invariant under continuous piecewise
a�ne transformations. Furthermore, both norms scale in the same manner. We
therefore can pass to reference stars and use there the equivalence of norms in
finite-dimensional spaces. Transforming the inequality back from the reference
star then finishes the proof.

The alternative localization entails that we need to adapt Lemma 4.35 (splitting
of local residual norms). Relying on the local ��1-stability of %T , Lemma 4.67
(partial equivalence for local dual norms) reveals that the adaptation has to be global.

Lemma 4.68 (alternative splitting) Using the local norms k · kW⇤I , I 2 V, the
residual can be split into discretized and oscillatory residual:

1

(⇠¢lStb)2
⇠

2
3
⇠

2
loc

’
I2V

⇣
kqI%T'T k

2
W⇤I

+ kqI(� � %T)'T k
2
W⇤I

⌘

 k'T k
2
�
�1(⌦)  ⇠

2
3

’
I2V

⇣
kqI%T'T k

2
W⇤I

+ kqI(� � %T)'T k
2
W⇤I

⌘
,

where ⇠¢lStb is the stability constant of %T on stars from Lemma 4.28, and ⇠3 =
p

2(3 + 1).

Proof. Combine the localization in Lemma 4.66 with the proof of Lemma 4.35,
replacing the local norm k · k

�
�1(lI ) in most places but apply (4.89) before using

the local ��1-stability of %T .

An estimator based on flux equilibration
Estimators based on flux equilibration have been designed with the goal to obtain
constant 1 in the upper bound. The principal obstruction that computation can
access only a finite-dimensional part of infinite-dimensional objects like the residual
norm is overcome by means of the Prager-Synge theorem. Realizations of this
approach can be found, e.g., in [Ainsworth 2010], [Braess, Pillwein and Schöberl
2009], [Ern, Smears and Vohralik 2017], and [Luce and Wohlmuth 2004].

The definition of the PDE indicator needs some preparation. Let 3 2 {2, 3},
as in the aforementioned works, and let I 2 V be vertex. Given the operator
cI : {qI✓ | ✓ 2 ��1(⌦)}!W⇤

I
defined by

cI(qI✓) :=

8>><
>>:
qI✓ �

h✓, qIi

|lI |
, if I 2 V \⌦,

qI✓, if I 2 V \ m⌦.
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and

WI :=

(
mlI , if I 2 V \⌦,
mlI \ m⌦ if I 2 V \ m⌦,

we introduce the local space DI < ;

DI :=
�
/ 2 !2(lI ;R3) | div / = cI(qI%T'T) and / · n� = 0 on �, 8� ✓ WI

 
,

and its discretization

DI(T ) :=
�
/ 2 DI | / 2 RTN<()) 8) 2 TI

 
with the Raviart-Thomas-Nédélec elements

RTN<()) =
�
/ : ) ! R3 | /(G) = q(G) + @(G)G with q 2 (P<)3 , @ 2 P<

 
of order < := max{<1,<2} + 1. Given the Galerkin approximation DT from (4.1),
the PDE indicator is then given by

[
feq
T

(DT)2 :=
’
I2V

[
feq
T

(DT)2 with [
feq
T

(DT) := min
/2DI (T)

k/k
!

2(lI ) (4.90a)

and the total estimator by

E
feq
T

:= E
feq
T

(DT , 5 )2 := [feq
T

(DT)2
+ kqI( 5 � %T 5 )k2W⇤I . (4.90b)

Note that the local PDE indicators [feq
T

(DT , I) are computable up to machine preci-
sion.

Theorem 4.69 (estimator based on flux equilibration) Suppose that the coe�-
cients G and 2 are discrete and that 3 2 {2, 3}. The estimator (4.90) based on flux
equilibration is equivalent to the error, while its PDE indicator is locally equivalent
to the discretized residual with constant 1 in the upper bound for the k · kW⇤I -norm,
so that

⇠D

⇠
¢

lStb⇠3⇠loc
E

feq
T
. kr(D � DT)k

!
2(⌦) . ⇠3E

feq
T

and, for all vertices I 2 V,

⇠D[
feq
T

(DT , I)  kqI%T'T kW⇤I  [
feq
T

(DT , I)

as well as
⇠D

⇠loc
[

feq
T

(DT , I)  k%T'T k��1(lI )  ⇠F [
feq
T

(DT , I),

where ⇠D depends on 3 and the shape regularity coe�cient f, ⇠¢lStb is the stability
constant of %T on stars from Lemma 4.28, ⇠loc comes from Lemma 4.5, ⇠3 =
p

2(3 + 1), ⇠F from Lemma 4.67. and the hidden constants depend only on the
error-residual relationship in Lemma 4.1.
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Proof. 1 We start by verifying the local equivalence for the k · kW⇤I -norm. Let
I 2 V be any vertex. The Prager-Synge theorem on the star lI implies

kqI%T'T kW⇤I = kcI(qI%T'T)kW⇤I = min
/2DI
k/k

!
2(lI );

cf., e,g, [Verfürth 2013, Proposition 1.40]. Hence the upper bound with constant 1
readily follows the inclusion DI(T ) ⇢ DI , while the lower bound is a consequence
of the nontrivial inequality

⇠D min
/2DI (T)

k/k
!

2(lI )  min
/2DI
k/k

!
2(lI ),

where⇠D depends only on 3 and the shape regularity coe�cientf; cf., e.g., [Braess
et al. 2009, Theorem 7] and [Ern et al. 2017, Theorem 1.1].

2 We verify the local equivalence for the k · k
�
�1(lI )-norm. On the one hand,

combining the first equivalence with (4.89), we obtain

⇠D[
feq
T

(DT , I)  kqI%T'T kW⇤I  ⇠lock%T'T k��1(lI ).

On the other hand, using Lemma 4.67 instead of (4.89) yields

k%T'T k��1(lI )  ⇠FkqI%T'T kW⇤I  ⇠F[
feq
T

(DT , I)

and the equivalence for the k · k
�
�1(lI ) is verified, too.

3 The global bounds follow by combining Lemmas 4.1 (error and residual),
4.68 (alternative splitting in discretized and oscillatory residual), and 4.37 (data
oscillation reduction), as well as the first local equivalence.

Remark 4.70 (improved upper bound) Applying the Prager-Synge theorem on
⌦, we can improve the upper bound in Theorem 4.69 to

kr(D�DT)k
!

2(⌦) . k/⌦k!2(⌦)+
p
3 + 1

 ’
I2V

kcI

�
qI(%T 5 � 5 )

�
k

2
W⇤I

!1/2

(4.91)

with /⌦ :=
Õ
I2V /

I
, where /

I
:= argmin

b 2DI (T) k/k!2(lI ) are the minimizing
vector fields associated with the PDE indicators, extended by 0 o� lI .

To see this, we derive, thanks to the partial orthogonality (4.4) of the residual
and Lemma 4.37 (data oscillation reduction),

div /⌦ =
’
I2V

cI

�
qI%T'T

�
=

’
I2V

cI

�
qI'T

�
+

’
I2V

cI

�
qI(%T'T � 'T)

�

=
’
I2V

qI'T +

’
I2V

cI

�
qI(%T 5 � 5 )

�
= 'T + XT

with XT :=
Õ
I2V cI

�
qI(%T 5 � 5 )

�
. Hence,

kr(D � DT)k
!

2(⌦) . k'T k��1(⌦)  k'T + XT k��1(⌦) + kXT k��1(⌦),

inserting /⌦ in the Prager-Synge theorem on ⌦ and Lemma 4.66 (alternative
localization of ��1-norm) establish the claimed bound.
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In view of the bound (4.91), the alternative local PDE indicators kq1/2
I

/⌦k!2(lI ),
I 2 V, may be used in an adaptive context. Note however that this alternative does
not necessarily strengthen the link with the local residual as the definition of /⌦
suggests an increased overlapping in the lower bound.

4.10 Other boundary conditions

This section illustrates that the preceding analysis of homogeneous Dirichlet con-
ditions can be adapted to other boundary conditions. In particular, we discuss

• Robin and Neumann boundary conditions, as an example for variationally for-
mulated boundary conditions,

• the pure Neumann problem, with its global solvability constraint,
• non-homogeneous Dirichlet boundary conditions, formulated in an essential

manner.

Mixed boundary conditions, suitably discretized, give rise to a posteriori error
estimators combining in a straightforward manner the indicators of, for instance,
the first and third of the above groups. We therefore omit further details for such a
setting.

Robin and Neumann boundary conditions
The Robin bilinear form in (2.13) is coercive and continuous in V := �

1(⌦)
provided its coe�cient ? � ?0 on an open subset of m⌦ for some constant ?0 > 0,
according to the norm equivalence (2.31). Consequently, (2.12) admits a unique
solution D 2 V. If VT = S=,0

T
is the subspace of V of continuous piecewise

polynomial functions of degree  =, then the Galerkin counterpart of (4.1) reads

DT 2 VT : B[DT , E] = ✓(E) 8E 2 VT ,

with ✓ = 5 + 6Xm⌦ 2 V⇤; cf. (2.13). Its residual 'T 2 V⇤ is defined as

h'T ,Fi := ✓(F) � B[DT ,F] F 2 V,

and k'T kV⇤ is equivalent to the error kD � DT k� 1(⌦) due to Lemma 4.1 (error and
residual), whose proof easily extends to V.

The global norm k'T kV⇤ also localizes to all stars lI because Galerkin or-
thogonality h'T , qIi = 0 is now valid also for boundary vertices I 2 V \ m⌦.
Indeed, the proof of Lemma 4.5 (localization of ��1-norm) extends with minor
modifications, where the local spaces for boundary vertices I 2 V \ m⌦ are
now {E 2 �

1(lI) | E = 0 on mlI \ m⌦}. Also the proof of Lemma 4.66
(alternative localization of ��1-norm) is easily modified, using the local space
{E 2 �

1(lI) |
Ø
lI
E = 0} at the boundary, too.

The next key step is the construction of a projection %T : V⇤ ! FT that mimics
the projection operator %T of Section 4.4. For that purpose, the space of discrete
functionals FT has to include boundary face Dirac masses @�X� with densities
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@� 2 P<1(�) for � ⇢ m⌦. Consequently, 6 can be approximated on m⌦ similarly
to the forcing 5 in ⌦, while the coe�cient ? is at play like the coe�cient 2.
Indeed, considering for simplicity only the case of discrete coe�cients (G, 2, ?),
the condition <1 � =? + = arises in addition to those in Remark 4.14. With these
caveats, the tools developed in Sections 4.3, 4.4 and 4.5 give rise to a suitably
adapted projection %T to split the residual 'T into a discretized residual %T'T

and an oscillatory residual ( 5 �%T 5 )+ (6Xm⌦�%T(6Xm⌦)). Here 6Xm⌦�%T(6Xm⌦)
is supported only on m⌦ and therefore contributes only to the oscillation indicators
based upon the aforementioned new local spaces for boundary stars. This modified
oscillation oscRob

T
(D) with D = (G, 2, ?, 5 , 6) and be combined with any of the

presented PDE indicators, but we focus on residual estimation. In fact, the new
discrete residual %T'T leads to a definition of the PDE estimator [Rob

T
(DT) as in

(4.52), but with additional contributions related to the boundary faces. Given any
boundary face � of T , such a contribution reads

⌘� k [[GrTDT]] · n� + ? DT � %�6k
2
!

2(� )

and measures the discretized Robin residual. Combining as usual the PDE estimator
[

Rob
T

(DT) and oscillation oscRob
T

(✓) yields the total estimator ERob
T

(DT , ✓), whence
the following variant of Theorem 4.45 (modified residual estimator) follows: for
discrete coe�cients (G, 2, ?), the �1-error and E

Rob
T

(DT , ✓) are equivalent

⇠!E
Rob
T

(DT , ✓)  kD � DT k� 1(⌦)  ⇠*E
Rob
T

(DT , ✓).

The estimates in Section 4.8 for corrections and estimator reduction extend as well.

Pure Neumann problem
Neumann conditions are already covered by the previous section, except for the
case of the pure Neumann problem with ? = 0 on m⌦ in (2.12) requiring, as key
novelty, the solvability constraint ✓(1⌦) = 0, i.e. right-hand side applied to the
constant function equal to 1 gives 0. For such problems, unique exact and discrete
solutions exist provided we chooseV to be the subspace of �1(⌦) of functions with
zero mean value and VT its natural finite element counterpart of degree =.

The residual 'T is defined on all �1(⌦) and satisfies h'T , 1⌦i = 0. Combining
this fact with Lemma 2.3 (second Poincaré inequality) and inf22R kE � 2k!2(⌦) =
kFk

!
2(⌦) with F = E �

J

⌦ E 2 V, we derive

k'T kV⇤ = sup
F 2V

h'T ,Fi

krFk
!

2(⌦)
⇡ sup
F 2V

h'T ,Fi

kFk
�

1(⌦)
= sup
E2� 1(⌦)

h'T , Ei

kEk
�

1(⌦)
= k'T k� 1(⌦)⇤ .

Consequently, localizing k'T k� 1(⌦)⇤ as in the previous section, we can derive
a posteriori error estimators with suitable contributions from the boundary m⌦.

However, the projection %T from the previous section cannot be used to gen-
erate discrete data in some auxiliary problem because h✓, 1⌦i = 0 does not
imply h%T✓, 1⌦i = 0 in general. Further, a simple modification like %T✓ �



118

h%T✓, 1⌦ih1⌦, 1⌦i�11⌦ with a global correction destroys the crucial local approx-
imation properties.

To address this issue, we modify the projection %T such that the new projectione%T enforces locally he%T✓, 1⌦i = h✓, 1⌦i in the spirit of the construction of the
Lagrange multiplier in [Fierro and Veeser 2003]. To this end, recall that %T is
now defined on �1(⌦) and its range, the discrete functionals F(T ), includes also
boundary face Dirac masses, and that the first localization involves the local spaces
VI := {E 2 �

1(lI) | E = 0 on mlI \ m⌦}, I 2 V. Given ✓ 2 �1(⌦)⇤, set

e%T✓ :=
’
I2V

qI
e%I✓ with e%I✓ := %T✓ �

h%T✓ � ✓, qIiØ
lI
qI

1lI . (4.92)

Lemma 4.71 (new projection) The operator (4.92) is linear, local, and satisfies

he%I✓, qIi = h✓, qIi 8I 2 V and he%T✓, 1i = h✓, 1i.

Furthermore, e%I provides near-best approximation in F(T )|VI and

k✓ � e%T✓k
2
�

1(⌦)⇤  ⇠loc

’
I2V

k✓ � e%I✓k2V⇤I .
Proof. 1 We start with the algebraic properties. By the definition of e%I , we have
the local relationships h✓ � e%I✓, qIi = 0, viz. hqI(✓ � e%I✓), 1i = 0 for all vertices
I 2 V. Summing over all vertices immediately yields the global h✓ � e%T✓, 1i = 0.

2 To show that e%I is near-best approximating in F(T )|VI , we bound its error in
terms of the one of %T . The triangle inequality readily gives

k✓ � e%I✓kV⇤I  k✓ � %T✓kV⇤I +

�����
h%T✓ � ✓, qIiØ

l

qI

1lI

�����
V⇤I

,

while a variant of Lemma 2.2 (first Poincaré inequality) and the properties of qI
deliver�����
h%T✓ � ✓, qIiØ

l

qI

1lI

�����
V⇤I

. |lI |
�1
⌘I kh%T✓ � ✓, qIi1lI k!2(lI )

. |lI |
�1/2

⌘I k✓ � %T✓kV⇤I krqI k!2(lI ) . k✓ � %T✓kV⇤I .

Hence, the error of e%I is dominated by the one of %T ,

k✓ � e%I✓kV⇤I . k✓ � %T✓kV⇤I . (4.93)

and the near-best approximation of e%I follows from Corollary 4.31 (local near-best
approximation), adapted to the setting at hand.

3 It remains to prove the claimed inequality. Given F 2 �1(⌦), the definition
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of e%T and the first stp yield the following identity

h✓ � e%T✓,Fi =
’
I2V

h✓,FqIi � hqI e%I✓,Fi
=

’
I2V

h✓ � e%I✓,FqIi = ’
I2V

h✓ � e%I✓, (F � 2I)qIi,
with 2I =

J

lI
F. Proceeding as in Lemma 4.5 (localization of ��1 norm) estab-

lishes the desired inequality and concludes the proof.

The operator e%T possesses additional enhanced global properties, which are not
needed here. Lemma 4.71 and (4.93) allow us to solve auxiliary pure Neumann
problems with discrete data e%T✓, with the option of replacing in the local indicators
the restrictions of %T with e%I .
Non-homogeneous Dirichlet boundary conditions

Let V := �
1(⌦) and VT := S=,0

T
be the subspace of V of continuous piecewise

polynomials of degree  =. Given Dirichlet boundary data 6 2 �1/2(�), where
� := m⌦ for simplicity, recall that D 2 V(6) = {E 2 V | E = 6 on �} satisfies
(2.10). Let 6T 2 S

=,0
T

be a continuous finite element approximation of 6 on � and
VT(6T) be the subspace of VT of discrete functions with trace 6T . The Galerkin
approximation of D satisfies

DT 2 VT(6T) : B[DT , E] = h 5 , Ei 8E 2 VT(0).

The error 4T = D � DT obviously satisfies Galerkin orthogonality

B[4T , E] = 0 8E 2 VT(0),

but in general 4T = 6�6T < 0 on �. We follow [Sacchi and Veeser 2006] to derive
a posteriori bounds of k4T k� 1(⌦) using minimal regularity 6 2 �1/2(�).

We start with an orthogonal decomposition of the error 4T arising from the two
equations of the problem. Let '⌧ = '⌧(DT , 5 ) 2 ��1(⌦) be the Galerkin residual
already introduced in Section 4.1, namely

h'⌧ , Ei = h 5 , Ei � B[DT , E] 8E 2 V(0) = �1
0(⌦),

and define the Galerkin error 4⌧ as its representation in �1
0(⌦):

4⌧ 2 �
1
0(⌦) : B[4⌧ , E] = h'⌧ , Ei 8E 2 V(0).

Furthermore, let '⇡ = '⇡(6) = 6 � 6T 2 �
1/2(�) be the Dirichlet residual,

represented by the Dirichlet error 4⇡ defined by

4⇡ 2 V(6 � �T6) : B[4⇡ , E] = 0 8E 2 V(0).

Then 4T = 4⌧ + 4⇡ and the orthogonality B[4⇡ , 4⌧] = 0 yields

|||4T |||
2
⌦ = |||4⌧ |||

2
⌦ + |||4⇡ |||

2
⌦,
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while the derivation for homogeneous Dirichlet conditions readily provides

|||4⌧ |||⌦ ⇡ kr4⌧ k!2(⌦) ⇡ ET(DT , 5 ),

where the Galerkin estimator ET(DT , 5 ) is defined by (4.52), or any other estimator
from Sect. 4.9. It thus remains to clarify whether |||4T |||⌦ is definite in the sense
|||4T |||⌦ = 0 =) 4T = 0 and to derive suitable lower and upper bounds for |||4⇡ |||⌦.

To this end, we need to be more specific about the choice of 6T . Let 6T = �T6
be the Scott-Zhang quasi-interpolant of 6, which is defined locally using boundary
values of 6 exclusively [Scott and Zhang 1990, Brenner and Scott 2008] and satisfies

E 2 VT |� ) �TE = E on �, (invariance) (4.94a)

k�TEk!2(�) . kEk!2(�) 8E 2 V. (stability) (4.94b)

These two properties ensure a variant of the equivalence k · k
�

1(⌦) ⇡ kr · k
!

2(⌦)
for functions with zero trace on �.

Lemma 4.72 (equivalence for vanishing discretized trace) There exists a con-
stant ⇠ depending only on the shape regularity of T and ⌦ such that

kEk
�

1(⌦)  ⇠krEk!2(⌦) 8E 2 V with �TE = 0 on �.

Proof. Note that the core of the claimed inequality amounts to a variant of the
first Poincaré inequality. In view of the norm equivalence (2.31), it su�ces to
prove that kEk

!
2(�) . krEk!2(⌦). Letting Ē⌦ :=

J

⌦ E, and using (4.94a) yields
E = E � �TE = (E � Ē⌦) � �T(E � Ē⌦) on �. Consequently, (4.94b) implies

kEk
!

2(�) . kE � Ē⌦k!2(�) . kE � Ē⌦k� 1(⌦) . krEk!2(⌦), (4.95)

because of Lemma 2.4 (traces), and Lemma 2.3 (second Poincaré inequality).

Observing �T4T = �T6 � �2T6 = 0 on �, we can apply Lemma 4.72 to get

k4T k� 1(⌦)  ⇠kr4T k!2(⌦) 
⇠

U1
|||4T |||⌦ 

⇠max{U2, k2k!1(⌦)}

U1
k4T k� 1(⌦),

establishing in particular that |||4T |||⌦ is definite. In the same vein, we derive

|||4⇡ |||⌦ ⇡ k4⇡ k� 1(⌦) ⇡ kr4⇡ k!2(⌦)

for the Dirichlet error.
With the intent to achieve directly computable bounds for the Dirichlet error, we

next establish the equivalence k4⇡ k� 1(⌦) ⇡ k6 � �T6k� 1/2(�), where the intrinsic
�

1/2-norm combines the !2(�)-norm with the seminorm

|E |
2
�

1/2(�) =
π
�

π
�

|E(G) � E(H)|2

|G � H |3
3G 3H.

This equivalence follows with the help of the trace and extension theorems for
�

1/2(�), see, e.g., [Hackbusch 1992, Theorem 6.2.40]. In fact, on the one hand,
that trace theorem immediately gives k6 � �T6k� 1/2(�) . k4⇡ k� 1(⌦). On the other
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hand, let j 2 �1(⌦) denote the extension of 6 � �T6 from [Hackbusch 1992,
Theorem 6.2.40]. Then

k4⇡ k� 1(⌦) . |||4⇡ |||⌦  |||j |||⌦ . kjk� 1(⌦) . k6 � �T6k� 1/2(�),

where the second inequality is thanks to B[4⇡ , 4⇡ � j] = 0.
We are left with the issue that the �1/2(�)-seminorm is nonlocal. To handle this

delicate matter, we invoke its localization due to [Faermann 2000, 2002]

|E |
2
�

1/2(�) 
’
� 2F�

✓π
�

π
l�

|E(G) � E(H)|2

|G � H |3
3G 3H +

⇠

⌘�

kEk
2
!

2(� )

◆
,

where � 2 F� is a generic face of T lying on � and l� is the patch on � associated
with �. The last term seems problematic. However, applied to E = 6 � �T6, we
can mimic the steps of (4.95) with local variants of (4.94), but using in the last
step the second Poincaré inequality in �1/2, see, e.g., [Sacchi and Veeser 2006,
Lemma 3.2]:

kEk
2
!

2(� ) = kE � �TEk
2
!

2(� ) . kE � Ē� k
2
!

2(l� ) . ⌘� |E |
2
�

1/2(l� )

where Ē� is the mean value of E on l� . Note that this bounds also means that the
!

2-part in k6� �T6k� 1/2(�) is (locally) controlled by its seminorm. Altogether, this
leads to defining the Dirichlet oscillation with the following local indicators:

oscT(6)2
1/2 :=

’
� 2F�

oscT(6, �)2
1/2,

oscT(6, �)2
1/2 :=

π
l�

π
l�

|(6 � �T6)(G) � (6 � �T6)(H)|2

|G � H |3
3G 3H.

(4.96)

We observe that oscT(6, �) is a double singular integral but computationally ac-
cessible, for instance, by using suitable quadrature provided 6 is continuous [Sacchi
and Veeser 2006, Section 4.1].

Proposition 4.73 (Dirichlet oscillation) There exist constants ⇡1 � ⇡2 > 0 de-
pending on the shape regularity of T and geometry of �, such that

⇡2 oscT(6)1/2  kr4⇡ k!2(⌦)  ⇡1 oscT(6)1/2.

Proof. The preceding derivation verifies the upper bound. For the lower one, note
that for any E 2 �1(⌦) such that E = 6 � �T6 on �

oscT(6)2
1/2 =

’
� 2F�

oscT(6, �)2
1/2 

’
� 2F�

π
l�

π
�

|E(G) � E(H)|2

|G � H |3
3G 3H

.
π
�

π
�

|E(G) � E(H)|2

|G � H |3
3G 3H = |E |

2
�

1/2(�),

because the patches l� , � 2 F�, possess a uniform overlapping property due to
shape regularity of T. Applying this to E = 4⇡ finishes the proof.
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For suitable settings, local lower a posteriori estimates for the Dirichlet error 4⇡
can be derived; see [Sacchi and Veeser 2006, Theorem 3.2].

Combining the Dirichlet oscillation with some Galerkin estimator ET(DT , 5 ) by

E
Dir
T

(DT , 5 , 6)2 := ET(DT , 5 )2
+ oscT(6)2

1/2,

the preceding discussion is summarized by the following result.

Theorem 4.74 (estimators for general Dirichlet condition) If Assumption 4.44
(discrete coe�cients) is valid, then there exist constants ⇠!  ⇠* depending on
(G, 2), ⌦, �, and the shape regularity of T such that

⇠!E
Dir
T

(DT , 5 , 6)  kr(D � DT)k
!

2(⌦)  ⇠*E
Dir
T

(DT , 5 , 6).

5 Convergence of AFEM for Coercive Problems
In this section we consider the coercive problem (2.5) with the intent to design
and analyze three AFEMs in increasing order of complexity and applicability,
depending on properties of data D. Our basic regularity assumption on data reads
D = (G, 2, 5 ) 2 D, where

D := !1(⌦;R3⇥3) ⇥ !1(⌦) ⇥ ��1(⌦). (5.1)

We approximate D with discrete data bD = (bG,b2, b5 ) 2 DbT , where

DbT :=
⇥
S=�1,�1bT

⇤
3⇥3
⇥ S=�1,�1bT ⇥ FbT (5.2)

is subordinate to a partition bT 2 T. We will often assume that data is discrete,
meaning precisely that D = bD.

We start with the one-step AFEM, hereafter called GALERKIN, which is the
standard SEMR loop

SOLVE �! ESTIMATE �! MARK �! REFINE

introduced in [Dörfler 1996] and further developed in [Morin, Nochetto and Siebert
2000, 2002, Cascón et al. 2008]. This is the simplest algorithm in that it requires
data D = (G, 2, 5 ) to be discrete, but it is a building block for the other two
methods. After reviewing a few crucial properties of error and estimator in Section
5.1, we fully discuss GALERKIN in Section 5.2.

The second algorithm is the one-step AFEM with switch, which still assumes the
coe�cients (G, 2) to be discrete but allows for general forcing 5 2 �

�1(⌦). This
is a new contribution of this survey that, similarly to [Kreuzer et al. n.d.], exploits
the structure of the error estimator ET(DT , 5 ) of Section 4

ET(DT , 5 )2 = [T(DT)2
+ oscT( 5 )2

�1,

and its equivalence to the energy error. The PDE estimator [T(DT) relies on the
discrete forcing %T 5 2 FT and is fully computable, whereas the data oscillation
oscT( 5 )�1 encodes the infinite dimensional nature of 5 and could be estimated in
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important cases of practical interest further discussed in Section 7.3. The quantity
oscT( 5 )�1 measures the deviation of 5 from being discrete and may dictate the
pre-asymptotic regime of AFEM. Therefore, oscT( 5 )�1 must be handled separately
from [T(DT); hence the name of the new method, hereafter called AFEM-SW.
Assuming that oscT( 5 )�1 is computable, the module

[bT] = DATA (T , 5 , g)

deals with oscT( 5 )�1 whenever it is large relative to ET(DT , 5 ). In fact, it creates
an admissible refinement bT of the input mesh T such that oscbT( 5 )�1 is below the
desired tolerance g, i.e. oscbT( 5 )�1  g. We explain the role of data oscillation for
error analysis, design AFEM-SW and prove its linear convergence in Section 5.3.

The third algorithm deals with variable data D and various degrees of regularity
of D, and is able to handle discontinuous coe�cients (G, 2) not aligned with
admissible meshesT 2 T emanating fromT0. To handle the multiplicative structure
of (G, 2) in the model problem (2.5), we consider the following two-step AFEM:

Algorithm 5.1 (AFEM-TS) Given an initial mesh T0, an initial tolerance Y0, and a
parameter l su�ciently small to be determined later, iterate

AFEM-TS (T0, Y0,l)
: = 0
[bT: , bD:] = DATA (T: ,D,l Y:)
[T:+1, D:+1] = GALERKIN (bT: , bD: , Y:)
Y:+1 = 1

2Y: ; :  : + 1

This structure was first proposed in [Stevenson 2008] and further explored in
[Bonito et al. 2013b, Cohen et al. 2012, Bonito et al. 2016, Bonito, Cascón, Morin
and Nochetto 2013a, Bonito and Devaud 2015]. The three components of data
D = (G, 2, 5 ) 2 D are first approximated by discrete data bD = (bG,b2, b5 ) 2 DbT , as
defined in (5.1) and (5.2), within the module

[bT ,
bD] = DATA (T ,D, g)

to accuracy g = lY significantly smaller than Y. This is achieved by an algorithm
similar to Algorithm 3.18 (greedy algorithm), which is fully discussed along with
applications to D in Section 7. The resulting admissible refinement bT of T and
discrete data bD over bT are next taken by GALERKIN to reduce the PDE error to
the desired tolerance Y, namely the module

[T , DT] = GALERKIN (bT ,
bD, Y)

constructs a refinement T of bT with discrete data bD over bT such that [T(DT)  Y.
We point out that if data is discrete, i.e. D = bD, then DATA is skipped and
AFEM-TS reduces to GALERKIN. We tackle AFEM-TS in Section 5.4, where we
prove a perturbation estimate with respect to D and next discuss convergence
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properties of AFEM-TS. We will extend this approach to discontinuous FEMs in
Section 9 and to mixed FEMs for (2.5) as well as the Stokes system (2.14) in Section
10.

5.1 Properties of error and estimator

We follow Cascón, Kreuzer, Nochetto, and Siebert [Cascón et al. 2008] and sum-
marize some basic properties of GALERKIN that emanate from the symmetry of
the di�erential operator (i.e. of G) and features of the modules. In doing this,
any explicit constant or hidden constant in . will only depend on the uniform
shape-regularity of T, the dimension 3, the polynomial degree =, and the (global)
eigenvalues of G, but not on a specific grid T 2 T, except if explicitly stated.

We recall that the bilinear form B in (2.8) with continuous coe�cients (G, 2)
is symmetric, coercive and continuous in the space �1

0(⌦) (see (2.30)), namely

|||E |||⌦ = B[E, E]
1
2 is a norm equivalent to |E |

�
1
0 (⌦) with equivalence constants

0 < 2B  ⇠B

2B |E |
2
�

1
0 (⌦)
 |||E |||

2
⌦  ⇠B |E |

2
�

1
0 (⌦)

8E 2 �
1
0(⌦). (5.3)

The module DATA approximates (G, 2) over a mesh T by piecewise polynomial
coe�cients (bG,b2) obeying side constraints so that the corresponding perturbed
bilinear form b⌫ still defines a uniform scalar product in �1

0(⌦)

|||E |||⌦ = bB[E, E]
1
2 8E 2 �

1
0(⌦), (5.4)

which satisfies (5.3) with constants 0 < 2 bB  ⇠ bB independent of T . We hope this
slight abuse of notation will not create confusion because we will always refer to the
energy norm in (5.4) when dealing with bB. We denote by bD = D( bD) 2 �1

0(⌦) the

solution of (2.7) with coe�cients (bG,b2) and forcing function either b
5 = 5 2 �

�1(⌦)
or its projection b

5 = %T 5 2 FT defined in (4.35), namely

bB[bD, E] = hb5 , Ei 8E 2 �1
0(⌦), (5.5)

In the sequel, we will often compare discrete functions on di�erent meshes.
Given T 2 T, we denote by T⇤ 2 T an admissible refinement of T and write

T  T⇤ , T(T ) ⇢ T(T⇤) (5.6)

in the sense that the supporting tree of T is contained in that of T⇤. For any T⇤ � T ,
we have the following crucial property.

Lemma 5.2 (Pythagoras) Let T⇤ � T � bT and let bD 2 �1
0(⌦) be the solution

of (5.5) with discrete coe�cients (bG,b2) over bT . The corresponding Galerkin
solutions DT 2 VT and DT⇤ 2 VT⇤ with coe�cients (bG,b2) and forcing 5 2 �

�1(⌦)
satisfy the orthogonality property

|||bD � ET |||2⌦ = |||bD � DT⇤ |||2⌦ + |||DT⇤ � ET |||
2
⌦ 8ET 2 VT . (5.7)
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Proof. Exploit the nestedness propertyVT ⇢ VT⇤ , and the Galerkin orthogonality
property bB[bD � DT⇤ , ET � DT⇤] = 0 in VT⇤ for the scalar product induced by bB.

Property (5.7) is very restrictive: it relies on space nestedness and is valid
exclusively for the energy norm. However, it is instrumental for the subsequent
analysis in the energy norm or the equivalent norm | · |

�
1
0 (⌦), but it does not extend

to other, perhaps more practical, norms such as the maximum norm. This is an
important open problem and a serious limitation of this theory.

We recall that the residual a posteriori error analysis of Section 4 relies on
the projection operator %T : ��1(⌦) ! FT , with element and face components
%T 5 |) = %) 5 for ) 2 T and %T 5 |� = %� 5 . The full local error indicator

ET(DT , 5 ,))2 = [T(DT ,))2
+ oscT( 5 ,))2

�1

splits into a computable PDE error indicator with discrete coe�cients (bG,b2)
[T(E,))2 = ⌘2

)
kA(E)k2

)
+ ⌘) k 9(E)k2

m)
8) 2 T , (5.8)

where the interior and jump residuals are given by

A(E)|) = %) 5 + div(bGrE) � b2E 8) 2 T

9(E)|� = [bGrE] · n |� � %� 5 8� 2 F ,

(5.9)

and 9(E)|� = 0 for boundary faces �, and data oscillation

oscT( 5 ,))2
�1 = k 5 � %T 5 k

2
�
�1(l) ) 8) 2 T , (5.10)

where l) is the patch associated with ) . The corresponding global quantities are

ET(DT , 5 )2 =
’
) 2T

E(DT , 5 ,))2
,

[T(DT)2 =
’
) 2T

[T(DT ,))2
, oscT( 5 )2

�1 =
’
) 2T

oscT( 5 ,))2
�1,

(5.11)

and have the following a posteriori error estimates proved in Theorem 4.45 (modi-
fied residual estimator) for the �1

0-norm.

Proposition 5.3 (a posteriori error estimates) Let bD 2 �1
0(⌦) be the solution of

(5.5) with discrete coe�cients (bG,b2) over T 2 T but general forcing 5 2 �
�1(⌦).

Then, there exist constants 0 < ⇠!  ⇠* , depending on the shape regularity of T
such that the Galerkin solution DT 2 VT satisfies

⇠! ET(DT , 5 )  |bD � DT |� 1
0 (⌦)  ⇠* ET(DT , 5 ), (5.12)

Moreover, if ||| · |||⌦ stands for the energy norm in (5.4) with equivalence constants
2 bB  ⇠ bB satisfying (5.3), then (5.12) yields

⇠2 ET(DT , 5 )  |||bD � DT |||⌦  ⇠1 ET(DT , 5 ), (5.13)

with ⇠1 =
p
⇠ bB⇠* and ⇠2 = p2 bB⇠! .
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There is a fundamental di�erence between (5.12) and earlier versions of a pos-
teriori error estimates, going back to the seminal paper [Babu�ka and Miller 1987];
see also [Ainsworth and Oden 2000, Braess 2007, Nochetto et al. 2009, Verfürth
2013]. It is about the role of data oscillation oscT( 5 )�1, which is now dominated
by the error |bD � DT |� 1

0 (⌦) and does not spoil the lower bound. This is due to the

fact that oscT( 5 )�1 is evaluated in the natural space ��1(⌦) and quantifies the dis-
crepancy between 5 and a suitable projection %T 5 which gives rise to a quasi-best
local approximation of 5 . We refer to [Nochetto et al. 2009] and [Kreuzer and
Veeser 2021] for a discussion of data oscillation.

Suppose now that we have two conforming meshes T ,T⇤ 2 T with T⇤ � T . Let

R := RT!T⇤ := T\T⇤ (5.14)

be the subset of refined elements of T , namely, those elements in T that are no
longer in T⇤. We stress that the upper bound in (5.12) cannot be local due to the
nonlocal nature of the error |bD � DT |� 1

0 (⌦). However, in view of Theorem 4.48
(upper bound for corrections), the following remarkable local upper bound for
Galerkin solutions DT 2 +T , DT⇤ 2 +T⇤ holds

|||DT � DT⇤ |||⌦  ⇠1ET(DT , 5 ,R), (5.15)

where forS ⇢ T , ET(DT , 5 ,S) :=
�Õ

) 2S ET(DT , 5 ,))2
�1/2

is the error estimator
restricted to S. Consequently, solely the elements where T and T⇤ di�er, namely
the set R, account for the discrepancy between DT and DT⇤ . This turns out to be
consistent with (5.13) because T has to be refined everywhere to get to bD, whence
R = T .

In contrast to the upper bound in (5.12), the corresponding lower bound is local
according to Theorem 4.45 (modified residual estimator). This is due to the local
nature of the PDE (2.5). However, when comparing DT and DT⇤ , this bound is
not valid unless the interior vertex property (given in Definition 4.50) is satisfied
[Morin et al. 2000]; in fact, we present a counterexample later in Example 5.7 taken
from [Morin et al. 2000].

The interior vertex property is valid upon enforcing a fixed number 1 of bisections
(1 = 3, 6 for 3 = 2, 3). An immediate consequence, proved in Theorem 4.51 (local
lower bound for corrections), is the discrete lower a posteriori bound for piecewise
constant di�usion coe�cient G and reaction coe�cient 2 = 0 on T0,

⇠!,1 ET(DT , 5 ,M)  |||DT � DT⇤ |||⌦ + ⇠!,2 oscT( 5 ,l(M))�1, (5.16)

where l(M) := [{l) : ) 2M} is the union of all patches of elements in M and
oscT( 5 ,l(M))2

�1 =
Õ
) 2l(M) oscT( 5 ,))2

�1; we refer to [Morin et al. 2000, 2002].
We stress that if 5 = %T 5 is discrete, then oscT( 5 )�1 = 0 and (5.16) reduces to

⇠2 [T(DT ,M)  |||DT � DT⇤ |||⌦. (5.17)

One serious di�culty in dealing with AFEM is that one has access to the energy
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error |||bD � DT |||⌦, or equivalently to |bD � DT |� 1
0 (⌦), only through the full error

estimator ET(DT , 5 ). Lemma 5.2 (Pythagoras) implies monotonicity of the energy
error with respect to T , namely for T⇤ � T

|||bD � DT⇤ |||⌦  |||bD � DT |||⌦.
However, the PDE estimator [T(DT) fails to be monotone for fixed discrete coe�-
cients (bG,b2) because it depends on the discrete solution DT 2 VT that changes with
the mesh. The following estimate, proved in Proposition 4.56 (estimator reduction),
quantifies the deviation of [T(DT) from monotonicity: there exists _ > 0 such that
for any X > 0, E 2 VT and E⇤ 2 VT⇤ ,

[T⇤(E⇤,T⇤)
2
 (1 + X)

�
[T(E,T )2

� _ [T(E,M)2�

+ 2
�
1 + X

�1�
⇠Lip

 

|||E⇤ � E |||
2
⌦ +

’
) 2T⇤

k%T 5 � %T⇤ 5 k
2
�
�1(l) )

!

,

where ⇠Lip depends on (G, 2) and the shape regularity constant of T. We refer to
[Cascón et al. 2008, Morin et al. 2008] for the case %T 5 = %T⇤ 5 = 5 2 !

2(⌦).

5.2 Convergence for discrete data: one-Step AFEM

We now present the four basic modules of GALERKIN, the one-step AFEM within
Algorithm 5.1 (AFEM-TS), namely

SOLVE �! ESTIMATE �! MARK �! REFINE , (5.18)

discuss their main properties, and prove a contraction property between consecutive
iterates of GALERKIN. According to Algorithm 5.1, given discrete data bD over a
conforming mesh bT , created by DATA, and a desired tolerance Y > 0, the module

[T , DT] = GALERKIN (bT ,
bD, Y) (5.19)

stops the loop (5.18) as soon as the error tolerance Y is reached, i.e. as soon as

[T(DT)  Y. (5.20)

Since the data never change within GALERKIN and is always discrete, we assume
in this section that D 2 DT and do not use the hat symbol to indicate quantities
defined using the (discrete) data.

5.2.1 Modules of GALERKIN

Module SOLVE. If T 2 T is a conforming refinement of T0, and VT is the finite
element space of ⇠0 piecewise polynomials of degree  =, then

[DT] = SOLVE (T )

determines the Galerkin FEM solution exactly, namely without algebraic error,

DT 2 VT : B[DT , E] =
π
⌦
rE · GrDT + 2ED = h 5 , Ei, (5.21)
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where 5 2 ��1(⌦). However, if 5 2 FT is discrete as defined in (4.35), then

h 5 , Ei =
’
) 2T

π
)

@) E +

’
� 2F

π
�

@�E 8E 2 VT .

The assumption of exact solvability is made for simplicity. The algebraic error
committed in solving (5.21) by iterative solvers can be accommodated within the
forthcoming theory. We refer to [Stevenson 2007, Daniel and Vohralik 2023] for
details about how to relate the algebraic and PDE errors.

Module ESTIMATE . Given a conforming mesh T 2 T and the Galerkin solution
DT 2 VT , the output of

[{[T(DT ,)), oscT( 5 ,))�1}) 2T] = ESTIMATE (DT ,T ,D)

are the element error indicators [T(DT ,)) defined in (5.8) with the discrete data
D, namely

[T(DT ,))2 = ⌘2
)
kA(DT)k2

)
+ ⌘) k 9(DT)k2

m)
) 2 T ,

and element data oscillation oscT( 5 ,))�1 defined in (5.10), namely

oscT( 5 ,))�1 = k 5 � %T 5 k��1(l) ).

We observe that for discrete forcing 5 = %T 5 , global data oscillation vanishes

oscT( 5 )�1 = k 5 � %T 5 k��1(⌦) = 0; (5.22)

this property is always valid within GALERKIN. In this case, the output of
ESTIMATE reduces to just the PDE error indicators. Given S ⇢ T , we denote

[T(E,S)2 :=
’
) 2S

[T(E,))2
, [T(E) = [T(E,T ) E 2 VT .

Module MARK. Given T 2 T, the Galerkin solution DT 2 VT , and element error
indicators {[T(DT ,))}) 2T , the module MARK selects elements for refinement
using Dörfler Marking (or bulk chasing) [Dörfler 1996, Morin et al. 2000, Nochetto
et al. 2009, Nochetto and Veeser 2012], i. e., given a parameter \ 2 (0, 1] the output
M of

[M] = MARK
�
{[T(DT ,))}) 2T ,T , \

�

satisfies

[T(DT ,M) � \ [T(DT ,T ). (5.23)

This marking guarantees that M contains a substantial part of the total (or bulk)
error, thus its name. The choice of M does not have to be minimal at this stage,
that is, the marked elements ) 2 M do not necessarily must be those with largest
indicators.
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Module REFINE . Let 1 2 N be the number of desired bisections per marked
element. Given T 2 T and a subset M of marked elements, the output T⇤ 2 T of

[T⇤] = REFINE
�
T , M

�

is the smallest admissible refinement T⇤ of T so that all elements of M are at least
bisected 1 times. Therefore, we have ⌘T⇤  ⌘T and the strict reduction property

⌘T⇤ |)  2�1/3⌘T |) 8) 2M, (5.24)

where ⌘T : ⌦! R+ is a piecewise constant meshsize function that coincides with
⌘) = |) |

1/3 on every ) 2 T . We finally let

R := RT!T⇤ := T\T⇤

be the subset of refined elements of T and note that M ✓ R.

Concatenating these four modules we get the standard SEMR one-step AFEM.

Algorithm 5.4 (GALERKIN) Let T � T0 be a conforming refinement of a suitable
initial mesh T0. Let data D = (G, 2, 5 ) 2 ⇡T be discrete on T and Y > 0 be a
stopping tolerance. The following one-step AFEM creates a conforming refinement
T⇤ � T and Galerkin solution DT⇤ 2 VT⇤ for data D such that [T⇤(DT⇤)  Y:

[T⇤, DT⇤] = GALERKIN (T ,D, Y)
set 9 = 0,T0 = T

do
[D 9] = SOLVE (T9)
[{[ 9(D 9 ,))}) 2T9 ] = ESTIMATE (D 9 ,T9 ,D)
if [ 9(D 9)  Y

return T9 , D 9

[M 9] = MARK
�
{[ 9(D 9 ,))}) 2T9 ,T9 , \

�

[T9+1] = REFINE (T9 ,M 9)
9  9 + 1

while true

5.2.2 Contraction property of GALERKIN

A key question to ask is what is (are) the quantity(ies) that GALERKIN may contract.
In light of (5.7), an obvious candidate is the energy error |||D � D 9 |||⌦ , where
D 9 2 V 9 = VT9 solves the problem

B[D 9 ,F] = h 5 ,Fi 8F 2 V 9 . (5.25)

We now show that this is in fact the case for discrete data D 2 DT provided the
discrete local estimate (5.17) holds. The latter is a consequence of the interior
vertex property of Definition 4.50 whenever G is piecewise constant and 2 = 0 in
T and data oscillation vanishes oscT( 5 )�1 = 0 [Morin et al. 2000, 2002].

Lemma 5.5 (contraction property with discrete lower bound) Let dataD 2 DT
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be discrete and D = D(D) 2 �1
0(⌦) be the corresponding exact solution. If the

subset M 9 ⇢ T9 of elements marked by MARK satisfies the discrete local estimate

(5.17) with respect to T9+1 � T9 , then for U :=
�
1 �

�
\
⇠2
⇠1

�2�1/2
< 1 the Galerkin

solutions D 9 2 V 9 , D 9+1 2 V 9+1 of (5.25) satisfy

|||D � D 9+1 |||⌦  U |||D � D 9 |||⌦, (5.26)

where 0 < \ < 1 is the parameter in (5.23) and ⇠1 � ⇠2 are the constants in (5.13)
and (5.17) respectively.

Proof. For convenience, we use the notation

4 9 = |||D � D 9 |||⌦, ⇢ 9 = |||D 9+1 � D 9 |||⌦, [ 9 = [ 9(D 9 ,T9), [ 9(M 9) = [ 9(D 9 ,M 9)

and recall that ET9 (D 9 , 5 ) = [ 9 because oscT9 ( 5 )�1 = 0. The key idea is to use the
Pythagoras equality (5.7), namely 42

9+1 = 42
9
� ⇢

2
9
, and show that ⇢ 9 is a significant

portion of 4 9 . Since (5.17) implies

⇠2[ 9(M 9)  ⇢ 9 ,

applying Dörfler marking (5.23) and the upper bound in (5.13), we deduce

⇢
2
9
� ⇠

2
2\

2
[

2
9
�

⇣
\

⇠2

⇠1

⌘2
4

2
9
.

This is the desired property of ⇢ 9 and leads to (5.26).

The contraction property (5.26) is very special and only valid for the energy
norm. For the �1

0-norm we have the following simple but useful consequence.

Corollary 5.6 (linear convergence) If 2B  ⇠B are the constants in (5.3), then

|D � D: |� 1
0 (⌦) 

s
⇠B

2B

U
:� 9

|D � D 9 |� 1
0 (⌦) : � 9 � 0.

We wonder whether or not the interior vertex property is necessary for (5.17),
and thus for (5.26). We present an example, introduced in [Morin et al. 2000, 2002]
to justify such a property for constant data and = = 1.

Example 5.7 (lack of strict error monotonicity) Let ⌦ = (0, 1)2, G = O, 2 =
0, 5 = 1 (constant data), and consider the sequences of meshes depicted in Figure
5.1. If q0 denotes the basis function associated with the only interior vertex of the
initial mesh T0, then D0 = D1 = 1

12 q0 and D2 < D1.
The mesh T1 � T0 is produced by a standard 2-step bisection (1 = 2) in 23. Since

D0 = D1 we conclude that the energy error does not change |||D � D0 |||⌦ = |||D � D1 |||⌦,
whence (5.17) fails, between two consecutive steps of GALERKIN for 1 = 3 = 2.
This is no longer true provided an interior vertex in each marked element is created,
because then Lemma 5.5 (contraction property with discrete lower bound) holds.
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Figure 5.1. Grids T0, T1, and T2 of Example 5.7. The mesh T1 has nodes in the
middle of edges of T0, but only T2 has nodes in the interior of elements of T0.
Hence, T2 satisfies the interior vertex property of Definition 4.50 with respect to T0
whereas T1 does not.

Circumventing the discrete lower bound. Enforcing (5.17) requires a minimal num-
ber 1⇤ of bisections, say 1⇤ = 3, 6 for 3 = 2, 3, to guarantee the interior vertex
property. This can be quite taxing, especially for 3 = 3, and relies on the strong
assumption of G being piecewise constant and 2 = 0 on T . It is clear from the
preceding discussion that the energy error alone cannot be expected to contract
between consecutive iterates. We explore next what quantity to monitor instead
of the energy error in the analysis, with the aim of avoiding (5.17) and building
a theory applicable to general discrete coe�cients (G, 2). This exploits the spe-
cial structure of residual estimators and does not directly extend to non-residual
estimators.

Heuristics. According to (5.7), the energy error is monotone |||D � D 9+1 |||⌦ 

|||D � D 9 |||⌦, but the previous Example shows that strict inequality may fail. However,
if D 9+1 = D 9 , estimate (4.67) reveals a strict estimator reduction [ 9+1(D 9+1) < [ 9(D 9).
We thus expect that, for a suitable scaling factor W > 0, the so-called quasi error

Z
2
9
(D 9) := |||D � D 9 |||

2
⌦ + W [

2
9
(D 9) (5.27)

may contract. This heuristics illustrates a distinct aspect of AFEM theory, the in-
terplay between continuous quantities such the energy error |||D � D 9 |||⌦ and discrete
ones such as the estimator [ 9(D 9): no one alone has the requisite properties to yield
a contraction between consecutive adaptive steps. This result was originally proven
in [Cascón et al. 2008].

Theorem 5.8 (general contraction property) Let D 2 DT be discrete data. Let
\ 2 (0, 1] be the Dörfler marking parameter, and {T9 ,V 9 , D 9}1

9=0 be a sequence of
conforming meshes, finite element spaces and discrete solutions D 9 2 V 9 created
by GALERKIN for the model problem (5.25). If D = D(D) 2 �1

0(⌦) is the exact
solution of (5.5), then there exist constants W > 0 and 0 < U < 1, additionally
depending on the number 1 � 1 of bisections and \, such that for all 9 � 0

|||D � D 9+1 |||
2
⌦ + W [

2
9+1(D 9+1)  U2

⇣
|||D � D 9 |||

2
⌦ + W [

2
9
(D 9)

⌘
. (5.28)
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Proof. We split the proof into four steps and use the notation in Lemma 5.5
(contraction property with discrete lower bound)

1 The error orthogonality (5.7) reads

4
2
9+1 = 42

9
� ⇢

2
9
. (5.29)

Employing Proposition 4.56 (estimator reduction) with T = T9 , T⇤ = T9+1, E =
D 9 , E⇤ = D 9+1 and 5 = 5⇤ 2 F 9 gives

[
2
9+1  (1 + X)

�
[

2
9
� _ [

2
9
(M 9)

�
+ (1 + X

�1)⇠2
Lip ⇢

2
9
. (5.30)

After multiplying (5.30) by W > 0, to be determined later, we add (5.29) and (5.30)
to obtain

4
2
9+1 + W [

2
9+1  4

2
9
+
�
W (1 + X

�1)⇠2
Lip � 1

�
⇢

2
9
+ W (1 + X)

�
[

2
9
� _ [

2
9
(M 9)

�
.

2 We now choose the parameters X, W: let X satisfy

(1 + X)
�
1 � _\2� = 1 �

_\
2

2
,

and W verify

W (1 + X
�1)⇠2

Lip = 1.

Note that this choice of W yields

4
2
9+1 + W [

2
9+1  4

2
9
+ W (1 + X)

�
[

2
9
� _ [

2
9
(M 9)

�
. (5.31)

3 We next employ Dörfler Marking (5.23), namely [ 9(M 9) � \[ 9 , to deduce

4
2
9+1 + W [

2
9+1  4

2
9
+ W(1 + X)(1 � _\2)[2

9
.

This, in conjunction with the choice of X, gives

4
2
9+1 + W [

2
9+1  4

2
9
+ W

✓
1 �

_\
2

2

◆
[

2
9

(5.32)

which we write

4
2
9+1 + W [

2
9+1  4

2
9
�
W_\

2

4
[

2
9
+ W

✓
1 �

_\
2

4

◆
[

2
9
.

4 Finally, the upper bound in (5.13), namely 4 9  ⇠1 [ 9 , implies that

4
2
9+1 + W [

2
9+1 

✓
1 �

W_\
2

4⇠2
1

◆
4

2
9
+ W

✓
1 �

_\
2

4

◆
[

2
9
.

This in turn leads to

4
2
9+1 + W [

2
9+1  U

2�
4

2
9
+ W [

2
9

�
,

with U2 := max
�
1� W_\

2

4⇠2
1
, 1� _\

2

4

 
< 1, and thus concludes the proof of theorem.
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Remark 5.9 (basic ingredients) This proof solely uses Dörfler marking (5.23);
Pythagoras identity (5.7); the a posteriori upper bound in (5.13); and Proposi-
tion 4.56 (estimator reduction). The proof circumvents the use altogether of the
lower bound in (5.13) and the discrete lower bound (5.17).

The contraction property (5.28) is valid for a suitable combination of the energy
norm |||D � D 9 |||⌦ and the PDE estimator [ 9(D 9). We cannot expect this type of
result for the underlying space norm |D � D 9 |� 1

0 (⌦). We have instead the following
statement, whose structure reflects the possible stagnation of |D � D 9 |� 1

0 (⌦) during
the refinement process, as documented in Example 5.7.

Corollary 5.10 (linear convergence of error) If the assumptions of Theorem 5.8
are valid, and 0 < U < 1, W > 0 are the constants in (5.28), then there holds

|D � D: |� 1
0 (⌦)  ⇠⇤U

:� 9
|D � D 9 |� 1

0 (⌦) 8 : � 9 � 0, (5.33)

with ⇠⇤ =
�
⇠B

2B

�
1 +

W

⇠
2
2

��1/2
> 1 and constants ⇠B � 2B > 0 and ⇠2 > 0 given in

(5.3) and (5.13) respectively.

Proof. Simply concatenate (5.3), (5.28) and (5.13) to obtain

2B |D � D: |
2
�

1
0 (⌦)
 |||D � D: |||

2
⌦ + W [:(D:)2

 U
2(:� 9)

⇣
|||D � D 9 |||

2
⌦ + W [ 9(D 9)2

⌘

 U
2(:� 9)

 

⇠B

⇣
1 +

W

⇠
2
2

⌘!

|D � D 9 |
2
�

1
0 (⌦)

.

This implies (5.33) and concludes the proof.

We stress that, in contrast to (5.28), (5.33) does rely on the lower bound in (5.13).
This is not the case if we express linear convergence in terms of the PDE estimator.
The proof is similar to the preceding one and is omitted.

Corollary 5.11 (linear convergence of estimator) If the assumptions of Theorem
5.8 are valid, and 0 < U < 1, W > 0 are the constants in (5.28), then there holds

[:(D:)  ⇠#U
:� 9
[ 9(D 9) 8 : � 9 � 0, (5.34)

with ⇠# =
�
1 +

⇠
2
1
W

�1/2
> 1 and ⇠1 given in (5.13).

Remark 5.12 (stopping) In view of (5.34), (5.12), we realize that GALERKIN

requires 9  � iterations until the stopping criteria [ 9  Y is satisfied and delivers
the error |D � D 9 |� 1

0 (⌦)  ⇠*Y, where

�  1 +

log Y

⇠#[0

logU
.
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5.2.3 Discontinuous coe�cients: Kellogg’s example
We examine a simple yet quite demanding example with piecewise constant coef-
ficients in checkerboard pattern for 3 = 2 due to [Kellogg 1974/75], and used
in [Morin et al. 2000, 2002] as a benchmark for GALERKIN. We consider
⌦ = (�1, 1)2, G = 01O in the first and third quadrants, and G = 02O in the second
and fourth quadrants. This checkerboard pattern is the worst for the regularity of
the solution D at the origin. For 5 = 2 = 0, a function of the form D(A, \) = AW`(\)
in polar coordinates solves (2.5) with nonvanishing Dirichlet condition for suitable
0 < W < 2 and ` [Morin et al. 2000, 2002, Nochetto et al. 2009]. We choose
W = 0.1, which leads to D 2 �B(⌦) for 1  B < 1.1 and piecewise in ,2

?
for some

? > 1. This corresponds to di�usion coe�cients 01 ⇡ 161.44 and 02 = 1, which
can be computed via Newton’s method; the closer W is to 0, the larger is the ratio
01/02. The solution D and a sample mesh are depicted in Figure 5.2(left).

|D � DT |�1
0 (⌦)

[T (DT )

(#T)�1/2

#T

Figure 5.2. Discontinuous coe�cients in checkerboard pattern: (left) graph of
the discrete solution D, which is D ⇡ A0.1, and underlying strongly graded grid T

towards the origin (notice the steep gradient of D at the origin); (right) estimate and
true error in terms of #T (the optimal decay for piecewise linear elements in 23 is
indicated by the green line with slope �1/2).

Figure 5.2 (right) documents the optimal performance of GALERKIN: both the
energy error and estimator exhibit optimal decay (#T )�1/2 in terms of the cardinality
#T of the underlying mesh T for piecewise linear finite elements. On the other
hand, Figure 5.3 displays a strongly graded mesh T towards the origin generated by
GALERKIN using bisection, and three zooms which reveal a selfsimilar structure.
It is worth stressing that the meshsize is of order 10�10 at the origin and that
#T ⇡ 2 ⇥ 103, whereas to reach a similar resolution with a uniform mesh T we
would need #T ⇡ 1020. This example clearly reveals that adaptivity can restore
optimal performance even with modest computational resources.

Classical FEMs with quasi-uniform meshes T require regularity D 2 �2(⌦) to
deliver an optimal convergence rate (#T )�1/2 with polynomial degree = = 1. Since
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(a) (b) (c) (d)

Figure 5.3. Discontinuous coe�cients in checkerboard pattern: (a) final grid
T highly graded towards the origin with cardinality #T ⇡ 2000; (b) zoom to
(�10�3

, 10�3)2; (c) zoom to (�10�6
, 10�6)2; (d) zoom to (�10�9

, 10�9)2. For a
similar resolution, a uniform grid T would require cardinality #T ⇡ 1020.

D 8 �B(⌦) for any B > 1.1, this is not possible for the example above. However, the
problem is not quite the lack of second derivatives, but rather the fact that they are
not square integrable. In fact, the function D is in ,2

?
for ? > 1 in each quadrant,

and so over the initial mesh T0, namely D 2 ,2
?
(⌦;T0). The computational rate

of convergence (#T )�1/2 is consistent with Corollary 3.20. We will prove that
GALERKIN delivers this rate in Section 6.

5.3 Data oscillation: one-Step AFEM with switch

In Section 5.2 we assumed that the full data D = (G, 2, 5 ) 2 DT is discrete,
and in particular 5 = %T 5 2 FT . The finite dimensional nature of bD allowed
us to develop a rather simple theory of convergence for GALERKIN, the one-step
AFEM, that hinges exclusively on the PDE local error indicator [T(DT ,)) defined
in (5.8). We now keep (G, 2) discrete, whence the elliptic operator in (2.5) includes
the Laplacian, but explore the role of a general forcing 5 < %T 5 . Therefore, in
contrast with (5.22), we now investigate the e�ect of data oscillation (5.11)

oscT( 5 )2
�1 =

’
) 2T

k 5 � %T 5 k
2
�
�1(l) )

for any T 2 T, and present a linear convergence theory. We recall from Theorem
4.45 (modified residual estimator) that the total error estimator ET(DT , 5 )2 =
[T(DT)2

+ oscT( 5 )2
�1 is equivalent to the �1-error, namely

⇠!ET(DT , 5 )  kr(D � DT)k
!

2(⌦)  ⇠*ET(DT , 5 ). (5.35)

As in the previous section, to simplify notation we do not use the hat symbol to
indicate quantities defined with the discrete data (G, 2).

5.3.1 Role of data oscillation
At a first sight, it might seem that Example 5.7 (lack of strict error monotonicity)
is very special and can only occur at the beginning of the refinement process. We
now show that this situation can happen at any stage and that even an interior vertex
property may not guarantee error or data oscillation decrease.
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Example 5.13 (interior vertex) Let the polynomial degree be = = 1, fix < 2 N
and consider (5.21) with G = O the identity matrix, 2 = 0, ⌦ = (0, 1)2 and
checkerboard 5 given by the following expression and depicted in Figure 5.4 (left)

5 (G) =

(
1 if G 2 (8 2�<, (8 + 1) 2�<) ⇥ ( 9 2�<, ( 9 + 1) 2�<) and 8 + 9 odd
�1 otherwise.

We start with the same mesh T0 with four elements as in Example 5.7, and construct
recursively grids T:+1 2 T, : � 0, as a conforming refinement of T: 2 T via two
newest-vertex bisections of every triangle of T: ; see Figure 5.4 (right). Since 5 is
!

2-orthogonal to every piecewise linear basis function of the space VT: = S
1,0
T:

for
0  :  < � 1, we deduce that DT: = 0 and the energy error does not change

|||D � DT: |||⌦ = |||D � DT0 |||⌦ 0  :  < � 1. (5.36)

T0

T1

T2

1

�1

1

�1

1

�1

1

�1

�1

1

�1

1

�1

1

�1

1

1

�1

1

�1

1

�1

1

�1

�1

1

�1

1

�1

1

�1

1

1

�1

1

�1

1

�1

1

�1

�1

1

�1

1

�1

1

�1

1

1

�1

1

�1

1

�1

1

�1

�1

1

�1

1

�1

1

�1

1

Figure 5.4. Representation of the checkerboard function 5 of Example 5.13 for
< = 3 (left), and grids T: for : = 0, 1, 2 (right).

We see that this procedure creates three interior vertices in every triangle of T:
after two refinement steps, namely in T:+2 as long as : + 2  <. Since the error
does not change, we conclude that the interior vertex property is necessary for error
reduction but is not su�cient in the presence of data oscillation oscT: ( 5 )�1 < 0.
We conclude

Data oscillation oscT( 5 )�1 is not generally of higher order than the
error, especially in the early stages of the adaptive process.

(5.37)

On the other hand, for : = < the discrete solution DT< does no longer vanish
globally, but is still zero along the lines where 5 changes sign due to the symmetry
of the problem, and the same happens with DT<+1 . Therefore, the behavior of
DT< and DT<+1 in a fixed square, where 5 is constant, is exactly the same as in
Example 5.7. This implies that DT< = DT<+1 , and illustrates that the rather special
situation of Example 5.7 can occur at any stage of the refinement process.
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Example 5.14 (vanishing of VT f for n = 1) Since %T 5 is constructed locally
upon testing 5 against cubic and quadratic bubbles (see Remark 4.26 (local compu-
tation)), and 5 of Example 5.13 is highly oscillatory, we realize that %T: 5 is rather
small relative to 5 in ��1(⌦), but it is not zero. This is due to the lack of complete
symmetry of the checkerboard pattern and the triangular grid. Suppose that each
square of Fig. 5.4, where 5 = ±1, is further split across the diagonals into four
triangles, and that 5 is assigned the alternating values ±1 and ⌥1 in each triangle
depending on whether 5 was originally 1 or �1 in that square; this configuration
is displayed in Fig. 5.5. Suppose further that the coe�cients (G, 2) of the operator
(2.5) are piecewise constant, as it happens for the Laplacian, the polynomial degree
is = = 1, and the definition (4.39) of %) over a triangle ) 2 T uses @ 2 P0 rather
than P1. In light of (4.39) and (4.40), symmetry yields for all ) 2 T and � 2 Fπ

)

5 q) = 0 ) %) 5 = 0,
π
�

5 q� = 0 ) %� 5 = 0, (5.38)

whence %T 5 = 0. Since also DT = 0 because 5 is orthogonal to all basis func-
tions of VT , we deduce ET(DT , 5 ) = 0 and all the information about the error
|||D � DT |||⌦ < 0 resides in the data oscillation oscT( 5 )�1 < 0. Moreover, the fact
that %T 5 = 0 for several iterations reveals the important property that oscT( 5 )�1
may not change upon refinement because

oscT( 5 )2
�1 =

’
) 2T

k 5 k
2
�
�1(l) ). (5.39)

Since |||D � DT |||⌦ ⇡ oscT( 5 )�1, according to (4.45), a special care must be exercised
to reduce data oscillation when it dominates. This justifies the structure of the
algorithm one-step AFEM with switch below.

1 �1

�1 1

1 1 �1 �1

�1 �1 1 1

�1

�1

1

1

1

1

�1

�1

=)

Figure 5.5. Refinement of the shaded according to the process described in Ex-
ample 5.14.

Example 5.15 (vanishing of VT f for n > 1) Given = � 1 a polynomial degree
and T: , : = 1, ...,<, uniform refinements of T0, there are finitely many conditions
to verify for 5 2 ��1(⌦) to be orthogonal to VT: and to FT: . Since dim�

�1(⌦) =
dim !

2(⌦) = 1 there are infinitely many loads 5 2 ��1(⌦) as well as in !2(⌦)
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that yield DT: = %T: 5 = 0, which implies (5.36). Moreover, [T: (D:) = 0 and
ET: (DT: ) = oscT: ( 5 )�1 satisfies (5.39). One explicit example is as follows.

Given an initial mesh T0, suppose that 5 consists of line Dirac masses supported
on the skeleton of T0 with densities 6� on � 2 FT0 made of piecewise polynomials
of degree 2= + 1. We further assume that the 6� are orthogonal to P2= over �
as well as over all sub-faces obtained from < � 1 uniform refinements of T0; see
Fig. 5.4. In such a situation, (5.38) applies and DT: = %T: 5 = 0, whence (5.36)
and (5.39) are valid for 0  :  <.

These three examples reveal the following crucial and novel feature about the
interplay of the energy error |||D � DT |||⌦ and data oscillation oscT( 5 )�1:

Data oscillation oscT( 5 )�1 may be responsible for the energy error
|||D � DT |||⌦ to stagnate, even with the interior vertex property, and
may entirely dominate it relative to the error estimator ET(DT , 5 ) over
many mesh refinements unless it is reduced.

(5.40)

5.3.2 Reducing data oscillation
The PDE error estimator [T(DT) in (5.8) is fully discrete and thus computable.
In contrast, the computation, or rather estimation, of oscT( 5 )�1 hinges on a priori
knowledge of 5 and cannot be assessed in general. Assuming that the local
indicators introduced in Lemma 4.8 (localization re-indexing)

oscT( 5 ,))�1 = k 5 � %T 5 k��1(l) ) ) 2 T . (5.41)

are computable without further regularity than 5 2 �
�1(⌦), it is natural to think

of tree approximation as the algorithm of choice to reduce oscT( 5 )�1 [Binev and
DeVore 2004, Binev, Fierro and Veeser 2023, Binev 2018]. However, this optimal
algorithm is not readily applicable because of the lack of a suitable sub-additivity
property.

On the other hand, greedy algorithms, such as that in Section 3.6 (constructive
approximation), do not work under minimal regularity. In Section 7.3, we present
practical examples of rough 5 for which oscT( 5 )�1 can be replaced by a larger com-
putable surrogate estimator foscT( 5 )�1. The latter splits into element contributions
and is amenable to a greedy strategy. Since this is specialized and technical, we
prefer to postpone the full discussion to Section 7.3 and assume now the existence
of a module DATA with the following property: given a tolerance g > 0 and a
conforming mesh T 2 T, DATA constructs a conforming refinement T⇤ 2 T

[T⇤] = DATA (T , 5 , g),

such that oscT⇤( 5 )�1  g. The complexity of DATA depends on the decay rate of
the best approximation error minT2T# foscT( 5 )�1 of 5 with # degrees of freedom.
We address this important issue in Section 7.3 for each example separately.
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5.3.3 Linear convergence
The following algorithm, AFEM-SW, a one-step AFEM with switch, is a minor,
but essential, modification of GALERKIN in that the call to the modules MARK

and REFINE is conditional to the size of oscT( 5 )�1 relative to ET(DT , 5 ). This
structure is consistent with the heuristic discussion in [Cascón et al. 2008, Section
6] to avoid separate marking. A similar algorithm is being developed in [Kreuzer
et al. n.d.].

Algorithm 5.16 (AFEM-SW: one-step AFEM with switch) Let T0 be a suitable
initial mesh, the coe�cients (G, 2) be discrete over T0, and Y > 0 be a stopping
tolerance. Given parameters 0 < \,l, b < 1, AFEM-SW iterates the following loop
until ET(DT , 5 )  Y:

[T , DT] = AFEM-SW (T0,D, Y)
set 9 = 0
do

[DT9 ] = SOLVE (T9)
[[T9 (DT9 ), oscT9 ( 5 )�1] = ESTIMATE (DT9 ,T9 ,D)
if ET9 (DT9 , 5 )  Y

return T9 , DT9

else if oscT9 ( 5 )�1  f9 := lET9 (DT9 , 5 )
[M 9] = MARK ({[T9 (DT9 ,))}) 2T9 ,T9 , \)
[T9+1] = REFINE (T9 ,M 9)

else
[T9+1] = DATA (T9 , 5 , bf9)

9  9 + 1
while true

Note that SOLVE computes the Galerkin approximation using the exact right-
hand side 5 2 �

�1(⌦) (not necessarily in FT9 ), thereby preserving the Galerkin
orthogonality property. Moreover, ESTIMATE is now responsible for computing
the PDE estimator

[T9 (DT9 ) = [T9 (DT9 , 5 ,T9)

using %T9 5 2 FT9 , as well as data oscillation oscT9 ( 5 )�1, which together give

ET9 (DT9 , 5 ) =
⇣
[T9 (DT9 )

2
+ oscT9 ( 5 )

2
�1

⌘1/2
,

and MARK consists of Dörfler marking (5.23) with parameter \.

We proceed as in Section 5.2.2 to prove linear convergence of AFEM-SW. We
first show a contraction property for the quasi-error, which instead of (5.27) reads

ZT9 (DT9 , 5 )
2 := |||D � DT9 |||

2
⌦ + W[T9 (DT9 )

2
+ oscT9 ( 5 )

2
�1, (5.42)
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where D = D(G, 2, 5 ) is the Galerkin solution with (G, 2) discrete but 5 exact and
the scaling parameter satisfies 0 < W  1.

Theorem 5.17 (contraction property of AFEM-SW) Let (G, 2) be discrete coef-
ficients over T0 and let 5 2 ��1(⌦). Let \ 2 (0, 1] be the Dörfler parameter and
(T9 ,V 9 , D 9) be the sequence of conforming meshes T9 , finite element spaces V 9 ,
and Galerkin solutions D 9 2 V 9 produced by AFEM-SW. There exist parameters
0 < l0 < 1 su�ciently small and 0 < W  1 and 0 < U < 1 such that for any
l  l0 and b  1/2 the quasi-error ZT9 in (5.42) contracts

ZT9+1(DT9+1 , 5 )  UZT9 (DT9 , 5 ) 9 � 0. (5.43)

Proof. We argue as in Theorem 5.8 (general contraction property) upon distin-
guishing the two possible cases within Algorithm 5.16. But first, we must account
for a crucial di�erence: the discrete forcing function %T9 5 used in the definition of
the estimator ET9 (DT9 , 5 ) changes in each iteration. We use the same notation as in
Theorem 5.8 along with osc 9 := oscT9 ( 5 )�1, E2

9
:= [2

9
+ osc2

9
, and % 9 := %T9 .

1 Estimator reduction property. In view of Proposition 4.56 (estimator reduction),
we need to estimate the discrepancy between discrete forcing functions’
) 2T9+1

k% 9+1 5�% 9 5 k
2
�
�1(l) )  2

’
) 2T9+1

⇣
k 5 � % 9+1 5 k

2
�
�1(l) )+k 5 � % 9 5 k

2
�
�1(l) )

⌘
.

For the first term we recall Lemma 4.57 (quasi-monotonicity of oscillation) to write’
) 2T9+1

k 5 � % 9+1 5 k
2
�
�1(l) ) = osc2

9+1  ⇠
2
osc osc2

9
.

For the second term, instead, we combine the projection property % 9+1(% 9 5 ) = % 9 5
with Lemma 4.5 (localization of ��1-norm) and Corollary 4.31 (local near-best
approximation), and the fact that T9+1 is a refinement of T9 , to see that’

)
0⇢l)

k 5 � % 9+1(% 9 5 )k2
�
�1(l) 0 )

 ⇠
2
lStb

’
)
0⇢l)

k 5 � % 9 5 k
2
�
�1(l) 0 )�1

 ⇠
2
lStb⇠

2
ovrl oscT9 ( 5 ,l) )2

8) 2 T9 .

Adding over ) and recalling Proposition 4.56 we end up with

[T9+1(D 9+1, 5 ,T9+1)2
 (1 + X)

�
[T9 (D 9 , 5 ,T9)

2
� _ [T9 (D 9 , 5 ,M 9)2�

+ (1 + X
�1)⇠2

Lip

�
|D 9 � D 9+1 |

2
�

1
0 (⌦)

+ osc2
9

�
,

(5.44)

for a constant ⇠Lip large enough to absorb all preceding constants, and any X > 0.

2 Case osc 9  lE 9 . We first observe that [2
9
� (1 � l2)E2

9
and osc2

9


l
2

1�l2 [
2
9
.

We then proceed as in Theorem 5.8 with the quantity 42
9
+ W[

2
9
, and observe that
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the choices of X and W

X  �1 +
1 � _\

2

2

1 � _\2
=

_\
2

2(1 � _\2)
, W 

X

4⇠2
Lip


1

2
�
1 + X�1

�
⇠

2
Lip

, (5.45)

imply W(1 + X
�1)⇠2

Lip  1/2. This, together with (5.7) and (5.44), leads to

4
2
9+1 + W[

2
9+1  4

2
9
+ W

⇣
1 �

_\
2

2

⌘
[

2
9
+

1
2

osc2
9
;

compare with (5.32). We invoke the upper bound in (5.13) to write

[
2
9
� (1 � l2)E2

9
� (1 � l2)

4
2
9

⇠
2
1

�

4
2
9

2⇠2
1

provided l2
 1/2, whence

4
2
9+1 + W[

2
9+1 

⇣
1 �

W_\
2

8⇠2
1

⌘
4

2
9
+ W

⇣
1 �

_\
2

8

⌘
[

2
9
�
W_\

2

8
[

2
9
+

1
2

osc2
9
.

We next consider the data oscillation, for which we invoke Lemma 4.57 (quasi-
monotonicity of oscillation)

osc 9+1  ⇠osc osc 9 , osc2
9
 ⇠

2
osc

l
2

1 � l2
[

2
9
 2⇠2

oscl
2
[

2
9
.

Adding the two preceding inequalities yields

Z
2
9+1 = 42

9+1 + W[
2
9+1 + osc2

9+1 

⇣
1 �

W_\
2

8⇠2
1

⌘
4

2
9

+

⇣
1 �

_\
2

8

⌘�
W[

2
9
+ osc2

9

�

+

h
� W

_\
2

8
+ 2
�
⇠

2
osc � 1 +

_\
2

8
+

1
2

�
l

2
i
[

2
9
.

We drop the term �1
2 +

_\
2

8  0 and let W = X

4⇠2
Lip

, which is consistent with (5.45).

We seek conditions on l that make the factor of [2
9

non-positive. Imposing

l
2


W_\
2

16⇠2
osc

=
_\

2

64⇠2
osc⇠

2
Lip

X (5.46)

yields

Z
2
9+1  U

2
1Z

2
9

with

U
2
1 := max

n
1 �

X_\
2

32⇠2
1⇠

2
Lip

, 1 �
_\

2

8

o
< 1.
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3 Case osc 9 > lE 9 . The module DATA with input parameter b  1/2 gives

osc 9+1  blE 9 < b osc 9 .

We now exploit the contraction of osc 9 to compensate the moderate increase of [2
9

and presence of osc2
9
, both governed by (5.44). In fact, W(1 + X

�1)⇠2
Lip 

1
2 yields

4
2
9+1 + W[

2
9+1  4

2
9
+ W(1 + X)[2

9
+

1
2

osc2
9
.

We add osc2
9+1 to both sides and rewrite the right-hand side to arrive at

Z
2
9+1 = 42

9+1 + W[
2
9+1 + osc2

9+1 4
2
9
�

1 � 2b2

8
osc2

9

+ (1 � X)W[2
9
+

✓
1 + 2b2

4
+

1
2

◆
osc2

9

+ 2XW[2
9
�

1 � 2b2

8
osc2

9
.

Our next task is to find conditions on l for the last line to be non-positive. To this
end, we resort to the upper bound [2

9
< l

�2 osc2
9

and b  1/2 to obtain

2XW[2
9
�

1 � 2b2

8
osc2

9
<

✓
2XW
l

2
�

1
16

◆
osc2

9
 0

provided we impose the relation

l
2
� 32XW =

8

⇠
2
Lip

X
2
. (5.47)

We next use the upper bound 4 9  ⇠1E 9  ⇠1l
�1 osc 9 to write

4
2
9
�

1 � 2b2

8
osc2

9


 

1 �
l

2

16⇠2
1

!

4
2
9
,

whence we end up with

Z
2
9+1  U

2
2Z

2
9

provided we define

U
2
2 := max

n
1 �

l
2

16⇠2
1

, 1 � X,
3 + 2b2

4

o
< 1.

4 Choosing the parameters. We see that the asserted estimate (5.43) is valid with
U = max{U1, U2} < 1 provided the constraints (5.46) and (5.47) are compatible,
i.e.,

8
⇠Lip

X
2
 l

2


_\
2

64⇠2
osc⇠

2
Lip

X.
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We choose X0 = _\
2

512⇠2
osc⇠Lip

and l0 = _\
2

128⇠2
osc⇠Lip

p
2⇠Lip

. Then, for all l  l0,

there exists X  X0 that satisfies the previous inequalities as well as W = X

4⇠2
Lip
 1,

perhaps upon reducing X0. This completes the proof of Theorem 5.43.

Note that we could replace the conditional oscT9 ( 5 )�1  l ET9 (DT9 , 5 ) by
oscT9 ( 5 )�1  l [T9 (DT9 ), but the tolerance g of DATA cannot be

g = b l [T9 (DT9 )

because the algorithm may not terminate when [T9 (DT9 ) = 0, see e.g. Examples
5.13 - 5.15. In fact, the tolerance g = blET9 (DT9 , 5 ) is dynamic and relative to
ET9 (DT9 , 5 ). This avoids separate marking, which was shown in [Cascón et al.
2008, Section 6] to give non-optimal convergence rates. In contrast, we will prove
in Section 6 that Algorithm 5.16 is rate optimal.

It turns out that Theorem 5.17 yields linear convergence of error and estimator.

Corollary 5.18 (linear convergence of error) For 0 < U < 1 and 0 < l  l0,
b 

1
2 as in Theorem 5.17, and ⇠⇤ =

�
1 +⇠

�1
2

�1/2
with ⇠2 as in (5.13), there holds

|D � DT: |� 1
0 (⌦)  ⇠⇤ U

:� 9
|D � DT9 |� 1

0 (⌦) 8: � 9 � 0.

Proof. We again use the same notation as in Lemma 5.5 and Theorem 5.17. In
view of the definition (5.42) of quasi-error Z 9 := ZT9 (DT9 , 5 ), we thus have 4 9  Z 9
and

Z
2
9
 4

2
9
+ [

2
9
+ osc2

9

�
1 + ⇠

�1
2

�
4

2
9

because ⇠2E 9  4 9 from (5.13). This implies

4 9  Z 9  ⇠⇤4 9 8 9 � 0,

and invoking Theorem 5.17 (contraction property for AFEM-SW)

4
2
:
 Z

2
:
 U

2(:� 9)
Z

2
9
 U

2(:� 9)
⇠

2
⇤ 4 9

gives the desired estimate.

We stress that Corollary 5.18 relies on the lower bound in (5.13) whereas Corol-
lary 5.19 uses only the upper bound. Its proof is similar and thus omitted.

Corollary 5.19 (linear convergence of estimator) For 0 < U < 1 and 0 < l 

l0, b  1
2 as in Theorem 5.17, and ⇠# =

�
(1 + ⇠

2
1 )W�1

�1/2
with ⇠1 as in (5.13),

there holds

ET: (DT: , 5 )  ⇠# U
:� 9

ET9 (DT9 , 5 ) 8: � 9 � 0.

5.4 Convergence for general data: two-step AFEM

We now remove the restriction of Sections 5.2 and 5.3 of discrete data and allow
for general data D = (G, 2, 5 ) 2 D as defined in (5.2). The current goal is to study
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Algorithm 5.1 (AFEM-TS), which concatenates the modules DATA and GALERKIN.
We start with the study of continuous dependence with respect to data D. We next
discuss the approximation of D within the module DATA, the computational cost
of GALERKIN, and eventually the convergence of Algorithm 5.1.

5.4.1 Perturbation theory
We start with a brief discussion of data perturbation. Given constants 0 < U1  U2
and 0  21  22, we define the constrained spaces for the di�usion and reaction
coe�cients by

"(U1, U2) :=
�
G 2 !1(⌦;R3⇥3sym ) : 0 < U1  _ 9(G(G))  U2

for a.e. G 2 ⌦, 1  9  3
 
,

(5.48)

where _ 9(G(G)) denotes the 9-th eigenvalue of G at G 2 ⌦ and

'(21, 22) :=
�
2 2 !

1(⌦) : 21  2(G)  22 for a.e. G 2 ⌦
 
. (5.49)

The coe�cients (G, 2) are assumed to satisfy the structural assumption

G 2 "(U1, U2), 2 2 '(21, 22); (5.50)

see (2.6). This guarantees coercivity and continuity of the bilinear form B in (2.8),
and thus unique solvability of (2.7).

Regarding the discrete coe�cients, (bG,b2) will ultimately be piecewise polyno-
mials in a grid bT 2 T. The side constraints in (5.48) and (5.49) are generally
violated by any linear projection onto piecewise polynomials of degree = � 1 � 1,
e.g. the !2-projection, and require a nonlinear correction maintaining high order
accuracy. This is a crucial but delicate matter addressed later in Section 7.2. For
the moment, we simply assume that the discrete coe�cients (bG,b2) satisfy

bG 2 "(bU1,bU2), b2 2 '(b21,b22), (5.51)

with
U1

2
 bU1  bU2  ⇠ctrU2, �

U1

4⇠2
%

 b21  b22  ⇠ctr(U1 + 22) (5.52)

where⇠% > 0 is the Poincaré constant in (2.2) and⇠ctr � 1 is a constant; see (7.21)
and (7.23). This implies coercivity and continuity of the perturbed bilinear form

bB[E,F] :=
π
⌦
rE · bGrF + b2EF, 8E,F 2 �

1
0(⌦), (5.53)

because for all E,F 2 �1
0(⌦)

bB[E, E] � bU1

π
⌦
|rE |

2
�

U1

4⇠2
%

π
⌦
|E |

2
�
U1

4
|E |

2
�

1
0 (⌦)



AFEM 145

and �� bB[E,F]
�� 

π
⌦
bU2 |rE | |rF | + b22 |E | |F | 

�bU2 + b22⇠
2
%

�
|E |
�

1
0 (⌦) |F |� 1

0 (⌦).

Therefore, the energy norm |||E |||
2
⌦ = bB[E, E] is equivalent to the �1

0-seminorm

2 bB |E |2� 1
0 (⌦)
 |||E |||

2
⌦  ⇠ bB |E |2� 1

0 (⌦)
, (5.54)

where 2 bB = U1
4 and⇠ bB = bU2+b22⇠

2
%

. Hence, the Lax-Milgram Theorem guarantees

the existence of a unique solution bD = D( bD) 2 �1
0(⌦) of the perturbed problem

(5.5) defined using the discrete data bD = (bG,b2, b5 ).
We now quantify the e�ect of perturbing data from D to bD in the space

b⇡(⌦) := !A (⌦;R3⇥3) ⇥,�B
@

(⌦) ⇥ ��1(⌦), (5.55)

where 2  A  1 and 0  B  1, 3

2�B < @  1; ,�B
@

(⌦) is the dual of , B

@⇤(⌦)
with @⇤ = @

@�1 . The use of A = 1 for G entails the further assumption

G is piecewise uniformly continuous over a generic mesh T 2 T, (5.56)

which turns out to be rather restrictive but customary in the theory of AFEM. Our
present approach allows for A < 1 and thus for discontinuous coe�cients (G, 2)
non aligned with T , which is important in practice. However, it requires the
following slightly stronger regularity property of the solution D 2 �1

0(⌦) of (2.7):

krDk!?(⌦)  ⇠? k 5 k, �1
? (⌦) 2 < ?  ?0. (5.57)

We refer to Lemma 2.13 (,1
?
-regularity) that shows the existence of ⇠? > 0 and

?0 > 2 that only depend on ⌦, U1, U2 and 22.

Lemma 5.20 (continuous dependence on data) Let D = (G, 2, 5 ) 2 D be such
that G 2 "(U1, U2) and 2 2 '(21, 22). Let bD = (bG,b2, b5 ) 2 D be an approximation
of D such that bG 2 "(bU1,bU2) and b2 2 '(b21,b22). Let 2  A  1, 2  A⇤ = 2A

A�2 

?0 be so that 5 2 ,�1
A⇤

(⌦). If D = D(D),bD = D( bD) 2 �1
0(⌦) are the solutions of

(2.7) and (5.5) with data D,
bD, respectively, and D satisfies (5.57) with ? = A⇤ in

case A < 1, then for any 0  B  1 and 3

2�B < @  1 there holds

kr(D � bD)k
!

2(⌦)  ⇠(D,⌦) kD � bDk b⇡(⌦), (5.58)

where the constant ⇠(D,⌦) depends on D, ⌦, ?0, @ and B, and blows up as
@ !

3

2�B for 3 = 2 while it remains bounded for 3 > 2.

Proof. Subtracting the weak formulations (2.7) for D and (5.5) for bD, and reorder-
ing, we easily obtain for any E 2 �1

0(⌦)π
⌦
rE · bGr(D � bD) + b2E(D � bD) =

π
⌦
rE · (bG � G)rD + (b2 � 2)ED + h 5 � b

5 , Ei.
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We choose E = D � bD 2 �1
0(⌦) and invoke (5.54) to deduce

2 bB krEk2!2(⌦) 

π
⌦
rE · (bG � G)rD + (b2 � 2)ED + h 5 � b

5 , Ei.

We estimate each term separately, starting with the first and last termsπ
⌦
rE · (bG � G)rD  kbG � Gk!A (⌦)krDk!A⇤ (⌦)krEk!2(⌦) (5.59)

with 2  A⇤ = 2A
A�2  ?0, as well as

h 5 � b
5 , Ei  k 5 � b

5 k
�
�1(⌦)krEk� 1(⌦).

For the reaction term, which is more delicate, we invoke the duality pairing, B

@
0 �

,
�B
@

for any 0  B  1 and @0 = @

@�1 � 1 to obtainπ
⌦

(b2 � 2)ED  kb2 � 2k, �B@ (⌦) |ED |, B
@0

(⌦).

We now estimate |ED |, B
@0

(⌦) . |ED |
,

1
?0

(⌦) where 1/?0 = min{1, (1 � B)/3 + 1/@0}

guarantees that ,1
?
0(⌦) ⇢ , B

@
0(⌦) [Leoni 2009, Theorem 14.32]. Recalling that

@ > 3/(2 � B), we deduce

1 � B
3

+
1
@
0
=

1 � B
3

+ 1 �
1
@

>

3 � 1
3

�
1
2
,

whence 1/?0 > 1/2 and there exists C < 1 satisfying 1/C + 1/2 = 1/?0 and

|ED |, B
@0

(⌦) . krEk!2(⌦)kDk!C (⌦) + kEk!C (⌦)krDk!2(⌦).

Using the definition of ?0, we obtain the explicit expression C = max{2, C0}, where

C0 =
23@

@

�
2(1 � B) + 3

�
� 23

.

Moreover, for the Sobolev embedding �1(⌦) õ! !
C (⌦) we require

1 � 3
⇣1

2
�

1
C

⌘
> 0 ) @ >

3

2 � B
,

which is our assumption on @. Therefore, as @ ! 3

2�B , we see that C0 ! 23
3�2

and the limit is infinite for 3 = 2 but finite and larger than 2 for 3 > 2. Sobolev
embedding together with the first Poincaré inequality (2.2) gives the estimate

kEDk, B
@0

(⌦)  ⇠(⌦, C)krEk
!

2(⌦)krDk!2(⌦).

where ⇠(⌦, C) is proportional to C for 3 = 2.
We finally observe that the factors krDk!A⇤ (⌦) and krDk

!
2(⌦) appear in the

estimates of the coe�cients G and 2, thereby reflecting the multiplicative nature of
these terms. Since 2  A⇤  ?0, they can be further bounded in terms of k 5 k

,
�1
A⇤ (⌦)
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according to (5.57). This in conjunction with the preceding estimates yields the
assertion (5.58).

A natural and rather popular choice of parameters (A, @, B) in Lemma 5.20 (con-
tinuous dependence on data) is A = @ = 1 and B = 0, but this would prevent the
coe�cients (G, 2) from being discontinuous within elements; see (5.56). We will
explore this matter further in Section 7 (data approximation).

Remark 5.21 (R2-approximation of G) It is appealing to estimate the distortion
G � bG in !2(⌦) rather than in !A (⌦) because it is a simpler norm to deal with.
Since kGk!1(⌦)  U2, kbGk!1(⌦)  bU2, and 2  A  1, we deduce

kG � bGk!A (⌦)  kG � bGk1� 2
A

!
1(⌦)kG �

bGk 2
A

!
2(⌦)
. kG � bGk 2

A

!
2(⌦)

.

However, this may be sub-optimal in general. One important situation where this is
sharp corresponds to G being piecewise constant with jump discontinuities across
a Lipschitz hypersurface W and bG = G on every element ) 2 T not intersecting W.
In that case, the equivalence

kG � bGk!?(⌦) ⇡
��{G 2 ⌦ : G(G) < bG(G)}

�� 1
?
,

is valid for 1  ?  1, whence

kG � bGk!A (⌦) ⇡ kG � bGk 2
A

!
2(⌦)

.

5.4.2 Approximation of D: module DATA

In this section we briefly discuss the structure of DATA, which is the module of
Algorithm 5.1 (two-step AFEM) responsible for data approximation.

In the sequel we will no longer rely on the Banach space b⇡(⌦) defined in (5.55)
and used in Lemma 5.20 (continuous dependence on data). We rather restrict the
error notion to the following stronger Banach space

⇡(⌦) := !A (⌦;R3⇥3) ⇥ !@(⌦) ⇥ ��1(⌦), (5.60)

where @ = 2 for 3 < 4 or @ >
3

2 for 3 � 4; we justify the choice of @ below. Let
D and DT be the spaces defined in (5.1) and (5.2) for a conforming mesh T 2 T.
Given D = (G, 2, 5 ) 2 D, let XT(D) be the best approximation error of D within
DT measured in the space ⇡(⌦), namely

XT(D) := inf
DT 2DT

kD �DT k⇡(⌦). (5.61)

This quantity characterizes the approximation quality of DT , thereby having the-
oretical value. Since XT(D) is hard to access in view of the norms involved in the
definition of ⇡(⌦), the module DATA computes the surrogate quantity

oscT(D) := kD � bDk⇡(⌦)

for some approximation bD 2 DT to be specified below.
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Assumption 5.22 (properties of DATA) Given a conforming mesh T 2 T and a
tolerance g > 0, the call

[bT ,
bD] = DATA (T ,D, g) (5.62)

creates an admissible refinement bT of T and discrete data bD = DbT 2 DbT such
that for a constant ⇠data

oscbT(D) := kD � bDk⇡(⌦)  ⇠datag (5.63)

as well as the structural conditions (5.51) are achieved in a finite number of itera-
tions that depends on the regularity of D, and such that

oscbT(D)  ⇤data XbT(D) (5.64)

with ⇤data � 1 depending only on the shape regularity of T, the polynomial degree
= and the Lebesgue exponents in the space ⇡(⌦).

In view of Lemma 5.20 (continuous dependence on data), there exists a constant
⇠⇡ > 0 depending on D,⌦, and the shape regularity of T, such that the exact
solutions D = D(D) and bD = D( bD) of (2.5) and (5.5), corresponding to data D andbD respectively, satisfy the error estimate

|D � bD |
�

1
0 (⌦)  ⇠⇡g. (5.65)

A brief discussion follows about computing oscbT(D), where bT remains fixed
and is replaced by T to simplify the notation. Specific details are given later in
Assumptions 6.10 and 6.11 of Section 6.10 and especially in Section 7.

Approximating the coe�cients. We now construct approximations (bG,b2) using
local !2-projections and emphasize that this does not enforce the side constraints
in the structural assumption (5.51). We propose in Section 7 a nonlinear correction
satisfying the side constraints without sacrificing the accuracy.

Given ) 2 T , and E 2 ! ?()) with 1  ?  1, we denote by ⇧) E := ⇧=�1
)

E the
!

2-projection of E onto the space P=�1 of polynomials of degree  = � 1, namely

⇧) E 2 P=�1 :
π
)

⇧) E F =
π
)

E F 8F 2 P=�1. (5.66)

Lemma 5.23 (Rp-stability of ⇧Z ) For every 1  ?  1 and E 2 ! ?()), there
exists a constant ⇠ depending on ?, = and the shape regularity of T such that

k⇧) Ek!?() )  ⇠kEk!?() ) 8) 2 T . (5.67)

Proof. It is trivial to see that k⇧) Ek!2() )  kEk!2() ). Let 2 < ?  1 and
combine an inverse estimate with a Hölder inequality to write

k⇧) Ek!?() )  ⇠⌘
3
?�

3
2

)
k⇧) Ek!2() )  ⇠⌘

3
?�

3
2

)
kEk

!
2() )  ⇠kEk!?() ).
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For 1  ? < 2 we proceed by duality. Let i 2 !@()) with @ = ?

?�1 . Thenπ
)

⇧) Ei =
π
)

E⇧) i  kEk!?() )k⇧) ik!@() )  ⇠kEk!?() )kik!@() ),

which implies (5.67) and concludes the proof.

We immediately have the following simple consequence of Lemma 5.23.

Corollary 5.24 (best approximation of ⇧Z ) For every 1  ?  1 and E 2

!
?()), there exists a constant ⇠BA � 1 depending on ?, = and the shape regu-

larity of T such that

kE � ⇧) Ek!?() )  ⇠BA inf
F 2P=�1

kE � Fk!?() ). (5.68)

Proof. We combine the invariance of ⇧) on P=�1, i.e. ⇧)F = F for F 2 P=�1,
with (5.67) to see that

kE � ⇧) Ek!?() ) = k(E � F) � ⇧) (E � F)k!?() )  ⇠kE � Fk!?() ).

This implies (5.68) as asserted.

The !2-projection is easily computable because it entails solving the linear sys-
tem (5.66). However, this flexibility comes at the expense of a best approximation
constant ⇠BA > 1 in (5.68) for ? < 2. The best ! ?-approximation of E in ) is also
computable, because it boilds down to a convex minimization problem, and would
result in⇠BA = 1. This excellent property is superseded by the simplicity of (5.66),
which makes ⇧) E the approximation of choice.

Corollary 5.25 (quasi-monotonicity of ⇧Z ) Let T ,T⇤ 2 T be so that T  T⇤,
and let ) 2 T ,)⇤ 2 T⇤ satisfy )⇤ ⇢ ) . If ⇠BA is the constant in (5.68), then

kE � ⇧)⇤Ek!?()⇤)  ⇠BAkE � ⇧) Ek!?() ) (5.69)

for all 1  ?  1, and ⇠BA = 1 for ? = 2.

Proof. Simply use (5.68) to write

kE � ⇧)⇤Ek!?()⇤)  ⇠BAkE � ⇧) Ek!?()⇤)  ⇠BAkE � ⇧) Ek!?() ).

This is the desired bound.

We are now ready to define the discontinuous P=�1-approximation bE of E 2
!
?(⌦). Inequality (5.69) with ⇠BA > 1 is fine for most instances except Lemma

7.5 below. Therefore, we introduce a nonlinear modification of the obvious choicebE for ) 2 T , namely bE = ⇧) E. We give a recursive (and computable) definition
as follows: If ) 2 T0, then bE |) := ⇧) E; if ) 2 T let bE |%() ) 2 P=�1 be the
approximation of E in the parent element %()) of ) , and set

bE |) :=

(
⇧) E if kE � ⇧) Ek!?() )  kE �bE |%() )k!?() ),bE |%() ) if kE � ⇧) Ek!?() ) > kE �bE |%() )k!?() ).

(5.70)
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We then define

oscT(E,))? := kE �bEk!?() ) 8) 2 T . (5.71)

Since the chain of elements emanating from T0 and culminating with ) is unique,
the notion oscT(E,))? is well defined and independent of T . The following result
is an immediate consequence of (5.70).

Lemma 5.26 (monotonicity of oscillation) For all 1  ?  1, T ,T⇤ 2 T with
T  T⇤, and )⇤ 2 T⇤,) 2 T so that )⇤ ⇢ ) , there holds

oscT⇤(E,)⇤)?  oscT(E,))? . (5.72)

Consequently, for any = � 1 and ) 2 T , let bG 2 [S=�1,�1
T

]
3⇥3 , b2 2 S=�1,�1

T
be

defined locally via (5.70), and let the surrogate element error indicators of (G, 2)
be given by

oscT(G,))A := kG � bGk!A () ) , oscT(2,))@ := k2 � b2k!@() ) , (5.73)

for some 2  A  1 and 3

2 < @  1 according to (5.58) for B = 0. The simplest
choice @ = 2 yields b2) = ⇧) 2 in (5.70), but requires the restriction 3 < 4, which
is fine in practice.

For = = 1 the situation is a bit special on two counts. First, ⇧) E reduces to
meanvalues of E, namely

⇧) G :=
1
|) |

π
)

G, ⇧) 2 :=
1
|) |

π
)

2, 8) 2 T . (5.74)

for G 2 "(U1, U2), 2 2 '(21, 22) defined in (5.50). Hence, bG 2 "(bU1,bU2) withbU1 = U1, bU2 = U2 and b2 2 '(b21,b22) with b21 = 21,b22 = 22, i.e., the !2-projections
(5.74) on piecewise constants over T as well as bG and b2 satisfy the side conditions
in (5.51) without changing the original range of parameters. In addition, instead
of (5.73), we can exploit superconvergence in,�1

@
(⌦) with @ >

3

2�B = 3 in (5.58).
In fact, we utilize the orthogonality of ⇧) in conjunction with (5.68) and (3.16) to
obtain for an arbitrary function F 2 ,1

@
⇤(⌦) and @⇤ = @

@�1π
)

(2 � ⇧) 2)F =
π
)

(2 � ⇧) 2)(F � ⇧)F) . ⌘C
)
k2 � ⇧) 2k!A () ) |F |, 1

@⇤
(l) )

where C = 1 � 3

@
⇤ +

3

A
⇤ = 1 +

3

@
�
3

A
> 0 and A⇤ = A

A�1 . We consider two cases:

A = 2,1. If A = 2 and B = 1, then @ > 3 results in 0 < C < 2 � 3

2 and entails the
restriction 3 < 4. This implies k2 � b2k

,
�1
@ (⌦) . oscT(2)2 where

oscT(2,))2 := ⌘C
)
k2 � ⇧) 2k!2() ). (5.75)

If A = 1 and B = 1, then @ = 1 yields C = 1 and k2 � b2k
,
�1
@ (⌦) . oscT(2)1 where

oscT(2,))1 := ⌘) k2 � ⇧) 2k!1() ). (5.76)
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Approximating the load. Dealing with 5 2 �
�1(⌦) is trickier for several reasons.

First the norm in ��1(⌦) is nonlocal, so its localization is non-obvious. We recall
the definition (4.52) of local oscillation oscT( 5 ,))�1 for ) 2 T and Corollary 4.31
(local near-best approximation) to deduce

oscT( 5 ,))�1 := k 5 � %T 5 k��1(l) )  ⇠lStb inf
j2FTl)

k 5 � jk
�
�1(l) ) (5.77)

where ⇠lStb is the constant in Lemma 4.28 (local ��1-stability); equivalently,
oscT( 5 ,))�1 delivers a near best approximation of 5 in ��1(l) ). The second
issue at stake is that without further assumptions on 5 , it is not possible to evaluate
or bound the left hand side of (5.77). In Section 7 we will consider several classes
of loads amenable to computation and yet relevant in practice.

A popular variant of this approach for 5 2 !2(⌦) replaces j in (5.77) by the
!

2-projection ⇧T onto discontinuous piecewise polynomials of degree = � 1, and
sets b

5 = ⇧T 5 . This leads to the standard local weighted !2-element error indicator

foscT( 5 ,))�1 := ⌘) k 5 � b
5 k
!

2() ) 8) 2 T . (5.78)

Data error estimators. They are the following quantities for the coe�cients (G, 2)

oscT(G)A :=
✓ ’
) 2T

oscT(G,))A
A

◆ 1
A

,

oscT(2)@ :=
✓ ’
) 2T

oscT(2,))@
@

◆ 1
@

,

(5.79)

which accumulate in ✓A and ✓@ for 2  A  1 and 3

2 < @; recall that @ = 2 is an
admissible choice provided 3 < 4. In contrast, the global error estimator for 5

oscT( 5 )�1 :=
✓ ’
) 2T

oscT( 5 ,))2
�1

◆ 1
2

(5.80)

accumulates in ✓2. The total data error estimator satisfies (5.64) and reads

oscT(D) := oscT(G)A + oscT(2)@ + oscT( 5 )�1 . (5.81)

The module DATA. This module reduces the oscillation of data D = (G, 2, 5 ) se-
quentially. It consists of a linear approximation followed by a nonlinear correction.

Given a coe�cient E = G, 2, a mesh T 2 T, a tolerance g, an accumulation
index 1  ?  1, and a number of bisections 1 � 1 per marked element, the call

[eT ,eE] = GREEDY
�
E,T , g, ?, 1

�

returns a conforming refinement eT of T and a piecewise polynomial approximationeE of E over eT such that the oscillation computed with E �eE satisfies

osceT(E)?  g.
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For the load function 5 , since the computation of oscT( 5 )�1 is impossible without
further assumptions on 5 , we will consider three surrogate estimators foscT( 5 )�1
in Section 7.3 that also accumulate in ✓? such that, for all T 2 T,

oscT( 5 )�1  ⇠data foscT( 5 )�1,

where ⇠data � 1. GREEDY applied to the surrogate estimator constructs eT � T

satisfying

fosceT( 5 )�1  g ) osceT( 5 )�1  ⇠datag. (5.82)

In all cases, the routine GREEDY is similar to that in Algorithm 3.18 (greedy
algorithm) with several important distinctions: it accumulates the local error in-
dicators in the ✓?-norm and starts from any mesh T � T0 to save computational
work.

Finally, the structure of the module DATA is as follows: it concatenates GREEDY

with CONSTRAINT-A and CONSTRAINT-c in order to satisfy Assumption 5.22
(properties of DATA). The routine GREEDY deals with pure approximation without
constraints: called with tolerance g/3, it sequentially reduces the oscillation for
G, 2, 5 with the most recent updated mesh to reduce their errors so that

oscbT(G)A  g/3, oscbT(2)@  g/3, foscbT( 5 )�1  g/3

on a conforming refinement bT � T . This is discussed in detail in Section 7.1.
From (5.82), we get oscbT( 5 )�1  ⇠datag/3. On the other hand, the resulting

coe�cients (eG,e2) most likely do not satisfy the constraints (5.51) for = > 1. This
requires a further nonlinear correction

[bG] = CONSTRAINT-A (bT ,
eG), [b2] = CONSTRAINT-c (bT ,e2),

that enforces (5.51) on the same grid bT without compromising the accuracy gain
produced by GREEDY : there exists a constant � 1, still denoted⇠data for simplicity,
such that

oscbT(bG)A  ⇠datag/3, oscbT(b2)@  ⇠datag/3 ) oscbT(D)  ⇠datag.

For instance, for a fixed parameter ! � 2, we get bU1 = 1
2U1 and bU2 = (1 + 4!) U2

2
for the parameters in (5.51). We give details in Sections 7.2, 7.3, and 7.4.

The optimality properties of DATA hinge on the performance of GREEDY and the
regularity of D. Since this is not necessary for the present convergence assessment,
we discuss it later in Section 7.

5.4.3 Computational cost of GALERKIN

The output pair (bT ,
bD) of DATA is next taken by GALERKIN, the one-step AFEM

of Algorithm 5.4 in Section 5.2.1, to run an inner loop of the form (5.18) with
fixed discrete data bD and initial mesh bT . The call (5.19) of GALERKIN stops as
soon as the error tolerance Y is reached, which takes a finite number of iterations
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because GALERKIN is a contraction between consecutive iterates, and creates the
next mesh-solution pair (T , DT). It is worth noticing that, in the absence of this
stopping test, the Galerkin solution DT would converge to the solution bD = D( bD) of
(5.5), which is not the desired solution D = D(D) of (2.5).

We stress that, in view of (5.63) and (5.65), the relative resolution of the modules
DATA and GALERKIN is critical for the discrepancy between the exact and perturbed
solutions D and bD. This is ultimately responsible for the performance of AFEM-TS

and is studied in Section 6.
We now investigate the number of iterations within GALERKIN, which dictate

its computational cost. We point out that at iteration : � 1 � 0 of AFEM-TS, the
output (T: , D:) of GALERKIN, and thus of AFEM-TS, satisfies

[:(D:) = [T: (D:)  Y:�1 ) |D: � bD:�1 |� 1
0 (⌦)  ⇠*Y:�1 (5.83)

according to (5.12). We recall that bD:�1 = bD:�1( bD:�1) 2 �1
0(⌦) is the exact

solution with discrete data bD:�1, and that ET: (D: , 5 ) is defined with discrete databD:�1 and satisfies ET: (D: , 5 ) = [T: (D:) because data oscillation oscT: ( 5 )�1 = 0.
The next iteration : of AFEM-TS calls DATA, which in turn refines the mesh T:

to bT: and updates the data approximation from bD:�1 to bD: over bT: . The pair
(bT: , bD:) determines the first Galerkin solution D: ,0 2 V: ,0 = VbT: of GALERKIN

and corresponding estimator [: ,0(D: ,0) with T: ,0 = bT: , which must satisfy

[: ,0(D: ,0) > Y: (5.84)

for GALERKIN to be executed. The reduction of [T:, 9 (D: , 9) for 9 � 1 dictates the
number of iterations of GALERKIN. We examine this next.

Proposition 5.27 (computational cost of GALERKIN) If the assumptions of The-
orem 5.8 are valid, then for any : 2 N, the number of subiterations �: inside a call
to GALERKIN at iteration : of AFEM-TS is bounded independently of : .

Proof. The 9-th error 4: , 9 := |bD: � D: , 9 |� 1
0 (⌦) within GALERKIN converges lin-

early in view of Corollary 5.10 (linear convergence of error) because the dis-
crete data bD: is fixed in these inner iterations. Exploiting the lower bound
⇠![: , 9(D: , 9)  4: , 9 stated in (5.12), we thus deduce

[: , 9(D: , 9)  ⇠�1
!
4: , 9  ⇠

�1
!
⇠⇤U

9�8
4: ,8 , 9 � 8 � 0,

whence [: , 9(D: , 9)  ⇠#U
9
4: ,0 with ⇠# := ⇠

�1
!
⇠⇤. The number of iterations

of GALERKIN depends on the size of [: ,0(D: ,0) relative to Y: . We assume that
[: ,0(D: ,0) > Y: according to (5.84). We first prove that [: ,0(D: ,0) . Y: and next
argue that �: is bounded uniformly in : . We proceed in two steps.

1 Bound on |bD: � D: ,0 |� 1
0 (⌦): Since D: 2 V: ⇢ V: ,0 = VbT: , and the Galerkin

solution D: ,0 2 V: ,0 minimizes the error |||D: ,0 � bD: |||⌦ in V: ,0, relative to the
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energy norm induced by the bilinear form bB with discrete data bD: , we deduce

|||D: ,0 � bD: |||⌦  |||D: � bD: |||⌦  q
⇠ bB
⇣
|D: � bD:�1 |� 1

0 (⌦) + |bD:�1 � bD: |� 1
0 (⌦)

⌘
,

where the last inequality uses (5.3) for bB. Invoking the a posteriori upper bound
(5.13) and the termination condition of GALERKIN at step : � 1, we obtain

|D: � bD:�1 |� 1
0 (⌦)  ⇠*ET: (D: , 5 ) = ⇠*[:(D:)  ⇠*Y:�1 = 2⇠*Y: .

On the other hand, using (5.65) with g = lY: and 0 < l  1, we arrive at

|D � bD: |� 1
0 (⌦)  ⇠1Y: ,

with ⇠1 = l⇠⇡ . The triangle inequality thus yields

|bD:�1 � bD: |� 1
0 (⌦)  |D � bD:�1 |� 1

0 (⌦) + |D � bD: |� 1
0 (⌦)  ⇠1(Y:�1 + Y:) = 3⇠1Y: ,

whence

4: ,0 = |D: ,0 � bD: |� 1
0 (⌦) 

s
⇠ bB
2 bB
�
2⇠* + 3⇠1

�
Y: =: ⇠2Y: .

2 Bound on �: : We observe that GALERKIN stops once [: , 9(D: , 9)  Y: . Since
the smallest such 9 is �: , we see that

Y: < [: ,�:�1(D: ,�:�1)  ⇠#U
�:�1

4: ,0  ⇠#⇠2Y:U
�:�1

.

This implies the asserted bound �:  1 +
log(⇠#⇠2)

log U�1 uniform in : .

5.4.4 Realization of AFEM-TS

We now make the two step AFEM algorithm precise.

Algorithm 5.28 (AFEM-TS) Given an initial tolerance Y0 > 0, a target tolerance
tol and initial mesh T0, as well as a safety parameter l 2 (0, 1], AFEM consists
of the two-step algorithm:

[T , DT] = AFEM-TS (T0, Y0,l, tol)
set : = 0 and do

[bT: , bD:] = DATA (T: ,D,l Y:)
[T:+1, D:+1] = GALERKIN (bT: , bD: , Y:)
Y:+1 = 1

2Y:
:  : + 1

while Y:�1 > tol
returnT: , D:

Proposition 5.29 (convergence of AFEM-TS) For each : � 0 the modules DATA

and GALERKIN converge in a finite number of iterations, the latter independent
of : . Moreover, there exists a constant ⇠⇤ depending on T0,⌦, 3, =, the Lebesgue
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exponents A, @ in ⇡(⌦), the parameters U1, U2, 21, 22 in (5.48) and (5.49), and
the shape regularity constant of T, such that the output of the (: + 1)-th iteration
[T:+1, D:+1] = GALERKIN (bT: , bD: , Y:) satisfies |D � D:+1 |� 1

0 (⌦)  ⇠⇤Y: for all

: � 0. Therefore, AFEM-TS stops after  < 2 +
log

Y0
tol

log 2 iterations and delivers

|D � D |� 1
0 (⌦)  ⇠⇤tol.

Proof. In view of Assumption 5.22 (properties of DATA) the module DATA iterates
a finite number of steps to reach tolerance g = lY: for every : � 0. Moreover,
the number of iterations of GALERKIN is independent of : due to Proposition 5.27
(computational cost of GALERKIN), whence we deduce that each loop of AFEM-TS

requires finite iterations. Thus, the output D:+1 of the (: + 1)-th loop satisfies

|D � D:+1 |� 1
0 (⌦)  |D � bD: |� 1

0 (⌦) + |bD: � D:+1 |� 1
0 (⌦) 

�
l⇠⇡ + ⇠*

�
Y: = ⇠⇤Y: ,

according to (5.65) with g  lY: and (5.83) for all : � 0. Finally, AFEM-TS

terminates after  loops, where  satisfies 1
2tol < Y �1  tol, and the asserted

estimate holds.

This elementary proof gives no insight whether the �1
0-error decays optimally

in terms of degrees of freedom. We assess this fundamental question in Sections 6
and 7, but investigate it computationally in Section 5.4.5.

A two-step algorithm similar to AFEM-TS was first proposed in [Stevenson 2008],
and further explored in [Bonito et al. 2013b, Cohen et al. 2012]. Note that other
quantities, such as the number of degrees of freedom, could be employed to stop
AFEM-TS instead. It is also worth realizing that the structure of the algorithm is
independent of the size of tolerance tol. In this vein, a user could take Y0 = tol,
provided tol is a�ordable by the computational resources at hand. With such a
choice, the modules DATA and GALERKIN run only once, in sequence: data are
approximated to the desired accuracy in one shot, then fed to the PDE solver which
produces the approximate solution. Since the quasi-optimality theory in Section 6
would also hold for this choice of Y0, one might wonder why not using this simpler
strategy. We stress that iterating over Y: has the following advantages:

• Restarts: Dynamical shrinking of tol, for instance to account for the user
decision to improve the accuracy, does not entail a restart of AFEM-TS but rather
a continuation from the previous computed solution. In this sense, the resulting
iteration would be similar to the proposed structure of AFEM-TS.

• Computational resources: AFEM-TS allows for “balanced investment" of com-
putational resources between the modules DATA and GALERKIN. If the stopping
criterion, either accuracy or number of degrees of freedom, is unrealistic for
the problem at hand, AFEM-TS would still produce a discrete solution with
equilibrated data and solution errors.

• Nonlinear problems: The interleaving approach of AFEM-TS appears to be
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better suited for treating nonlinear problems for which data D may depend on
the solution. Therefore a call to GALERKIN, and corresponding solution update,
must precede a call to DATA.

• Iterative solvers: If an e�cient iterative solver is adopted within SOLVE, then the
previous discrete solution of GALERKIN could be taken as initial iterate, thereby
making SOLVE fast because n:+1

n:
= 1

2 . If instead one computes with DATA alone
until the fixed tolerance tol is reached, then GALERKIN would work directly on
fine meshes, which are not adapted to the geometric domain singularities, and
without good initial guess. This would lead to fewer but heavier iterations of
GALERKIN, which is detrimental from a linear algebra perspective.

5.4.5 Computational assessment of AFEM-TS

In this section we explore computationally the relative performance of GALERKIN

and DATA, for the two-step AFEM, and elucidate the behavior of data and coe�-
cient oscillations within DATA. Our observations motivate the rigorous study of
Section 6, which provides theoretical support to our experiments. The numerical
computations are made with the help of [Funken, Praetorius and Wissgott 2011].

We consider problem (2.5) in the L-shaped domain ⌦ = (�1, 1)2
\ ([0, 1] ⇥

[�1, 0]), with di�usion term G = 0O, where

0(G, H) = 1 + exp
�
�50((G + 0.5)2

+ (H + 0.5)2)
�
+ exp

�
�50((G + 0.5)2

+ (H � 0.5)2)
�
,

and reaction term

2(G, H) = 1 + exp
�
�50((G + 0.5)2

+ H
2)
�
+ exp

�
�50(G2

+ (H � 0.5)2)
�

;

note that the Gaussians in the definition of 0 and 2 have the same intensity but are
located in di�erent places within ⌦. The load term 5 and the Dirichlet boundary
conditions are chosen in accordance with the analytical solution

D(G, H) = A
2
3 sin

�
2U/3

�
+ exp

�
�1000((G � 0.5)2

+ (H � 0.5)2)
�
,

where (A, U) are the polar coordinates around the origin. Notice that the exact
solution D is singular at the reentrant corner: it belongs to the Sobolev spaces
�(⌦)

5
3�Y with Y > 0 and ,2

?
(⌦) with ? > 1. It also exhibits a rapid transition

of order 10�3/2 around the point (0.5, 0.5) due to the presence of a very narrow
Gaussian. The Gaussians are meant to test the performance of the module DATA,
while in addition the corner singularity of the solution tests the execution of the
module GALERKIN.

We utilize the following parameters in the numerical test

\ = 0.5, l = 1, tol = 2�4
, ⌘0 = 0.125, Y0 = 1.

Notice that the number of iterations of the algorithm AFEM is  = log2(n0/tol) =
4. We compute the relative �1-error between the exact solution D and the FEM
solution DT and notice that its decay rate is (#T )�1/2 in Fig. 5.6 (left). This rate
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Figure 5.6. Left: estimator [T(DT), data error oscbT(D), and relative �1-error
obtained with the algorithm AFEM performing 1 = 3 bisections per marked element.
The optimal decay is indicated by the dashed line with slope�0.5. Right: Di�usion
error oscbT(G), reaction error oscbT(2), load error oscbT( 5 )�1, obtained with the
algorithm AFEM.

is consistent with that of the PDE estimator [T(DT) and data estimator oscT(D).
In Fig. 5.6 (right) we display the component of the data error oscbT(G), oscbT(2),
oscbT( 5 )�1 defined in (5.79) and (5.80) with local contributions defined in (5.73)
for G with A = 1 , in (5.76) for 2 with C = 1 and (5.78) for 5 . Recall that at each
iteration : , DATA circles through oscbT(G), oscbT(2), and oscbT( 5 )�1 reducing each
of these oscillations to 1/3 of the iteration tolerance Y: = 2�: . The presence of the
weight ⌘C in oscbT(2) considerably reduces the influence of the approximation of
2, which is below threshold from the start and thus never generates any refinement
(see Table 5.1). The local oscillation for 5 also includes a weight vanishing as
⌘ ! 0 but oscbT( 5 )�1 is above the desired tolerance, which would in principle
generate refinements. However, since at each iteration DATA considers oscbT(G)
first and the regions refined to reduce oscbT( 5 )�1 are included in the regions needed
to be refined to reduce [T(DT) and oscbT(G), the GREEDY routine applied to 5 does
not refine any element except during the first iteration when the Galerkin error has
not yet been reduced by the algorithm. Overall, the reduction of the Galerkin error
is driving most of the refinements. The number of marked element to reduce the
approximation errors of G, 2, 5 , and the residual estimator are reported in Table 5.1
along with those when 1 = 1 refinement is used per marked element. In Figure 5.7,
we provide the resulting meshes after the first iteration of DATA and GALERKIN.

5.5 Convergence for other boundary conditions

We consider first the variational problem (2.13) with Robin boundary condition. We
approximate data D = (G, 2, ?, 5 , 6) by piecewise polynomials bD = (bG,b2, b?, b5 ,b6),
The only di�erence with respect to (5.2) is that the new functions (?, 6) are approx-
imated on m⌦ by discontinuous polynomials (b?,b6) of degree =� 1 and 2=� 1. The
projection operator %T approximates 6Xm⌦ by b6Xm⌦ = %T(6Xm⌦) without compon-
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:

oscbT(G) oscbT(2) oscbT( 5 )�1 [T(DT)
b=1 b=3 b=1 b=3 b=1 b=3 b=1 b=3

1 32 16 0 0 26 13 363 308
2 16 16 0 0 0 0 1636 1138
3 120 43 0 0 0 0 7447 4227
4 123 62 0 0 0 0 42792 15268
5 82 138 0 0 0 0 144345 102350

Table 5.1. Number of marked elements to reduce the data and Galerkin errors at
each iterations : = 1, 2, 3, 4 of AFEM-TS when using 1 = 1 and 1 = 3 refinements
per marked element. Regardless of the value used for 1, the reduction of the
Galerkin error is driving most of the refinements followed by the error in the
approximation of the di�usion coe�cient G. The approximation of 5 is subordinate
to the approximation of D and G arising earlier in the adaptive loop and thus does
not generate any refinement except during the first iteration when the Galerkin error
has not yet been tackled by the algorithm. The approximation of 2 is below the
final tolerance from the start and does not generate any refinement.

Figure 5.7. Resulting meshes after the first iteration of DATA (left) and after the
first iteration of GALERKIN (right). DATA marked 29 elements for refinement while
GALERKIN marked 308 elements. Refer to Table 5.1 for more details.

ent in the bulk because 6Xm⌦ is a line Dirac mass aligned with the mesh. Discrete
functions (b?,b6) must be produced by DATA, subject to a sign constraint on ?. The
approximate bilinear form bB and linear functional b✓ read

bB[F, E] :=
π
⌦
rE · bGrF + b2EF +

π
m⌦

b?EF, b
✓(E) := hb5 , Ei +

π
m⌦

b6 E. (5.85)

The a posteriori error estimates of Section 4 extend to this pair (bB,
b
✓). The

algorithms GALERKIN, AFEM-SW, and AFEM-TS are similar to those above and
possess a similar supporting convergence theory. The Neumann boundary condition
is a particular case with ? = 0. We do not pursue this any further.

However, the pure Neumann boundary condition is special because of the global
compatibility condition b

✓(1) = hb✓, 1i = 0. In Section 4.10 we introduce a new
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projection operator e%T , a modification of %T , with the requisite properties of local
approximation and global compatibility he%T✓, 1i = 0 provided ✓ 2 �1(⌦)⇤ satisfies
h✓, 1i = 0. We thus set e✓ = e%T✓ to solve the Galerkin problems and use e%I in the
local indicators. We do not explore this matter further.

For a non-homogeneous Dirichlet boundary data 6 2 �1/2(m⌦), DATA must
produce a continuous piecewise polynomial approximation b6 of degree =, thereby
consistent with the Galerkin solution DT . The Dirichlet oscillation oscT(6)1/2 is
defined in (4.96) and is locally computable. Data oscillation now becomes

oscT(✓) = oscT( 5 )�1 + oscT(6)1/2

and added to the PDE estimator [T(DT) for 6 = 0 gives a full estimator equivalent to
the error, according to Theorem 4.74 (estimators for general Dirichlet conditions).
With these minor modifications, the convergence theory for GALERKIN,AFEM-SW,
and AFEM-TS extends to this case. We do not provide any further details.

5.6 Convergence for alternative estimators

We have so far developed a convergence theory for the residual estimatorET(DT , 5 ).
The purpose of this section is to extend this theory to the three alternative estimators
discussed in Section 4.9, namely

• E
lpb
T

(DT , 5 )2 = [lpb
T

(DT)2
+ oscT( 5 )2

�1: estimator based on local problems;
• E

hier
T

(DT , 5 )2 = [hier
T

(DT)2
+ oscT( 5 )2

�1: hierarchical estimator

• E
feq
T

(DT , 5 )2 = [feq
T

(DT)2
+ oscT( 5 )2

�1 : estimator based on flux equilibration.

They are all computed on stars lI with I 2 V and possess a similar structure. The
first term is the PDE estimator, from now on called ZT(DT) to refer to any of them,
and is locally equivalent to the discrete residual %T'T

ZT(DT , I) ⇡ k%T'T k��1(lI ) 8 I 2 V; (5.86)

see Theorems 4.59, 4.64, and 4.69. In fact, they are all di�erent mechanisms to
extract information from %T'T . Since the vertex-indexed residual PDE indicator
[T(DT , I) := [

res
T

(DT , I), defined in (4.70a), is also proven to be equivalent to
k%T'T k��1(lI ) in Theorem 4.58 (vertex-indexed modified residual estimator), we
deduce the existence of two equivalence constants ⇠eq

!
 ⇠

eq
*

such that

⇠
eq
!
[T(DT , I)  ZT(DT , I)  ⇠

eq
*
[T(DT , I) 8 I 2 V . (5.87)

Following [Kreuzer and Siebert 2011], we will exploit this property to prove
convergence of AFEM driven by ZT(DT). An obstruction for a direct convergence
theory is that our preceding results rely heavily on Lemma 4.53 (reduction property
of the estimator), which is not necessarily valid for any of the alternative estimators.
We refer to [Cascón and Nochetto 2012] who present a direct approach based on
the local lower bound for discrete solutions of Theorem 4.51 (local lower bound for
corrections). The latter is guaranteed by Definition 4.50 (interior vertex property)
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for operators with coe�cients G piecewise constant and 2 = 0, and any polynomial
degree = � 1, but we do not know its validity for more general coe�cients (G, 2).

The key for convergence is imposing a Dörfler marking. We say that a set of
vertices MV satisfies a Dörfler property with parameter \  1 if

ZT(DT ,MV)2 :=
’
I2MV

ZT(DT , I)2
� \

2
’
I2V

ZT(DT , I)2 =: ZT(DT)2
. (5.88)

Let M be the collection of elements contained in the stars lI with I 2MV . Then
MARK marks all elements in M, and REFINE bisects them 1 � 1 times. This gives
rise to a star-driven GALERKIN procedure.

Lemma 5.30 (Dörfler property) If the set of vertices MV satisfies a Dörfler
property with parameter \ for ZT(DT), then M satisfies a Dörfler property with

parameter \ =
⇠

eq
!

⇠
eq
*
\ for [T(DT).

Proof. Simply use (5.87) to derive (5.88) for [T(DT) with parameter \.

Hence, star-driven procedures for ZT(DT) lead to the corresponding counterparts
for [T(DT). It turns out that algorithms GALERKIN, AFEM-SW, and AFEM-TS can
be reformulated for vertex-indexed indicators {[T(DT , I)}I2V as defined in (4.70a),
without changing their essential properties. We may thus wonder about them driven
by {ZT(DT , I)}I2V instead. Since these algorithms hinge on the Dörfler property
(5.88), Lemma 5.30 gives rise to similar convergence properties for ZT(DT)-driven
algorithms provided (5.88) is enforced. We state this next without proof.

Corollary 5.31 (convergence of GALERKIN) If the coe�cients (G, 2, 5 ) 2 DT ,
then there exist 0 < U < 1 and ⇠⇤,⇠# > 0 such that the solution-estimator pairs
(D 9 , Z 9(D 9)) of GALERKIN converge linearly, namely for all : � 9 � 0

|D � D: |� 1
0 (⌦)  ⇠⇤ U

:� 9
|D � D 9 |� 1

0 (⌦), Z:(D:)  ⇠# U
:� 9

Z 9(D 9).

Corollary 5.32 (convergence of AFEM-SW) If the coe�cients (G, 2) are discrete
and 5 2 �

�1(⌦), then for 0 < l  l0, b  1
2 as in Theorem 5.17, there exist

0 < U < 1 and ⇠⇤,⇠# > 0 such that the solution - estimator pairs
�
D 9 , E 9(D 9 , 5 )

�

of AFEM-SW, where E 9(D 9 , 5 )2 = Z 9(D 9)2
+ osc 9( 5 )2

�1, converge linearly: for all
: � 9 � 0

|D � D: |� 1
0 (⌦)  ⇠⇤ U

:� 9
|D � D 9 |� 1

0 (⌦), E:(D: , 5 )  ⇠# U
:� 9

E 9(D 9 , 5 ).

Both GALERKIN and AFEM-SW converge under restrictions on data D =
(G, 2, 5 ). For arbitrary data D, AFEM-TS concatenates GALERKIN and DATA,
the later being unrelated to ZT(DT). Therefore, Corollary 5.31 and Proposition
5.27 (computational cost of GALERKIN) yield the following extension of Proposi-
tion 5.29 (convergence of AFEM-TS).

Corollary 5.33 (convergence of AFEM-TS) The algorithm AFEM-TS driven by
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ZT(DT) stops after  < 2 +
log

Y0
tol

log 2 iterations and delivers the error

|D � D |� 1
0 (⌦)  ⇠⇤tol.

The number of iterations of GALERKIN is bounded uniformly for all outer loops.

6 Convergence Rates of AFEM for Coercive Problems
The ultimate goal of AFEM is to produce a quasi-best approximation DT 2 VT to
the solution D 2 V of (2.7) with error measured inV = �1

0(⌦). The performance of
AFEM is measured by the size of the error |D � DT |� 1

0 (⌦) relative to the cardinality
#T of T . The latter usually reflects the total computational cost of implementing
AFEM. As a benchmark, it is useful to compare the performance of AFEM with
the best approximation of D 2 V and D = (G, 2, 5 ) 2 D, provided we have full
knowledge of them. This is the main purpose of this section.

Under suitable assumptions on the solution D and data D, we prove the existence
of constants ⇠(D,D) > 0 and B 2 (0, =

3
] such that

|D � DT: |� 1
0 (⌦)  ⇠(D,D)

�
#T:
��B

, (6.1)

provided B is the best decay rate with meshes in T with a comparable number of
degrees of freedom. The upper bound =

3
of B is dictated by the best decay rate with

polynomials of degree = � 1 in dimension 3 unless D is degenerate (for instance,
D belongs to a finite element space VT with T 2 T). The dependence on D of
the constant ⇠(D,D) accounts for the multiplicative structure of the interaction
between the coe�cients (G, 2) and D, and cannot be avoided in general.

A crucial insight for the simplest scenario, the Laplacian and piecewise constant
forcing 5 , is due to [Stevenson 2007]. It has been extended to operators with
variable coe�cients by [Cascón et al. 2008] and later expressed in terms of the
estimator by [Carstensen et al. 2014]. It reads as follows:

if a marking strategy reduces the PDE estimator [T(DT) to a fraction
of its current value, then the refined set of elements R inherits an error
indicator [T(DT ,R) comparable to [T(DT), hence a Dörfler marking.

(6.2)

This allows to compare meshes produced by AFEM with optimal ones and to
conclude a quasi-optimal error decay. To this end, we introduce in Section 6.1
approximation classes for functions in V and D, tailored to the decomposition of
⌦ into conforming refinements of an initial conforming partition T0, the root of T.
We will assume that D = D(D) 2 V and D = (G, 2, 5 ) 2 D belong to these classes
which, however, are not characterized in terms of regularity of D and D. In Section
6.2, we investigate the approximability properties of perturbations bD = D( bD) of the
exact solution D, namely exact solutions of (5.5) with perturbed data bD. Next, in
Section 6.3, we consider a conforming refinement T⇤ 2 T of a partition T 2 T,
and give conditions under which an optimal Dörfler marking property holds. We
first apply this in Section 6.4 to study and derive rate-optimality of GALERKIN and
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AFEM-SW, the one-step AFEMs. We then combine the quasi-optimal performances
of GALERKIN and DATA to prove rate-optimality of the two-step AFEM in Section
6.5. We conclude in Section 6.8 upon bridging the gap between appproximation
and regularity classes. In particular, we give su�cient conditions for functions in
Besov, Sobolev and Lipschitz spaces to belong to the approximation classes.

6.1 Nonlinear approximation classes

In Section 6.1.1 we discuss approximation classes for functions in V, which are
applicable to the solution D of (2.7). In Section 6.1.2 we turn our attention to
approximation classes for functions in D, which are in turn applicable to data D.
We refer to [DeVore 1998], as well as [DeVore and Lorentz 1993, Binev et al. 2002]
for a discussion within nonlinear approximation theory.

6.1.1 Nonlinear approximation classes for functions in V
For any # 2 N, # � #T0, we define the following collection of partitions within T

T# =
�
T : T 2 T satisfies #T  #

 
.

This is the set of conforming meshes generated from T0 with at most # � #T0
bisections. Given E 2 V we let f# (E) be the smallest approximation �1

0-error
incurred on E with continuous piecewise polynomial functions of degree  = over
meshes T# :

f# (E) := inf
T2T#

inf
ET 2VT

|E � ET |� 1
0 (⌦). (6.3)

This is a theoretical measure of performance in that finding a mesh T 2 T#
that realizes f# (E) has exponential complexity. Proving a bound |E � ET |1,⌦ 

⇠1f⇠2# (E) for T 2 T# with⇠2  1  ⇠1 independent of # , the so-called instance
optimality, is rather di�cult and beyond the scope of this survey. In fact, a function
E 2 VT with T 2 T# could be the solution of our model problem (2.7), because
we allow forcing 5 2 �

�1(⌦). Hence, we see that f# (E) = 0 and AFEM should
then capture E exactly on a finer mesh T 2 T

⇠
�1
2 #

. We refer to [Diening et al.

2016] for a proof of instance optimality for a forcing 5 2 !
2(⌦) and the Laplace

operator, namely for coe�cients G = O and 2 = 0.
We will instead be able to prove that the error |E � ET |� 1

0 (⌦) for the Galerkin
solution ET for T 2 T# decays in terms of # with the same rate #�B as f# (E); we
thus say that AFEM is rate-optimal. We first note that for E 2 �=+1(⌦) and T 2 T#
quasi-uniform, we expect to have

inf
ET 2VT

|E � ET |� 1
0 (⌦) . #

�
=
3 |E |

�
=+1(⌦) (6.4)

because the global meshsize ⌘ and # satisfy ⌘ ⇡ #�1/3 . This error estimate within
the linear Sobolev scale provides the largest possible decay rate �=/3.

Definition 6.1 (approximation class of u) Given 0 < B  =/3, the class AB :=
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AB
�
�

1
0(⌦);T0

�
, relative to the partition T0 and approximation in the �1

0-norm by
continuous piecewise polynomials of degree  = on the forest T emanating from
T0, is the set of functions E 2 V = �1

0(⌦) such that

|E |AB := sup
# �#T0

�
#
B

f# (E)
�
< 1 (6.5a)

whence

f# (E)  |E |AB#
�B
8# � #T0. (6.5b)

We also write AB = A0
B

to emphasize continuity of the discrete functions in VT =
S=,0
T
\ V with T 2 T. The quantity |E |AB is a quasi seminorm in AB, which is not

a linear space but rather a nonlinear class of functions. Notice that as B increases,
the cost of membership to be in AB increases, namely AB1 ⇢ AB2 for B1 � B2.

We may as well consider approximating E 2 V with discontinuous piecewise
polynomials S=,�1

T
of degree  =, which is a richer space than S=,0

T
. We can likewise

define the corresponding modulus of approximation

f
(�1)
#

(E) := inf
T2T#

inf
ET 2S

=,�1
T

|E � ET |� 1
0 (⌦;T) (6.6)

and approximation class A�1
B

:= A�1
B

�
�

1
0(⌦);T0

�
of functions E 2 �1

0(⌦) such that

|E |A�1
B

:= sup
# �#T0

�
#
B

f
(�1)
#

(E)
�
< 1 ) f

(�1)
#

(E)  |E |A�1
B
#
�B
. (6.7)

It is obvious that f(�1)
#

(E)  f# (E) for all E 2 �1
0(⌦) because S=,0

T
⇢ S=,�1

T
.

However, we have the following equivalence result taken from [Veeser 2016].
The original proof, although more complicated and for a di�erent notion of error
relevant to discontinuous Galerkin approximations, can be traced back to [Bonito
and Nochetto 2010, Proposition 5.2]; see Proposition 9.4.

Proposition 6.2 (equivalence of classes) Assume that all stars of meshes T 2 T
are (3 � 1)-face-connected. Then, there exists a constant ⇠dG that depends on the
shape regularity of T, the dimension 3 and the polynomial degree = � 1, such that

f# (E)  ⇠dG f
(�1)
#

(E) 8E 2 �1
0(⌦), # � #T0.

Moreover, the approximation classes coincide A0
B
= A�1

B
.

Proof. We simply resort to (3.19) of Proposition 3.9 (approximation of gradients),
namely for E 2 �1

0(⌦)

1 
min

F 2S=,0
T

|E � F |
�

1
0 (⌦)

min
F 2S=,�1

T

|E � F |
�

1
0 (⌦;T)

 ⇠dG,

and use the definitions (6.3) and (6.6). This completes the proof.

In the rest of the paper we will make the following approximability assumption.
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Assumption 6.3 (approximability of u) The exact solution D 2 �1
0(⌦) of prob-

lem (2.5) belongs to the approximation class AB
�
�

1
0(⌦);T0

�
with B = BD 2 (0, =

3
].

The following condition (6.8) is simpler to handle in practice than (6.5).

Lemma 6.4 (membership in As) Let E 2 AB and Y0 := infET0 2VT0
|E � ET0 |� 1

0 (⌦).
Then for all 0 < Y  Y0 there exist TY 2 T and EY 2 VTY such that

|E � EY |� 1
0 (⌦)  Y, #TY  1 + |E |

1
B
AB
Y
�

1
B . (6.8)

Proof. Given 0 < Y  Y0, let TY 2 T be a conforming refinement of T0 with
minimal cardinality and EY 2 VTY such that

|E � EY |� 1
0 (⌦)  Y.

Therefore, if Y < Y0 we deduce from the minimal property of TY that

inf
ET 2VT

|E � ET |� 1
0 (⌦) > Y 8T 2 T : #T  #TY � 1.

If # := #TY � 1, definition (6.5) implies

Y < inf
T2T#

inf
ET 2VT

|E � ET |� 1
0 (⌦) = f# (E)  |E |AB#

�B
,

whence

#TY = 1 + #  1 + |E |

1
B
AB
Y
�

1
B ,

as asserted in (6.8). On the other hand, if Y = Y0 we see that

Y0  |E |AB (#T0)�B ) #T0  |E |

1
B
AB
Y

�
1
B

0 < 1 + |E |

1
B
AB
Y

�
1
B

0 .

This completes the proof.

Remark 6.5 If 3 = 2 and = = 1, then Corollary 3.20 (optimal convergence rate)
shows that ,2

?
(⌦) ⇢ A1/2 for ? > 1. The space ,2

?
(⌦) is much larger than

�
2(⌦), fits within the nonlinear Sobolev scale, and delivers the same decay rate as

(6.4). We will investigate the connection between approximation classes AB and
regularity classes in any dimension 3 and for any polynomial degree = � 1 later in
Section 6.8.

6.1.2 Nonlnear approximation classes for data in D
Given data D = (G, 2, 5 ) 2 D and a mesh T 2 T, we consider the best approx-
imation of D by discrete (piecewise polynomial) data bD = (bG,b2, b5 ) 2 DT , where
D and DT are defined in (5.1) and (5.2). We measure the error in the space ⇡(⌦)
defined in (5.60) with @ = 2 for 3 < 4 or @ >

3

2 for 3 � 4. We now discuss the
best approximation errors for the components of data in ⇡(⌦), which are used to
define the corresponding approximation classes. For the coe�cients (G, 2), they
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are characterized by the quantities

XT(G)A := infbG2 [S=�1,�1
T

]3⇥3
kG � bGk!A (⌦), XT(2)@ := infb22S=�1,�1

T

k2 � b2k!@(⌦) (6.9)

for A, @ 2 [2,1] as above. Note that bG and b2 in (6.9) are unconstrained in the sense
that they do not necessarily satisfy the structural assumption (5.51) and are thus not
suited coe�cient for the perturbed problem (5.5). We define the best constrained
approximation errors for G 2 "(U1, U2) and 2 2 '(21, 22) by

eXT(G)A := infbG2 [S=�1,�1
T

]3⇥3\" (bU1,bU2)
kG � bGk!A (⌦),

eXT(2)@ := infb22S=�1,�1
T

\'(b21,b22)
k2 � b2k!@(⌦),

(6.10)

where in view of (5.52)

bU1 =
U1

2
, bU2 = ⇠ctrU2, b21 = �

U1

4⇠2
%

, b22 = ⇠ctr(U1 + 21). (6.11)

We anticipate that in Section 7.4, we prove the equivalences

XT(G)A  eXT(G)A  ⇠dataXT(G)A , XT(2)@  eXT(2)@  ⇠dataXT(2)@, (6.12)

for all G 2 "(U1, U2) and 2 2 '(21, 22); see Remarks 7.13 and 7.17. For the load
function 5 , the definition (4.56) of oscT( 5 )�1 suggests to consider

XT( 5 )�1 :=

 ’
) 2T

infb
5 2FTl)

k 5 � b
5 k

2
�
�1(l) )

! 1
2

,

All these best approximation errors are hard to evaluate and are thus replaced
by the computable oscillations defined in (5.79) and (5.80) in practice. We recall
that they rely on the local !2-projection operator ⇧T for (G, 2) and the local
�
�1-projection operator %T for 5 to compute linear approximations eD of D to a

desired accuracy. These projections are later modified nonlinearly to give rise tobD satisfying the side constraints (5.51) without compromising accuracy. We recall
that the DATA module is assumed to construct approximations so that

oscT(G)A  ⇤dataXT(G)A , oscT(2)@  ⇤dataXT(2)@, oscT( 5 )�1  ⇤dataXT( 5 )�1

with a mesh independent constant ⇤data; see Assumption 5.22. We discuss in
Section 5.4.2 practical realizations of DATA.

For the purpose of assessing the cardinality of AFEM, we do not need the specific
form of bD but rather the decay of the best approximation errors in terms of degrees
of freedom. Therefore, we postpone until Section 7 the construction of bD for
= � 1 and to Section 6.8 the discussion of regularity properties of D that guarantee
membership in the following approximation classes.

Definition 6.6 (approximation classes of G) For 0 < U1  U2, 2  A  1, let
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MB := MB
�
!
A (⌦;R3⇥3);T0

�
be the set of matrix-valued functions G 2 "(U1, U2)

satisfying

|G|MB := sup
# �#T0

⇣
#
B inf
T2T#

eXT(G)A
⌘
< 1 ) inf

T2T#

eXT(G)A  |G|MB#
�B
. (6.13)

Definition 6.7 (approximation classes of c) The class CB := CB
�
!
@(⌦);T0

�
is

the set of functions 2 2 '(21, 22) such that

|2 |CB := sup
# �#T0

⇣
#
B inf
T2T#

eXT(2)@
⌘
< 1 ) inf

T2T#

eXT(2)@  |2 |CB#
�B
. (6.14)

Definition 6.8 (approximation classes of f ) The class FB := FB
�
�
�1(⌦);T0

�
is

the set of functions 5 2 ��1(⌦) such that

| 5 |FB := sup
# �#T0

⇣
#
B inf
T2T#

XT( 5 )�1

⌘
< 1 ) inf

T2T#
XT( 5 )�1  | 5 |FB#

�B
. (6.15)

Since the polynomial degree of discrete coe�cients (bG,b2) in definition (5.2) is
= � 1, we expect decay rates B�, B2  =/3 according to nonlinear approximation
theory. The specific values of (B�, B2) depend on the regularity of (G, 2), a delicate
topic that we further investigate in Sections 6.8 and 7. However, because D and
D = (G, 2, 5 ) satisfy the elliptic problem (2.5), the above approximation classes
are somewhat related. We now quantify this statement.

Lemma 6.9 (relation between approximation classes) Let 2  A, @  1 be so
that 3

2 < @. If D 2 ABD
�
�

1
0(⌦);T0

�
, G 2 MB�

�
!
A (⌦;R3⇥3);T0

�
, and 2 2

CB2
�
!
@(⌦);T0

�
, with 0 < BD , B�, B2 

=

3
, then 5 2 FB 5

�
�
�1(⌦);T0

�
and

| 5 |FB 5
 ⇠

⇣
|D |ABD + |G|MB� + |2 |CB2

⌘
, B 5 = min{BD , B�, B2}, (6.16)

where the constant ⇠ > 0 depends kDk
,

1
? (⌦), ? = 2A

A�2 , and U1, U2, 21, 22. In
particular, if (G, 2) are discrete in T0, then

| 5 |FB 5
 ⇠ |D |ABD , B 5 = BD . (6.17)

Proof. Let ! [D] := � div(GrD) + 2D be the operator in (2.5) and note that 5 =
! [D] 2 �

�1(⌦) can be approximated by b
5 = � div(bGrbE) + b2bE 2 FT , where the

discrete space FT is given in Definition 4.17 and bE 2 S=,0
T

,
bG 2 (S=�1,�1

T
)3⇥3 ,b2 2

S=�1,�1
T

. Let’s now express 5 � b
5 as follows

5 � b
5 = � div

�
(G � bG)rD

�
+ (2 � b2)D � div

�bGr(D �bE)� + b2(D �bE),
and recall that we have to estimate k 5 � b

5 k
�
�1(l) ) for every ) 2 T , rather than a

global norm in ��1(⌦), to get an upper bound on XT( 5 )�1. Therefore, we proceed
as in the proof of Lemma 5.20 (continuous dependence on data) to obtain’

) 2T

k 5 � b
5 k

2
�
�1(l) ) . krDk

2
!
?(⌦)kG � bGk2

!
A (⌦) + krDk

2
!

2(⌦)k2 � b2k2
!
@(⌦)
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+ kbGk2
!
1(⌦)kr(D �bE)k2

!
2(⌦) + kb2k2!1(⌦)kD �bEk2!2(⌦),

where ? = 2A
A�1 and krDk!?(⌦) < 1 according to (2.41) and 3

2 < @  1. Note
that thanks to (6.11), kb�k!1(⌦)  bU2 = ⇠ctrU2 and kb2k!1(⌦)  b22 = ⇠ctr(U1 + 22).
Moreover, sincebE, bG,b2 can be chosen separately, invoking (6.5), (6.13), (6.14), and
(6.15), we realize that

inf
T2T#

XT( 5 )�1 . inf
T2T#

infbE2S=,0
T

kr(D �bE)k
!

2(⌦)

+ inf
T2T#

infbG2 [S=�1,�1
T

]3⇥3
kG � bGk!A (⌦)

+ inf
T2T#

infb22S=�1,�1
T

k2 � b2k!@(⌦)

 |D |ABD#
�BD + |G|MB�#

�B� + |2 |CB2#
�B2

gives (6.16) with B 5 = min{BD , B�, B2}; (6.17) is a trivial consequence.

Estimate (6.17) will be useful later in Theorem 6.20 (rate-optimality of one-step
AFEMs). It is important to realize that the multiplicative structure between solution
D and coe�cients (G, 2) is hidden in the constants⇠ in (6.16) and (6.17). Moreover,
these estimates are possible due to the fact that the space ��1(⌦) is the range of
the linear operator ! : �1

0(⌦)! �
�1(⌦) and that the discrete functions in FT are

images by ! of functions inVT . This would not be true for !2-weighted surrogates
of XT( 5 )�1 that typically overestimate the error in ��1(⌦).

Assumption 6.10 (approximability of data) There exist B�, B2 , B 5 2 (0, =
3
] such

that data D = (G, 2, 5 ) 2 D satisfies G 2 M B�, 2 2 CB2 , 5 2 FB 5 .

We recall that, if oscT(D) = kD � bDk⇡(⌦) > ⇠datag over a conforming refine-
ment T 2 T of T0, then the call

[bT ,
bD] = DATA (T ,D, g)

produces a conforming refinement bT of T and approximate data bD = (bG,b2, b5 ) 2
DbT over bT that satisfies oscbT(D)  ⇤dataXbT(D) and for A, @ 2 [2,1]

oscbT(D) = oscbT(G)A + oscbT(2)@ + oscbT( 5 )�1  ⇠datag,

as well as the constraints bG 2 "(bU1,bU2) and b2 2 '(b21,b22) defined in (5.51).
We will show in Section 7 that the routine responsible for reducing oscillations,
namely GREEDY , exhibits optimal performance in the sense that the cardinalities
#T(G), #T(2), #T( 5 ) of the sets of elements necessary to reduce the individual
oscillations of (G, 2, 5 ) below the threshold⇠data

g

3 starting from any T � T0 satisfy

#T(G) . |G|
1
B�
M B�

g
�

1
B� , #T(2) . |2 |

1
B2
CB2
g
�

1
B2 , #T( 5 ) . | 5 |

1
B 5

FB 5
g

�
1
B 5

. (6.18)
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Therefore, the cost of one call to DATA can be quantified by the total number #T(D)
of elements marked, which obeys the relation

#T(D) = #T(G) + #T(2) + #T( 5 )

. |G|
1
B�
M B�

g
�

1
B� + |2 |

1
B2
CB2
g
�

1
B2 + | 5 |

1
B 5

FB 5
g

�
1
B 5  |D|

1
BD

AD
g

�
1
BD

with

BD := min
�
B�, B2 , B 5

 
, |D|AD

:=
✓
|G|

1
B�
M B�

+ |2 |

1
B2
CB2

+ | 5 |

1
B 5

FB 5

◆BD
. (6.19)

It is thus natural to make the following assumption on DATA.

Assumption 6.11 (quasi-optimality of DATA) The call [bT ,
bD]=DATA (T ,D, g),

from an arbitrary conforming refinement T of T0 with tolerance g, marks the
number of elements #T(D) to produce an approximation bD of D over bT so that

oscbT(D) = kD � bDk⇡(⌦)  ⇠datag, #T(D) . |D|

1
BD

AD
g

�
1
BD . (6.20)

6.2 Y-approximation of order B

Inspection of the structure of algorithm AFEM-TS (Algorithm 5.28) reveals that the
approximate data D: is fixed inside GALERKIN. Therefore, the performance of
GALERKIN is dictated by the regularity of the exact solution bD: = bD:(D:) 2 �1

0(⌦)
with data D: , rather than the exact solution D = D(D) with data D. We know that
D 2 AB and wonder what regularity is inherited by bD: . This leads to the following
concept introduced in [Bonito et al. 2013b, Def. 3.1 and Lemma 3.2].

Definition 6.12 (9-approximation of order s) Given D 2 AB
�
�

1
0(⌦);T0

�
and Y >

0, a function E 2 �
1
0(⌦) is said to be an Y-approximation of order B to D if

|D � E |
�

1
0 (⌦)  Y and there exists a constant ⇠ > 0 independent of Y, D and E such

that for all X � Y there exists # � #T0 satisfying

f# (E)  X #  1 + ⇠ |D |

1
B
AB
X
�

1
B . (6.21)

Lemma 6.13 (9-approximation of u of order s) Let D 2 AB
�
�

1
0(⌦);T0

�
and E 2

�
1
0(⌦) satisfy |D � E |

�
1
0 (⌦)  Y for some 0 < Y  Y0 with Y0 defined in Lemma 6.4.

Then E is a 2Y-approximation of order B to D.

Proof. Let X � 2Y. By definition (6.3) of f# (E), it su�ces to invoke the triangle
inequality to realize that

f# (E)  |D � E |
�

1
0 (⌦) + f# (D) 

X

2
+ f# (D).

Since D 2 AB
�
�

1
0(⌦)

�
, in view of Lemma 6.4, there exist # � #T0 and T 2 T#

f# (D) 
X

2
, #  1 + |D |

1
B
AB

⇣
X

2

⌘� 1
B
.
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The estimate (6.21) thus follows with constant ⇠ = 2
1
B .

This is a simple but crucial result to study AFEM-TS. It says that any function
E that is Y-close to a function D 2 AB(-;T0) in the norm of the space - defining
the approximation class AB(-;T0) can be approximated with a similar decay rate
as D in - for as long as the desired accuracy does not exceed Y. In other words, the
approximability of D is inherited by E up to scale Y. However, beyond the scale Y
the approximability of E may di�er from that of D. Note that neither the definition
(6.3) of f# (E) nor Lemma 6.13 require - = �1

0(⌦).

6.3 Properties of Dörfler marking

We follow the ideas of [Stevenson 2007], [Cascón et al. 2008] and [Carstensen
et al. 2014] to explore the insight (6.2) about Dörfler marking. Hereafter, we recall
(5.6) and consider two admissible partitions T ,T⇤ 2 T such that T  T⇤, i.e. the
latter is a refinement of the former obtained by applying (newest-vertex) bisection
to some of the elements of T .

In the sequel, we let D = bD 2 �1
0(⌦) be the exact solution with discrete coe�cients

(bG,b2) over a fixed mesh bT  T and forcing function 5 that may or may not be
discrete. We rewrite the a posteriori error estimates (5.12)

⇠! ET

�
DT , 5

�
 |bD � DT |� 1

0 (⌦)  ⇠* ET

�
DT , 5

�
, (6.22)

where the total estimator ET

�
DT , 5

�
consists of the PDE estimator [T(DT , 5 ) and

the oscillation oscT( 5 )�1 and reads, according to (5.11),

ET

�
DT , 5

�2 = [T(DT , 5 )2
+ oscT( 5 )2

�1.

We also recall that when 5 = %T 5 2 FT is discrete, oscT( 5 )�1 = 0 and ET

�
DT , 5

�

reduces to [T(DT , 5 ), and that %T 5 is used within [T(DT , 5 ) rather than 5 .
The global nature of the elliptic boundary value problem (2.5) prevents upper a
posteriori energy error estimates such as (6.22) between the continuous and discrete
solution to be local. Remarkably, the situation for two Galerkin solutions DT 2 VT

and DT⇤ 2 VT⇤ is di�erent, as stated in Theorem 4.48 (upper bound for corrections)

|DT⇤ � DT |� 1
0 (⌦) 

e
⇠* ET(DT , 5 ,R), (6.23)

where R = T\T⇤ is the refined set defined in (5.14). It thus turns out that
|DT⇤ � DT |� 1

0 (⌦) is controlled by the estimator ET(DT , 5 ,R) on the set of ele-
ments R where the meshes di�er. This crucial observation goes back to Stevenson
[Stevenson 2007]; see also [Cascón et al. 2008, Nochetto et al. 2009].

In the sequel we impose restrictions on the ranges of the Dörfler marking para-
meter (5.23) and the threshold parameter l for GALERKIN and AFEM-SW. We
will impose a di�erent restriction later on l for AFEM-TS.
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Assumption 6.14 (marking parameter) Let \ satisfy \ 2 (0, \0) with

\0 := min
n�

2⇠Lip e⇠*��1
, 1

o
,

where ⇠Lip, e⇠* are the constants in (4.68) and (6.23) respectively.

Assumption 6.15 (restriction on 8) We assume 0  l  l0 < 1 with

l0 :=

vt
\

2
0 � \

2

2 + \2
0 � \

2

We now ready to make Stevenson’s insight (6.2) precise.

Lemma 6.16 (Dörfler marking) Let Assumptions 6.14 and 6.15 hold and 0 <

` 
1
2 . Let T 2 T, and let T⇤ 2 T be a refinement of T with respective Galerkin

solutions DT 2 VT and DT⇤ 2 VT⇤; let R = T \ T⇤ be the refined set. Assume that
the oscillation on T is dominated by the total estimator

oscT( 5 )�1  l ET(DT , 5 ) (6.24)

and that

[T⇤(DT⇤ , 5 )  ` [T(DT , 5 ). (6.25)

Then Dörfler marking is valid for any 0 < \ < \0

\ [T(DT , 5 )  [T(DT , 5 ,R). (6.26)

Proof. We invoke Proposition 4.56 (estimator reduction) with X = 1 along with
the localized upper bound (6.23) to write

[T(DT , 5 )2
 2 [T⇤(DT⇤ , 5 )

2
+ 2⇠2

Lip

⇣e
⇠

2
*
ET(DT , 5 ,R)2

+ oscT( 5 )2
�1

⌘
.

The last term accounts for the presence of %T 5 and %T⇤ 5 in the definitions of
[T(DT , 5 ) and [T⇤(DT⇤ , 5 ). In view of (6.24) and the definition (5.11) of the total
estimator, we have

oscT( 5 )�1  f [T(DT), f
2 :=

l
2

1 � l2

so that

[T(DT , 5 )2
 2[T⇤(DT⇤ , 5 )

2
+ 2⇠2

Lip
e
⇠

2
*

�
[T(DT , 5 ,R)2

+ 2f2
[T(DT , 5 )2�

.

Using (6.25) and rearranging the above expression we obtain

�
\

2
0 � 2f2�

[T(DT , 5 )2


0

@ 1 � 2`2

2⇠2
Lip

e
⇠

2
*

� 2f2

1

A [T(DT , 5 )2
 [T(DT , 5 ,R)2

provided 0 < ` 
1
2 , because of the definition of \0 in Assumption 6.14. Finally,
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for any \ < \0 we realize that l0 from Assumption 6.15 satisfies

f
2
0 :=

l
2
0

1 � l2
0

=
1
2

(\2
0 � \

2) ) \
2 = \2

0 � 2f2
0  \

2
0 � 2f2

,

and Dörfler marking is valid for R with parameter \.

We remark that Lemma 6.16 requires that the oscillation on T is dominated by
the total estimator to guarantee a Dörfler marking property. This is always the
case when 5 is discrete as in Algorithm 5.4 (GALERKIN) because in that case
oscT( 5 )�1 = 0, or within Algorithm 5.16 (one-step AFEM with switch), which
marks elements for refinement only if this property holds.

We also see that \0 in Assumption 6.14 corresponds to the choices ` = 1
2 and

X = 1. However, the proof reveals that for ` ! 0 we could obtain the largest
possible value \0 = (⇠Lip e⇠* )�1, thereby the less restrictive. Since this is just twice
the value of \0 in Assumption 6.14, the practical choice ` = 1

2 is justified.
Lemma 6.16 hinges on two ingredients: the Lipschitz property (4.68) and the

localized upper bound (6.23) of the estimator. In particular, it does not rely on the
lower a posteriori error estimate in (6.22), as the original proofs in [Stevenson 2007]
and [Cascón et al. 2008], and easily extends to discontinuous Galerkin methods
in Section 9 and inf-sup stable methods in Section 10. The original statement is,

however, a bit more insighful: if \2
0 =

⇠
2
2

2⇠2
1
, then for all 0 < \ < \0, l2

 \
2
0 � \

2

|||D � DT⇤ |||⌦  ` |||D � DT |||⌦ ) [T(DT ,R) � \ [T(DT)

provided 0 < `  2�
1
2 . We see that the threshold \0 is related to the gap between

reliability constant ⇠1 and e�ciency constant ⇠2 in the a posteriori bounds (5.13)
in the energy norm; hence the ratio ⇠2

⇠1
 1 is a quality measure of the estimator

[T(DT). It is thus reasonable to be cautious about marking decisions if the constants
⇠1 and ⇠2 are very disparate, and thus the ratio ⇠2/⇠1 is far from 1. This justifies
the constraint \ < \0.

6.4 Rate-optimality of one-step AFEMs

Recall that M 9 is the output of the module MARK and that T9 , D 9 are the meshes
and associated Galerkin solutions generated within Algorithms 5.4 (GALERKIN)
and 5.16 (one-step AFEM with switch). To express the cardinality # 9(D) of M 9 in
terms of |D�D 9 |� 1

0 (⌦) we must relate the performance of these one-step AFEMs with

the approximation classes AB = AB
�
�

1
0(⌦);T0

�
for D and FB = FB

�
�
�1(⌦);T0

�
for

5 , which are never used in the design of these algorithms. Even though this might
appear like an undoable task, the key to unravel this connection is given by Lemma
6.16 (Dörfler marking) and the following assumption.

Assumption 6.17 (cardinality of M) The module MARK selects a setM in (5.23)
with minimal cardinality.
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According to the equidistribution principle (3.24) and the local lower bound
(4.54) in the proof of Theorem 4.45 (modified residual estimator) for discrete
coe�cients, i.e.,

⇠![T9 (D 9 ,))  ⇠!ET9 (D 9 , 5 ,))  |D � D 9 |� 1(l) ),

it is natural to mark elements with largest error indicators. This explains the choice
of a minimal set M in Assumption 6.17.

We are now ready to bound the cardinality of M 9 in terms of |D � D 9 |� 1
0 (⌦).

Proposition 6.18 (cardinality of M j) Let Assumptions 6.14, 6.15 and 6.17 be
valid. If D 2 AB and

oscT9 ( 5 )�1  l ET9 (D 9 , 5 ),

then the cardinality # 9(D) of M 9 satisfies

# 9(D) . |D |

1
B
AB
|D � D 9 |

�
1
B

�
1
0 (⌦)

8 9 � 0.

Proof. Let ⇠cea :=
q
⇠B

2B
and let X = `

⇠!
⇠Cea

[ 9(D 9) with ` 
1
2 the quasi-

monotonicity constant in (3.8). We invoke (6.8) for D 2 AB to find a mesh TX 2 T
and a Galerkin solution DX 2 VTX so that

|D � DTX |� 1
0 (⌦)  X, #TX . |D |

1
B
AB
X
�

1
B .

Since TX may be totally unrelated to T9 , we introduce the overlay T⇤ = T9 � TX .
We exploit that T⇤ � TX , hence the space nestedness VTX ⇢ VT⇤ , along with the
property that the Galerkin solution DT⇤ 2 VT⇤ minimizes the energy error in VT⇤

[T⇤(DT⇤) 
1
⇠!

|D � DT⇤ |� 1
0 (⌦) 

⇠Cea

⇠!

|D � DTX |� 1
0 (⌦) 

⇠Cea

⇠!

X = ` [ 9(D 9),

because of the lower bound in (5.12) and (3.8). Therefore, Lemma 6.16 (Dörfler
marking) implies that the refined set R = T\T⇤ satisfies Dörfler marking with
parameter \ < \0. Since MARK delivers a minimal set M 9 with this property,
according to Assumption 6.17, we deduce

# 9(D) = #M 9  #R  #T⇤ � #T  #TY � #T0 . |D |

1
B
AB
X
�

1
B ,

where we have used Lemma 3.17 (mesh overlay). The assertion follows from
osc 9( 5 )�1  lE 9(D 9 , 5 ) in Assumption 6.15 and the upper bound in (5.12)

|D � D 9 |� 1
0 (⌦)  ⇠*E 9(D 9 , 5 ) 

⇠*

p
1 � l2

[ 9(D 9),

and completes the proof.

We next prove rate optimality of the one-step AFEMs of Algorithm 5.4 and
Algorithm 5.16. To this end, we need an additional assumption.
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Assumption 6.19 (initial labeling) If the initial mesh T0 is made of simplices,
then let the initial labeling (3.35) for 3 = 2, or that of [Stevenson 2008, Section 4]
for 3 > 2, be valid.

This assumption ensures the validity of Theorem 3.16 (complexity of REFINE ):
if M 9 ⇢ T9 is a set of marked elements for a sequence {T9}

:�1
9=0 of consecutive

refinements of T0, then the cardinality of the :-th mesh satisfies

#T: � #T0  ⇡

:�1’
9=0

#M 9 , (6.27)

with a universal constant ⇡ depending only on T0 and 3. We always assume that
#T: � 3

2#T0, whence #T: � #T0 �
1
3#T: and, if e⇡ = 3⇡, (6.27) reads instead

#T:  e⇡ :�1’
9=0

#M 9 , (6.28)

Theorem 6.20 (rate optimality of one-step AFEMs) For Algorithms 5.4 (withT =
T0) and 5.16, let Assumptions 6.14, 6.17 and 6.19 be valid, and in addition let the
parameter l > 0 satisfy Assumption 6.15 for Algorithm 5.16. If D 2 AB, then both
one-step AFEMs give rise to sequences {T: ,V: , D: }1

:=0 such that

|D � D: |� 1
0 (⌦) . |D |AB (#T:)

�B
. (6.29)

Proof. We consider first Algorithm 5.4, for which the forcing 5 2 FT0 is discrete,
whence osc 9( 5 )�1 = 0 for all 9 � 0 and l = f = 0 in Assumption 6.15. In view
of (6.28), we apply Proposition 6.18 (cardinality of M 9) to infer that

#T:  e⇡ :�1’
9=0

#M 9 . |D |

1
B
AB

:�1’
9=0

|D � D 9 |
�

1
B

�
1
0 (⌦)

.

We now recall the inequality |D � D: |� 1
0 (⌦)  ⇠⇤U

:� 9
|D � D 9 |� 1

0 (⌦) from Corollary
5.6 (linear convergence), and replace the sum above by

:�1’
9=0

|D � D 9 |
�

1
B

�
1
0 (⌦)
 |D � D: |

�
1
B

�
1
0 (⌦)

:’
9=0

U

:� 9
B 

U

1
B

1 � U
1
B

|D � D: |
�

1
B

�
1
0 (⌦)

because 0 < U < 1 and the geometric series is summable.
We next deal with Algorithm 5.16. If the algorithm calls MARK, then osc 9( 5 )�1 

lE 9(D 9 , 5 ) and the number of marked elements # 9(D) obeys Proposition 6.18

# 9(D) . |D |

1
B
AB
|D � D 9 |

�
1
B

�
1
0 (⌦)

.

Instead, if the algorithm calls DATA, then osc 9( 5 )�1 > f9 = lE 9(D 9 , 5 ) and DATA

returns a mesh T9+1 and reduces the oscillation osc 9+1( 5 )�1  f9 with optimal
complexity. To quantify the cost, we recall that D 2 AB yields 5 2 FB according to
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Lemma 6.9 (relation between approximation classes) and | 5 |FB . |D |AB . Therefore,
the number of marked elements # 9( 5 ) to reduce osc 9( 5 )�1 to tolerance f9 satisfies

# 9( 5 ) . | 5 |

1
B
FB
f

�
1
B

9
. |D |

1
B
AB
E 9(D 9 , 5 )�

1
B . |D |

1
B
AB
|D � D 9 |

�
1
B

�
1
0 (⌦)

,

because of (5.12). It thus remains to sum over 9 , apply again (6.28)

#T:  e⇡ :�1’
9=0

�
# 9(D) + # 9( 5 )

�
. |D |

1/B
AB

:�1’
9=0

|D � D 9 |
�

1
B

�
1
0 (⌦)

,

and finally argue as before with the help of Corollary 5.18 (linear convergence of
error).

6.5 Rate-optimality of two-Step AFEM

The output of [bT: , bD:] = DATA (T: ,D,lY:), in the :-step of AFEM-TS (Al-
gorithm 5.28), is fed to [T:+1, D:+1] = GALERKIN (bT: , bD: , Y:), which in turn
iterates �: times. We denote by (T: , 9 ,M: , 9 , DT:, 9 ) the triplets of grids, marked sets

and discrete solutions computed within GALERKIN (bT: , bD: , Y:) for 0  9 < �: .
We further assume that

bY: := [T:,0(DT:,0 , bD:) > Y:

for otherwise the module GALERKIN is skipped. In view of the lower a posteriori
error estimate in (6.22) for discrete data bD: , we infer that

|bD: � DT:,0 |� 1
0 (⌦) � ⇠!bY: > ⇠!Y: ,

where bD: 2 �1
0(⌦) is the exact solution of (5.5) with approximate data bD: . The

module DATA guarantees (5.63) and (5.65), namely

kD � bD: k⇡(⌦)  ⇠datalY: ) |D � bD: |� 1
0 (⌦)  ⇠⇡lY: , (6.30)

where D = D(D) 2 �1
0(⌦) is the exact solution of (2.7). We see that the parameter

l controls the discrepancy between D and bD: = bD:(D:) relative to Y: . We now
make an assumption on the appropriate size of l, which replaces Assumption 6.15
for AFEM-SW.

Assumption 6.21 (size of 8) The parameter l in AFEM-TS satisfies l 2 (0,l0]

where l0 := `⇠!
2⇠⇡⇠Cea

with ⇠cea as in (3.8) and the parameter 0 < ` 
1
2 appears in

Lemma 6.16 (Dörfler marking).

Consequently, if Assumption 6.21 is valid then (6.30) yields for l  l0

|D � bD: |� 1
0 (⌦) 

`⇠!

2⇠Cea
Y: . (6.31)

Corollary 6.22 (cardinality of marked sets) Let Assumptions 6.14, 6.17, and 6.21
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hold. If D 2 AB
�
�

1
0(⌦);T0

�
and bY: > Y: , then GALERKIN is called and there exists

a constant ⇠0 such that for all 0  9 < �:

#M: , 9  ⇠0 |D |
1/B
AB

|D � DT:, 9 |
�1/B
�

1
0 (⌦)

, (6.32)

and

#M: , 9  ⇠0 |D |
1/B
AB
Y
�1/B
:

. (6.33)

Proof. We argue as in Proposition 6.18. Fix 0  9 < �: and set

X := `
⇠!

⇠Cea
[T:, 9 (DT:, 9 ) ) X � `

⇠!

⇠Cea
Y: .

Since |D�bD: |� 1
0 (⌦) 

X

2 , by virtue of (6.31), we deduce thatbD: is an X-approximation
of order B to D according to Lemma 6.13 (Y-approximatiom of order B). Therefore,
there exists an admissible mesh TX 2 T such that

|bD: � DTX |� 1
0 (⌦)  X, #TX . |D |

1
B
AB
X
�

1
B ,

and we proceed exactly as in Proposition 6.18 to show that

#M: , 9 . |D |

1
B
AB
X
�

1
B ⇡ |D |

1
B
AB
|D � DT:, 9 |

�1/B
�

1
0 (⌦)
. |D |

1
B
AB
Y

�
1
B

:
.

This concludes the proof.

Corollary 6.23 (quasi-optimality of GALERKIN) Let Assumptions 6.3, 6.14, 6.17,
and 6.21 be valid. Then, the number of marked elements #:(D) within the :-th call
to GALERKIN satisfies

#:(D)  �⇠0 |D |
1
B
AB
Y

�
1
B

:
,

where � � �: is a uniform upper bound for the number of iterations of GALERKIN.

Proof. Use #:(D) =
Õ
�:�1
9=0 #M: , 9 and combine Corollary 6.22 (cardinality of

marked sets) and Proposition 5.27 (computational cost of GALERKIN).

We finally address the rate-optimality of the two-step algorithm AFEM-TS, by
proving the announced bound (6.1).

Theorem 6.24 (rate-optimality of AFEM-TS) Let Assumptions 6.3 (approximab-
ility of D), 6.10 (approximability of data), 6.11 (quasi-optimality of the module
DATA), 6.14 (marking parameter), 6.21 (size of l), and 6.19 (initial labeling) be
valid. Then, AFEM-TS gives rise to a sequence

�
T: ,VT: , DT:

�
 

:=0 such that

|D � D: |� 1
0 (⌦)  ⇠(D,D)

�
#T:
��B

1  :   ,

where 0 < B = min{BD , BD} = min{BD , B�, B2 , B 5 }  =

3
and

⇠(D,D) = ⇠⇤
⇣
|D |

1
BD
ABD

+ |G|
1
B�
MB�

+ |2 |

1
B2
CB2

+ | 5 |

1
B 5

FB 5

⌘
B
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with constant ⇠⇤ > 0 independent of D and D.

Proof. In view of Assumption 6.3, Corollary 6.23 implies that the number of
marked elements #:(D) within the (: + 1)-th call to GALERKIN satisfies

#:(D)  ⇠3 |D |
1
BD
ABD

Y

�
1
BD

:

with BD  =

3
and ⇠3 > 0 a suitable constant. Moreover, by Assumption 6.11 the

number of marked elements #:(D) within the (: + 1)-th call to DATA satisfies

#:(D)  ⇠3 |D|

1
BD

ABD
Y

�
1
BD

:

with BD  =

3
. The total number of marked elements in the (: + 1)-th loop of

AFEM-TS is thus

#:(D) + #:(D)  ⇠3

⇣
|D |

1
BD
ABD

+ |D|

1
BD

ABD

⌘
Y

�
1
B

:
.

Upon termination, DATA and GALERKIN give

|D � bD: |� 1
0 (⌦) 

`⇠!

2⇠Cea
Y: 

⇠!

4⇠Cea
Y: ,

|bD: � D:+1 |� 1
0 (⌦)  ⇠*[T:+1(D:+1, bD:)  ⇠*Y: ,

because of (6.31), (6.22) and the fact that ` <
1
2 . This implies by triangle inequality

|D � D:+1 |� 1
0 (⌦) 

⇣
⇠!

4⇠Cea
+ ⇠*

⌘
Y: = ⇠4Y: .

Therefore, applying Theorem 3.16 (complexity of REFINE ), the total amount of
elements created by : + 1 iterations within AFEM-TS, besides those in T0, obeys
the expression

#T:+1  e⇡ :’
9=0

�
# 9(D) + # 9(D)

�
 e⇡⇠3

⇣
|D |

1
BD
ABD

+ |D|

1
BD

ABD

⌘ :’
9=0

Y

�
1
B
9
.

according to (6.28). Since Y 9 = 2� 9Y0 and
Õ
:�1
9=0 (2�

1
B ) 9  1

1�2�1/B we obtain

#T:+1  ⇠

⇣
|D |

1
BD
ABD

+ |D|

1
BD

ABD

⌘
Y

�
1
B

:

with⇠ =
e⇡⇠3Y0
1�2�1/B provided #T:+1 �

3
2#T0. This together with |D�D:+1 |� 1

0 (⌦)  ⇠4Y:

gives the asserted estimate after 1  : + 1   loops.

Remark 6.25 The thresholds \0,l0 play no role in Proposition 5.29 (convergence
of AFEM-TS) but are critical in Theorem 6.24 (rate-optimality of AFEM-TS). The
former takes care of the discrepancy between error and estimator [Stevenson 2007,
Cascón et al. 2008, Nochetto et al. 2009, Bonito and Nochetto 2010, Nochetto
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and Veeser 2012]. The latter guarantees that the perturbation error (6.30) is much
smaller than Y: and enables GALERKIN to learn the regularity of D from bDbT:
[Stevenson 2007, Bonito et al. 2013b].

Remark 6.26 We claim that the convergence rate B = min{BD , BD} cannot be
improved to BD (the optimal rate for approximations of D 2 ABD

�
�

1
0(⌦);T0

�
)

when BD < BD by any algorithm that uses approximations bD = (bG,b2, b5 ) of data
D = (G, 2, 5 ). In fact, given any X > 0 consider the ball

⌫(D, X) :=
� bD 2 D : kD � bDk⇡(⌦)  X

 
, (6.34)

where ⇡(⌦) is defined in (5.60). If D,bD 2 �1
0(⌦) are the exact solutions for data

D,
bD, then there are constants 0 < 2⇤  ⇠⇤ such that

2⇤X  supbD2⌫(D,X)

|D � bD |
�

1
0 (⌦)  ⇠⇤X.

The rightmost inequality is a consequence of Lemma 5.20 (continuous dependence
on data). For the leftmost inequality, consider first a perturbation b

5 = (1 + X) 5
of the source term with coe�cients (bG,b2) = (G, 2), whence kD � bDk⇡(⌦) = X.
Proceeding as in (2.30), the coercivity and continuity of the bilinear form B imply

2B |D � bD |
�

1
0 (⌦)  k 5 �

b
5 k
�
�1(⌦) = X  ⇠B |D � bD |

�
1
0 (⌦).

On the other hand, if b
5 = 5 and (bG,b2) = 1

U
(G, 2) with U = 1 +

X

kD k⇡(⌦)
, then

kD � bDk⇡(⌦) < X, |D � bD |
�

1
0 (⌦) =

|D |
�

1
0 (⌦)

kDk⇡(⌦)
X �

k 5 k
�
�1(⌦)

⇠B kDk⇡(⌦)
X.

This argument takes care of the multiplicative nature of (G, 2) in (2.5), which makesbD = UD, and proves our claim.

6.6 Rate-optimality of AFEM with other boundary conditions

The key ingredient for rate-optimality of AFEM, regardless of boundary conditions,
is the validity of Lemma 6.16 (Dörfler marking). This lemma provides a bridge
between FEM meshes and optimal meshes and, in turn, hinges on three proper-
ties of the PDE residual estimator [T(DT , 5 ): Theorem 4.48 (upper bound for
corrections), Lemma 4.54 (Lipschitz property of the estimator), and Lemma 4.55
(estimator dependence on discrete forcing) to account for the possible change in the
discrete forcing %T 5 . Since their proofs are insensitive to boundary conditions,
because they do not alter the structure of [T(DT , 5 ) , we conclude their validity as
well as for Robin, Neumann and non-homogeneous Dirichlet conditions.

Therefore, our three AFEMs based on Dörfler marking deliver the same asymp-
totic convergence rates associated with the approximations classesABD for the solu-
tion D 2 �1(⌦) andABD for data D = (G, 2, ?, ✓) for Robin and Neumann boundary
conditions and D = (G, 2, 5 , 6) for Dirichlet boundary conditions. We need three
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new approximation classes for ? 2 PB? (!1(m⌦);T0), ✓ 2 LB✓ (�
1(⌦)⇤;T0) for Robin

or Neumann conditions and 6 2 GB6 (�1/2(m⌦);T0).
If coe�cients (G, 2, ?) are discrete for the Robin condition, then Lemma 6.9

(relation between approximation classes) extends and yields

h✓ � b
✓, Ei = B[D � bD, E] ) k✓ � b

✓kV⇤  ⇠kD � bDkV,
withV = �1(⌦) andB = bB,

b
✓ given in (5.85). This in turn implies |✓ |LB✓  ⇠ |D |ABD ,

B✓ = BD and the validity of Theorem 6.20 (rate optimality of one-step AFEMs). In
AFEM-TS, DATA approximates ✓ along with the other data and Theorem 6.24 (rate-
optimality of AFEM-TS) is also valid for Robin and Neumann boundary conditions.
We do not explore this matter any longer.

For non-homogeneous Dirichlet boundary conditions the analysis is simpler. If
6 is discrete, then there is no di�erence with 6 = 0. If not, we note that the
solution map 6 7! D (all other data being fixed) is a�ne and that the error and
augmented total estimator ET(DT , 5 , 6) := ET(DT , 5 ) + oscT(6)1/2 are equival-
ent (Theorem 4.74). This indicates that the role of 6 is similar to the role of
5 . Therefore, it su�ces to replace ET(DT , 5 ) by ET(DT , 5 , 6) and oscT( 5 )�1
by oscT( 5 )�1 + oscT(6)1/2 in AFEM-SW. For AFEM-TS, the approximation of 6
is handled by DATA along with the other data. Hence, we again conclude that
Theorems 6.20 and 6.24 extend to non-vanishing Dirichlet conditions.

6.7 Rate-optimality of AFEM driven by alternative estimators

We recall the notation ZT(DT) of Section 5.6 for any of the three alternative
estimators in Section 4.9 and the crucial local properties (5.86) and (5.87).

As already alluded to in Section 6.6, the key instrument for rate-optimality is
Lemma 6.16 (Dörfler marking). We now check the validity of its three main pillars:
Theorem 4.48 (upper bound for corrections) and Lemma 4.54 (Lipschitz property
of the estimator) and Lemma 4.55 (estimator dependence on discrete forcing) to
account for possible change in the discrete forcing %T 5 . It turns out that if they
were valid for ZT(DT) = ZT(DT , 5 ), then statements about rates of convergence
similar to those for [T(DT) would follow for ZT(DT).

Lemma 6.27 (localized discrete upper bound) Let T ,T⇤ 2 T and T⇤ be a refine-
ment of T . Let the coe�cients (bG,b2) be discrete over T and 5 2 �

�1(⌦). Then
the error between the corresponding Galerkin solutions DT 2 VT and DT⇤ 2 VT⇤ is
bounded by the indicator in the refined set R plus data oscillation

|DT � DT⇤ |� 1
0 (⌦)  ⇠*

⇣�
⇠

eq
!

��1
ZT(DT ,R)2

+ oscT( 5 )2
�1

⌘ 1
2
,

where R :=
�
I 2 V : ) 2 T\T⇤,) ⇢ lI

 
collects all vertices whose associated

stars change from T to T⇤.

Proof. It su�ces to realize that T\T⇤ ⇢
–
{lI : I 2 R}, and appeal to Theorem
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4.48 and (5.87) to arrive at

|DT � DT⇤ |
2
�

1
0 (⌦)
 ⇠

2
*

⇣
[T(DT ,R)2

+ oscT( 5 ,R)2
�1

⌘

 ⇠
2
*

⇣
[T(DT ,R)2

+ oscT( 5 )2
�1

⌘

 ⇠
2
*

⇣�
⇠

eq
!

��2
ZT(DT ,R)2

+ oscT( 5 )2
�1

⌘
.

This is the desired estimate.

Lemma 6.28 (Lipschitz property of the estimator) Let the coe�cients (bG,b2) be
discrete over T . There exists ⇠Lip such that��

ZT(E1) � ZT(E2)
��  ⇠Lip |E1 � E2 |� 1

0 (⌦) 8 E1, E2 2 VT .

Proof. We resort to the star equivalence (5.86) between discrete residual and
estimator. It thus su�ces to derive the Lipschitz property for k%T'T(E)k

�
�1(lI )

with respect to E 2 VT for all I 2 V. Since %T'T(E) = %T 5 �
bB[E, ·], we get

⌦
%T'T(E1) � %T'T(E2),F

↵
=

π
lI

rF · bGr(E1 � E2) + b2(E1 � E2)F

for all F 2 �1
0(lI). Therefore, Lemma 2.2 (first Poincaré inequality) yields

k%T'T(E) � %T'T(E2)k
�
�1(lI )  ⇠(bG,b2)kE1 � E2k� 1(lI )

where ⇠(bG,b2) depends on the !1-norms of (bG,b2). Finally, using the triangle
inequality to accumulate over I 2 V together with (5.86) gives the assertion.

Lemmas 6.27 and 6.28 lead to Lemma 6.16 (Dörfler marking) for ZT(DT). If
we further choose a minimal set M of vertices that satisfies Dörfler property
(5.88), then the previous rates of convergence for the three algorithms GALERKIN,
AFEM-SW, and AFEM-TS but now driven by ZT(DT) are valid provided D 2 AB,
the approximation class in Definition 6.1. We do not restate these results.

6.8 Approximation vs regularity classes

The purpose of this section is to reconcile the notion of approximation classes,
discussed above, with that of regularity classes. We recall the DeVore Diagram of
Fig. 2.1 that depicts the Sobolev line for the energy space �1

0(⌦), namely

sob(�1
0) = sob(, B

?
) ) B �

3

?

= 1 �
3

2
.

The di�erentiability B � 1 is only limited by the polynomial degree =, so B 2

[1, = + 1]. On the other hand, the integrability ? is not restricted to be ? � 1
as is customary with Sobolev spaces. For example, for 3 = 2 and B = = + 1, we
get ? = 2

=+1 < 1 provided = � 2. Therefore, to take full advantage of nonlinear
approximation theory, we need to abandon the framework of Sobolev spaces, B

?
(⌦)
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and deal with Besov spaces ⌫B
?,@

(⌦) (frequently denoted ⌫B
@
(! ?(⌦)) or ⌫B

@
(!?(⌦))

in the literature) with integrability index ? 2 (0,1]. The second index @ 2 (0,1] is
useful to characterize special limiting cases; we will provide below a few interesting
examples but take ? = @ most of the time. At this point, we only mention that
when B is non-integer and 1  ?  1, ⌫B

?,?
(⌦) = , B

?
(⌦) while when A is integer

,
A

?
(⌦) for ? < 2 is not a Besov space but it is slightly smaller than ⌫A

?,1(⌦). The
case ? = 2 is special since ⌫B2,2(⌦) = �B(⌦) even when B is an integer.

This section is devoted to the definition and properties of Besov and Lipschitz
spaces, including their close relation to approximation classes. Our presentation
follows closely [Binev et al. 2002] for = = 1 and [Gaspoz and Morin 2014, 2017]
for = � 1, but it adds a few new ingredients. Since our results involve three di�erent
type of spaces to account for the particular cases when the di�erentiability is integer,
it is pertinent to introduce the following abstract space -B

?
(⌦) with di�erentiability

index B 2 (0, = + 1] and integrability index ? 2 (0,1]

-
B

?
(⌦) :=

8>>><
>>>:

⌫
B

?,?
(⌦) B 2 (0, = + 1), ? 2 (0,1],

,
=+1
?

(⌦) B = = + 1, ? 2 [1,1],
Lip=+1

?
(⌦) B = = + 1, ? 2 (0, 1).

(6.35)

Here LipB
?
(⌦) = Lip(B, ! ?(⌦)), B 2 N, are the Lipschitz spaces; see (6.58) below.

For B 2 N and 1 < ? < 1 the Sobolev spaces coincide with the Lipschitz spaces
[Leoni 2009, Theorem 10.55], i.e.,

LipB
?
(⌦) = , B

?
(⌦), B 2 N, 1 < ? < 1, (6.36)

while for ? = 1 we only have

,
B

1 (⌦) õ! LipB1(⌦), B 2 N. (6.37)

We use the following conventions: -B
?
(⌦) := ! ?(⌦) for B = 0; -B

?
(⌦;T ) is the

space of functions with piecewise regularity -
B

?
over T 2 T; -B

?
(⌦;R<) is the

space -B
?
(⌦) of vector or matrix-valued functions.

We will prove in Section 6.8.4 the following crucial approximation results for
functions in !@(⌦) by discontinuous piecewise polynomials S=,�1

T
of degree = � 1

over conforming refinements T of T0. It turns out that this will also allow us to
deal with approximations in �1

0(⌦) by continuous piecewise polynomials VT of
degree = � 1.

Theorem 6.29 (regularity yields approximation) Let @ 2 [1,1], ? 2 (0,1],
B 2 (0, = + 1] and a function 6 2 !@(⌦) satisfy 6 2 -B

?
(⌦) with B � 3

?
+
3

@
> 0.

Then, there exists a constant ⇠ = ⇠(?, @, B, C, 3,⌦,T0) such that

⇢=(6,⌦)@ := inf
T2T#

inf
E2S=,�1

T

|6 � E |!@(⌦)  ⇠ |6 |-B?(⌦)#
�
B
3 . (6.38)

Therefore, 6 2 A B
3
= A B

3

�
!
@(⌦);T0

�
and

|6 |A B
3
 ⇠ |6 |-B?(⌦). (6.39)
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We see that the decay rate B

3
in (6.38) is proportional to the di�erence of the

di�erentiability indices between the space -B
?
(⌦) and !@(⌦) provided the Sobolev

numbers satisfy the relation

sob
�
-
B

?
(⌦)
�
> sob

�
!
@(⌦)

�
,

which implies that the embedding of -B
?
(⌦) into !@(⌦) is compact. The factor 3

in the denominator is a manifestation of the so-called curse of dimensionality. The
limiting case B = = + 1 entails dealing with Sobolev spaces , B

?
(⌦) and Lipschitz

spaces LipB
?
(⌦) depending on whether ? � 1 or ? < 1.

6.8.1 Modulus of smoothness

Di�erence Operators. Since we intend to allow ? 2 (0, 1), the underlying functions
in ⌫B

?,?
(⌦) might not be locally integrable, whence they might not be distributions

in ⌦. Therefore, the notion of weak derivative does not apply, which in turn has the
drawback of being defined for integers and not for fractional numbers. This leads
to the most standard definition of Besov spaces ⌫B

?,@
(⌦) using di�erence operators,

which only requires integrability in ! ?(⌦) and is valid for any B > 0, ?, @ 2 (0,1].
Other definitions, which provides equivalent results in the range 1  ?, @  1 can
be found in [Adams and Fournier 2003, Bergh and Löfström 1976].

Given a bounded Lipschitz domain ⌦ ⇢ R3 , and a vector ⌘ 2 R3 , we set

⌦⌘ :=
�
G 2 ⌦ : [G, G + ⌘] ⇢ ⌦

 
where [G, G + ⌘] denotes the closed segment connecting G and G + ⌘, and define the
first-order di�erence operator to be

�1
⌘
6(G) = �1

⌘
(6, G,⌦) :=

(
6(G + ⌘) � 6(G) G 2 ⌦⌘,
0 otherwise.

(6.40)

For : 2 N, : � 1, we define the :-th di�erence operator by iteration

�:
⌘
6(G) := �1

⌘

�
�:�1
⌘

�
6(G) G 2 ⌦:⌘ (6.41)

and observe that it has the explicit form

�:
⌘
6(G) =

8>>><
>>>:

:Õ
9=0

(�1):+ 9
⇣
:

9

⌘
6(G + 9 ⌘) [G, G + :⌘] ⇢ ⌦,

0 otherwise.

Note the property

? 2 P: ) �:+1
⌘
? = 0 8⌘. (6.42)

Smoothness. Given ? 2 (0,1] and C > 0, we define the modulus of smoothness of
order : in ! ?(⌦) to be

l:(6, C)? = l:(6, C,⌦)? := sup
|⌘ |C

k�:
⌘
6k!?(⌦). (6.43)
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We note that if l:(6, C)? = >(C=+1) as C ! 0, then 6 is a.e a polynomial in P= and

6 8 P= ) l:(6, C)? � ⇠C=+1 0 < C  1 (6.44)

for some ⇠ > 0 [DeVore and Lorentz 1993, Proposition 7.4]. We also observe that
the definition (6.43) only requires ! ?-integrability of 6 and leads to the following
celebrated Whitney estimate of the best approximation error

⇢=(6,⌧)? := inf
E2P=
k6 � Ek!?(⌧)

of 6 by polynomials of degree  = in ⌧ ⇢ ⌦ [Binev et al. 2002], [Dekel and
Leviatan 2004, Theorem 1.4] [Gaspoz and Morin 2014, 2017, Lemma 4.4].

Lemma 6.30 (Whitney’s lemma) Let T 2 T be an admissible grid, and let) 2 T
be a generic element. If 0 < ?  1 and = � 0, then

⇢=(6,))?  ⇠l=+1(6, ⌘) ,))? 86 2 !
?()),

where ⇠ = ⇠(?, =, 3,T0) but is independent of 6 and the size of ) .

6.8.2 Besov spaces
Given B > 0 and 0 < ?, @  1, the Besov space ⌫B

?,@
(⌦) is the set of all functions

E 2 !
?(⌦) such that the following quantity is finite

|E |⌫B?,@(⌦) :=

8>><
>>:
⇣ Ø
1

0

⇥
C
�B
l:(E, C)?

⇤
@
3C

C

⌘ 1
@

0 < @ < 1,

sup
C>0

⇥
C
�B
l:(E, C)?

⇤
@ = 1,

(6.45)

with : = [B] + 1 2 N and [B] stands for the integer part of B. If we split the integral
in (6.45) for 0 < @ < 1 in dyadic intervals, we obtain the following equivalent
expression for |E |⌫B?,@(⌦)

|E |
@

⌫
B
?,@(⌦) =

’
<2Z

π 2�<

2�<�1
C
�B@
l:(E, C)

@

?

3C

C

⇡

’
<2Z

2<B@l:(E, 2�<)@
?
; (6.46)

here we have used that both l:(E, C)? and C�B are monotone functions of C. The
hidden constants depend on B and @ but are otherwise independent of E, : and ?.
Note that, with obvious changes, (6.46) is also valid for @ = 1

|E |⌫B?,1(⌦) ⇡ sup
<2Z

2<Bl:(E, 2�<)? . (6.47)

We point out that |E |⌫B?,@(⌦) is a semi-norm for ?, @ � 1 and is otherwise a
semi-(quasi)norm in that the triangle inequality is valid up to a constant larger than
1; note that |1|⌫B?,@(⌦) = 0. The quasi-norm of ⌫B

?,@
(⌦) is defined to be

kEk⌫B?,@(⌦) := kEk!?(⌦) + |E |⌫B?,@(⌦).

If an integer : 0 > : is chosen in (6.45), then the ensuing quasi-norms kEk⌫B?,@(⌦)
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are equivalent. This hinges on the Marchaud inequality [DeVore and Popov 1988,
eq (2.6)], [Ditzian 1988, Theorems 1 and 3]

l:(E, C)?  ⇠C:
 

kEk!?(⌦) +

✓π
1

C

�
I
�:
l:0(E, I)?

�
? 3I

I

◆ 1
?

!

. (6.48)

The following lemma characterizes the precise blow-up of |E |⌫B?,?(⌦) as B! = + 1.

Lemma 6.31 (blow-up of |v |Hs
p,p(⌦)) Let B 2 (0, = + 1), ? 2 (0,1]. Then

|E |⌫B?,?(⌦) 
�
?(= + 1 � B)

�� 1
? kEk

⌫
=+1
?,?(⌦) 8E 2 ⌫

=+1
?,?

(⌦).

Proof. We take ? < 1 and combine the definition (6.45) with (6.48), after
replacing the upper limit of integration by diam(⌦) ⇡ 1, to write

|E |
?

⌫
B
?,?(⌦) ⇡

π 1

0

⇣
C
�B
l=+1(E, C)?

⌘
? 3C

C

. � + � �,

with

� =
π 1

0
C
(=+1�B)?

π 1

C

⇣
I
�(=+1)

l=+2(E, I)?
⌘
? 3I

I

3C

C

, � � =
π 1

0
C
(=+1�B)?

kEk
?

!
?(⌦)

3C

C

.

Exchanging the order of integration yields

� =
π 1

0

⇣
I
�(=+1)

l=+2(E, I)?
⌘
?
⇣π

I

0
C
(=+1�B)?�1

3C

⌘
3I

I

=
1

?(= + 1 � B)

π 1

0

⇣
I
�B
l=+2(E, I)?

⌘
? 3I

I


1

?(= + 1 � B)
|E |
?

⌫
=+1
?,?(⌦)

.

Since � � =
�
?(= + 1 � B)

��1
kEk

?

!
?(⌦), the proof is thus complete.

The following equivalence between Sobolev and Besov spaces is valid for frac-
tional di�erentiability B [Leoni 2009, Proposition 14.40] (see also [Bergh and Löf-
ström 1976, §6.4.4], [Adams and Fournier 2003, §7.33, §7.67]): for all B � 0, B 8 N
and ? 2 [1,1]

⌫
B

?,?
(⌦) = , B

?
(⌦). (6.49)

However, if B 2 N is an integer, then ⌫B
?,@

(⌦) is defined using : = B + 1 di�erences
whereas, B

?
(⌦) involves B weak derivatives in ! ?(⌦) provided ? 2 [1,1]. It turns

out that for integer values B 2 N the spaces di�er

⌫
B

?,?
(⌦) < , B

?
(⌦), ? < 2, (6.50)

except for the exceptional case ? = 2 for which ⌫B2,2(⌦) = �B(⌦) [DeVore 1998].
The Besov semi-norm is sub-additive in the following sense: if {)8}

#

8=1 is a
disjoint collection of elements )8 2 T and T 2 T, ? 2 (0,1] and B > 0, then there
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exists a constant ⇠ depending on ?, B, 3 and T0 but independent of # such that

#’
8=1

|E |
?

⌫
B
?,?()8)

 ⇠ |E |
?

⌫
B
?,?(⌦) 8E 2 ⌫

B

?,?
(⌦). (6.51)

The localization of Besov norms is more general than (6.51). In fact, if lT())
denotes the patch of elements in T around ) 2 T (first ring), then the following
is valid with equivalence constants depending ?, B, 3 and T0 but independent of #
[Binev et al. 2002, Lemmas 4.3 and 4.4]’

) 2T

|E |
?

⌫
B
?,?(lT () )) ⇡ ⇠ |E |

?

⌫
B
?,?(⌦) 8E 2 ⌫

B

?,?
(⌦). (6.52)

The following statements about embeddings between Besov spaces on bounded
Lipschitz domains ⌦ will turn to be useful in the sequel [Triebel 2010, §3.2.4,
§3.3.1]: if 0 < ?  1, 0 < @1, @2  1, and B1, B2, B > 0, then

B1 > B2 ) ⌫
B1
?,@1

(⌦) õ! ⌫
B2
?,@1

(⌦),

@1 < @2 ) ⌫
B

?,@1
(⌦) õ! ⌫

B

?,@2
(⌦).

(6.53)

Because of the second relation in (6.53), statements valid for all second index @
are written for the largest space corresponding to @ = 1. In addition, for all
0 < ?, @, A  1 and B > 0, the discrepancy between the spaces ⌫B

?,A
(⌦) and !@(⌦)

is the quantity

X := B �
3

?

+
3

@

. (6.54)

The discrepancy X governs the embedding between these two spaces [Leoni 2009,
Theorems 14.29 and 14.32], [DeVore 1998], namely

X > 0 ) ⌫
B

?,1(⌦) õ! !
@(⌦); X = 0 ) ⌫

B

?,?
(⌦) õ! !

@(⌦), @ < 1, (6.55)

and the embedding is compact when X > 0. Notice that X = 0 determines the
Sobolev embedding line of the DeVore diagram in Fig. 2.1.

We stress that when X > 0 the third parameter A in ⌫B
?,A

(⌦) plays no role in
(6.55) involving the largest space ⌫B

?,1(⌦), see (6.53). However, it turns out to
be useful to quantify regularity in extreme cases. For instance, the characteristic
function j⌧ of a smooth set ⌧ & ⌦ satisfies

j⌧ 2 ⌫

1
?
?,1(⌦)\⌫

1
?
?,A

(⌦) 0 < ?, A < 1.

Moreover, the Lagrange basis functions {qI}I2N of VT satisfy for any 0 < ?  1

[Gaspoz and Morin 2014, Proposition 4.7]

l=+1(qI , C)? =

(
| supp qI |

3�1�?
3?

C
1+ 1

? 0 < C  | supp qI |
1
3 ,

| supp qI | C > | supp qI |
1
3 .



AFEM 185

This readily implies that for all 0 < B < 1 +
1
?

and 0 < @ < 1

VT ⇢ ⌫
B

?,@
(⌦), VT ⇢ ⌫

1+ 1
?

?,1 (⌦). (6.56)

6.8.3 Local approximation
We are now in the position to prove a key approximation estimate. In finite element
theory it comes by the name of Bramble-Hilbert Lemma whereas in nonlinear
approximation theory it is called Jackson Theorem. We distinguish between the
case 0 < B < = + 1 and the limit integral case B = = + 1.

Proposition 6.32 (Bramble-Hilbert for Besov spaces) Let T 2 T and ) 2 T .
Let 0 < ?, @  1, 0 < B < =+1, and either B� 3

?
+
3

@
� 0, @ < 1 or B > 3

?
, @ = 1.

Set A = 1 when B � 3

?
+
3

@
> 0 and A = ? otherwise. Then we have

inf
%2P=
kE � %k!@() )  ⇠⌘

B�
3
? +

3
@

)
|E |⌫B?,A () ) 8 E 2 ⌫

B

?,A
()), (6.57)

where the constant ⇠ = ⇠(?, @, B, 3, =,T0) is independent of E and ) .

Proof. We first point out that we could use : = = + 1 � [B] + 1 in the definition
of |E |⌫B?,A () ) according to (6.48). We next proceed in three steps.

1 Suppose first that ) is the master element, namely |) | ⇡ 1. If % 2 P= is an
arbitrary polynomial, using that the discrepancy X = B � 3

?
+
3

@
� 0 yields

⇢=(E,))@  kE � %k!@() ) . kE � %k⌫B?,A () ) = kE � %k!?() ) + |E � % |⌫B?,A () )

due to the embedding (6.55). Since the definition of l=+1(E, C)? involves = + 1
di�erences, we deduce �=+1

⌘
% = 0 in view of (6.42), whence |E � % |⌫B?,A () ) =

|E |⌫B?,A () ). We now take % to be the best approximation of E in ! ?()) to derive

⇢=(E,))@ . ⇢=(E,))? + |E |⌫B?,A () ).

2 We perform a scaling argument from the element ) 2 T to the master elementb) . Let bG = |) |
�1/3

G be the change of variables and note that

l=+1(E, C,))? = sup
|⌘ |C

k�=+1
⌘
Ek!?() )

= |) |
1
? sup

|⌘ |C

k�=+1
⌘ |) |�1/3bEk!?(b) ) = |) |

1
?
l=+1(bE,bC, b))?

withbC = C |) |�1/3 , whence

|E |
A

⌫
B
?,A () ) =

π
1

0

⇣
C
�B
l=+1(E, C,))?

⌘
A 3C

C

= |) |
A
?�

BA
3

π
1

0

⇣bC�Bl=+1(bE,bC, b))?
⌘
A 3bC
bC = |) |

A
?�

BA
3 |bE |A

⌫
B
?,A (b) )

.
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Therefore, since ⇢=(E,))@ = |) |
1
@
⇢=(bE, b))@, we obtain

⇢=(E,))@ . |) |
1
@�

1
?
⇢=(E,))? + |) |

B
3�

1
? +

1
@ |E |⌫B?,A () ).

3 It remains to estimate ⇢=(E,))? which, in view of Lemma 6.30 (Whitney’s
lemma), satisfies ⇢=(E,))?  ⇠l=+1(E, ⌘) ,))? with ⌘) ⇡ |) |

1/3
⇡ 2�< for some

< 2 Z. Since : = = + 1 � [B] + 1, invoking the equivalent definition (6.48) of
|E |⌫B?,A () ) yields

⇢=(E,))A
?
. l=+1(E, 2�<,))A

?
. ⌘BA

)

’
<2Z

2<BAl=+1(E, 2�<,))A
?
= ⌘BA

)
|E |
A

⌫
B
?,A () ).

Inserting this estimate into that of Step 2 gives (6.57), as asserted.

We now consider the integer case B = =+1. The first thing to notice is that (6.57)
cannot possibly be valid: the definition (6.45) requires : = [B] + 1 = = + 2, whence
any polynomial 6 2 P=+1 \ P= satisfies ⇢=(6,))? > 0 as well as l=+2(6,))? = 0
according to (6.42). Lemma 6.31 (blow-up of |E |⌫B?,?(⌦)) reveals that replacing
the semi-norm |E |⌫B?,?(⌦) by the full norm kEk

⌫
=+1
?,?(⌦) is not a good idea either. To

overcome this problem, we now introduce the space LipB
?
(⌦) := Lip

�
B, !

?(⌦)
�

of
B-Lipschitz functions with values in ! ?(⌦), 0 < ? < 1 [DeVore 1998, p.92]

|6 |LipB?(⌦) := sup
C>0

⇣
C
�B
l=+1(6, C,⌦)?

⌘
. (6.58)

Comparing with (6.45) we realize that LipB
?
(⌦) = ⌫

B

?,1(⌦) provided B 8 N but
LipB

?
(⌦) < ⌫B

?,1(⌦) when B 2 N. Moreover,

X = B �
3

?

+
3

@

> 0, B 2 N ) LipB
?
(⌦) õ! !

@(⌦), (6.59)

with compact embedding. If X = 0 and ? � 1, @ < 1, the above embedding is
continuous in view of (6.36) and (6.55).

Proposition 6.33 (Bramble-Hilbert for Lipschitz spaces) Let T 2 T and ) 2
T . If ? 2 (0,1), @ 2 (0,1], : � 0 integer, and : + 1 � 3

?
+
3

@
� 0, with strict

inequality when ? < 1 or @ = 1, then we have

inf
%2P:
kE � %k!@() )  ⇠⌘

:+1� 3? +
3
@

)
|E |Lip:+1

? () ) 8 E 2 Lip:+1
?

()), (6.60)

where the constant ⇠ = ⇠(?, @, 3, : ,T0) is independent of E and ) .

Proof. In view of (6.59), we proceed as in the proof of Proposition 6.32, except
for the following change in Step 3. For ⌘) ⇡ 2�<, we have instead

⇢:(E,))? . l:+1(E, 2�<,))?

. ⌘:+1
)

sup
<2Z

⇣
2<(:+1)

l:+1(E, 2�<,))?
⌘
= ⌘:+1

)
|E |Lip:+1

? () ).
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This concludes the proof.

It is instructive to realize that Propositions 6.32 and 6.33 extend to Besov and
Lipschitz spaces the usual Bramble-Hilbert lemma for Sobolev spaces [Brenner
and Scott 2008, Lemma 4.3.8].

Proposition 6.34 (Bramble-Hilbert for Sobolev spaces) Let T 2 T and ) 2 T .
For all 1  ?, @,  1 and 0 < B  = + 1 such that B � 3

?
+
3

@
� 0 with strict

inequality when @ = 1, then

inf
%2P=
kE � %k!@() )  ⇠⌘

B�
3
? +

3
@

)
|E |, B

? () ) 8 E 2 ,
B

?
()), (6.61)

where the constant ⇠ = ⇠(?, @, B, 3, =,T0) but is independent of E and ) .

Proof. When B is fractional, , B

?
()) = ⌫

B

?,?
()) in view of (6.49) and the result

follows from Proposition 6.32. Instead, when B is integral, we invoke (6.36) and
(6.37) to deduce the result from Proposition 6.33.

6.8.4 Global approximation: direct estimates
We now collect local contributions from Propositions 6.32, 6.33 and 6.34, de-
pending on the range of parameters ?, @, B, to find global error estimates for the
solution D as well as the coe�cients (G, 2) of (2.7). They are trivial consequences
of Theorem 6.29, which we prove first. The analysis of the forcing function 5 is
somewhat di�erent, due to the non-locality of the corresponding norm �

�1(⌦),
and is postponed to Section 7.3.

Proof of Theorem 6.29. Since the discrepancy X = B � 3

?
+
3

@
> 0, the embedding

-
B

?
(⌦) õ! !

@(⌦) is compact according to (6.55) and (6.59). Given 6 2 -B
?
(⌦), we

consider the surrogate quantity 4T(6,)) := ⇠⌘X
)
|6 |-B?() ), which satisfies

⇢=(6,))@ = inf
E2P=
k6 � Ek!@() )  4T(6,)) 8) 2 T

by virtue of Bramble-Hilbert Propositions 6.32, 6.33 and 6.34. We finally combine
Proposition 3.19 (abstract greedy) with the subadditivity property (6.51) to deduce
the desired estimate (6.3). The remaining estimate (6.39) follows from the definition
of |6 |A B

3
. This concludes the proof.

Inspection of this proof reveals that our estimate is stronger than (6.38). In fact,
we need the weaker regularity

|6 |
?

-
B
?(⌦;T) =

’
) 2T

|6 |
?

-
B
?() ) < 1,

which allows for piecewise Besov smoothness of 6 very much in the spirit of (3.20).
This may accommodate singular behavior of 6 aligned with the initial mesh T0.

Corollary 6.35 (approximation class of u) Let the solution D 2 �1
0(⌦) of (2.7)

satisfy D 2 -B
?
(⌦) with B 2 (0, = + 1], ? 2 (0,1] and B � 1 � 3

?
+
3

2 > 0, where
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-
B

?
(⌦) is defined in (6.35). Then D 2 A B�1

3

�
�

1
0(⌦);T0

�
and

|D |A B�1
3

. |D |-B?(⌦). (6.62)

Equivalently, f# (D) defined in (6.3) satisfies

f# (D) . |D |-B?(⌦)#
�
B�1
3 # � #T0. (6.63)

Proof. In view of (3.19) of Proposition 3.9 (approximation of gradients), namely

inf
E2S=,0

T

kr(D � E)k
!

2(⌦) . inf
E2S=,�1

T

kr(D � E)k
!

2(⌦),

we realize that it su�ces to bound the element errors for 6 = rD 2 !2(⌦;R3) by
vector-valued discontinuous piecewise polynomials of degree  = � 1. Therefore,
applying Theorem 6.29 (regularity yields approximation) with = replaced by = � 1
gives the desired estimates (6.62) and (6.63).

We now turn our attention to the coe�cients (G, 2). Regarding G, Lemma
5.20 (continuous dependence on data) shows that the natural function space for
G is !1(⌦,R3⇥3) provided D 2 �1

0(⌦). However, Lemma 5.20 also allows for
G 2 !A (⌦,R3⇥3), 2  A < 1, provided D 2 ,1

?
(⌦) with 2  ? = 2A

A�2 < ?1

which in turn is guaranteed by Lemma 2.13 (,1
?
-regularity). The latter permits

discontinuities of G within elements, which is of practical importance. Therefore,
we consider the most general situation 2  A  1 in the sequel.

Corollary 6.36 (approximation class of G) For 0 < U1  U2 and 2  A  1
let the di�usion coe�cient G 2 "(U1, U2) of (2.7) satisfy G 2 -B

?
(⌦;R3⇥3) with

B 2 (0, =], ? 2 (0,1] and B � 3

?
+
3

A
> 0. Then G 2 M B

3
= M B

3

�
(!A (⌦))3⇥3;T0

�

and

|G|M B
3
. |G|-B?(⌦). (6.64)

Equivalently, eXT(G)A defined in Section 6.1.2 satisfies

inf
T2T#

eXT(G)A . |G|-B?(⌦)#
�
B
3 8T 2 T# , # � #T0, (6.65)

and this error decay is achieved by Algorithm 3.18 (greedy algorithm).

Proof. Simply recall the relation (6.12) between the best constrained and uncon-
strained approximation errors and apply Theorem 6.29 (regularity yields approx-
imation).

Consider the special case B = = and A = 1 in Corollary 6.36. We readily see that
? >

3

=
which might be less than 1 for = > 3, hence the need for Besov spaces.

We finally deal with the reaction coe�cient 2 2 !1(⌦). According to Lemma
5.20 (continuous dependence on data), and the discussion in Section 5.4.2, a natural
space for 2 is !@(⌦) with 3

2 < @  1, B = 0; we could take @ = 2 for 3 < 4.
Section 5.4.2 also reveals that the case = = 1 is somewhat special in that we can
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exploit superconvergence in,�1
@

(⌦) with @ > 3. In fact, combining the argument
following (5.75) with (5.68) yields

infb22S=�1,�1
T

k2 � b2k2
,
�1
@ (⌦)

.
’
) 2T

⌘
2C
)
k2 � ⇧) 2k2

!
2() ) .

’
) 2T

⌘
2C
)
XT(2,))2

2 = oscT(2)2
2

with 0 < C = 1� 32 +
3

@
< 2� 32 provided 3 < 4. This gives the following statement.

We note that (5.76) could also be combined with (5.68) for = = 1 to obtain a similar
result for oscT(2)1 with C = 1 and any 3 � 2; however, we do not elaborate further.

Corollary 6.37 (approximation of c) Let 0  21  22 and the reaction coe�cient
2 2 '(21, 22) satisfy 2 2 -B

?
(⌦) with B 2 (0, =], ? 2 (0,1]. If = � 1, @ >

3

2 , and
B �

3

?
+
3

@
> 0, then 2 2 C B

3
= C B

3

�
!
@(⌦);T0

�
and

|2 |C B
3
. |2 |-B?(⌦). (6.66)

If instead = = 1, @ > 3, B �
3

?
+
3

2 � 0, 0 < C = 1 � 3

2 +
3

@
< 2 � 3

2 and 3 < 4, then

2 2 C B+C
3

= C B+C
3

�
!

2(⌦);T0
�

and

|2 |C B+C
3
. |2 |-B?(⌦). (6.67)

Equivalently for all = � 1, eXT(2)@ defined in Section 6.1.2 satisfies

inf
T2T#

eXT(2)@ . |2 |-B?(⌦)#
�
B+C
3 8T 2 T# , # � #T0,

with C = 0 when = > 1. This error decay is achieved by Algorithm 3.18 (greedy
algorithm).

Proof. In view of (6.12), inequality (6.66) is a direct application of Theorem
6.29 (regularity yields approximation). The superconvergence rate in (6.67) is a
consequence of (6.12) and the proof of Proposition 3.19 (abstract greedy) with B
replaced by B + C.

We finally go back to the abstract space -B
?
(⌦), defined in (6.35), and introduce

the corresponding abstract approximation class X B
3
= X B

3

�
!
@(⌦);T0

�
of functions

E 2 !
@(⌦) such that

|E |X B
3
= sup
# �#T0

�
#

B
3 inf

T2T#
oscT(E)@

�
< 1 ) inf

T2T#
oscT(E)@  |E |X B

3
#
�
B
3 .

Consequently, Theorem 6.29 (regularity yields approximation) implies

-
B

?
(⌦) ⇢ X B

3
, |E |X B

3
. |E |-B?(⌦). (6.68)

We will utilize this abstract notation and estimates in Section 7 while discussing
the approximation of data D = (G, 2, 5 ) by a greedy algorithm.

6.8.5 Global approximation: inverse estimates
Theorem 6.29 gives su�cient regularity properties for a function 6 2 !@(⌦) to
belong to an approximation class A B

3

�
!
@(⌦);T0

�
; this is called direct estimate.



190

Such regularity is written in terms of a Besov space ⌫B
?,?

(⌦), except in the limiting
case B = =+1. The converse statement is also true and is called an inverse estimate:
if 6 belongs to an approximation class A C

3

�
!
@(⌦);T0

�
, then it is a member of a

Besov space b⌫B
?,?

(⌦) provided C > B and 0 < B < = + 1, B � 3

?
+
3

@
= 0 [Binev et al.

2002, Gaspoz and Morin 2014].
Several comments are in order. The Besov space b⌫B

?,?
(⌦) is defined via a

multilevel decomposition of ! ?(⌦) and coincides with ⌫B
?,?

(⌦) only when B <

1 +
1
?
. This restriction of B is natural because VT ⇢ b⌫B

?,?
(⌦) for all B but VT ⇢

⌫
B

?,?
(⌦) requires B < 1+ 1

?
according to (6.56). The discrepancy between the spaces

b⌫B
?,?

(⌦) and !@(⌦) is X = B � 3

?
+
3

@
= 0, but the decay rate C/3 of A C

3

�
!
@(⌦);T0

�

is larger than B/3. This accounts for the embedding of A C
3

�
!
@(⌦);T0

�

’
=2N

⇣
f2=(6)2

B
3 =
⌘
?

 sup
=2N

⇣
f2=(6)2

C
3 =
⌘
? ’
=2N

2
B�C
3 ?= . |6 |

?

A C
3

into a space with decay B/3 and summability ✓@ that in turn embeds into b⌫B
?,?

(⌦)
[Binev et al. 2002, Gaspoz and Morin 2014]. This reveals that there is no complete
characterization of the approximation class A B

3
in terms of Besov regularity.

7 Data Approximation
This section focuses on the module DATA of Algorithms 5.1 (AFEM-TS) and 5.16
(one-step AFEM with switch). According to Assumption 6.11 (quasi-optimality of
DATA), the call

[bT ,
bD] = DATA(T ,D, g) (7.1)

is meant to construct a quasi-optimal conforming refinement bT of T 2 T and
approximate piecewise polynomial data bD = (bG,b2, b5 ) 2 DbT over bT that satisfies

kD � bDk⇡(⌦)  ⇠datag (7.2)

as well as the constraints bG 2 "(bU1,bU2) and b2 2 '(b21,b22) defined in (5.50).
Sections 7.2.2 and 7.2.3 are devoted to the construction of (bG,b2). To approximate

the coe�cients (G, 2) we proceed in two steps. First, we solve an unconstrained
approximation problem upon computing the !2-projection (eG,e2) of (G, 2) onto the
space of discontinuous piecewise polynomials of degree  =�1; this step is linear,
easily achieves the desired accuracy, but does not guarantee the monotonicity of
oscillations with respect to refinement (5.72) and violates the constraints in (5.50)
unless = = 1. Second, we resort to the nonlinear selection (5.70) of the local
!

2 approximation to force the resulting oscillations to be monotone. Third, we
solve a constrained problem, which modifies (eG,e2) locally into (bG,b2) and restores
(5.50) without accuracy degradation; this is a delicate nonlinear procedure executed
element by element, introduced and discussed in Section 7.2.
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The approximation of the right-hand side 5 2 ��1(⌦) is a conceptually di�erent
linear process. Without further structural assumptions on 5 it is not possible
to evaluate oscT( 5 )�1 and reduce it. Hence we introduce surrogate estimatorsfoscT( 5 )�1, which are larger than oscT( 5 )�1, but computable, for several classes of
forcing functions 5 relevant in practice. We discuss this in Section 7.3.

We start in Section 7.1 with a presentation and assessment of quasi-optimal
GREEDY algorithms to reduce the data error. An important consideration is that
the local error estimators {oscT(E,))}) 2T may accumulate in ✓1 as well as in ✓@

for @ < 1. Both are handled via a GREEDY algorithm similar to Algorithm 3.18
but with di�erent stopping criteria when the local errors accumulate in ✓@ with
@ < 1. The module DATA combines both: its structure is displayed in Algorithm
7.23 and its performance is elucidated in Corollary 7.24 below.

7.1 Quasi-optimal GREEDY algorithms for data reduction

Algorithm 3.18 (greedy algorithm) is well suited for dealing with local error es-
timators oscT(E,))@ that accumulate with respect to ) 2 T in the space ✓1. This
is the framework for approximating coe�cients E = G, 2 in !1(⌦), in which case
the local error estimators oscT(E,))1 are defined in (5.73) for A = @ = 1. This re-
quires that E = G, 2 be piecewise uniformly continuous on T for oscT(E;))1 ! 0
as ⌘) ! 0. However, for discontinuous (G, 2) and the forcing function 5 , the accu-
mulation of oscT(E,))@ for E = G, 2, 5 is in ✓@ for @ < 1. In this case, Algorithm
3.18 does not provide a direct relation between a desired output tolerance g for the
total error

⇢T(E)@ := k{oscT(E,))@}) 2T k✓@ =

 ’
) 2T

oscT(E,))@
@

!1/@

and the threshold X; recall that oscT(E,))@ := kE �bEk!@() ) for ) 2 T .
Another subtle di�erence from Algorithm 3.18 is that the algorithm GREEDY

below does not start from T0 but from any T 2 T. Since DATA and thus GREEDY is
called repeatedly within AFEM, it seems advantageous to exploit the mesh refine-
ment already performed in the adaptive process rather than restarting from scratch;
this thus improve the computational e�ciency.

Algorithm 7.1 (GREEDY ) Given a tolerance g > 0, 0 < @  1, a number of
bisection 1 � 1 performed per element to be refined, and an arbitrary conforming
grid T 2 T, not necessarily T0, GREEDY finds a conforming refinement bT � T of
T by bisection and bE 2 S=�1,�1

T
such that ⇢T(E)@  g:

[bT ,bE] = GREEDY (T , g, @, 1, E)
[bE] = PROJECT (T , E)
while ⇢T(E)@ > g

[M] = argmax{oscT(E,))@ : ) 2 T }

[T ] = REFINE (T ,M, 1)



192

[bE] = PROJECT (T , E)
return T ,bE

In GREEDY above, the element ) with largest error is refined as long as the total
error ⇢T(E)@ exceeds the target tolerance g. When the largest error is achieved
by several elements, an ad-hoc criteria such as lexical order is used to break ties.
We also recall that the routine REFINE bisects all the elements in M (in this
case only one) 1 times and performs additional refinements necessary to produce
a conforming subdivision. PROJECT computes the local approximations bE of E
needed to evaluate oscT(E,))@; refer to Section 5.4.2 and (5.70) for the definition
of bE. The dependency on bE in oscT(E,))@ and ⇢T(E) is not indicated.

To discuss the performances of the GREEDY algorithm, we recall that -B
?
(⌦;T0)

is the abstract space defined in (6.35) which satisfies’
) 2T

|E |
?

-
B
?() ) . |E |

?

-
B
?(⌦;T0) (7.3)

for all T 2 T and E 2 -B
?
(⌦;T0).

The GREEDY algorithm analyzed in Proposition 3.19 (abstract greedy) relies on
the abstract assumptions (3.40), (3.41), and (3.42). With the aim of reducing the
data oscillations, we make these assumptions more concrete.

Assumption 7.2 (admissible set of parameters for GREEDY ) We say that the set
of parameters (E, B, C, ?, @) is admissible for GREEDY with local oscillations {oscT(E,))@}) 2T
if 0 < ?, @  1, B, C � 0 satisfy

(i) E 2 -B
?
(⌦;T0);

(ii) C + B > 0, B �
3

?
+
3

@
� 0 with strict inequality when @ = 1 or B = = + 1,

? < 1;
(iii) for A := C + B � 3

?
+
3

@
> 0

oscT(E,))@ . ⌘A) |E |-B?() ) 8) 2 T ,T 2 T. (7.4)

When the local oscillations considered are clear from the context, we say that
(E, B, C, ?, @) is admissible for GREEDY .

Relation (7.4) replaces (3.41) and is a regularity assumption guaranteeing a
convergence rate when approximating E by bE = PROJECT (T , E) (appearing in
the definition of oscT(E,))@). We refer to Propositions 6.32, 6.33, and 6.34 for
examples where Assumption 7.2 holds. Note that in view of (6.55) and (6.59), the
conditions (ii) in Assumption 7.2 guarantees E 2 -B

?
(⌦) ⇢ !@(⌦). The parameter

C � 0 reflects a possible additional power of ⌘ in the oscillation term, see for e.g.
(5.75), (5.76) and (5.78). Furthermore, in view of (7.3) assumption (6.51) is always
satisfied by the -B

?
(⌦;T0) semi-norms, and (3.28) is not needed any longer.

As alluded to above, the case @ < 1 is more complex to analyze and cannot
solely rely on the decay property (7.4) as in the proof of Proposition 3.19. It
requires the local oscillations to be monotone with respect to refinements.
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Assumption 7.3 (monotonicity of local oscillations) We say that for 0 < @  1,
the local errors satisfy the monotonocity property in ✓@ if for any E 2 !@(⌦), any
T ,T⇤ 2 T with T⇤ � T and any )⇤ 2 T⇤, ) 2 T with )⇤ ⇢ ) , we have

oscT⇤(E,)⇤)@  oscT(E,))@ . (7.5)

In view of Lemma 5.26 (monotonicity of oscillation), Assumption 7.3 holds for
the oscillations on G and 2 given in (5.73) and (5.75), but not for the oscillations
(5.77) of 5 . However, in Section 7.3 below we derive computable surrogates for
the local error oscT( 5 ,))�1. These surrogates satisfy the monotonicity property
and are used in turn to drive the GREEDY algorithm. In passing, we note that we
refrain from using the right-hand side of inequality (7.4) as surrogate for the local
oscillation. In fact, it is monotone with respect to refinements but at the expense
of being di�cult to evaluate because it involves the semi-norm |E |-B?() ).

The following result is the counterpart of Proposition 3.19 (abstract greedy) for
GREEDY with errors accumulating in ✓@, 0 < @  1, and still starting from T0.
We address the case where T < T0 in Lemma 7.5 below.

Proposition 7.4 (performance of GREEDY ) Let the initial subdivision T0 of ⌦ ⇢
R3 satisfy Assumption 6.19 (initial labeling). Let g > 0 be the target tolerance
and 1 � 1 be the number of bisections performed on each marked element. Let
(E, B, C, ?, @) satisfy Assumption 7.2 (admissible set of parameters for GREEDY )
with local errors {oscT(E,))@}) 2T which in turn verify Assumption 7.3 (monoton-
icity of local oscillations) in ✓@. Then GREEDY (T0, g, @, 1, E) terminates in a finite
number of iterations and

⇢T(E)@  g  ⇠ |E |-B?(⌦;T0)
�
#T
�� B+C3

. (7.6)

with a constant ⇠ = ⇠(?, @, B, 1, 3,⌦,T0). Furthermore, E 2 X B+C
3

and |E |X B+C
3
.

|E |-B?(⌦;T0). Moreover, the estimate (7.6) is valid for tensor-valued functions E.

Proof. Since the proof is similar to that of Proposition 3.19 (abstract greedy)
with 4T(E,))@ = oscT(E,))@, we only report the new ingredients. We recall that
we use the convention 1/1 = 0. Let T1, . . . ,T: be the sequence of refinements
produced by GREEDY , and )1, . . .): be the sequence of marked elements. We
need to estimate #M = : with M = {)1, . . . ,): }. Set

X8 := oscT8 (E,)8)@, (1  8  :) and X := X:�1 .

Then, there holds

⇢T: (E)@  g < ⇢T:�1(E)@  X (#T:�1)
1
@  X (#T:)

1
@
. (7.7)

On the other hand, since REFINE does not increase the element estimators oscT8 (E,)8)
thanks to (7.5), one has X8 � X for any 8, whence

oscT8 (E,)8)@ = X8 � X, 81  8 < : .

Let us now partition M into disjoint subsets P 9 as in the proof of Proposition 3.19.
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If )8 2 P 9 , (7.4) implies

X  oscT8 (E,)8)@ . ⌘
A

)
|E |-B?()8)  2�

9A
2 |E |-B?()8) ,

whence, exploiting the ✓? summability (7.3) gives

#P 9 . X�?2�
9A ?

2 |E |
?

-
B
?(⌦;T0).

which is similar to (3.45). Recalling (3.44), and proceeding as in the proof of
Proposition 3.19, yields

X . |E |-B?(⌦;T0) (#T: � #T0)�
B+C
3 �

1
@
.

We conclude the proof using (7.7) and the bound #T: � 20#T0 for 20 > 1.

In contrast to Section 3, and most of the existing literature, Algorithm 7.1 starts
from a refinement T of T0 rather than T0 and thus exploits the mesh refinement
already performed in the adaptive process. We now give a simple argument, updated
from [Bonito et al. 2013b], that shows that the number of elements #(T , g, 1, E)
marked by GREEDY starting from T with target tolerance g and refined 1 � 1
times is dominated by #(T0, g, 1, E), namely

#(T , g, 1, E)  #(T0, g, 1, E). (7.8)

Estimate (7.8) is crucial because it avoids studying the cardinality of GREEDY

starting from T < T0 directly, and simplifies the analysis. Even though (7.8) is
plausible, the fact that the output of GREEDY (T0, g, @, 1, E) is unrelated to T makes
it non-obvious. In fact, note that we do not claim that #(T , g, 1, E)  #(T0, g, 1, E),
which is unclear. The proof presented below hinges on the fact that all the elements
refined within GREEDY (T0, g, @, 1, E) are either refined because they are marked by
GREEDY (and thus of largest oscillation) or because their refinement is necessary to
guarantee conformity of the resulting subdivision. For our purposes, (7.8) su�ces.

Lemma 7.5 (GREEDY starting from T) Let g > 0 be a target tolerance and 1 � 1
be the number of bisections per marked element. Assume that the local errors
employed by GREEDY satisfy Assumption 7.3 (monotonicity of local oscillations) in
✓
@. Then, the number of elements #(T , g, 1, E) marked by GREEDY (T , g, @, 1, E)

satisfies (7.8) for any admissible refinement T 2 T of T0.

Proof. We simply write GREEDY (T0, g, 1) and GREEDY (T , g, 1) because E and
@ are fixed. Let# := #(T0, g, 1, E), and recall that the bisection rules define a unique
forest T emanating from T0 and a unique sequence of elements {)8}#

8=1 marked by
GREEDY (T0, g, 1). We denote by {T

8
}
#

8=1 the sequence of intermediate subdivi-
sions built within GREEDY (T0, g, 1) starting with T

0 = T0: )8 2 T
8�1 is bisected

once by REFINE which also produces the smallest conforming refinement T 8 of
T
8�1 containing the two children of)8 . We thus say that GREEDY (T0, g, 1) satisfies

the minimality property that all the elements refined are either marked elements
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because their error is largest or necessary to guarantee conforming subdivisions.
Notice that this is not true for GREEDY (T0, g, 1) when 1 > 1.

For any T 2 T, we let ⇤T be the set of indices 9 2 {1, ..., #} such that )9 is
never refined in the process to create T , i.e. )9 is either an element of T or a
successor of an element of T . We show that

#(T , g, 1, E)  #⇤T (7.9)

by induction on #⇤T . If #⇤T = 0 then T is a refinement of T
# , whence the

monotonicity of the total error

⇢T(E)@  ⇢T# (E)@  g,

guaranteed by (7.5), implies that #(T , g, 1, E) = 0; this satisfies (7.9) as desired.
We now assume that (7.9) is valid for any T 2 T such that #⇤T  : , a non-

negative integer, and deduce it must also hold for any T 2 T such that #⇤T  : +1.
Let T 2 T be one such mesh, namely #⇤T = : + 1. If ⇢T(E)@  g then
#(T , g, 1, E) = 0 and #(T , g, 1, E)  #⇤T holds trivially.

When instead ⇢T(E)@ > g, we let 9 be the smallest index in ⇤T and show
that )9 2 T using the minimality property of GREEDY (T0, g, 1). Assume by
contradiction that )9 8 T but )9 belongs to a refinement eT of T and is thus a
successor of an element ) 2 T . Note that ) is refined by GREEDY (T0, g, 1) to
produce)9 but was not marked because otherwise) = )8 for some 8 < 9 and 8 2 ⇤T ,
which would contradict the minimality of 9 . Hence, ) must have been refined by
the REFINE routine to guarantee conformity when bisecting a marked element )✓ ,
✓ < 9 . Invoking the minimality of 9 again yields that ✓ 8 ⇤T and )✓ cannot be in T

because )✓ has been refined to get to T by definition of ⇤T . Since REFINE refines
the minimal number of non-marked elements to guarantee conformity, and T is
conforming, ) must have been refined as well when refining )✓ in the process of
constructing T and therefore cannot be in T . This is a contradiction and )9 2 T .

Therefore, T is a refinement of T 9�1 because all the elements marked or refined
to ensure conformity by GREEDY (T0, g, 1) have been refined in the process of
creating T . Moreover, )9 2 T is the element with largest error oscT(E,)9) within
T (with ad-hoc criteria to break ties), because oscT 9�1(E,)9) is largest in T

9�1 by
definition of )9 and monotonicity of the local error (7.5); hence )9 must be the first
element marked by GREEDY (T , g, 1). Let T ⇤ be the subdivision obtained from
T upon bisecting 1 times )9 . Notice that ⇤T⇤ is a strict subset of ⇤T , because
9 8 ⇤T⇤ , so that the induction assumption yields

#(T , g, 1, E) = 1 + #(T ⇤, g, 1, E)  1 + #⇤T⇤  #⇤T .

This proves (7.9) and (7.8) follows immediately since #⇤T  #(T0, g, 1, E).

Estimate (7.8) is critical to analyze the performances of GREEDY starting from
any admissible subdivision T 2 T. We emphasize that the complexity estimate
provided by Corollary 7.6 is expressed in terms of number of marked elements
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#(T , g, @, 1, E) and tolerance g instead of error and cardinality of T . This is why
GREEDY can start from any mesh T 2 T.

Corollary 7.6 (performance of greedy) Let the initial subdivision T0 of ⌦ ⇢ R3

satisfy Assumption 6.19 (initial labeling) and T 2 T be any admissible refinement
of T0. Let g > 0 be the target tolerance and 1 � 1 be the number of bisec-
tions performed on each marked element. Let (E, B, C, ?, @) satisfy Assumption 7.2
(admissible set of parameters for GREEDY ) with local errors {oscT(E,))@}) 2T
which in turn verify Assumption 7.3 (monotonicity of local oscillations) in ✓@. The
number of marked elements #(T , g, @, 1, E) by GREEDY (T , g, @, 1, E) satisfies

#(T , g, @, 1, E)  ⇠ |E |
3
B+C

-
B
?(⌦)g

�
3
B+C . (7.10)

with a constant ⇠ = ⇠(?, @, B, 1, 3,⌦,T0). Moreover, the estimate (7.10) is valid
for tensor-valued functions E.

Proof. Invoking Proposition 7.4 (performance of GREEDY ), which gives rise to
a mesh bT , and Lemma 7.5 (GREEDY starting from T ), we readily deduce

#(T , g, @, 1, E)  #(T0, g, @, 1, E)  #bT  ⇠ |E | 3B+C
-
B
?(⌦)g

�
3
B+C ,

which is the desired inequality (7.10).

7.2 Constrained approximations

We discuss how the approximations produced by GREEDY (see Corollary 7.6) can
be modified to satisfy the structural assumption (5.51) without sacrificing their
accuracy.

7.2.1 Constrained approximations of scalar functions

The approximate data eD = (eG,e2, e5 ) constructed in the previous sections using
the GREEDY algorithm are not guaranteed to satisfy the necessary conditions for
perturbed problem (5.5) with bD = eD to have a solution bD = bD( bD) 2 �1

0(⌦). Recall
that the data D = (G, 2, 5 ) 2 ⇡(⌦) is assumed to satisfy the structural assumption
(5.50), i.e., G 2 "(U1, U2) and 2 2 '(21, 22) with 0 < U1  U2 and 0  21  22.
It turns out that constructing approximate data bD with the same constraints is a
di�cult task. We follow [Bonito et al. 2013b] and modify the data eD to obtainbD = (bG,b2, b5 ) in such a way that the approximation property of eD is preserved,

kD � bDk⇡(⌦)  ⇠datakD � eDk⇡(⌦) ,

while ensuring that

bG 2 " ⇣U1

2
,⇠bU2

⌘
, b2 2 '

 

�
U1

4⇠2
%

,⇠b22

!

. (7.11)
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Here ⇠ is a constant independent of relevant quantities (we make this more precise
below). In particular, the data bD satisfies the structural assumption (7.11) which
guarantees that the perturbed problem (5.5) has a unique solution. Note that the
general case is more subtle than when the data are approximated by piecewise con-
stant approximations (5.74), which are directly satisfying the structural assumption
and used as motivation in Section 5.4.2.

We start by discussing a process modifying the approximation of a strictly
positive scalar function E 2 !1(⌦), i.e. E 2 '(21, 22) for some 0 < 21  22; see
(5.49). Because the polynomial degree used to approximate the data might di�er
depending on the application, we use< 2 N to denote a generic polynomial degree.
We think ofeE 2 S<,�1

T
to be an approximation to E not necessarily strictly positive.

The following process modifies eE locally to construct bE 2 S<,�1
T

. It involves a
parameter ! > 2 responsible for the truncation of eE whenever it is too large, i.e.,eE � !22. For ) 2 T , we set bE |) := bE) where

bE) :=

8>><
>>:
22 when keEk!1() ) � !22,eE |) �minG2) eE(G) + 21

2 when otherwise minG2) eE(G) < 21
2 ,eE |) otherwise.

(7.12)

Corollary 7.9 below is in essence Proposition 3 of [Bonito et al. 2013b] and
states that the constructed bE satisfies

0 <

21

2
 bE 

✓
1
2
+ 2!

◆
22, a.e. in ⌦.

This is at the expense of inflating the approximation error in !@, 1  @  1, by
a multiplicative constant ⇠ only depending on 3, <, 22/21, @, ! and the shape
regularity of T

kE �bEk!@() )  ⇠kE �eEk!@() ).

In preparation for this result, we introduce the following notations. We denote by
⇠� the smallest constant such that for any ) 2 T and any polynomial % 2 P<()),
the inverse inequality

kr%k!1() )  ⇠� k%k!1() ) |) |
�1/3

, (7.13)

holds. The inverse inequality constant ⇠� only depends on the shape regularity of
T, < and 3. Note that for such polynomial % 2 P<()), we have

|%(G) � %(H)|  ⇠� k%k!1() ) |) |
�1/3

|G � H |, 8G, H 2 ) .

Consequently, for any d > 0 and G 2 ) , we define

)(G, d) := ) \ ⌫(G, d |) |1/3/⇠� ),

which is motivated by the fact that for G 2 ) and H 2 )(G, d) we have

|%(G) � %(H)|  ⇠� k%k!1() ) |) |
�1/3

|G � H |  dk%k!1() ). (7.14)
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Critical for the analysis below is the existence of a constant 0 < ⇠((d)  1
depending on d but also on 3, <, and the shape regularity of T, such that

|)(G, d)| � ⇠((d)|) | 8G 2 ) , ) 2 T . (7.15)

This constant ⇠((d) assesses the area of a subset of ) where the polynomial %
varies no more that dk%k!1() ) away from %(G).

We are now in position to analyze the e�ect of the nonlinear correction (7.12).
We proceed locally over each ) 2 T and start with the case where keEk!1() ) is large
(Lemma 7.7). We then discuss the case where eE(G) is small on ) (Lemma 7.8)
while for the remaining case, the function eE does not need to be modified on ) .
These three cases are collected in Corollary 7.9 for scalar valued functions and in
Corollary 7.11 for matrix valued functions. In all the arguments below we used the
convention 01/1 = 1 for any 0 > 0.

Lemma 7.7 (locally enforcing constraints for large approximations) Let T 2

T be any conforming refinement of T0 satisfying Assumption 6.19 (initial labelling).
Let 22 > 0, ) 2 T and E) 2 !1()) satisfying 0 < E)  22 a.e. in ) . Furthermore,
for < � 0 and ! > 2, assume that eE) 2 P<()) satisfies

keE) k!1() ) � !22. (7.16)

Then for the constant function bE) := 22 2 P<()) there holds

21

2
< bE) < !22 <

✓
1
2
+ 2!

◆
22.

Moreover, for 1  @  1, we have

kE) �bE) k!@() )  ⇠
+

2 kE) �eE) k!@() ),

where ⇠+

2 :=
4⇠�1/@
(
!�2 and ⇠( = ⇠((1/2) is the constant appearing in (7.15) with

d = 1/2.

Proof. Let G0 2 ) and e22,) defined by the relation

e22,) := |eE) (G0)| := keE) k!1() ).

In view of the Lipschitz property (7.14) applied to % = eE) and with d = 1
2 , we have

|eE) (G) �eE) (G0)| 
e22,)

2
,

for G 2 )0 := )(G0,
1
2 ) ⇢ ) . Recall (7.15), which implies that |)0 | � e

⇠( |) | for some
constant e

⇠( := ⇠((1/2) only depending 3, =, and the shape regularity of T. On the
one hand, this implies that eE) |)0 is bounded below with |eE) (G)| � e22,)

2 for G 2 )0
and, on the other hand, E) is bounded from above by

0  E) (G)  22  !
�1e22,) , G 2 ) .
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Consequently, for G 2 )0 and since ! > 2, there holds

0  E) (G)  !�1e22,) 
e22,)

2
 |eE) (G)|

and thus

|E) (G) �eE) (G)| � |eE) (G)| � E) (G) �
✓

1
2
�

1
!

◆
e22,) =

! � 2
2!

e22,) ,

which indicates that E) andeE) are su�ciently far apart on a substantial portion )0
of ) . Thus is responsible for the !@-bound below. In fact, we have

kE) �eE) k!@() ) � kE) �eE) k!@()0) �
! � 2
2!

e22,) |)0 |
1/@

, (7.17)

whence, from the definition bE) := 22 and using (7.15), we deduce

kE) �bE) k!@() )  222 |) |
1/@
 2!�1e22,) |) |

1/@


4⇠�1/@
(

! � 2
kE) �eE) k!@() )

as desired.

Lemma 7.8 (locally enforcing constraints for small approximations) Let T 2

T be any conforming refinement of T0 satisfying Assumption 6.19 (initial labelling).
Let 0 < 21  22, ) 2 T and E) 2 !1()) satisfying 21 < E)  22 a.e. in ) .
Furthermore, for < � 0 and ! > 2 assume that eE) 2 P<()) satisfies

keE) k!1() )  !22 (7.18)

and

min
G2)

eE) (G) <
21

2
. (7.19)

Then the function bE) := 21
2 +eE) �minG2) eE) (G) 2 P=()) is such that

21

2
 bE)  2!22 +

21

2


✓
2! +

1
2

◆
22

and

kE) �bE) k!@() )  ⇠
+

1 kE) �eE) k!@() ),

where ⇠+

1 := (1 + ⇠
�1/@
(

(d))) and ⇠((d) is the constant appearing in (7.15) with
d = 21/(2!22).

Proof. We define G0 2 ) , e21,) 2 R by the relations

e21,) := eE) (G0) := min
G2)

eE) (G).

From the Lipschitz property (7.14) and the assumption (7.18), we find that

|eE) (G) �eE) (G0)| 
21

2
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for G 2 )0 := )(G0, d) with d := 21
2!22

. Recall (7.15), which implies that |)0 | �e
⇠( |) | for some constant e

⇠( := ⇠((d) only depending 3, <, 22/21, !, and the shape
regularity of T.

For G 2 )0, we proceed by estimating the di�erence

E) (G)�eE) (G) = E) (G)� (eE) (G)�eE) (G0))�eE) (G0) � 21�
21

2
�e21,) =

21

2
�e21,) > 0

because e21,) < 21/2 by assumption (7.19). This implies that

|)0 |
1/@
⇣
21

2
� e21,)

⌘
 kE) �eE) k!@() ),

and E) and eE) are uniformly far apart in the substantial part )0 of ) . Therefore,bE) := eE) + ( 21
2 � e21,) ) satisfies

21

2
 bE)  2!22 +

21

2

because e21,) � �keEk!1() ) � �!22 by assumption (7.18), and

kE) �bE) k!@() )  kE) �eE) k!@() ) +

⇣
21

2
� e21,)

⌘
|) |

1/@

 kE) �eE) k!@() ) +

⇣
21

2
� e21,)

⌘ e
⇠
�1/@
(

|)0 |
1/@


�
1 + e

⇠
�1/@
(

�
kE) �eE) k!@() ).

This proves the assertions.

Corollary 7.9 (locally enforcing constraints) Let T 2 T be any conforming re-
finement of T0 satisfying Assumption 6.19 (initial labelling). Let 0 < 21  22,
) 2 T and E) 2 !1()) satisfying 21  E)  22 a.e. in ) . Then, for < � 0, ! > 2,
and eE) 2 P<()), the function bE) 2 P<()) defined in (7.12) satisfies

21

2
 bE) 

✓
1
2
+ 2!

◆
22 a.e. in ) .

Moreover for 1  @  1, we have

kE) �bE) k!@() )  max(⇠+

1 ,⇠
+

2 )kE) �eE) k!@() ) 8) 2 T ,

where ⇠+

1 and ⇠+

2 are the constants appearing in Lemmas 7.8 and 7.7, which only
depend on 3, <, 22/21, !, and the shape regularity of T.

Proof. The desired results follows from Lemma 7.7 when

keE) k!1() ) � !22

and from Lemma 7.8 when

keE) k!1() ) < !22 and min
G2)

eE) <

21

2
.



AFEM 201

In the remaining case

keE) k!1() ) < !22 and min
G2)

eE) (G) �
21

2
,

since bE) = eE) satisfies the desired constraints there is nothing to prove.

7.2.2 Constrained approximation of the di�usion coe�cients
For matrix-valued functions, the constraints are on the eigenvalues of the matrix
rather than on the coe�cients themselves. Although this requires a few adjust-
ments, the process is similar to the scalar case. We recall that for 0 < U1  U2,
"(U1, U2) ⇢ !1

�
⌦;R3⇥3sym

�
denotes the class of symmetric matrix-valued functions

whose eigenvalues lie between U1 and U2; see (5.48).
Algorithm CONSTRAINT-A is based on (7.12) and modifies approximationseG 2 (S=�,�1

T
)3⇥3 of G 2 "(U1, U2) to produce uniformly positive definite ap-

proximations bG 2 (S=�,�1
T

)3⇥3 of G.

Algorithm 7.10 (CONSTRAINT-A ) Given a threshold parameter ! > 2, 0 < U1 

U2, a conforming refinement T 2 T of T0, and eG 2 (S=�,�1
T

)3⇥3 , this routine

constructs a positive definite bG 2 (S=�,�1
T

)3⇥3 .

[bG] = CONSTRAINT-A (T , U1, U2, !, eG)
For ) 2 T

eU1,) = inf{HCeG(G)H, G 2 ) , |H | = 1}
eU2,) = sup{|HCeG(G)H |, G 2 ) , |H | = 1}
if eU2,) � !U2bG|) = U2O3
else if eU1,) <

U1
2bG|) = eG|) � � U1

2 � eU1,)
�
O3

elsebG|) = eG|)
return bG

Notice that CONSTRAINT-A preserves symmetry, i.e, if eG is symmetric so is the
output bG. In addition, when = = 1 and eG 2 (S0,�1

T
)3⇥3 is the piecewise constant

local average of G, the output bG of CONSTRAINT-A is bG = eG since in that case
the parameters eU1,) and eU2,) satisfy

eU1,) � U1 >

U1

2
and eU2,)  U2 < !U2, 8) 2 T .

This is consistent with the observation made in Section 5.4.2.
The next corollary hinges on Corollary 7.9 (locally enforcing constraints) to de-

rive properties of CONSTRAINT-A . In passing, we recall that for G 2 ! ?(⌦;R3⇥3)
we write

kGk!?(⌦) := k |G|k!?(⌦),
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where for G 2 ⌦, |G(G)| is the spectral norm of G(G).

Corollary 7.11 (locally enforcing constraints for matrices) Let the threshold be
! > 2, 0 < U1  U2, and G 2 "(U1, U2). Let T 2 T be any conforming refinement
of T0 and eG 2 (S=�,�1

T
)3⇥3 be a symmetric approximation of G. Then the output

[bG] = CONSTRAINT-A (T , U1, U2, !, eG) is symmetric and satisfies

U1

2
 _ 9(bG) 

✓
1
2
+ 2!

◆
U2 a.e. in ⌦, 1  9  3.

Moreover for 1  @  1, we have

kG � bGk!@() )  ⇠datakG � eGk!@() ) 8) 2 T ,

where ⇠data := max(⇠+

1 ,⇠
+

2 ) and ⇠+

1 and ⇠+

2 are the constants appearing in Lem-
mas 7.8 and 7.7, which only depends on 3, =�, U2/U1, !, and the shape regularity
of T.

Proof. We observe that eG is not assumed positive semi-definite. We argue locally
and fix ) 2 T . Let eU2,) > 0 and H0 2 R3 be such that |H0 | = 1 and

eU2,) := sup
G2)

|H
C

0
eG(G)H0 | := sup

G2)

sup
H2R3 , |H |=1

|H
CeG(G)H |.

We first consider the case eU2,) � !U2 for which bG|) := U2O3 . For G 2 ) , we set

0(G) := HC0G(G)H0 and e0) (G) = HC0eG(G)H0 2 P=�()).

These notations allows us to reduce to the scalar case upon noting that

k0 � e0) k!@() )  kG � eGk!@() )

and U1  0  U2 a.e. in ⌦. Because eU2,) � !U2, Lemma 7.7 with < = =�

guarantees that b0) := U2 satisfies

k0 � b0) k!@() )  ⇠
+

2 k0 � e0) k!@() )  ⇠
+

2 kG � eGk!@() ).

Consequently, the matrix-valued approximation bG|) := U2O3 satisfies

kG � bGk!@() ) = k0 � b0) k!@() )  ⇠
+

2 kG � eGk!@() ).

This proves the desired result when eU2,) � !U2.
We now consider the case where eU2,) < !U2 and define eU1,) 2 R, H1 2 R3 with

|H1 | = 1 by the relations

eU1,) = inf
G2)

H
C

1
eG(G)H1 = inf

G2)
inf
|H |=1

H
CeG(G)H.

We also redefine the associated scalar functions for G 2 ) using H1 instead of H0

0(G) := HC1G(G)H1 and e0) (G) = HC1eG(G)H1 2 P=�()).

If eU1,) <
U1
2 then bG|) = eG|) + ( U1

2 � eU1,) )O3 . Lemma 7.8 with < = =� ensures
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that b0) = e0) +
U1
2 � eU1,) satisfies

U1

2
 b0) 

✓
1
2
+ 2"

◆
U2

and

k0 � b0) k!@() )  ⇠
+

1 k0 � e0) k!@() )  ⇠
+

1 kG � eGk!@() ).

Thus, bG|) satisfies the desired properties provided eU2,) � !U2 as well.
It the remaining case eU2,) < !U2 and eU1,) �

U1
2 , the function bG|) = eG|)

satisfies the desired properties and there is nothing to prove.

As a corollary, we report the complexity of an algorithm that concatenates the
linear approximation of GREEDY with the nonlinear correction into the constraint
of CONSTRAINT-A . We recall from Corollary 6.36 (approximation class of G) that
the admissible set of parameters of G for GREEDY are =�  = � 1

B� 2 (0, =�], ?� 2 (0,1], @� 2 [2,1], B� �
3

?�

+
3

@�

> 0, C� = 0.

Corollary 7.12 (complexity of constrained GREEDY for G) Let the initial mesh
T0 of⌦ ⇢ R3 satisfy Assumption 6.19 (initial labeling) andT 2 T be any admissible
refinement of T0. Let g > 0 be the target tolerance, 1 � 1 be the number of
bisections performed on each marked element, and ! > 2 be a threshold parameter.
Furthermore, assume that (G, B�, C�, ?�, @�) satisfies Assumption 7.2 (admissible
set of parameters for GREEDY ) with local oscillations {kG � bGk!@�() )}) 2T and,
in addition, G 2 "(U1, U2) for some 0 < U1  U2. The algorithm

[bT ,
eG] = GREEDY (T , g, @�, 1, G)

[bG] = CONSTRAINT-A (bT , U1, U2, !, eG)

where GREEDY is applied to the 3(3 + 1)/2 distinct components of G, marks #
elements of T for refinement with

#  ⇠ |G|
3
B�

-

B�
?�

(⌦;T0)
g
�
3
B� (7.20)

and ⇠ = ⇠(?�, @�, B�, 1, 3, =�, U2/U1, !,⌦,T0). Moreover, bG 2 (S=�,�1
T

)3⇥3

satisfies

bG 2 " �bU1,bU2
�

: bU1 =
U1

2
, bU2 = (1 + 4!)

U2

2
, (7.21)

and there is a constant ⇠data > 0 such that

kG � bGk!@(⌦)  ⇠datag.

Proof. This result follows upon invoking Corollary 7.6 (performance of greedy)
and Corollary 7.11 (locally enforcing constraints for matrices).
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Remark 7.13 (constrained approximation class of matrices) As a consequence
of Corollary 7.12, we realize that for � 2 "(U1, U2),

XT(G)A  eXT(G)A  ⇠dataXT(G)A ,

where the best approximation error XT(G)A and best constrained approximation
error eXT(G)A are defined in (6.9) and (6.10).

7.2.3 Constrained approximation of the reaction coe�cients
If the reaction coe�cient 2 2 '(21, 22) is strictly positive (21 > 0), then Corol-
lary 7.9 (locally enforcing constraints) with < = =2 directly applies to E) = 2 |) ,
) 2 T , and guarantees that the approximate coe�cient b2 2 S=2 ,�1

T
defined on

) 2 T by b2 |) := bE) satisfies

b2 2 ' �b21,b22
�

: b21 =
21

2
, b22 = (1 + 4!)

22

2
.

However, reaction coe�cients are not necessarily strictly positive on ⌦ and Co-
rollary 7.9 cannot be invoked directly. Instead, we take advantage of the fact
that the perturbed problem (5.5) is still well-posed provided b2 � �bU1/(2⇠2

%
) and

the approximate di�usion coe�cient bG 2 "(bU1,bU2) of G 2 "(U1, U2) satisfiesbU1 � U1/2 according with (5.52); hence b2 � �U1/(4⇠2
%

). Therefore, we apply

Corollary 7.9 to the shifted reaction coe�cient E = 2 + bU1

⇠
2
%

, which satisfies

E1 := 21 +
bU1

⇠
2
%

 E  22 +
bU1

⇠
2
%

=: E2. (7.22)

Below is the proposed algorithm for the construction of b2 in the general case 21 � 0.

Algorithm 7.14 (CONSTRAINT-c ) Given ! > 2, bU1 > 0, a conforming refine-
ment T 2 T of T0, and e2 2 S=2 ,�1

T
, this routine constructs b2 2 S=2 ,�1

T
as follows:

[b2] = CONSTRAINT-c (T ,bU1, !,e2)eE = e2 + bU1

⇠
2
%

For ) 2 T
if keEk!1() ) � !E2bE |) = E2
else if minG2) eE(G) < E1

2bE |) = eE |) �minG2) eE(G) + E1
2

elsebE |) = eE |)b2 = bE � bU1

⇠
2
%

return b2
We note that if =2 = 0, then e2 is the piecewise average of 2 and CONSTRAINT-

c does not modify e2 which already satisfies the structural assumption (7.11).
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The next result shows that the output b2 of CONSTRAINT-c is a modification of e2
which satisfies b2 2 '(b21,b22), with

b21 :=
21

2
�

bU1

2⇠2
%

and b22 := (1 + 4!)
22

2
+ (4! � 1)

bU1

2⇠2
%

(7.23)

without a�ecting the approximation of 2 in !@, 1  @  1 (up to a multiplicative
constant). In particular b21 � �

bU1

2⇠2
%

, which is necessary for the well-posedness of

the perturbed problem (5.5) when b
� 2 "(bU1,bU2).

Corollary 7.15 (locally enforcing constraints for nonnegative scalar functions)
Let G 2 "(bU1,bU2) with 0 < bU1  bU2, and 2 2 '(21, 22) with 0  21  22. Let
! > 2 and E1  E2 be defined in (7.22). Let T 2 T be any conforming refinement
of T0 and e2 2 S=2 ,�1

T
. Then the output [b2] = CONSTRAINT-c (T ,bU1, !,e2) satisfies

b21  b2  b22 a.e. in ⌦,

where b21 and b22 are given by (7.23). Moreover for 0 < @  1, we have

k2 � b2k!@() )  ⇠datak2 � e2k!@() ) 8) 2 T ,

where ⇠data is a constant only depending on 3, =, E2/E1, ⌦, !, and the shape
regularity of T.

Proof. Set ^ := bU1

⇠
2
%

and E := 2 + ^ 2 '(21 + ^, 22 + ^) so that 21 + ^ > 0. On

each ) 2 T , we invoke Corollary 7.9 (locally enforcing constraints) with < = =2 ,eE) = e2 |) + ^ and where 21, 22 are replaced by 21 + ^, 22 + ^ respectively. Hence,
we deduce that the function bE constructed within CONSTRAINT-c satisfies

21 + ^

2
 bE  (1 + 4!)

22 + ^

2
.

and

kE �bEk!@() )  ⇠datakE �eEk!@() ) 8) 2 T , (7.24)

with a constant ⇠data depending on 3, =, E2/E1, !, and the shape regularity of T.
Shifting back, 2 = E�^ and b2 := bE�^, we find that the approximation b2 constructed
by CONSTRAINT-c satisfies

21 + ^

2
� ^  b2  (1 + 4!)

22 + ^

2
� ^

or equivalently
21

2
�
:

2
 b2  (1 + 4!)

22

2
+ (4! � 1)

^

2
.

In view of (7.23) and ^ = bU1

⇠
2
%

, this is the first desired inequality in disguised.

Furthermore, the second desired inequality follows from (7.24) because for
) 2 T we have 2 � b2 = E �bE and 2 � e2 = E �eE.
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The next corollary combines the linear approximation of GREEDY together with
the nonlinear correction into the constraint of CONSTRAINT-c . We recall from
Corollary 6.37 (approximation class of 2) that the admissible set of parameters of
2 for GREEDY are =2  = � 1, B2 2 (0, =2], ?2 2 (0,1]

=2 > 0 ) @2 >

3

2
, B2 �

3

?2

+
3

@2

> 0, C2 = 0;

=2 = 0 ) @2 = 2, B2 �
3

?2

+
3

2
> 0, 0 < C2 < 2 �

3

2
.

Corollary 7.16 (complexity of constrained GREEDY for c) Let the initial subdi-
vision T0 of ⌦ ⇢ R3 satisfy Assumption 6.19 (initial labeling) and T 2 T be any
admissible refinement of T0. Let g > 0 be the target tolerance, 1 � 1 be the
number of bisections performed on each marked element, ! > 2 be the threshold
parameter, and bU1 > 0. Furthermore, assume that (2, B2 , C2 , ?2 , @2) satisfies As-
sumption 7.2 (admissible set of parameters for GREEDY ) with local oscillations
{k2 � b2k!@2 () )}) 2T and that 2 2 '(21, 22) for some 0  21  22. The algorithm

[bT ,e2] = GREEDY (T , g, @2 , 1, 2)
[b2] = CONSTRAINT-c (bT ,bU1, !,e2)

marks # elements of T for refinement with

#  ⇠ |2 |

3
B2+C2

-
B2
?2 (⌦;T0)g

�
3

B2+C2 (7.25)

and a constant ⇠ = ⇠(?2 , @2 , B2 , 1, 3, =2 , E2/E1, !,⌦,T0) with E1  E2 defined in
(7.22) to construct bT . The function b2 2 S=2 ,�1bT is a piecewise polynomial of degree

 =2 over bT and satisfies

b2 2 '(b21,b22),

where b21  b22 are given by (7.23). Moreover, for 1 < @2  1, there is a constant
⇠data only depending on 3, =2 , E2/E1, ⌦, !, and the shape regularity of T such that

k2 � b2k!@2 (⌦)  ⇠datag.

Proof. Simply apply Corollary 7.6 (performance of greedy) and Corollary 7.15
(locally enforcing constraints for nonnegative scalar functions).

Remark 7.17 (constrained approximation class of scalars) Corollary 7.16 im-
plies that for 2 2 '(21, 22),

XT(2)@  eXT(2)@  ⇠dataXT(2)@,

where the best approximation error XT(2)@ and best constrained approximation
error eXT(2)@ are defined in (6.9) and (6.10).
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7.3 Approximation of the load term 5

We now turn our attention to the question of designing a practical algorithm for
reducing the global oscillation

⇢T( 5 )2
�1 :=

’
) 2T

k 5 � %T 5 k
2
�
�1(l) ) ⇡

’
I2V

k 5 � %T 5 k
2
�
�1(lI )

, (7.26)

where the projection %T is defined in (4.34). The approximation of functionals in
�
�1(⌦) is rather intricate and out of reach without assuming additional structure

enabling practical evaluation of their actions on polynomial functions.
We examine three cases of independent interest. In Section 7.3.1 we consider 5 2

!
@(⌦) for @ satisfying 23/(3+2) < @  1, which includes the most common setting
5 2 !

2(⌦). Sections 7.3.2 and 7.3.3 present examples of right-hand sides not in !1.
In Section 7.3.2 we treat the case 5 = 6X�, where � is an hyper-surface not neces-
sarily captured by the faces of the subdivisions and 6 2 !@(�), @ � 2, while in Sec-
tion 7.3.3 we consider 5 = div g for some g 2 !2(⌦;R3). In all cases, the total error
⇢T( 5 )�1 is estimated by a surrogate e⇢T( 5 )�1, namely ⇢T( 5 )�1  ⇠data e⇢T( 5 )�1

e⇢T( 5 )2
�1 :=

’
) 2T

foscT( 5 ,))2
@

with a definition of foscT( 5 ,))@ depending on the situation but local to ) 2 T (and
not on stars). This allows Algorithm 7.1 (GREEDY ) to reduce e⇢T( 5 )�1.

Before starting, we recall relevant definitions and results from Section 4 (a pos-
teriori error analysis). For I 2 V, we denote by TI ⇢ T all the elements in lI
and FI ⇢ F all the faces in lI . For ✓ 2 ��1(⌦), the restriction %T✓ |lI belongs to
the space F(TI) = F<1,<2(TI) made of functional whose action against F 2 �1

0(lI)
reads

h✓,Fi =
’
) 2TI

π
)

@) F +

’
� 2FI

π
�

@� F (7.27)

for some @� 2 %<1(�), � 2 FI and @) 2 %<2()), ) 2 TI . The polynomial degrees
are chosen to be <1 = = � 1 and <2 = = � 2 but can be general in this discussion.

Corollary 4.31 (local near-best approximation) guarantees %T✓ |lI is the quasi-
best discrete functional in F(TI), namely

k✓ � %T✓k��1(lI )  ⇠% inf
j2F(TI )

k✓ � jk
�
�1(lI ). (7.28)

This will be used repeatedly to replace %T✓ by more tractable quantities and justify
the use of GREEDY algorithms to reduce (7.26).

7.3.1 The case 5 2 !@(⌦)
In this section, we show how to reduce the oscillation error (7.26) when 5 2 !@(⌦),
with @ >

23
3+2 to guarantee that !@(⌦) compactly embeds in ��1(⌦). Note that

this not only includes the most treated case in the literature 5 2 !2(⌦) but also the
more intricate cases @ < 2 originally analyzed in [Cohen et al. 2012].
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If⇧T 5 is the !2-projection of 5 into the space S
= 5 ,�1
T

of discontinuous piecewise

polynomials of degree = 5 , let b
5 2 S

= 5 ,�1
T

be defined by (5.70); = 5 = =� 1 in some

applications but not always. Since b
5 |lI 2 F(TI) by taking @� = 0 and @) = b

5 |)

in (7.27), the local near-best approximation property (7.28) of %T implies

k 5 � %T 5 k��1(lI )  ⇠% k 5 �
b
5 k
�
�1(lI ).

Furthermore, for E 2 �1
0(lI) one has

h 5 � b
5 , Ei  k 5 � b

5 k!@(lI )kEk!e@(lI )

where 1
@
+

1e@ = 1. Note that the restriction @ >
23
3+2 guarantees that 1  e@ <

23
3�2

and thus sob(�1) > sob(!e@). Therefore, Lemma 2.2 (first Poincaré inequality)
yields

k 5 � b
5 k
�
�1(lI ) . diam(lI)

1+3( 1
2�

1
@ )
k 5 � b

5 k!@(lI ).

Returning to (7.26), after rearranging the terms element-wise and invoking the
shape-regularity of T, we obtain ⇢T( 5 )�1  ⇠data e⇢T( 5 )�1, where

e⇢T( 5 )2
�1 :=

’
) 2T

foscT( 5 ,))2
@
, (7.29)

and foscT( 5 ,))@ := ⌘C
)
k 5 � b

5 k!@() ) with C := 1 + 3( 1
2 �

1
@

) > 0.
In view of the definition (5.70), the local oscillations fosc( 5 ,))@ satisfy As-

sumption 7.3 (monotonicity of local oscillations) in ✓2 and we can now employ
Algorithm 7.1 (GREEDY ) with local errors foscT( 5 ,))@ accumulating in ✓2. Recall
that we use the convention -0

@
(⌦;T0) = !@(⌦).

Corollary 7.18 (approximation class of f 2 Rq(⌦)) Let the initial subdivision
T0 of ⌦ ⇢ R3 satisfy Assumption 6.19 (initial labeling) and T 2 T be any ad-
missible refinement of T0. Let g > 0 be the target tolerance and 1 � 1 be the
number of bisections performed on each marked element. Let 23/(3 + 2) < @  1
and set C = 1 + 3( 1

2 �
1
@

). Let ( 5 , B, C, ?, 2) satisfy Assumption 7.2 (admissible
set of parameters for GREEDY ) with local oscillations {fosc( 5 ,))@}) 2T . Then
[bT ,

b
5 ] = GREEDY (T , g, 2, 1, 5 ) terminates in a finite number of steps withe⇢bT( 5 )�1  g, whence

⇢bT( 5 )�1  ⇠datag.

Moreover, the number # of marked elements by GREEDY satisfies

# . | 5 |

3
B+C

-
B
?(⌦;T0)g

�
3
B+C . (7.30)

In particular, 5 2 F 3
B+C

with | 5 |F 3
B+C
. k 5 k-B?(⌦;T0).

Proof. Directly apply Corollary 7.6 (performance of GREEDY ).
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7.3.2 The case 5 = 6XC
We now consider the case where the right-hand side data 5 is a density supported
on a Lipschitz hyper-surface C ⇢ ⌦ in R3 with (3 � 1)-measure |C| < 1.

The intricate interactions between bulk and interface contributions on %T makes
it di�cult to analyze when 5 = 6XC with density 6 2 !@(C). We take a simpler
approach, likely suboptimal when = > 1 and 3 > 2, which discards %T in view of
the near-best approximation property (7.28)

k 5 � %T 5 k��1(lI ) . k 5 k��1(lI ). (7.31)

The right-hand side of the above estimate is the starting point of the analysis in
[Cohen et al. 2012] assuming = = 1 and 3 = 2.

We start with the derivation of a first upper bound for the local error k 5 k
�
�1(lI ).

Lemma 7.19 (local oscillation) Let T 2 T, I 2 N , and @ >
2(3�1)
3

. If 6 2 !@(C)
and C := 3

2 �
1
@

(3 � 1) > 0, then there holds

k 5 k
�
�1(lI ) . |lI \ C|

C
3�1 k6k!@(lI\C) .

’
) ⇢lI

⌘
C

)
k6k!@()\C). (7.32)

Proof. For E 2 �1
0(lI) and 1

@
+

1e@ = 1, we have

h 5 , Ei =
π
lI\C

6E  k6k!@(lI\C)kEk!e@(lI\C). (7.33)

We realize that �1/2(lI \ C) compactly embeds in !e@(lI \ C) because

C := sob(�1/2(lI \ C)) � sob(!e@(lI \ C)) =
1
2
� (3 � 1)

✓
1
2
�

1
e@
◆

=
3

2
�

1
@

(3 � 1) > 0,

provided @ >
2(3�1)
3

. Consequently, we find that

kEk
!

e@(lI\C) . |lI \ C|
C
3�1 kEk

�
1/2(lI\C).

It remains to invoke the continuity (2.4) of the trace operator to write

kEk
!

e@(lI\C) . |lI \ C|
C
3�1 kEk

�
1(lI ),

which, together with (7.33), yields the first estimate in (7.32). To deduce the second
estimate, it su�ces to note that |lI \ C| . diam(lI)3�1 . ⌘3�1

)
for ) ⇢ lI and

that k6k!@(lI\C) 
Õ
) ⇢lI

k6k!@()\C).

Estimate (7.31) and Lemma 7.19 provide a surrogate for data oscillation

e⇢T( 5 )2
�1 :=

’
) 2T

foscT(6,))2
@
, foscT(6,))@ := ⌘C

)
k6k!@()\C), (7.34)
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where C = 3

2 �
1
@

(3 � 1). The quantity foscT(6,))@ verifies Assumption 7.3 (mono-
tonicity of local oscillations) with ⌦ replaced by C because of its element-wise
structure. Therefore, Proposition 7.4 (performance of GREEDY ) states that Al-
gorithm 7.1 (GREEDY ) can reduce e⇢T( 5 )�1. This is in contrast with the star-wise
GREEDY algorithm analyzed in [Cohen et al. 2012], which requires that all marked
stars are refined 3 times to ensure all the faces in the marked stars are refined.

We now discuss the performance of GREEDY with local indicators foscT(6,))@.

Lemma 7.20 (approximation class of f = g%C) Let C ⇢ ⌦ be Lipschitz hyper-
surface. Let the initial subdivision T0 of ⌦ ⇢ R3 satisfy Assumption 6.19 (initial
labeling) and T 2 T be any admissible refinement of T0. Let g > 0 be the target
tolerance and 1 � 1 be the number of bisections performed on each marked element,
and 2(3 � 1)/3 < @  1. Then [bT ,

b
5 ] = GREEDY (T , g, 2, 1, 5 ) terminates in

a finite number of steps with surrogate estimator e⇢bT( 5 )�1  g defined in (7.34),
whence

⇢bT( 5 )�1  ⇠datag.

Moreover, the number # of marked elements by GREEDY satisfies

# . k6k2(3�1)
!
@(C) g

�2(3�1)
. (7.35)

In particular, 5 = 6XC 2 F 1
2(3�1)

with | 5 |F 1
2(3�1)

. k6k!@(C)

Proof. This proof mainly follows the proof of Proposition 7.4 (performance of
GREEDY ) but requires a few modifications to account for the geometry of the
problem. Since in turn the proof of Proposition 7.4 describes modifications to the
proof of Proposition 3.19 (abstract greedy), we now provide a complete proof. We
proceed in several steps. We first consider the call GREEDY (T0, g, 2, 1, 5 ) from T0
with one bisection 1 = 1 and accumulation in ✓2, and discuss the general call from
T with 1 � 1 in the last step of this proof.

1 Termination. Since ⌘) decreases monotonically to 0 with bisection, so doesfoscT(6,))@. Consequently, GREEDY terminates in finite number : � 1 of itera-
tions. Let)1, . . .): be the sequence of marked elements, withM = {)1, ...,): } and
T1, ...,T: be the sequence of refinements produced by GREEDY starting from T0.
Upon termination, the surrogate error satisfies e⇢T: ( 5 )�1  g, whence ⇢T: ( 5 )�1 

⇠datag.

2 Counting. To estimate the cardinality of T: , we need to count #M. Set

X8 := foscT8 (6,)8)@, 1  8  : , and X := X:�1 .

Then, there holds

e⇢T: ( 5 )�1  g < e⇢T:�1( 5 )�1  X (#T:�1)
1
2  X (#T:)

1
2 . (7.36)

We organize the elements in M by size in such a way that allows for a counting
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argument. Let P 9 be the set of elements ) of M with size

2�( 9+1)
 |) | < 2� 9 ) 2�

9+1
3  ⌘) < 2�

9
3 .

We first observe that all )’s in P 9 are disjoint. This is because if )1, )2 2 P 9 and
)̊1 \ )̊2 < ;, then one of them is contained in the other, say )1 ⇢ )2, due to the
bisection procedure which works in any dimension 3 � 1; see Section 3.5. Hence,

|)1 | 
1
2
|)2 |

contradicting the definition of P 9 . On the one hand, this implies the first bound

2�
( 9+1)(3�1)

3 #P 9 . |C| ) #P 9 . |C| 2
( 9+1)(3�1)

3 , (7.37)

where we used that ⌘3�1
)
⇡ |l) \ C| since ) \ C < ; for all marked elements.

Recall that l) stands for the patch of elements around ) .
On the other hand, the monotonicity of the local error indicators foscT8 (6,))@ =

⌘
C

)
k6k!@()\C), implies that REFINE does not increase foscT8 (6,))@ and thus

X  X8 = foscT8 (6,)8)@, 1  8  : � 1,

where C = 3

2 �
1
@

(3 � 1). In view of (7.34), if )8 2 P 9 , then we obtain

X  foscT8 (6,)8)@ . 2�
9C
3 k6k!@()8\C).

Therefore, accumulating these quantities in ✓@ yields

X
@ #P 9 . 2�

9C@
3 k6k

@

!
@(C)

and gives rise to the second bound

#P 9 . X�@ 2�
9C@
3 k6k

@

!
@(C). (7.38)

3 Cardinality. The two bounds for #P in (7.37) and (7.38) are complementary.
The first one is good for 9 small whereas the second is suitable for 9 large (think
of X ⌧ 1). The crossover takes place for 90 such that

2
( 90+1)(3�1)

3 |C| ⇡ X
�@ 2�

90C@
3 k6k

@

!
@(C) ) 2 90 ⇡ |C|

�
2
@
X
�2
k6k

2
!
@(C),

upon using the expression for C. We now compute

: = #M =
’
9

#P 9 .
’
9 90

2
9(3�1)
3 |C| + X

�@
k6k

@

!
@(C)

’
9> 90

2�
C@
3 9 .

Since ’
9 90

2
9(3�1)
3 ⇡ 2

90(3�1)
3 ,

’
9> 90

(2�
C@
3 ) 9 . 2�

C@ 90
3 ,

we can write

#M . |C|
1� 2(3�1)

@3
�
X
�1
k6k!@(C)

� 2(3�1)
3

.
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We finally apply Theorem 3.16 (complexity of REFINE ) to arrive at

#T: � #T0 . #M . |C|
1� 2(3�1)

@3
�
X
�1
k6k!@(C)

� 2(3�1)
3

,

or equivalently

X . |C|
3
3�1�

2
@ k6k!@(C)

�
#T � #T0

�� 3
2(3�1)

.

We deduce from (7.36) that

g . X(#T )
1
2 . |C|

3
3�1�

2
@ k6k!@(C)

�
#T � #T0

�� 3
2(3�1)+

1
2

or equivalently

#T: � #T0 . k6k
2(3�1)
!
@(C) g

�2(3�1)
, (7.39)

From this we conclude that 5 = 6XC 2 F 1
2(3�1)

with | 5 |F 1
2(3�1)

. k6k!@(C) as desired.

4 Starting from T . To derive similar properties for GREEDY starting from T 2 T,
we proceed as in the proof of Corollary 7.6 (performance of greedy). We distin-
guish the output [eT ,

e
5 ] = GREEDY (T0, g, 2, 1, 5 ) starting from T0 and performing

1 = 1 bisection per marked element with [bT ,
b
5 ] = GREEDY (T , g, 2, 1, 5 ) starting

from T 2 T and performing 1 � 1 bisections per marked element. Lemma 7.5
(GREEDY starting from T ) guarantees that GREEDY (T , g, 2, 1, 5 ) terminates
with e⇢bT( 5 )�1  g. Moreover, Lemma 7.5 also ensures that the number of marked
elements satisfies

#  #eT � #T0 . k6k
2(3�1)
!
@(C) g

�2(3�1)
,

where we used (7.39) to derive the last inequality. This ends the proof.

7.3.3 The case 5 = div g with g 2 !2(⌦;R3)
A characterization of distributions in �

�1(⌦) is given in [Evans 2010, Section
5.9.1]: they are of the form

5 = 50 + div g

with 50 2 !
2(⌦), g 2 !2(⌦;R3). Since we have already treated separately the

ubiquitous case g = 0 in Section 7.3.1, we consider now the case 50 = 0. Therefore,

h 5 , Ei = �
π
⌦
g · rE 8E 2 �

1
0(⌦) (7.40)

gives the action of 5 on E and its norm is [Evans 2010, Section 5.9.1]

k 5 k
�
�1(⌦) = inf

�
kgk

!
2(⌦) : g 2 !2(⌦;R3) satisfies (7.40)

 
. (7.41)

Since adding the curl of a smooth vector field to g does not change (7.40), we
realize that the actual computation of (7.41) is problematic. We assume here that
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g is given and simply deal directly with g thereby exploiting the relation

k 5 k
�
�1(⌦)  kgk!2(⌦); (7.42)

this leads to a surrogate estimator. We first approximate g by discontinuous piece-
wise polynomials of degree = 5  = � 1, namely we compute the !2-projection

gT = ⇧T g onto [S
= 5 ,�1
T

]
3 , then we let 5T := div gT 2 FT ⇢ �

�1(⌦) be the
approximation of 5 :

h 5T , Ei = �
’
) 2T

π
)

div gTE �

’
� 2F

π
�

⇥⇥
gT

⇤⇤
· n�E 8E 2 �

1
0(⌦).

We see that for I 2 V, 5T |lI has the form of a functional in F(TI) (see (7.27))
with @) = div gT |) 2 P= 5 �1, @� =

⇥⇥
gT

⇤⇤
· n� 2 P= 5 for all ) 2 T , � 2 F , but

with smaller polynomial degree than functions in F(TI). We next exploit the local
near-best approximation (7.28) to replace %T 5 by 5T

k 5 � %T 5 k��1(lI )  ⇠% k 5 � 5T k��1(lI )  ⇠% kg � gT k!2(lI ) (7.43)

by virtue of (7.42) with ⌦ replaced by lI . This leads to the surrogate element-
wise oscillation foscT(g,))2 := kg � gT k!2() ), which satisfies Assumption 7.3
(monotonicity of local oscillation). We thus have the global surrogate

e⇢T( 5 )2
�1 :=

’
) 2T

foscT(g,))2
2.

Corollary 7.21 (approximation class of div g) Let the initial subdivision T0 of
⌦ ⇢ R3 satisfy Assumption 6.19 (initial labeling) and T 2 T be any admissible
refinement of T0. Let g > 0 be the target tolerance and 1 � 1 be the number
of bisections performed on each marked element. Let (g, B, 0, ?, 2) satisfy As-
sumption 7.2 (admissible set of parameters for GREEDY ) with local oscillations
{fosc(g,))2}) 2T . Then [bT ,

b
5 ] = GREEDY (T , g, 2, 1, 5 ) terminates in a finite

number of steps with e⇢bT( 5 )�1  g, whence ⇢bT( 5 )�1  ⇠datag. Moreover, the
number # of marked elements by GREEDY satisfies

# . kgk
3
B

-
B
?(⌦)g

�
3
B .

In particular 5 = div g 2 F B
3

with

| 5 |F B
3
. kgk-B?(⌦).

Proof. Apply Corollary 7.6 (performance of GREEDY ) with @ = 2 to g.

7.4 DATA module

We summarize now in one single algorithm, called DATA, all the developments in
Sections 7.2.2, 7.2.3, and 7.3. We first recall that Corollaries 7.12 (complexity of
constrained GREEDY for G) and 7.16 (complexity of constrained GREEDY for 2)
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deliver piecewise polynomial approximations (bG,b2) of the coe�cients (G, 2) over
an admissible mesh bT that satisfy both the global errors estimates

⇢bT(G)@�  ⇠datag, ⇢bT(2)@2  ⇠datag,

where 2  @�, @2  1 are the corresponding integrability indices, as well as the
structural constraint (5.51).

The situation for the load 5 is more intricate due to the evaluation of the nonlocal
norm �

�1(⌦), which requires further structure of 5 besides regularity. Section 7.3
provides three examples of practical significance that allow for computable sur-
rogate errors e⇢T( 5 )�1 larger than the desired oscillations ⇢T( 5 )�1. Since these
examples have di�erent requirements for the approximation procedure to work, we
gather the salient structural points in the following assumption.

Assumption 7.22 (structure of f ) Let (B 5 , ? 5 ) denote the additional regularity-
integrability indices of 5 beyond the basic ��1-regularity, which are required by
Assumption 7.2 (admissible set of parameters for GREEDY ). Let | 5 | e-B 5? 5 (⌦;T0)

be a

measure of piecewise regularity of 5 in T0 expressed below in terms of surrogates.
Assume that either one of the following cases holds and note that all accumulate
local oscillations in ✓2.

• 5 2 !
@(⌦), with 23

3+2 < @  1. Let foscT( 5 ,))@ = ⌘
C 5

)
k 5 � b

5 k!@() ) be the local
oscillation with C 5 = 1 + 3( 1

2 �
1
@

) � 0 and ( 5 , B 5 , C 5 , ? 5 , 2) satisfy Assumption
7.2, and set | 5 | e-B 5? 5 (⌦;T0)

:= | 5 |
-

B 5
? 5

(⌦;T0)
.

• 5 = 6XC where C ⇢ ⌦ is a Lipschitz hyper-surface and 6 2 !
@(C) with

2(3�1)
3

< @  1. Let foscT(6,))@ = ⌘
A

)
k6k!@()\C) be the local oscillation

with A = 3

2 �
1
@

(3 � 1) > 0. Set B 5 = 0, C 5 = 3/(2(3 � 1)), ? 5 = @, and
| 5 | e-B 5? 5 (⌦;T0)

:= k6k!@(C).

• 5 = div g with g 2 !2(⌦;R3). Let foscT( 5 ,))2 = kg � ⇧T gk!2() ) be the
local oscillation, C 5 = 0, and (g, B 5 , C 5 , ? 5 , 2) satisfy Assumption 7.3, and set
| 5 | e-B 5? 5 (⌦;T0)

:= kgk
-

B 5
? 5

(⌦;T0)
.

In all these cases, GREEDY algorithms with tolerance g > 0 reduce the surrogate
error e⇢T( 5 )2

�1 and eventually guarantee that

⇢T( 5 )�1  ⇠datag,

where ⇠data � 1 is the constant appearing in Corollary 7.18, Lemma 7.20, or
Corollary 7.21 depending on Assumption 7.22 (structure of 5 ).

Algorithm 7.23 (DATA) Given a tolerance g > 0 and an arbitrary conforming grid
T 2 T, not necessarily T0, DATA finds a conforming refinement bT � T of T and
approximate data bD = (bG,b2, b5 ) 2 DbT over bT such that

kD � bDk⇡(⌦) = ⇢bT(�)@� + ⇢bT(2)@2 + ⇢bT( 5 )�1  ⇠datag.
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[bT ,
bD] = DATA (T , g,D)

[TG,
bG] = GREEDY (T , g/3, @�, 1, G)bG = CONSTRAINT-A (T�, U1, U2, !, eG)

Set bU1 = 1
2U1 and bU2 = (1 + 4!) U2

2
[T2 ,e2] = GREEDY (T�, g/3, @2 , 1, 2)b2 = CONSTRAINT-c (T2 ,bU1, !,e2)
[bT ,

b
5 ] = GREEDY (T2 , g/3, 2, 1, 5 )

return bT ,
bD

Note that DATA depends on the threshold parameter ! > 2 used in CONSTRAINT-

A and CONSTRAINT-c , although for simplicity it is not listed among the input
parameters.

The next result summarizes the properties of DATA.

Corollary 7.24 (performance of DATA) Let the initial subdivision T0 of ⌦ ⇢ R3

satisfy Assumption 6.19 (initial labeling) and T 2 T be any admissible refinement
of T0. Let 1 � 1 be the number of bisections performed on each marked element.
Let the assumptions of Corollaries 7.12 and 7.16 for the coe�cients (G, 2) be valid,
and let 5 satisfy Assumption 7.22.

For any target tolerance g > 0 and any threshold parameter ! > 2, [bT ,
bD] =

DATA (T , g,D) terminates in a finite number of iterations and outputs bD, bT 2 T
such that bG is symmetric and

bG 2 "(bU1,bU2), b2 2 '(b21,b22),

where bU1,bU2 are given by (7.21) while b21,b22 are given by (7.23). Moreover, there
is a constant ⇠data � 1 such that DATA terminates with

kD � bDk⇡(⌦)  ⇠datag,

and the number # of elements marked to construct bT satisfies

# . |D|

3
BD
X BD
3

g

�
3
BD (7.44)

with BD := min{B�, B2 + C2 , B 5 + C 5 }, and

|D|X BD
3

=
⇣
|G|

3
B�

-

B�
?�

(⌦,T0)
+ |2 |

3
B2

-
B2
?2 (⌦,T0)

+ | 5 |

3
B 5

e-B 5? 5 (⌦,T0)

⌘ BD
3
.

Proof. Since the local oscillations for G and 2 satisfy Assumption 7.3 (monoton-
icity of local oscillations), we deduce that global oscillations do not increase upon
refinement, namely for bT � T2 � TG

⇢bT(G)@� + ⇢bT(2)@2  ⇢T�(G)@� + ⇢T2 (2)@2 .
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In view of Corollaries 7.12 and 7.16, this in turn implies

⇢bT(G)@� + ⇢bT(2)@2  ⇠data
2
3
g.

For the load term 5 , we invoke Corollary 7.18, Lemma 7.20, or Corollary 7.21,
depending on Assumption 7.22 (structure of 5 ), to infer that

⇢bT( 5 )�1  ⇠data
1
3
g.

Hence,

kD � bDk⇡(⌦) = ⇢bT(G)@� + ⇢bT(2)@2 + ⇢bT( 5 )�1  ⇠datag

as desired. The complexity estimate (7.44) directly follows from the complex-
ity estimates given in Corollaries 7.12 and 7.16 for (G, 2), and Corollary 7.18,
Lemma 7.20, or Corollary 7.21 for 5 depending on its structure.

Similar ideas apply to approximate non-vanishing Dirichlet data or boundary
flux condition for Robin or Neumann problems, but we do not elaborate on this.

8 Mesh Refinement: The Bisection Method
This section is devoted to the complexity analysis of REFINE for ⇤-admissible
triangulations. Precisely, we prove the existence of a constant ⇡ > 0 such that

#T: � #T0  ⇡

:�1’
9=0

#M 9 , : � 0 .

This kind of result holds for conforming meshes (⇤ = 0) and was stated in Theorem
3.16, and for nonconforming meshes (⇤ > 1) as anticipated in Theorem 3.29. The
results of Sections 8.1 and 8.2 are valid for 3 = 2 but the proofs of the cited
theorems extend easily to 3 > 2. We refer to the survey [Nochetto et al. 2009] for
a full discussion for 3 � 2.

8.1 Conforming meshes

8.1.1 Chains and labeling for 3 = 2
In order to study nonlocal e�ects of bisection for 3 = 2 we introduce now the
concept of chain [Binev et al. 2004]; this concept is not adequate for 3 > 2
[Nochetto et al. 2009, Stevenson 2008]. Recall that ⇢()) denotes the edge of )
assigned for refinement. To each ) 2 T we associate the element �()) 2 T

sharing the edge ⇢()) if ⇢()) is interior and �()) = ; if ⇢()) is on m⌦. A chain
C() ,T ), with starting element ) 2 T , is a sequence {) , �()), . . . , �<())} with
no repetitions of elements and with

�
<+1()) = �:()) for some : 2 {0, . . . ,< � 1}, or �<+1()) = ;;

see Figure 8.1. We observe that if an element ) belongs to two di�erent grids,
then the corresponding chains may be di�erent as well. Two adjacent elements
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T ’

0

5

=T

1

2

3

4

i
T

T

T

T

T

T

T

Figure 8.1. Typical chain C() ,T ) = {)9}
8

9=0 emanating from ) = )0 2 T with
)9 = �()9�1), 9 � 1.

) ,)
0 = �()) are compatibly divisible (or equivalently ) ,) 0 form a compatible

bisection patch) if �() 0) = ) . Hence, C() ,T ) = {) ,)
0
} and a bisection of either

) or ) 0 does not propagate outside the patch.

Example (chains): Let F = {)8}
12
8=1 be the forest of Figure 3.5. Then C()6,T ) =

{)6,)7}, C()9,T ) = {)9}, and C()10,T ) = {)10,)8,)2} are chains, but only
C()6,T ) is a compatible bisection patch.

To study the structure of chains we rely on the initial labeling (3.35) and the
bisection rule of Section 3.5 (see Figure 3.7):

every triangle ) 2 T with generation 6()) = 8 receives the label
(8 + 1, 8 + 1, 8) with 8 corresponding to the refinement edge ⇢()),
its side 8 is bisected and both new sides as well as the bisector are
labeled 8 + 2 whereas the remaining labels do not change.

(8.1)

We first show that once the initial labeling and bisection rule are set, the resulting
master forest F is uniquely determined: the label of an edge is independent of the
elements sharing this edge and no ambiguity arises in the recursion process.

Lemma 8.1 (labeling) Let the initial labeling (3.35) for T0 and above bisection
rule be enforced. If T0  T1  · · ·  T= are generated according to (8.1), then each
side in T: has a unique label independent of the two triangles sharing this edge.

Proof. We argue by induction over T: . For : = 0 the assertion is valid due to the
initial labeling. Suppose the statement is true for T: . An edge ( in T:+1 can be
obtained in two ways. The first is that ( is a bisector, and so a new edge, in which
case there is nothing to prove about its label being unique. The second possibility
is that ( was obtained by bisecting an edge (0 2 S: . Let) , ) 0 2 T: be the elements
sharing (0, and let us assume that ⇢() 0) = (0. Let (8 + 1, 8 + 1, 8) be the label of ) 0,
which means that ( is assigned the label 8 + 2. By induction assumption over T: ,
the label of (0 as an edge of ) is also 8. There are two possible cases for the label
of ) :

• Label (8 + 1, 8 + 1, 8): this situation is symmetric, ⇢()) = (0, and (0 is bisected
with both halves getting label 8 + 2. This is depicted in Fig. 8.2.

• Label (8, 8, 8 � 1): a bisection of side ⇢()) with label 8 � 1 creates a child ) 00 with
label (8 + 1, 8 + 1, 8) that is compatibly divisible with ) 0. Joining the new node of
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i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+2

i+2

i+2

i+2

T

T ’

i

’= E(TS ’) = E(T)

Figure 8.2. ) and ) 0 form a compatible patch, as they share the generation.

) with the midpoint of (0 creates a conforming partition with level 8 +2 assigned
to (. This is depicted in Fig. 8.3.

i+1

i+1

i+1

i+1i+1

T ’ T ’

i+1

T ’’

i+1

i+1

i+1 i+1

i+1

i+2

i+2

i+2

i+2 i+1T

i i

i

i−1

i i

Figure 8.3. ) 0 form a compatible patch with the child ) 00 of ) , indeed ) has a lower
generation than ) 0.

Therefore, in both cases the label 8 + 2 assigned to ( is the same from both sides,
as asserted.

The two possible configurations displayed in the two figures above lead readily
to the following statement about generations.

Corollary 8.2 (generation of consecutive elements) For any T 2 T and ) , ) 0 2
T with ) = �() 0) we either have:

(a) 6()) = 6() 0) and ) , ) 0 are compatibly divisible, or
(b) 6()) = 6() 0) � 1 and ) 0 is compatibly divisible with a child of ) .

Corollary 8.3 (generations within a chain) For all T 2 T and ) 2 T , its chain
C() ,T ) = {): }

<

:=0 with ): = �:()) have the property

6():) = 6()) � : 0  :  < � 1

and )< = �<()) has generation 6()<) = 6()<�1) or it is a boundary element with
lowest labeled edge on m⌦. In the first case, )<�1 and )< are compatibly divisible.

Proof. Apply Corollary 8.2 repeatly to consecutive elements of C() ,T ).
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8.1.2 Recursive bisection
Given an element ) 2 M to be refined, the routine REFINE_RECURSIVE (T ,))
recursively refines the chain C() ,T ) of ) , from the end back to ) , and creates a
minimal conforming partition T⇤ � T such that ) is bisected once. This procedure
reads as follows:

[T⇤] = REFINE_RECURSIVE (T ,))
if 6(�())) < 6())

[T ] = REFINE_RECURSIVE (T , �()))
else

bisect the compatible bisection patch C() ,T )
update T

return T

We denote by C⇤() ,T ) ⇢ T⇤ the recursive refinement of C() ,T ) (or completion
of C() ,T )) caused by bisection of ) . Since REFINE_RECURSIVE refines solely
compatible bisection patches, intermediate meshes are always conforming.

We refer to Figure 8.4 for an example of recursive bisection C⇤()10,T ) of
C()10,T ) = {)10,)8,)2} in Figure 3.4: REFINE_RECURSIVE starts bisecting
from the end of C()10,T ), namely )2, which is a boundary element, and goes back
the chain bisecting elements twice until it gets to )10.

3

1
2

3

2

2

2 2

1

3

1
2

3

2

2

2

3

3

3

3

4

4
4

4

3

1
2

3

2

2

2

2

3

3

3

3

Figure 8.4. Recursive refinement of )10 2 T in Figure 3.4 by
REFINE_RECURSIVE. This entails refining the chain C()10,T ) = {)10,)8,)2},
starting from the last element )2 2 T , which form alone a compatible bisection
patch because its refinement edge is on the boundary, and continuing with )8 2 T

and finally )10 2 T . Note that the successive meshes are always conforming and
that REFINE_RECURSIVE bisects elements in C()10,T ) twice before getting back
to )10.

We now establish a fundamental property of REFINE_RECURSIVE (T ,)) re-
lating the generation of elements within C⇤() ,T ) [Binev et al. 2004].

Lemma 8.4 (recursive refinement) Let T0 satisfy the labeling (3.35), and let T 2
T be a conforming refinement of T0. A call to REFINE_RECURSIVE (T ,))
terminates, for all ) in the set M of marked elements, and outputs the smallest
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conforming refinement T⇤ of T such that ) is bisected. In addition, all newly
created ) 0 2 C⇤() ,T ) satisfy

6() 0)  6()) + 1. (8.2)

Proof. We first observe that ) has maximal generation within C() ,T ). So
recursion is applied to elements with generation  6()), whence the recursion
terminates. We also note that this procedure creates children of ) and either
children or grandchildren of triangles ): 2 C() ,T ) = {)8}

<

8=0 with : � 1. If ) 0 is
a child of ) there is nothing to prove. If not, we consider first < = 1, in which case
)
0 is a child of )1 because )0 and )1 are compatibly divisible and so have the same

generation; thus 6() 0) = 6()1)+ 1 = 6()0)+ 1. Finally, if < > 1, then 6():) < 6())
and we apply Corollary 8.3 to deduce

6() 0)  6():) + 2  6()) + 1,

as asserted.

The following crucial lemma links generation and distance between ) and ) 0 2
C⇤() ,T ), the latter being defined as [Binev et al. 2004]

dist() 0,)) := inf
G
02) 0,G2)

|G
0
� G |.

Lemma 8.5 (distance and generation) Let ) 2 M. Any newly created ) 0 2
C⇤() ,T ) by REFINE_RECURSIVE (T ,)) satisfies

dist() 0,))  ⇡2
2

p
2 � 1

2�6() 0)/2
, (8.3)

where ⇡2 > 0 is the constant in (3.34).

Proof. Suppose) 0 ⇢ )8 2 C() ,T ) has been created by subdividing)8 (see Figure
8.1). If 8  1 then dist() 0,)) = 0 and there is nothing to prove. If 8 > 1, then we
observe that dist() 0,)8�1) = 0, whence

dist() 0,))  dist()8�1,)) + diam()8�1) 
8�1’
:=1

diam():)

 ⇡2

8�1’
:=1

2�6(): )/2
< ⇡2

1
1 � 2�1/2

2�6()8�1)/2
,

because the generations decrease exactly by 1 along the chain C()) according to
Corollary 8.2(b). Since ) 0 is a child or grandchild of )8 , we deduce

6() 0)  6()8) + 2 = 6()8�1) + 1,

whence

dist() 0,)) < ⇡2
21/2

1 � 2�1/2
2�6() 0)/2

.
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This is the desired estimate.

The recursive procedure REFINE_RECURSIVE is the core of the routine REFINE

of Section 3.5: given a conforming mesh T 2 T and a subset M ⇢ T of marked
elements, REFINE creates a conforming refinement T⇤ � T of T such that all
elements of M are bisected at least once:

[T⇤] = REFINE (T ,M)
for all ) 2M \ T do

[T ] = REFINE_RECURSIVE (T ,))
return T

It may happen that an element ) 0 2 M is scheduled prior to ) for refinement
and ) 2 C() 0,T ). Since the call REFINE_RECURSIVE (T ,)

0) bisects ) , its two
children replace ) in T . This implies that ) 8 M \ T , which prevents further
refinement of ) .

In practice, one often likes to bisect selected elements several times, for instance
each marked element is scheduled for 1 � 1 bisections. This can be done by
assigning the number 1()) = 1 of bisections that have to be executed for each
marked element ) . If ) is bisected then we assign 1()) � 1 as the number of
pending bisections to its children and the set of marked elements is M := {) 2 T |

1()) > 0}.

8.1.3 Complexity of bisection for conforming meshes
Figure 8.4 reveals that the issue of propagation of mesh refinement to keep con-
formity is rather delicate. In particular, an estimate of the form

#T: � #T:�1  ⇠ #M:�1

is not valid with a constant ⇠ independent of :; in fact the constant can be propor-
tional to : according to Figure 8.4.

Binev, Dahmen, and DeVore [Binev et al. 2004] for 3 = 2 and Stevenson
[Stevenson 2008] for 3 > 2 show that control of the propagation of refinement by
bisection is possible when considering the collective e�ect:

#T: � #T0  ⇡

:�1’
9=0

#M 9 . (8.4)

This can be heuristically motivated as follows. Consider the set M :=
–
:�1
9=0 M 9

used to generate the sequence T0  T1  · · ·  T: =: T . Suppose that each element
)⇤ 2 M is assigned a fixed amount ⇠1 of money to spend on refined elements in
T , i. e., on ) 2 T \ T0. Assume further that _() ,)⇤) is the portion of money spent
by )⇤ on ) . Then it must hold’

) 2T\T0

_() ,)⇤)  ⇠1 for all )⇤ 2M . (8.5a)
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In addition, we suppose that the investment of all elements in M is fair in the sense
that each ) 2 T \ T0 gets at least a fixed amount ⇠2, whence’

)⇤ 2M

_() ,)⇤) � ⇠2 for all ) 2 T \ T0. (8.5b)

Therefore, summing up (8.5b) and using the upper bound (8.5a) we readily obtain

⇠2(#T � #T0) 
’

) 2T\T0

’
)⇤ 2M

_() ,)⇤) =
’
)⇤ 2M

’
) 2T\T0

_() ,)⇤)  ⇠1 #M,

which proves (8.4) for T and M. In the remainder of this section we design such
an allocation function _ : T ⇥M ! R+ in several steps and prove that recurrent
refinement by bisection yields (8.5) providedT0 satisfies (3.35), thereby establishing
Theorem 3.16 (complexity of REFINE ).

Construction of the Allocation Function. The function _() ,)⇤) is defined with the
help of two sequences

�
0(✓)

�1
✓=�1,

�
1(✓)

�1
✓=0 ⇢ R

+ of positive numbers satisfying’
✓��1

0(✓) = � < 1,

’
✓�0

2�✓/2 1(✓) = ⌫ < 1, inf
✓�1

1(✓) 0(✓) = 2⇤ > 0,

and 1(0) � 1. Valid instances are 0(✓) = (✓ + 2)�2 and 1(✓) = 2✓/3.
With these settings we are prepared to define _ : T ⇥M ! R+ by

_() ,)⇤) :=

(
0(6()⇤) � 6())), dist() ,)⇤) < ⇡3 ⌫ 2�6() )/3 and 6())  6()⇤) + 1
0, else,

where⇡3 := ⇡2
�
1+2(
p

2�1)�1
�
. Therefore, the investment of money by)⇤ 2M is

restricted to cells) that are su�ciently close and are of generation 6())  6()⇤)+1.
Only elements of these generations can be created during refinement of)⇤ according
to Lemma 8.4. We stress that except for the definition of ⌫, this construction is
mutidimensional and we refer to [Nochetto et al. 2009, Stevenson 2008] for details.

The following lemma shows that the total amount of money spend by the alloc-
ation function _() ,)⇤) per marked element )⇤ is bounded.

Lemma 8.6 (upper bound) There exists a constant ⇠1 > 0 only depending on T0
such that _ satisfies (8.5a), i. e.,’

) 2T\T0

_() ,)⇤)  ⇠1 for all )⇤ 2M .

Proof. We proceed in two steps.
1 Given )⇤ 2 M we set 6⇤ = 6()⇤) and we let 0  6  6⇤ + 1 be a generation of

interest in the definition of _. We claim that for such 6 the cardinality of the set

T ()⇤, 6) = {) 2 T | dist() ,)⇤) < ⇡3 ⌫ 2�6/2 and 6()) = 6}

is uniformly bounded, i. e., #T ()⇤, 6)  ⇠with⇠ solely depending on⇡1,⇡2,⇡3, ⌫.
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From (3.34) we learn that diam()⇤)  ⇡22�6⇤/2  2⇡22�(6⇤+1)/2
 2⇡22�6/2

as well as diam())  ⇡22�6/2 for any ) 2 T ()⇤, 6). Hence, all elements of
the set T ()⇤, 6) lie inside a ball centered at the barycenter of )⇤ with radius
(⇡3⌫ + 3⇡2)2�6/2. Again relying on (3.34) we thus conclude

#T ()⇤, 6)⇡12�6 
’

) 2T()⇤,6)

|) |  2(⇡3⌫ + 3⇡2)22�6,

whence #T ()⇤, 6)  2 ⇡�1
1 (⇡3⌫ + 3⇡2)2 =: ⇠.

2 Accounting only for non-zero contributions _() ,)⇤) we deduce

’
) 2T\T0

_() ,)⇤) =
6⇤+1’
6=0

’
) 2T()⇤,6)

0(6⇤ � 6)  ⇠
1’
✓=�1

0(✓) = ⇠� =: ⇠1,

which is the desired upper bound.

The definition of _ also implies that each refined element receives a fixed amount
of money. We show this next.

Lemma 8.7 (lower bound) There exists a constant ⇠2 > 0 only depending on T0
such that _ satisfies (8.5b), i. e.,’

)⇤ 2M

_() ,)⇤) � ⇠2 for all ) 2 T \ T0.

Proof. We proceed in several steps.
1 Fix an arbitrary )0 2 T \ T0. Then there is an iteration count 1  :0  : such

that )0 2 T:0 and )0 8 T:0�1. Therefore there exists an )1 2M:0�1 ⇢M such that
)0 is generated during REFINE_RECURSIVE (T:0�1,)1). Iterating this process we
construct a sequence {)9}

�

9=1 ⇢ M with corresponding iteration counts {: 9}
�

9=1
such that )9 is created by REFINE_RECURSIVE (T: 9�1,)9+1). The sequence is
finite since the iteration counts are strictly decreasing and thus :� = 0 for some
� > 0, or equivalently )� 2 T0.

Since )9 is created during refinement of )9+1 we infer from (8.2) that

6()9+1) � 6()9) � 1.

Accordingly, 6()9+1) can decrease the previous value of 6()9) at most by 1. Since
6()� ) = 0 there exists a smallest value B such that 6()B) = 6()0) � 1. Note that for
9 = 1, . . . , B we have _()0,)9) > 0 if dist()0,)9)  ⇡3⌫6

�6()0)/3 .
2 We next estimate the distance dist()0,)9). For 1  9  B and ✓ � 0 we define

the set

T ()0, ✓, 9) := {) 2 {)0, . . . ,)9�1} | 6()) = 6()0) + ✓}

and denote by <(✓, 9) its cardinality. The triangle inequality combined with an
induction argument yields

dist()0,)9)  dist()0,)1) + diam()1) + dist()1,)9)
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

9’
8=1

dist()8�1,)8) +
9�1’
8=1

diam()8).

We apply (8.3) for the terms of the first sum and (3.34) for the terms of the second
sum to obtain

dist()0,)9) < ⇡2
2

p
2 � 1

9’
8=1

2�6()8�1)/2
+ ⇡2

9�1’
8=1

2�6()8)/2

 ⇡2

✓
1 +

2
p

2 � 1

◆ 9�1’
8=0

2�6()8)/2

= ⇡3

1’
✓=0

<(✓, 9) 2�(6()0)+✓)/2

= ⇡32�6()0)/2
1’
✓=0

<(✓, 9) 2�✓/2.

For establishing the lower bound we distinguish two cases depending on the size
of <(✓, B). This is done next.

3 Case 1: <(✓, B)  1(✓) for all ✓ � 0. From this we conclude

dist()0,)B) < ⇡32�6()0)/2
1’
✓=0

1(✓) 2�✓/2 = ⇡3⌫ 2�6()0)/2

and the definition of _ then readily implies’
)⇤ 2M

_()0,)⇤) � _()0,)B) = 0(6()B) � 6()0)) = 0(�1) > 0.

4 Case 2: There exists ✓ � 0 such that <(✓, B) > 1(✓). For each of these ✓’s there
exists a smallest 9 = 9(✓) such that <(✓, 9(✓)) > 1(✓). We let ✓⇤ be the index ✓ that
gives rise to the smallest 9(✓), and set 9⇤ = 9(✓⇤). Consequently

<(✓, 9⇤ � 1)  1(✓) for all ✓ � 0 and <(✓⇤, 9⇤) > 1(✓⇤).

As in Case 1 we see dist()0,)8) < ⇡3⌫ 2�6()0)/2 for all 8  9⇤ � 1, or equivalently

dist()0,)8) < ⇡3⌫ 2�6()0)/2 for all )8 2 T ()0, ✓, 9
⇤).

We next show that the elements in T ()0, ✓
⇤
, 9
⇤) spend enough money on )0. We

first consider ✓⇤ = 0 and note that )0 2 T ()0, 0, 9⇤). Since <(0, 9⇤) > 1(0) � 1
we discover 9⇤ � 2. Hence, there is an )8 2 T ()0, 0, 9⇤) \M, which yields the
estimate ’

)⇤ 2M

_()0,)⇤) � _()0,)8) = 0(6()8) � 6()0)) = 0(0) > 0.

For ✓⇤ > 0 we see that )0 8 T ()0, ✓
⇤
, 9
⇤), whence T ()0, ✓

⇤
, 9
⇤) ⇢ M. In
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addition, _()0,)8) = 0(✓⇤) for all )8 2 T ()0, ✓
⇤
, 9
⇤). From this we conclude’

)⇤ 2M

_()0,)⇤) �
’

)⇤ 2T()0,✓
⇤
, 9
⇤)

_()0,)⇤) = <(✓⇤, 9⇤) 0(✓⇤)

> 1(✓⇤) 0(✓⇤) � inf
✓�1

1(✓) 0(✓) = 2⇤ > 0.

5 In summary we have proved the assertion since for any )0 2 T \ T0’
)⇤ 2M

_()0,)⇤) � min{0(�1), 0(0), 2⇤} =: ⇠2 > 0. (8.6)

This completes the proof.

Remark 8.8 (complexity with b > 1 bisections) To show the complexity estim-
ate when REFINE performs 1 > 1 bisections, the set M: is to be understood
as a sequence of single bisections recorded in sets {M:( 9)}1

9=1, which belong

to intermediate triangulations between T: and T:+1 with #M:( 9)  2 9�1#M: ,
9 = 1, . . . , 1. Then we also obtain Theorem 3.16 because

1’
9=1

#M:( 9) 
1’
9=1

2 9�1#M: = (21 � 1)#M: .

In practice, it is customary to take 1 = 3 [Siebert 2012].

8.2 Nonconforming meshes

In this subsection, we consider two kinds of nonconforming meshes undergoing
a refinement process: a) quadrilateral meshes with at most one hanging node per
edge (⇤ = 1 in the definition of ⇤-admissible meshes), and b) triangular meshes
having global index bounded by a fixed, but arbitrary ⇤ > 1.

8.2.1 Complexity of bisection for nonconforming quadrilateral meshes
We examine briefly the refinement process for quadrilaterals with one hanging node
per edge, which gives rise to the so-called 1-meshes. The refinement of ) 2 T

might a�ect four elements of T for 3 = 2 (or 23 elements for any dimension 3 � 2),
all contained in the refinement patch '() ,T ) of ) in T . The latter is defined as

'() ,T ) := {)
0
2 T | )

0 and ) share an edge and 6() 0)  6())},

and is called compatible provided 6() 0) = 6()) for all) 0 2 '() ,T ). The generation
gap between elements sharing an edge, in particular those in '() ,T ), is always
 1 for 1-meshes, and is 0 if '() ,T ) is compatible. The element size satisfies

⌘) = 2�6() )
⌘)0 8) 2 T

where )0 2 T0 is the ancestor of ) in the initial mesh T0. Lemma 3.15 is thus valid

⌘) < ⌘̄)  ⇡22�6() )
8) 2 T . (8.7)
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Given an element ) 2 M to be refined, the routine REFINE_RECURSIVE (T ,))
refines recursively '() ,T ) in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

[T⇤] = REFINE_RECURSIVE (T ,))
if 6 = min{6() 00) : ) 00 2 '() ,T )} < 6())

let ) 0 2 '() ,T ) satisfy 6() 0) = 6
[T ] = REFINE_RECURSIVE (T ,)

0)
else

subdivide )
update T upon replacing ) by its children

return T

The conditional prevents the generation gap within '() ,T ) from getting larger
than 1. If it fails, then the refinement patch '() ,T ) is compatible and refinining
) increases the generation gap from 0 to 1 without violating the 1-mesh structure.
This implies a variant of Lemma 8.4: REFINE_RECURSIVE (T ,)) creates a
minimal 1-mesh T⇤ � T refinement of T so that for all newly created elements
)
0
2 T⇤

6() 0)  6()) + 1 (8.8)

and ) is subdivided only once. This yields Lemma 8.5: there exist a geometric
constant ⇡6 > 0 such that for all newly created elements ) 0 2 T⇤

dist() ,) 0)  ⇡626() 0)
. (8.9)

The procedure REFINE_RECURSIVE is the core of REFINE, which is concep-
tually identical to that in Section 8.1.2. Suppose that each marked element ) 2M
is to be subdivided 1 � 1 times. We assign a flag @()) to each element ) which is
initialized @()) = 1 if ) 2M and @()) = 0 otherwise. The marked set M is then
the set of elements ) with @()) > 0, and every time ) is subdivided it is removed
from T and replaced by its children, which inherit the flag @()) � 1. This avoids
the conflict of subdividing again an element that has been previously refined by
REFINE_RECURSIVE. The procedure REFINE (T ,M) reads

[T⇤] = REFINE (T ,M)
for all ) 2M \ T do

[T ] = REFINE_RECURSIVE (T ,));
end
return T

and its output is a minimal 1-mesh T⇤ � T , refinement of T , so that all marked
elements of M are refined at least 1 times. Since T⇤ has one hanging node per side
it is thus admissible in the sense of (3.47). However, the refinement may spread
outside M and the issue of complexity of REFINE again becomes non-trivial.

With the above ingredients in place, a statement similar to Theorem 3.16 (com-
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plexity of REFINE ) for nonconforming quadrilateral meshes follows along the lines
of Section 8.1.3.

8.2.2 Complexity of bisection for ⇤-admissible triangular meshes
Let T 2 T⇤ be a ⇤-admissible simplicial mesh. Given any ) 2 T , let us denote
again by ⇢()) the edge of ) assigned for refinement, i.e., the edge opposite to the
newest vertex E()). Let us denote by G()) the midpoint of the edge ⇢()).

Two elements ) 0,) 00 2 T are said adjacent if ⇢ = )
0
\ )

00 is an edge for at
least one element, and are said compatible if they are adjacent and both ⇢() 0) and
⇢() 00) belong to the same line (see Fig. 8.5, cases A and B).

)
00

)
0

E() 00)

E() 0)

case A

)
00

)
0

E() 00)

E() 0)

case B

)
00

)
0

E() 00)

E() 0)

case C

)
00

)
0

E() 00)

E() 0)

case D

Figure 8.5. The elements ) 0 and ) 00 are adjacent in cases A to D. They are
compatible in cases A and B, and non-compatible in cases C and D.

The following technical results will be helpful in the design of the refinement
procedure.

Lemma 8.9 (global index of a hanging node) Consider an edge ⇢ = [G
0
, G
00
] of

the partition T . If G 2 H \ int ⇢ is generated by < � 1 bisections of ⇢ , then its
global index _(G) satisfies

_(G) = max(_(G 0), _(G 00)) + < .

Proof. If < = 1, then G = G" is the midpoint of ⇢ , and the formula is just the
Definition 3.24 of global index. If < > 1, then G is generated by bisecting some
interval [I0, I00] ⇢ ⇢ , and _(G) = max(_(I0), _(I00))+1. Exactly one between I0, I00

has been generated by < � 1 bisections, whereas the other one has been generated
by less than < � 1 bisections. Hence, one concludes by induction.

Lemma 8.10 (reducing the global index of hanging nodes) Let H \ int ⇢ con-
tain at least the midpoint G" of ⇢ . Assume that a bisection of some element in
T transforms G" into a proper node, and let _new denote the new global-index
mapping of the nodes in H \ int ⇢ after the bisection. Then there holds

_new(G)  _(G) � 1 8G 2 H \ int ⇢ .
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Figure 8.6. Three examples of distributions of proper nodes (red) and hanging
nodes (black), with associated global indices _. The bisection added in the middle
picture converts the centered node into proper, and induces nonlocal changes of
global indices on chains associated with it; if ⇤ = 3, the leftmost mesh is not
admissible and this procedure is instrumental to restore admissibility. The right
picture illustrates the creation of a proper node without nonlocal e�ects on global
indices.

Proof. If G = G" , then trivially _new(G) = 0  _(G) � 1. If G 2 H \ int ⇢ is
contained, say, in (G 0, G" ) and has been generated by < > 1 successive bisections
of ⇢ , then it is generated by < � 1 successive bisections of [G

0
, G" ]. Thus, by

applying Lemma 8.9 we get

_new(G)  max(_new(G 0), _new(G" )) + < � 1

= max(_(G 0), 0) + < � 1 = _(G 0) + < � 1

 max((_(G 0), _(G 00)) + < � 1 = _(G) � 1 .

This gives the desired estimate.

The result just established is the motivation for the proposed refinement strategy,
introduced in [?]. Indeed, it assures that in order to reduce the global index of a
hanging node sitting on an edge, it is enough to transform the midpoint of the edge
into a proper node. The situation is well represented in Figure 8.6.

The following remark will be useful in the sequel.

Remark 8.11 (facing element) Given a⇤-admissible mesh T and) 2 T , let G())
be the midpoint of ⇢()), and suppose that _(G())) > ⇤. Then G()) is not a node
of T , whence the edge ⇢()) cannot contain any hanging node in its interior. We
conclude that there exists a unique adjacent element e) 2 T , e) < ) , such that
) \ e) = ⇢()). This element will be called the element facing ) , and denoted by
�()).

Given an element ) 2 T which has been marked for refinement, we are ready
to identify those elements in T that need be bisected with ) in order to create a
⇤-admissible refinement of T . Figure 8.7 illustrates the possible situations.
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)9�1

)9

case A

)9�1

)9

case B

)9�1

)9

case C

)9�1

)9

case D

Figure 8.7. Two elements )9�1 and )9 in the chain C(T ,)): )9�1 can be bisected in
a ⇤-admissible way, only after )9 is refined once (cases A and B), or twice (cases
C and D)

Definition 8.12 (chain of elements to be refined) Define by recurrence the chain
of elements starting at )

C() ,T ) = {)0,)1, . . . ,): }

for some : � 0, as follows: set first )0 = ) and, assuming to have defined )9 for
9 � 0, then

(i) if _(G()9))  ⇤, set : = 9 and stop;
(ii) if _(G()9)) = ⇤ + 1 and the facing element �()9) is compatible with )9 , set

)9+1 = �()9), : = 9 + 1 and stop;
(iii) if _(G()9)) = ⇤ + 1 and the facing element �()9) is not compatible with )9 ,

set )9+1 = �()9) and continue.

Lemma 8.13 (properties of the chain of refinement) The chain C() ,T ) has fi-
nite length, precisely it holds :  6()) + 1, where 6()) is the generation of ) ,
defined in Sect. 3.5. Furthermore, the sequence of element generations {6()9)}:

9=0
is not increasing.

Proof. We claim that step (iii) in Definition 8.12 reduces the generation by at least
one. In fact, )9 coincides with or is a refinement of a triangle )̂ 2 T sharing a full
edge with )9+1; thus 6()9) � 6()̂). Such triangle )̂ satisfies 6()̂) = 6()9+1) + 1,
whence

6()9+1) = 6()̂) � 1  6()9) � 1. (8.10)

Therefore, for as long as case (iii) is active, i.e. for all 9 < : , we have 6()9) 
6()0) � 9 and

0  6():�1)  6()0) � (: � 1) ,

which gives the first statement of the lemma. The monotonicity of {6()9)}:
9=0

follows from (8.10) and the fact that 6():�1) = 6():) in case (ii).

Once the chain C(T ,)) is defined, all its elements are refined, starting from
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the last one and proceeding backwards. This is accomplished in the following
procedure.

[T⇤] = REFINE_RECURSIVE (T ,) ,⇤)
if _(G()))  ⇤

bisect )
update T

else if �()) is compatible with )
bisect �()) and )
update T

else
[T ] = REFINE_RECURSIVE (T , �()),⇤)

return T

Proposition 8.14 (properties of REFINE_RECURSIVE) If T is⇤-admissible, the
call [T⇤] = REFINE_RECURSIVE (T ,) ,⇤) outputs the smallest ⇤-admissible
refinement T⇤ of T such that ) is bisected. In addition, every element ) 0 2 T⇤

generated by this call satisfies

6() 0)  6()) + 1 . (8.11)

Proof. Let C() ,T ) = {)9}
:

9=0 and observe that, for 9 � 1, one or two bisections
of )9 convert the midpoint of the edge ⇢ of )9 shared with )9�1 into a proper node.
Therefore, Lemma 8.10 (reducing the global index of hanging nodes) implies that
the global indices of all interior nodes to ⇢ decrease by at least 1, and makes the
bisection of )9�1 ⇤-admissible as desired.

To prove (8.11) we take 9 � 1 and consider the following two mutually exclusive
cases. If )9 and )9�1 are compatible, then )9 is replaced by two elements ) 0 2 T⇤

of generation

6() 0) = 6()9) + 1  6()) + 1,

according to Lemma 8.13 (properties of the chain of refinement). On the other
hand, if )9 and )9�1 are not compatible, then )9 is replaced by one element of
generation 6()9) + 1 and two elements ) 0 2 T⇤ of generation

6() 0) = 6()9) + 2  6()9�1) + 1  6()) + 1

because of (8.10). Finally, the element )0 = ) is replaced by two elements of
generation 6()) + 1.

If one considers the chains starting at any element ) 2 M, one obtains the
procedure REFINE (T ,M,⇤), which reads

[T⇤] = REFINE (T ,M,⇤)
for all ) 2M \ T do

[T ] = REFINE_RECURSIVE (T ,) ,⇤)
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return T

and outputs a minimal ⇤-admissible mesh T⇤ � T , refinement of T , so that all
marked elements of M are refined.

Proof of Theorem 3.29 (complexity of REFINE for ⇤-admissible meshes). The
arguments given in Sect. 8.1.3 for the conforming case can be adapted to the current
situation. The two crucial properties needed are the relation (8.3) between the
distance of two elements in a chain and their generation, which is valid for bisection
grids regardless of ⇤-admissibility, and the relation (8.11) between generations of
elements. ⇤

8.2.3 Mesh overlay and ⇤-admissibility
Given two partitions T� and T⌫, denote by T� � T⌫ the overlay of T� and T⌫, i.e.,
the partition whose associated tree is the union of the trees of T� and T⌫. The
following property holds.

Proposition 8.15 (mesh overlay is ⇤-admissible) If T� and T⌫ are ⇤-admissible,
then T� � T⌫ remains ⇤-admissible.

Proof. Denote here by N the set of all nodes obtained by newest-vertex bisection
from the root partition T0. Let N0, N�, N⌫, N�+⌫, resp., be the set of nodes of the
partitions T0, T�, T⌫, T� � T⌫, resp.. It is easily seen that for each G 2 N \N0 there
exists a unique set B(G) = {G

0
, G
00
} ⇢ N such that G is generated by the bisection

of the segment [G 0, G 00]. Furthermore, if G 2 N�+⌫ is a proper node of T� (of T⌫,
resp.), then it is also a proper node of T� � T⌫.

Let us denote by _�, _⌫, _�+⌫, resp., the global-index mappings defined on N�,
N⌫, N�+⌫, resp.. It is convenient to extend the definition of _� and _⌫ to the
whole N�+⌫ by setting

_�(G) = +1 if G 2 N�+⌫ \ N� , _⌫(G) = +1 if G 2 N�+⌫ \ N⌫ .

With these notations at hand, we are going to prove the inequality

_�+⌫(G)  min(_�(G), _⌫(G)) 8G 2 N�+⌫ , (8.12)

from which the thesis immediately follows.
We proceed by induction on : = _�+⌫(G), G 2 N�+⌫. If : = 0, the inequality

is trivial since _�(G), _⌫(G) � 0. So suppose (8.12) hold up to some : � 0. If
G 2 N�+⌫ satisfies _�+⌫(G) = : + 1 > 0, then it is a hanging node of T� � T⌫ by
definition of global index, hence, it is a hanging node of T� or T⌫; without loss of
generality, suppose it is a hanging node of T�. If G is generated by the bisection of
the segment [G 0, G 00], then again by definition of global index it holds

: + 1 = _�+⌫(G) = max(_�+⌫(G 0), _�+⌫(G 00)) + 1 ,

which implies

_�+⌫(G 0)  : , _�+⌫(G 00)  : .
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By induction,

_�+⌫(G 0)  min(_�(G 0), _⌫(G 0)) , _�+⌫(G 00)  min(_�(G 00), _⌫(G 00)) ,

from which we obtain

_�+⌫(G)  max(_�(G 0), _�(G 00)) + 1 = _�(G)

since G is a hanging node of T�. On the other hand, either G 2 N⌫ or G 8 N⌫. In
the latter case, _⌫(G) = +1, and (8.12) is proven. In the former case, necessarily G
is a hanging node of T⌫, hence as above

_�+⌫(G)  max(_⌫(G 0), _⌫(G 00)) + 1 = _⌫(G) ,

and the thesis is proven.

9 Discontinuous Galerkin Methods
So far we have studied conforming finite element approximations. In this section
we present and analyze a two-step AFEM for discontinuous Galerkin methods (dG).
The core PDE routine GALERKIN is thereby replaced by GALERKIN-DG, which
hinges on the interior penalty discontinuous FEM. We regard dG as a prototype
non-conforming method of practical importance and thus the natural first step to
investigate the e�ects of non-conformity within adaptivity.

Finite element functions, being discontinuous, allow for non-conforming meshes
to support them. We consider ⇤�admissible subdivisions, according to Definition
3.25, where ⇤ � 0 restricts the level of non-conformity, and denote by T⇤ the
collection of all ⇤�admissible refinements of an initial subdivision T0; we refer to
Section 8 for details. However, we further assume that T0 is conforming to limit
the level of technicalities.

There are several novel but characteristic aspects of dG. The most notable one
is the appearance of jumps in its formulation, to compensate for the lack of �1-
conformity, as well as in the a posteriori upper bounds and the comparison of
Galerkin solutions on di�erent meshes. The lack of monotonicity of these jumps
presents a formidable obstruction to the available proof teachniques in adaptivity.
However, we show in Lemma 9.11 that they are controlled by the residual estimator,
thereby enabling us to loosely follow the roadmap of the conforming method,
namely Sections 4, 5, and 6. Our approach is based on [Bonito and Nochetto 2010]
for the one-step AFEM.

The extra flexibility provided by non-conforming meshes, and corresponding
discontinuous functions, does not yield better asymptotic rate in �1. An early
manifestation of this fact, although written for conforming subdivisions, is Propos-
ition 6.2 (equivalence of classes for D). We extend this result below for general
⇤�admissible partitions.

One advantage of the two-step AFEM is that its design and analysis allows for
5 2 �

�1(⌦) without added di�culties: the function 5 is replaced by the discrete
functional b

5 = %T 5 2 FT , which applies to functions in S=,�1
T

. This is in contrast
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with 5 , which cannot be applied to functions in S=,�1
T

. We exploit this property
and thereby extend the applicability of dG to load functions in ��1(⌦).

Our intend is to analyze the following algorithm for the approximation of the
solution D 2 �1

0(⌦) to the coercive problem (2.7).

Algorithm 9.1 (AFEM-DG-TS) Given an initial tolerance Y0 > 0, a target tolerance
tol and initial mesh T0, as well as a safety parameter l 2 (0, 1], AFEM-DG-TS is a
two-step algorithm alternating between the resolution of data D and the Galerkin
solution DT :

[T , DT] = AFEM-DG-TS(T0, Y0,l, tol)
set : = 0
do

[bT: , bD:] = DATA (T: ,D,l Y:)
[T:+1, D:+1] = GALERKIN-DG (bT: , bD: , Y:)
Y:+1 = 1

2Y:
:  : + 1

while Y:�1 > tol
return T: , D:

In AFEM-DG-TS, the module DATA (T ,D, g) is the same as described in Sec-
tion 5.4.2 except that it produces approximate data bD 2 DbT , defined in (5.2),

subordinate with a ⇤�admissible refinement bT of T0 for ⇤ � 0 rather than ⇤ = 0
(conforming). The discrete data bD also satisfies the structural assumption (5.51)
as discussed in Section 7. It is worth pointing out that the projection %T used
to approximate the right-hand side 5 2 �

�1(⌦) as well as all the results and al-
gorithms presented in Section 7.4 are restricted to conforming subdivisions T. We
briefly discuss in Section 9.7 the extension of %T and DATA to ⇤-admissible sub-
divisions. Algorithm 9.17 describes the module GALERKIN-DG, the counterpart
of GALERKIN for dG formulations.

In Section 9.1 we introduce notations and tools relevant for the characterization
of discontinuous finite elements. Among them is the operator IdG

T
that projects

piecewise polynomial functions onto globally continuous piecewise polynomial
functions. It is instrumental to derive a Poincaré inequality on the discontinuous
spaces and guarantee that the approximation classes A�1

B
for the solution D using

discontinuous approximation on ⇤-admissible subdivisions are equivalent to their
conforming counter-partsA0

B
introduced in Section 6. We present the discontinuous

Galerkin method in Section 9.2. We start with the standard symmetric interior
penalty, discuss its drawbacks regarding the unnecessary regularity beyond �1

0(⌦)
imposed on the exact solution D, and describe a reformulation valid in �

1
0(⌦).

The latter su�ers from lack of consistency that needs to be accounted for. The
a posteriori estimates for the perturbed problem (5.5) are derived in Section 9.3.
Because the data is polynomial within GALERKIN-DG, the a posteriori estimators
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are oscillation free. The GALERKIN-DG module is analyzed in Section 9.4 while
the discussion of rate-optimality of AFEM-DG-TS is reserved for Section 9.5.

9.1 Discontinuous Galerkin setting

We start with an initial conforming subdivision T0 made of simplices or hexahedra
satisfying Assumption 6.19 (initial labeling). Given ⇤ > 0, the refinement pro-
cedure REFINE is designed to produce a ⇤-admissible sequence of meshes T⇤

obeying Theorem 3.29 (REFINE for ⇤-admissible meshes). From now on, we do
not specify the dependency on ⇤ in the constants.

9.1.1 Basic setting

For T 2 T⇤, we denote by V�1
T

:= S=,�1
T

:=
Œ
) 2T P=()) the space of piecewise

polynomials of degree at most = � 1 subordinate to a partition T . In contrast with
the conforming spaces

V0
T

:= S=,0
T
\ �

1
0(⌦)

considered earlier, the space V�1
T

consists of (possibly) discontinuous functions
across the elements ) 2 T and do not necessarily satisfy the vanishing boundary
condition. Continuity across elements and vanishing boundary condition will be
weakly imposed in the discontinuous Galerkin formulations.

We recall from Section 3.7 that for a proper (interior) node % 2 P, the domain
of influence lT(%) = supp(k%) is the support of the Lagrange basis function
k% 2 V0

T
associated with the node %; we refer to Fig. 3.11. Since the sequence of

meshes is ⇤-admissible, Proposition 3.27 (size of the domain of influence) shows
that the number of elements ) 2 T such that ) ⇢ lT(%) is uniformly bounded for
T 2 T⇤.

The set of faces associated with a subdivision T 2 T⇤ is denoted F
+ := F

+(T ),
and it contains boundary faces as well as interior faces. The set of interior faces is
denoted F . For a face � 2 F

+, we denote by {{E}}|� and [[.]] |� the average and
jump operators across a face �. To define them precisely, we associate for each face
� 2 F

+ one of the two unit normals n� . The choice of n� is fixed but irrelevant
as long as the outward pointing normal to ⌦ is chosen for boundary faces. Let
)± 2 T be the elements that share the interior face �, namely � = )� \ )+, and
⌥n� be their outward pointing normals. Now, given E 2 V�1

T
, let E± := E |)± and

define for an interior face �

{{E}}|� :=
1
2

�
E� + E+

�
|� , [[E]] |� :=

�
E� � E+

�
|� , (9.1)

By convention, we set {{E}}|� := E� and [[E]] |� := E� whenever � is a boundary
face. These definitions extend readily for vector valued functions.

We use the subscript T to denote the piecewise version of di�erential operators.
For instance, the broken gradient rT is the piecewise gradient rTE |)̊ = rE |

)̊
for
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) 2 T and E 2 V�1
T

. For simplicity, we write

kEk
2
!

2(g) :=
’
) 2g

kEk
2
!

2() )

for any subset g ⇢ T of elements and

kEk
2
!

2(f) :=
’
� 2f

kEk
2
!

2(� )

for any subset f ⇢ F
+ of faces. We also define a meshsize function ⌘ := ⌘T :

⌦ ! (0,1) such that ⌘|
)̊
⇡ diam()) for ) 2 T and ⌘|� ⇡ diam(�) for � 2 F

+.
With such notations at hand, the broken �1 space

ET := �1(⌦;T ) =
÷
) 2T

�
1()),

is endowed with the mesh dependent seminorm

||E ||
2
0,T

:= krTEk
2
!

2(T) + 0k⌘
�1/2

[[E]] k
2
!

2(F+), (9.2)

where 0 is some positive parameter. We will prove below that this is indeed a norm.
With these notations, we can extend functionals 5 2 FT in Definition 4.17 to
V�1

T
for T � bT . Before doing so, recall that for b

5 2 FbT and E 2 �1
0(⌦) we have

hb5 , Ei = ’
b) 2bT

π
b)

b
5 E +

’
b� 2F(bT)

π
b�
b
5 E,

where, compared to Definition 4.17, we slightly abused the notation

b
5 |b) = b

5) 2 P2=�2(b)) b
5 | b� = b

5b� 2 P2=�1(b�).

In view of this, we can extend the duality pairing to V�1
T

by setting

hb5 , EiT :=
’
) 2T

π
)

b
5 E +

’
� 2F

π
�

b
5 {{E}} (9.3)

so that consistency in �1
0(⌦) is preserved

hb5 , EiT = hb5 , Ei 8E 2 �
1
0(⌦). (9.4)

9.1.2 Interpolation operator IdG
T

We shall need the interpolation operator I
dG
T

: ET ! V0
T

from [Bonito and
Nochetto 2010]. Its construction is based on an original idea of Clément [Clément
1975], see also [Bernardi and Girault 1998] and other alternatives [Brenner 2003,
Bonito, Nochetto and Ntogkas 2021].

Before embarking on the construction of IdG
T

, we introduce a few notations. For
an interior or boundary proper node % 2 P of the subdivision T , we denote by

V0
lT (%) := �1

0(⌦) \
÷

) ⇢lT (%)

P=()) (9.5)
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the space of continuous piecewise polynomial with support on the domain of
influence lT(%) of % and vanishing on m⌦. When the underlying grid T is
clear from the context, we will simplify the notation and write V0

%
:= V0

lT (%) and
l% := lT(%); we refer to Figs. 3.9 and 8.6.

We now construct I
dG
T

in two steps. First, we define +% 2 V0
%

locally as
satisfying π

l%

(E �+%)F = 0, 8F 2 V0
%
. (9.6)

The value +%(%) is then used as the nodal value of IdG
T
E, namely

I
dG
T
E :=

’
%2P

+%(%)k%, (9.7)

and we recall that {k%}%2P is a basis of V0
T

(see Section 3); note that IdG
T
E = 0 on

m⌦ for all E 2 ET . Moreover, including boundary proper nodes in the definition
(9.6)-(9.7) and replacing�1

0(⌦) by�1(⌦) in the definition (9.5), IdG
T

easily extends
toS=,0

T
without zero trace; we denote this operatorIdG

T ,+
: ET ! S

=,0
T

. An immediate
property of IdG

T
is local invariance:

E 2 V0
l)

) E = I
dG
T
E in ) , (9.8)

where l) :=
–
{l% : % 2 P,) ⇢ l%}; a similar property is valid for IdG

T ,+
. We

next gather a few more properties satisfied by I
dG
T

.

Lemma 9.2 (interpolation operator) Let Assumption 6.19 (initial labeling) hold
and let T 2 T⇤. For E 2 �1

0(⌦), there holds

kE � I
dG
T
Ek
!

2() ) . k⌘rEk!2(l) ), krI
dG
T
Ek
!

2() ) . krEk!2(l) ), (9.9)

where l) is defined above. Instead, for E 2 ET there holds

kE � I
dG
T
Ek
!

2() ) + k⌘rT(E � IdG
T
E)k

!
2() )

. k⌘
1
2 [[E]] k

!
2(F+\l) ) + k⌘rT(E � ⇧TE)k!2(l) ),

(9.10)

where ⇧T is the !2 projection operator onto V�1
T

= S=,�1
T

.

Proof. We start with (9.9) and let E 2 �1
0(⌦). The definition (9.6) of the local

projection +% 2 V0
%

yields for all % 2 P

k+% k!2(l%)  kEk!2(l%) ) k+% k!1(l%) . diam (l%)�
3
2 kEk

!
2(l%).

Proposition 3.27 (size of the domain of influence) gives diaml)  ⇠⌘) , whence
the number of l% containing ) is uniformly bounded. Combining this with the
definition (9.7) of IdG

T
implies

kI
dG
T
Ek
!

2() ) .
’

%2P:) ⇢l%

|+%(%)| kk% k!2() ) . kEk!2(l) ) 8) 2 T . (9.11)
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Since IdG
T

reproduces constants exactly locally, according to (9.8), the first relation
in (9.9) follows from invoking the local !2 stability property (9.11) together with
Proposition 6.34 (Bramble-Hilbert for Sobolev spaces). The second relation is
proved using the same arguments and an inverse inequality

krI
dG
T
Ek
!

2() ) . ⌘
�1
)

inf
E02R
kI

dG
T

(E � E0)k
!

2() ) . krEk!2(l) ). (9.12)

We consider now E 2 ET and let bE = ⇧TE 2 V�1
T

. We intend to prove (9.10) by
dealing with E�bE andbE separately and applying the triangle inequality. Since E�bE
has zero mean in ) according to (5.66), we apply Lemma 2.3 (second Poincaré
inequality) to deduce

kE �bEk
!

2() ) . ⌘) kr(E �bE)k
!

2() ),

whence, combining an inverse estimate with (9.11), we further infer that

⌘) krI
dG
T

(E�bE)k
!

2() ) . kI
dG
T

(E�bE)k
!

2() ) . kE�bEk!2(l) ) . ⌘) kr(E�bE)k
!

2(l) ).

This argument yields the inequality (9.10) for E �bE. It remains to deal with bE.
We scale l) to a reference domain with unit diameter. Estimate (3.49) on

the size of the domains of influence guarantees that the number of such reference
patches is uniformly finite over T⇤. We relabel bE as E and examine the seminorm
k [[E]] k

!
2(F+\l%) on the space of discontinuous piecewise polynomials�

E 2 ⇧) ⇢l%P=())| +% = 0
 
,

where +% is defined by (9.6). If this seminorm vanishes then E is continuous in
l% and thus E 2 V0

%
, whence the seminorm dominates any norm in this finite

dimensional space. Consequently, scaling back gives

kE �+% k!2(l%) + k⌘rT(E �+%)k
!

2(l%) . k⌘
1
2 [[E]] k

!
2(F+\l%). (9.13)

We now deduce corresponding estimates for IdG
T

. For ) 2 T and %,& 2 l) \ P,
(9.13) implies that

k+% �+&k!2() ) + k⌘rT(+% �+&)k
!

2() ) . k⌘
1
2 [[E]] k

!
2(F+\l) ). (9.14)

Consequently, the definition (9.7) of IdG
T

yields

E � I
dG
T
E = E �

’
%2l) \P

+%k% = (E �+&) �
’

%2l) \P

(+% �+&)k%,

which, combined with (9.13) and (9.14), implies

kE � I
dG
T
Ek
!

2() ) + k⌘rT(E � IdG
T
E)k

!
2() ) . k⌘

1/2
[[E]] k

!
2(F+\l) ).

This is the desired estimate (9.10) for E = bE 2 V�1
T

. To finish the proof we still
need to express the right-hand side of the last inequality in terms of E 2 ET .
Applying the triangle inequality we are left with estimating k [[E �bE]] k

!
2(� ) for
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any � 2 F
+
\ l) . If )� 2 T is an element within l) that contains � in its

boundary, we employ the scaled trace inequality to arrive at

⌘

1
2
)
kE �bEk

!
2(� ) . ⌘) kr(E �bE)k

!
2()� ) + kE �bEk!2()� ) . ⌘) kr(E �bE)k

!
2()� ).

Finally, collecting all the estimates completes the proof.

We discuss now consequences of Lemma 9.2. The first one is that jumps are
solely responsible for controlling the discrepancy between E 2 V�1

T
andIdG

T
E 2 V0

T
:

kE � I
dG
T
Ek
!

2() ) + k⌘rT(E � IdG
T
E)k

!
2() ) . k⌘

1
2 [[E]] k

!
2(F+\l) ), (9.15)

because ⇧TE = E in l) . We next observe that (9.10) is also valid for IdG
T ,+

with the
same proof. We can thus apply (9.10) for IdG

T ,+
to F = E �IdG

T ,+
E, use the invariance

of IdG
T ,+

in S=,0
T

, and its continuity across internal faces in F , to deduce

kE � I
dG
T ,+
Ek
!

2() ) + k⌘rT(E � IdG
T ,+
E)k

!
2() ) . k⌘rT(E � ⇧TE)k!2(l) )

+ k⌘
1
2 [[E]] k

!
2(F\l) ) + k⌘

1
2 (E � IdG

T ,+
E)k

!
2(m⌦\l) ).

(9.16)

A third consequence of (9.10) is the following Poincaré-type inequality on ET .

Lemma 9.3 (Poincaré-type inequality on ET) Let T 2 T⇤ be a ⇤�admissible
refinement of T0 satisfying Assumption 6.19 (initial labeling). There exists ⇠% =
⇠%(⌦,T0), such that for all E 2 ET there holds

kEk
!

2(⌦)  ⇠%

⇣
krTEk!2T) + k⌘

�
1
2 [[E]] k

!
2(F) + k⌘

�
1
2 Ek

!
2(m⌦)

⌘
. (9.17)

In particular, if E = 0 on m⌦ then (9.17) is a dG version of (2.2).

Proof. We argue locally with (9.10). First we realize that an argument similar to
(9.12) yields krT(E � ⇧TE)k!2(l) ) . krTEk!2(l) ), whence adding over ) 2 T

kE � I
dG
T
Ek
!

2(⌦) + krI
dG
T
Ek
!

2(⌦) . krTEk!2(⌦) + k⌘
�

1
2 [[E]] k

!
2(F+).

It thus su�ces to write

kEk
!

2(⌦)  kI
dG
T
Ek
!

2(⌦) + kE � I
dG
T
Ek
!

2(⌦),

and invoke (2.2) for IdG
T
E 2 �

1
0(⌦) together with the preceding inequality.

Another important property obtained using the interpolation operator IdG
T

is that
the approximation classes A0

B
:= AB(�1

0(⌦);T0) defined using globally continuous
piecewise polynomial approximations of degree  = on conforming subdivisions
are equivalent to those without global continuity on ⇤-admissible subdivisions
T 2 T⇤, provided || . ||1,T (defined in (9.2)) is used as norm on ET . We define

f
=,�1
#

(E) := inf
T2T⇤#

inf
ET 2S

=,�1
T

||E � ET ||1,T (9.18)
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and A�1
B

:= A�1
B

(�1
0(⌦);T0) to be the class of functions E 2 �1

0(⌦) such that

|E |A�1
B

:= sup
# �#T0

⇣
#
B

f
=,�1
#

(E)
⌘
< 1 ) f

=,�1
#

(E)  |E |A�1
B
#
�B
.

Note the scaling parameter 0 for jumps in the definition of f=,�1
#

is just 0 = 1.
The following result can be traced back to [Bonito and Nochetto 2010].

Proposition 9.4 (equivalence of classes for u) Let T0 be an initial conforming
subdivision satisfying Assumption 6.19 (initial labeling). There are two constants
< 2 N and ⇠ � 1 such that for all # � #T0 and all E 2 �1

0(⌦)

f
=,�1
#

(E)  f=,0
#

(E) and f
=,0
<#

(E)  ⇠f=,�1
#

(E).

In particular, the approximation classes coincide A0
B
⌘ A�1

B
, B � 0.

Proof. The start with the first inequality. For E 2 �1
0(⌦) and # � #T0, we let

T 2 T# be a conforming subdivision of T0 and E0
T
2 V0

T
⇢ V�1

T
be such that

f
=,0
#

(E) = |E � E
0
T
|
�

1
0 (⌦).

Because E � E0
T
2 �

1
0(⌦), we have ||E � E

0
T
||1,T = |E � E

0
T
|
�

1
0 (⌦) and thus

f
=,�1
#

(E)  |E � E
0
T
|
�

1
0 (⌦) = f

=,0
#

(E).

We now prove the second inequality. For E 2 �1
0(⌦) and # � #T0, let T 2 T⇤

#

be a ⇤-admissible mesh with # elements and ET 2 V�1
T

be so that

||E � ET ||1,T = f=,�1
#

(E).

We first show that IdG
T
ET 2 V0

T
satisfies

|E � I
dG
T
ET |� 1

0 (⌦) . f
=,�1
#

(E).

Indeed, using the triangle inequality we obtain

||E � I
dG
T
ET ||1,T  ||E � ET ||1,T + ||ET � I

dG
T
ET ||1,T .

Interpolation estimate (9.15) yields

||ET � I
dG
T
ET ||1,T . k⌘�1/2

[[ET]] k!2(F+), (9.19)

because ET � IdG
T
ET 2 V�1

T
, whence

|E � I
dG
T
ET |� 1

0 (⌦) = ||E � I
dG
T
ET ||1,T  ⇠f

=,�1
#

(E)

as claimed for a constant ⇠ � 1 independent of E and # . To assert an estimate
on f=,0

#
(E), we now exhibit a conforming refinement T of T with a comparable

number of elements. To do this, we note that because T 2 T⇤ is ⇤-admissible, it is
the product of successive calls [T9] = REFINE (T9�1,)9�1), 9 = 1, ..., �, where T9 is
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the smallest ⇤�admissible refinement of T9�1 such that the element )9�1 2 T9�1 is
bisected once. We now let T 2 T be the conforming subdivision obtained from the
successive calls [T 9] = REFINE (T 9�1, {)9�1} \ T 9�1) with T 0 = T0 but where
this time REFINE produces the smallest conforming refinement of T 9�1 where
the element of )9�1 is bisected once if )9�1 2 T 9�1 or otherwise T 9 = T 9�1.
A simple induction argument, exploiting the minimality of the meshes generated
by REFINE , reveals that T 9 � T9 for 0  9  �. Consequently, Theorem 3.16
(complexity of REFINE ) guarantees that

#T � #T0  ⇡

��1’
9=0

#
�
{)9�1} \ T 9�1

�
 ⇡�  ⇡

�
#T � #T0

�

whence #T  ⇡#T  <# with < := d⇡e because ⇡ � 1.
Therefore, V0

T
⇢ V0

T
because T is a conforming refinement of T . Since

#T  <# and I
dG
T
ET 2 V0

T
, we deduce

f
=,0
<#

(E)  |E � I
dG
T
ET |� 1

0 (⌦)  ⇠f
=,�1
#

(E),

which is the desired inequality. Finally, the equivalence of moduli of approximation
yields A0

B
⌘ A�1

B
and completes the proof.

Remark 9.5 (equivalent classes for D) The approximation classes for data D =
(G, 2, 5 ), namelyMB((!A (⌦))3⇥3);T0,CB(!@(⌦);T0) andFB(��1(⌦);T0), are defined
for conforming subdivisions in Section 6. However, repeating the construction of
the smallest conforming refinement T of any ⇤-admissible subdivision T , and us-
ing the fact that #T ⇡ #T proved above, we deduce that these classes are equivalent
to their counter-parts on non-conforming meshes. Therefore, we do not repeat the
proof here and use from now on the same notation to denote the approximation
classes on ⇤-admissible subdivisions.

9.2 Discontinuous Galerkin formulation

This section discusses the SOLVE routine at the core of the module GALERKIN-

DG. Recall that within the two-step method AFEM-DG-TS, data D = (G, 2, 5 ) is
approximated by bD = (bG,b2, b5 ) 2 DbT subordinate to a partition bT 2 T⇤. For

a subdivision T 2 T⇤, T � bT , the Galerkin solution [DT] = SOLVE(T ) is
constructed to approximate bD = D( bD) 2 �1

0(⌦), the exact weak solution of the

perturbed problem (5.5) with approximate data bD = (bG,b2, b5 ) constructed using
Algorithm 7.23 (DATA). Corollary 7.24 (performance of DATA) guarantees that the
output [ bD,

bT] of DATA satisfies the structural assumption

bG 2 "(bU1,bU2), b2 2 '(b21,b22) (9.20)
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with 0 < bU1  bU2 and � bU1

2⇠2
%
 b21  b22 upon replacing the Poincaré constant⇠% by

the larger constant ⇠% appearing in Lemma 9.3 in Algorithm 7.14 (CONSTRAINT-

c ). We do not specify the dependency on bU1, bU2, b21, and b22 of the constants
appearing in the analysis below. We also emphasize that the constants involved
in (9.20) do not depend on bT and are thus uniform among all the discrete data
constructed within AFEM-DG-TS.

Relation (9.20) not only ensures the existence and uniqueness of a solutionbD 2 �1
0(⌦) satisfying the perturbed problem (5.5) but also, as we shall see in

Corollary 9.8, the existence and uniqueness of its discontinuous Galerkin approx-
imation. We first present the standard symmetric interior penalty method and point
out its consistency requires the exact solution D 2 �B(⌦), B > 3/2. To circum-
vent this rather restrictive assumption, we introduce lifting operators allowing a
reformulation valid in �1(⌦). However, this reformulation is only consistent on
the conforming subspace V0

T
= V�1

T
\ �

1
0(⌦) and requires our analysis to decom-

pose the discrete space V�1
T

into V0
T

and its complement V?
T

with respect to an
appropriate scalar product.

9.2.1 The symmetric interior penalty method
The symmetric interior penalty (SIP) formulation is the most standard discontinu-
ous Galerkin method. For T 2 T⇤, it consists in finding DT 2 V�1

T
satisfying

BT [DT , E] = hb5 , EiT , 8E 2 V�1
T
, (9.21)

where BT : V�1
T
⇥ V�1

T
! R is the bilinear form defined by

BT [F, E] :=
π
⌦

(rTE ·
bGrTF + b2FE) � ’

� 2F+

π
�

[[E]] n� · {{bGrTF}}

�

’
� 2F+

π
�

[[F]] n� · {{bGrTE}} + ^

’
� 2F+

π
�

⌘
�1
�

[[F]] [[E]] .

(9.22)

The parameter ^ > 0 is responsible for keeping the discontinuity of the Galerkin
solution under control and its value is discussed below. Unless specified otherwise,
all the constant appearing in the discussion below are independent of ^ and the nota-
tion � . ⌫ signifies �  ⇠⌫ with a constant ⇠ independent of the discretization
parameters and ^.

A few comments regarding the weak formulation (9.21) are in order. An integ-
ration by parts reveals that the method is consistent whenever the exact solution
satisfies the additional regularity D 2 �B(⌦), B > 3/2. However, we do not make
this assumption in the analysis below but rather extend the formulation to the en-
ergy space ET � V�1

T
using lifting operators. The same integration by parts also

indicates that the term
Õ
� 2F+

Ø
�

[[F]] n� · {{bGrE}} is not necessary but included

to achieve a symmetric formulation. Recall that bG constructed by DATA is symmet-
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ric. In addition, the presence of hb5 , EiT is not standard but allows for right-hand
sides b

5 2 FbT and in turn for 5 2 ��1(⌦) within the AFEM-DG-TS algorithm.

9.2.2 Lifting operators
The interior penalty bilinear form (9.22) includes inter-element terms’

� 2F+

π
�

[[E]] n� · {{bGrTF}} +

’
� 2F+

π
�

[[F]] n� · {{bGrTE}}, (9.23)

which are not defined on �1(⌦) but on �B(⌦), B > 3/2. In turn, the method is
consistent when D 2 �B(⌦), B > 3/2. The key ingredient to extend BT [F, E] to
ET⇥ET without additional regularity is a lifting operator [Brezzi, Manzini, Marini,
Pietra and Russo 2000, Arnold, Brezzi, Cockburn and Marini 2002, Perugia and
Schötzau 2003, Houston, Schötzau and Wihler 2004, 2007, Bonito and Nochetto
2010] introduced in this section.

For =0 > 0, we define L
=
0

T
: ET ! [S=

0
,�1

T
]
3 by the relationsπ

⌦
L
=
0

T
[E] · bGw =

’
� 2F+

π
�

[[E]] n� · {{bGw}}, 8w 2 [S=
0
,�1

T
]
3

. (9.24)

From this definition, we easily deduce a !2 stability estimate.

Lemma 9.6 (stability of lift) Let T 2 T⇤ be a ⇤�admissible subdivision of T0

satisfying Assumption 6.19 (initial labeling). Assume bG 2 "(bU1,bU2) with 0 <bU1  bU2. For =0 � 0 and all E 2 S=
0
,�1

T
, there holds

kL
=
0

T
[E]k

!
2(⌦)  ⇠k⌘

�1/2
[[E]] k

!
2(F+), (9.25)

where ⇠ = ⇠(bU2/bU1, =
0
,T0).

Proof. Let E 2 S=
0
,�1

T
and set w = L

=
0

T
[E] in (9.24) to write

kbG1/2
L
=
0

T
[E]k

2
!

2(⌦) =
π
⌦
L
=
0

T
[E] · bGL=

0

T
[E]

=
’
� 2F+

π
�

⌘
�1/2

[[E]] n� · ⌘
1/2

{{bGL=
0

T
[E]}}

 k⌘
�1/2

[[E]] k
!

2(F+)k⌘
1/2

{{bGL=
0

T
[E]}}k

!
2(F+).

A local inverse estimate along with the eigenvalue bounds for bG 2 "(bU1,bU2) yields

k⌘
1/2

{{bGL=
0

T
[E]}}k

!
2(F+)  ⇠bU2kL

=
0

T
[E]k

!
2(⌦),

where⇠ only depends on =0 and on the shape regularity constant of T0. Combining
the above two inequalities and taking advantage again of the assumption bG 2
"(bU1,bU2) implies (9.25).

We record two estimates based on (9.25) and used multiple times in the analysis
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below. Combining the estimate (9.25) on the lifting operator with assumption
(9.20) and a Cauchy-Schwarz inequality we find thatπ

⌦
L
=
0

T
[E] · bGrTF  ⇠liftk⌘

�1/2
[[E]] k

!
2(F+)krTFk!2(T), 8E,F 2 ET , (9.26)

for a constant ⇠lift = ⇠lift(bU1,bU2, =
0
,T0) and in particular independent of the dis-

cretization parameters and ^. This, together with a Young inequality, yields for any
n > 0 the second estimate for all E,F 2 ETπ

⌦
L
=
0

T
[E] · bGrTF 

⇠
2
lift

2n
k⌘
�1/2

[[E]] k
2
!

2(F+) +
n

2
krTFk

2
!

2(T). (9.27)

We now return to the SIP weak formulation (9.21) and take advantage of the
lifting operators to deduce an equivalent expression of the bilinear form BT on
V�1

T
, which is well defined on ET . The problematic inter-elements terms (9.23) are

equivalently rewritten asπ
⌦
L
=
0

T
[E] · bGrTF +

π
⌦
L
=
0

T
[F] · bGrTE (9.28)

provided

rTV
�1
T
⇢ [S=

0
,�1

T
]
3

.

The above condition is satisfied when =0 � = � 1 for subdivisions T made of
simplices and =0 � = for hexahedra. To continue with an analysis incorporating
both case, we set =0 = = and write LT := L

=

T
. With this choice, the bilinear form

BT in the symmetric interior penalty method (9.21) reads

BT [F, E] = 0T [F, E] �
π
⌦
LT [E] ·

bGrTF

�

π
⌦
LT [F] ·

bGrTE + ^

’
� 2F+

π
�

⌘
�1
�

[[F]] [[E]] ,

(9.29)

for all F, E 2 V�1
T

and where we used

0T [F, E] :=
π
⌦
rTE ·

bGrTF + b2FE (9.30)

to denote the bilinear form related to the conforming method.
Expression (9.29) is well defined for F, E 2 ET and the weak formulation (9.21)

is well-posed. These two claims follow from Corollary 9.8 below, which in turn is
a consequence of the next result focusing on the bilinear form 0T ; we recall (5.52).

Lemma 9.7 (properties of aT) Let T 2 T⇤ be a ⇤�admissible refinement of T0

satisfying Assumption 6.19 (initial labeling). Furthermore, assume that bG and b2
satisfy the structural assumption (9.20). Then, we have

0T [F, E]  (bU2 + |b22 |⇠
2
%

)||E ||1,T ||F ||1,T , 8E,F 2 ET (9.31)
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and

0T [E, E] �
bU1

2
krTEk

2
!

2(⌦) + min(0,b21)⇠2
%
k⌘
�1/2

[[E]] k
2
!

2(F+), 8E 2 ET ,

(9.32)
where ⇠% is the constant in Lemma 9.3 (Poincaré-type inequality in ET).

Proof. We start with the continuity estimate (9.31). The assumption on the
discretized coe�cients implies that for E,F 2 ET there holds

0T [F, E]  U2krTFk!2(T)krTEk!2(T) + |22 |kFk!2(⌦)kEk!2(⌦).

It remains to invoke Lemma 9.3 (Poincaré-type inequality on ET) to deduce (9.31).
Similarly for the partial coercivity estimate (9.32), we have

0T [E, E] � bU1krTEk
2
!

2(⌦) + b21kEk
2
!

2(⌦) � bU1krTEk
2
!

2(⌦) + min(0,b21)⇠2
%
||E ||

2
1,T

and the desired estimate follows from the assumption � bU1

2⇠2
%
 b21.

For the next result, we recall that the discrete norm k.k^ ,T is defined in (9.2).

Corollary 9.8 (properties of BT) Let T 2 T⇤ be a ⇤�admissible refinement of
T0 satisfying Assumption 6.19 (initial labeling). Furthermore assume that bG and b2
satisfy the structural assumption (9.20). There exist a constant ⇠cont such that

BT [F, E]  ⇠cont ||E ||^ ,T ||F ||^ ,T 8E,F 2 ET . (9.33)

Moreover, there are constants ^stab,⇠coer > 0 such that for all ^ > ^stab, there holds

⇠coer ||E ||
2
^ ,T
 BT [E, E] 8E 2 ET . (9.34)

In particular, the Galerkin formulation (9.21) has a unique solution DT 2 V�1
T

.

Proof. The continuity estimate is a direct consequence of the continuity estimate
(9.31), estimate (9.26) for the lifting terms, and Cauchy-Schwarz inequality

^

’
� 2F+

π
�

⌘
�1
�

[[F]] [[E]]  ^k⌘
�1/2

[[F]] k
!

2(F+)k⌘
�1/2

[[E]] k
!

2(F+),

which holds for all E,F 2 ET .
We now focus on the coercivity estimate (9.34) and start from (9.32), which we

write for E 2 ET as

bU1

2
krTEk

2
!

2(T) �max
�
0,�21 b⇠2

%

�
k⌘
�1/2

[[E]] k
2
!

2(F+)  0T [E, E] .
(9.35)

Furthermore, the terms involving the lifting operators in the definition (9.29) of the
bilinear form BT reduce to �2

Ø
⌦ LT [E] ·

bGrTE when F = E. Hence, the estimate
(9.27) with n = bU1/4 implies that

2

����
π
⌦
LT [E] ·

bGrTE

����  bU1

4
krTEk

2
!

2(T) +
4⇠2

LbU1
k⌘
�1/2

[[E]] k
2
!

2(F+).
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Gathering the above inequalities and recalling definition (9.29) of BT , we find that
U1

4
krTEk

2
!

2(T) + (^ � ^stab)k⌘�1/2
[[E]] k

2
!

2(F+)  BT [E, E]

with

^stab :=
4⇠2

L

U1
+ max

�
0,�b21⇠

2
%

�
.

The desired coercivity estimate directly follows provided ^ > ^stab.

9.2.3 Partial consistency and role of the conforming Galerkin solution
From now on, we shall use the expression of BT in (9.29) extending BT to ET⇥ET .
This reformulation comes at the price of a partial consistency. Since LT [E] = 0
whenever E 2 �1

0(⌦) and the duality product h·, ·iT satisfies the consistency (9.4),
we have

BT [bD, E] = 0T [bD, E] = hb5 , EiT 8E 2 �
1
0(⌦), (9.36)

which indicates that the reformulation (9.29) using lifts is consistent on �1
0(⌦).

However, (9.36) does not hold for all E 2 V�1
T

.
This suggests splitting V�1

T
into a conforming space where the consistency holds

and its orthogonal complement. We decompose the discontinuous space as

V�1
T

= V0
T
� V?

T
, (9.37)

where V0
T
= V�1

T
\ �

1
0(⌦) is the finest conforming subspace of V�1

T
and V?

T
is the

orthogonal complement with respect to the BT [·, ·] scalar product. Note that the
later is well defined provided the assumption on the penalty parameter ^ > ^stab,
required by Corollary 9.8, is satisfied. From now on, we assume this is the case
and point out that although the constants appearing in the analysis below do not
depend on ^, they may depend on ^stab.

We also emphasize that there might not be a conforming subdivision associated
with V0

T
. The latter is the span of the basis functions associated with proper

nodes; see Figure 3.11 for an illustration and refer to Section 8 for more details.
Consequently, the analysis provided below relies on the decomposition (9.37) of
the space VT rather than on a subdivision T . It is also worth pointing out that the
conforming part D0

T
2 V0

T
of the Galerkin solution DT 2 V�1

T
satisfies

BT [D
0
T
, E] = hb5 , Ei, 8E 2 V0

T
. (9.38)

Hence, D0
T

is the conforming Galerkin approximation on V0
T

. As we shall see this
finest coarser conforming Galerkin solution plays a critical role in the convergence
of AFEM-DG-TS. This justifies the orthogonal decomposition (9.37) associated
with the BT scalar product.

Another advantage of using the BT-orthogonal decomposition (9.37) is that it
o�ers a control on the non-conforming component of E 2 V�1

T
by its scaled jumps.

To achieve this, the operator IdG
T

defined by (9.7) is instrumental.
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Lemma 9.9 (control of non-conformity) Let T 2 T⇤ be a ⇤�admissible refine-
ment of T0 satisfying Assumption 6.19 (initial labeling). Assume that bG and b2
satisfy the structural assumption (9.20). For ^ > ^stab, if E = E

0
+ E
?
2 V�1

T

according to (9.37), then

||E
?
||^ ,T . ^1/2

k⌘
�1/2 ⇥⇥

E
?
⇤⇤
k
!

2(F+) = ^
1/2
k⌘
�1/2

[[E]] k
!

2(F+).

Proof. Because IdG
T
E 2 V0

T
, the orthogonal decomposition (9.37) implies that

BT [E
?
, E
?
]  BT [E � I

dG
T
E, E � I

dG
T
E] .

The desired result follows from the coercivity (9.34) and continuity (9.33) of BT

along with the interpolation estimate (9.10).

9.3 A posteriori error estimates

We derive a residual error estimate for the discontinuous Galerkin method. Because
the data bD 2 DT is discrete, the analysis is free from data oscillation. In the notation
introduced in Section 4, this means ET = [T where for E 2 ET

[
2
T

(E) :=
’
) 2T

[T(E,))2
,

and

[T(E,))2 := ⌘)
’

� ⇢m) \m⌦

k 9T(E) � b
5 k

2
!

2(� ) + ⌘
2
)
kAT(E)k2

!
2() )

with 9T(E)|� := n� · [[bGrTE]] and AT(E)|) := b
5 � b2E + divT(bGrTE).

We start with a result mimicking the conforming argument, discuss its drawback
and improvement next.

Lemma 9.10 (a posteriori error estimates) Let T 2 T⇤ be a ⇤�admissible re-
finement of T0 satisfying Assumption 6.19 (initial labeling). Assume that bG and b2
satisfy the structural assumption (9.20). If ^ > ^stab, then there holds

||bD � DT ||2^ ,T . [T(DT)2
+ ^k⌘

�1/2
[[DT]] k

2
!

2(F+) (9.39)

and

⇠L [T(DT)  ||bD � DT ||^ ,T , (9.40)

for some constant ⇠L.

Proof. We start with the upper bound (9.39). To exploit the consistency (9.36)
in V0

T
, we decompose the error 4 := bD � DT 2 ET into a conforming part 40 :=

bD � D0
T
2 �

1
0(⌦) and a non-conforming part 4? := �D?

T
2 V�1

T
according to

(9.37). The proof thus relies on techniques used in the conforming theory coupled
with Lemma 9.9 (control of non-conformity). We denote by ⇠ a generic constant
independent of the discretization and ^ but possibly depending on ^stab.
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Using the coercivity (9.34) and partial consistency (9.36), we get

⇠coer ||4 ||
2
^ ,T
 BT [4, 4] = BT [4, 4

0
� IT4

0
] � BT [4, D

?

T
], (9.41)

where �T is the Scott-Zhang interpolant provided in Proposition 3.5. For the first
term, we note that since 40

� �T4
0
2 �

1
0(⌦) we have

BT [4, 4
0
� �T4

0
] = 0T [4, 40

� �T4
0
] �

π
⌦
LT [4] · Gr(40

� �T4
0).

For the term involving the bilinear form 0T we proceed as in the conforming case
to arrive at

0T [4, 4
0
� �T4

0
] . [T(DT)kr40

k
!

2(⌦).

This, combined with estimate (9.26) on the lifting operators and the �1 stability of
the Scott-Zhang interpolant, yield

BT [4, 4
0
� �T4

0
] .

⇣
[T(DT)2

+ k⌘
�1/2

[[DT]] k
2
!

2(F+)

⌘1/2
kr4

0
k
!

2(⌦).

We rewrite 40 = 4 + D
?

T
and use the estimate on the non-conforming component

provided by Lemma 9.9 along with a Young inequality to write

BT [4, 4
0
� �T4

0
]  ⇠

⇣
[T(DT)2

+ ^k⌘
�1/2

[[DT]] k
2
!

2(F+)

⌘
+
⇠coer

4
kr4k

2
!

2(⌦).

For the second term in (9.41), the continuity (9.33) of the bilinear form BT ,
Lemma 9.9 again, and a Young inequality yield

BT [4, D
?

T
] 

⇠coer

4
||4 ||

2
^ ,T

+ ⇠^k⌘
�1/2

[[DT]] k
2
!

2(F+).

Returning to (9.41), we find that

k4k
2
T
. [T(DT)2

+ ^k⌘
�1/2

[[DT]] k
2
!

2(F+),

which is the desired upperbound.
We finally deal with the lower bound (9.40). For ) 2 T and E 2 �1

0()), we getπ
)

(�divT(bGrTDT) + b2DT � b
5 )E =

π
)

rE · bGrT(bD � DT)E + b2(bD � DT)E.

For an interior face � 2 F , E 2 �1
0(l� ) withl� := {) 2 T : )\� < ;}, we haveπ

�

([[bGrTDT]] �
b
5 )E =

π
l�

(�divT(bGrTDT) + b2DT � b
5 )E

�

π
l�

rE · bGrT(bD � DT) � b2(bD � DT)E.

The desired lower bound follows from the same arguments as in the conforming
case; we refer to Proposition 4.12 (partial lower bound).
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Upper bound (9.39) may suggest adding the jump term ^
1/2
k⌘
�1/2

[[DT]] k!2(F+)
to the residual estimator [T(DT). This would result in a clean upper bound but,
because of the presence of negative powers of the meshsize, would be at the expense
of destroying the monotonicity property of the estimator; see e.g. Proposition 4.56
(estimator reduction). The later is instrumental in the analysis provided below.

The next result mitigates the e�ect of the additional jump term by showing that
k⌘
�1/2

[[DT]] k!2(F+) can be bounded by [T(DT)/^ and thus can be absorbed by
the estimator in the upper bound provided ^ is su�ciently large. We follow the
proof provided in [Bonito and Nochetto 2010] and refer to [Karakashian and Pascal
2007, eq. (3.20)] for an alternative (original) proof.

Lemma 9.11 (discontinuity control) Let T 2 T⇤ be a ⇤�admissible refinement
of T0 satisfying Assumption 6.19 (initial labeling). Assume that bG and b2 satisfy the
structural assumption (9.20). There exists a constant ^jump � ^stab > 0 such that if
^ � ^jump then there holds

k⌘
�1/2

[[DT]] k!2(F+) . ^
�1
[T(DT).

Proof. For E0
T
2 V0

T
we realize that because [[E

0
T
]] = 0, the coercivity estimate

(9.34) implies that

⇠coerc^k⌘
�1/2

[[DT]] k
2
!

2(F+)  BT [DT � E
0
T
, DT � E

0
T
] . (9.42)

We now rewrite the right-hand side of (9.42) to produce residual terms. Since DT
solves (9.21), we have

BT [DT � E
0
T
, DT � E

0
T
] = hb5 , DT � E0

T
iT � BT [E

0
T
, DT � E

0
T
] . (9.43)

We concentrate for the moment on the second term. Since [[E
0
T
]] = 0, the stabiliz-

ation term vanishes as well:

^

’
� 2F+

π
�

⇥⇥
E

0
T

⇤⇤ ⇥⇥
DT � E

0
T

⇤⇤
= 0.

Hence, writing E0
T
= DT + (E0

T
� DT), we deduce that

BT [E
0
T
, DT � E

0
T
] = 0T [DT , DT � E0

T
]

� 0T [DT � E
0
T
, DT � E

0
T
] �

π
⌦
rE

0
T
· bGLT [DT],

where we invoked again the property [[E
0
T
]] = 0 to infer that LT [E

0
T
] = 0. Integ-

rating by parts the first term on the right-hand side, adding it to the first term on
the right-hand side of (9.43), and using the extended definition (9.3) of the duality
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pairing leads to the following expression involving the residuals AT(DT), 9T(DT):

BT [DT � E
0
T
, DT � E

0
T
] =

π
⌦
AT(DT)(DT � E0

T
) +

π
F+

�
9T(DT) � b

5

�
{{DT � E

0
T
}}

+ 0T [DT � E
0
T
, DT � E

0
T
] �

π
⌦
r(DT � E0

T
) · bGLT [DT] .

We point out that we have also employed the definition (9.24) of lift to rewrite the
resulting face terms. Inserting this estimate back in (9.42), together with the bound
(9.26) for lifts and the continuity estimate (9.31) of 0T , gives

^k⌘
�1/2

[[DT]] k
2
!

2(F+) . ||DT � E
0
T
||
2
1,T

+ [T(DT)
⇣
k⌘
�1(DT � E0

T
)k
!

2(⌦) + k⌘
�1/2

{{DT � E
0
T
}}k

!
2(F+)

⌘
.

Note that the presence of || . ||1,T rather than || . ||^ ,T on the right-hand side of the
above estimate is critical for the argument below. The former is independent of
^ and can thus be absorbed on the left-hand side for su�ciently large ^ provided
E

0
T
= I

dG
T
DT . In fact, the interpolation estimates (9.15) in turn imply

k⌘
�1(DT � IdG

T
DT)k

!
2(⌦) + k⌘

�1/2
{{DT � I

dG
T
DT}}k!2(F+)

+ ||DT � I
dG
T
DT ||1,T . k⌘�1/2

[[DT]] k!2(F+).

Hence, a Young’s inequality yields

(^ � ^stab)k⌘�1/2
[[DT]] k

2
!

2(F+) . ^
�1
[T(DT)2

+ k⌘
�1/2

[[DT]] k
2
!

2(F+),

and the desired estimate follows provided ^ is su�ciently large.

As a direct consequence of the previous Lemma, we obtain a simpler practical
upper bound.

Corollary 9.12 (stabilization-free a posteriori upper bound) Under the assump-
tions of Lemma 9.11, there exists a constant ⇠U such that for all ^ � ^jump we have

||bD � DT ||^ ,T  ⇠U [T(DT). (9.44)

Proof. Combine the upper bound (9.39) and Lemma 9.11.

The partial consistency (9.36) leads to partial Galerkin orthogonality

BT [bD � DT , E] = 0 8E 2 V0
T
. (9.45)

This would suggest that a quasi-best approximation (Cea’s lemma) result in the full
space V�1

T
is questionable. However, the lack of consistency is built into the jump

terms which are in turn controlled by the estimator weighted by a negative power
of the penalty parameter ^. It thus remains to resort to the lower bound to return
to the error and derive a quasi-best approximation estimate for su�cienlty large
^. We prove this result next, which expresses the important fact that dG is quasi-
optimal with respect to the norm || · ||^ ,T defined in (9.2). This has two significant
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consequences: first it leads to quasi-monotonicity of the error upon refinement
(see Corollary 9.14 below), and second it dictates the approximation class for dG
already alluded to in Proposition 9.4 (equivalence of classes for D).

Corollary 9.13 (Cea’s lemma) Under the assumptions of Lemma 9.11, there is
^Cea � ^jump such that for ^ � ^Cea, there holds

||bD � DT ||^ ,T  ⇠Cea inf
ET 2V�1

T

||bD � ET ||^ ,T . (9.46)

Proof. We combine the orthogonal decomposition (9.37) and the partial Galerkin
orthogonality (9.45) to write

BT [bD � DT ,bD � DT] = BT [bD � DT ,bD � ET] � BT [bD � DT , D?T] + BT [bD � DT , E?T]
for all ET 2 VT . Invoking the coercivity and continuity of BT in Lemma 9.8)
(properties of BT) in conjunction with Lemma 9.9 (control of discontinuity) yields

||bD � DT ||^ ,T . ||bD � ET ||^ ,T + ^
1/2
k⌘
�1/2

[[DT]] k!2(F+) + ^
1/2
k⌘
�1/2

[[ET]] k!2(F+).

Applying now Lemma 9.11 (discontinuity control) results in

k⌘
�1/2

[[DT]] k!2(F+) . ^
�1
[T(DT) . ^�1

||bD � DT ||^ ,T
because of the lower bound (9.40). We thus end up with

||bD � DT ||^ ,T . ||bD � ET ||^ ,T + ^
�1/2

||bD � DT ||^ ,T ,
which for ^ su�ciently large gives the desired bound.

With this best approximation result, we deduce the following crucial property.

Corollary 9.14 (quasi-monotonicity) Under the assumptions of Lemma 9.11, there
is a constant ⇠Mo independent of the discretization parameters and ^ such that for
all ^ � ^jump and all T⇤ � T we have

||bD � DT⇤ ||^ ,T⇤  ⇠Mo ||bD � DT ||^ ,T . (9.47)

Proof. We rely on the orthogonal decomposition (9.37) to write DT = D0
T
+ D
?

T

and on Corollary 9.13 (Cea’s lemma). Since D0
T
2 V0

T
⇢ V�1

T⇤
, we see that

⇠
�1
Cea ||bD � DT⇤ ||^ ,T⇤  ||bD � D0

T
||^ ,T⇤ = |bD � D0

T
|
�

1
0 (⌦) = ||bD � D0

T
||^ ,T .

Therefore, adding and subtracting D?
T

and making use of Lemma 9.9 (control of
non-conformity) together with Lemma 9.11 (discontinuity control) implies

||bD � DT⇤ ||^ ,T⇤ . ||bD � DT ||^ ,T + ^
�1/2

[T(DT).

It remains to invoke the lower bound (9.40) to deduce the desired result.

Corollary 9.14 assumes the same data. In estimating the cost of GALERKIN-DG

we need a variant of this result that allows for di�erent data. We establish this next.
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Corollary 9.15 (quasi-monotonicity with di�erent data) LetT⇤ � T and bD⇤, bD
be discrete data on these meshes. Let bD⇤ = D( bD⇤),bD = D( bD) 2 �

1
0(⌦) and

DT⇤ 2 V
�1
T⇤
, DT 2 V�1

T
be the corresponding exact and Galerkin solutions. Under

the assumptions of Lemma 9.11, for ^ � ^jump there holds

||bD⇤ � DT⇤ ||^ ,T⇤  ⇠Mo
�
||bD � DT ||^ ,T + |bD⇤ � bD |

�
1
0 (⌦)

�
. (9.48)

Proof. We proceed as in the proof of Corollary 9.14 with bD⇤, but in the last step
use the fact DT and bD are the functions associated with the same data bD and thereby
satisfy ⇠![T(DT)  kbD � DT k^ ,T according to (9.40). Applying the triangle
inequality and the property ||bD⇤ � bD ||^ ,T = |bD⇤ � bD |

�
1
0 (⌦) concludes the proof.

We end this section with the dG counterpart of Theorem 4.48 (upper bound for
corrections). One striking di�erence is that the lack of consistency prevents the
discrete lower bound in the dG context from localizing to the refined set T \ T⇤

for T⇤ � T . Rather, it contains a global jump term that expresses the lack of
conformity and vanishes as ^ !1 in view of Lemma 9.11 (discontinuity control).
This is consistent with the upper bound (9.39). We use the notation lT(g) for a set
of elements g 2 T to denote g augmented by one layer of elements

l(g) := lT(g) =
ÿ
) 2g

lT()).

Lemma 9.16 (quasi-localized discrete upper bound) Let T ,T⇤ 2 T⇤, with T⇤ �

T , be two ⇤�admissible refinements of T0 satisfying Assumption 6.19 (initial
labeling). Assume that bG and b2 satisfy the structural assumption (9.20), b

5 2 FT ,
and denote by DT 2 V�1

T
, DT⇤ 2 V

�1
T⇤

the two Galerkin solutions associated with T ,
T⇤ respectively. There is a constant ⇠LU such that for all ^ > ^stab we have

||D
0
T⇤
� DT ||

2
^ ,T
 ⇠

2
LU

⇣
[

2
T

�
DT ,l(T \ T⇤)

�
+ ^k⌘

�1/2
[[DT]] k

2
!

2(F+)

⌘
,

where DT⇤ = D
0
T⇤

+ D
?

T⇤
is the orthogonal decomposition according to (9.37).

Moreover, if ^ � ^jump, there holds

||D
0
T⇤
� DT ||

2
^ ,T
 ⇠

2
LU

�
[

2
T

�
DT ,l(T \ T⇤)

�
+ ^
�1
[

2
T

(DT)
�
. (9.49)

Proof. We decompose DT⇤ = D
0
T⇤
+ D
?

T⇤
according to (9.37), exploit the partial

consistency (9.36) for D0
T⇤

with E0
2 V0

T
, and b

5 2 FT ⇢ FT⇤ to obtain

BT⇤ [DT⇤ , E
0
] = 0T⇤ [DT⇤ , E

0
] = 0T [DT⇤ , E

0
] = BT [DT⇤ , E

0
] = hb5 , E0

iT .

Since BT [DT , E
0
] = hb5 , E0

iT , we readily see that

BT [D
0
T⇤
� DT , E

0
] = 0 8E

0
2 V0

T
.

We rely on this reduced form of Galerkin orthogonality to prove the assertions. To
this end, we write D0

T⇤
� DT = 40

⇤ � D
?

T
, with 40

⇤ := D0
T⇤
� D

0
T

. Using the coercivity
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estimate (9.34) for E = D0
T⇤
� DT 2 ET yields for ^ � ^stab

||D
0
T⇤
� DT ||

2
^ ,T
. BT [D

0
T⇤
� DT , D

0
T⇤
� DT]

= BT [D
0
T⇤
� DT , 4

0
⇤] � BT [D

0
T⇤
� DT , D

?

T
] .

(9.50)

Note that the last term cannot be localized and accounts for the lack of consistency
of the dG method. However, it can be made arbitrarily small by increasing the
penalty parameter ^. In fact, combining the continuity (9.33) with Lemma 9.9
(control of non-conformity) gives

BT [D
0
T⇤
� DT , D

?

T
] . ^1/2

k⌘
�1/2

[[DT]] k!2(F+) ||D
0
T⇤
� DT ||^ ,T .

To localize BT [D
0
T⇤
� DT , 4

0
⇤], we choose E0 = I

dG
T
4

0
⇤, where the interpolation

operator I
dG
T

is given by (9.7), and exploit the reduced Galerkin orthogonality.
Since 40

⇤ �I
dG
T
4

0
⇤ 2 �

1
0(⌦), the decomposition (9.29) of the bilinear form BT reads

BT [D
0
T⇤
� DT , 4

0
⇤] = BT [D

0
T⇤
� DT , 4

0
⇤ � I

dG
T
4

0
⇤]

= 0T [D0
T⇤
� DT , 4

0
⇤ � I

dG
T
4

0
⇤] �

π
⌦
LT [D

0
T⇤
� DT] ·

bGrT(40
⇤ � I

dG
T
4

0
⇤).

We handle the first term as in the conforming case (Theorem 4.48), namely

0T(D0
T⇤
� DT , 4

0
⇤) . [T

�
DT ,l(T \ T⇤)

�
|D

0
T⇤
� D

0
T
|
�

1
0 (⌦).

Note that the interpolation estimate (9.9) for IdG
T

is responsible for the appearance
of l(T \ T⇤) rather than the smaller set T \ T⇤.

For the second term, we use the lift estimate (9.26) along with the �1-stability
of IdG

T
and [[D

0
T⇤
]] = 0 to writeπ

⌦
LT [D

0
T⇤
� DT] ·

bGrT4
0
⇤ . k⌘

�1/2
[[DT]] k!2(F+) |D

0
T⇤
� D

0
T
|
�

1
0 (⌦).

Inserting the estimates into (9.50), and recalling that 1 . ^stab  ^, we find that

||D
0
T⇤
� DT ||

2
^ ,T
. ^1/2

k⌘
�1/2

[[DT]] k!2(F+) ||D
0
T⇤
� DT ||^ ,T

+

⇣
[T(DT ,T \ T⇤) + ^1/2

k⌘
1/2

[[DT]] k!2(F+)

⌘
|D

0
T⇤
� D

0
T
|
�

1
0 (⌦).

Notice that D0
T⇤
� D

0
T
= D

0
T⇤
� DT + D

?

T
so that in view of Lemma 9.9 (control of

non-conformity), we have

|D
0
T⇤
� D

0
T
|
�

1
0 (⌦) = ||D

0
T⇤
� D

0
T
||^ ,T . ||D

0
T⇤
� DT ||^ ,T + ^

1/2
k⌘
�1/2

[[DT]] k!2(F+).

The first desired inequality follows from the last two estimates. For the second
inequality, it su�ces to further invoke Lemma 9.11 (discontinuity control).

9.4 Module GALERKIN-DG

The main ingredients for the a posteriori estimation have been derived in the
previous section and we can now turn our attention to the adaptive method. In
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essence, it is the same as in the conforming case (Algorithm 5.4) but accounting
for the perturbation arising from the non-conforming setting. Compared to Al-
gorithm 5.4, SOLVE (T ) determines the discontinuous Galerkin solution to (9.21)
and REFINE (T ,M) produce the smallest ⇤-admissible refinement of T where all
the marked elements M are refined at least 1 � 1 times.

Algorithm 9.17 (GALERKIN-DG) Let bT � T0 be a ⇤-admissible refinement, ⇤ �
0, of a suitable initial mesh T0. Let data bD = (bG,b2, b5 ) 2 DbT be discrete on bT
and Y > 0 be a stopping tolerance. The following routine creates a ⇤-admissible
refinement T � bT and discontinuous Galerkin solution DT 2 V�1

T
for data bD such

that [T(DT)  Y.

[T , DT] = GALERKIN-DG (bT ,
bD, Y)

set 9 = 0,T0 = bT and do
[D 9] = SOLVE (T9);
[{[ 9(D 9 ,))}) 2T9 ] = ESTIMATE (D 9 ,T9 , bD);
if [ 9(D 9)  Y;

return (T9 , D 9)
[M 9] = MARK

�
{[ 9(D 9 ,))}) 2T9 ,T9 , \

�
;

[T9+1] = REFINE (T9 ,M 9);
9  9 + 1;

while true

We start the analysis of GALERKIN-DG by investigating how the energy norm
BT [E, E]

1/2 changes upon refining T . Note that in the conforming case, Lemma 5.2
(Pythagoras) directly provides the relation |||bD � DT⇤ |||⌦  |||bD � DT |||⌦. In the non-
conforming setting, the constant on the right-hand side is no longer 1 and jumps
terms are present in the estimate. Regardless, it is possible to assess the e�ect
of refinement in the energy norm and, in turn, compare two consecutive Galerkin
solutions DT and DT⇤ where T 2 T⇤ and T⇤ = REFINE (T ,M) for some M ⇢ T .
This is the subject of the next three results but before embarking on this path, we
mention a key ingredient for this comparison to hold: the routine REFINE does not
refine elements in T more than 3 times for 1 = 1; see Corollary 3.31. This implies
for any � 2 F + and �⇤ 2 F +

⇤ with �⇤ ⇢ �, one has

⌘� . ⌘�⇤ . (9.51)

Lemma 9.18 (mesh perturbation) Let T 2 T⇤ be a ⇤�admissible refinement of
T0 satisfying Assumption 6.19 (initial labeling),M ⇢ T , andT⇤ = REFINE (T ,M).
Assume that bG and b2 satisfy the structural assumption (9.20). There is a constant
⇠ such that for 0 < Y < 1 and all E 2 ET there holds

BT⇤ [E, E]  (1 + Y)BT [E, E] + ⇠Y
�1
^k⌘

�1/2
[[E]] k

2
!

2(F+). (9.52)
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Proof. Because rT⇤E = rTE when E 2 ET , we directly deduce that

BT⇤ [E, E] =BT [E, E] + 2
π
⌦

(LT [E] � LT⇤ [E]) · bGrTE

+ ^k⌘
�1/2
⇤ [[E]] k

2
!

2(F+
⇤ ) � ^k⌘

�1/2
[[E]] k

2
!

2(F+),

(9.53)

where ⌘⇤ := ⌘T⇤ denotes the mesh size of T⇤.
Unlike the broken gradients, the lifting operators are a�ected by refinements.

However, this e�ect is controlled by the scaled jumps as we show now. Using
estimate (9.27) twice with n = Y⇠coer

2 yields

2
π
⌦

(LT [E] � LT⇤ [E]) · bGrTE

 Y⇠coerkrTEk
2
!

2(T) +
2⇠2

lift

Y⇠coer

⇣
k⌘
�1/2
⇤ [[E]] k

2
!

2(F+
⇤ ) + k⌘

�1/2
[[E]] k

2
!

2(F+)

⌘
.

Hence, the coercivity estimate (9.34) gives

2
π
⌦

(LT [E] � LT⇤ [E]) · bGrTE

 nBT [E, E] +
2⇠2

lift

Y⇠coer

⇣
k⌘
�1/2

[[E]] k
2
!

2(F+) + k⌘
�1/2
⇤ [[E]] k

2
!

2(F+
⇤ )

⌘
.

Inserting this back into (9.53), and using the fact that the jumps of E occur only on
F

+
⇢ F

+
⇤ , the meshsize relation (9.51) proves the desired estimate.

Lemma 9.19 (comparison of solutions) Let T 2 T⇤ be a ⇤�admissible refine-
ment of T0 satisfying Assumption 6.19 (initial labeling), M ⇢ T , and T⇤ =
REFINE (T ,M). Assume that bG and b2 satisfy the structural assumption (9.20).
Let bD = D( bD) 2 �1

0(⌦) be the solution of the perturbed problem (5.5) with discrete

data bD and denote by DT 2 V�1
T

, DT⇤ 2 V
�1
T⇤

the Galerkin solutions associated to

T , T⇤ respectively with data bD. Let ^jump be as in Lemma 9.11. There exists a
constant ⇠comp such that for all ^ � ^jump and all 0 < n < 1 we have

BT⇤ [bD � DT⇤ ,bD � DT⇤]  (1 + n)BT [bD � DT ,bD � DT]
�
⇠coer

2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

+
⇠comp

n^

�
[T(DT)2

+ [T⇤(DT⇤)
2�

.

Proof. We invoke the partial Galerkin orthogonality (9.45) of bD�DT⇤ upon testing
with E0 := D0

T⇤
� D

0
T
2 V0

T⇤
:

BT⇤ [bD � DT⇤ ,bD � DT⇤] = BT⇤ [bD � DT⇤ + E0
,bD � DT⇤ + E0

] � BT⇤ [E
0
, E

0
] .

Note that

bD � DT⇤ + E0 = bD � DT + D
?

T
� D
?

T⇤

and ||E
0
||^ ,T⇤ = krT⇤E

0
k
!

2(T⇤), which is critical for the argument below. Hence,



AFEM 255

from the coercivity and continuity of BT⇤ (Corollary 9.8), we deduce that

BT⇤ [bD � DT⇤ ,bD � DT⇤]
 BT⇤ [bD � DT ,bD � DT] + 2⇠1/2

contBT⇤ [bD � DT ,bD � DT]1/2
||D
?

T
� D
?

T⇤
||^ ,T⇤

+ ⇠cont ||D
?

T
� D
?

T⇤
||
2
^ ,T⇤
� ⇠coerkrT⇤(D

0
T⇤
� D

0
T

)k2
!

2(T⇤)
.

We now apply the reverse triangle inequality and Young’s inequality

krT⇤(D
0
T⇤
� D

0
T

)k2
!

2(T⇤)
�

1
2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)
� krT⇤(D

?

T⇤
� D
?

T
)k2
!

2(T⇤)

to deduce that for any 0 < Y < 1

BT⇤ [bD � DT⇤ ,bD � DT⇤] (1 + Y)BT⇤ [bD � DT ,bD � DT]
�
⇠coer

2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

+
⇠

Y

||D
?

T⇤
� D
?

T
||
2
^ ,T⇤

,

where ⇠ is for the remainder of this proof a constant independent of the discretiz-
ation parameters and ^.

To bound the last term we recall Lemma 9.9 (control of non-conformity)

||D
?

T⇤
� D
?

T
||^ ,T⇤ . ^

1/2
k⌘
�1/2
⇤ [[DT⇤]] k!2(F+

⇤ ) + ^
1/2
k⌘
�1/2
⇤ [[DT]] k!2(F+

⇤ ),

and notice that the last integral over F +
⇤ has weights relative to the local meshsize

of T⇤ � T . Since for consecutive meshes the local meshsizes are comparable,
according to (9.51), we can write k⌘�1/2

[[DT]] k!2(F+) instead. Inserting these
expressions in the preceding estimate, and using Lemma 9.18 (mesh perturbation)
to replace BT⇤ with BT on the right-hand side, yields

BT⇤ [bD � DT⇤ ,bD � DT⇤] (1 + Y)BT [bD � DT ,bD � DT] � ⇠coer

2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

+ ⇠
^

Y

⇣
k⌘
�1/2
⇤

⇥⇥
DT⇤

⇤⇤
k

2
!

2(F+
⇤ ) + k⌘

�1/2
[[DT]] k

2
!

2(F+)

⌘
,

where 2Y has been relabeled Y. Finally, to derive the desired estimate, it remains
to invoke Lemma 9.11 (discontinuity control).

Combining Lemma 9.19 (comparison of solutions) with Lemma 9.10 (a posteri-
ori error estimate), we derive the following dG version of Lemma 5.2 (Pythagoras).

Corollary 9.20 (quasi-orthogonality of dG errors) If the assumptions of Lemma
9.19 hold, then for all ^ � ^QO := ⇠2><?

Y
2
⇠!

and 0 < Y 
1
4 there holds

||bD � DT⇤ ||2^ ,T⇤  (1 + 4Y) ||bD � DT ||2^ ,T � ⇠coer

2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

.

Proof. We make use of the lower bound (9.40), and set ⇡ := ⇠comp

Y⇠!
, to rewrite the

estimate of Lemma 9.19 as follows:
⇣

1 �
⇡

^

⌘
||bD � DT⇤ ||2^ ,T⇤ 

⇣
1 + Y +

⇡

^

⌘
||bD � DT ||2^ ,T � ⇠coer

2
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

.
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For ^ � ^QO := ⇡

Y
this inequality implies

||bD � DT⇤ ||2^ ,T⇤  1 + 2Y
1 � Y

||bD � DT ||2^ ,T � ⇠coer

2(1 � Y)
krT⇤(DT⇤ � DT)k2

!
2(T⇤)

.

It remains to realize that 1+2Y
1�Y  1 + 4Y provided Y  1

4 .

The last ingredient to prove convergence of GALERKIN-DG is a dG version of
Proposition 4.56 (estimator reduction) with 5 = 5⇤ 2 FT . It turns out that the same
estimate and proof are valid for dG except that the �1

0-seminorm is to be replaced
by the broken �1

0-seminorm. We thus state the result without proof.

Proposition 9.21 (estimator reduction) Given T 2 T⇤ and a subset M ⇢ T of
elements marked for refinement, let T⇤ = REFINE

�
T ,M

�
. If 5 = %T 5 2 FT ,

then there is a constant ⇠Lip such that for all E 2 VT , E⇤ 2 VT⇤ and any X > 0

[T⇤(E⇤,T⇤)
2
 (1+X)

�
[T(E,T )2

�_ [T(E,M)2�
+(1+X�1)⇠2

Lip krT⇤(E⇤�E)k
2
!

2(T⇤)
.

We are now in a position to prove a contraction property between two consecutive
iterations of the adaptive loop GALERKIN-DG.

Theorem 9.22 (contraction property) Let bT be a ⇤�admissible refinement of T0

satisfying Assumption 6.19 (initial labeling). Let bD 2 DbT such that bG and b2 satisfy
the structural assumption (9.20). Let \ 2 (0, 1] be the Dörfler marking parameter
used in the MARK module and {T9 ,V 9 , D 9}�

9=0 be a sequence of conforming meshes,

finite element spaces and discrete solutions D 9 = D 9( bD) 2 V 9 created within
GALERKIN-DG. If bD 2 �1

0(⌦) is the exact solution of (5.5) with discrete data bD,
then there exist constants ^conv � 0, W > 0, and 0 < U < 1 independent of the
discretization parameters and ^, such that for all ^ � ^conv and 0  9 < �

⌫
2
9+1 + W[

2
T9+1

(D 9+1)  U2
⇣
⌫

2
9
+ W[

2
T9

(D 9)
⌘
, (9.54)

where ⌫ 9 :=
�
BT9 [bD � D 9 ,bD � D 9]�1/2

is the dG norm of bD � D 9 .
Proof. In essence, we proceed as in Theorem 5.8 (general contraction property)
for the conforming case but with minor changes that account for non-conformity.
We only explain the di�erences below. For 9 � 0, we shorten the notations and
write [ 9 := [T9 (D 9) and ⇢ 9 := krT9+1(D 9+1 � D 9)k!2(T9+1).

Corollary 9.20 (quasi-orthogonality of dG errors) gives for any 0 < Y 
1
4

⌫
2
9+1 

�
1 + 4Y

�
⌫

2
9
�
⇠coer

2
⇢

2
9
.

Combining Proposition 9.21 (estimator reduction), written in terms of T = T9 ,
T⇤ = T9+1, E = D 9 and E⇤ = D 9+1, with Dörfler marking [ 9(D 9 ,M 9) � \[ 9 yields

[
2
9+1 

�
1 + X

��
1 � _\2�

[
2
9
+ (1 + X

�1)⇠2
Lip⇢

2
9
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for any X > 0. We now multiply this inequality by W > 0 and add it to the previous
one with the following choice of parameters:

X =
1 � _\

2

2

1 � _\2
� 1, W =

⇠coer

2⇠2
Lip(1 + X�1)

.

Consequently, the terms involving ⇢2
9

cancel out and we end up with

⌫
2
9+1 + W[

2
9+1 

�
1 + 4Y

�
⌫

2
9
+ W
�
1 + X

��
1 � _\2�

[
2
9

=
⇣

1 + 4Y �
W_\

2

4

⌘
⌫

2
9
+ W

⇣
1 �

_\
2

4

⌘
[

2
9
.

We finally choose Y := W_\
2

32 to obtain (9.54) with U2 = max
�
1 � W_\

2

8 , 1 � _\
2

4

 
,

and conclude the proof.

Corollary 9.23 (linear convergence) Under the assumptions of Theorem 9.22,
and if 0 < U < 1, W > 0, ^conv > 0 are the constants in (9.54), then for all
^ � ^conv there holds

||bD � D: ||^ ,T:  ⇠⇤U:� 9 ||bD � D 9 ||^ ,T9 ,
for some constant ⇠⇤ independent of the discretization parameters and ^.

Proof. Let 42
:
= ||bD � D: ||2

^ ,T:
and ⌫2

:
= BT: [bD�D: ,bD�D:]2, and use the coercivity

estimate (9.34), the contraction property (9.54), the continuity estimate (9.33) and
the lower bound (9.40) to arrive at

⇠coer4
2
:
 ⌫

2
:
 U

2(:� 9)�
⌫

2
9
+ W[

2
9

�
 U

2(:� 9)
⇣
⇠cont +

W

⇠
2
!

⌘
4

2
9
.

This is the desired estimate in disguised with ⇠⇤ := 1
⇠coer

�
⇠cont +

W

⇠
2
L

�1/2
.

We end the discussion on GALERKIN-DG by deriving the optimality property
of the Dörlfer marking strategy. We mimic the proof of Lemma 6.16 (Dörfler
marking) but directly use the optimal parameter ` = 1

2 to simplify the argument.
We refer to the discussion after Lemma 6.16 for the role of ` and its influence on \0.
Notice that \0 depends on ^�1 because of its appearance in the perturbed localized
upper bound (9.49). It plays a similar role to f in Assumption 6.15 (restriction on
l) in the presence of oscillations (one step method with switch).

Lemma 9.24 (Dörfler marking) Let T⇤ � T be two ⇤�admissible refinements of
T0 satisfying Assumption 6.19 (initial labeling). Let bD 2 DbT such that bG and
b2 satisfy the structural assumption (9.20). Let DT 2 V�1

T
, DT⇤ 2 V

�1
T⇤

denote the

Galerkin solutions associated with T , T⇤ respectively and bD 2 �1
0(⌦) denotes the

solution to (5.5) with discrete data bD. Assume ^ > ^⇡ := max(^stab, 4⇠2
Lip⇠

2
LU). If
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[T⇤(DT⇤) 
1
2
[T(DT) (9.55)

then the refined set T \ T⇤ satisfies the Dörfler property

[T

�
DT ,l(T \ T⇤)

�
� \0 [T(DT), (9.56)

with 0 < \
2
0 := \2

0(^) :=
1�4⇠2

Lip⇠
2
LU^

�1

4⇠2
Lip⇠

2
LU

<
1

4⇠2
Lip⇠

2
LU

.

Proof. To relate [T with [T⇤ , we invoke Proposition 9.21 (estimator reduction)
with X = 1, along with the localized upper bound (9.49), to write

[T(DT)2
 2[T⇤(DT⇤)

2
+ 2⇠2

Lip⇠
2
LU

⇣
[T

�
DT ,l(T \ T⇤)

�2
+ ^
�1
[T(DT)2

⌘
.

This, combined with (9.55) yields
✓

1
2
� 2⇠2

Lip⇠
2
LU^

�1
◆
[T(DT)2

 2⇠2
Lip⇠

2
LU[T

�
DT ,l(T \ T⇤)

�2

for ^ � ^D. This is the desired results in disguised.

9.5 Convergence of AFEM-DG-TS

Algorithm 9.1 (AFEM-DG-TS) relies on two modules: GALERKIN-DG and DATA.
We have analyzed the performance of GALERKIN-DG in the previous section and
showed in Section 7 that the output [bT: , bD:] = DATA(T: ,D,lY:) satisfies

kD � bD: k⇡(⌦)  lY: ) |D � bD: |� 1
0 (⌦)  ⇠⇡lY: . (9.57)

Recall that D = D(D),bD: = D( bD:) 2 �1
0(⌦) are the exact solutions to (2.7) with

exact data D and discrete data bD: , respectively. We also recall that bD: satisfies
the structural assumption (9.20) uniformly in : and thus ⇠⇡ does not depend on : .

We start with a result guaranteeing that the cost of GALERKIN-DG does not
depend on the iteration counter : within AFEM-DG-TS.

Lemma 9.25 (computational cost of GALERKIN-DG) For any ^ � ^conv and any
: 2 N, the number of sub-iterations �: inside a call of GALERKIN-DG at iteration
: of Algorithm 9.1 (AFEM-DG-TS) is bounded independently of : .

Proof. We proceed as in the proof of Proposition 5.27 (computational cost of
GALERKIN) for the conforming case, and focus on the essential di�erences. We
fix the iteration counter : � 1, recall that the output of the (: � 1)-th loop of
AFEM-DG-TS is [T: , D:] = GALERKIN-DG (bT:�1, bD:�1, Y:�1), and denote by T: , 9

and bD: , 9 2 V�1
T:, 9

the 9-th mesh and Galerkin solution to (9.21) with data bD: in the
:-th loop of AFEM-DG-TS. The exact solution to the perturbed problem (5.5) with
discrete coe�cient bD: is bD: = D( bD:).
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We recall that T: ,0 = bT: is the mesh produced by DATA, and assume that
D: ,0 2 V: ,0 satisfies [T:,0(D: ,0) > Y: because otherwise �: = 0 and there is
nothing to prove. In view of Corollary 9.23 (linear convergence), all we need to
prove is that the error ||D: ,0 � bD: ||^ ,T:,0 entering GALERKIN-DG is bounded by Y: .
We resort to Corollary 9.15 (quasi-monotonicity with di�erent data) to write

||D: ,0 � bD: ||^ ,T:,0  ⇠Mo

⇣
||D: � bD:�1 ||^ ,T: + |bD: � bD:�1 |� 1

0 (⌦)

⌘
.

The appearance of the last term is the only di�erence with respect to Proposition
5.27. However, in view of property (9.57) of DATA, we infer that

|bD: �bD:�1 |� 1
0 (⌦)  |bD: � D |� 1

0 (⌦) + |bD:�1 � D |� 1
0 (⌦)  ⇠⇡l(Y: + Y:�1) = 3⇠⇡lY: .

Moreover, the stabilization-free upper bound (9.44) implies

||D: � bD:�1 ||^ ,T:  ⇠U [T: (D:)  ⇠UY:�1 = 2⇠UY: ,

which, combined with the lower bound (9.40), further yields

||D: ,0 � bD: ||^ ,T:,0  �3⇠⇡l + 2⇠*
�
Y: = ⇤Y: ) [T:,0  ⇠

�1
!
⇤Y: .

This is the requisite estimate. In fact, recalling Corollary 9.23, we see that

[T:, 9 (D: , 9)  ⇠
�1
L ||D: , 9 � bD: ||^ ,T:, 9  ⇠�1

L ⇠⇤U
9

||D: ,0 � bD: ||^ ,T:,0  ⇠�1
L ⇠⇤⇤Y:U 9 .

Since GALERKIN-DG stops when [T�: ,: (D�: ,:)  Y: , we finally conclude as in the
proof of Proposition 5.27 that �: is independent of : .

The proof of convergence of AFEM-DG-TS is identical to the proof of Proposi-
tion 5.29 upon replacing the semi-norm |.|

�
1
0 (⌦) by the appropriate dG norm. It is

therefore not repeated here.

Proposition 9.26 (convergence of AFEM-DG-TS) For any ^ � ^conv and : � 0,
the (: + 1)-th iteration of AFEM-DG-TS terminates and requires a finite number
of inner iterations of GALERKIN-DG independent of : . Moreover, if D 2 �1

0(⌦)
denotes the solution to (2.7), there exists a constant ⇠⇤ such that the output of
[T:+1, D:+1] = GALERKIN-DG (bT: , bD: , Y:) satisfies

||D � D:+1 ||^ ,T:+1  ⇠⇤Y: , 8: � 0.

Therefore, AFEM-DG-TS stops after  < 2 +
log

Y0
tol

log 2 iterations and delivers

||D � D +1 ||^ ,T  ⇠⇤tol.

9.6 Rate-optimality of AFEM-DG-TS

To derive rates of convergence for the discontinuous Galerkin method, we proceed
similarly to Section 6 for the conforming case . Recall that in the :th-step of
Algorithm 9.1 (AFEM-DG-TS), the output of [bT: , bD:] = DATA (T: ,D,lY:) is
fed to [T:+1, D:+1] = GALERKIN-DG (bT: , bD: , Y:), which in turn iterates �: times.
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Lemma 9.25 shows that �: is uniformly bounded in : , and we assume that �: � 1
for otherwise the module GALERKIN-DG is skipped altogether. We denote by
(T: , 9 ,M: , 9 , DT:, 9 ) the triplets of grids, marked sets and discrete solutions computed

within GALERKIN-DG (bT: , bD: , Y:) for 0  9 < �: . Note that

bY: , 9 := [T:, 9 (DT:, 9 , bD:) > Y: , 0  9 < �:

so that together with the lower a posteriori error estimate (9.40), we infer that

||bD: � DT:, 9 ||^ ,T:, 9 � ⇠LbY: , 9 > ⇠LY: ,

where bD: = D( bD:) 2 �1
0(⌦) is the exact solution with approximate data bD: .

The module DATA guarantees (9.57), and the parameter l modulates the dis-
crepancy between D and bD: relative to Y: . The error due to data approximation can
be made small relative to the finite element approximation by choosing l much
smaller than 1. In addition, we have established Lemma 9.24 (Dörfler marking) for
\0 < 1 which implies a Dörfler property for any 0 < \  \0. The restrictions on
the parameters ^, l, and \ are gathered in the following assumption.

Assumption 9.27 (restrictions on +, 8 and )) Assume that ^ > max(^⇡ , ^conv),
that 0 < l 

1
4⇠
�1
Mo⇠L⇠

�1
⇡

and that 0 < \  \0(^), where ^⇡ and \0 are defined in
Lemma 9.24 (Dörfler marking).

Note that if Assumption 9.27 is valid then

|D � bD: |� 1
0 (⌦) 

1
4
⇠
�1
Mo⇠LY: . (9.58)

The next results rely on Assumption 6.3 (approximability of D) and Assump-
tion 6.10 (approximability of data). They are stated and proved for conforming
meshes and continuous approximations of D. However, Proposition 9.4 (equival-
ence of classes for D) and Remark 9.5 (equivalence of classes for D) show that
these classes coincide with the conforming case.

Proposition 9.28 (cardinality of marked sets) Let Assumptions 6.3 (approxim-
ability of D), 6.17 (cardinality of M), and 9.27 (restrictions on ^, l and \) hold.
If bY: ,0 > Y: , then GALERKIN-DG at iteration : of AFEM-DG-TS is called and the
cardinality #: , 9(D) of the marked set M: , 9 satisfies

#: , 9(D) . |D |
1/B
B

||D � DT:, 9 ||
�1/B
^ ,T:, 9

80  9 < �: . (9.59)

Proof. Fix 0  9 < �: and set

X :=
1
2
⇠
�1
Mo⇠L [T:, 9 (DT:, 9 ) �

1
2
⇠
�1
Mo⇠LY: ,

because [T:, 9 (DT:, 9 ) > Y: for 9 < �: . Thanks to (9.58), bD: is an ( 1
2⇠
�1
Mo⇠LY:)-

approximation of order B to D according to Lemma 6.13 (Y-approximation of order
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B). Therefore, there exists a conforming mesh TX 2 T⇤ and D0
TX
2 VTX such that

||bD: � D0
TX
||^ ,TX = |bD: � D0

TX
|
�

1
0 (⌦)  X, #TX . |D |

1
B
AB
X
�

1
B .

To compare TX with T: , 9 we consider the overlay T⇤ = T: , 9 � TX , which satisfies

#T⇤  #T: , 9 + #TX � #T0;

see Proposition 8.15 (mesh overlay is⇤-admissible). Let DT⇤ 2 V
�1
T⇤

be the Galerkin
solution on the subspace V�1

T⇤
and invoke Corollary 9.13 (Cea’s lemma) to write

[T⇤(DT⇤)  ⇠
�1
L ||bD: � DT⇤ ||^ ,T⇤  ⇠�1

L ⇠Mo ||bD: � D0
TX
||^ ,T⇤ = ⇠

�1
L ⇠Mo |bD: � D0

TX
|
�

1
0 (⌦),

whence [T⇤(DT⇤)  ⇠
�1
L ⇠MoX and

[T⇤(DT⇤) 
1
2
[T:, 9 (DT:, 9 ).

Applying Lemma 9.24 (Dörfler marking) to T⇤ and T: , 9 we infer that the enlarged
refined set l(T: , 9 \ T⇤) satisfies the Dörfler marking property

[T:, 9

�
DT:, 9 ,l(T: , 9 \ T⇤)

�
� \ [T⇤(DT⇤)

since 0 < \  \0 by Assumption 9.27. The Dörfler marking involves a minimal set
M: , 9 according to Assumption 6.17, which thus implies

#: , 9(D)  #l(T: , 9 \ T⇤) . #(T: , 9 \ T⇤)  #TX � #T0 . |D |

1
B
AB
X
�

1
B . |D |

1
B
AB
Y

�
1
B

:
.

because #(T: , 9 \ T⇤)  #T⇤ � #T: , 9 . This concludes the proof.

Corollary 9.29 (quasi-optimality of GALERKIN-DG) Let Assumptions 6.3 (ap-
proximability of D), 6.17 (cardinality of M), and 9.27 (restrictions on ^, l and
\) hold. Assume ^ � max(^conv, ^D). Then, the total number of marked elements
#:(D) within a call to GALERKIN-DG satisfies

#:(D)  �⇠0 |D |
1
B
AB
Y

�
1
B

:
,

where � � �: is a uniform upper bound for the number of iterations of GALERKIN-

DG according to Lemma 9.25 (computational cost of GALERKIN-DG).

Proof. Use that #:(D) =
Õ
�:�1
9=0 #: , 9(D) and combine Propositions 9.28 (cardin-

ality of marked sets) and 9.25 (computational cost of GALERKIN-DG).

We finally address the rate-optimality of the two-step algorithm AFEM-DG-TS.

Theorem 9.30 (rate-optimality of AFEM-DG-TS) Let Assumptions 6.3 (approx-
imability of D), 6.10 (approximability of data), 6.11 (quasi-optimality of DATA),
6.17 (cardinality of M), 6.19 (initial labeling), and 9.27 (restrictions on ^, l and
\) hold. Then, AFEM-DG-TS gives rise to a sequence

�
T: ,V�1

T:
, DT:

�
 +1
:=0 such that

||D � DT: ||^ ,T:  ⇠(D,D)
�
#T:
��B

1  :   + 1,
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where 0 < B = min{BD , BD} = min{BD , B�, B2 , B 5 }  =

3
and

⇠(D,D) = ⇠⇤
⇣
|D |

1
BD
ABD

+ |G|
1
B�
MB�

+ |2 |

1
B2
CB2

+ | 5 |

1
B 5

FB 5

⌘
B

with constant ⇠⇤ > 0 independent of D and D.

Proof. Assumptions 6.3, 6.17, and 9.27 combined with Corollary 9.29 for D, and
Assumptions 6.10 and 6.11 for D, imply the existence of a constant ⇠# such that
the total number of marked elements within one loop of AFEM-DG-TS is

#:(D) + #:(D)  ⇠#

⇣
|D |

1
BD
ABD

+ |D|

1
BD

ABD

⌘
Y

�
1
B

:
,

with BD , BD  =

3
. Moreover, upon termination DATA and GALERKIN-DG give

|D � bD: |� 1
0 (⌦) 

1
4
⇠
�1
Mo⇠LY: ,

||bD: � DT:+1 ||^ ,T:+1  ⇠U[T:+1(DT:+1)  ⇠UY: ,

because of (9.58) and (9.44). This implies by triangle inequality

||D � DT:+1 ||^ ,T:+1 

✓
1
4
⇠
�1
Mo⇠L + ⇠U

◆
Y: .

We finally conclude as in Theorem 6.24 (rate-optimality of AFEM-TS).

Remark 6.25 about the role of l, \⇤ and Remark 6.26 about the optimality of
the result, written after Theorem 6.24 for the conforming case, remain valid for the
non-conforming case and are not repeated here.

9.7 Operator %T and routine DATA on ⇤-admissible partitions

In this section we have used extensively the notion of ⇤-admissible meshes for the
design and study of dG methods, including forcing 5 2 �

�1(⌦). To this end, as
well as for the design of the two-step AFEM for dG, namely AFEM-DG-TS, the
construction of the local projection %T 5 2 FT is critical. We discuss this now.

Recall that for a conforming partition T 2 T, %T 5 is defined as a projection to
FT ; see Definition 4.24 (projection onto discrete functionals). The definition and
subsequent properties of %T hinge on extensions ⇢� for � 2 F , studied in Lemma
4.20 (extending from faces), as well as on bubble functions q) , ) 2 T , and q� ,
� 2 F satisfying Assumption 4.21 (abstract cut-o�).

The definition of the element bubble functions q) in (4.14) is local to ) and
is thus unchanged on non-conforming subdivisions. The situation is di�erent for
faces. If � is a conforming face, we have the conforming definitions of ⇢� and q� .
Instead, if � is a non-conforming face, i.e. � = ) \)⇤ with 6()⇤) > 6()), and use a
virtual conforming refinement of l� to define ⇢� and q� as in (4.17). Recall that
6()) is the generation of) 2 T , and T 2 T is a uniform refinement of T0 if and only
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if 6 is constant on T . Let T be the uniform refinement of T0 containing )⇤, whence
6()) = 6()⇤) for all ) 2 T ; T is conforming thanks to Assumption 6.19 (initial
labeling) on T0. Let ) 2 T be the element sharing � with )⇤ (and thus contained
in )) and let l� := )⇤ [ ) be the virtual conforming patch around �. We now
proceed by defining ⇢� via (4.4) withl� replaced byl� and q� as in (4.17) using
the basis functions qI , I 2 V \ �, associated with

Œ
) ⇢l�

P=())\�1
0(l� ). Note

that because T is ⇤-admissible, Proposition 3.27 guarantees that the diameters of
) , ) , )⇤, l� and l� are all comparable with constants depending on the initial
mesh T0 and ⇤.

Assumption 4.21 is an important ingredient in the analysis of %T and it holds
true with l� replaced by l� when � is a non-conforming face. Therefore, Re-
mark 4.26 (local computation) and Corollary 4.31 (local near-best approximation)
are valid for ⇤�admissible partitions as well. Consequently, all the algorithms and
results presented in Section 7 (data approximation) readily extend to ⇤-admissible
subdivisions as well. We do not dwell on this matter any longer.

10 AFEMs for Inf-Sup Stable Problems
We go back to the functional framework introduced in Section 2.4. Precisely, let
the bilinear form B : V⇥W! R be continuous and inf-sup stable (i.e., it satisfies
one of the equivalent conditions stated in Theorem 2.8 (NeÃas)). Given 5 2 W⇤,
let D 2 V be the unique solution of the variational problem

D 2 V : B[D,F] = h 5 , Fi 8F 2 W. (10.1)

Let V 9 ⇢ V, W 9 ⇢ W be finite dimensional subspaces depending on an integer
parameter 9 � 0, such that

dimV 9 = dimW 9 = = 9 , V 9 ⇢ V 9+1, W 9 ⇢ W 9+1.

(Note that the notation has changed with respect to Section 3.1, where V# was a
subspace of dimension # . Here V 9 may stand for VT9 , where T9 is the 9-th mesh
generated by an adaptive algorithm.)

We assume B to satisfy a uniform discrete inf-sup condition on any product of
subspaces V 9 ⇥W 9 , i.e., there exists a constant V > 0 such that for all 9

inf
E2V 9

sup
F 2W 9

B[E,F]

kEkVkFkW
� V. (10.2)

Let D 9 2 V 9 be the solution of the (Petrov-)Galerkin problem

D 9 2 V 9 : B[D 9 ,F] = h 5 , Fi 8F 2 W 9 . (10.3)

The first part of this section, which is mostly based on the recent work by M.
Feischl [Feischl 2022], is devoted to studying the convergence of this approxima-
tion. Convergence and rate-optimality of di�erent AFEMs will be discussed next in
Section 10.3. Applications will be given to the Stokes problem (see Section 10.4)
and the mixed formulation of a scalar di�usion problem (see Section 10.5).
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10.1 Linear convergence of inf-sup stable methods

We make the following key assumptions that guarantee the convergence of the
sequence D 9 to D in the V-norm, and comment about them afterwards. The first
assumption is a relaxed form of the general quasi-orthogonality property introduced
in [Carstensen et al. 2014] as part of an abstract set of axioms of adaptivity.

Assumption 10.1 (relaxed quasi-orthogonality) For each # 2 N there exists a
nondecreasing constant ⇠ = ⇠(#) such that

9+#’
:= 9

kD:+1 � D: k
2
V  ⇠(#)kD � D 9 k2V 9 � 0, (10.4)

and

⇠(#) = >(#), as # !1.

Assumption 10.2 (equivalence of error and estimator) There exist constants⇠* �
⇠! > 0 and, for each 9 � 0, an error estimator [ 9 = [ 9(D 9), such that

⇠![ 9  kD � D 9 kV  ⇠*[ 9 9 � 0. (10.5)

Assumption 10.3 (estimator reduction) There exist constants 0 < d1 < 1 and
⇠1 > 0 such that

[
2
9+1  d1[

2
9
+ ⇠1kD 9+1 � D 9 k

2
V 9 � 0. (10.6)

Remark 10.4 Assumptions 10.2 and 10.3 are abstract and allow for a general
convergence theory. In the context of our model problems of Section 2.3, they are
valid for discrete data, i.e., if the coe�cients of the linear operator corresponding
to the bilinear form B are piecewise polynomials on the adopted meshes, and if
5 2 FT (see Section 4.3). We make this concrete in Sections 10.4 and 10.5 below.

Remark 10.5 We comment on the significance of Assumption 10.1 upon consid-
ering two extreme cases.

1. Assumption 10.1 with ⇠(#) = $(1) is precisely the general quasi-orthogonality
property of [Carstensen et al. 2014]. It is valid with ⇠(#) = 1 for V =W and B

symmetric and coercive. Indeed,

B[D:+1 � D: , D � D:+1] = 0 (Galerkin orthogonality),

whence

|||D:+1 � D: |||
2
⌦ + |||D � D:+1 |||

2
⌦ = |||D � D: |||

2
⌦,

where |||·|||⌦ is the energy norm induced byB. Adding upon : and using telescopic
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cancellation yields

9+#’
:= 9

|||D:+1 � D: |||
2
⌦ =

9+#’
:= 9

|||D � D: |||
2
⌦ � |||D � D:+1 |||

2
⌦

= |||D � D 9 |||
2
⌦ � |||D � D 9+#+1 |||

2
⌦  |||D � D 9 |||

2
⌦.

Finally, the equivalence (2.30) of the norms k.kV and |||·|||⌦ yields the result.
2. Assumption 10.1 trivially holds with ⇠(#) = $(#) for B continuous and inf-

sup stable. Indeed, choosing in Corollary 3.3 (quasi-monotonicity) V# = V: or
V:+1 and V" = V 9 for 9  : , and using the triangle inequality gives

kD:+1 � D: k
2
V . kD:+1 � Dk

2
V + kD: � Dk

2
V . kD � D 9 k

2
V.

Adding, we get

9+#’
:= 9

kD:+1 � D: k
2
V  ⇠

9+#’
:= 9

kD � D 9 k
2
V = ⇠# kD � D 9 k2V.

However, the relation ⇠(#) = $(#) is not enough for the subsequent analysis.
In fact, we need ⇠(#) = >(#).

We now prove that the stated assumptions guarantee the linear convergence of
the sequence of Petrov-Galerkin solutions (10.3). This result is similar to the
convergence result for the estimators given in [Feischl 2022], and exploits the
equivalence (10.5) between errors and estimators.

Theorem 10.6 (linear convergence) Under Assumptions 10.1, 10.2 and 10.3, the
discretization (10.3) is convergent; precisely, there exist constants 0 < d < 1 and
2 > 0 such that

4 9+8  2d
8

4 9 88, 9 2 N, (10.7)

where 4 9 := kD � D 9 kV.

Proof. The proof is divided into several steps. Firstly, we set

⇢: := kD: � D:�1kV.

1 We start by iterating (10.6) 1  =  : times to obtain

[
2
:
 d1[

2
:�1 + ⇠1⇢

2
:

 d1
�
d1[

2
:�2 + ⇠1⇢

2
:�1

�
+ ⇠1⇢

2
:
 d

2
1[

2
:�2 + ⇠1

�
⇢

2
:
+ ⇢

2
:�1

�

 d
=

1[
2
:�=

+ ⇠1

:’
✓=:�=+1

⇢
2
✓
.

We now invoke Assumption 10.2 to state the upper bound

4
2
:
 21[

2
:
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and the lower bound

[
2
:
 224

2
:

(with 21 = ⇠2
*

and 22 = ⇠�2
!

). This yields

4
2
:
 21[

2
:
 2122d

=

1 4
2
:�=

+ 21⇠1

:’
✓=:�=+1

⇢
2
✓
. (10.8)

Let = 2 N be su�ciently large such that

d2 = 2122d
=

1 < 1,

and let us relabel 21⇠1 as ⇠1 to get

4
2
:
 d24

2
:�=

+ ⇠1

:’
✓=:�=+1

⇢
2
✓
. (10.9)

This shows that the reduction property (10.6) of the estimator is valid for the error
after = iterations. We cannot expect (10.9) to hold for 4: with = = 1, not even in the
coercive case: see Example 5.7 (lack of strict monotonicity) for G = O and 5 = 1.
It is thus convenient to rewrite (10.9) as follows:

4
2
:=
 d24

2
(:�1)= + ⇠1

:=’
✓=(:�1)=+1

⇢
2
✓
. (10.10)

2 Sum up (10.10) from : = 9 + 1 to : = 9 + # to get

9+#’
:= 9+1

4
2
:=
 d2

9+#’
:= 9+1

4
2
(:�1)= + ⇠1

( 9+# )=’
✓= 9=+1

⇢
2
✓
.

Using (10.4) we see that

( 9+# )=’
✓= 9=+1

⇢
2
✓
=

( 9+# )=�1’
✓= 9=

⇢
2
✓+1  ⇠(#= � 1) 42

9=
 ⇠(#=) 42

9=
,

whence
9+#’
:= 9+1

4
2
:=
 d2

9+#’
:= 9+1

4
2
(:�1)= + ⇠1⇠(#=) 42

9=

 d2

0

@
9+#’
:= 9+1

4
2
:=

+ 4
2
9=

1

A + ⇠1⇠(#=) 42
9=
.

This implies

(1 � d2)
9+#’
:= 9+1

4
2
:=

�
d2 + ⇠1⇠(#=)

�
4

2
9=
,
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or equivalently

1 � d2

d2 + ⇠1⇠(#=)

9+#’
:= 9+1

4
2
:=
 4

2
9=
. (10.11)

Let us add the quantity
Õ
9+#

:= 9+1 4
2
:=

to both sides to arrive at

✓
1 +

1 � d2

d2 + ⇠1⇠(#=)

◆ 9+#’
:= 9+1

4
2
:=


9+#’
:= 9

4
2
:=
.

We can rewrite this inequality as follows:

9+#’
:= 9+1

4
2
:=
 d(#)

9+#’
:= 9

4
2
:=
, (10.12)

where

d(#) =
1

1 +
1�d2

d2+⇠1⇠(#=)

=
d2 + ⇠1⇠(#=)
1 + ⇠1⇠(#=)

= 1 �
1 � d2

1 + ⇠1⇠(#=)
= 1 �

1
⇡(#)

with

⇡(#) =
1 + ⇠1⇠(#=)

1 � d2
!1, # !1,

whenever ⇠(#) diverges. Therefore, (10.12) is a contraction for the quantityÕ
9+#

:= 9+1 4
2
:=

with a constant d(#) uniform in 9 that may degenerate to 1 as # !1.

3 We iterate (10.12) and exploit that the left-hand side has one fewer term than the
right-hand side. Take

9 ! 9 + 1 # ! # � 1

to get
9+#’
:= 9+2

4
2
:=
 d(# � 1)

9+#’
:= 9+1

4
2
:=
,

whence
9+#’
:= 9+2

4
2
:=
 d(# � 1)d(#)

9+#’
:= 9

4
2
:=
.

Iterating, we get

4
2
( 9+# )= =

9+#’
:= 9+#

4
2
:=
 d(1) . . . d(# � 1)d(#)

9+#’
:= 9

4
2
:=
.
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We now need to bound the sum on the right-hand side by a single term. To this
end, we resort to (10.11)

9+#’
:= 9+1

4
2
:=

d2 + ⇠1⇠(#=)

1 � d2
4

2
9=

and add 42
9=

on both sides

9+#’
:= 9

4
2
:=


✓
1 +

d2 + ⇠1⇠(#=)
1 � d2

◆
4

2
9=

= ⇡(#) 42
9=
.

Altogether, we arrive at

4
2
( 9+# )=  d(1) . . . d(#)⇡(#) 42

9=
= ⇡(#)

#÷
:=1

✓
1 �

1
⇡(:)

◆
4

2
9=
.

4 We estimate the factor on the right-hand side. For #0 > 0 to be chosen later, set

d0 := ⇡(#0)
#0÷
:=1

✓
1 �

1
⇡(:)

◆

and compute the logarithm of d0

log(d0) = log(⇡(#0)) +
#0’
:=1

log
✓

1 �
1

⇡(:)

◆
 log(⇡(#0)) �

#0’
:=1

1
⇡(:)

,

because the log is concave and log(1 + G)  G. Since we assume in (10.4) that
⇡(:) ' ⇠(:#0) = >(:), the series diverges and we see that

log(d0) < 0

for #0 su�ciently large. Summarizing, there exist #0 > 0 and 0 < d0 < 1 such
that

4
2
( 9+#0)=  d0 4

2
9=

8 9 2 N. (10.13)

5 For any 9 , 8 2 N, we now find 2 > 0 and 0 < d < 1 such that the inequality

4 9+8  2d
8

4 9

holds. We decompose 9 and 9 + 8 in terms of integers : ,<

9 = (: � 1)= + b9 , : � 1, 0  b9 < =,
9 + 8 = (: + <)= +b8, < � �1, 0 b8 < =,

and examine first the case < � 0. We further decompose

< = 0#0 + 1, 0, 1 2 N, 0  1 < #0 ) 0 =
<

#0
�
1

#0
.
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Note that

:= = 9 � b9 + = > 9 , < =
8

=

�

⇣b8 � b9
=

+ 1
⌘
, 0 >

8

=#0
�

2 + #0

#0
.

Therefore, invoking Corollary 3.3 (quasi-monotonicity)

4 92 
kBk

V

4 91 = ⇠⇤4 91 92 � 91 � 0,

in conjunction with (10.13), yields

4 9+8  ⇠⇤4(:+0#0)=  ⇠⇤d
0
2
0 4:=  ⇠

2
⇤ d

0
2
0 4 9 < ⇠

2
⇤ d

�
2+#0
2#0

0

�
d

1
2=#0
0

�
8

4 9 .

This is the desired estimate with 2 = ⇠
2
⇤ d

�
2+#0
2#0

0 and d = d

1
2=#0
0 for < � 0. We

finally consider < = �1 and use again the error quasi-monotonicity to write

4 9+8  ⇠⇤4 9 =
⇠⇤

d
8
d
8

4 9 <

⇠⇤

d
=
d
8

4 9 .

This concludes the proof with 2 = max
�
⇠

2
⇤ d

�
2+#0
2#0

0 ,
⇠⇤

d
=

 
.

Remark 10.7 (improving on Assumption 10.1) It is worth underlining that, while
linear convergence (10.7) is established in Theorem 10.6 using Assumption 10.1,
the same property combined with uniform inf-sup stability tell us a posteriori that
the constant ⇠(#) in (10.4) can be made independent of # , i.e. ⇠(#) = $(1). To
see this, we apply the linear convergence bound

kD � D: kV  2d
:� 9
kD � D 9 kV

in conjunction with the triangle inequality

kD:+1 � D: kV  kD � D:+1kV + kD � D: kV  22d:� 9 kD � D 9 kV;

summation of a geometric series gives

9+#’
:= 9

kD:+1 � D: k
2
V  ⇠kD � D 9 k

2
V

with ⇠ = 422 Õ1
✓=0 d

2✓
< +1. This suggests that Assumption 10.1 might be too

pessimistic.

10.2 Inf-sup stability implies quasi-orthogonality

We aim at proving the following key result in this section.

Theorem 10.8 (su�cient condition for Assumption 10.1) The Assumption 10.1
(relaxed quasi-orthogonality) is valid if the bilinear form B : V ⇥W! R is con-
tinuous and uniformly inf-sup stable on the sequence of subspacesV 9 ⇥W 9 , 9 � 0.
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To accomplish this task, we proceed in two steps. Using variational techniques,
we first establish an intermediate result formally similar to (10.4) (see Corollary
10.14), but involving the norm of a matrix [ related to the form B. Next, we rely
on algebraic techniques to estimate such norm (see Theorem 10.15) and close the
proof of the desired result.

In order to perform the first step, we introduce orthonormal bases of the finite
element spaces V 9 , W 9 , 0  9  # , and next we biorthogonalize them. This
procedure turns out to be crucial.

We start with some notation. Let

= 9 = dimV 9 = dimW 9 .

Let V?
9�1 andW?

9�1 denote the orthogonal complements of V 9�1 andW 9�1 within
V 9 andW 9 , respectively. Let

3 9 = = 9 � = 9�1 = dimV?
9�1 = dimW?

9�1

be the dimension of the Galerkin update to augment the space V 9�1 into the next
space V 9 , and likewise with the spaceW 9�1 andW 9 .

We consider orthonormal bases

v = {v( 9)}#
9=0 ⇢ V# , w = {w(8)}#

8=0 ⇢ W# (10.14)

partitioned into blocks for 1  9  #

v( 9) = (E:)
= 9

:== 9�1+1 ⇢ V
?

9�1, w(8) = (F:)
=8
:==8�1+1 ⇢ W

?

8�1, (10.15)

and v(0) ⇢ V0, w(0) ⇢ W0. In other words, (v( 9), w( 9)) represent the 3 9 new
directions added by Galerkin to the current spaces

�
V 9�1,W 9�1

�
for 1  9  # .

We recall that the bilinear form B : V# ⇥ W# ! R satisfies the following
uniform properties for all 0  9  #

(P1) continuity:��B[E,F]
��  kBkkEkVkFkW 8E 2 V 9 , F 2 W 9 ; (10.16)

(P2) inf-sup condition:

VkEkV  sup
F 2W 9

B[E,F]

kFkW
8E 2 V 9 . (10.17)

The block bases v and w given in (10.14) induce a block matrix

H := (H(8, 9))#
8, 9=0 2 R

=#⇥=#

defined by

H(8, 9) = B[v( 9), w(8)] . (10.18)

Note that the actual size of H is =# = dimV# >> # , and that the following
analysis entails expressing important quantities in terms of the number of blocks
# rather than the dimension =# .
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We will use this block decomposition for a generic matrix

S = (S(8, 9))#
8, 9=0 2 R

=#⇥=#

and we denote by S [:] = (S(8, 9)):
8, 9=0 the principal :-th block of S. Fig. 10.1

shows schematically what this means.

Figure 10.1. Block partition of a matrix S 2 R=#⇥=# with (# +1)⇥ (# +1) blocks
S(8, 9) 2 R38⇥3 9 and principal :-th block S [:] 2 R=:⇥=: with 0  8, 9 , :  # .

We stress that (P2) implies that H[:] is uniformly invertible with

kH[:]�1
k2 

1
V

80  :  # . (10.19)

In fact, (P2) with 9 replaced by : can be rephrased as follows in terms of the
coordinates v 2 R=: relative to the orthonormal basis {v( 9)}:

9=0 of V: of a generic
vector in V:

Vkvk2  kH[:]vk2 8v 2 R=: ,
i.e., setting z = H[:]v,

V kH[:]�1zk2  kzk2 8z 2 R=: ,
which is precisely (10.19).

A fundamental linear algebra theorem of Gaussian elimination guarantees the
existence of a unique normalized block R[ decomposition of H without pivoting
due to (10.19):

H = R[, (10.20)

with block partitioning

R(8, 9) 2 R38⇥3 9 , R(8, 9) = 0 for 9 > 8, R(8, 8) = O(8, 8); (10.21)
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[(8, 9) 2 R38⇥3 9 , [(8, 9) = 0 for 8 > 9 . (10.22)

10.2.1 Matrix representation
The :-th Galerkin solution D: satisfies:

D: 2 V: : B[D: ,F] = h 5 , Fi, 8F 2 W: .

Equivalently, if {$( 9)}:
9=0 2 R

=: are the coordinates of D: with respect to the

orthonormal basis {v( 9)}:
9=0

D: =
:’
9=0

$( 9) · v( 9),

then
:’
9=0

$( 9) · B[v( 9), w(8)] = h 5 , w(8)i, 8 0  8  : ,

or using matrix notation

:’
9=0

H(8, 9) $( 9) = f (8) = h 5 , w(8)i, 8 0  8  : . (10.23)

If we further write

$
:
= ($( 9)):

9=0 2 R
=:
, f

:
= ( f (8)):

8=0 2 R
=:
,

then (10.23) reduces to

H[:]$
:
= f

:
. (10.24)

In view of the definition of f
:

we realize that the :-th section f
#
[:] 2 R=: of f

#

coincides with f
:
:

f
#
[:] =

�
f (8)
�
:

8=0 = f
:
.

However, this statement is not true for the solution $
:

of (10.24), namely

$
#
[:] < $

:
.

10.2.2 Block biorthogonal bases
We define biorthogonal basesev ⇢ V# and ew ⇢ W# as follows:

ev := [�) v =) ev( 9) =
9’

<=0

[�) ( 9 ,<)v(<) 0  9  # , (10.25)

ew := R�1w =) ew(8) =
8’

<=0

R�1(8,<)w(<) 0  8  # . (10.26)
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We will see below that these bases are convenient to represent the Galerkin solution
D: 2 V: . We start with a list of properties.

Lemma 10.9 (span of new bases) The vectorsev and ew are bases of V# andW# ,
respectively, and satisfy

span{ev( 9)}:
9=0 = span{v( 9)}:

9=0,

span{ew(8)}:
8=0 = span{w(8)}:

8=0.

Proof. This relies on the fact that [�) and R�1 are lower triangular and the
diagonal blocks are non-singular (i.e., both R and [ are invertible).

Consider now the matrix eH induced by (ev, ew), namely

eH := B[ev, ew] 2 R=#⇥=# . (10.27)

Lemma 10.10 (biorthogonality) The block matrix eH is equal to the identity,
namely eH(8, 9) = O(8, 9) 8 0  8, 9  # .

Proof. We simply combine the definition (10.27) with (10.25) and (10.26) to
deduce, for all 0  8, 9  # , that

eH(8, 9) = B[ev( 9), ew(8)]

= B

h 9’
<=0

[�) ( 9 ,<)v(<),
8’
:=0

R�1(8, :)w(:)
i

=
9’

<=0

8’
:=0

R�1(8, :)B[v(<), w(:)][�) ( 9 ,<)

=
9’

<=0

8’
:=0

R�1(8, :)H(: ,<)[�1(<, 9)

=
�
R�1H[�)

�
(8, 9)

=
�
R�1 (R[)[�1� (8, 9)

= O(8, 9),

as asserted.

Generic functions E 2 V# and F 2 W# can be represented as follows in terms
of the old and new bases:

E =
#’
9=0

$( 9) · v( 9) =
#’
9=0

e$( 9) ·ev( 9), (10.28)
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F =
#’
8=0

"(8) · w(8) =
#’
8=0

e"(8) · ew(8). (10.29)

The following lemma relates the coordinates in the two systems.

Lemma 10.11 (change of basis) The coordinates $ = ($( 9))#
9=0 and " = ("(8))#

8=0
satisfy

$ = [�1e$, " = R�)e". (10.30)

Proof. Write (10.28) in vector form and use (10.25) to obtain

E = e$)ev = e$) �[�) v� = �[�1e$�) v = $) v,

whence

$ = [�1e$.
Similarly, combining (10.29) and (10.26) yields

F = e") ew = e") �R�1w
�
=
�
R�)e"�) w = ") w

and

" = R�)e".
This concludes the proof.

10.2.3 An intermediate inequality
We intend to prove the following crucial estimate. This result is in [Feischl 2022],
but we give a di�erent proof based on variational arguments.

Proposition 10.12 (quasi-orthogonality - I) If D: 2 V: denotes the :-th Galerkin
solution of (10.3), then there holds

#�1’
:=0

kD:+1 � D: k
2
V 
k[k22
V

2
kD# � D0k

2
V. (10.31)

Proof. We proceed in several steps.
1 Estimate of kD:�1 � D: kV. Galerkin orthogonality yields

B[D:+1 � D: ,F] = 0 8F 2 W: . (10.32)

The uniform discrete inf-sup property (P2) implies the existence of F 2 W:+1 with
kFkW = 1 such that

VkD:+1 � D: kV  B[D:+1 � D: ,F] . (10.33)

We decompose F orthogonally as follows:

F = F: + F?: , F: 2 W: , F
?

:
2 W?

:
,
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span{ew(: + 1)}

W?
:
= span{w(: + 1)}

W: = span{ew( 9)}:
9=0

bF:+1

Figure 10.2. Oblique decomposition of the space W:+1 into the subspaces W: =
span{ew( 9)}:

9=0 and span{ew(: + 1)}.

with kF?
:
kW  1. In view of (10.32), (10.33) also reads

VkD:+1 � D: kV  B[D:+1 � D: ,F
?

:
]  B[D:+1 � D: ,

F
?

:

kF
?

:
kW

] .

We now let bF:+1 := F
?

:

kF
?

: kW
2 W?

:
⇢ W:+1 and decompose it along the oblique

subspaces W: = span{ew( 9)}:
9=0 and span{ew(: + 1)}, as illustrated in Fig. 10.2.

SinceW?
:
= span{w(: + 1)} and w(: + 1) =

�
F 9

�
=:+1

9==:+1 is an orthonormal basis,
the function bF:+1 2 W?

:
can be written uniquely as

bF:+1 = "(: + 1) · w(: + 1)

with "(: + 1) 2 R3:+1 satisfying

k"(: + 1)k2 = 1 = kbF:+1kW.

Invoking (10.26), we can express w(: + 1) in terms of {ew( 9)}:
9=0 as follows:

w(: + 1) =
:+1’
9=0

R(: + 1, 9) ew( 9)

= ew(: + 1) +
:’
9=0

R(: + 1, 9) ew( 9)

because R(: + 1, : + 1) = O(: + 1, : + 1) 2 R3:+1⇥3:+1 . Consequently

B[D:+1 � D: , bF:+1] = B[D:+1 � D: ,"(: + 1) · ew(: + 1)]

because (10.32) implies

B[D:+1 � D: , ew( 9)] = 0 8 0  9  : .
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In addition, the biorthogonality of ew(: + 1) with respect to ev( 9) for 0  9  :

translates into

B[D: , ew(: + 1)] = 0 = B[D0, ew(: + 1)] .

Moreover, Galerkin orthogonality yields

B[D:+1, ew:+1] = h 5 , ew:+1i = B[D# , ew:+1],

and collecting the preceding expressions we obtain

kD:+1 � D: k 
1
V

"(: + 1) · B[D# � D0, ew(: + 1)] . (10.34)

2 Estimate of B[D# � D0, ew(: + 1)]. We exploit the biorthogonality between
{ev( 9)}#

9=0 and {ew( 9)}#
9=0. In fact, we write

D# � D0 =
#’
9=0

e$( 9) ·ev( 9)

and substitute into the right-hand side of (10.34) to arrive at

B[D# � D0, ew(: + 1)] =
#’
9=0

e$( 9) · B[ev( 9), ew(: + 1)] = e$(: + 1).

Therefore, (10.34) gives

kD:+1 � D: kV 
1
V

"(: + 1) · e$(: + 1),

whence

kD:+1 � D: kV 
1
V

ke$(: + 1)k2

because k"(: + 1)k2 = 1.

3 Final estimate. Compute

#�1’
:=0

kD:+1 � D: k
2
V 

1
V

2

#�1’
:=0

ke$(: + 1)k22 
1
V

2
ke$k22  k[k

2
2

V
2
k$k22,

according to (10.30). Since {v( 9)}#
9=0 are orthonormal, we get

D# � D0 =
#’
9=0

$( 9) · v( 9) ) kD# � D0kV = k$k2

and
#�1’
:=0

kD:+1 � D: k
2
V 
k[k22
V

2
kD# � D0k

2
V,
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as asserted. This concludes the proof.

In order to get the quasi-orthogonality estimate, we still need to compare the
errors kD# � D0kV and kD � D0kV. The following is a variant of (3.3).

Lemma 10.13 (stability) There holds

kD# � D0kV 
kBk

V

kD � D0kV.

Proof. We use (10.17) and (10.16), in this order, together with Galerkin ortho-
gonality to deduce

VkD# � D0kV  sup
F 2W#

B[D# � D0,F]

kFkW

= sup
F 2W#

B[D � D0,F]

kFkW
 kBkkD � D0kV.

This completes the proof.

Corollary 10.14 (quasi-orthogonality - II) Let D: 2 V: be the :-th Galerkin
solution of (10.3). Then, for all 0  9  # , we have

9+#�1’
:= 9

kD:+1 � D: k
2
V 
kBk

2

V
4
k[k22kD � D 9 k

2
V.

Proof. Combining Proposition 10.12 with Lemma 10.13 yields

#�1’
:=0

kD:+1 � D: k
2
V 
kBk

2

V
4
k[k22kD � D0k

2
V.

Finally, replacing D0 2 V0 by the 9-th Galerkin solution D 9 2 V 9 , we obtain the
desired estimate.

This corollary says that in order to prove Theorem 10.8, i.e., to check the validity
of Assumption 10.1, it is enough to investigate the growth of the block triangular
factor [ introduced in (10.20), and precisely to prove that

k[k2 = >(#1/2).

This is the second step of our analysis. Actually, we prove something more, which
is expressed by the following result.

Theorem 10.15 (bound of block matrices R and [) There exist constants⇠!* >

0 and ? > 2 such that the block R[ factors of H satisfy

k[k2 + kRk2 + k[
�1
k2 + kR

�1
k2  ⇠!* #

1/?
. (10.35)

The proof of this theorem is lenghty and very technical; it involves subtle linear
algebra arguments, which may not be familiar to many readers. For such reasons,
we prefer to postpone it to the end of this section (see Section 10.6).
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10.3 Convergence rates of AFEMs for inf-sup stable methods

In this section, we discuss AFEMs to solve a boundary-value problem admitting a
variational formulation of the form

D 2 V : B[D,F] = h 5 , Fi 8F 2 W, (10.36)

in which the bilinear form B on V ⇥ W is continuous and inf-sup stable, with
inf-sup constant V > 0, and 5 2 W⇤. We will consider the one-step AFEM given
by Algorithm 5.4 (GALERKIN) when all data are discrete, the one-step AFEM with
switch given by Algorithm 5.16 (AFEM-SW) when the operator coe�cients are
discrete but the forcing term is not (as in the Stokes problem), and the general
two-step AFEM given by Algorithm 5.1 (AFEM-TS).

10.3.1 Algorithm 5.4 (GALERKIN)
For 9 � 0, let us denote by (T9 ,V 9 , D 9) with D 9 2 V 9 = VT9 , the sequence of meshes,
subspaces and Galerkin approximations to (10.36) generated by GALERKIN. Let

[T9 (E)= [T9 (E, 5 ) =
⇣ ’
) 2T9

[T(E,))2
⌘1/2

(10.37)

be the PDE error estimators used in the loop. If such estimators fulfil Assumptions
10.2 (equivalence of error and estimator) and 10.3 (estimator reduction), then
Theorem 10.6 (linear convergence) applies and the following result holds.

Proposition 10.16 (convergence and termination of GALERKIN) The module
GALERKIN produces a sequence {D 9} converging linearly to D 2 V

kD � D 9+8 kV  ⇠ d
8

kD � D 9 kV 8 9 , 8 � 0, 0 < d < 1,

thereby reaching any prescribed accuracy kD � D 9 kV  Y in a finite number of
iterations.

10.3.2 Algorithm 5.16 (AFEM-SW).
This algorithm applies to the situation in which the operator coe�cients are discrete,
whereas the forcing 5 2 W⇤ is not. Then, the PDE estimator [T(E, 5 ) depends
on 5 via a projection %T 5 upon a finite dimensional subspace ofW⇤. Inspired by
Lemma 4.5 (localization of ��1-norm) we denote byW⇤

T
a suitable decomposition

ofW⇤ subordinate to T with norm k 5 kW⇤
T
. In this part of the discussion, we prefer

to make the dependence of [T upon %T 5 explicit to avoid confusion, so we will
write [T(E, %T 5 ) rather than [T(E, 5 ) as usual.

Let us begin by stating two assumptions on the estimator (10.37) to be used in
the sequel.

Assumption 10.17 (Lipschitz continuity of estimator) There exists a constant
⇠Lip > 0 such that for any T 2 T, any E,F 2 VT and any 5 , 6 2 W⇤, we have

|[T(E, %T 5 ) � [T(F, %T6)|  ⇠Lip
�
kE � FkV + k%T 5 � %T6kW⇤

T

�
.
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Assumption 10.18 (monotonicity of estimator) If T 2 T and T⇤ is a refinement
of T , then the projection operator satisfies %T⇤%T = %T and

[T⇤(E, %T 5 ,))  [T(E, %T 5 ,)) 8) 2 T and 8E 2 VT , 8 5 2 W
⇤
.

It is useful for the subsequent applications to have explicit criteria which guaran-
tee the fulfilment of Assumption 10.3. This is the purpose of the following result.

Proposition 10.19 (estimator reduction under Dörfler marking) Let the estim-
ator [T(E, %T 5 ) in (10.37) be used in GALERKIN. Let Assumptions 10.17 and
10.18 be valid. Let T⇤ be a refinement of T , with estimator [T⇤(E, %T⇤ 5 ), obtained
by bisecting the elements ) 2 M marked in MARK, using a Dörfler condition on
the estimator [T(DT , %T 5 ) for the Galerkin solution DT 2 VT . Suppose that there
exists _ 2 (0, 1) such that

[T⇤(DT , %T 5 ,))2
 _ [T(DT , %T 5 ,))2

8) 2M . (10.38)

Then, there exists 0 < d < 1 and ⇠ > 0 such that for all ET⇤ 2 VT⇤

[T⇤(ET⇤ , %T⇤ 5 )
2
 d [T(DT , %T 5 )2

+ ⇠

⇣
kET⇤ � DT k

2
V + k%T⇤ 5 � %T 5 k

2
W⇤

T⇤

⌘
.

Proof. By Assumption 10.17 applied to T⇤, we have

[T⇤(ET⇤ , %T⇤ 5 )  [T⇤(DT , %T 5 ) + ⇠Lip

⇣
kET⇤ � DT kV + k%T⇤ 5 � %T 5 kW⇤

T⇤

⌘
.

Using Assumption 10.18 while extending Proposition 4.56 to the current abstract
setting, we have for any X > 0

[T⇤(ET⇤ , %T⇤ 5 )
2
 (1 + X)

�
[T(DT , %T 5 )2

� (1 � _) [T(DT , %T 5 ,M)2�

+ 2(1 + X
�1)⇠2

Lip

⇣
kET⇤ � DT k

2
V + k%T⇤ 5 � %T 5 k

2
W⇤

T⇤

⌘
.

We conclude using Dörfler condition [T(DT ,M) � \[T(DT) and choosing X small
enough.

Before proceeding further, let us introduce the quantity

oscT( 5 ) := k 5 � %T 5 kW⇤
T
,

which is a measure of the oscillation of the data 5 . If DT 2 VT is the solution of
AFEM-SW, we let ET(DT , 5 ) indicate the full estimator defined by

ET(DT , 5 )2 := [T(DT , %T 5 )2
+ oscT( 5 )2

. (10.39)

We formulate the following assumption on the data oscillation.

Assumption 10.20 (quasi-monotonicity of oscillation) There exists a constant⇠osc >

0 such that for any T 2 T and any admissible refinement T⇤ � T , we have



280

oscT⇤( 5 )  ⇠osc oscT( 5 ).

A consequence of this assumption is the bound

k%T⇤ 5 � %T 5 kW⇤
T⇤

 k 5 � %T⇤ 5 kW⇤T⇤
+ k 5 � %T 5 kW⇤

T⇤

 (1 + ⇠osc) oscT( 5 ),

which, inserted into the reduction estimate of Proposition 10.19, gives the existence
of 0 < d0 < 1 and ⇠0 > 0 independent of T such that

[T⇤(DT⇤ , %T⇤ 5 )
2
 d0 [T(DT , %T 5 )2

+ ⇠0
�
kDT⇤ � DT k

2
V + oscT( 5 )2�

. (10.40)

We aim at establishing a linear convergence result similar to Theorem 10.6 for
the sequence {D 9}

1

9=0 generated by AFEM-SW. To this end, we introduce as usual
the short-hand notation 4 9 = kD � D 9 kV, ⇢ 9+1 = kD 9+1 � D 9 kV, [ 9 = [T9 (D 9 , %T9 5 ),
osc 9 = oscT9 ( 5 ), E 9 = ET9 (D 9 , 5 ), and we also introduce the scaled estimator

Z
2
9

:= [2
9
+ W osc2

9
, (10.41)

where the parameter W > 0 is to be found. Note that at this point we have three
parametes, l 2 (0, 1), b 2 (0, 1), and W > 0 to play with, and the idea is to find
conditions on them such that an inequality similar to (10.9) in the proof of Theorem
10.6 holds true. The following result is an intermediate step.

Lemma 10.21 (linear estimator reduction) Let Assumptions 10.3 (estimator re-
duction), 10.17 (Lipschitz continuity of estimator), 10.18 (monotonicity of estim-
ator) and 10.20 (quasi-monotonicity of oscillation) be valid. There exists l0 > 0
such that, for any choice of parameters 0 < l  l0 and 0 < b  1/

p
2 in

AFEM-SW, there exist constants 0 < d < 1 , ⇤ > 0, W � 1 for which

Z
2
:
 d

:� 9
Z

2
9
+ ⇤

:’
✓= 9+1

⇢
2
✓
, : � 9 � 0. (10.42)

Proof. We discuss separately the two alternatives in Algorithm 5.16 (AFEM-SW).
1 Case osc 9  lE 9 . We use (10.40) to get

[
2
9+1  d0[

2
9
+ ⇠0⇢

2
9+1 + ⇠0 osc2

9

and Assumption 10.20 to write

osc2
9+1  ⇠

2
osc osc2

9
.

From

osc2
9
 l

2
E

2
9
= l2([2

9
+ osc2

9
)  l2([2

9
+ W osc2

9
) = l2

Z
2
9
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provided W � 1, we deduce

Z
2
9+1 = [2

9+1 + W osc2
9+1  d0[

2
9
+ ⇠0⇢

2
9+1 + (⇠0 + W⇠

2
osc) osc2

9

 d0[
2
9
+ ⇠0⇢

2
9+1 + (⇠0 + W⇠

2
osc)l

2([2
9
+ W osc2

9
)

= [d0 + (⇠0 + W⇠
2
osc)l

2
][

2
9
+ [(⇠0 + W⇠

2
osc)l

2
]W osc2

9
+⇠0⇢

2
9+1

 [d0 + (⇠0 + W⇠
2
osc)l

2
]Z

2
9
+ ⇠0⇢

2
9+1.

(10.43)

Below we will impose

d1 := d0 + (⇠0 + W⇠
2
osc)l

2
< 1, (10.44)

which will yield the desired bound

Z
2
9+1  d1Z

2
9
+ ⇠0⇢

2
9+1. (10.45)

2 Case osc 9 > lE 9 . We use E
2
9
= [2

9
+ osc2

9
> [

2
9

to get

[
2
9
<

1
l

2
osc2

9
.

Proceeding as in the proofs of Proposition 10.19 (now with M = ;) and of (10.40),
we obtain for any X > 0

[
2
9+1  (1 + X)[2

9
+ ⇠X(⇢2

9+1 + osc2
9
)  (1 � X)[2

9
+ ⇠X⇢

2
9+1 +

✓
2X
l

2
+ ⇠X

◆
osc2

9

with ⇠X = ⇠2
0 (1 + X

�1). On the other hand, since osc 9+1 is computed after a call to
DATA, it satisfies

osc2
9+1  b

2
f

2
9
= b2

l
2
E

2
9
< b

2 osc2
9
=

1 + b
2

2
osc2

9
�

1 � b2

2
osc2

9
.

Combining the two last equations, we obtain

Z
2
9+1 = [2

9+1 + W osc2
9+1  (1 � X)[2

9
+ W

1 + b
2

2
osc2

9
+ ⇠X⇢

2
9+1

+

⇣ 2X
l

2
+ ⇠X � W

1 � b2

2

⌘
osc2

9
.

Below we will enforce

� :=
2X
l

2
+ ⇠X � W

1 � b2

2
 0, (10.46)

which will guarantee

Z
2
9+1  d2Z

2
9
+ ⇠X⇢

2
9+1, (10.47)

with d2 := max(1 � X, 1+b 2

2 ) < 1.
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3 Choice of parameters: Summarizing, in both cases 1 and 2 we have obtained

Z
2
9+1  dZ

2
9
+ ⇤⇢2

9+1 (10.48)

with d := max(d1, d2) < 1 and⇤ := max(⇠0,⇠X), which holds under the conditions
(10.44) and (10.46). Iterating (10.48), we obtain the desired bound (10.42).

To fulfil (10.44), we write l2 in the form l
2 = f0

W
, which gives

d1 = d0 + (⇠0 + W⇠
2
osc)

f0

W

= d0 +
�⇠0

W

+ ⇠
2
osc

�
f0  d0 + (⇠0 + ⇠

2
osc)f0

since W � 1, and we pick a f0 > 0 small enough to make d0 + (⇠0 + ⇠
2
osc)f0 < 1.

To fulfil (10.46), we use b  1/
p

2 and again l2 = f0
W

to write

� = ⇠X +
✓

2X
f0
�

1 � b2

2

◆
W  ⇠X +

✓
2X
f0
�

1
4

◆
W.

Choosing X = X0 = f0/16, yields

�  ⇠X0 �
1
8
W  0 provided W � 8⇠X0 .

In conclusion, setting W0 = max(1, 8⇠X0) and l0 =
p
f0/W0, we fulfil both condi-

tions (10.44) and (10.46) for any 0 < l  l0, by choosing the scaling parameter
W = f0/l

2
� W0. This completes the proof.

Before establishing the linear convergence result for Algorithm 5.16 (one-step
AFEM with switch), we need to extend Assumption 10.2 (equivalence of error and
estimator) to the present situation, in which the estimator [T is replaced by the full
estimator ET defined in (10.39); see Theorem 4.45 (modified residual estimator).

Assumption 10.22 (equivalence of error and full estimator) There are constants
⇠* � ⇠! > 0 such that

⇠!E 9  kD � D 9 kV  ⇠*E 9 9 � 0, (10.49)

where E 9 = ET9 (DT9 , 5 ).

Theorem 10.23 (linear convergence for AFEM-SW) Let Assumptions 10.22
(equivalence of error and full estimator), 10.3 (estimator reduction), 10.17 (Lipschitz
continuity of estimator) and 10.20 (quasi-monotonicity of oscillation) be valid.
There exists l0 2 (0, 1] such that, for any choice of parameters 0 < l < l0 and
0 < b, \ < 1 in AFEM-SW, constants 0 < d < 1 and 2 > 0 exist for which

4 9+1  2d
8

4 9 88, 9 2 N, (10.50)

where 4 9 := kD � D 9 kV.

Proof. By Assumption 10.22 and W � 1 in (10.41), we get the equivalence of
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error and scaled estimator

⇠
2
!

W

Z
2
9
=
⇠

2
!

W

([2
9
+ W osc2

9
)  ⇠2

!
E

2
9
 4

2
9
 ⇠

2
*
E

2
9
 ⇠

2
*

([2
9
+ W osc2

9
) = ⇠2

*
Z

2
9
.

Invoking (10.42) yields

4
2
:
 ⇠

2
*
Z

2
:
 ⇠

2
*
d
:� 9

Z
2
9
+ ⇠

2
*
⇤

:’
✓= 9+1

⇢
2
✓
,

 W
⇠

2
*

⇠
2
!

d
:� 9
4

2
9
+ ⇠

2
*
⇤

:’
✓= 9+1

⇢
2
✓
.

This inequality is similar to the expression (10.8) obtained in Step 1 in the proof
of Theorem 10.6. Therefore, we can finally proceed as in that proof and obtain the
desired result.

10.3.3 Algorithm 5.28 (AFEM-TS)

As usual, DATA produces discrete data bD: on a mesh bT: � T: , whereas GALERKIN

produces an approximation D:+1 on a mesh T:+1 � bT: to the exact solution bD: of the
boundary-value problem of interest with data bD: . Its kernel is given in Algorithm
5.4 (GALERKIN).

In order to proceed, we need some notation and some assumptions. Let us denote
by ⇡(⌦) the space of admissible data D for the boundary-value problem at hand;
let kDk⇡(⌦) be a (quasi-)norm on ⇡(⌦). If D collects all data of problem (10.36),
we write B = B(D) and F = F (D) = h 5 (D), ·i to highlight the dependence of the
bilinear and linear forms on the chosen data; similarly, we write D = D(D) for the
corresponding solution. A perturbation bD of D generates perturbed bilinear and
linear forms bB = B( bD) and bF = F ( bD) = h 5 ( bD), ·i, and a perturbation bD = D( bD)
of D, which satisfies

bD 2 V : bB[bD,F] = bF [F] for all F 2 W. (10.51)

We assume, as in Section 5.4.2, that a call [bT ,
bD] = DATA(T ,D, g) generates

an admissible refinement bT of T and discrete data bD over bT , such that

kD � bDk⇡(⌦)  ⇠datag, (10.52)

where ⇠data > 0 depends on data (see Section 7.2). Finally, we associate to any
admissible refinementT ofT0, two finite dimensional spacesVT ⇢ V andWT ⇢ W
of equal dimension, made of piecewise polynomial functions on T (typically, this is
accomplished by choosing a type of finite element compatible with the pair (V,W)
and adopting it in any T 2 T).

We are ready to state the assumptions which will rule our forthcoming analysis
of AFEM-TS.
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Assumption 10.24 (perturbation estimate) For any eT 2 T and Y  Y0, let
[bT ,

bD] = DATA(eT ,D, Y) and let bD = D( bD) be the solution of (10.51). There
exists a constant ⇠⇡ > 0, independent of eT and Y, such that

kD � bDkV  ⇠⇡ kD � bDk⇡(⌦). (10.53)

Note that, concatenating this inequality with (10.52) for g = Y, we can quantify the
e�ect of a call to DATA on the perturbation of the exact solution; we have indeed

kD � bDkV  ⇠⇡⇠dataY. (10.54)

Assumption 10.25 (uniform continuity constant) For any eT 2 T and Y  Y0, let
[bT ,

bD] = DATA(eT ,D, Y) and let bB = B( bD) be the associated bilinear form. There
exists a constant ⇠⌫ � kBk, independent of eT and Y, such that

k bBk  ⇠⌫ . (10.55)

Assumption 10.26 (uniform inf-sup constant) For any eT 2 T and Y  Y0, let
[bT ,

bD] = DATA(eT ,D, Y), let bB = B( bD) be the associated bilinear form, let T be
either bT or an admissible refinement of bT , and finally let VT ⇢ V, WT ⇢ W be
the subspaces built on T as above. There exists a constant 0 < V̄  V, independent
of eT , Y, and T , such that

inf
F 2WT

sup
E2VT

bB[E,F]

kEkVkFkW
� V̄. (10.56)

The last assumption guarantees the well-posedness of all the discrete variational
problems

DT 2 VT : bB[DT ,FT] = bF [FT] 8FT 2 WT , (10.57)

associated with the successive refinements of the initial mesh T0 performed by
AFEM-TS.

We want to prove, as in the coercive case (see Proposition 5.27), that the number
of iterations performed in any call to GALERKIN inside AFEM-TS (which is finite
by Proposition 10.16) is indeed uniformly bounded.

Proposition 10.27 (computational cost of GALERKIN) Let Assumptions 10.2,
10.3, 10.24, 10.25, and 10.26 be valid. For any : 2 N, the number of subiterations
�: inside a call to GALERKIN at iteration : of AFEM-TS is bounded by a constant
� independent of : .

Proof. Denote by T: , 9 the successive refinements of bT: defined in GALERKIN at
iteration : , and let D: , 9 2 V: , 9 = VT:, 9 be the corresponding Galerkin solutions,
which are approximations of the solution bD: 2 V of the perturbed problem (10.51)
with forms bB = bB: = B( bD:) and b

5 = b
5: = 5 ( bD:). Note as well that we use a

posteriori estimators [: , 9 = [: , 9(E) defined on V: , 9 , which depend on bD: via the
coe�cients of the equation. However, in reference to Assumptions 10.2 and 10.3,
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we always suppose the constants in the bounds (10.5) and (10.6) to be independent
of : and 9 .

Let us pick 9 := �: � 1. By definition of stopping criterion in GALERKIN, and
by (10.5) and (10.7), we get

Y: < [: , 9(D: , 9) 
1
⇠!

kbD: � D: , 9 kV  2

⇠!

d
9

kbD: � D: ,0kV. (10.58)

The norm on the right-hand side can be bounded via Corollary 3.3 (quasi-monotoni-
city), applied to B := bB: , D := bD: 2 V, D# := D: ,0 2 V# := VbT: , and E := D: 2
V" := VT: ✓ VbT: (the output of GALERKIN at iteration :�1). Using Assumptions
10.25 (uniform continuity constant) and 10.26 (uniform inf-sup constant), we thus
have

kbD: � D: ,0kV  _kbD: � D: kV, (10.59)

with _ = ⇠⌫

V̄

.
At last, we use again the triangle inequality to get

kbD: � D: kV  kbD: � bD:�1kV + kbD:�1 � D: kV

 kD � bD: kV + kD � bD:�1kV + kbD:�1 � D: kV;

then, Assumption 10.24 (perturbation estimate) yields kD � bD: kV  ⇠⇡⇠data lY:
and kD �bD:�1kV  ⇠⇡⇠data lY:�1, whereas the termination test for GALERKIN at
iteration : � 1 yields kbD:�1 � D: kV  ⇠* Y:�1. Hence, recalling Y:�1 = 2Y: and
l  1, we get

kbD: � D: kV  f Y: (10.60)

with f = 3⇠⇡⇠data + 2⇠* . Finally, concatenating (10.58), (10.59) and (10.60), we
obtain

d
9

�
⇠!

2_f

,

which implies �:  1 +
�

log ⇠!
2_f

�
(log d)�1 =: �.

The remaining of this section is devoted to investigate the rate-optimality of
AFEMs for inf-sup stable problems. Precisely, we aim at establishing the analogue
of bound (6.1) for such problems, i.e.,

kD � DT kV  ⇠(D,D)
�
#T
��B

. (10.61)

To this end, we have to introduce approximation classes for the solution and the data,
and to study the quasi-optimality properties of mesh refinement and GALERKIN.

10.3.4 Nonlinear approximation classes
The definition of the approximation class AB = AB(V;T0) for functions in V is
identical to that given in Section 6.1.1 for functions in �1

0(⌦) (see Definition 6.1),
provided the norm |E |

�
1
0 (⌦) is replaced by the norm kEkV at all occurrences.

In the rest of the section we will make the following regularity assumption.
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Assumption 10.28 (approximability of u) The exact solution D 2 V of problem
(10.36) belongs to the approximation class AB(V;T0) for some B = BD 2 (0, =

3
].

The approximation classes of a data D 2 ⇡(⌦) are defined via discrete ap-
proximations DT 2 DT subordinate to a partition T 2 T, which produce the
oscillation

oscT(D) = inf
DT 2DT

kD �DT k⇡(⌦).

Definition 10.29 (approximation classes of D) Let DB := DB
�
⇡(⌦);T0

�
be the

set of data D 2 ⇡(⌦) satisfying

|D|DB := sup
# �#T0

✓
#
B inf
T2T#

oscT(D)
◆

< 1 ) inf
T2T#

oscT(D)  |D|DB#
�B
.

(10.62)

The following assumptions on the data of our boundary-value problem will be
valid in the rest of the section.

Assumption 10.30 (approximability of D) The dataD 2 ⇡(⌦) of problem (10.36)
belongs to the approximation class DB

�
⇡(⌦);T0

�
for some B = BD 2 (0, =

3
].

Assumption 10.31 (quasi-optimality of DATA) A call [bT ,
bD] = DATA (T ,D, Y)

marks a set of elements MD whose cardinality #(D) = #MD obeys

#(D) . |D|

1
BD
DB
Y

�
1
BD . (10.63)

The concept of Y-approximation of order B of D 2 AB(V;T0) is identical to the
one given in Definition 6.12, and so is the proof of the following result.

Lemma 10.32 (9-approximation of u of order s) Let D 2 AB(V;T0) and E 2 V
satisfy kD � EkV  Y for some 0 < Y  Y0. Then E is a 2Y-approximation of order
B to D.

10.3.5 Rate-optimality of GALERKIN

To estimate the growth of the cardinality of the meshes produced inside a call to
GALERKIN, which always deals with discrete data, and to relate it to the approx-
imation class of the exact solution D, we need an additional assumption of the
estimators [T . In the sequel, for any subset R ⇢ T , we define [T(E,S) by

[T(E,S)2 =
’
) 2S

[T(E,))2
.

Assumption 10.33 (discrete reliability of the estimator) There exists a constant
22 > 0 such that for any T 2 T and any refinement T⇤ � T , if R = RT!T⇤ = T \T⇤

is the set of refined elements of T , it holds

kDT⇤ � DT kV  22[T(DT ,R),

where DT and DT⇤ (resp.) are the Galerkin solutions in VT and VT⇤ (resp.).
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We recall that the module MARK in GALERKIN implements Dörfler’s strategy,
i.e., for a fixed \ 2 (0, 1], it identifies a subset M ✓ T of elements undergoing
bisection by the condition

[T(DT ,M) � \ [T(DT). (10.64)

The following property is the analogue of the one stated in Lemma 6.16 for
coercive problems. Since the proof is similar, we omit it.

Lemma 10.34 (Dörfler marking) Let Assumptions 10.17 and 10.33 be valid. For
all 0 < ` <

1
2 there exists 0 < \0 < 1 such that, if T 2 T and T⇤ is a refinement of

T with refined set R = T \T⇤, and if the Galerkin solutions DT 2 VT and DT⇤ 2 VT⇤

satisfy

[T⇤(DT⇤)  ` [T(DT),

then

\0 [T(DT)  [T(DT ,R).

We are ready to investigate the rate-optimality of the :-th call to GALERKIN in
the two-step AFEM (see Definition 5.1). We denote by M: , 9 ✓ T: , 9 the marked
set at the 9-th iteration inside GALERKIN (hereafter, we refer to the notation in the
proof of Proposition 10.27). To achieve quasi-optimality, the following assumption
is fundamental.

Assumption 10.35 (minimality of marked sets) The module MARK selects a set
M: , 9 with minimal cardinality among those satisfying Dörfler’s condition

[: , 9(D: , 9 ,M) � \ [: , 9(D: , 9) 8 : , 9 .

Proposition 10.36 (cardinality of marked sets) Let Assumptions 10.2, 10.24, 10.25,
10.26, 10.28, 10.17, 10.33 and 10.35 hold true. There exists a constant ⇠0 > 0
independent of : and 9 such that the cardinality #: , 9(D) of M: , 9 satisfies

#: , 9(D)  ⇠0 |D |
1/B
AB
Y
�1/B
:

(10.65)

and

#: , 9(D)  ⇠0 |D |
1/B
AB
kD � D: , 9 k

�1/B
V . (10.66)

Proof. The proof can be easily obtained by slightly adapting to the current abstract
setting the proof of Corollary 6.22, keeping also into account Proposition 6.18.

Let M: denote the set of marked elements in GALERKIN at iteration : of AFEM.
Since the cardinality #:(D) = #M: of M: satisfies #:(D) =

Õ
�:�1
9=0 #: , 9(D), we

can estimate its cardinality by combining Propositions 10.27 and 10.36.

Corollary 10.37 (rate-optimality of GALERKIN) Under the assumptions of Pro-
positions 10.27 and 10.36, the total number of marked elements M: in GALERKIN

at iteration : of AFEM satisfies

#:(D)  � ⇠0 |D |
1/B
AB
Y
�1/B
:

.
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10.3.6 Rate-optimality of AFEM-TS

At last, we focus on the two-step AFEM in Definition 5.1 (AFEM-TS), and prove its
rate-optimality, in relation to the nonlinear approximation classes of the solution D
and the problem data D.

Theorem 10.38 (rate-optimality of AFEM-TS) Under the same assumptions of
Proposition 10.36, plus Assumptions 10.30 and 10.31, there exists a constant ⇠⇤
independent of D and D such that the sequence (T: ,VT: , DT: ), : � 0, produced by
AFEM-TS satisfies

kD � DT: kV  ⇠⇤

⇣
|D |

1/BD
ABD

+ |D|
1/BD
DBD

⌘
B �

#T:
��B

,

with 0 < B = min(BD , BD)  =

3
.

Proof. Let us denote by M
D

✓
(MD

✓
, resp.) the set of elements marked by GALER-

KIN (by DATA, resp.) at iteration ✓ of AFEM. By Corollary 10.37 and Assumption
10.31, there exist constants ⇡1,⇡2 independent of D, D and : such that

#✓(D)  ⇡1 |D |
1/BD
ABD

Y
�1/BD
✓

, #✓(D)  ⇡2 |D|
1/BD
DBD

Y
�1/BD
✓

.

Then, we conclude as in the proof of Theorem 6.24.

10.4 The Stokes problem

Here we consider the Stokes problem

��u + r? = f in ⌦,
div u = 0 in ⌦,

u = 0 on m⌦,
(10.67)

already introduced in Section 2.3. Assuming f 2 ��1(⌦;R3) = V⇤, its weak
formulation is given in (2.15) or, equivalently, in (2.16), where the bilinear form
B is continuous and inf-sup stable, as a consequence of Brezzi’s Theorem 2.11
(Brezzi); see Section 2.4.

A Galerkin discretization of this problem, based on finite dimensional subspaces
VT ⇢ V = �

1
0(⌦;R3) and QT ⇢ Q = !

2
0(⌦), reads as follows: find (uT , ?T) 2

VT ⇥ QT such that

0[uT , v] + 1[?T , v] = h f , vi 8 v 2 VT ,

1[@, uT] = 0 8 @ 2 QT ,

(10.68)

or equivalently,

(uT , ?T) 2 VT ⇥ QT : B[(uT , ?T), (v, @)] = h f , vi 8 (v, @) 2 VT ⇥ QT .

We assume that the pair (VT ,QT) is uniformly inf-sup stable for the form 1, i.e.,



AFEM 289

there exists a constant V > 0, independent of the refinement T , such that

inf
@2QT

sup
v2VT

1[@, v]

kvkVkFkW
� V . (10.69)

This condition is equivalent to the uniform inf-sup stability of the bilinear form B

on the product space XT := VT ⇥ QT . Then, applying a discrete form of Brezzi’s
Theorem, we obtain the existence and uniqueness of the solution of (10.68), which
satisfies the stability bound

kuT kV + k?T kQ  ⇠ k f kV⇤ , (10.70)

where ⇠ only depends on the continuity constant k0k and the coercivity constant
U of the form 0, and the inf-sup constant V. Furthermore, we have the quasi-best
approximation bounds ([Bo� et al. 2013, Proposition 8.2.1])

ku � uT kV  ⇠11 min
v2VT

ku � vkV + ⇠12 min
@2QT

k? � @kQ (10.71)

k? � ?T kV  ⇠21 min
v2VT

ku � vkV + ⇠22 min
@2QT

k? � @kQ (10.72)

where the constants ⇠8 9 , 1  8, 9  2, only depend on the quantities k0k, k1k, U
and V.

There are many families of finite element spaces that are uniformly inf-sup
stable for the Stokes problem; see [Bo� et al. 2013, Chapter 8]. Among them, we
consider here the Taylor-Hood element [Taylor and Hood 1973] and its higher-order
versions. They all use continuous discrete pressures, so they fit in the general form

VT = {v 2 �1
0(⌦;R3) : v |) 2 \) , ) 2 T }

QT = {@ 2 !
2
0(⌦) \ ⇠0(⌦̄) : @ |) 2 &) , ) 2 T },

where \) and &) are spaces of polynomials on the element ) . Considering
simplicial elements, we have for = � 2

\) = (P=()))3 , &) = P=�1()). (10.73)

The convergence and optimality of an adaptive algorithm for the Stokes problem
based on Taylor-Hood elements was first established by Feischl [Feischl 2019] (see
also [Feischl 2022, Section 6]). We aim at deriving a similar result using the
abstract framework presented in this section.

We start by developing the a posteriori error analysis, and for this we introduce
the weak residual

hRT , (v, @)i := h f , vi � B[(uT , ?T), (v, @)] 8(v, @) 2 V ⇥ Q,

which we represent as RT = (R<
T
,R

2

T
) according to the momentum and continuity

equations; note that R2
T
= div uT . The continuity and inf-sup stability properties

of the exact Stokes form B yield the equivalence

ku � uT kV + k? � ?T kQ ⇡ kRT kV⇤⇥Q⇤ ⇡ kR<T kV⇤ + k div uT k!2(⌦). (10.74)
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We now apply Corollary 4.6 (star localization of residual norm) to each component
of the momentum residual R<

T
to get

kR<
T
k

2
V⇤ ⇡

’
I2V

kR<
T
k

2
(��1(lI ))3

,

whereas Lemma 4.35 (splitting of local residual norm) yields the equivalence

kR<
T
k

2
(��1(lI ))3

⇡ k%T f + �uT � r?T k
2
(��1(lI ))3

+ k f � %T f k2(��1(lI ))3
.

In view of mesh refinement, we recall Lemma 4.8 (localization re-indexing) and
we express the error indicator in terms of elements ) 2 T rather than stars lI , in
analogy with the scalar case (4.52). To this end, define

[
<

T
(uT , ?T ,))2 := ⌘2

)
k%) f + �uT � r?T k

2
(!2() ))3

+ ⌘)

’
� ⇢m) \m⌦

k [[(ruT)n� ]] � %� f k2(!2(� ))3 ,

oscT( f ,))2
�1 := k f � %T f k2(��1(l) ))3 .

(10.75)

Note that the jump term [[(ruT)n� ]] does not contain the pressure contribution,
since discrete pressures in QT are globally continuous. We thus have

kR<
T
k

2
V⇤ ⇡

’
) 2T

⇣
[
<

T
(uT , ?T ,))2

+ oscT( f ,))2
�1

⌘
. (10.76)

Recalling (10.74), the full local PDE residual indicator could be defined as

[T(uT , ?T ,))2 := [<
T

(uT , ?T ,))2
+ k div uT k

2
!

2() ).

However, such a quantity is not guaranteed to strictly reduce under mesh refinement,
due to the presence of the divergence term, which is not scaled by a positive power
of the meshsize. The following result provides an equivalent expression of the last
term, which does reduce. We recall the definition (9.1) of jumps across faces.

Lemma 10.39 (norm equivalence for divergence) It holds

k div uT k
2
!

2(⌦) ⇡
’
) 2T

’
� ⇢m) \m⌦

⌘� k [[div uT]] k
2
!

2(� ).

Proof. The result follows from applying to i = div uT the equivalence

ki � ⇧Tik
2
!

2(⌦) ⇡
’
) 2T

’
� ⇢m) \m⌦

⌘� k [[i]] k
2
!

2(� ) 8i 2 S=�1,�1
T

(where ⇧T is the !
2-orthogonal projection upon S=�1,0

T
), after observing that

⇧Ti = 0 since uT is discretely divergence-free, i.e., it satisfies the second set
of equations in (10.68)). To prove the equivalence for arbitrary i 2 S=�1,�1

T
, we

use the quasi-interpolation operator IdG
T

introduced in Section 9.1.2, which leaves
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S=�1,0
T

invariant. Then, it is easily seen that

ki � ⇧Tik
2
!

2(⌦) ⇡ ki � I
dG
T
ik

2
!

2(⌦),

so, it is enough to prove the equivalence with ⇧T replaced by I
dG
T

. But this
calculation can be done on patches l) since IdG

T
is quasi-local:

ki � I
dG
T
ik

2
!

2() ) .
’
� ⇢l)

⌘� k [[i]] k
2
!

2(� ) . ki � I
dG
T
ik

2
!

2(l) ) 8i 2 S
=�1,�1
T

.

The first inequality follows from (9.10) (see also [Bänsch, Morin and Nochetto
2002, Proposition 5.4]). The second inequality results from the fact that if the
rightmost term vanishes on l) , then i = I

dG
T
i, whence i is continuous in l) .

This yields [[i]] |� = 0 for all internal faces F of l) and the middle term vanishes.

Applying Lemma 10.39, we are led to define the elemental residual indicator

[T(uT , ?T ,))2 := [<
T

(uT , ?T ,))2
+ ⌘)

’
� ⇢m) \m⌦

k [[div uT]] k
2
!

2(� ). (10.77)

Concatenating (10.74), (10.76) and Lemma 10.39, we fulfill Assumption 10.22
(equivalence of error and full estimator). The precise result is as follows.

Proposition 10.40 (a posteriori error analysis for Stokes) There exists constants
⇠* � ⇠! > 0 such that

⇠!ET(uT , ?T , f )  ku � uT kV + k? � ?T kQ  ⇠*ET(uT , ?T , f ),

where the full estimator is defined by

ET(uT , ?T , f )2 :=
’
) 2T

ET(uT , ?T , f ,))2

with ET(uT , ?T , f ,))2 := [T(uT , ?T ,))2
+ oscT( f ,))2

�1 introduced in (10.77)
and (10.75) and oscT( 5 ,))�1 = k 5 � %T 5 k��1(l) ).

Since the Stokes problem has constant coe�cients but variable forcing, it is
natural to resort to Algorithm 5.16 (AFEM-SW), the one-step AFEM with switch, for
its adaptive discretization. With respect to the functional setting of Section 10.3.2,
the ambient spaceW is V ⇥ Q and the data projection operator %T is

VT := ((%T)3 ,⇧=�1
T

) :W⇤ ! (FT)3 ⇥ S=�1,�1
,

where FT is the scalar discrete space introduced in Definition 4.17, %T is here
the scalar projection operator introduced in Definition 4.24, and ⇧=�1

T
is the !2-

orthogonal projection upon S=�1,�1. Furthermore, the norm used to measure data
perturbations is k( f , 6)k2W⇤

T

=
Õ
) 2T

�
k f k2

(��1(l) ))3
+ k6k

2
!

2() )

�
.

It is easily seen that [T(uT , ?T ,)) satisfies Assumptions 10.17 (Lipschitz con-
tinuity of estimator) and 10.18 (monotonicity of estimator) as well as the hypotheses



292

of Proposition 10.19 (estimator reduction under Dörfler marking): the estimator is
clearly Lipschitz continuous and monotone, and it satisfies condition (10.38) since
all its addends appear multiplied by a positive power of the meshsize. In addition,
the oscillation oscT(( f , 6)) = k( f , 6) � VT( f , 6)kW⇤

T
fulfills Assumption 10.20

(quasi-monotonicity of oscillation).
Theorem 10.23 (linear convergence for AFEM-SW) provides su�cient conditions

for the linear convergence of the algorithm, and these conditions have been verified
along the previous discussion. Therefore, we may summarize our findings in the
following theorem.

Theorem 10.41 (linear convergence for Stokes) Consider the Galerkin discret-
ization (10.68) of the Stokes problem which uses Taylor-Hood elements of order
= � 2, and let the a posteriori estimator be given in Proposition 10.40. Then,
Theorem 10.6 guarantees the linear convergence of Algorithm 5.16 (AFEM-SW)
applied to this problem, i.e., it holds for some 2 > 0 and 0  d < 1

4 9+8  2d
8

4 9 88, 9 2 N,

with 4 9 := kr(u � u 9)k⌦ + k? � ? 9 k⌦.

In order to assess the optimality of the discretization, we specify the definition
of approximation classes for the solution of the Stokes problem. Precisely, given
(v, @) 2 V ⇥ Q we let f# (v, @) be the smallest approximation error incurred on
(v, @) with elements in VT ⇥ QT over meshes belonging to T# :

f# (v, @) := inf
T2T#

inf
(vT ,@T )2VT⇥QT

(kr(v � vT)k2⌦ + k@ � @T k
2
⌦)1/2

. (10.78)

For 0 < B  =/3, the class AB = AB(V ⇥ Q;T0), relative to the partition T0 is the
set of functions (v, @) 2 V ⇥ Q such that

|(v, @)|AB := sup
# �#T0

�
#
B

f# (v, @)
�
< 1 (10.79)

By adapting the arguments used in the proof of Theorem 6.20 (rate optimality of
one-step AFEMs), we can prove the following result.

Theorem 10.42 (rate optimality of AFEM-SW for Stokes) Let the assumptions of
Theorem 10.41 be valid. If (u, ?) 2 AB, then the sequence {T: ,V: , (u: , ?:)}:�0
generated by AFEM-SW are such that

kr(u � u:)k!2(⌦) + k? � ?: k!2(⌦) . |(u, ?)|AB (#T:)
�B
, : � 0. (10.80)

Remark 10.43 (limits of the analysis) Other inf-sup stable elements, such as the
Mini element or the Crouzeix-Raviart element (see e.g. [Bo� et al. 2013]), do
not fit in the present setting of analysis, since their velocities contain elementwise
bubble components (which are indeed responsible for the stability of the elements).
Unfortunately, a bubble on an element does not restricts to two bubbles when the
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element is bisected, preventing the nestedness condition VT ⇢ VT⇤ to be satisfied
when T⇤ is a refinement of T .

10.5 Mixed FEMs for scalar elliptic PDEs

The di�usion-reaction problem (2.5) can be formulated in mixed form as follows:

G�12 = rD in ⌦,
� div2 + 2D = 5 in ⌦,

D = 0 on m⌦.

(10.81)

Introducing the porosity matrix Q := G�1, we assume hereafter that data

D = (Q, 2, 5 ) 2 ⇡(⌦) := "(U1, U2) ⇥ '(21, 22) ⇥ !2(⌦), (10.82)

where "(U1, U2) and '(21, 22) are defined in (5.48) and (5.49), respectively. Note
that the current parameters U1, U2 are the reciprocals of U2, U1 in (5.48), but to
avoid complicating the notation further, we relabel them hereafter.

Weak formulation. To write the weak formulation of these equations, we introduce
the Hilbert space

�(div;⌦) :=
�
3 2 !2(⌦;R3) : div 3 2 !2(⌦)

 
(10.83)

equipped with the norm k3k2
� (div;⌦) := k3k2⌦ + k div 3k2⌦. Then, we multiply the

first equation in (10.81) by 3 2 �(div;⌦) and the second equation by E 2 !2(⌦),
we integrate over⌦ and apply partial integration to the term containingrD, keeping
into account the Dirichlet boundary condition. In this way, we obtain the following
variational problem: find (2, D) 2 V := �(div;⌦) ⇥ !2(⌦) such thatπ

⌦
Q2 · 3 +

π
⌦
D div 3 = 0 8 3 2 �(div;⌦),π

⌦
E div2 �

π
⌦
2 D E = �

π
⌦
5 E 8 E 2 !

2(⌦).
(10.84)

This can be written as: find (2, D) 2 + ⇥& such that

0[2, 3] + 1[D, 3] = 0 82 2 + ,

1[E,2] + < [D, E] = �h 5 , Ei 8 E 2 &,
(10.85)

if we set + := �(div;⌦), & := !
2(⌦), and we introduce the continuous bilinear

forms 0 : + ⇥+ ! R, 1 : & ⇥+ ! R and < : & ⇥& ! R by

0[2, 3] =
π
⌦
Q2 · 3 , 1[E, 3] =

π
⌦
E div 3 , < [D, E] = �

π
⌦
2 D E ,

and the linear form h 5 , Ei =
Ø
⌦ 5 E. An equivalent formulation, similar to (2.16),

is as follows:

(2, D) 2 + ⇥& : B[(2, D), (3, E)] = �h 5 , Ei 8 (3, E) 2 + ⇥&, (10.86)
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with

B[(2, D), (3, E)] := 0[2, 3] + 1[D, 3] + 1[E,2] + < [D, E] .

Formulation (10.85) is a generalization of the classical saddle point problem
considered in Section 2.4, given by the presence of the third bilinear form <.
According to [Bo� et al. 2013, Theorem 4.3.1], the well-posedness of such a
problem can be derived from the three following conditions:

(i) the form 0 is coercive on +0 = {3 2 + : 1[E, 3] = 0 for all E 2 &},
(ii) the form 1 satisfies an inf-sup condition on + ⇥&,
(iii) the form < is non-positive on &, i.e., < [E, E]  0 for all E 2 &.

These conditions are easily checked for our mixed formulation of the Dirichlet
problem.

Discretization. To define a finite element discretization of this problem, we consider
partitions T 2 T obtained by conforming bisection refinements of an initial parti-
tion T0, and let+T ⇢ + and&T ⇢ & be finite dimensional subspaces made of piece-
wise polynomial functions on T . Among the families of uniformly inf-sup stable
finite element spaces for this problem, we consider the Raviart-Thomas-Nédélec
family [Raviart and Thomas 1977, Nédélec 1980], and the Brezzi-Douglas-Marini
family [Brezzi, Douglas and Marini 1985] on simplicial elements. They fit into the
general definition

+T = {3 2 �(div;⌦) : 3 |) 2 \) , ) 2 T },

&T = {@ 2 !
2(⌦) : @ |) 2 &) , ) 2 T }.

For the Raviart-Thomas-Nédélec (RTN) family we have

\) = (P=�1()))3 + x P=�1()), &) = P=�1()), = � 1,

where x = (G1, . . . , G3) is the coordinate vector, whereas for the Brezzi-Douglas-
Marini (BDM) family we have

\) = (P=()))3 , &) = P=�1()), = � 1.

Note that for any face � of the triangulation it holds 3 |� · n� 2 P=�1(�) for the
RTN family, and 3 |� ·n� 2 P=(�) for the BDM family; furthermore, div\) = &) .
We refer to [Bo� et al. 2013, Sects. 2.3.1 and 7.1.2] for more details.

Due to the presence of variable data, it is natural to perform the adaptive discret-
ization of the problem by adopting Algorithm 5.28 (AFEM-TS), the two-step AFEM.
The procedure [bT ,

bD] = DATA(T ,D, g) generates an admissible refinement bT of
T and discrete data

bD = (bQ,b2, b5 ) 2 DbT :=
⇥
S=�1,�1bT

⇤
3⇥3
⇥ S=�1,�1bT ⇥ S=�1,�1bT

over bT , such that bQ 2 "(bU1,bU2), b2 2 '(b21,b22) (see Sects. 7.2.2 and 7.2.3), and

kD � bDk b⇡(⌦)  ⇠datag,
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where the space b⇡(⌦) is defined in (5.55).
The Galerkin discretization with these discrete data reads: find (2T , DT) 2

+T ⇥&T such that

b0[2T , 3] + 1[DT , 3] = 0 8 3 2 +T ,

1[E,2T] + b< [DT , E] = �hb5 , Ei 8 E 2 &T ,

(10.87)

with

b0[2, 3] =
π
⌦

bQ2 · 3 , b< [D, E] = �
π
⌦
b2 D E , hb5 , Ei =

π
⌦

b
5 E ,

or equivalently,

(2T , DT) 2 +T ⇥&T : bB[(2T , DT), (3, E)] = �hb5 , Ei 8 (3, E) 2 +T ⇥&T .

A posteriori error estimator. Let us denote by (b2,bD) 2 + ⇥& the exact solution of
the perturbed problem

bB[(b2,bD), (3, E)] = �hb5 , Ei 8 (3, E) 2 + ⇥&;

note that the forcing b
5 appears with a negative sign. Then, by continuity and

uniform inf-sup stability of the form bB, we know that the error

kb2 � 2T k� (div;⌦) + kbD � DT k!2(⌦)

is equivalent to the quantity

sup
(3,E)2+⇥&

bB[(b2 � 2T ,bD � DT), (3, E)]
k3k� (div;⌦) + kEk!2(⌦)

= sup
(3,E)2+⇥&

hb5 , Ei + bB[(2T , DT), (3, E)]
k3k� (div;⌦) + kEk!2(⌦)

.

By Galerkin orthogonality, the numerator is equal to

hb5 , E � ETi + bB[(2T , DT), (3 � 3T , E � ET)] 8(3T , ET) 2 +T ⇥&T ,

that we now proceed to estimate. The term

bB[(2T , DT), (3 � 3T , 0)]

can be analyzed as in Carstensen [Carstensen 1997] (see also [Verfürth 2013,
Section 4.8]), by resorting to a stable decomposition of �(div;⌦): precisely, given
3 2 �(div;⌦), there exist � 2 (�1(⌦))3 and u 2 (�1(⌦))3 such that

3 = � + curl u (10.88)

with k�k(� 1(⌦))3 + kuk(� 1(⌦))3 . k3k� (div;⌦) (see [Xu, Chen and Nochetto 2009,
Section 5.1.3]). Note that if ⌦ is convex, then (10.88) is the Helmholtz decompos-
ition of 3, with � = r⌧ for some ⌧ 2 (�2(⌦))3 . Using (10.88) and a suitable
choice of 3T , one can show that

| bB[(2T , DT), (3 � 3T , 0)] | . [T ,1((2T , DT)) k3k� (div;⌦) (10.89)
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with

[T ,1((2T , DT))2 =
’
) 2T

[T ,1((2T , DT),))2

and

[T ,1((2T , DT),))2 := ⌘2
)
kbQ2T � rDT k

2
!

2() ) + ⌘
2
)
k curl(bQ2T)k2

!
2() )

+ ⌘)

’
� ⇢m) \m⌦

k

hh
(bQ2T)C

ii
k

2
!

2(� ) + ⌘)

’
� ⇢m)\m⌦

k(bQ2T)C k2
!

2(� ),

(10.90)

where 5
C
= 5 � (5 · n� )n� denotes the tangential component of the vector field 5

on �. On the other hand, the term

hb5 , E � ETi + bB[(2T , DT), (0, E � ET)] =
π
⌦

(b5 + div2T � b2 DT)(E � ET)

can be bounded as follows. For any ) 2 T , let ⇧) = ⇧=�1
)

be the !2-orthogonal
projection upon &) = P=�1()), and let us choose (ET)|) = ⇧) E. Then, noticing
that b

5 + div2T 2 &) , we haveπ
⌦

(b5 + div2T � b2 DT)(E � ET) =
’
) 2T

π
)

(b5 + div2T � ⇧) (b2 DT))(E � ⇧) E)

�

’
) 2T

π
)

(b2 DT � ⇧) (b2 DT))(E � ⇧) E)

= �
’
) 2T

π
)

(b2 DT � ⇧) (b2 DT))E ,

(10.91)

whence

|hb5 , E � ETi + bB[(2T , DT), (0, E � ET)] | 
’
) 2T

kb2 DT �⇧) (b2 DT)k
!

2() )kEk!2() ) .

Conversely, it is easily checked that (10.91) implies the bound

kb2 DT � ⇧) (b2 DT)k
!

2() ) . k div2 � div2T k!2() ) + kb2k!1() )kbD � DT k!2() ).

The choice = = 1 yields b2 DT 2 P0()), hence, b2 DT � ⇧) (b2 DT) = 0 . For = � 2,
we could define as a (squared) local error indicator the quantity

[T ,1((2T , DT),))2
+ kb2 DT � ⇧) (b2 DT)k2

!
2() ) ,

but the second addend is not guaranteed to reduce under refinement, since it is
not scaled by a positive power of the meshsize. However, there is an equivalent
quantity which does reduce, as stated in the following result.

Lemma 10.44 (equivalence of local error indicators) Assume b2, DT 2 P=�1()),
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for = � 2. Let ⇧ 9

)
be the !2-orthogonal projection upon P 9()). Then,

kb2 DT � ⇧) (b2 DT)k
!

2() ) ⇡ ⌘)

=’
9=1

kDT � ⇧
=�1� 9
)

DT k!2() )krb2 � ⇧ 9�2
)
rb2k!1() ),

(10.92)
where the constants hidden in the symbol ⇡ are independent of b2, DT , and ) .

Proof. By the Bramble-Hilbert theorem,

kb2 DT � ⇧) (b2 DT)k
!

2() ) . ⌘
=

)
|b2 DT |�=() )

and

|b2 DT |�=() ) .
=�1’
9=1

|b2 |
,
9
1() ) |DT |�=� 9 () ).

Moreover,

|b2 |
,
9
1() ) = |rb2 |

,
9�1
1 () ) = |rb2 � ⇧ 9�2

)
rb2 |

,
9�1
1 () )

and

|DT |�=� 9 () ) = |DT � ⇧
=�1� 9
)

DT |�=� 9 () ).

Applying inverse estimates for semi-norms, we obtain the . inequality in (10.92).
To get the opposite inequality, it is enough to check that the vanishing of the

left-hand side implies the vanishing of the right-hand side, since both quantities are
defined on finite-dimensional spaces and their scaling with respect to the element
size is the same. Now, b2 DT = ⇧) (b2 DT) implies b2 DT 2 P=�1()). Let us assume
that DT 2 P=�1�:()) for some 0  :  = � 1, and consequently b2 2 P:()), i.e.,
rb2 2 P:�1()). Then, ⇧=�1� 9

)
DT = DT for any 9  : , hence, the corresponding

di�erences in the summation on the right-hand side of (10.92) vanish. Conversely,
for 9 > : we have 9 � 2 � : � 1, which implies ⇧ 9�2

)
rb2 = rb2, that is the

corresponding di�erences in the summation on the right-hand side vanish. In
conclusion, all terms in the summation in (10.92) vanish, and the thesis is proven.

Summarizing, we have obtained the following result.

Proposition 10.45 (a posteriori error estimator for mixed methods) For every
) 2 T , the following local quantity

[T((2T , DT),))2 := ⌘
2
)
kbQ2T � rDT k

2
!

2() ) + ⌘
2
)
k curl(bQ2T)k2

!
2() )

+ ⌘)

’
� ⇢m) \m⌦

k [(bQ2T)C ]k2
!

2(� ) + ⌘)

’
� ⇢m)\m⌦

k(bQ2T)C k2
!

2(� )

+ ⌘
2
)

=’
9=1

kDT � ⇧
=�1� 9
)

DT k
2
!

2() )krb2 � ⇧ 9�2
)
rb2k2

!
1() )

(10.93)
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is a (squared) a posteriori error indicator for the mixed problem (10.87), which
gives rise to a global a posteriori error estimator [T(2T , DT) that satisfies As-
sumption 10.2.

Finally, Assumption 10.3 follows from Proposition 10.19 (estimator reduction
under Dörfler marking), since the estimator is clearly Lipschitz continuous and
monotone, and it satisfies condition (10.38) since all its addends are scaled by
positive powers of the meshsize.

As a consequence, the GALERKIN step in AFEM-TS converges linearly by The-
orem 10.6, and the number of sub-iterations in the :-th call to GALERKIN is
bounded by a constant � independent of : (Proposition 10.27). Furthermore,
Theorem 10.38 guarantees the quasi-optimality of the two-step AFEM.

Theorem 10.46 (quasi-optimality of AFEM-TS for mixed methods) Let the ex-
act solution (2, D) of the mixed problem (10.84) belong to the approximation
class ABD (+ ;T0) and let the data (Q, 2, 5 ) belong to the approximation class
DBD (⇡(⌦);T0). Let Assumptions 6.14 (marking parameter), 6.21 (size of l),
and 6.19 (initial labeling) be valid. Consider the Galerkin discretization (10.87)
based on one of the Raviart-Thomas-Nédélec or Brezzi-Douglas-Marini finite ele-
ment pairs. There exists a constant ⇠⇤ independent of the exact solution (2, D) and
the data D = (Q, 2, 5 ) such that the sequence {

�
T: ,VT: ⇥ QT: , (2T: , DT: )

�
}:�0

produced by AFEM-TS satisfies for : � 0

k2 � 2T: k� (div;⌦) + kD � DT: k!2(⌦)  ⇠⇤

⇣
|(2, D)|1/BDABD + |D|

1/BD
DBD

⌘
B �

#T:
��B

,

with 0 < B = min(BD , BD)  =

3
.

Remark 10.47 Another family of uniformly inf-sup stable spaces is the Brezzi-
Douglas-Fortin-Marini’s (see [Brezzi, Douglas, Fortin and Marini 1987]), where
V) = {3 2 (P=()))3 : 3 · n� 2 P=�1(�) 8� 2 F \ m)} and &) = P=()), = � 1.
However, the imposed condition on the normal component of vector fields on each
face ofT prevents the inclusion ofVT intoVT⇤ to hold ifT⇤ is a bisection refinement
of T .

10.6 Proof of Theorem 10.15

This section is devoted to establishing Theorem 10.15, which in turn contributes
with Corollary 10.14 to the proof of Theorem 10.6.

It is important to notice that the growth of k[k2 is dictated by the number of
blocks # rather than the actual dimension =# � # of [. Therefore, we again use
the block notation from Section 10.2

H = (H(8, 9))#
8, 9=0 2 R

=#⇥=#
,

with lower and upper triangular factors

R = (R(8, 9))#
8, 9=0 2 R

=#⇥=#
, [ = ([(8, 9))#

8, 9=0 2 R
=#⇥=#

.
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We also set

G = (G(8, 9))#
8, 9=0 :=

p
UH

for a suitable parameter U > 0 defined below.

10.6.1 Representation of block inverse matrices
We first show that it su�ces to derive the estimates

k[�1
k2 . #�1/?

? > 2 , (10.94)

k[̃
�1
k2 . #�1/?

? > 2 , (10.95)

kJk2 . 1, (10.96)

where H) = R̃[̃ is the normalized block triangular decomposition of H) , and
J 2 R=#⇥=# stands for the block diagonal part of [,

In fact, in view of property (P1) (continuity of B), we see that

kHk2 = kH) k2  kBk,

whence

R = H[�1
) kRk2  kHk2k[

�1
k2  kBkk[

�1
k2

and, similarly,

k R̃k2  kBkk[̃
�1
k2 .

On the other hand, from

H = RJ
�
J�1[

�
) H) =

�
[) J�1� JR)

we infer that

R̃ = [) J�1
) [ = JR̃

)

[̃ = JR) ) R�1 = J[̃
�)

,

(10.97)

which implies

k[k2  kJk2k R̃
)

k2,

kR�1
k2  kJk2k[̃

�)
k2.

Therefore, we can focus on proving (10.94) and (10.96), since the proof of
(10.95) is identical to that of (10.94). We proceed in several steps. The most
delicate estimate is (10.94).

1 9-th column of [�1. To prove (10.94), it turns out to be convenient to get first
an explicit expression for the 9-th column of [�1. We achieve this next.



300

Lemma 10.48 (representation of the j-th column of [�1) We have

[�1(8, 9) = H[ 9]�1(8, 9) 8 0  8  9  # . (10.98)

Proof. We compute the (8, 9) block of H[ 9]�1 = [[ 9]
�1R [ 9]�1

H[ 9]�1(8, 9) =
9’
:=0

[�1
[ 9](8, :)R�1

[ 9](: , 9) = [[ 9]
�1(8, 9)

because R�1(: , 9) = 0 for : < 9 and R�1( 9 , 9) = O( 9 , 9). Moreover, we claim that

[�1
[ 9](8, 9) = [�1(8, 9) 8  9

because [�1 is block upper triangular. To see this, let

x(:, 9) = [�1(:, 9) 2 R=#⇥3 9

be the 9-th block column of [�1, which satisfies

[x(:, 9) = O(:, 9) 2 R=#⇥3 9 .

Since O(8, 9) = 0 for 8 > 9 and [ is block upper triangular, we have x(8, 9) = 0 for
8 > 9 . Therefore, the matrix

x̃(:, 9) = (x(8, 9)) 9
8=0 2 R

= 9⇥3 9

with the first 9 blocks of x(:, 9) satisfies the reduced system

[[ 9]( 9 , 9) x̃( 9 , 9) = O( 9 , 9)
9’
:=8

[[ 9](8, :) x̃(: , 9) = 0 0  8  9 .

We thus deduce that x̃(:, 9) = [[ 9]
�1(:, 9), as asserted.

This lemma justifies dealing with H[ 9]�1.

2 Representation of H[ 9]�1. We resort to the Neumann series expansion. We first
consider the uniform SPD matrix

H[ 9]H[ 9]) 2 R= 9⇥= 9

for which there exists U > 0 such that

kO[ 9] � UH[ 9]H[ 9]) k2 < 1

uniformly in 9 . In fact, note that for x 2 R= 9⇥= 9

kx � UH[ 9]H[ 9]) xk22 = kxk22 � 2Uhx, H[ 9]H[ 9]) xi + U2
kH[ 9]H[ 9]) xk22

as well as

hx, H[ 9]H[ 9]) xi = kH[ 9]) xk22 � V
2
kxk22
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in view of property (P2) (discrete inf-sup) and (3.2), and

kH[ 9]H[ 9]) xk2  kH[ 9]k
2
2kxk2  kBk

2
kxk2.

Consequently

kx � UH[ 9]H[ 9]) xk22 
�
1 � 2UV2

+ U
2
kBk

4�
kxk22.

The quadratic polynomial in U on the right-hand side is minimized by U = V
2

kB k4
,

and gives

kO[ 9] � UH[ 9]H[ 9]) k22  1 �
V

4

kBk4
=: d2

. (10.99)

From now on, we fix this value of U and assume the uniform bound (10.99). Let

G[ 9] =
p
UH[ 9] 2 R= 9⇥= 9

be the 9-th principal section of the matrix G introduced previously, and let

M [ 9] := O[ 9] � G[ 9]G[ 9]) 2 R= 9⇥= 9 . (10.100)

Lemma 10.49 (representation of H[ j]�1) The following expression is valid

H[ 9]�1 = UH[ 9])
1’
<=0

M [ 9]
<

80  9  # . (10.101)

Proof. Since kM [ 9]k2  d < 1 according to (10.99), the Neumann series theorem
guarantees that

G[ 9]G[ 9]) = O[ 9] � M [ 9]

is invertible and the inverse reads

G[ 9]�) G[ 9]�1 =
1’
<=0

M [ 9]
<

,

where M [ 9]
0 = O[ 9]. Multiplying on the left by G[ 9]) , we obtain

1
p
U

H[ 9]�1 =
p
UH[ 9]

1’
<=0

M [ 9]
<

,

which yields the assertion.

3 Representation of[�1. In order to obtain a representation of[�1, we now build
on (10.98), which gives a formula for the 9-th column of [�1 in terms of H[ 9]�1,
and (10.101), which provides a series representation of H[ 9]�1. To this end, we
introduce the block upper triangular matrix M< 2 R=#⇥=# given by

M<(8, 9) :=

(
M [ 9]

<(8, 9) 8  9

0 8 > 9
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for < � 1 and M0 = O. Hence,

[�1(8, 9) =

8>>><
>>>:
U

 

H[ 9])
1’
<=0

M< [ 9]

!

(8, 9) 8  9

0 8 > 9 .

To write this expression in compact form, it is convenient to introduce the block
upper triangular truncation operator U : R=#⇥=# ! R=#⇥=# defined by

U(S)(8, 9) :=

(
S(8, 9) 8  9

0 8 > 9

8S 2 R=#⇥=# .

Lemma 10.50 (representation of [�1) There holds

[�1 = U U

 

H)
1’
<=0

M<

!

. (10.102)

Proof. Since M< is block upper triangular for all< � 0, so is the series
Õ
1

<=0 M<.
It thus su�ces to check that

 

H)
1’
<=0

M<

!

(8, 9) =

 

H[ 9])
1’
<=0

M< [ 9]

!

(8, 9) 8  9 .

This shows the desired relation (10.102).

4 Recursion. In order to estimate M<, it is useful to relate M< with M<�1. We
start with a simple property of the operator U: for G, H 2 R=⇥= and 1  8  9  =,
there holds

�
G U(H)

�
8 9
=

=’
:=1

G8: U(H): 9 =
9’
:=1

G8: H: 9 =
�
G[ 9]H[ 9]

�
(8, 9).

Lemma 10.51 (recursion) The following is valid for all < � 1

M< = M<�1 �U
�
G U(G)M<�1)

�
, (10.103)

with M0 = O. Therefore, the 9-th column of M< reads

M<(0 : 9 , 9) = M [ 9]M<�1(0 : 9 , 9) 0  9  # . (10.104)

Proof. Take first < = 1 and apply the proceeding relation for 0  8  9  # to
obtain

�
M0 �U

�
G U(G)M0)

��
(8, 9) = O(8, 9) �

�
G U(G) )

�
(8, 9)

= O(8, 9) � G[ 9]G[ 9]) (8, 9)

= M [ 9](8, 9) = M1(8, 9),
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in light of (10.100). Take next < > 1 and 0  8  9 to arrive at
�
M<�1 �U

�
G U(G)M<�1)

��
(8, 9)

= M<�1(8, 9) �
9’

: ,✓=1

G(8, :) G) (: , ✓)M<�1(✓, 9)

=
9’
✓=1

�
O[ 9] � G[ 9]G[ 9])

�
(8, ✓)M<�1(✓, 9)

=
9’
✓=1

M [ 9](8, ✓)M [ 9]
<�1(✓, 9)

= M [ 9]
<(8, 9) = M<(8, 9).

This is the asserted equality (10.103). The remaining relation (10.104) follows
from the last equality upon realizing that

M<(0 : 9 , 9) = (M<(8, 9)) 9
8=0 = M [ 9]M [ 9]

<�1(0 : 9 , 9) = M [ 9]M<�1(0 : 9 , 9).

This completes the proof.

5 Schatten norms. In the view Lemmas 10.51 (recursion) and 10.50 (representation
of[�1), we intend to estimate k[�1

k2 in terms of suitable norms of M< that depend
on the number # of blocks rather than the dimension =# , because =# � # . These
special norms are called block Schatten norms.

However, for the sake of clarity, we start with the definition and properties of the
usual Schatten norms. They include the operator 2-norm, the Frobenius norm, and
satisfy a Hölder inequality.

Definition 10.52 (Schatten norms) Given S 2 R=⇥= let

f1(S) � f2(S) � · · · � f=(S) � 0

be the singular values of S. Given 1  ?  1, let the ?-Schatten norm be

|S |? :=

 
=’
<=1

f<(S)?
!1/?

.

Remark 10.53 Note that if ? = 1 the Schatten norm reduces to the 2-norm, i.e.

|S |1 = f1(S) = kSk2,

and if ? = 2 it is equivalent to the Frobenius norm,

|S |2 =

 
=’
<=1

f<(S)2

!1/2

=

 
=’
<=1

S2
8 9

!1/2

= kSk� .

We now list a number of useful properties of these norms.
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Lemma 10.54 (properties of | · |p) The following properties hold for 1  ?  1:

(i) f8(S)S) = f8(S)2
) |S)S |? = |S |

2
2?

(ii) f8(S) = f8(S) ) ) |S |? = |S)
|?

(iii) Hölder inequality: for 1
A
= 1
?
+

1
@

, with A, ?, @ 2 [1,1],

|S1 S2 |A  |S1 |? |S2 |@

(iv) |U(S)|1 . log(=) |S |1

(v) |U(S)|2 9  2 9�1
|S |2 9 .

Remark 10.55 Properties (i) and (ii) are trivial. We refer to [Dunford and Schwartz
1988, Lemma XI.9.20] for property (iii), to [Bhatia 2000, Eq (15)] for property
(iv), and to [Davies 1988] and [Feischl 2022, Lemma 17] for property (v).

To define the block Schatten norms, we consider the subspace D1 of R=#⇥(#+1)

of matrices of the form

^ =

266666664

^0
^1

.
.
.

^#

377777775
, ^ 9 2 R

3 9 0  9  # ,

or equivalently

^ 2 D1 () ^8 9 = 0 8 8 < = 9�1 + 1, . . . , = 9 .

We can represent ^ using block notation as follows:

^ = (^(8, 9))#
8, 9=0 , ^(8, 9) 2 R3 9⇥1

,

where

^(8, 9) =

(
^ 9 8 = 9

0 8 < 9 .

Given a block matrix S = (S(8, 9))#
8, 9=0 2 R

=#⇥=, we consider

S^ =
�
S(8, 9)^ 9

�
#

8, 9=0 2 R
=#⇥(#+1)

,

namely the 9-th block column of S^ is
�
S(8, 9)^ 9

�
#

8=0 2 R
=#

.

Definition 10.56 (block Schatten norms) For 1  ?  1, let

|S |1,? := sup
^ 2D1 , |^ |11

|S^ |? 8 S 2 R=#⇥=# .
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Note the unusual norm |^ |1 instead of |^ |? in this definition of operator norm
|S |1,?. This choice is deliberate and will be useful later; see Remark 10.58.
We now list important properties of the block Schatten norms; see [Feischl 2022,
Lemmas 15, 16, 17] for proofs.

Lemma 10.57 (properties of | · |b,p) The following properties hold for all S,S1,S2 2

R=#⇥=# and 1  ?  1:

(i) |S |1,?  (# + 1)1/?
|S |1 = (# + 1)1/?

kSk2
(ii) |S1S2 |1,?  |S1 |1 |S2 |1,?
(iii) |S |1  |S |1,?, |S |1,1 = |S |1

(iv) If S1 2 R=#⇥=# is block triangular with 9-th block column

S1(0 : 9 , 9) = V 9S2(0 : 9 , 9), V 9 2 R
= 9⇥= 9

for 0  9  # , then

|S1 |1,2  max
0 9#

|V 9 |1 |S2 |1,2

(v) |U(S)|
1,2:  2:�1

|S |
1,2: : = 1, 2

(vi) |U(S)|1 
�
dlog2(#)e + 1

�
|S |1.

Remark 10.58 To understand the significance of Definition 10.56, we examine the
growth of the usual and block ?-Schatten norm relative to the1-Schatten norm for
1  ? < 1. Given S 2 R=#⇥=# , we have for the usual ?-norm

|S |? =

 
=#’
8=1

f8(S)?
!1/?

 =
1/?
#
f1(S) = =1/?

#
|S |1 = =1/?

#
kSk2,

whereas for the block ?-norm we get

|S |1,?  (# + 1)1/?
|S |1 = (# + 1)1/?

kSk2,

according to Lemma 10.57 (i). In fact, given ^ 2 D1 with |^ |1 = k^k2 = 1, we
first note that

|S^ |? =

0

@
#’
9=0

f9(S^)?

1

A

1
?

 f0(S^)(# + 1)
1
? = kS^k2(# + 1)

1
?
,

and also that

kS^k2 = sup
x2R#+1

kS^xk2
kxk2

 kSk2 sup
x2R#+1

k^xk2
kxk2

 kSk2

because kSk2 = |S |1 = 1. On the one hand, this explains why it is convenient to
have the norm |^ |1 rather than |^ |? in Definition 10.56. On the other hand, this
calculation reveals the key point that

|S |1,? ⌧ |S |?
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because the growth of |S |1,? is dictated by the number of blocks # + 1 whereas
that of |S |? is proportional to the dimension =# of S and =# � # . This property
is essential in the estimate of k[�1

k2 below.

6 Estimate of k[�1
k2. We are now in a position to prove the desired bound (10.94).

Proposition 10.59 (estimate of k[�1k2) Let H 2 R=#⇥=# be a block matrix such
that

kHk2  kBk, max
0 9#

kH[ 9]�1
k2 

1
V

.

Then there exist constants ⇠!* and ? > 2 such that the block upper triangular
factor [ of H satisfies

k[�1
k2  ⇠!*#

1/?
. (10.105)

Proof. We recall (10.102) of Lemma 10.50 (representation of [�1)

[�1 = U U

 

H)
1’
<=0

M<

!

,

along with (10.103) of Lemma 10.51 (recursion)

M< = M<�1 �U
�
G U(G)M<�1)

�
< � 1

and (10.104) of Lemma 10.51

M(0 : 9 , 9) = M [ 9]M<�1(0 : 9 , 9) 0  9  # ,

with M0 = O. We use these expressions in conjunction with Lemma 10.57 (proper-
ties of | · |1,?) to prove (10.105). We proceed in several steps.

(i) Bound for |M< |1,2. In light of (10.99) and (10.100)

|M [ 9] |1 = kM [ 9]k2  d =

s
1 �

V
4

kBk4
< 1 0  9  # .

Applying Lemma 10.57 (iv) to M< yields

|M< |1,2  max
0 9#

|M [ 9] |1 |M<�1 |1,2

 d |M<�1 |1,2  d
<

|O |1,2.

Recalling Lemma 10.57 (i)

|O |1,2  (# + 1)1/2
kOk2 = (# + 1)1/2

,

whence

|M< |1,2  d
< (# + 1)1/2

.

We observe that this bound is not good enough for our purposes because it
scales like #1/2 instead of #1/? for ? > 2. We next improve upon this bound.



AFEM 307

(ii) Bound for |M< |1,4. We take : = 2 in Lemma 10.57 (v) and use the triangle
inequality to arrive at

|M< |1,4  |M<�1 |1,4 + |U
�
G U(G)M<�1)

�
|1,4

 |M<�1 |1,4 + 2|G U(G)M<�1)|1,4.

We further apply Lemma 10.57 (ii) and (v) to obtain

|G U(G)M<�1)|1,4  2|G|1 |G)M<�1 |1,4  2|G|21 |M<�1 |1,4.

Therefore,

|M< |1,4 
�
1 + 4|G|21

�
|M<�1 |1,4

but the prefactor on the right-hand side is greater than 1 and so not suitable
for iteration. We still have

|M< |1,4 
�
1 + 4|G|21

�
<

|O |1,4.

(iii) Bound for |M< |1. We combine the estimates from steps 1 and 2 to exploit
their relative merits. Recall from Lemma 10.57 (iii) that

|M< |1  |M< |1,? 81  ?  1.

Take ? = 2, 4 and 0 < C < 1 to be chosen later, and write

|M< |1  |M< |
1�C
1,2 |M< |

C

1,4



h
d

1�C �1 + 4|G|21
�
C

i
<

|O |1�C
1,2 |O |

C

1,4.

Consequently, there exists 0 < C0 < 1 such that

@ := d1�C �1 + 4|G|21
�
C

< 1 0 < C < C0

and

|M< |1  @
<

|O |1�C
1,2 |O |

C

1,4.

We now estimate the two terms on the right-hand side relying on Lemma
10.57 (i), namely

|O |1,2  (# + 1)1/2
kOk2 = (# + 1)1/2

,

|O |1,4  (# + 1)1/4
kOk2 = (# + 1)1/4

.

We thus obtain

|M< |1  @
<(# + 1)1/e?

with 1e? = 1�C
2 +

C

4 <
1
2 for 0 < C < C0.

(iv) Estimate of k[�1
k2. Recalling the expression

[�1 = U U

 

H)
1’
<=0

M<

!

,



308

and applying Lemma 10.57 (vi), (ii) and (iii), we see that

k[�1
k2 = |[�1

|1 . log(#) |H |1
1’
<=0

|M< |1

. |H |1(# + 1)1/e? log(#)
1’
<=0

@
<

. kHk2(# + 1)1/e? log(#).

Finally, for any 2 < ? < e?, we can absorb the logarithm thereby getting

k[�1
k2 . kHk2(# + 1)1/?

,

which is the desired estimate (10.105).

This concludes the proof.

7 Estimate of block diagonal J. We recall that J = diag [ 2 R=#⇥=# is the block
diagonal of [. We consider the block partitioning of H[ 9]

H[ 9] =

H[ 9 � 1] X1

X)2 X3

�
2 R= 9⇥= 9

where

X1 = H[ 9](1 : 9 � 1, 9) 2 X= 9�1⇥3 9
,

X)2 = H[ 9]( 9 , 1 : 9 � 1) 2 X3 9⇥= 9�1
,

X3 = H[ 9]( 9 , 9) 2 R3 9⇥3 9 .

Lemma 10.60 (bound of kJk2) There holds

kJk2  kBk +
kBk

2

V

= ⇠⇡ . (10.106)

Proof. Compute the R[ factorization of H[ 9]

H[ 9] =


O[ 9 � 1] 0
X)2 H[ 9 � 1]�1 1

� 
H[ 9 � 1] X1

0 X3 � X)2 H[ 9 � 1]�1X1

�

and realize that

[( 9 , 9) = J( 9 , 9) = X3 � X)2 H[ 9 � 1]�1X1 2 R
3 9⇥3 9

.

Since

|X8 |1 = kX8 k2  kH[ 9]k2  kHk2 = kBk 8 = 1, 2

|X3 |1 = kX3k2  kH[ 9]k2  kBk,
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and

|H[ 9 � 1]�1
|1 = kH[ 9 � 1]k2 

1
V

,

according to properties (P1) and (P2) of the bilinear form B, we deduce

|J( 9 , 9)|1 = kJ( 9 , 9)k2  kBk +
kBk

2

V

as asserted.

8 Bound of R[ factors. We are finally in the position to prove Theorem 10.15.
We combine Proposition 10.59 (estimate of k[�1

k2) and R = H[�1 to obtain

kRk2  kHk2k[
�1
k2  kBk⇠!*#

1/?
.

Then, invoking (10.97) in conjunction with Proposition 10.59 and Lemma 10.60
(bound of kMk2) as well as the bounds of k[�1

k2 and kRk2, yields

k[k2  kJk2k R̃
)

k2  ⇠⇡ kBk⇠!*#
1/?

kR�1
k2  kJk2k[̃

�)
k2  ⇠⇡⇠!*#

1/?
(10.107)

with ⇠⇡ being the constant in (10.106). This completes the proof.
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MARK: Dörfler marking, 128
REFINE : refine all marked elements 1 times and others necessary to produce a
conforming mesh, 129, 226
REFINE : refine marked elements and others necessary to produce a
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⇠⇡: DATA constant, 148
⇠%: Poincaré constant, 13
⇠loc: localization constant, 57
⇠ovrl: overlay constant, 57
⇠cea: best approximation constant, 25
⇠osc: oscillation quasi-monotonicity constant, 100
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Y-approximation of order B, 168
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?
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E

std
T
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E

std
T
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E

std
T
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[

abs
T
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[

std
T

(DT ,)): standard local PDE indicators, 68
oscabs
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oscT( 5 ,)), oscT( 5 ,))�1: local oscillation for the load function, 89, 91, 151
oscT(E,))?: generic surrogate for data error, 150
oscstd

T
(DT ,D): standard oscillation, 64

oscstd
T

(DT ,D,)): standard local oscillation, 64
oscT(D): total data error estimator, 151
oscT(G)A : oscillation for the di�usion coe�cient, 151
oscT(2)@: oscillation for the reaction coe�cient, 151
oscT( 5 ), oscT( 5 )�1: oscillation for the load function, 151e⇢T( 5 )2

�1: generic surrogate estimator for the approximation of the load term,
207
9(DT): jump residual, 62
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AT(DT), A(DT): element residual, 62

Functional Spaces
⌫
B

?,@
(⌦): Besov spaces, 182

⇡(⌦): metric space for the data perturbation, 147b⇡(⌦): temporary metric space for the data perturbation, 145
"(U1, U2): Admissible set for G, 144
'(21, 22): Admissible set for 2, 144
,
:

?
(⌦): Sobolev spaces, 11

,
�B
@

(⌦): dual of, B

@⇤(⌦) with @⇤ = @

@�1 , 145
-
B

?
(⌦): abstract functional spaces, 180

MB: approximation classes of G, 165
CB: approximation classes of 2, 166
FB: approximation classes of 5 , 166
D: data, 122
DbT : discrete data subordinate to bT , 122
F(Tl): local discrete functionals, 69
FT , F(T ): discrete functionals, 69
V+(T ), V+

T
: test space for discrete functionals, 75

V+(Tl): local test space for discrete functionals, 75
VT : conforming finite element space, 26
AB: approximation class for D, 162
A�1
B

: approximation classes for E for the discontinuous Galerkin norm, 239
ET : broken �1 space, 235
V�1

T
: non-conforming finite element space, 234

Lip=+1
?

(⌦): Lipschitz spaces, 180

S=,�1
T

: piecewise polynomials of degree  =, 26

S=,0
T

: globally continuous piecewise polynomials of degree  =, 26
Functions
qI : Lagrange basis of S1,0

T
, 26

kI : Lagrange basis of S=,0
T

, 27bD: solution to the perturbed problem (5.5), 124
D: solution to weak formulation (2.7), 15
DT : Galerkin approximation, 54

Meshes
)3: reference element, 25
P: proper nodes, 48, 51
F , FT : interior faces, 55
Fl: faces interior to l, 69
FI , FlI : faces interior to lI , 69
WI : skeleton of lI , 26
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T  T⇤: refinement relation, 124
T1 � T2: mesh overlay, 43
Tl: triangulated submesh, 69
TI , TlI : elements forming lI , 69
TI : star of elements sharing the vertex I, 57
T: set of all conforming refinements of T0, 38
T⇤: set of all ⇤-admissibility refinements of T0, 49
T# : set of all conforming refinement of T0 with no more than # elements, 162
[[.]] : jump across faces, 234
[[g]] · n� : normal jump across �, 62
_(G): global index of a node G 2 N , 48
{{.}}: average on faces, 234
N : Lagrange nodes of order =, 27
l� : region of elements containing the face �, 59
l) , lT()): region of elements intersecting ) , 28, 60el) , elT()): elements sharing a face with ) , 28
lT(%): domain of influence of a proper node %, 50
lI : region made of elements sharing the vertex I, 26, 57
n� : normal to the face �, 62
V: set of vertices, 26
6()): generation of ) , 40

Norms
||E ||0,T : discontinuous Galerkin norm, 235
|||.|||⌦: energy norm with exact coe�cients, 124
|||.|||⌦: energy norm with perturbed coe�cients, 124

Operators
�T : quasi-interpolation operator, 29
%) , %� : polynomial densities of %T , 75
%T : projection operator from �

�1(⌦) into FT , 75
I

dG
T

: discontinuous Galerkin quasi-interpolant, 236
⇧ , ⇧<

 
: !2 projection onto P<( ), 64, 148
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