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This is a survey on the theory of adaptive finite element methods (AFEMs), which are
fundamental in modern computational science and engineering but whose mathemat-
ical assessment is a formidable challenge. We present a self-contained and up-to-date
discussion of AFEMs for linear second order elliptic PDEs and dimension d > 1,
with emphasis on foundational issues. After a brief review of functional analysis and
basic finite element theory, including piecewise polynomial approximation in graded
meshes, we present the core material for coercive problems. We start with a novel
a posteriori error analysis applicable to rough data, which delivers estimators fully
equivalent to the solution error. They are used in the design and study of three AFEMs
depending on the structure of data. We prove linear convergence of these algorithms
and rate-optimality provided the solution and data belong to suitable approximation
classes. We also address the relation between approximation and regularity classes.
We finally extend this theory to discontinuous Galerkin methods as prototypes of
non-conforming AFEMs and beyond coercive problems to inf-sup stable AFEMs.

© The Author(s), 2024.



CONTENTS
1 Introduction: Overview of AFEMs 2
2 Linear Elliptic Boundary Value Problems: Basic The-
ory 10
3 A Priori Approximation Theory 23
4 A Posteriori Error Analysis 54
5 Convergence of AFEM for Coercive Problems 122
6 Convergence Rates of AFEM for Coercive Problems 161
7 Data Approximation 190
8 Mesh Refinement: The Bisection Method 216
9 Discontinuous Galerkin Methods 232
10 AFEMs for Inf-Sup Stable Problems 263
Index 310
References 315

1 Introduction: Overview of AFEMs

This is a survey on the theory of adaptive finite element methods (AFEMs), which
are fundamental in modern computational science and engineering. We present a
self-contained and up-to-date discussion of AFEMs for linear second order elliptic
PDE in dimension d > 1, with emphasis on foundational issues rather than applic-
ations of AFEMs. This paper builds on and expands the older surveys [Nochetto,
Siebert and Veeser 2009, Nochetto and Veeser 2012]. In fact, we decided to
incorporate several new aspects to the theory described below.

The paper develops the theory of AFEMs gradually and is meant to be access-
ible to advanced students and researchers interested in learning the fundamental
aspects of adaptivity and why AFEMs outperform classical FEMs. We quantify
the superior performance of AFEMs with precise mathematical statements rather
than simulations. We present very few numerical experiments to illustrate some
key (and new) algoritmic ideas and methods, but the paper is otherwise a tour in
the numerical analysis of adaptive approximation of linear elliptic PDE:s.

By design this paper goes deep into some foundational aspects of AFEMs theory,
provides full discussions and proofs, as well as pointers to the main literature. We
consider the following model problem on a polyhedral domain Q ¢ R? with d > 2

L{u] := —div(AVu) +cu = f (1.1)

with general variable coefficients (A, c), forcing f € H~'(Q) and homogeneous Di-
richlet boundary conditions # = 0 on €2 mostly, but not exclusively. If V := Hé (Q)
and B : VXV — Ris the bilinear form associated with (1.1), the weak form reads:

ueV: Bluv]l=(f,v) VYveV. (1.2)

Given a conforming and shape regular partition 7 of €, created by successive
refinement of a coarse mesh 7y, let V4 denote the space of continuous piecewise
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polynomial functions of degree n > 1 over 7 vanishing on 9€Q2. The Galerkin
approximation u¢ of u solves

ur € Vq: Blugv]=(f,v) VveVgq (1.3)
This is a conforming approximation because V4 C V. The aim of this paper is to:

e Design and analyze practical ways to estimate the error |u — uq|y L@ = ||V(u—-
ur)|lL2(q) in terms of so-called a posteriori error estimators, which are comput-
able quantities depending on the discrete solution u4 and data D = (A, c, f).

e Design adaptive algorithms that equidistribute the local errors ||V(u —uq)|[2(r)
for all elements T € 7, thereby optimizing the computational effort; this is a key
step that makes complex 3d situations accessible computationally.

o Show that this strategy delivers a performance comparable with the best possible
in terms of degrees of freedom, which is a measure of computational complexity.
This is a delicate matter because it entails dealing with approximation classes
and their relation to regularity classes in terms of Besov and Lipschitz spaces.

o Present and analyze the bisection method for mesh refinement, one of the most
versatile techniques for local mesh refinement that guarantees shape regularity
and optimal complexity; the latter is instrumental for the previous point. Our
study includes conforming meshes as well as certain non-conforming meshes.

o Extend the theory to a range of important problems that fail to be conforming or
coercive. The first class is discontinuous Galerkin methods and the second one
is inf-sup stable FEMs. The former is a notorious example of non-conforming
approximation, whereas the second is non-coercive.

In achieving these goals we provide several new ideas and methods. We also refer
to the pertinent literature but we do not give a full list of references nor get into
comparisons of various approaches. It is not our intention to be comprehensive
but rather to cover basic aspects of adaptivity in depth at the expense of important
topics we do not touch upon. Some of them are:

o Adaptive eigenvalue approximation

e Goal oriented error analysis

e Non-conforming discretizations (except for discontinuous Galerkin)

o Coarsening or aggregation

e Anisotropic refinements

e hp-adaptivity

o Tree approximation

e Other PDEs: convection-diffusion equations, nonlinear and evolution equations.

We devote the rest of this introduction to provide a roadmap to the rest of the
paper. In doing so, we introduce notation that will be used later and present some
topics in their most primitive form to render an early idea about how they fit and
interrelate.



A posteriori error analysis. We refer to the books [Ainsworth and Oden 2000,
Verfiirth 2013] for the classical theory. However, in contrast to most of the existing
literature, the current theory deals with forcing f € H~!(Q). This allows for rough
data useful in applications, such as line Dirac masses, but also encompasses a new
approach to error estimation that leads to error-dominated estimator and oscillation
and prevents error overestimation; this extends [Kreuzer and Veeser 2021] to (1.1)
and polynomial degree n > 1. The new twist is the construction of a projection
operator P4 : H™'(Q) — Fy into a space of piecewise polynomials in 7~ and on
its skeleton ¥, namely the set of all internal faces. Such an operator happens to be
locally stable on stars (or patches) w, of 7 for all vertices z € V of 7:

1Pl 10, < Cisolllg-1(0,) Y€€ H (W) (1.4)

An important property of Ps and its range Fq is that for piecewise polynomial
coeflicients (A, ¢), or in short discrete coefficients, P is invariant in the subspace
L[V¢] of H1(Q) or equivalently

Py(L[v]) =L[v] €eFsr VveVq. (1.5)

It is worth realizing that L[v] is made of two distinct parts. The first one is
absolutely continuous relative to the Lebesgue measure, namely — div(AVv) + cv
in every element 7' € 7. The second part is singular and supported in the skeleton
¥, namely [[AVV]] - n|pdF for every face F € F, where [[-]] is the jump across
F, n is a unit normal to ', and é ¢ is the Dirac mass on F.

These two properties of Pg have the following crucial consequences. Let

Ry:=Llu-us]=f-Llus] € H'(Q) (1.6)
be the residual of the Galerkin approximation of (1.2). Using (1.5) yields
Ry —PyRy = f - Prf.

This shows that Ry decomposes into a discrete, thus finite dimensional and com-
putable, PDE part PRy = Psf — L[ug] and an infinite dimensional component
f —Pq f, the so-called data oscillation that depends on f and can only be evaluated
with additional knowledge of f.

The nonlocal H™'-norm of Ry splits into local contributions on stars, whence !

2 ~ 2 ~ § 2
|u - uTlHOl(Q) ~ ||RT”H—1(Q) ~ =, ||RT||H_1(wz)
ZE

The discrete nature of Ps-Rq allows us to derive a computable L?-weighted PDE
estimator n-(ur, z) equivalent to || Ry g-1(,,,), Which together with the remaining

! Throughout this work, A < B signifies A < CB with a constant C independent of the discretization
parameters, and A ~ B stands for A < Band B < A.
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data oscillation oscy(f, 2)-1 := ||f = Prf || g-1(w.) gives the upper bound

2 2 2
= urlyig) S Z (UT(MT, )"+ oscr(f, Z)—1)-

zeV

It turns out that this estimate is sharp or, in other words, that there is no overestima-
tion of the error. To see this important and unique property of these new estimators,
we invoke (1.4) to write the local lower bounds

nrur, 2) ® [PrR7lg-1(w,) < CswllR7 | g-1(e. )
oscy(f,2)-1 = |[Rr = PRl g-1(,) < (1 + Cisw)IRT 1 g-1(w,)-

Section 4 constructs the operator P4, and derives several important properties
such as its local quasi-best approximation and the above error-dominated a posteri-
ori bounds. The former guarantees the inequality for the local L?-projection T

1f = Prflle-1cw) S 1 =Trfllg-icw, $ 100G =T Hllzzw,),

which is the typical form of data oscillation provided f € L*(Q2). However, this L>-
weighted oscillation is not bounded above by the error and is thus responsible for
potential overestimation. Section 4 proves further properties of n4-(14) such as its
reduction upon refinement and its localized discrete upper bound, as well as quasi-
monotonicity of oscq-( )1 upon refinement. These properties, known for the stand-
ard L?-weighted estimator and oscillation, are thus retained by the new construction.

Section 4 also deals with the alternative error estimators that result from solving
local problems, using hierarchy, or imposing flux equilibration. We show that all
of them lead, essentially, to estimators equivalent to ||R -1, ). Moreover, we
present an optimal framework to deal with non-homogeneous Dirichlet boundary
conditions as well as with Robin and Neumann boundary conditions.

Linear convergence of AFEMs. Local a posteriori error indicators are usually em-
ployed to mark elements (or set of elements) with largest indicators for refinement.
We are concerned with the most popular Dorfler marking (or bulk chasing): given
a parameter 6 € (0, 1], select a set M c 7 such that

ny(ug, M) 2 6 nr(ug); (1.7)

hereafter we define 7-(ug, M)? := Yrc mn7us, T)*> where 7-(ug, T) is the PDE
indicator associated with a generic element 7 € 7. Note that 8 = 1 corresponds to
uniform refinement. In Section 5, we present three AFEMs in increasing order of
complexity regarding data O = (A, ¢, f) and prove their linear convergence.

The simplest algorithm, so-called GALERKIN, works for discrete O and is the
usual adaptive loop

SOLVE — ESTIMATE — MARK — REFINE.

We assume SOLVE computes the exact Galerkin solution uq4, so we refrain from
addressing linear algebra issues. The module ESTIMATE computes the a posteriori



error indicator and the module MARK implements (1.7); in most of the paper we deal
with weighted L?-error indicators ng(ug) but we also address linear convergence
for alternative estimators. The module REFINE bisects marked elements and
perhaps a few more to keep meshes conforming (or A-admissible if they are non-
conforming). We denote by [|u — u|q the energy error associated with the bilinear
form B. This error is monotone with refinement but may stagnate. We thus exploit
the estimator reduction property with refinement, typical of n4(u4), to show that
the combined quantity

Lrug)? = lu —urllly +y na(us)? (1.8)

contracts in every iteration of GALERKIN for a suitable scaling parameter y > 0.
This readily leads to linear convergence of both |u — us| g L@ and nq(uq).

We next keep the coefficients (A, c) discrete but allow for a general f € H “1Q).
This is to prevent the multiplicative interaction between (A, c¢) and u that occurs in
(1.1) if we were to approximate (A, c). In contrast, the effect of f is linear in (1.1).
We show examples where ||u — uq||o may stagnate because the adaptive process
is dominated by oscillation oscs(f)-; (preasymptotic regime). To compensate for
this fact, we design a one-step AFEM with switch as in [Kreuzer, Veeser and Zan-
otti n.d.], the so-called AFEM-SW, that proceeds as GALERKIN provided ns(u7)
dominates and otherwise reduces oscs(f)-; separately. We show that, for suitable
a parameter y > 0, the combined quantity

Cr(ug) = lu = ugllg +ynr(ur)’ + oser(f)2, (1.9)
contracts in every loop of AFEM-SW. This yields linear convergence of the error
|u — ug|m1,@) and the estimator E-(us, f) = ny(ug) + osco(f)-1.

The third algorithm is the two-step AFEM, the so-called AFEM-TS, which allows
for general data D = (A, ¢, f). To handle the aforementioned nonlinear effect of
(A, c¢) and also deal with general f, all data D are first approximated by a routine
DATA to a desired level of accuracy, which is adjusted at every step of AFEM-TS,
and then fed to GALERKIN which handles discrete data. Suitably combining the
accuracies of each intermediate module leads to linear convergence and optimal
complexity of GALERKIN within each loop. The structure of AFEM-TS is flexible
enough to easily handle discontinuous coeflicients (A, ¢) with discontinuities that
may not be aligned with the mesh. This is because the approximation of (A, ¢) by
discontinuous polynomials takes place in L¥ () for p < oo.

It is worth stressing two important points. First the approximation of D is carried
outby a GREEDY algorithm, which is shown to perform optimally starting from any
refinement of 7y. Second, the discontinuous piecewise polynomial approximations
(Z, ¢) of (A, ¢) may not respect, for polynomial degree > 1, the positivity bounds
associated with the coefficients. This requires a nonlinear correction of the output
of GREEDY that restores positivity and does not deteriorate accuracy beyond a
modest multiplicative constant. We postpone the discussion of these two delicate
and technical processes to Section 7, which can be omitted in a first reading.
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Rate-optimality of AFEMs. Showing that AFEMs outperform classical FEMs is a
difficult but important matter. This reduces to proving a superior relation between
the required degrees of freedom (or number of elements) for a desired accuracy; the
former is in fact an acceptable measure of complexity. Showing that AFEMs deliver
a performance comparable with the best entails the following basic ingredients:

o Nonlinear approximation classes: they classify functions in terms of the best
possible algebraic decay rate of approximation e (v)x of a given function v in
a given norm X with N number of elements; roughly speaking, we say v € A if
en(V)x < N7°. These classes are related to regularity classes (Sobolev, Besov,
and Lipschitz) along Sobolev embedding lines.

o Dorfler marking: If the oscillation oscq(f)-1 is dominated by the PDE estimator
ng(uq) for a given mesh 7, then any conforming refinement 7. > 7 of 7 that
reduces ng-(ug) by a substantial amount induces a refined set R := 7 \ 7 to
modify 7 into 7, satisfying (1.7), namely nq(us, R) > 0 ny(uqg).

o Minimality of M: If the subset M C 7 in (1.7) is minimal, then the cardinality

of M compares favorably to the cardinality of the best mesh with a comparable
error accuracy, thereby leading to rate-optimality of AFEM.

This is altogether the topic of Section 6. It is important to notice that membership
in A is never used explicitly by AFEM to learn about problem (1.1) and improve
its resolution. The fundamental reason behind the superior performance of AFEM
relative to FEM lies in nonlinear approximation theory. We illustrate now this point
with the following insightful approximation example for d = 1 and X = L*(0, 1)
[DeVore 1998, Kahane 1961]: let Q = (0, 1), Ty = {[xj_l,xj]}j.\'zl be a partition
of Q, with

O=xp<x1 <---<x;<---<xy=1,
and let v : Q — R be an absolutely continuous function to be approximated by
a piecewise constant function vy over 7. To quantify the difference between v

and vy we resort to the maximum norm and study two cases depending on the
regularity of v. We define vy (x) := v(x;-1) for all x;_; < x < x; and note that

() — v @] = V() — vy )] < / () dt.

J-1

e Case 1: WL -Regularity. If u € WL (0, 1) and Xj—1 < x <xj,then

1
V) = v < BV Loy xy = v =vNllie@ < N”V’HL‘”(Q)

for a uniform mesh. We thus deduce a rate N~! using the same integrability L™
on both sides of the error estimate.

e Case 2: Wl1 -Regularity. Let ||[v'||1q) = 1 and Ty be a graded partition so that



Xj ’ 1
| " (0]t = 5. Then, for x € [x;-1,x],

Xj

xj
-yl s [ Woldi=5 = - vwlie < 31 e
Xj-1
We thus conclude that we could achieve the same rate of convergence N~! for
rougher functions with just |[u’[| 1) < co. Three comments are now in order.
First, the contrast between Cases 1 and 2 is more dramatic for v(x) = x% with
@ € (0, 1) because Case 1 only yields the suboptimal rate ||[v — vy ||z < N™<.
Second, 7 in Case 2 equidistributes the max-error, a concept that will permeate
our discussions later. Third, the optimal rate of Case 2 is due to the exchange
of differentiability with integrability along the critical Sobolev embedding line
between the left and right-hand sides of the error estimate (nonlinear Sobolev
scale), while Case 1 relies on the linear Sobolev scale with constant integrability.
We exploit and further elaborate these concepts in Section 6 to show rate-
optimality of the three algorithms GALERKIN, AFEM-SW, AFEM-TS, discussed in
Section 5, provided u and D belong to suitable approximation classes. We also
investigate the relation between these approximation classes with regularity classes,
allowing for discontinuous coefficients, and present a rather complete discussion.

Mesh refinement. A key component of any adaptive algorithm, such as the three
AFEMs already described, is the routine REFINE which refines a current mesh 7~
into 75 to improve resolution. In Section 8 we study the bisection method, which
is the most popular method to refine simplicial meshes in R¢ for d > 1. For
simplicity we focus our attention on this method, but most results apply to other
refinement strategies such as quad-trees (for quadrilaterals), octrees (for hexagons)
and red-green (for simplicial meshes). We do not insist on these extensions but
refer to [Bonito and Nochetto 2010] for details.

Given aninitial grid 7y with a suitable labeling, the bisection method splits a given
simplex into two children. The rules for successive cutting of simplices, for instance
newest vertex bisection for d = 2, are such that the ensuing meshes are shape regular
(with a uniform constant only depending on 7 and d). However, bisection may not
be completely local to keep conformity. The analysis of propagation of refinement
is a delicate combinatorial problem. It is easy to see by example, that bisecting
one element of large generation (i.e. number of bisections needed to produce it)
may require a chain of elements with length similar to the generation. Therefore,
the number of refined elements in one step cannot be bounded by the number of
marked elements. The following amazing estimate by [Binev, Dahmen and DeVore
2004] for d = 2 and [Stevenson 2008] for d > 2 shows that the cumulative effect
of bisection counting from 7y all the marked elements M is quasi-optimal: there
exists a constant D > 0, depending on 7 and d, such that

k-1
#7, —#Ty < D #M;. (1.10)
7=0
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This estimate is crucial for the study of rate-optimality of AFEM and is proved
in Section 8 for d = 2 and for both conforming refinement and A-admissible
refinement. The latter is a systematic way to handle non-conforming meshes that
goes back to [Beirdo da Veiga, Canuto, Nochetto, Vacca and Verani 2023]. It
associates a computable global index to hanging nodes and imposes a restriction to
them not to exceed a preassigned value A > 0; if A = 0 then the mesh is conforming.
Section 8 also discusses several interesting geometric properties of A-admissible
meshes which turn out to be crucial for discontinuous Galerkin methods. Since
Section 8 is quite technical, it can be skipped in a first reading.

Discontinuous Galerkin methods. These methods, so-called dG, are the natural first
step to investigate the role of non-conformity in adaptivity, namely that the discrete
space of discontinuous piecewise polynomials V¢is no longer a subspace of H(l) ().
To this end, we study the symmetric interior penalty dG method in Section 9 on
A-admissible partitions 7 of 7p. Such dG methods exhibit some characteristic
and novel features with respect to conforming FEMs: the most notable one is the
presence of weighted jumps that stabilize the method and compensate for the lack of
H'-conformity. We consider the formulation with lifting, which allows for minimal
regularity u € Hé(Q), and forcing f € H~!(Q) despite that V4 is not a subspace
of Hé (Q). The latter is possible because, within the framework of AFEM-TS, f is
approximated by a piecewise polynomial P f for which the pairing with functions
in V4 is meaningful.

The fact that jumps are not monotone upon refinement constitutes one of the
main obstructions for studying adaptivity for dG. To circumvent this issue we fol-
low [Bonito and Nochetto 2010], who in turn modified the original approach of
[Karakashian and Pascal 2007], and introduce the largest conforming subspace V(,)]_
of V4. It turns out that, despite being coarser, V?r exhibits a local resolution com-
parable with V4 because of key geometric properties of A-admissible meshes that
control the degree of non-conformity of 7. In addition, V?T is responsible for the
scaled jumps to be bounded by the PDE estimator n4(us). Exploiting properties
of ny(uq), similar to the conforming case, leads to a quasi-orthogonality estimate
for the dG norm, a dG variant of the Pythagoras equality. This is instrumental to
prove a contraction property for the error plus scaled estimator and deduce conver-
gence for both GALERKIN and AFEM-TS. Moreover, we derive rate-optimality for
both algorithms provided u# and 9 belong to suitable approximation classes. Such
classes are the same as for conforming AFEMs: in fact we prove that the approx-
imation classes for u# using continuous and discontinuous piecewise polynomials
on A-admissible meshes coincide.

Inf-sup stable AFEMs. The convergence and optimality theories developed in Sec-
tions 5 and 6 rely on the bilinear form in (1.2) being coercive. We remove this
strong restriction in Section 10 and consider uniformly inf-sup stable FEMs on
conforming refinements 7; of 7y. The lack of an energy norm and its monotone
behavior upon refinement has been an obstacle for the study of this class of prob-
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lems. We follow the recent work by M. Feischl [Feischl 2022], who introduced
the following form of quasi-orthogonality between consecutive Galerkin solutions
uj € V;, originally proposed in [Carstensen, Feischl, Page and Praetorius 2014] as
part of an abstract set of axioms of adaptivity:

J+N
D ke =il < Cllu—u iy j 20, (L11)
k=j

where C(N)/N — 0as N — oo. This is our departing point to develop a variational
approach to prove linear convergence of u; provided data D is discrete; the latter
is reflected in an equivalence property between error and estimator (without oscil-
lation). This is the context of a GALERKIN routine, which is next used as a building
block together with DATA for a AFEM-TS that handles general data . Moreover,
we prove rate-optimality for both algorithms, thereby extending Sections 5 and 6.

This discussion is rather abstract. We specialize it to the Stokes equations for vis-
cous incompressible fluids and mixed formulations of (1.1) using Raviart-Thomas-
Nedelec and Brezzi-Douglas-Marini elements. We thereby obtain convergence
and rate-optimality for AFEM-SW for the Stokes equations and AFEM-TS for mixed
methods with variable and possibly discontinuous coefficients (A, c).

We conclude with a complete proof of (1.11) following [Feischl 2022]. This is
a tour de force in applied linear algebra and is rather technical. It can be omitted in
a first reading.
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2 Linear Elliptic Boundary Value Problems: Basic Theory

In this section we examine the variational formulation of elliptic partial differential
equations (PDE). We start with a brief review of Sobolev spaces and their properties
and continue with two model boundary value problems that are instrumental in our
subsequent analysis. We next present the so-called inf-sup theory that characterizes
existence, uniqueness and stability of variational problems, and apply it to coercive
and saddle point problems. These two classes will play essential roles later.
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2.1 Sobolev spaces: scaling and embedding

Let Q c RY withd > 1 be a Lipschitz and bounded domain, and let £k € N, 1 <
p < oo. The Sobolev space W; (Q) is defined by

Wi(Q) = {v:Q— R| D% € L’(Q) V|a| <k},

and is a Banach space with the norm

1

P

k L
. P
o= P - Jy|P
IVllwk ) El MW,{(Q)  wie </Q|D v > :
j:

The space W; (Q;R™) is the space Wz () of vector or matrix-valued functions. If
p =2 we write H*(Q) = Wzk () and note that this is a Hilbert space. We denote
by H)(Q) c H'(Q) the completion of C;°(Q) within H'(Q).

Sobolev spaces Wﬁ (Q) of fractional order k£ > 0 can be defined as well, by apply-
ing the real interpolation method between Wll,kJ () and Wll,kJ+1 () (see [Bergh and
Lofstrom 1976] and [Adams and Fournier 2003] for the details). The subsequent
definitions and properties hold for Sobolev spaces of integer or fractional order.

The Sobolev number of Wﬁ (L) is given by

d
sob(Wy) :=k — —. 2.1
p
This number governs the scaling properties of the semi-norm |v|W!§(Q), because
rescaling variables X = %x for all x € Q, transforms Q into Q and v into ¥, while
the corresponding norms scale as

S _ psob(Wh )
Wlwr@ =177 kg

2.2 Properties of Sobolev spaces

We summarize now, but not prove, several important properties of Sobolev spaces
which play a key role later. We refer to [Evans 2010, Gilbarg and Trudinger
2001, Grisvard 2011] for details. We use the notation < to denote a continuous
embedding.

Lemma 2.1 (Sobolev embedding) Let m > k > 0 and assume sob(W;I") >

sob(W’; ). Then the embedding W(']"(Q) — W; (Q) is compact and
Wik < ClVliwpa Yy e Wi,
where C = C(m, k,q, p,Q, d).

We say that two Sobolev spaces are in the same nonlinear Sobolev scale if they
have the same Sobolev number; see Figure 2.1. We thus note that for compactness
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the space W,'(€2) must be above the Sobolev scale of W’;(Q), ie. sob(Wg') >
sob(W¥).

differentiability sob(W;'(€2)) = const
(slope = d)

1/summability

Figure 2.1. DeVore diagram [DeVore 1998]. The space Wllj (Q) is represented by
the point (1/p, k) in the first quadrant. The line sob(W(’;’) = const = sob(Wllj ), with
slope d, may be called the (critical) Sobolev embedding line fir Wllﬁ (Q). Itrepresents
all Sobolev spaces having the same Sobolev number as W;ﬁ(Q). Sobolev spaces
corresponding to points inside the gray region and on its boundary on the vertical
axis are compactly embedded in Wllj (€2). Spaces on the oblique and horizontal lines
emanating from WI'§ (€2) are generally continuously, but not compactly embedded,
in Wllj(Q) with exceptions such as p = co. Note that indices k and m may take
non-integer values, corresponding to fractional Sobolev spaces.

The assumption on the Sobolev number cannot be relaxed. To see this, consider
Q to be the unit ball of R4 for d > 2 and set v(x) = loglog % for x € Q\ {0}.
Then there holds v € W}(Q) \ L¥(Q), but

sob(W)) =1-d/d=0=0-d/co =s0b(L™).

Therefore, equality cannot be expected in the embedding theorem. On the other
hand, consider d = 1 and the spaces Wl1 () and L*(Q). We see that sob(Wll) =
sob(L*) = 0 but Wll (Q) is compactly embedded in L*°(€2) in this case. This shows
that these two spaces are in the same nonlinear Sobolev scale and that the above
inequality between Sobolev numbers for a compact embedding is only sufficient.
Moreover, if 0 < a = sob(W],f ) < 1, then functions of W;f () are Holder-a and

k
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This allows for the use of the standard Lagrange interpolation operator. We will
exploit this fact later in Section 3.

Lemma 2.2 (first Poincaré inequality) Ler Q ¢ R? be a bounded and Lipschitz
domain. Then there is a constant Cp = Cy4|Q|"¢ such that

IVl < CPIVYVI2@ Vv e Hy(@). 2.2)

The same inequality is valid in Wll7 (Q) forany 1 < p < oo provided v has vanishing
trace [Gilbarg and Trudinger 2001, p.158].

Lemma 2.3 (second Poincaré inequality) There exists Cp depending on Q such
that

v =Vll2@ < CrlIVVIi2g YveH'(Q), (2.3)

where v := |Q|7! fg v. The best constant within the class of convex domains is
Cp = %diam(Q) [Payne and Weinberger 1960]. The same inequality is valid in
Wllj(Q)for 1 < p < co. [Gilbarg and Trudinger 2001 ].

Lemma 2.4 (traces) Let Q be Lispchitz. There exists a unique linear operator
T: H(Q) — L*(dQ) such that

1TV 200) < cC@@IVlg@ — YveH'(Q),
Tv=v Yvlga € COQ) N H' (Q).

The operator T is also well defined on Wllj(Q) for 1 < p < oo. [Evans 2010,
Grisvard 1985]

Since Tv = v|sq for continuous functions, we write v for Tv. The image of T
is a strict subspace of L%(0Q), the so-called H'/2(9€). This is a Hilbert space if
equipped with the norm [|g|| ;71250 := Inf{||v||g1(q) | TV = g}, and T is continuous
with respect to this norm, i.e.,

ITvignee < IMlme YveH Q). 24)
The definition of Hé (€2) can be reconciled with that of traces because
Hy(Q) = {veH'(Q)|v=00ndQ}.

We point out that, in view of Lemma 2.2, the semi-norm |v| g L@ = IVVL2q) is

a norm in Hé (Q). We let H'(Q) be the dual of Hé (€2), with corresponding norm
o— <f ’V> 111
Ifllg-1q = SUPy e () —|V‘H(}(g>' These definitions extend to any p € (1, o).

Lemma 2.5 (Gauss divergence theorem) If n is the outer unit normal to Q, then

/divw=/ w-n Vwerl(Q;Rd).
Q oQ
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Lemma 2.6 (Green’s formula) The integration by parts formula holds

/divwv:—/w-Vv+/ vw-n  VYveH\(Q),weH (Q;R.
Q Q [2]9)

2.3 Examples of boundary value problems

We consider two model elliptic problems in this paper. We start with the scalar
diffusion-reaction equation with variable coefficients

L{u] :=—-div(AVu)+cu=f inQ,

2.5
u=0 onoQ, 2.5)

where Q c R is a bounded domain with Lipschitz boundary, A € L®(Q; R%*?) is
a diffusion tensor uniformly symmetric positive definite (SPD) over Q, i.e., there
exist constants 0 < a; < a» such that

€ < ETAW) € < €] VxeQ, £ eRY, (2.6)

c € L®(Q), ¢ > 01is areaction term, and f € L?*(Q) is a scalar load term.

To derive the variational formulation of (2.5) we let V = Hé(Q) and V* =
H™(Q). Since Hé (Q) is the subspace of H!(Q) of functions with vanishing trace,
asking for u € V accounts for the homogeneous Dirichlet boundary values in (2.5).
We next multiply (2.5) with a test function v € Hé(Q), integrate over £ and use
Lemma 2.6 (Green’s formula), provided w = —AVu € H 1(Q; R%), to obtain

ueV: Bluv]=(f,v) VveV. 2.7

Here, B8 : V X V — R stands for the bilinear form

Blw,v] = / Vv-AVw + cvw Vv,weV, (2.8)
Q

and (-, -) stands for the L?(Q)-scalar product and also for a duality paring H~!(Q) —
Hé(Q). Since A is assumed to be symmetric, the bilinear form 8 is also symmetric;
however A does not have to be symmetric in general. Note that the weak form (2.7)
allows for fluxes w € L2(Q;R%) and forcing f € H'(Q). We examine existence,
uniqueness and stability of (2.7) in Section 2.4 below.

We assume homogeneous Dirichlet boundary condition in (2.5) for simplicity
and because this will be our basic setting later. However, we could allow a non-
homogeneous Dirichlet condition in the sense of traces

Tu=g ondQ, (2.9)

for any given functiong € H > (0Q). To write the companion variational formulation
to (2.7), we first introduce the subspace V(g) ¢ H'(Q) of functions v with trace
Tv = g on 0Q, and then rewrite (2.7) as follows:

uevV(g): Bluv]l={(f,v) VYveV(). (2.10)
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Moreover, we could consider a Robin boundary condition for given functions g and
p on 0Q

AVu-n+pu=g ondQ, (2.11)
where n is the outer unit normal to . To figure out the variational formulation,
we now multiply the PDE in (2.5) by a test function v € H'(Q) and integrate by
parts to find the following variant of (2.7)

ue H'(Q): Blu,v] =4(v) VYve H(Q), (2.12)
where for all v, w € H'(Q)

Blw,v] I=‘/QVV'AVW+CVW+‘/(;QPVW, {(v) = (f,v>+‘/(mgv. (2.13)

We realize that (2.13) makes sense for p € L*(0Q),p > 0and g € H‘%(HQ), the
dual space of H %((%2), whence the last integral in (2.13) means a duality pairing.
If p = 0, then (2.13) reduces to the weak form of the Neumann boundary condition.

The second model problem is the Stokes system, which is the simplest model of
a stationary viscous incompressible fluid. Given an external force f € L*(Q;R9),
let the velocity-pressure pair (u, p) satisfy the momemtum and incompressibility
equations with no-slip boundary condition:

_Au+Vp:f in Q,
divae =0 in Q, (2.14)
u=0 on 0Q.

For the variational formulation we consider two Hilbert spaces V = H(I) (Q; R4) and
Q= L%(Q), where Lé(Q) is the space of L? functions with zero mean value. The
space Hé(Q;Rd) takes care of the no-slip boundary values of the velocity. We
first multiply the momentum equation in (2.14) by v € V, assume u € H*(Q;R%)
and use Lemma 2.6 (Green’s formula) component-wise. We next multiply the
incompressibility equation in (2.14) by ¢ € Q and integrate over Q. We end up
with the following variational formulation: find (u, p) € V X Q such that

alu,v]+b[p,v]=(f,v) Vvey,
b[qau] =0 quQ
Here the bilinear forms a: VXV —- Rand b: Q XV — R read

d
alw,v] :=/Vv:Vw=Z/Vv,~Vwi Yv,weV.
Q = Ja

(2.15)

and
blq,v] ::—/qdivv VgeQ,veV.
Q

We observe that a[w, v] does not require w € H*(©;RY) and that (2.15) makes
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sense for f € H™'(Q;RY); note that the second equation in (2.15) is always
satisfied for constant ¢ due to Gauss’ theorem, which explains the choice g € Q.
Furthermore, (2.15) can be reformulated as (2.7), namely

(u,p)eVxQ: Blu,p),v,l=(fv) V¥ g9 eVxQ, (2.16)
with
Blw,p),(v,q)] = alu,v] +b[p,v]+blq,u].
We discuss existence, uniqueness and stability of (2.16) in Section 2.4.

We could formulate the Stokes system with other boundary conditions. First, we
may allow a non-homogeneous Dirichlet condition u = g for a given function g €
H> (0Q; R¥) satisfying the compatibility condition /Q g - n = 0 imposed by Gauss’
theorem, and proceed as in the scalar case (2.10). Second, to deal with a Neumann
boundary condition, we introduce the stress tensor o-(u, p) := %(Vu + VuT) -pl
and the symmetric part of the velocity gradient &(u) := 1 (Vu+Vu”). Then instead
of (2.14) we could write the strong form of the Neumann problem as

—divo(u,p)=f, dive=0, inQ

2.17
ou,p)n=g ondQ, ( )
and its weak form as (2.15) but with
Vi={v e H'(RY): / v=0}, Q:=L%Q), (2.18)
Q

as well as bilinear form a and right-hand side

alu,v] = /Qs(u) ce(v), Lv):=(f,v)+ ./an -y (2.19)

for all v € V. Again, the last integral in (2.19) is to be interpreted as a duality
pairing for g € H‘%(GQ; RY).

2.4 Inf-sup theory

We present a functional framework for existence, uniqueness, and stability of
variational problems of the form (2.7) or (2.16). Throughout this section we let
(V, {-,-)v) and (W, {-,-)w) be a pair of Hilbert spaces with induced norms || - ||y and
|| - |lw. We denote by V* and W* their respective dual spaces equipped with norms

> v (g, v)
I f 1l = sup and  ||gllw- = sup :
vev [IVllv vew [[vllw

We write L(V; W) for the space of all linear and continuous operators from V into
W with operator norm

| BV ||w
| B|| .cv:wry = sup .
vev |IVIlv
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The following result relates a continuous bilinear form 8: V x W — R with an
operator B € L(V; W) [Necas 1962, Babuska 1971].

Theorem 2.7 (Banach-Necas) Let B : VX'W — R be a continuous bilinear form
with norm
Blv,w]

||B]| := sup sup (2.20)

vevwew [VIvIwl
Then there exists a unique linear operator B € L(V, W) such that
(Bv, W)y = B[v,w] VveV,weW
with operator norm
I1Bllzcvzw = 1B

Moreover, the bilinear form B satisfies the two conditions

Blv,w
i) there exists @ > 0 such that «||v|]lv £ sup v, w]
wew |Iwllw

ii) forevery 0 # w € W there exists v € V such that B[v,w] #0; (2.21b)

forallv € V; (2.21a)

ifand only if B : V — W is an isomorphism with
1B~ MlLowwy < @™ (2.22)
We consider now the abstract variational problem
ueV: Bluv]={(f,v) VveW, (2.23)

The following result, due to Necas [Necas 1962, Theorem 3.3], characterizes
properties of the bilinear form B that imply that (2.23) is well-posed.

Theorem 2.8 (Necas) Let B: VX W — R be a continuous bilinear form. Then
the variational problem (2.23) admits a unique solution u € V for all f € W*,
which depends continuously on f, if and only if the bilinear form B satisfies one
of the equivalent inf-sup conditions:

(1) There exists a > 0 such that

. Blv,w]
i) sup

wew [Iwllw
ii) For every 0 £ w € W there exists v € V such that B[v,w] # 0. (2.24b)

(2) There holds

> al|lvllv for some a > 0; (2.24a)

Blv, . Blv,
inf sup — M S0 g sup 22 (2.25)
vevwew [VIvliwllw wew vev [VIvliwllw
(3) There exists a > 0 such that
B b . B bl
inf sup & = inf sup v, w] (2.26)

vevwew [VIlvIwllw  wewvev IVIvlwllw
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In addition, the solution u of (2.23) satisfies the stability estimate

lully < @Il £l (2.27)

The equality in (2.26) might seem at first surprising but is just a consequence of
|B~*|| Levawy = ||B~ Y| Lew:vy- In general, (2.24) is simpler to verify than (2.26) and
@ of (2.26) is the largest possible @ in (2.24a). Since (2.22) shows that || B~!|| LW, V)
is the best inf-sup constant @ in (2.21a), we readily obtain the following result.

Corollary 2.9 (well posedness implies inf-sup) Assume that the variational prob-
lem (2.23) admits a unique solution u € Y for all f € W* so that

lully < CI|f [l
Then B satisfies the inf-sup condition (2.26) with a« > C~\.

We next apply these abstract results to two special but important cases. The
first class are problems with coercive bilinear form and the second one comprises
problems of saddle point type.

Coercive Problems. An existence and uniqueness result for coercive bilinear forms
was established by Lax and Milgram eight years prior to the result by Necas [Lax
and Milgram 1954]. Coercivity of B is a sufficient condition for existence and
uniqueness but it is not necessary. In this case, we assume V = W.

Corollary 2.10 (Lax-Milgram) Let B: VXV — R be a continuous bilinear form
that is coercive, namely there exists a > 0 such that

Bv,v] = a|v|} VveV. (2.28)
Then (2.23) has a unique solution that satisfies the stability estimate (2.27).
If the bilinear form $ is also symmetric, i. e.,
Blv,w] =B[w,v] Vv,weV,
then B is a scalar product on V. The norm induced by B is the so-called energy norm
Ivlle = BLv,v]'">.

For the reaction-diffusion equation (2.5) the bilinear form given in (2.8) satisfies

0<a) <a<|8|<a+|cllie@Cs (2.29)

where Cp is the constant in Lemma 2.2 (first Poincaré inequality). Coercivity and
continuity of B, with constants cg = a; and Cg = ||B]|, in turn imply that the
energy norm || - || is equivalent to the natural norm || - ||y in V = H(l) (Q):

calvliy < IVlIg < Cslivlly, VveV. (2.30)

Moreover, it is rather easy to show that for symmetric and coercive 8 the solution
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u of (2.23) is the unique minimizer of the quadratic energy
1
J[v] = EB[V,V] —{f,v) Vvev,

i.e., u = argmin, .y J[v]. In particular, the energy norm and the quadratic energy
play a relevant role in Sections 5, 6 and 9.

This framework applies to the scalar diffusion-reaction equation (2.7) with ho-
mogeneous Dirichlet condition. Since the full H'-norm ||-|| ;1 (@) and the seminorm
| -] Hl (@ are equivalent in the space V = Hé(Q), according to Lemma 2.2 (first
Poincaré inequality), the bilinear form $ in (2.8) is coercive and continuous in
view of (2.6) and ¢ > 0. This framework applies as well to the non-homogeneous
Dirichlet problem (2.10), upon extending g to a function g € H'(Q) and rewriting
the problem in terms of w =u — g € Hé(Q) and forcing £ = f — L[g] € H '(Q).

On the other hand, the bilinear form $ in (2.13) associated with a Robin boundary
condition is coercive provided p > po on dQ (or at least on an open subset of Q)
with some constant po > 0. This is a consequence of the norm equivalence

~ 2, o+ )P Vv e H(Q). (2.31)

2
10~ W@ 12(6Q)

For the Neumann problem, instead, we have p = 0 in JQ, whence B is coercive
whenever ¢ > 0 in  (or at least in an open subset of Q). If ¢ = 0 in Q, then 8
is only coercive in the subspace of H'(Q) of functions with vanishing meanvalue,
according to Lemma 2.3 (second Poincaré inequality). Existence, uniqueness and
stability is thus guaranteed by Corollary 2.10 (Lax-Milgram) provided the forcing
in (2.13) satisfies the compatibility condition £(1) = 0.

Saddle Point Problems. We consider now an abstract problem a bit more general
than (2.15), so the following results apply to the Stokes system (2.14).

Given a pair of Hilbert spaces (V, Q), we consider two continuous bilinear forms
a: VXV ->Randb: QxV — R.If f € V" and g € QF, then we seek a pair
(u, p) € V x Q solving the saddle point problem

alu,vl+b[p,v] =(f,v) Vvey, (2.32a)
blg,u] = q VYqeQ (2.32b)

Problem (2.32) is variational and can be rewritten in the form (2.23)

(u,p) e VxQ: Blu,p),v, ] =(f,v)+(g q) Y, q eVxQ, (2.33)

where B is the bilinear form

Bl(u, p),(v,q)] :=alu,v] +b[p,v] +blq,u]. (2.34)

Therefore, the saddle point problem (2.32) is well-posed if and only if B satisfies
the inf-sup condition (2.26). Since 8B is defined via the bilinear forms a and b,
and (2.32) has a degenerate structure, it is not that simple to show (2.26) directly.
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However, the result is a consequence of the inf-sup theorem for saddle point
problems given by Brezzi in 1974 [Brezzi 1974].

Theorem 2.11 (Brezzi) The saddle point problem (2.32) has a unique solution
(u,p) € VXQ forall data (f, g) € V* x Q*, that depends continuously on data, if
and only if there exist constants «, 8 > 0 such that

inf sup M = inf sup M =a >0, (2.35a)
vevgwevy IVIvIwllv - wevg vew, IVIvIiwlly
blq.
inf sup 21V _ 5o (2.35b)

geavev lgllallvllv
where

Vo:={veV]|blgq,v] =0Vq € Q}.

In addition, there exists y = y(a, B, ||a||) such that the solution (u, p) is stable

1/2 1/2
(lall? +1p12) " < v (113 + Ngl2.) 2. (2.36)

Combining Theorem 2.11 (Brezzi) with Corollary 2.9 (well posedness implies
inf-up) we infer the inf-sup condition for the bilinear form $ in (2.34).

Corollary 2.12 (inf-sup of B) Let the bilinear form B: W — W be defined by
(2.34). Then there holds

. B[(V, Q), (W’r)] _ . B[(V, q)a (W’r)] -1
inf = inf >
v,9)eW (w,r)ew ”(Va CI)”WH(W’ r)”W (w,r)eW (v,q)eW ||(V, Q)HWH(W’ r)”W

>

where vy is the stability constant from Theorem 2.11.

Assume that a: VXV — R is symmetric and let (u, p) be the solution to (2.32).
Then u is the unique minimizer of the energy J[v] := %a [v,v] = (f, v) under the
constraint b[-,u] = g in Q*. In view of this, p is the corresponding Lagrange
multiplier and the pair (u, p) is the unique saddle point of the Lagrangian

L[v,q] =J[v]+blg,v]-{g,q) VveV,geQ.

Stokes system. Theorem 2.11 (Brezzi) applies to the Stokes system (2.14) and
(2.15) once we verify the inf-sup property (2.35b) for the bilinear form b[g,v] =
- fg gdivv. This turns out to be equivalent to the following problem: for any

q € L3(Q) there exists aw € H)(Q;RY) such that
—divw =g inQ and Wlg1orey < CQqll2q)- (2.37)

This non-trivial result goes back to Necas [Carroll, Duff, Friberg, Gobert, Grisvard,
Necas and Seeley 1966] and a proof can for instance be found in [Galdi 1994,
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Theorem II1.3.1]. This implies

2
blg,v] blgwl Nl
sup >

-1
> = > C(Q) gl L2()-
veH! (QRY) Vai@zrey — Wlai@rey  Wlnara)

Therefore, (2.35b) holds with 8 > C(Q)~".

The inf-sup condition is satisfied also for the spaces V and Q defined in (2.18),
which are appropriate for the weak formulation (2.17) of the Neumann boundary
value problem. Indeed, given any ¢ € L*(Q), we can splititas ¢ = (g — §) + 4
with ¢ := |Q|! /Q q. Letwg € H(l)(Q; R?) be the function defined as in (2.37)
with ¢ replaced by ¢ — §, and let w = %(c}x, Gy). Then, it is easily checked that the
functionw = w — |Q[! fQ w with w = wy + w belongs to V and satisfies

—divw =g inQ and Wl i1 @ray < CllgllL2q)-

2.5 W},—regularity of reaction-diffusion equation

It will be useful later in Lemma 5.20 to know whether L*-coeflicients (A, ¢) allow
for enhanced regularity beyond H(l) (Q2) for solutions u of (2.7). We can reformulate
this question as an extension of the Lax-Milgram theory that states that the solution
operator L™! of (2.5) is an isomorphism between H~'(Q) and H(l) (Q2); see Corollary
2.10 (Lax-Milgram).

This issue is well understood for the Laplace operator, i.e. A = I'and ¢ = 0. Itis
known that for Lipschitz domains Q C R4, there exists po = po(€) > 2 such that

IVullLr@) < Klifllw; 1@ VP € [2,pol, (2.38)

where K depends on p (see for example [Jerison and Kenig 1995]); in particular,
po > 4 for d = 2 and py > 3 for d = 3. Hereafter, W;l(Q) denotes the dual space
of W(} () — functions in WC} (€2) with zero trace and g = L_l. For A € L®(Q, R¥*4)
and ¢ = 0, estimate (2.38) was first derived by [Meyers 1963] as a perturbation
result for the Laplacian; see also [Brenner and Scott 2008]. We now present a
simple proof for p > 2 following [Bonito, DeVore and Nochetto 20135]. Let

1/2-1/
0p) = T
1/2-1/po
and note that 6(p) increases strictly from 0 at p =2 to 1 at p = pg. Let K be the
constant K in (2.38) for p = pg and, for any ¢ € (0, 1), define

pe() = max{p € [2,po] : KV (1 —1) < 1}. (2.40)

Lemma 2.13 (W;-regularity) Let A € L®(Q,R¥*d) satisfy (2.6) with ay < @y,
¢ € L®(Q) be non-negative, and let Q be Lipschitz. If f € W;l(Q) for some
p € [2, min {p*(“‘ ), % ), then the solution u € H(])(Q) of (2.7) satisfies

@

Vp € [2, pol, (2.39)

IVullr < Cp)(1+ 5 C@lelm@ ) I/ lwz 2.41)
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with constant
o(p)
K

1- K (1-2)

@

1
Clp) = o

and C(Q) = C;Cp where Cs is the constant in Lemma 2.1 (Sobolev embedding)
and Cp is the constant in Lemma 2.2 (first Poincaré inequality).

Proof. We first consider the principal part of the operator L in (2.5), namely
we take ¢ = 0. In fact, let the operator S : VV;,(Q) — W,1(Q) be defined by

Sy = —div (%AVV). In order to prove (2.41) for S, we resort to a perturbation
argument for the Laplace operator Tv := —Av.

The first task is to bound K in (2.38) in terms of K and p. To this end, we recall
that the operator T : Hj(Q) — H~'() is an isomorphism with norm ||T~!||; = 1.

Moreover, T : W}? Q) - W, 1(Q) is also an isomorphism with norm ||77!| ,, = Ko
according to (2.38) for p = py, provided we adopt the norm ||V - || Lr(q) in W}) Q).
By the real method of interpolation, we know that Wll, Q) = [Hé (Q), VV},O D]op).p
is the interpolation space between Hé () and W},O (Q) with parameter 6(p) given
by (2.39). Hence, operator interpolation theory implies that 7" : W}, Q) - W, Q)
is an isomorphism with

- [
K=", =K5"".

We regard S as a perturbation of T, define the operator Q :=7 — S : W}, Q) —
w, 1(Q), and observe that ||Q]| p < 1 — 21 because

a

1 c
(Ov,w) = / (1 - —A)VVVW < (1 o ) IV llr@lIVWlia@ w e WiQ).
Q an (0 7))

Therefore, the operator 77! : W},(Q) — W;,(Q) satisfies
- - 0 ay
I 01l < 177101, < K5 (1~ 27)
as well as ||T‘1Q||p < 1lforany p € [2,p*(a1/a2)) in view of definition (2.40) of

p+(t). We conclude by the Neumann Theorem that the operator S =T (I -T7! Q) :
W},(Q) — W, 1(Q) is invertible and its norm is bounded by

-1 0(p)
I, K

1 - ||T_1Q||p B 1—K06(p)(1 —a’l/(lz) ‘

This yields the asserted estimate for S = —div (QLZAVV).

Finally, we consider the operator L in (2.5) with ¢ # 0. If u € H(l)(Q) is the
solution of (2.7) given by Corollary 2.10 (Lax-Milgram), rewrite (2.7) as follows

IS~ 1 < I HIpI =TI, <

1 1 1
Su = —div (—Avu) = —(f-cu)= —g,
(02 (0%} (&%)
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and apply the preceding estimate for S to infer that
”S_lg”v‘i/g(g) =[[VullLr) < C(p)”gllwp-l(g) < C(P)(Hf”wp-l(g) + ”Cullwp-l(g))-

It remains to estimate the last term on the right-hand side. Using Cauchy-
Schwarz in conjunction with Lemma 2.2 (first Poincaré inequality), i.e., [|u|| 2q) <
Cp||Vull 2(q), and Lemma 2.1 (Sobolev embeddings), i.e., [[w || 12(q) < C||w||qu(Q) <
Csl|VwllLa) for g = p/(p — 1) > 2d/(d + 2), we see that

CpCs

(cu,w) < CpCslcllL=@lIVull 2@l VWllLa@) < lellLe@ll Al -1 @ IV WliLa@

because of the stability estimate (2.27) with constant @ = cg. Since || f||g-1q) <

p—2
|Q| 5 I|f ||W[;1(Q), the asserted estimate (2.41) for ¢ # 0 follows immediately. [

3 A Priori Approximation Theory

We devote this section to discussing basic concepts about piecewise polynomial
approximation in Sobolev spaces over graded meshes in any dimension d. We
start by introducing the Petrov-Galerkin method in an abstract setting (Sect. 3.1);
this motivates our interest in approximation results in Sobolev spaces. Hence, we
briefly discuss the construction of finite element spaces in Sect. 3.2, along with
polynomial interpolation of functions in Sobolev spaces in Sect. 3.3. This provides
local estimates adequate for the comparison of quasi-uniform and graded meshes for
d > 1. We exploit them in developing the so-called error equidistribution principle
in Sect. 3.4 and the construction of suitably graded meshes via a greedy algorithm
in Sect. 3.6. We conclude that graded meshes can deliver optimal interpolation
rates for certain classes of singular functions, and thus supersede quasi-uniform
refinement.

In the second part of the section, we explore the geometric aspects of mesh
refinement for conforming meshes in Sect. 3.5 and nonconforming meshes in Sect.
3.7, but postpone a full and rather technical discussion until Sect. 8. We include
a statement about complexity of the refinement procedure, which turns out to be
instrumental later and will be proved in Sect. 8.

3.1 The Galerkin method: best approximation

In order to render the variational problem (2.23) computable, we let Vy C V
and Wy C W be subspaces with the same dimension N < co and consider the
Petrov-Galerkin approximation:

uy €Vy 1 Bluny,w]=(f,w) VYweWy. 3.1)

IfVy = Wy thisis called Galerkin approximation. Since (3.1) is a square algebraic
system, existence and uniqueness of uy € Vp is equivalent to the kernel of the
corresponding linear discrete operator to be trivial. This leads to the following
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equivalent conditions for unique solvability [Necas 1962, Babuska 1971], see also
[Nochetto et al. 2009, Proposition 1].

Lemma 3.1 (discrete inf-sup condition) The following statements are equivalent:

1. forevery 0 # v € Vy there exists w € Wy such that B[v,w] # 0;
2. forevery 0 £ w € Wy there exists v € Yy such that B[v,w] # 0;
3. the following discrete inf-sup condition holds with a constant Bx > 0

inf sup —2WD e B a3
vevy wewy IVIvIWllw  wewy vevy IVIvIIWIlw
4. inf sup M>O;
VeV weWy ||Vzgv||W||w
5. inf sup ﬁ > 0.

wewy vevy [IVIvllwllw

This is a discrete version of Theorem 2.8 (Necas) and leads to the stability bound

lnlly < = £l (33)
BN
Therefore, ,81‘\,1 acts as a stability constant for (3.1) and is thus desirable that it is
uniformly bounded below away from zero. This is always the case for coercive
problems because (2.28) is inherited within the subspaces Vy = Wy C V, whence
BN = a > 0. In contrast, a uniform lower bound for saddle point problems

Bn =6 >0, (3.4)

requires compatibility between the subspaces Vy and Wy [Boffi, Brezzi and Fortin
2013].
If we now subtract (3.1) from (2.23), we obtain Galerkin orthogonality

Blu—-—uny,w]=0 VYwe Wy. (3.5)

This relation is instrumental to derive the following best approximation property
as well to develop a posteriori error estimates in Section 4.

Proposition 3.2 (quasi-best-approximation property) Let B: VX W — R be
continuous and satisfy (3.2). Then the error u — uy satisfies the bound
I8l

u-—u < —— min ||lu —V||y. 3.6
I Nllv B omin l (3% (3.6)

Proof. We give a simplified proof, which follows Babuska [Babuska 1971,

Babuska and Aziz 1972] and yields the constant 1 + %. The asserted constant is
due to Xu and Zikatanov [Xu and Zikatanov 2003].

Combining (3.2), (3.5), and the continuity of B, we derive for all v € Vy

B _V,W B _V,W
Bnlluny —vllv < sup Bluy —v.wl _ s Blu—v,w]

< [1Bllllu = vllv,
wewy  |Iwllw wewy  lIwllw
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whence
I3l
lun =vllv < ——llu = vllv.
BN
Using the triangle inequality yields
B
lu—unllv < llu=viv+lv-unllv < (1 + Hﬁ_N”) llu = vllv

for all v € V. It just remains to minimize in Vy . U
Corollary 3.3 (quasi-monotonicity) LetB: VXW — R be continuous and satisfy
(3.2). If Vpy is a subspace of Vi, then for all v € YV,

lu —un|lv < B lu = vlv. 3.7

Moreover, if V = W and B is symmetric and coercive with constants cg < Cg,
then for all v € YV,

lu —unlle < llu-via, lu-unllv < Ceeallu =vilv, (3.8)

[C
where Ceopy = ﬁ.

Proof. Inequality (3.7) is a consequence of the previous bound (3.6) upon taking
v € V), instead of V. To show the left inequality in (3.8), we combine (2.28)
and (3.5)

lu —unllg = Blu—un,u—v] < lu—-unllallu-via,  ¥veVuy.
This together with the norm equivalence (2.30) gives the remaining inequality. []

The significance of (3.6) is that we need to construct discrete spaces Vy with good
approximation properties. We introduce next piecewise polynomial approximation,
which gives rise to the finite element method.

3.2 Finite element spaces

In this section we focus on the construction of the discrete spaces Vy and Wy .
We consider the bilinear forms B introduced in Section 2.3 with emphasis on the
diffusion-reaction case (2.8). We assume that Q is a bounded polyhedral domain
Q c R4 and is partitioned into a conforming or non-conforming mesh 7~ made of
simplices 7', which are assumed to be closed with non-overlapping interiors; thus,

Q=|Jir:re7y.

The reference element is denoted

d
To=f{x=(p,...x)eR0<x <1 i=1,..d Y x <1}
i=1



26

We will discuss the construction of conforming meshes in Section 3.5 by the
bisection method and that of non-conforming meshes (constrained to the fulfillment
of an admissibility condition) in Section 3.7, both for d = 2. We will embark on a
thorough discussion in Section 8. We assume for the moment that 7 is an element
of a (possibly infinite) class T of conforming shape regular meshes. To define this
geometric concept, we denote by 7 the diameter of T € 7, by h, the diameter of
the largest ball contained in 7', and impose the restriction

h
O 1= sup sup T < . (3.9)
TeTTeT Lt
The constant o is refereed as the shape regularity constant of T.
Given a shape regular mesh 7~ € T, we define the finite element space of
discontinuous piecewise polynomials of total degree up ton > 1

sehi={v e LAQ) | vir € Po(T) VT € T}
and its globally continuous counterpart
0 . qn—1 05
S7 =827 NC(Q).

Note that S’(}’O c H'(Q) which makes it adequate for (2.7)-(2.8). We refer to Braess
[Braess 2007], Brenner-Scott [Brenner and Scott 2008], Ciarlet [Ciarlet 2002] and
Siebert [Siebert 2012] for a discussion on the local construction of this space (i.e.
Lagrange elements of degree n > 1) along with its properties. We denote by

Vo = 870 N Hy(Q) (3.10)

the subspace of finite element functions which vanish on Q. Note that we do not
explicitly refer to the polynomial degree, which will be clear in each context.

We focus on the conforming piecewise linear case n = 1 (Courant elements),
but most results extend to non-conforming meshes or n > 1. In this vein, global
continuity can be simply enforced by imposing continuity at the set V of vertices z
of 7, the so-called nodal values. However, the following local construction leads
to global continuity. If 7" is a generic simplex of 7, namely the convex hull of
{Zi}f'l:o’ then we associate to each vertex z; a barycentric coordinate /ll.T, which is
the linear function in 7" with nodal value 1 at z; and O at the other vertices of T'.
Upon pasting together the barycentric coordinates /lg of all simplices T containing
the vertex z € V, we obtain a continuous piecewise linear function ¢, € Slr’o as
depicted in Figure 3.1 for d = 2:

The set {¢;};cy of all such functions is the nodal basis of S},LO, or Courant
basis. We denote by w, := supp(¢;) the support of ¢,, from now on called star
associated to z, and by 7, the interior skeleton of w,, namely the union of all the
faces containing z.

In view of the definition of ¢,, we have the following unique representation of
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Figure 3.1. (Left) Piecewise linear basis function ¢, corresponding to interior node
z; (Right) Support w, of ¢, and skeleton 7y, (in solid line)

any function v € S-9(7)
() = D V(D) ().
zeV

The functions ¢, are non-negative and satisfy the partition of unity property

Z b.(x)=1 VxeQ. 3.11)
zeV
If we further impose v(z) = 0 for all z € 9Q NV, thenv € H} 0 ().

For each simplex T € 7, generated by vertices {Zz}, "> the dual functions
{/l*}d c Py(T) to the barycentric coordinates {A; }d ", satisfy the bi-orthogonality
relation fT A;A; = 6;j, and are given by

1 +d)? 1 +d
PR GO Z A

‘ 7|

VO<i<d.

J#i

The Courant dual basis ¢, € Sl’_l(‘]“) are the functions over 7~ given by
A Yee,

Z T5>z

where V,; € N is the valence of z (number of elements of 7~ containing z) and y7 is
the characteristic function of 7. These functions have the same support w, as the
nodal basis ¢, and satisfy the global bi-orthogonality relation

‘/qu;qby:ézy Vz,yeV.

Finally, we denote by N the Lagrange nodes of order n of a mesh 7, and by
W, € S';O the corresponding Lagrange basis of S'r}io; hence S;’:O =span{y;},en.
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3.3 Polynomial interpolation in Sobolev spaces

We wish to use the space V4 defined in (3.10) as the discrete space Vy in the
Galerkin method (3.1). If the bilinear form 8B satisfies an inf-sup condition with
constant B4 > 0, we find a discrete solution uq € V4 which satisfies the error
bound (3.6), i.e.

8l .

u-—u < — min ||lu —Vv||y.
e = urlly < == min flu = vily

In turn, the minimum on the right-hand side can be bounded from above by the
quantity |lu — v||v for any chosen v € V4. This motivates the search for quasi-best
approximations of u in the norm of V. One classical tool to generate approximations
to any given function is interpolation. Interpolation in V4 is discussed next.

If v € C%Q) we define the Lagrange interpolant Iv of v as follows:

I7v(x) = Z V(DY (x),

ZeN

and note that /v = v forall v € S’fr’o (i.e. Iy is invariant in Sf;o). For functions

without point values, such as functions in H'(Q) for d > 1, we need to determine
nodal values by averaging. For any conforming mesh 7~ € T, the averaging process
extends beyond nodes and so gives rise to the discrete neigborhood

wH(T) = U T’
T eT
T'NT #0

for each element T € 7 along with the local quasi-uniformity properties

T
max | < C(o),
T'cwrT) |T’|

max #wq(T) < C(0),
TeT

where o is the shape regularity coefficient defined in (3.9). We will often write
wr is there is no confusion about the underlying mesh 7". We shall also need the a
smaller subset, namely the set of elements sharing a face with a given element 7"

or =orM:= ) 1, (3.12)
T €T
T'NT eF
where F is the set of all (d — 1)-dimensional faces of the mesh 7.

We introduce now one such operator /4 due to Scott-Zhang [Brenner and Scott
2008, Scott and Zhang 1990], from now on called a quasi-interpolation operator.
We focus on polynomial degree n = 1, but the construction is valid for any n;
see [Brenner and Scott 2008, Scott and Zhang 1990] for details. We recall that
{¢;};ev is the global Lagrange basis of Sl,:o, {¢%}zcv is the global dual basis,
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and supp ¢ = supp ¢ for all z € V. We thus define I : L'(Q) — Sl,’.o to be
Iyvi= > (v, $)¢:, (3.13)

zeV

If 0 < s < 2 (integer) is a regularity index and 1 < p < oo is an integrability index,
then we would like to prove the quasi-local error estimate

sob(W 5 )—sob(W/[)
v —Irviwiay S hy ! “Ilwswr) (3.14)

forall T € 7, provided 0 < # < s, 1 < g < oo are such that sob(Wy) > sob(W).
We first recall that /4 is invariant in S};.O, namely,

Isw=w Vwe S}i’_o.

Since the averaging process giving rise to the values of /v for each element T € 7~
takes place in the neighborhood wr, we also deduce the local invariance

Igw|lr =w Yw € Pi(wr)
as well as the local stability estimate for any 1 < g < oo
HgvllLaa) S IVIlLawr)-
We may thus write
v—Imvlp =W -w)=Isv-w)|lr VYT eT,

where w € Ps_; is arbitrary (w = 0 if s = 0). It suffices now to prove (3.14) in the
reference element 7 and scale back and forth to 7'; the definition (2.1) ,Pf Sobolev
number accounts precisely for this scaling. We keep the notation T for 7', apply the
inverse estimate for linear polynomials |I7—v|W‘;(T) S Hgv|lpacr) to v — w instead
of v, and use the above local stability estimate, to infer that

v —=Imviwiay S IV =wllwiwr) S IV =wllwswr)-

The last inequality is a consequence of the inclusion W;(wr) C Wé (wr) because
sob(W;,) > sob(WfI) and t < s. Estimate (3.14) now follows from the Bramble-
Hilbert lemma [Brenner and Scott 2008, Lemma 4.3.8], [Ciarlet 2002, Theorem
3.1.1], [Dupont and Scott 1980] or Proposition 6.34 below:
1 f — s < s . 1

wer v =wlwswr) < VIwgwr) (3.15)
This proves (3.14) for n = 1. The construction of /5 and ensuing estimate (3.14)
are still valid for any n > 1 [Brenner and Scott 2008, Scott and Zhang 1990].

Proposition 3.4 (quasi-interpolant without boundary values) Let s,t be regu-
larity indices with0 <t < s < n+1,and 1 < p,q < o be integrability indices
so that sob(Wp) > sob(Wfl). Then there exists a quasi-interpolation operator
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Ir: L'(Q) — S™O \which is invariant in S;:O and satisfies

sob(W $)—sob(W})
|V - ITVqut(T) < hT P E |V|W,§(wr) YT € 7. (316)

The hidden constant in (3.14) depends on the shape coefficient of Ty and d.

To impose a vanishing trace on /v we may suitably modify the averaging process
for boundary nodes. We thus define a set of dual functions with respect to an L?-
scalar product over (d — 1)-subsimplices contained on 9Q2; see again [Brenner and
Scott 2008, Scott and Zhang 1990] for details. This retains the invariance property
of I on $™%(7") and guarantees that I5v has a zero trace if v € Wl1 (Q) does.
Hence, the above argument applies and (3.16) follows provided s > 1.

Proposition 3.5 (quasi-interpolant with boundary values) Let s,t, p, g be as in
Proposition 3.4. There exists a quasi-interpolation operator I : W]1 Q) — S;‘:O

values of v provided they are piecewise polynomial of degree < n. In particular, if
Ve Wl1 (Q) has a vanishing trace on 0Q2, then so does Iv.

invariant in S',]l.’o which satisfies (3.16) for s > 1 and preserves the boundary

Remark 3.6 (fractional regularity) We observe that (3.16) does not require the
regularity indices ¢ and s to be integer. The proof follows along the same lines
but replaces the polynomial degree n by the greatest integer smaller than s; the
generalization of (3.15) can be taken from [Dupont and Scott 1980].

Remark 3.7 (local error estimate for Lagrange interpolant) Let the regularity
index s and integrability index 1 < p < oo satisfy s —d/p > 0. This implies
that sob(WIS,) > sob(L*), whence Wls,(Q) C C(L) and the Lagrange interpolation

operator I : W;(Q) — S;‘:O is well defined and satisfies the local error estimate

sob(W 3)—sob(W 1)
v —Irvlweay S hy " “Ivlwgay, (3.17)

provided 0 < ¢t < 5,1 < g < oo are such that sob(W;,) > sob(Wé). We point
out that wy in (3.14) is now replaced by 7 in (3.17). We also remark that if v
vanishes on dQ so does I5v. The proof of (3.17) proceeds along the same lines as
that of Proposition 3.4 except that the nodal evaluation does not extend beyond the
element T € 7 and the inverse and stability estimates over the reference element

are ]eplaced by
IT P S IT —~ s ~ < S .
| v|wq(7 ) ” v”L‘f(’]) ||v”L”(1) ~ ”v“W,,(J)

The following global interpolation error estimate builds on Proposition 3.4 and
relates to Fig. 2.1 (DeVore diagram).

Theorem 3.8 (global interpolation error estimate) Ler1 < s <n+1,r=0,1,
t<s,and 1 < p < g satisfyr = sob(W;) - sob(WfI) >0. Ifve W;(Q), then

1
v = Irvlwga < (D BB ) (3.18)
TeT
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(3, al’hyalp for 0 < p/q < 1. O

Proof.  Use Proposition 3.4 along with the elementary property of series ), a, <

Continuous vs discontinuous approximation of gradients. The preceding discus-
sion might induce us to believe that when dealing with Sobolev functions v € WII, (Q)
without pointvalues, namely 1 < p < d, global continuity of the quasi-interpolant
I5v might degrade the approximation quality relative to discontinuous approxim-
ations. The following instrumental result shows that this is not the case [Veeser
2016, Theorem 2]. It hinges on a new geometric concept: we say that a star w,
is (d — 1)-faced connected if for any element T C w, and (d — 1)-face F C w,
containing z there is a sequence {7}, such that

e any 7; is an element of w, for 0 < i < m;

e any intersection 7; N Ty isa (d — 1)—faceof w, fori =0<i <m —1;
e Tycontains Fand T, =T.

Notice that a star w, is (d — 1)—faced connected if the set w, N Q is connected.

Proposition 3.9 (approximation of gradients) Ler v € W},(Q) for1 < p <d.
Let T be a conforming mesh such that its stars are (d — 1)-face-connected. Then
there exists a constant C(0) depending on the shape regularity coefficient o of
(3.9), the dimension d and the polynomial degree n > 1, such that

min,, o VO = wllzr@)

1< < C(o), (3.19)

minwesg_,_l IV = w)llLr @
where ||Vw||Lr(:7) stands for the broken norm over T .

The left inequality in (3.19) is obvious because 8'71:0 C S’;i_l. In contrast, the
right inequality is delicate and relies on examining the quasi-interpolant (3.13)
[Veeser 2016, Theorems 1 and 22]. An important consequence of (3.19) is the
following localized version of (3.18):

Proposition 3.10 (localized quasi-interpolation estimate) Ler 1 < s < n+ 1,
1 < p <dandr=sob(W5) —sob(W,) > 0. If v € Wj(Q), then

1
190 = Irvliza@ < (3 W Wysr) (3.20)
TeT

Proof. Sincev—Iyv=w-w)—Iy(v—w)forany w € S"’O, combine Proposition
3.9 with Proposition 6.34 (Bramble-Hilbert for Sobolev spaces) to write

1

. pry..|pP P

IVG = Irvllza@ < min 196 =wlleog < () B Wl q))"
wESy TeT

This concludes the proof. Ul
The crucial difference between (3.20) and (3.18) is that the function v € qu(Q)
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does not have to belong globally to W7 (£2) but rather locally, namely v € W(T)
for every T € 7, to get optimal a priori error estimates. This property will find
several applications later. A special case of (3.20) for p = ¢ =2 and s = 2 reads

2 2 2
|V - ITleI(Q) < Z hT|V|H2(T)’
TeT

forv e HX(Q;T) :={w e H(Q): wir € H(T)VT € T}.

Quasi-Uniform Meshes. We now apply Theorem 3.8 to quasi-uniform meshes,
namely meshes 7~ € T for which all its elements are of comparable size 7, whence

h~ @) VQYY ~ @)1,

Corollary 3.11 (quasi-uniform meshes) Let 1 < s < n+1andv € H'(Q). If
T € T is quasi-uniform, then

IV =I5l 2y S [V]ms@@#T) ¢/, (3.21)

Remark 3.12 (optimal rate) If s = n + 1, and so v has the maximal regularity
v € H™1(Q), then we obtain the optimal convergence rate in a linear Sobolev scale

IVO =I5l L2 S |V|Hn+1(g)(#T)_n/d- (3.22)

The order —n/d is just dictated by the polynomial degree n and cannot be improved
upon assuming either higher regularity that H"*'(Q) or a graded mesh 7. The
presence of d in the exponent is referred to as curse of dimensionality.

Example (corner singularity in 2d). To explore the effect of a geometric singularity
on (3.21), we let Q = (=1, 1)>\ [0, 1]? be a L-shaped domain and v € H'(Q) be

V(r, 0) = r3 sin(26/3) — /4.

This function v € H'(Q) exhibits the typical corner singularity of the solution of
—Av = f with suitable Dirichlet boundary condition: v € HS(Q) for s < 5/3.
Table 3.1 displays the best approximation error for polynomial degree n = 1,2, 3
and a sequence of uniform refinements in the seminorm | - |51 = [IV - [[12q)-
This gives a lower bound for the interpolation error in (3.21).

Even though s is fractional, the error estimate (3.21) is still valid as stated
in Remark 3.6. In fact, for uniform refinement, (3.21) can be derived by space
interpolation between H'(Q) and H™*'(). The asymptotic rate (#7)~'/3 reported
in Table 3.1 is consistent with (3.21) and independent of the polynomial degree #;
this shows that (3.21) is sharp. It is also suboptimal as compared with the optimal
rate (#77)"/% of Remark 3.12.

The question arises whether the rate (#7)"'/3 ~ h*/3 in Table 3.1 is just a
consequence of uniform refinement or unavoidable. It is important to realize that
v ¢ H*(Q) for s > 5/3 and thus (3.21) is not applicable. However, the problem

is not that second-order derivatives of v do not exist but rather that they are not
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h linear | quadratic | cubic

(n=1) | (n=2) | (n=3)

1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 | 0.66 0.67 0.67

Table 3.1. Rate of convergence s in term of uniform mesh-size 4. We observe
an asymptotic error decay of about /23 (i.e. s = 2/3), or equivalently (#7)~'/3,
irrespective of the polynomial degree n. This provides a lower bound for ||v —
I7v|| 12(q) and thus shows that (3.21) is sharp.

square-integrable. In particular, it is true that v € WIZJ(Q) if 1 <p<3/2. We
therefore may apply Theorem 3.8 with, e.g., n = 1, s = 2, and p € [1,3/2) and
then ask whether the structure of (3.18) can be exploited, e.g., by compensating the
local singular behavior of v with the local mesh-size A. This enterprise naturally
leads to graded meshes adapted to v.

3.4  Principle of error equidistribution.

We investigate the relation between local interpolation error and regularity for the
design of optimal graded meshes adapted to a given function v € H'(Q) for d = 2.
We recall that le(Q) is in the same nonlinear Sobolev scale of H'(Q), namely

sob(W?) = sob(H"), but WX(Q) c C°(Q) [Brenner and Scott 2008, Lemma 4.3.4],
and the Lagrange interpolant I5v is well defined and satisfies
IVO = IVl 2y < CIVwee) = er(v,T) VT €T (3.23)

We formulate a discrete minimization problem on the surrogate quantity e :=
(e7(v,T))r e € RN with N = #7: minimize the square of the total H'-error E7(v)

Er() = ) er(v.T)
TeT
subject to the constraint
Z eqr(v,T) = C|V|W12(Q)'
TeT

We idealize the problem upon allowing es(v, T) to attain any nonnegative real value
despite the fact that shape regularity of 7 entails geometric restrictions between
adjacent elements. We next form the Lagrangian

Lle, A=) er(n, 17 -2 (Z er(v,T) - C|v|le(Q)> :

TeT TeT
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with Lagrange multiplier 4 € R. We thus realize that the optimality condition reads
P
eqr(v,T) = 3 YT €T
orthat eq(v, T) is constant over 7. We rewrite this insightful conclusion as follows:

A graded mesh is quasi-optimal if the local error is equidistributed. (3.24)

This calculation yields
A2 A
Er(v)? =N, Cllyzq = 3N,

whence
E7(v) = Clvly2qN """ (3.25)

is the optimal decay rate but with regularity v € WIZ(Q) rather than H*(Q); this
is the second instance of nonlinear approximation, namely mesh design tailored
to the specific function v at hand; the first one was in Section 1. The principle
of error equidistribution (3.24) was originally derived by Babuska and Rheinboldt
[Babuska and Rheinboldt 1978] for d = 1, and extended to d = 2 by Nochetto
and Veeser [Nochetto and Veeser 2012, Section 1.6], using an idealized continuous
minimization problem involving a meshsize function. The current formulation is
closer to applications and does not require a positive power of A7 in (3.23).

Remark 3.13 (point singularities) Corner singularities [Grisvard 1985] as well
as singularities due to intersecting interfaces [Kellogg 1974/75] are of the form

vx) ~r(x)?, O0<y<l, (3.26)

for d = 2. This implies v € WIZ(Q) for all v and the decay rate (3.25) provided
T equidistributes the H'-error. Babuska et al [Babuska, Kellogg and Pitkiranta
1979] and Grisvard [Grisvard 1985] designed such meshes for corner singularities
using weighted H?-regularity. The preceding approach is more powerful in that it
does not require any characterization of the singularities, rather than v € W12(Q),
and applies as well to line discontinuities for d = 2. We will come back to this
point in Section 6.

We consider now an important abstract variant of the discrete minimization
process leading to (3.24) that will be instrumental to understand the success of

greedy algorithms later. Suppose that 0 < g,p < o0, v € LI(Q), X;)(Q) is an

abstract regularity space with r = L — 1 > 0, and Es(v), and eq(v,T), are
global and local L?-interpolation error indicators of v that satisfy the following

two abstract properties:

e Summability in €1: There exists a constant C; > 0 such that

Er()§ < Cl Y eq(v, 1) (3.27)
TeT
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o Summability in £P: There exists a constant C, > 0 such that
Z er(n, 1) = CY IR, o (3.28)
y2
TeT

We intend to find conditions on a mesh 7~ that minimize the global L?-error E4(v),
of v subject to the constraint (3.28). We again propose a Lagrangian

Lle, 1] = Z er(v, 1) - 2 (Z er(v, 15 - C2p|v|;;(g)> .

TeT TeT

The optimality condition for e reads

1
er(v.T)y = (/12) P yreT,

which is a third instance of error equidistribution and is thus consistent with (3.24).
We now resort (3.27) and (3.28) to arrive at

_aq_ _pP_
er, g =N(2)T ko =N(a2)"7,
q P& q
TeT
whence
11

E']’(V)q < ClCQIle;)(Q)N‘I P, (329)

We see that the decay rate in (3.29) is —t = - — % < 0 and is just dictated by the

different summabilities of (3.27) and (3.28). In the applications of (3.29) below,
t = 5 will be proportional to a differentiability index s and the condition

I 1 s 1 1
+ +

Q=

will correspond to the spaces L7(€2) and X;;(Q) being on the same nonlinear
Sobolev scale. This minimization process is an idealization that does not account
for mesh regularity of 7, which in turn entail some geometric constraints in the
construction of 7. A key question is whether estimates of the form (3.29) can be
achieved under practical but weaker conditions than (3.24). In Section 3.5 we will
study the bisection method, a flexible technique for conforming mesh refinement
with optimal complexity. In Section 3.6 we will present and analyze GREEDY,
a practical algorithm that implements these ideas and constructs quasi-optimal
conforming bisection meshes under the slightly stronger assumption

s—g+g>0. (3.30)
P g
Moreover, in Section 3.7 we will extend this analysis to non-conforming meshes.
We realize from (3.29) that, in order to maximize the error decay rate, we would
like to have p as small as possible, even 0 < p < 1. The range of ¢, p does not
matter in the argument above and, despite the fact that g > 1 in all applications
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below, the range of p is only limited by that of s, which in turn depends on the
polynomial degree n > 1 inthat0 < s <n+ 1.

We now return to the special case (3.23), namely g =2, p =1 and Vv € L*(Q).
As already shown in (3.23), in the nonlinear Sobolev scale

sob(W?2) — sob(H") = (2 - %) - (1 - %) =0

we expect the best error decay

_1
IV = 1)l 2 ) S |V|W12(Q)(#T) Z,
whereas the linear Sobolev scale yields the reduced order
IV = Il 2@ S Wlas@@#T) 702

for s < 1+ vy < 2 and v satisfying (3.26), where I is the Lagrange interpolation
operator. The nonlinear Sobolev scale entails a trade of differentiability with integ-
rability: we gain up to differentiability s = 2 at the expense of lower integrability
p = 1 for polynomial degree n = 1. This trade-off is at the heart of the optimal
estimate (3.25) and is represented in the so-called DeVore diagram in Fig. 2.1.

If the polynomial degree is n > 2, then the largest differentiability index is
s =n+ 1, which for d = 2 leads to integrability index p < 1:

2 2 2
_2)_ 1--):0 = p=——"_<1. 3.31
(s p) ( 2 P 331
To measure regularity of v, the corresponding Sobolev space must be replaced by
the Besov space B?,*I], (Q2) or the Lipschitz space Lip;“(Q). We will introduce and
study these spaces in Section 6.8.

3.5 Conforming meshes: the bisection method

In order to approximate functions in Wﬁ (Q2) by piecewise polynomials, we decom-
pose Q into simplices. We briefly discuss the bisection method, an elegant and
versatile technique for subdividing Q in any dimension into a conforming mesh. We
also discuss briefly nonconforming meshes in §3.7. We present complete proofs,
especially of the complexity of bisection, later in §8.

We focus on d = 2 and follow [Binev et al. 2004], but the results carry over to
any dimension d > 2 [Stevenson 2008]. We refer to [Nochetto et al. 2009] for a
rather complete discussion for d > 2.

Let 7 denote a mesh (triangulation or grid) made of simplices 7, and let 7 be
conforming (edge-to-edge). Each element is labeled, namely it has an edge E(T)
assigned for refinement (and an opposite vertex v(T') for d = 2); see Figure 3.2.

The bisection method consists of a suitable labeling of the initial mesh 7 and a
rule to assign the refinement edge to the two children. For d = 2 we consider the
newest vertex bisection as depicted in Figure 3.2. For d > 2 the situation is more
complicated and one needs the concepts of type and vertex order [Nochetto et al.
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v(Ty) = v(T2)

E(T) — > \ E (Tl)

v(T) b

E(T3)

Figure 3.2. Triangle T € 7 with vertex v(T) and opposite refinement edge E(T).
The bisection rule for d = 2 consists of connecting v(7T) with the midpoint of E(T),
thereby giving rise to children 77, 7, with common vertex v(77) = v(7»), the newly
created vertex, and opposite refinement edges E(71), E(T»).

2009, Stevenson 2008]. More precisely, we identify a simplex 7" with the set of its
ordered vertices and its type t by

T:{ZO,Z17~-'aZd}l‘5

witht € {0,...,d — 1}. Given such a d-simplex T we use the following bisection
rule to split it in a unique fashion and to impose both vertex order and type to its
children. The edge zpz4 connecting the first and last vertex of T is the refinement
edge of T and its midpoint z = Z‘”# becomes the new vertex. Connecting the
new vertex z with the vertices of T other than z, z; determines the common face
S ={z,z21,...,2q-1} shared by the two children 71,7, of T. The bisection rule
dictates the following vertex order and type for 77, T3

Ti ={20,2, 205 -+ > 2t Zttls - - - s Zd=1}(t+1) mod d>
———— ——— ——
_ - - 3.32
T2 = {stzazl’---azl7zd—1""azl+l}(1+1) mod d>» ( )
—_— ——
— —

with the convention that arrows point in the direction of increasing indices and
{z1,...,20} = 0, {z4,...,2a-1} = 0. For instance, in 3d the children of T =
{z0, 21, 22, 23} are (see Fig. 3.3)

t=0: Ti ={z0,%, 21,2251 and T» ={z3,Z,22,21}1,
r=1: Ti ={z20,Z.z1,22}2 and Tr ={z3,Z,21,22}2,
t=2: Ti = {20, Z,z1,22}0 and 1> ={z3,Z,21,22}0-

Note that the vertex labeling of T is type-independent, whereas that of 7 is the
same for type = 1 and ¢ = 2. To account for this fact the vertices z; and z, of
T are tagged (3,2,2) and (2, 3, 3) in Fig. 3.3. The type of T then dictates which
component of the triple is used to label the vertex.

Bisection creates a unique master forest F of binary trees with infinite depth,
where each node is a simplex (triangle in 2d), its two successors are the two
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0 2 0 3 {2,3,3}

1 2 {3,2,2}

Figure 3.3. Refinement of a single tetrahedron 7" of type ¢. The child 7; in the
middle has the same node ordering regardless of type. In contrast, for the child 7
on the right a triple is appended to two nodes. The local vertex index is given for
these nodes by the 7-th component of the triple.

children created by bisection, and the roots of the binary trees are the elements of
the initial conforming partition 7p. It is important to realize that, no matter how an
element arises in the subdivision process, its associated newest vertex is unique and
only depends on the labeling of 7y: so the edge E(T') assigned for refinement (and
the opposite vertex v(T') for d = 2) are independent of the order of the subdivision
process for all T € F; see Lemma 8.1 in Sect. 8. Therefore, F is unique.

A finite subset 7 C F is called a forest if 79 € ¥ and the nodes of ¥ satisfy

e all nodes of ¥ \ 7y have a predecessor;
e all nodes in  have either two successors or none.

Any node T € ¥ is thus uniquely connected with a node Tj of the initial triangu-
lation 7y, i.e. T belongs to the infinite tree F(7y) emanating from 7y. Furthermore,
any forest may have interior nodes, i.e. nodes with successors, as well as leaf
nodes, i.e. nodes without successors. The set of leaves corresponds to a mesh (or
triangulation, grid, partition) 7 = 7 () of 7y which may not be conforming or
edge-to-edge.

We thus introduce the set T of all conforming refinements of 7y:

T:={7T =7(F) | F c Fis finite and 7 (¥) is conforming}.

If 7. = 7(F:) € T is a conforming refinement of 7 = 7 () € T, we write 7, > T~
and understand this inequality in the sense of trees, namely ¥ C 7.

Example. Consider 7y = {T,-}j.‘:1 and the longest edge to be the refinement edge.
Figure 3.4 displays a sequence of conforming meshes 7; € T created by bisection.
Each element T; of 7j is a root of a finite tree emanating from 7;, which together
form the forest #, corresponding to mesh 7, = 7 (%>). Figure 3.5 displays %,
whose leaf nodes are the elements of 7;.

Properties of Bisection. We now discuss several crucial geometric properties of
bisection. We start by recalling the concept of shape regularity. For any 7" € 7,
we define



AFEM 39

Ty
Lo | Ts I
T, T T
5 T
T T = b I
Ty Iy
T ) T

Figure 3.4. Sequence of bisection meshes {‘7}}%20 starting from the initial mesh
To = {T,-}?=1 with longest edges labeled for bisection. Mesh 77 is created from 7
upon bisecting 77 and 74, whereas mesh 7; arises from 77 upon refining 7g and 7.
The bisection rule is described in Figure 3.2.

Figure 3.5. Forest %, corresponding to the grid sequence {7x }izo of Figure 3.4. The
roots of 7, form the initial mesh 7 and the leaves of %, constitute the conforming
bisection mesh 7. Moreover, each level of ¥, corresponds to all elements with
generation equal to the level.

hr = diam(T)
hr = |T|"?
hy :=2sup{r > 0|B(x,r) C T forx € T}.

Then
ﬁTShTSETSO'ﬁT YT € T,

where o > 1 is the shape regularity constant of (3.9). The next lemma guarantees
that bisection keeps o bounded.

Figure 3.6. Bisection produces at most 4 similarity classes for any triangle.

Lemma 3.14 (shape regularity) The partitions T generated by newest vertex bi-
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section satisfy a uniform minimal angle condition, or equivalently o is uniformly
bounded, only depending on the initial partition 7.

Proof. Each T € 9, gives rise to a fixed number of similarity classes, namely 4
for d = 2 according to Figure 3.6. This, combined with the fact that #7 is finite,
yields the assertion. U

We define the generation (or level) g(T') of an element T € 7~ as the number of
bisections needed to create T from its ancestor 7y € 7. Since bisection splits an
element into two children with equal measure, we realize that

hy =2780R2p VT e T, (3.33)

Referring to Figure 3.5 we observe that the leaf nodes Ty, T, 711, 712 have gener-
ation 2, whereas Ts, Tg have generation 1 and 73, T3 have generation 0.
The following geometric property is a simple consequence of (3.33).

Lemma 3.15 (element size vs generation) There exist constants 0 < D| < D5,
only depending on Ty, such that

D278D2 < hp < iy < D278 yreT. (3.34)

Labeling and Bisection Rule. Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initial labeling of edges and a
bisection rule. For d = 2 they are simple to state [Binev et al. 2004]. GivenT € 7
with generation g(7') = i, we assign the label (i +1,i+1, ) to T with i corresponding
to the refinement edge E(T'). The following rule dictates how the labeling changes
with refinement: the side i is bisected and both new sides as well as the bisector
are labeled i + 2 whereas the remaining labels do not change. To guarantee that the
label of an edge is independent of the elements sharing this edge, we need a special
labeling for 7y, due [Mitchell 1989, Theorem 2.9] and [Binev et al. 2004, Lemma
2.1]ford = 2:

edges of 7o have labels O or 1 and all elements T € T have

exactly two edges with label 1 and one with label 0. (3.35)

There is a variant for d > 2 due to [Stevenson 2008, Section 4]. It is not obvious
that labeling (3.35) exists, but if it does then all elements of 7y can be split into
pairs of compatibly divisible elements. We refer to Figure 3.7 for an example of
initial labeling of 7y satisfying (3.35) and the way it evolves for two successive
refinements 7, > 71 > 9 corresponding to Figure 3.4.

To guarantee (3.35) we can proceed as follows: given a coarse mesh of elements
T we can bisect twice each 7" and label the four grandchildren, as indicated in Figure
3.8 for the resulting mesh 7y to satisfy the initial labeling [Binev et al. 2004].

For d > 3 a general strategy of initial labeling is due to [Stevenson 2008, Section
4 - Condition (b)], who in turn improves upon [Maubach 1995] and [Traxler 1997]
and shows how to impose it upon further refining each element of 75. We refer to the
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Figure 3.7. [Initial labeling and its evolution for the sequence of conforming
refinements 7y < 77 < 7; of Figure 3.4.

Figure 3.8. Bisecting each triangle of 7y twice and labeling edges in such a way
that all boundary edges have label 1 yields an initial mesh satisfying (3.35).

survey [Nochetto e al. 2009] for a discussion of this condition: a key consequence is
every uniform refinement of Ty gives a conforming bisection mesh. (3.36)

Condition (3.35) is still valid, and a construction by successive bisections similar,
but much trickier, than the one described for d = 2 can be performed to fulfil it;
yet for d = 3 the number of elements increases by an order of magnitude, which
indicates that (3.35) is a severe restriction in practice. Finding alternative, more
practical, conditions is an important problem.

Initialization of arbitrary triangulations. A novel initialization procedure that
can be applied to any conforming triangulation 7y has been recently proposed by
[Diening, Gehring and Storn 2023]; hereafter we present a short account of it.

The key concept is that of coloring the vertices of 7y. A colored initial triangu-
lation in R< is a pair (7, ¢), where ¢ : Vg — {0,...,d} is such that the colors
of all vertices of each T € 7 are distinct. The color map ¢ allows one to sort the
vertices of each initial element T = {zg, ..., 24}: € T so that

czp=j jefo,....d}.

Torefine amarked T € 7, one applies the Maubach bisection rule leading to (3.32),
and possibly adds a recursive closure, which is proven to terminate, to guarantee
the conformity of the final triangulation. The coloring property is conserved in this
process, and the conclusion of Theorem 3.16 below holds true, starting from any
initially colored triangulation 7.
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Unfortunately, not every initial triangulation can be colored. For instance, con-
sider in dimension d = 2 a patch of triangles sharing a common vertex. If color
0 is assigned to such inner vertex, then the outer vertices must take successively
colors 1 and 2, but if the number of triangles in the patch is odd there will be a
vertex which is not colorable.

To overcome this obstruction, [Diening et al. 2023] propose to use more colors,
and introduce the concept of generalized coloring: a pair (7, c)is a (N +1)-colored
triangulation if there exists an integer N > d and a mapping ¢ : Vi — {0,...,N}
such that the colors of all vertices of each T' € 7y are distinct. Any initial 7y can be
colored in this generalized sense: indeed, after the initialization c(z) = +co for all
z € Vg, one defines

¢(z) :=min(Ny \ {c(w) : [z, w] is an edge of Ty}), z€ Vg,

as the smallest color not already attained by a neighboring vertex. Then, one sets
N := max {c(z) : z € Vqg;}, and notes that N is bounded by the maximal number
of edges connected to a vertex of 7p.

A generalized (N + 1)-colored triangulation (75, ¢) in R4 can be seen as a col-
lection of d-simplices contained in a virtual, colored triangulation 7;" in RN, 1t
suffices to add N — d virtual nodes to each simplex in 7y, so that it becomes a
N-simplex, and attribute to these nodes the remaining N — d colors. Note that
these virtual simplices are only connected via their d-subsimplices belonging to
7o- In the example mentioned above of a patch of triangles sharing a vertex, a
(3 + 1)-colored triangulation is defined as follows: a tetrahedron is built on top
of each triangle; the previously uncolorable vertex takes the new color 3, whereas
color 2 is attributed to the new vertices of the two tetrahedra sharing that vertex;
the new vertex of any other tetrahedron takes the color 3.

With the new triangulation 7;* at hand, one could apply the Mauback bisection
rule to it, which as a by-product would refine the initial triangulation 7y. However,
[Diening et al. 2023] suggests a short-cut that refines directly 7y, by invoking
an algorithm that bisects a k-simplex in dimension m > k. A further round of
recursive refinements may be needed to guarantee conformity. Diening, Gehring,
and Storn prove that the recursion terminates. In addition, for any (N + 1)-colored
initial triangulation, the conclusion of Theorem 3.16 below holds true also in this
case, with a constant D satisfying D < N¢.

The procedure REFINE . Given 7 € T and a selected subset M C 7 (the set of
marked elements), the procedure

[7:] = REFINE (7", M)

creates a new conforming refinement 7, of 7~ by bisecting all elements of M at
least once and perhaps additional elements to keep conformity.

Conformity is a constraint in the refinement procedure that prevents it from being
completely local. The propagation of refinement beyond the set of marked elements
M is a rather delicate matter, which we discuss later in Sect. 8. For instance, we
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show that a naive estimate of the form
#7. —#7 < D #M

is not valid with an absolute constant D independent of the refinement level. This
can be repaired upon considering the cumulative effect for a sequence of conforming
bisection meshes {7x};",. This is expressed in the following crucial complexity
result due to [Binev et al. 2004] for d = 2 and [Stevenson 2008] for d > 2. We
present a complete proof later in Sect. 8.

Theorem 3.16 (complexity of REFINE) If 7y satisfies the initial labeling (3.35)
for d = 2, or that in [Stevenson 2008, Section 4] for d > 2, then there exists a
constant D > 0 only depending on 7 and d such that for all k > 1

k=1

#Ti —#T5 < D ) #M;.

j=0
If elements T € M are to be bisected b > 1 times, then the procedure REFINE can
be applied recursively, and Theorem 3.16 remains valid with D also depending on b.

Mesh Overlay. For the subsequent discussion it will be convenient to merge (or
superpose) two conforming meshes 77, 7; € T, thereby giving rise to the so-called
overlay 71 @ 7;. This operation corresponds to the union in the sense of trees
[Cascon, Kreuzer, Nochetto and Siebert 2008, Stevenson 2007]. We next bound
the cardinality of 77 @ 7; in terms of that of 77 and 7;.

Lemma 3.17 (mesh overlay) Let 71,9, € T. The overlay T = 71 ® 7, € T is
conforming and
#T < #T, + #7; — #7). (3.37)

For a proof we refer to [Cascén et al. 2008, Lemma 3.7] and to Proposition 8.15
below for a more general situation.

3.6 Constructive approximation

We now construct graded bisection meshes 7 for n = 1,d = 2 that achieve the
optimal decay rate (#77)~!/2 of (3.25) under the global regularity assumption

veW (Q), p>L (3.38)

Therefore, W;(Q) is strictly above the Sobolev line for the space H LQ): sob(Wf,) =
2 - % > 0 = sob(H"). Note that s = 1, p > 1 and g = 2 obey the restriction (3.30)

for Vv € L2(Q). In particular, WI% (€2) is compactly embedded into H Q) according
to Lemma 2.1 (Sobolev embedding).

Following [Binev, Dahmen, DeVore and Petrushev 2002] and [Gaspoz and Morin
2014], we use a greedy algorithm that is based on the knowledge of the element
errors and on bisection. The algorithm hinges on (3.24): if § > 0 is a given
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tolerance, the element error is equidistributed and within tolerance eq(v,T) = 6,
and the global error decays with maximum rate (#7°)~'/2, then

FHT = ) er .V = v = Irvlj g, s )
TeT

whence #7 < 6! here I stands for the Lagrange interpolation operator. With
this in mind, we impose er(v) < ¢ as a threshold to stop refining and expect
#7 < 67! The following algorithm implements this idea.

Algorithm 3.18 (greedy algorithm) Given a tolerance 6 > 0 and a conforming
mesh 79, GREEDY finds a conforming refinement 7~ > 7 of 7y by bisection such
thateq(v,T) < 0 forall T € 7: let 7 = 9y and

[7]1= GREEDY(7,6,v)
while M :={T € T |eq(v,T) > 6} # 0
T := REFINE (7, M)
return 7~

Since WIQ, Q)ccC 0(5), because p > 1, we can use the Lagrange interpolant and
local estimate (3.17) with r = sob(W3) — sob(H') =2 - 2/p > 0. We deduce

er(v,T) < By |D*V|| Lo (ry. (3.39)

We assess the quality of the resulting mesh in a slightly more general setting,
following [Bonito, Cascén, Mekchay, Morin and Nochetto 2016, Proposition 1 and
Corollary 1], needed later in Sections 6 and 7 for solution and data approximation
for any polynomial degree.

An abstract greedy algorithm. We consider a generic (possibly vector-valued)
function v € LY(Q,RM), with M > 1 and 1 < g < oo and denote by es(v,T) =
|lv = IIgv||Lacry the abstract L9-local error for T € 7 used in the GREEDY
procedure and by Eq(v) = ||v — [Igv||p4(q) the global L?-interpolation error by
either continuous of discontinuous piecewise polynomials (the definition of I1gv
is irrelevant now). We formulate the following assumptions:

e Summability in €9: The errors {e5(v, T)}T <7 satisty

W1aqy S D e, T, (3.40)
TeT

Rather than (3.38) we assume that v belongs to an abstract space XZ(Q; 7o) of
functions with differentiability index s € (0, n] and integrability index p € (0, o]
piecewise over 7y with two crucial properties:

e Local error estimate: Forr = s — % + g >0andallT € T

er(v,T) S hy|vlxyr) (3.41)
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o Norm subadditivity: For p < oo, and obvious modification for p = oo,
p p
Z Wlxs ) S Wk @) (3.42)
TeT

The space X ;(Q; 7o) will later be either a Sobolev space WIS, (€2; 79), a Besov space
Bj, ,(Q;7) or a Lipschitz space Lip),(€2; ), with piecewise regularity over 7o;
the latter two will allow 0 < p < 1. For the moment we do not need to be specific
and just rely on the two properties above.

Proposition 3.19 (abstract greedy error) Let 7y be an initial subdivision of Q C
RY satisfying the initial labeling property (3.35) for d = 2, or its variant for d > 2.
Let M > 1,0 < g,p < oo and s — % +§ > 0. Letv € LIY(QRM) satisfy
(3.40), (3.41) and (3.42). Then GREEDY (7, 0, v) terminates in a finite number of

iterations with local errors verifying eq(v,T) < 0 for all T € T, and there is a
constant C = C(p, q, s, d, Q, Ty) such that the output T € T satisfies

v = Tvllza@) < ClvIxs@m (T —#75) . (3.43)

Proof. We proceed in several steps.

(] Termination. Since hy decreases monotonically to 0 with bisection, so does
eq(v,T) in view of (3.41). Consequently, GREEDY terminates in finite number
k > 1 of iterations. Upon termination, the local errors satisfy eq(v,T) < ¢ for all
T € 7 by construction, whence (3.40) implies

1
v —gv||La@) S SHT)a.

Counting. Let M = My U --- U M;_; be the set of marked elements. We
organize the elements in M by size in a way that allows for a counting argument.
Let #; be the set of elements 7" of M with size

20D < T <27 = 27 <y <277,

because Ay = |T|'/? for shape regular meshes 7~ € T.

We first observe that all 7°s in P; are disjoint. This is because if T, T, € P;
and Ty N T> # 0, then one of them is contained in the other, say T1 C T3, due to the
bisection procedure which works in any dimension d > 1; see Section 8. Hence,

Tl < 2 173
=3
contradicting the definition of #;. This implies the first bound
2Uhap, < Q] = #P; < Q27 (3.44)
In light of (3.41), we have for T € P;

_ir
6 <er(w,T) 27T |v|xsr).
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Therefore, accumulating these quantities in £” and invoking (3.42) yields

jrp irp
p : ~a p - 1P
6V #P; <2 ) Mgy 527 Pl
TE?DJ'

and gives rise to the second bound

—p Aoire

#Pj S 67274 VIR .5 (3.45)
Cardinality. The two bounds for ## in (3.44) and (3.45) are complementary.
The first one is good for j small whereas the second is suitable for j large (think of
0 < 1). The crossover takes place for jj such that

d

Il ~ 5P 2~ 1P i~ (191t P v|? &rp
20t Q) x 5P 27 T |v|P, = 20~ (127 o .

S(QT)
We now compute
— < J -p |,,|1P -2\
#M ;#P] < ];02 191 +67 Iy ;0(2 Y.
Since
SNoiaoh, Ny g2E,
J<Jjo J>Jo

we can write
l—_d 1 _dp_
#M < Q7 (67 v|xs @) T -

We finally apply Theorem 3.16 (complexity of REFINE ) to arrive at

dp

#T = #75 < #M < |Q1777 (57 blxgam) 7

or equivalently

d+rp

8 < 1Q17|vlxy o) (T - #75)” 7.

Total error. Since d;;p =<+ é we deduce from Step 1
L r _s
~ ~ ) y s 1o d bl
v —HgvliLa@ < 6HT)T < Q9 |vIxs@m#HT — #70)
which is the desired estimate. L]

The output mesh 7~ of GREEDY (7, ¢, v) starting from 7 satisfies #7 > co#79
for some co > 1, whence #7~ — #7 > (1 - 2-)#7 and (3.43) yields

v = gl La) < ClIVIxs@m) (#T) 4. (3.46)

where C depends on c¢g. It will be convenient in many applications of GREEDY,
to be discussed later in Sections 6 and 7, that the starting mesh be a conforming
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refinement of 7 to enhance its efficiency. We will prove in Section 7.1 that (3.46)
remains valid.

It is instructive to realize that GREEDY is a practical algorithm that hinges on
the different summabilities of (3.40) and (3.42), and delivers a global L?-error
consistent with (3.29) of Section 3.4. Moreover, the outcome graded grid 7 is
quasi-optimal but may not equidistribute the error, not even approximately.

We are now in a position to show that GREEDY constructs optimal graded meshes
for the interpolation error in H'(€) alluded to at the beginning of this section. To
this end, we let /4 be the Lagrange interpolation operator for d = 2.

Corollary 3.20 (optimal H'-convergence rate) If v € H'(Q) N W5(Q) for 1 <
p < 2andd =2, then GREEDY Yyields graded bisection meshes T so that

v = Irvimq s 1R 2D Lr@@#T) ™2,

Proof. 'We invoke Proposition 3.19 (abstract greedy error) and equation (3.46) for
Vv € L3(Q,R?) with[14Vw = VIgvand s = 1, qg=2,p>1 whences—%+§ > 0.

Remark 3.21 (piecewise W;-smoothness) Since (3.39) is completely local for
d =2, we see from (3.42) that it suffices for v € H'(Q) to be piecewise in le, over
the initial partition 7y, namely WIZ, (€; 70). It turns out that this statement is valid
for any dimension d > 2 in view of Proposition 3.9 (approximation of gradients).
We will revisit this issue in Section 6.8.

Remark 3.22 (case p < 1) We consider now polynomial degree n > 1. The
integrability p corresponding to differentiability n+ 1 results from equating Sobolev
numbers:

2d

- 2n+d’

n+1—f=sob(H1):1—5l = p
p 2

Dependingond > 2 andn > 1, this may lead to 0 < p < 1, in which case W;“(Q)
is to be replaced by the Besov space B, ,,(€2) for s < n + 1 or the Lipschitz space
Lip}l;’l () [DeVore 1998]. We will discuss this matter in Section 6.8 and make the
abstract greedy setting precise.

Remark 3.23 (isotropic vs anisotropic elements) Since geometric singularities
are of the form (3.26) for d = 2, Corollary 3.20 (optimal H'-convergence rate)
shows that isotropic graded meshes are able to deliver optimal convergence rates
for d = 2. Unfortunately, this is no longer the case for d > 2 and anisotropic meshes
are necessary for optimal meshes. This topic is delicate is several respects. Deriv-
ing reliable and efficient a posteriori error estimators is largely open for anisotropic
meshes; this is the subject of Section 4 for isotropic meshes. Even having such
estimators, building a theory of adaptivity is open; this is the subject of Sections 5,
6 and 10 for isotropic meshes. Finally, constructing anisotropic meshes based on a
posteriori information alone and that easily allow for refinement and coarsening is
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problematic. For these reasons we do not dwell on anisotropic refinement in this
survey.

3.7 Nonconforming meshes

More general subdivisions of Q than those in §3.5 are used in practice. If the
elements of 7y are quadrilaterals for d = 2, or their multidimensional variant for
d > 2, then it is natural to allow for improper or hanging nodes for the resulting
refinements 7~ to be graded; see Figure 3.9 (a). On the other hand, if 7; is made
of triangles for d = 2, or simplices for d > 2, then red refinement without green
completion also gives rise to graded meshes with hanging nodes; see Figure 3.9 (b).
In both cases, the presence of hanging nodes is inevitable to enforce mesh grading.
Finally, bisection may produce meshes with hanging nodes, as depicted in Figure
3.9 (c), if the completion process is incomplete. All three refinements maintain
shape regularity, but for both practice and theory, they cannot be arbitrary: we need
to restrict the level of nonconformity. We discuss this next, starting with the case of
polynomial degree n = 1 [Bonito and Nochetto 2010, Beirdo da Veiga et al. 2023].

& '\

AN

Figure 3.9. Nonconforming meshes made of quadrilaterals (a), triangles with red
refinement (b), and triangles with bisection (c). The shaded regions depict the
domain of influence of a proper or conforming node P.

We say that a node P of 7 is a proper (or conforming) node if it is a vertex of all
elements containing P; otherwise, we say that P is an improper (nonconforming
or hanging) node. The set AV of all nodes of 7 is thus partitioned into the set # of
proper nodes, and the set H = N \ P of hanging nodes.

A useful notion in dealing with hanging nodes is the global index of a node,
introduced in [Beirdo da Veiga et al. 2023]: it measures the number of noncon-
forming refinements needed to generate a hanging node from proper nodes. To
define it, for any x € H which has been generated by the bisection of an edge
[x",x"], let us set B(x) = {x’,x"}.

Definition 3.24 (global index of a node) The global index A(x) of a node x € N
is defined recursively as follows:

o if x € P, set A(x) =0;
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o if x € H and B(x) = {x’,x"'}, set A(x) = max(A(x"), A(x"")) + 1.

The set of all nodes of 7 is thus partitioned according to the value of the global
index: for any integer [ > 0, we set H; = {x € N : A(x) = [}. Note that Hy = P.
An example of distribution of global indices for d = 2 is shown in Figure 3.10.

0 0
34N3

2

1 EANE

0 0

Figure 3.10. Example of distributions of proper nodes (red) and hanging nodes
(black), with associated global indices A.

We define the global index of the triangulation 7 by A(7") := max,en A(x). The
level of nonconformity of the triangulations we are dealing with is controlled by
the following condition of admissibility.

Definition 3.25 (A-admissibility) Let A > 0 be an integer. A refinement 7 of 7
is A-admissible if

AT) < A. (3.47)

If A(7) = 1, then 7 is nonconforming, but otherwise 7 € T is conforming if
A(7) = 0. The collection of all A-admissible partitions is denoted by T,

A-admissibility has the following basic implications.

Proposition 3.26 (properties of A-admissible partitions) Ler T be any element
of a A-admissible partition T .

(i) If e C OT is an edge of T, then e may contain at most 2™ — 1 hanging nodes.

(ii) If e C OT is an edge of some other element T’, then hy: ~ hr, where the
hidden constants only depend on the shape of the initial triangulation 7y and
possibly on A.

Proof. (i) stems from the fact that the edge may contain at most 2%~! hanging
nodes of level k for 1 < k < A. To prove (ii) we observe that the length ratio %,
where ¢ is the edge of T containing e, is at most 2*, and we conclude invoking the

shape regularity of the partition. U
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Figure 3.11. Plot of the basis function ¢p on the nonconforming triangulation
shown in Figure 3.10, for P equal to the upper right corner of the domain, after
using bisection to convert the lowest hanging nodes with global index 3 into a
proper node.

In the space V4 of continuous piecewise-linear maps over 7, functions are
uniquely defined by their values at the proper nodes of 7. So it is natural to
introduce the canonical continuous piecewise-linear basis functions ¢ p associated
with any proper node P. They satisfy

v= Y vP)pp VYveVr, (3.48)
PeP

and are defined by the conditions: ¢p € V4 and
e ¢p(z)=1ifz=P, ¢p(z)=0ifz € P\ {P}.

The values of ¢p at the hanging nodes, hence everywhere in the domain, can be
reconstructed by linear interpolation as follows: assuming that ¢ p has been defined
at all nodes of global index < [, if z € H; and B(z) = {z’, 7"}, then

1
¢p(@) =3 (pp() + ¢p(2").

An example of basis function ¢ p on a nonconforming triangulation is provided in
Figure 3.11.
The domain of influence of a proper node P is the set

w7 (P) = supp(¢p),

highlighted in grey in Figure 3.9; this notion was introduced in [Babu§ka and Miller
1987] in the context of K-meshes; see also [Bonito and Nochetto 2010]. To identify
elements T € 7 contained in wy(P), we introduce for any node x € N the set P(x)
of the proper nodes influencing x, which is defined recursively as follows:

e initialize P(x) = {x};

e while P(x) N H # 0, if y € P(x) N H replace P(x) by (Px) \ {y}) U B(y).
Then, T C w4(P) if and only if P influences some vertex of 7, i.e., there exists a
vertex v of T such that P € P(v).

One of the consequences of the A-admissibility assumption of 7 is the following
result, which says that all elements 7" contained in w4(P) have comparable size.



AFEM 51

Proposition 3.27 (size of the domain of influence) There exists a positive con-
stant C = C(7y, A), only depending on the shape of the initial triangulation 7y and
possibly on A, such that for any P € P

diam ws(P) < C hr VT €T, T Cws(P).

Proof.  Elements in w7(P) having P as a vertex share in pairs an edge or a portion
of an edge, hence — as noted above — A-admissibility implies the existence of a
characteristic size, say hp, which is comparable to the diameter of each of them.
On the other hand, any T C w+(P) not containing P has at least one vertex vy € H
such that P € P(vy). Thus, there exists a sequence {yx : 0 < k < K} of
vertices satisfying yg = vy, yx = P, and yg41 € B(yg) for 0 < k < K; since
Ayr) = A(yk+1) + 1, necessarily K < A. Correspondingly, we can find a chain of
at most K elements, starting at 7 and ending at an element containing P, which
share in pairs an edge or a portion of an edge. We deduce that Ay ~ hp, and
dist(T', P) ~ hr, where the hidden constants may depend only on the shape of the
initial triangulation and on A. The conclusion easily follows from these results. [

We now turn to the case of polynomial degree n > 1; we refer to [Canuto and
Fassino 2023] for more details. The concept of hanging node is no longer solely
related to the geometry of the mesh, but also to the distribution of degrees of
freedom along the edges of the elements. For instance, consider a full edge e
shared by two triangles 7' and 7", and bisect 7’ to create two new elements 77 and
T, having e as a vertex. If we use quadratic Lagrangian elements, the midpoint x
of e carries a degree of freedom for the three elements that share it, so we do not
consider it as a hanging node; on the other hand, the nodes at distance }‘ le| and % le|
from an endpoint of e are hanging nodes (despite they are vertices of no triangle)
since they do not carry a degree of freedom for the element 7. If we move to cubic
Lagrangian elements, then x becomes a hanging node, together with the nodes at
distance %|e| and % |e| from an endpoint of e, whereas the nodes at distance % le| and
%lel are not hanging nodes, since they carry a degree of freedom for each triangle
they belong to.

In general, for a partition 7~ made of classical affine Lagrangian or Hermitian
elements, the hanging nodes are defined as follows.

e Given an element 7 € 7, the set Pr of the proper nodes of T is made of all
images of the reference n-lattice via the affine transformation. The set Hy of the
hanging nodes of T collects the points of 7T that are not proper nodes of 7', but
are proper nodes of some other contiguous element 7’. The set of all nodes of T
is Ny :=Pr UHr.

o Atthe global level, if N = (U7 <7 N7 is the set of all nodes of 7, the set # € N
of the proper nodes of 7 contains those nodes that are proper nodes for all
elements they belong to. The complementary set H := N \ P is the set of the
hanging nodes of T .

In other words, a hanging node of 7 is a point that carries a degree of freedom
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Figure 3.12. Triangulation after the three refinements in the case n = 2 (a) and in
the case n = 3 (b). Blue crosses represent the original degrees of freedom on the
initial conforming mesh. Red squares, green circles and orange triangles are used
for the degrees of freedom of the first, second and third refinement, respectively.
All nodes are proper, except those on the horizontal line, whose global index is
reported.

for some, but not all elements it belong to. With this definition of proper nodes,
representation (3.48) of continuous piecewise-linear maps extends to n > 1.

The global index A(x) of anode x € N is precisely defined as in Definition 3.24.
The set B(x) C N collects the endpoints of an interval [x’,x”'], contained in the
skeleton of 7, that has been bisected when x has been created, and contains no
other node inside.

Figure 3.12 provides two examples, for n = 2 and n = 3, of distributions of
hanging nodes and corresponding global indices, created by successive bisections
starting from an initial conforming partition.

The concept of A-admissibility, given in Definition 3.25, remains unchanged for
n > 1. The statements in Proposition 3.26, too, extend to the higher order case; the
maximum number of hanging nodes on an edge being now O(1n2"). Consequently,
the conclusion of Proposition 3.27 remains valid when n > 1 as well: there is a
constant C = C(7, A) such that

diam ws(P) < C hr VT €T, T Cws(P). (3.49)

Remark 3.28 (quadrilateral and hexahedral partitions) It is readily seen that
the definitions of global index of a node and A-admissible partition extend seam-
lessly to shape-regular meshes made of quadrilaterals refined by a quadtree strategy
(d = 2) (see Fig. 3.9 (a) for an example), or by hexahedra refined by an octree
strategy (d = 3). The same holds for heterogeneous partitions made of a com-
bination of simplices and hexahedra. All results reported above are valid for such
partitions. We refer to [Bonito and Nochetto 2010] for details.
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A-admissible meshes under refinement. Given a A-admissible grid 7, a subset M
of elements marked for refinement, and a desired number b > 1 of subdivisions to
be performed in each marked element, the procedure

7. = REFINE (7, M, A)

creates a minimal A-admissible mesh 7, > 7 such that all the elements of M
are subdivided at least b times. In order for 7; to be A-admissible, perhaps other
elements not in M must be partitioned. Despite the fact that admissibility is a
constraint on the refinement procedure weaker than conformity, it cannot avoid the
propagation of refinements beyond M. The complexity of REFINE is again an
issue which we discuss in §8.2: we show that Theorem 3.16 extends to this case.

Theorem 3.29 (complexity of REFINE for A-admissible meshes) Let 7y be an
arbitrary conforming partition of Q, except for the bisection algorithm in which
case Ty satisfies the labeling (3.35) for d = 2 or its higher dimensional counterpart
[Stevenson 2008]. Then the estimate

k-1

#T - #To <D Y #M; Vk21

j=0

holds with a constant D depending on 7y, d, n and A.

The following result about uniform refinements of A-admissible partitions will be
used in the sequel. The uniform refinement 7 of a partition T~ € T is the partition
obtained by bisecting d times each element of 7~. This implies, in particular, that
each edge of 7~ is bisected once.

Proposition 3.30 (A-admissibility of uniform refinements) If 7 € T» is a A-
admissible partition and 7 is its uniform refinement, then 7, is A-admissible.

Proof. A simple recursion argument on the global index of the hanging nodes
of 7 shows that after refinement each such node either becomes a proper node or
its global index is reduced by 1. At the same time, new nodes are created by the
refinement, whose global index is at most 1 plus the maximal global index of the pre-
existing nodes. In both cases, the maximal global index of 7; cannot exceed A. [

A simple consequence is the following result, which is useful to control the
meshsize between consecutive refinements.

Corollary 3.31 (bound on the refinements) REFINE with b = 1 never refines an
element of a A-admissible partition T more than d times.

Proof. REFINE gives the smallest A-admissible mesh 7, such that all the marked
elements of 7~ have been refined. Since the uniform refinement of 7~ remains
A-admissible, the minimality of 7, implies that no element of the marked set can
be refined more than d times. O

We conclude by emphasizing that the polynomial interpolation and adaptive
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approximation theories of Sects. 3.3 and 3.6 extend to nonconforming meshes
with fixed level of incompatibility as well.

4 A Posteriori Error Analysis

Numerical solutions to a boundary value problem serve to approximate its unknown
exact solution. In such a context, it is of interest

o to quantify the error of the numerical solution, m
e to gain information for adapting the discretization to the exact solution

in a computationally accessible manner. These are the two goals of an a posteriori
error analysis, where the adjective ‘a posteriori’ hints to the fact that the numerical
solution itself can be involved. To achieve the two goals, the a posteriori analysis
individuates so-called error estimators that, ideally, are computable, split into local
contributions called indicators, and bound the error from above and below.

This section exemplifies such an analysis, considering the numerical solution of
the boundary value problem (2.5), i.e.

—div(AVu)+cu=finQ, u=0ondQ,

with Lagrange elements of arbitrary fixed order n > 1. Throughout this section, we
adopt the notations and assumptions of previous sections for this model setting. In
particular, the exact solution u € Hé (Q2) solves the variational problem (2.7) and,
given a simplicial conforming mesh 7~ € T of Q and finite element space

Vo= {v e S | vlg = 0} ¢ Hy(Q),
the Galerkin approximation solves
usr € Vg : B[u(;-,w] = (f,W) Vw e Vg, 4.1

with the bilinear form 8 from (2.8).
We stress that the analysis will be conducted under the regularity assumptions

AeL®(QRY), ceL¥Q), feH Q) =H(Q", 4.2)

used in Sect. 2.4 to establish existence and uniqueness of the exact solution. This
fact distinguishes the approach below, which builds on [Kreuzer and Veeser 2019],
from most other ones requiring additional regularity; cf., e.g., [Verfiirth 2013].
Notably, this difference not only allows for covering more examples but is also
related to strengthening the relationship between error and estimator to a true
equivalence on any admissible mesh 7~ € T.

It is useful to recall two differences between the forcing f and the coefficients
(A, ¢). First, while the exact solution u# depends linearly on the forcing f, it depends
nonlinearly on the diffusion tensor A and on the reaction coefficient c¢. To state
the second difference, let u € Hé(Q) and note that the assumptions (4.2) on (4, ¢)
imply the “missing” one f € H~!(Q). On the other hand, the assumptions on (A, f)
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imply only cu € H~'(Q) while the assumptions on (c, f) imply only — div(A Vu) €
H™'(Q). These conditions are weaker than the “missing” one u € Hé (Q), and are
due to the multiplicative role of (A, c¢) in the differential equation.

In order to elucidate the new twists allowing for (4.2), this section is organized
as follows. We start with steps of the a posteriori analysis that are common to the
‘classical’ and the new approach. We then illustrate the classical approach with
the standard residual estimator, and afterwards develop the new approach result-
ing in a modification of the standard residual estimator, called modified residual
estimator. Finally, we conclude by adapting the new approach to other techniques
of a posteriori error estimation and boundary conditions.

In what follows, the notation may or may not indicate the dependencies of a given
quantity. We shall balance readability and the importance of the dependence in the
given context. For example, in (4.1), the discrete solution depends not only on the
mesh 7 but also on the data Q, A, ¢, and f in problem (2.5). We write 7~ explicitly
because of its more prominent role in the a posteriori analysis. Let ¥ := ¥4 denote
the set of all interior (d — 1)-dimensional faces of 7. The letter C will be used
for a generic constant, with possibly different values at each occurrence. If not
stated otherwise, it may depend on the shape regularity coefficient o from (3.9),
the dimension d, and the polynomial degree n in V.

4.1 Error, residual and localization of residual norm

This section starts the a posteriori analysis by establishing that a suitable norm of
the so-called residual

e is equivalent to the error ||V(u — u7)|| 2(q) and

e admits a localization in the sense that it splits into suitable local contributions
depending on accessible quantities, i.e. on data D = (A, c, f) and the discrete
solution u+-.

We do not consider computability yet — this important aspect will be addressed in
the following sections.

Replacing in the weak form (2.7) the exact solution u by its approximation u -,
we define the residual Ry € H™'(Q):

(Ry,w) = (f,w) = Blur,w] Vw e H)Q).

We thus have a quantity that depends only on data 9 and the approximate solution
uq and relates to the error function u — u4 as follows:

(R, w) = Blu—ug,w] VYw € Hy(Q). (4.3)

Continuity and coercivity of the bilinear form $ then provide a quantitative rela-
tionship between error and residual.

Lemma 4.1 (error and residual) The error of the approximation uq is equivalent
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to the residual norm. More precisely,
1
Bl

where ||B|| = a > 0 are, respectively, the continuity and coercivity constants of
the bilinear form B.

1
IRl -1y < IV —up)ll2) < ;HRT“H‘I(Q),

Proof. The error-residual relationship (4.3) yields the lower bound,

IRl = sup —or ) gy, Blu_irw]
H'(Q) — = _—
() WEH(}(Q) “VW“LZ(Q) WEH(}(Q) ”VW”LZ(Q)

< I8V = ur)ll2 @)
while the choice w = u — u4 therein gives
a||V(u - ufr)||iz(9) <Blu-ur,u—us]=(Ry,u—us)
< NRF g1 @IV — up)ll 12
and thus the upper bound. U

Remark 4.2 (role of forcing vs role of coefficients) In addition to the two differ-
ences between right-hand side f and coefficients (A, ¢) mentioned in the introduc-
tion of this section, a third one implicitly arises in the proof of Lemma 4.1: the
coefficients defining the bilinear form $ are fixed, while the right-hand side f is
replaced by the residual R4 in (4.3), which varies with the mesh 7.

Remark 4.3 (local lower estimate for the error) The proof of Lemma 4.1 shows
that the lower bound of the error hinges on the continuity of the bilinear form
8. Since the evaluation of B involves only local operators, one might expect that
there are also local lower bounds. This however depends on the interplay of the
underlying differential operator and the choice of the test space norm. Indeed,
in the case of the Poisson problem, i.e. A = I, ¢ = 0, and the test space norm
IV - [| 2q), One easily sees that

IRT I -1(w) < IV = ur)ll 2200

for any subdomain w C Q. This local lower bound however does not carry over to
the general case with ¢ # 0 as the error function itself is bounded by its gradient
only through the global inequality in Lemma 2.2 (first Poincaré inequality). On the
other side, endowing the test space H(l) (Q) with the full H'-norm || - || H(@) Yields

”RT”(Hl(a)))* < max {a/l, ||C||L°°(Q)}||M - u‘T“Hl(w)

for any subdomain w C Q.

In line with [Carstensen et al. 2014], we shall not invoke local lower bounds to
derive convergence and rate optimality for the error of AFEM, although they might
appear useful or even crucial in other settings.
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Remark 4.4 (constants in error-residual relationship) Given the norm measur-
ing the error, that is the norm of the trial space, the choice of the test space norm
is important for the ensuing constants in the error-residual relationship; see, e.g.,
[Verfiirth 2013, Sects. 4.3 and 4.6]. To avoid related additional technicalities and
difficulties, the test space is endowed with the straightforward norm ||V - || 12q).

Lemma 4.1 establishes the first goal that was set out at the beginning of this
section. We now turn to the second one, that is, we split the residual norm
| Rl ;-1(y) into local contributions. Note that the nature of the dual norm ||| -1 (g,
makes this task less obvious than for integral norms as in the error ||V(u—uq)|| 2(q)-

We start by recalling that the definition of the Galerkin approximation us implies
that its residual is orthogonal to the discrete trial space V4 = S'(;O N H(l) (Q):

<R7‘,W> =0 VweVqs.

Denote by V the set of vertices of 7 and by ¢, € Sllio the hat function with
¢.(y) = 6y for all vertices y € V. In what follows, the partial orthogonality

(Ry,¢,)=0 VzeV 4.4)

will be crucial to split the nonlocal norm of the residual into local contributions.
The latter ones will be formulated in terms of the supports of the hat functions and,
thus, we associate to each vertex z € V the following subset and submesh:

wei=supp¢. = | J T with T:={TeT |T>z} 4.5)
TeT;
These subsets, called stars, form a subdomain covering of Q, viz. each interior @, is

adomain and Q = U w,. The overlapping index esssup, .o #{z € V | w, 3 x}
of this covering is bounded by (d + 1).

Lemma 4.5 (localization of H™'-norm) Let ¢ € H ' (Q) be an arbitrary linear
functional on Hé (Q).

(i) If (€, ¢,) = O for all interior vertices z € V N Q, then

11310y < @+ DCR Y- e
zeV
where Cioc depends only on the shape regularity coefficient o from (3.9) and d.
(ii) For any subdomain covering (w;)ic; of Q with finite overlapping index
Covil :=esssup, .o #{i € I | w; 3 x}, we have

2 2
DN 1y < Comllel? 1 0

iel
[Blechta, Mélek and Vohralik 2020, Theorem 3.5] generalizes Lemma 4.5 to the

W;l—norm, 1 < p < co. Lemma 4.66 below provides an alternative localization
with different local norms.



58

Proof. [1] We start by showing statement (i). Thanks to the orthogonality of ¢,
we may write

(Cow)y=(Lw= " c2),

zeV

where any c; is an arbitrary constant if z € V N Q is an interior vertex and O if
z € ¥V N dQis aboundary vertex. Using the partition of unity }, .y ¢, = 1 on Q,
we split the new test function

w = Z Cz¢z = Z(W — )¢z,

zeV zeV

into local contributions (w — ¢;)¢, € Hé(wz), z € V. The constant c, allows us
to counter the gradient generated by the cut-off with ¢,. Indeed, the product rule,
0<¢,<1,and |V¢,| < C(d)O'h;1 on an element 7 € 7 lead to

V(W = c2)62) 1120w,y < 16200 = 1200 + 10 = €DVl 120

< N8zl lIVWll L2(w.) + 1IVEzll Lo W = 2l L2y

i
< VWil + Cd)o <TH§}§ hy > w = czll2(ew. )

If we choose ¢, = fw w for interior vertices z € V N Q, then Lemma 2.3 (second
z
Poincaré inequality) on reference stars implies

W= c:lli2w,) S diamw [[Vwll12,. ).

The same inequality follows for boundary vertices z € V N 9dQ thanks to the fact
that w vanishes at least on one face of dw, N JQ. Combing this with diam w, < hr
for T C w,, we thus obtain, for all local contributions, the stability bound

”V((W - Cz)¢z) ||L2((;_)Z) < ClocHVWHLZ(u)Z), (46)

where the constant Cjo. depends only on d and o. Hence,

(Ew) = (Lw= D" cp) = D (6w =)

zeV zeV

gives

6w < Cloe Y 1l -1¢0o 1YWl 22000,

zeV
12
< Vd + 1C'lOC <Z ”6”3_]1((02)) ”VW”Lz(Q)
zeV

and (i) is proven.
We verify statement (ii). For each index i € I, define v; € Hé (w;) C Hé (Q)
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by

/ Vv - Vw = (£, w), Vw € Hy(w;).
wj

We obtain (£, vi) = [Vill2, = 1B, .

the proof of Lemma 4.1 (error and residual). The sum v := }};c; v; is in Hé(Q)

with
2
||Vv||iz(9)s/|ZVv,~(x)| de/#IxZ|Vv,~(x)|2dx
Q Q

by arguments similar to the ones in

i€l i€l
2 2
< Cow ) NWill3 ) = Covt D N3
i€l i€l

where we denote the set of active indices inx € Qby I, :={i € I | w; 3 x}.
Inserting this in

DR oy = D6y = ) < Ml 19Vl 2
iel iel
establishes the desired inequality. U

Thanks to the partial orthogonality (4.4) and the properties of the star covering
wz, 7 € V, we readily obtain the following statement.

Corollary 4.6 (star localization of residual norm) The H™'-norm of the residual
can be split into local contributions on stars:

1

7 2 IR ) < IRTIG o) < @+ DChe D IR -
zeV zeV

where Cioc depends only on d and the shape regularity coefficient o.

The upper bound of the global residual norm in Corollary 4.6 employs the stars
wz, z € V, as local domains. The next remark assesses this choice by discussing
conceivable alternatives in terms of elements and domains of the type

wr:= | ] T with Tp={TeT|T>F} 4.7)
TeTr

where F' € ¥ is an interior face of 7.

Remark 4.7 (star localization is minimal for d > 2) The use of stars in the loc-
alization of the global residual norm is a sort of minimal choice, except for the
special case d = 1 where elements can be used:

e If d = 1, point values are defined for functions in H '(©Q). This allows an
upper bound with elements instead of stars as local domains. In fact, choosing
c; = w(z) for all interval endpoints, the function }’, .4 c,¢, amounts to the

Lagrange interpolant I+w € Sl,io N Hé (Q), and we have (w — Igw)|; € Hé(l)
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with [[V(w = Igw)[ 121y S [[VW]|12(y) for any interval I of the mesh 7. Arguing
as in the proof of Lemma 4.5 (i) then gives

2 2
IRIZ o) S D IR
IeT

e An upper bound where the stars are replaced by elements 7 € 7 cannot hold
in general because it does not account for face-supported residual contributions.
For example, consider our setting with

d>2, A=I ¢=0, (f,w):/qw,weHé(Q)
F

where F € ¥ and g # 0 is L2—0rthogonal to P, (F).

Then we have u # 0 = ug and therefore ||Ry||g-1(q) > 0 but [|Ry|lg-1¢7) =0
forany T € 7.
e An upper bound with pairs wg, F € ¥, instead of stars cannot hold in general.
This can be shown by considering our setting with
d=2, A=1, ¢=0, <f8,w>=L2/ w, w e Hy(Q)
TE™ JB:(2)

where z € V is a vertex of a suitable triangulation 7~

for ¢ N, 0. The limiting right-hand side is the Dirac measure in z, which,
formally, is not be seen by any ||« || g-1(4,,.), F € F. We thus have || Ry || 1) —
oo but Yper |RTI f-1(wpy S 1; cf. [Tantardini, Veeser and Verfiirth n.d.].

The bisection method for mesh refinement is element-oriented. It is therefore
advantageous to dispose of an element-indexed reformulation of the localization in
Corollary 4.6. For that purpose, we recall the notion of patches

wr = U T’ (4.8)
T €T
T'NT #0

and may use the following equivalence.
Lemma 4.8 (localization re-indexing) For any functional £ € H™'(Q), we have

2 - 2
DR o, = D s
TeT

zeV

where the hidden constants depend on d and the shape regularity coefficient o.

Note that, in contrast to the localization itself, its re-indexing does not require
any orthogonality like (£, ¢,) =0 forall z € V N Q.

Proof. For any vertex z € V, there is an element T € 7 containing z. Then the
inclusion w; C wr yields the inequality ||€][g-1(,,_) < [€]lg-1(,)- Hence,

2 2
Doy < D 1

zeV TeT
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To show the converse inequality, let 7 € 7~ be any element and w € Hé (wr). Given
any vertex z € V N wr, Lemma 2.2 (first Poincaré inequality) on wr implies the
stability bound

”V(W¢Z)”L2(wzﬂw7~) < I|¢ZVW||L2(wzﬂwT) + ||WV¢ZHL2(¢UZQ0JT)

.
< ||VW||L2(mewT)+C(d,0')T max  hy (Wl 2w
T

z

S IVWll20p)-

We thus derive

Cwy=" > Cwed < > Mla-wnen IO 2w nwr)

zeVNwr zeVNwr
s( > ||f||H-1(wz>> VWl 220
ZE(VﬁwT

and, since #(V N wr) is bounded in terms of the shape regularity coefficient o,
2 2
(T4 A S |14 A
ze€VNwr

Summing over T € 7 and taking into account that #{T" € 7 | wr > z} is again
bounded in terms of o, concludes the proof. U

4.2  Standard residual estimator and its flaws

Exploiting the results of Sect. 4.1, we derive an a posteriori upper bound of the
error in terms of the standard residual estimator and discuss its flawed sharpness.
This discussion will serve as the starting point for an improved a posteriori analysis
in the following sections.

The standard residual estimator needs the additional regularity
feLl* Q) and A e WL(Q;RP9) (4.9)

for the data in our model problem (2.5). Given the Galerkin approximation uq
from (4.1), it may be defined as follows, cf., e.g., [Verfiirth 2013]:

1

2
&M =& ur, D) = ( > &Fwr, D, T)2> (4.10a)
TeT
with the local indicators
E5ur, DT = hrllj@l 257 a0y + 17 1T @2 (4.10b)

where

o the scaling factor hy = |T|'/? measures the size of the element T € 7,
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e j(v) = jq(v) is the jump residual given face-wise for v € V4 by

JOIF = (LAY - n)lF = ((AVV)|7, = (AVV)Ip) - ny,
= (AVV)|T1 - nT] + (AVV)|T2 . nT2
where F € F,T1,T, € 7 are such that F = T1 NT3, n7; denotes the outer normal
of 0T;,i = 1,2, and

o r(v) = rq(v) is the element residual, a function given for v € V4 by
rWlr = (f = cv +div(AVY)) |7
on any element 7 € 7.

Note that the definition itself already uses the extra regularity (4.9). For notational
simplicity, we shall write j and r instead of j(u4) and r(uq) for the rest of this
section. Also, for any interior face F' € ¥, we have F = T) N T, with T1, T, € 7.
If n7; denotes the outer normal of 07, i = 1,2, we set ng = nr,. This particular
choice of nF is irrelevant as it does not affect the following definition of normal
jump of any vector-valued field g with well defined trace on F

gl -nF =gl - nr, + gln, - np.

Theorem 4.9 (upper bound with standard residual estimator) Suppose the ad-
ditional regularity (4.9) holds. Then the error is bounded by the standard residual
estimator:

IV = ur)ll 2@ S Sf;t—d,

where the hidden constant depends on the coefficients (A, c¢), the shape regularity
coefficient o, and d.

Proof. As Lemma 4.1 (error and residual) and Corollary 4.6 (star localization of
residual norm) imply

2 2 2
V@ =42 S IR G- ) S D IR
zeV

and#{z € V | w, D T} =d + 1, it suffices to establish

IRy S D, EFur, £,T) @.11)

T Cw;

for any vertex z € V. To this end, let w € H}(w;). The extra regularity f € L*(€)
and A € WL (Q; R¥*?) allows for piecewise integration by parts, which leads to the
following L2-representation of the residual:

Rrowy =Y, [iwe Y [

F>z T >z
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In order to bound the right-hand side suitably, we use the scaled trace theorem

| | 2 |F|diamT
||W||L2(F) = |T| ” ||L2(T) THW”Lz(T)“VW”Lz(T) (412)

for any face ' c 0T, see e.g. [Veeser and Verfiirth 2009, Corollary 4.5], the
inequality

Wl 2. < diamw,|[Vwl[ 2.
from Lemma 2.2 (first Poincaré inequality), and the two geometric relationships

diam w, < hy whenever T C w,, |F|diamT < |T|for F c 0T.

We thus obtain

1/2 .
[(R7,w)| < (Z hT||”||L2(T) +hT/ Z ||J||L2(F)> ||VW||L2(wZ)-

T>z F>z, FcT

As the number of faces and elements in the star w, is bounded in terms of the
shape regularity coefficient o, we arrive at the desired bound (4.11) and the proof
is finished. Ul

Remark 4.10 (alternative derivation of upper bound) The upper bound for the
standard residual estimator in Theorem 4.9 is often derived with a suitable inter-
polation operator, by-passing the localization of the H~!-norm in Lemma 4.5. That
approach is useful for the proof of Theorem 4.48 below and is presented therein.
Here we opted for using the localization of the H~!-norm in order to facilitate
the comparison with the following subsections. The approach at hand is also
convenient to keep the ensuing constants small; cf. [Veeser and Verfiirth 2009].

An important question is the sharpness of the upper bound in Theorem 4.9. The
so-called a posteriori lower bounds provide some answer by trying to bound the
estimator in terms of the error. For many estimators, there arises however additional
terms of oscillatory nature. The following remark justifies the presence of such
terms for the case at hand.

Remark 4.11 (nonasymptotic overestimation) The lower bound
EF <11V~ ur)l 2.

which would imply equivalence of error and estimator, cannot hold in general for
the following reason.

Fix amesh 9 and a functional f € H ~1(Q)\ L*(Q) and consider a sequence (f,)n
of functions in L?(Q) with lim,_« || f = /4|l -1 = 0. Then the sequences (un)n
and (u7 ), of exact and Galerkin solutions on a fixed mesh 7 remain bounded.
The error sequence (||V(un —ug )|l LZ(Q))n is therefore also bounded, while the
standard residual estimator 8$d(u¢,n, fn) — oo becomes unbounded. Note that,
in the special case f = —div(AVv) + cv with v € V4, we even have for the error
limy, o0 ||V (n — ugn)ll 2 = 0.
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In other words: in certain cases, the standard residual estimator bounds almost
0 by almost oo and a lower bound has to involve an additional term that cannot be
bounded by the error in general.

We shall define these additional terms with the help of the following local best
approximations. Let K be an element or face of 7 and m € Ny a polynomial
degree. Given v € L?*(K), denote by Ilgv := IT¢ v the best approximation in
P, (K) with respect to the norm || - || .2(x. It is convenient to allow also for m = —1
with P_;(K) = {0} and T v = 0. Writing D = (A, c, f) for the data in problem
(2.5), the (m, my)-oscillation for the standard residual estimator is then given by

oscs7t-‘i(u7-, DY = Z OSCSqt—d(MT,D7T)2’ (4.13)
TeT

with the local indicators

osci(ur, D,T)* = hi ||Ir — HYTM”Hiz(T) +hr Z lj = Hrglj”i?(F)‘ (4.13b)
FCoT\oQ

Proposition 4.12 (partial lower bound) If f € L*>(Q) and A € WL(Q;R¥), the
standard residual estimator is bounded by error and oscillation:

5;’_" S IV —up)ll 2 + OSCErtd(”T’ D),

where the hidden constant depends on d, the coefficients A and c, the shape
regularity coefficient o as well as the oscillation degrees (my, m»).

Proof. 1Inlight of Lemma 4.1 (error and residual) and Corollary 4.6 (localization
of residual norm), we may establish the claimed bound by bounding each indicator
with a corresponding local residual norm. To this end, we shall consider here
only the case of the oscillation degrees (m,my) = (0,0). The general case can
be verified along the same lines with additional technicalities and is treated in the
proof of Lemma 4.28 below in a slightly different context.

We start by bounding an arbitrary element residual At ||r|[ 2¢r), T € 7, in
terms of some local residual norm. To this end, we may try to invert the following
consequence of Lemma 2.2 (first Poincaré inequality):

. _ (Rr.w)| _ Jrrv
I ‘7'||H*1(T)_ sup o = Sup

o S hrllrliaam,
weH((T) IVwilz2ry weH(T) Vw2 @

the residual norm of which avoids involving the jump residual. We thus actually
ask for an equivalence of two different smoothness norms. Such an equivalence
can hold only for special r, e.g., from a finite-dimensional space. Furthermore,
writing ||r||i2 T = fT r(r xT) suggests the choice w = r yr, which is however not
admissible for the residual R4 as both r and the characteristic function y7 do not
belong to Hé(Q). We shall overcome these issues by replacing r with its mean
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value H(}r and y7 with the element bubble
gr o=@+ ] ¢.. (4.14)
ZeVNT

Thanks to /T ¢1 = C4|T| and the inverse estimate [|[Vw|| 27y < h}lllwlle(T) for
= (.r)pr € HY(T) N Pye1(T), we derive

0
I < /T (T Pw < NPz e 19 2

-1 0 -1 0 0
< hr ||(HT”)XT||H-1(T)||W||L2(T) < hy ||(HTr)XT”H"(T)”HTrHLZ(T)’
whence

hr 037l 2y < NG P)xr -1 )- (4.15)

This implies the desired partial lower bound for the element residual by a perturb-
ation argument and the inequality ||r — H0Tr|| aiary S hrllr - ngH L2(r)> Which
follows from another application of Lemma 2.2 (first Poincaré inequality):

0 0
hrllrll 2y < hr (Uprll 2y + hrllr = Oz rll 2y
0 0
SN rxr llg-1ry + hrllr = Ogprll 2
0
S rxr -1y + hrllr = Ogrll g2y

0
= IR llg-1cry + hr llr = T rll L2ry.

(4.16)

We bound an arbitrary jump residual ||| 2z, F € ¥, in a similar manner.
Note that here an interference of the element residual is unavoidable because the
support of nontrivial test functions have nonempty interior. We thus may try to

invert
/ jw+f r'w 1
F w .
IR = sup T S Bl + D hrlirllie,
weHol(wF) | W||L2(wF) T Cowr

where also the scaled trace theorem (4.12) is used. To this end, we write 6 g for the
Dirac measure of the face F,

or=d’ [] o (4.17)

zeVNF
for the face bubble of F and choose the test function w = (H JoF € H! o (WF).

Using in addition [|w|| 2(,,,) S h;llwlle(F) and (4.15), we deduce

G117 2 / Mg jw+ / Mgr)w - / (9. r)w
F T Cwr T cwr

MG )op+ Mg rxr

T cwr

VWil 22(0p)

H Y (wF)
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0
£ 0 Ml wllar

T Cwfr

1
Lo
th ||HFJ||L2(F),
H-(wF)

< | @ psr+ . @Grxr

T cCwfr

whence

1
R TG 117 2y S

2y S (4.18)

M )or+ . (9r)xr

T CcCwr

H-YwF)
Passing to the proper jump residual j, we arrive at the partial lower bound for the
jump residual:
1
Lo,
hp g jll2ey S IRT g-1(ewp)

1
+hpllj _H(I):j”Lz(F)"' Z hT||’”—ng||L2(T)‘

T cCwfr

(4.19)

We square the bounds (4.16) and (4.19) from the previous steps and sum them,
respectively, over all elements and faces to conclude the claimed partial lower bound
with the help of Lemma 4.5(ii) (localization of H ~!_norm) and Lemma 4.1 (error
and residual). ]

The significance of Proposition 4.12 (partial lower bound) strongly depends on
the choice of the polynomial degrees (11, m;) in the oscillation from (4.13). The
following two remarks address this important aspect.

Remark 4.13 (oscillation degrees - asymptotics) It is desirable that, under re-
finement, the oscillation in Proposition 4.12 (partial lower bound) converges to 0
at least as fast as the error. The maximal convergence order of the error under
uniform refinement is ||V(u — u7)||12q) = O(h™) as h — 0. In view of the scaling
factors and derivative orders appearing in jump and element residual, we are thus
led to require

m=>n—1 and my >n-2.

One might hope that strict inequalities lead to higher order. Note however that, since
osc®™ involves in general both discrete solution u4 and data D = (A, c, f), this
will not be guaranteed without additional assumptions. Furthermore, increasing
m; and m, entails bigger hidden constants in the lower bounds (4.15) and (4.18),
as these bounds cannot hold for arbitrary L?-functions. Consequently, a potentially
higher asymptotic speed of the oscillation osc®'d comes with a bigger constant in
front of it and, therefore, with diminished non-asymptotic significance.

Remark 4.14 (oscillation degrees - data oscillation reduction) In the particular
case of the Poisson equation, i.e. A = I and ¢ = 0, and linear elements, i.e. n = 1,
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the oscillation with the degrees (m1, m;) = (0, 0) reduces to the data oscillation

osc(ur, DY = 3 hpllf =15 £17p;
TeT
it depends only on the data, here the right-hand side f. Note also that here the
regularity of f is determined by the regularity of the exact solution u.

For elements with degree n > 2, the choices (m, my) = (n— 1, n —2) ensure that
for F € ¥

05 ([[Vugll | -np) = [[Vurll Ir-np and T %(Auglr) = Augly (4.20)

and so, again, oscillation reduces to data oscillation in f:

td 2 2 -2 £ 12
osci(ur, DY = > hillf =T f175p-
TeT
If we add a reaction term, viz. we consider A = I and ¢ = 1, we can again obtain
the reduction to data oscillation by increasing m to n.
For a more general operator with piecewise polynomial coefficients

Ae @y and cegle™,
the choice
(mi,mz) = (na+n—1,max{n; +n,na+n-2}) 4.21)

again reduces osc* to data oscillation in f.

Finally, for a general operator without piecewise polynomial coefficients (A, ¢),
a reduction to data oscillation with piecewise polynomial best approximations as
before is not possible. The argument in Remark 4.13 suggests approximating the
general coeflicients with piecewise polynomial coefficients satisfying

ng=n—-1 and n.=n-1.

As we shall see below in Sect. 4.8, the choice (4.21) with these values allows us
to bound osc™ in terms of ||Vuq]| L2(©)» Which is controlled by stability, and data
oscillation terms involving f and the coefficients A and c¢. Note however that the
nature of these data oscillation terms differs from the preceding reductions: e.g.,
the regularity of the coefficients A and c is not determined by the exact solution u.

In the light of Remark 4.13 (oscillation degrees - asymptotics), one might hope
that the overestimation described in Remark 4.11 (nonasymptotic overestimation)
disappears under refinement. This can be ensured under suitable regularity as-
sumption but is not guaranteed in general as the following remark reveals.

Remark 4.15 (asymptotic overestimation) Considering a variant of the standard
residual estimator that allows for f € H ~1(Q) and adaptive refinement, [Cohen,
DeVore and Nochetto 2012, Sect. 6.4] give an example where the error con-
verges asymptotically faster than the estimator; see also [Kreuzer and Veeser 2021,
Lemma 21].
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After having recognized the above flaws of the standard residual estimator, let
us conclude with an observation that will be the departure point of an improved
analysis.

Corollary 4.16 (equivalence for discrete data) Suppose all data D = (A, f,c)
of problem (2.5) are piecewise polynomial, i.e. there are ng,n.,ny € Ny such that

na,~lydxd ne,—1 ny.=l
AeSA )7, ceSE, and feS; .
Then error and standard residual estimator are equivalent:
. ostd
IV = up)ll 2 = EF,

where the hidden constants depend only on d, the coefficients A and c, the shape
regularity coefficient o, and the degrees ny, n., andny.

Proof. The upper bound follows from Theorem 4.9 (upper bound with standard
residual estimator), while Proposition 4.12 (partial lower bound) with

(my,mp) = (nA +n—1,max{ng +n—2,n, +n,nf}).
yields the lower bound. U

Motivated by the above discussion, one may define a variant of the standard
residual estimator, characterized by a splitting into two different parts. More
precisely, choosing (m |, m,) according to Remark 4.14 (oscillation degrees - data
oscillation reduction), one may replace the local indicators in (4.10b) by

ESur, £, 1) = 0 (ur, T)* + oscy(ur, D, T)?, (4.22a)
where the first part, the so-called PDE indicator, is given by
Ny, T = WG| + i D I I, (422b)
F cOT\oQ

while the second part corresponds to the local oscillation from (4.13b); compare
with [Verfiirth 2013, Theorems 1.5 and 4.7]. In this way,

o the PDE indicators are computable (in terms of the Galerkin approximation uq
and the local projections),

o the oscillation indicators typically have to be approximated by numerical quad-
rature,

e both types of indicators are, in general, not dominated by the error.

4.3 Discrete functionals and a posteriori error analysis

This section introduces the notion of discrete functionals and individuates prop-
erties in their approximation that are useful in a posteriori error analysis. The
realization of these properties distinguishes the subsequent approach, which is
adapted from [Kreuzer and Veeser 2021] and [Kreuzer et al. n.d.].
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The notion of discrete functionals and its local counterparts are of interest for at
least two reasons. The first one is that their H~!-norm can be rather easily quantified,
as we shall see in Corollary 4.30 below. This property is related to Corollary 4.16
(equivalence for discrete data), which can be read in the following way: the standard
residual estimator is equivalent to the error whenever the residual is a discrete
functional. The second reason lies in the observation that an important part of the
residual, namely the application of the differential operator to a discrete function, is
itself of discrete nature. This feature is partially captured by the following definition
of discrete functionals with polynomial densities and is discussed in Remark 4.18.

Definition 4.17 (discrete functionals and meshed subdomains) Givenm; € Ny,
my € No U {-1}, let Fq :=F(T") := Fp, ,m,(7) denote the subspace

e H'(Q) | Vw e H\(Q) (£, w) = / /
{6 (@) | Vw € Hy(@) (w) = ) F‘]FW"'Z T

FeF TeT

with fixed gr € Py, (F), g7 € sz(T)}

of discrete functionals, i.e., functionals that are given by piecewise polynomial
densities over elements and interior faces. We call (m, my) the degrees of the
discrete functionals.

A set w is a T -meshed subdomain if it is a subdomain of € and it is triangulated
by a submesh 7, C 7 ,1i.e. we have w = Ur g, T. A functional £ € H™(Q) is then
discrete in the meshed subdomain w whenever €| () € F(7,). Here the faces

Fo={FeEF| FNw#0, F¢ow}

involved in F(7,,) are interior to w; e.g., the subspaces F({T}), T € 7, do not
involve any faces. In accordance with (4.5), we use the abbreviations 7; and ¥, for
T, and 7, _.

Alternatively, the local space F(7,,) can be obtained from the global space F(7")
by restriction:

F(Te) = BT 1) = {fl i | € JF(T)} . (4.23)

Remark 4.18 (differential operator and discrete functionals) The image of the
finite element space V4 under the linear differential operator —div(AV:) + c- is
again a finite-dimensional space. For differential operators with piecewise poly-
nomial coefficients A and c, the above notion captures this by the property that
the application of such operators to discrete functions v € Vg4 yields discrete
functionals. Indeed, if

na,—1\dxd ne,—1
Ae®A )7 and ceSf
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with na, n. € Ny, piecewise integration by parts gives the representation

/AVV -Vw + cvw
Q

= Z / [AVV]] -npw + Z / (cv = div(AVY))w,

FeF F TeT T

(4.24)

where, for any interior face F € ¥ and any element 7T € 7,
[[AVV]] - np € Py, (F), cv—div(AVy) € Pp,,,(T)

with m; = ng +n — 1 and mp = max{nag + n — 2, n. + n}. Note however that not
every functional in F,;;, ,,,(7") can be written in the form of (4.24). In fact, as the
representation of a discrete functional is made up of L2-scalar products on domains
that are mutually disjoint or of different dimension, we have

dim Fyp, , (T) = #F dimB,y,, + #T dimP,y,,, (4.25)

which is strictly greater than dim V4. This enlargement, which is implicitly used
in the proof of Lemma 4.12 (partial lower bounds), turns out to be convenient also
in the constructive approximation of discrete functionals.

In view of the aforementioned properties of discrete functionals, we may split
the residual into a discrete and a non-discrete part. Splitting the standard residual
estimator in the alternative local indicators (4.22) is in a similar spirit. To see this,
we introduce I1+-€ € H1(Q) given by

(Tt w) = ) / (I g)w+ > / (T2 fw, weH)Q), (426)
Fer’F Ter T
for all £ € H~'(Q) admitting the representation
C,wy = Z /gw+ Z /fw, weH(l)(Q)
Fer’F Ter?T

with suitable density functions g and f. Then the splitting of the alternative
indicators (4.22) corresponds to writing

Ry = HTRT + (I - HT)RT. (4.27)

Moreover, Remark 4.14 (oscillation degrees - data oscillation reduction) discusses
in particular conditions for the identity

(I =TI)Ry = f - s f, (4.28)

which follows from the property that I15- reproduces the functionals in Remark 4.18
(differential operator and discrete functionals); compare with (4.20), which in terms
of I1g reads I[I(Aug) = Aug, where A is now the distributional Laplacian.

The fact that the definition of ITs requires the extra regularity f € L*(Q)
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and A € WL (Q; R¥?) not only excludes applications but, in light of Remark 4.11,
(nonasymptotic overestimation) entails overestimation. To circumvent this flaw, we
therefore aim at constructing a new approximation operator Pq- that is defined for
all functionals £ € H~'(Q). Furthermore, we want this operator to be a projection
onto [Fq so that the counterpart

(I =Pr)Ry = f - Prf

of (4.28) holds under the same conditions.
To summarize, our plan is to develop a quasi-optimal a posteriori error analysis
by constructing a locally computable, linear projection

Pr:H'(Q) — Frc H'(Q)
onto the discrete functionals that induces a splitting
Ry = PsRq+ (I - P‘T)R‘T (429)

of the residual into a discretized residual PR, which can be easily quantified, as
well as an oscillatory residual (I — Ps)R4, which under the conditions of Remark
4.18 (differential operator and discrete functionals) reduces to an oscillation of the
right-hand side f.

The proof of an upper bound of the error will then involve a triangle inequality
applied to the right-hand side of (4.29). The following remark provides criteria to
prevent overestimation in such a context, and is followed by a comparison of the
two approaches represented by (4.27) and (4.29).

Remark 4.19 (avoiding overestimation) Overestimation can be often avoided by
ensuring two relatively simple conditions. In order to discuss them informally,
consider the model inequality

<1< [-Ti+]" 1] (4.30)

where | - |, | - |;, 7 = 1,2, are seminorms and denote the domain and kernel of | - |,
respectively, by dom | - | and ker | - | etc.
The first condition, the kernel condition, is that zero is not overestimated:

ker|-| c ker|-|i Nnker|-|>. (4.31a)

The second condition, the domain condition, is that a finite value is never bounded
by oo, or in other, still informal, words: if the evaluation of the left-hand side is
(or can be uniquely defined to be) a finite value, the same holds for the right-hand
side:

dom|-| cdom]|-|; Ndom]| - |5. (4.31b)
[Kreuzer et al. n.d.] provide a precise version of the domain condition (4.31b),

show that, given inequality (4.30), the two conditions (4.31) are also sufficient for
equivalence, and discuss further applications of this viewpoint.
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In order to illustrate the application of Remark 4.19, let us consider only the
special case of the Poisson equation, i.e. A = I, ¢ = 0, and linear elements, i.e.
n = 1. We start with the upper bound in terms of the standard residual estimator in
Theorem 4.9 and view it as a function of the right-hand side f. Then the domain
condition is violated as the left-hand side is defined for any f € H~'(Q), while
the right-hand side is defined only for f € L?(Q). Also the kernel condition is not
verified: the left-hand side vanishes whenever f = —Av for some v € V¢, while
the right-hand side vanishes only for f = 0. The splitting in the alternative local
indicators (4.22) does not worsen this situation, i.e. it does not add further instances
in which kernel and domain condition are missed. Note however that the oscillation
indicators alone are in conflict with the domain condition and, therefore, another
PDE indicator cannot cure the overestimation. Finally, for the outlined approach,
the splitting (4.29) and the required properties for the operator P4 ensure both
kernel and domain condition.

4.4  Testing discrete functionals

The H~!-projection P4 onto the discrete functionals Fg- will be defined by means
of a Petrov-Galerkin-type approach. This section prepares its definition by in-
dividuating a suitable test space V.. The key property of V7. is that the dual
pairing (-,-) in H~'(Q) is nondegenerate on the product Fs x V?-. Doing so, the
degrees (m, my) of the discrete functionals will be parameters that are omitted in
the notation. The construction of the test space V- proceeds in two steps. First, we
locally associate to the degrees of freedom in F4 certain functions on €. For the
degrees of freedom on the skeleton, this will inolve a suitable extension operator.
Second, we turn the ensuing functions into admissible test functions with the help
of a cut-off.

The degrees of freedom in Fgq are given by density polynomials over element
and faces. For an element 7 € 7, if we extend such a density polynomial g7 by
0 off 7', it is already a function on Q. For a polynomial g associated with a face
F € ¥, we employ the following extension operator Er mapping a function v on
F to a function on wp, the union of all elements 7" containing F.

Given such an element T C wp, write zg, ..., zq for its vertices, z4 being the
one opposite to F, denote by b = 5 Zfl:_ol z; the barycenter of F, and set

d-1
(Epv)(x) =y <¢d(x)bp + Z ¢Zi(x)z,-> xeT,

i=0

and extend by O off wp. Note that the definition of Ef is affine invariant and does
not depend on the enumeration of the vertices of . The next lemma collects two
useful properties of this extension operator.

Lemma 4.20 (extending from faces) Let FF € F be a face. For any function
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v € L(F), we have

1
NEFVIL20wp) S PEIVIL2F)

where hp stands for the diameter of F and the hidden constant depends only on
d and the shape regularity coefficient o. Furthermore, if v is a polynomial, then
Erv is a continuous piecewise polynomial of the same degree.

Proof. [1]In view of (EF v)? = Ep(v?), we may show the inequality by verifying

/ &wshi/w 4.32)
wWF F

for any positive function w : F — R, which amounts to L'-stability. To this
end, we shall use a standard argument involving the following reference situation,
which slightly differs from the common one with 7; = {x = (x1,...,xq) € R |
0<x; <1, X%, x < 1} and by := (d+ 1)7'(1,...,1) € RY. Let the reference
face F := =Ty — bd 1 € R4 bea translatlon of T,-1 and let the reference
simplex T c R4 be the convex hull of F X {0} and the canonical basis vector
eq =(0,...,0,1) € R, The barycenter of F % {0} is then the origin in R4 and
the barycentrlc coordlnate of the vertex e, of T is xq4. Fixing an element T with
T C wr, denote by G : T — T a bi-affine map sending vertices of F x {0} into
vertices of F and e into the vertex of T opposite to F', and write G : :Fx{0} > F
for the restriction Gr |z, o0} The pullbacks of Erw and w satisfy

Gr(Epw)(x',xa) = Gpw(x’,0)

forallx = (x",x4) € T = {y =y, yq) € FxR |0 <yg < 1—|y’+bd_1|1}, where
|z’ = Zl‘.i:_ll |z/| stands for the £;-norm in R4-!. Consequently, the transformation

rule, the fact AthatA the Jacobians of Gt and G are constant, the Fubini theorem,
w > 0, and |F|/|T| = |Ta-11/|Ta| = d yield

|T| |T| 1=|x"+ba-11
/ EFW = 7 —/; G;(EFW) = ﬁ ﬁ/ G;:—W(x,,O)dXd dx'
T F JO

T||F T
|| [ Gowe = TIEL [, i
| T IT||F| JF |F|
Since the hidden constant in |T|/|F| < hr depends only on the shape regularity

coefficient o, this implies the L!-stability bound (4.32) and so also the claimed
L,-stability is proven.

The second statement for polynomial arguments of E is a direct consequence
of its definition. U

In view of the above different treatment of elements and faces, we need two types
of cut-off functions: one for elements denoted by ¢ and another one for faces
denoted by ¢r. Possible choices are the element and face bubbles from (4.14)
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and (4.17). Since other choices will be useful in Sect. 4.8 below, we shall rely
henceforth only on the following properties.

Assumption 4.21 (abstract cut-off) The cut-off functions ¢7, T € T, and ¢,
F € F, satisty

suppopr =T, 0<¢7r <1, suppdr =wr, 0<¢r <1,

and act in an affine-equivalent manner on the element level: there exists a finite-
dimensional linear space S* C L*(T,) of functions defined on the reference element
T4 such that G ¢7 does not depend on T, G, ¢ does not depend on F, and

VT € T, Vg € By (@) G (gbr) € 5°,
VF € F, Vq € By (F), VT € T Gy (((Erg)or)lr) € 5%,

where G is a bi-affine map from the reference element 7 to the generic element
T and G}.(v) = v o Gt denotes the pullback of a function v : T — R via Gr.

In the case of the bubble functions (4.14) and (4.17), Assumption 4.21 holds
with S* = Prax {m, +d—1,m,+a}(Ta) as the extension operators Er, F € ¥, preserve
the polynomial degree.

Lemma 4.22 (properties of cut-off) If the cut-off functions ¢r, T € T, and ¢r,
F € F, satisfy Assumption 4.21, then we have

12 _
gl 2y < ||61¢T/ 2y and V(g 2y < hp'lladr 2
forall g € Pp,,(T) as well as

1/2 -
lall 2y < Nad oy and IV (Er@)dr) 2w < e NEFDSE 20

forall g € P, (F). The hidden constants depend only on d, the shape regularity
coefficient o, the degrees (m1, m») of the discrete functionals, and the space S™.

Proof. To verify the first claimed inequality, we start by noting that, thanks to
supp ¢ = T, we have ¢7, := G.(¢7) > 0 in the interior of Ty. Hence, || - |27,

and || - ¢1T‘/1 2|| 121, are norms on Py, (Ty) and, thanks to dimP,,,(Ty) < oo, are

12 _

equivalent. A standard round trip to the reference element and G.q G ¢, =

G (q4y?) thus yield

d/2 * d/? * x ,1/2
Iglloa < KNG gl oy < HP1Gq Grda Pl o,
1/2
< lgdy 2y,

and the first claimed inequality is established. The third one is proved along the
same lines, but with a round trip to the reference face.

For the other claimed inequalities note that ||V - || .27,y and infer || - —¢|| 27,
are equivalent norms on the finite-dimensional quotient space S*/R. Consequently,
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further round trips to the reference element give
~1+d/2 x ~14d/2 x
IV(qédr)|L2ery S hy +dl VG (adr) 121, S By +af L1f€1£ IG7(q¢7) = cll2qr

—1+d/2 * _
< B PNGH oDy < B lgdr e

and

IV(Er@67) 13200y = D, IV(EF@¢7) 1720,

T Cwr

Shp' ) NER @1 o, = he NIEF @67 112,

T cwfr
and the proof is completed. Ul
These preparations lead to the following test space for discrete functionals.

Definition 4.23 (test space for discrete functionals) Using the cut-off functions
from Assumption 4.21, we associate to the space Fq of discrete functionals the
following test space:

Vi 1= V) = span ({gr 97 | a7 € Bas(D), T € T}

U {Er(ar)ér | qr € P, (F), F € 7—‘}) .
If w is a subdomain of Q meshed by 7,,, then V*(7,,) is the test space for F(7y,).

Similarly as for the space Fq of discrete functionals, the test space over a
subdomain w meshed by 7, can be obtained from the global test space, namely

V(7o) = VHT) N Hy(w). (4.33)

4.5 A projection onto discrete functionals

Having the test space V- from Definition 4.23 at our disposal, we are now ready to

construct a H™'-projection P4 as suggested in Sect. 4.3. Like in the previous sec-
tion, the degrees (m|, m») of the discrete functionals in F4 are hidden parameters.

Definition 4.24 (projection onto discrete functionals) Given the discrete func-
tionals F and the test space V?_, we define a projection Py : H Q) - Fsr by

(Prt,w) =(C,w) VYw e VL. (4.34)

The well-posedness of this definition and algebraic properties of P4 are verified
in the following Lemma 4.25. Moreover, a representation of P¢ in form of a
quasi-interpolation operator is given in Corollary 4.61 below.

The polynomial densities of Pq¢ are denoted by Pr{ := Py 1€, T € 7, and
Ppl = Py, F € ¥, so that

(Pgl,w) = Z /PT5W+ Z /FPFfw. (4.35)

Ter VT FeF
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In the next lemma we show in particular that P+ is a local operator. In order
to formulate this, we shall use 7 -meshed local subdomains, i.e. 7 -meshed sub-
domains w for which there exists a mesh element T € 7 with w C wr. For the
next lemma addressing algebraic properties of the operator P+, recall the notation
wf = Ureq.T from (4.7) for an interior face F € F.

Lemma 4.25 (algebraic properties) The operator Py is a local linear projection
onto the subspace Fq of discrete functionals. More precisely, for any local subdo-
main w meshed by T, there is a linear projection P, : H™ (w) — F(T,) such that

Prlliw) = Po () € FT)

forall € € H(Q).

Proof. [1] We first show that the degrees of freedom in Definition 4.23 of V?_ are
linearly independent. To this end, we fix an element T € 7, denote by F1, ..., Fy,
[ < d + 1 its faces that are in F7 and write ¢¢ := ¢, ¢; := ¢F, and E; := EF, for
i=1,...,1. Wethen claim that, forall g9 € P,,,,(T)\ {0} and all g; € P,,,(F;)\ {0},
i=1,...,1, we have

l

aoqodo + ) @iEi(g)¢i =0inT = ag=---=a; =0. (4.36)
i=1

In light of supp ¢7 = T and supp ¢r = wr, we observe ¢olor = 0 and ¢;|so7\F, =0
fori = 1,...,I. We thus evaluate the hypothesis of (4.36) first on the faces
Fy, ..., F; and then in the element 7. This gives @; =0fori =0,...,/ and (4.36)
is verified.

Next, we discuss the well-posedness of (4.34). The linear independence
(4.36) and (4.25) lead to

dim Vi- = #7 dimP,,,, + #F dimP,,,, = dim Fg-. (4.37)
Thus, it suffices to show the implication
teFyr: (L,w)y=0VweVL = (=0. (4.38)

For that purpose, let £ € Fq-andlet g7, T € 7, and gF, F € ¥ be the determining
polynomials. For any element 7 € 7, the choice w = g7 ¢7 € H(l) (T) implies

0=(t,w) = / (GrPér. ie. qr=o0.
T

Thus, ¢ does not have contributions from elements. Regarding faces, any choice
w = (Epqr)¢r € H)(wr), F € F, therefore gives

0={(tw) =/F(61F)2¢F, ie. qr=0,

and implication (4.38) is established. Combining (4.37) and (4.38), we have that
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the dual pairing in H~!(Q) is nondegenerate on Fs- X V*_, which in turn ensures
that P4 is well-defined. The Petrov-Galerkin character of the definition (4.34) then
ensures that Py is a linear projection onto Fg-.

It remains to show that Py is a local operator. Given any local subdomain w
meshed by 7,,, we can apply the preceding proof to 7, instead of 7. This shows
that the dual pairing in H~!(w) is nondegenerate on F(7,) x V*(7,,) and ensures a
local projection operator P, : H™'(w) — F(7,,). Taking into account (4.23) and
(4.33), we note

Prla-1(w) = Po,
which completes the proof. O

The verification of (4.38), which amounts to a proof of uniqueness, suggests the
following approach to compute P, £ € H™'(Q).

Remark 4.26 (local computation) Let £ € H~'(Q). Recalling (4.35), the polyno-
mials Pr¢,T € 7, and Pp{, F € ¥ can be computed by solving first

/ Prladr = (6.qdr) VT € Toq € Boy(T), 4.39)
T
and then
/PF£q¢F=<£,q¢F>— Z /Pqufpp VF € F,q € By, (F).  (4.40)
F T cCwfr T

This amounts to two block-diagonal linear systems with, respectively, #7 blocks of
size dim P,,, and ## blocks of size dimP,,,. Each block and each corresponding
right-hand side arises from local computations.

Remark 4.27 (star localization vs locality of P4) Stars w,, z € V, are meshed
local subdomains. Lemma 4.25 thus shows that, for any vertex z € V, there is a
linear projection P, : H™!(w,) — F(77) such that

Prllyica) = P (£| Hol (wz)) € F(T7)

for all £ € H'(Q). The stars also appear in the localizing upper bound of the
global residual norm in Corollary 4.6. As they are minimal subdomains therein,
cf. Remark 4.7, it may appear that a finer localization with smaller domains cannot
be exploited in a posteriori analysis. Although this is true in the context of upper
bounds, the increased locality of P4 is useful in the context of lower bounds; see
the reduced lower bound (5.17), which follows from the interior vertex property
introduced in Definition 4.50, and is crucial to derive the contraction result (5.26).

We have already mentioned that we shall use P4 to split the residual. In light
of the bounds for the residual norm in Corollary 4.6 (star localization of residual
norms), this should be done in a locally stable manner. In order to formulate and
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employ the local stability properties of Py, the following notation is useful. Given
a local subdomain w meshed by 7,, we define the V*(7,)-discrete dual norm by

€l == sup (&, wy €eH \(w). (4.41)
WEVHTL), VW Il 2, =1

In view of V¥(7,,) € H}(w), we have [|€]lv+(7,y < €]l -1y for all € € H'(w).

Lemma 4.28 (local H~'-stability) The projection Py is locally H™'-stable: for
any local subdomain w meshed by 7,,, we have

1N -1 )
WPl ccr-1(wypy = sup 5 < Cisw,
cer(7.,) Nl

where Cisip = Cisw(d, o, my, my) depends only on d, the shape regularity coefficient
o from (3.9), the degrees (m1, my) of the discrete functionals and the space S*.

Proof. We start by verifying the *<’-part of the claimed identity for the operator
norm. The definition of the operator norm leads to

1Potlla-iw) _ 1Pl 1)

1Poll ctr-1wy = SUP
HD ™ ey Nlla-iw)  cemiw Nellvermy

We now notice that ||||v+7,,y = [P wC||lv+7,,) in view of (4.41) and (4.34). Hence,

1Pl < sup 1P wlll 1) €1 1)
H-! < _— = B T —
CHLHTD = ey Polllvery  cerr) 1€y

because the projection P, is onto F(7,,).

Next, we show that || P7| p(g-1(.) is uniformly bounded. Let ¢ € F(7,) be
a discrete functional, namely

€, w) = Z /qu+ Z /qFW VweHé(a)).
Ter, /T Fer, ' F

We proceed in two steps that are quite similar to the classical standard residual
estimates. Arguing as in (4.11), and using Lemma 2.2 (first Poincaré inequality) in
the domain w of diameter about Ay for w € Hé (w), we obtain

1/2
|<€7 W>| < < Z h%"”qT”%}(T) + Z hF”qFHiZ(F)) ||VW”L2((U)

TeTw FeF,

whence

11y S D Prllar g, + > helar|ag,. (4.42)
TeT, Fe7F,

Here we do not exploit that ¢ is discrete in w; this will be crucial in the second
step, when we bound each term on the right-hand side, in a manner reminding
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the derivation of classical lower bounds. For any T € 7, we write V*(T)* as
shorthand for V*({T})* and exploit Lemma 4.22 (properties of cut-off) to deduce

||¢]T||iz(7~) < '/T(CIT)Z ¢r =€ qr ¢r) < [[lllveer)[IVgT é1)| 201y

—1 -1
S Wllveay-hy g ¢l 2y < el bz llar ll 2y
whence
hrllgr 2y < WEllveary- (4.43)

For an interior face F € ¥,, we proceed similarly, taking into account also
Lemma 4.20 and that V¥*(T) ¢ V*(7F) entails ||¢||v+7y < [|€||v+(q3) for T € TF.
We thus obtain

e, < [ @ or = € (Erar)ory = 3 [ ar(Erar)or

T cwr

< Mellvzy IV ((Erge)dr ) | 12(wp + Z lar | 20y IKEF g F)T |l L2
T cCwfr
_1

< Wiy B N (EFar) ¢ | 2gwp) S Wiy by la el 2y,

ie.
1
hellgr Ny s Wl 7y (4.44)

The number of elements and interior faces in the local subdomain w is uniformly
bounded by d and the shape regularity coefficient o-. Hence, inequalities (4.43)

and (4.44) together with the inclusions V*(T') c V*(7,,) for T € 7, and V*(7f) C
V*(T,,) for F € F,, imply

DR lar g, + D) helarlg, S 1R (4.45)
TeT, Fe¥F,
Combing (4.42) and (4.45) shows that the ratio ||€|| -1/ | €lv+(7,)- for € € F(7,,)
is bounded by a universal constant depending on d, o, my, m, and S*.
It remains to complete the proof of the claimed identity for the operator norm.
To this end, we first introduce an operator Q, : Hé (w) = V¥(7,) by
(€, Quw) =(tiw) VL eF(Ty).

As the one for P,,, this definition is well-posed because the pair (IF(’]Z,), V*(‘]z,))
is nondegenerate for the dual pairing of H ~l(w); cf. (4.37) and (4.38) of the proof
of Lemma 4.25 (algebraic properties). By the Petrov-Galerkin character of the
definition, Q, is a linear projection onto V*(7,,). Given arbitrary £ € H™'(w) and
w e Hé (w), the definitions of O, and P, imply

(Pwl,w) =(Pul,0uw) =, 0uw),
that is Q,, = P, is the (Hilbert) adjoint to P,,. In other words: the adjoint P,
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is a projection onto V*(7,,). With this, we can prove the missing inequality. Let
¢ € F(7,,) be discrete. In fact,

. (£, Poyw)
(€w) =(Putl,w)=(P,w) = |lllg-1w)= sup V—“’
weHol(w) ” W“Lz(w)

leads to
11y < v+ 1Pl gt cwy = 1€+ 70) 1P ol £ar-1(w)-
This concludes the proof. 0

Remark 4.29 (failing global H~!-stability) For Lebesgue norms, local stability
of linear operators in terms of shape regularity entails that their respective global
stability is uniform under mesh refinement. The fact that the first part of Lemma 4.5
(localization of H~!-norm) needs a condition to be true, may lead one to suspect
that this implication might not be true in general for the H~!-norm. This suspicion
is confirmed by Example 4.63 below, where we show that || P|| £(-1(q)) can tend
to oo under mesh refinement.

The proof of Lemma 4.28 provides all nontrivial ingredients to allow the ap-
proximate computation of ||| g-1(,,, Whenever £ € H ~1(Q) is discrete in w.

Corollary 4.30 (quantifying H~!-norms of discrete functionals) Let w C Q be
a local subdomain meshed by T,, and € € H™'(Q) be discrete in w, given by the
polynomials qr for T € T, and qf for F € F,,, where F € F,, are the interior
faces in w. We then have

2 2 2 2
1E1 sy = D BElar oy + D helar| o,
TeT, Fe7,

where the hidden constants depend on d, the shape regularity coefficient o, the
degrees (my,my) of the discrete functionals, and the space S* appearing in As-
sumption 4.21.

Proof. This is a consequence of (4.42) and (4.45), the latter requiring £ to be
discrete, along with the fact that ||€||v+(7,,)- < [|€]| -1, forany £ € H ' (w). O

Corollary 4.31 (local near-best approximation) The projection Pg yields local
near-best approximations: for any functional € € H™'(Q) and any local subdomain
w meshed by T,,, we have

€= Prtllyie < Cso inf 1€ = xli-tcon
I 7 1w ISthdF(%)” X H1(w)

where Cisy is the constant of Lemma 4.28 (local H -1 stability).

Proof. Fix a local subdomain w meshed by 7, and let y € F(7,,) be arbitrary.
Thanks to Lemma 4.25 (algebraic properties), we have P, x = y and

(K_PT£)|H01((U) = (I_Pw)ﬂyol(w) = (I_Pw)(f_)()h-[ol(w)-



AFEM 81

As P, is a nontrivial projection on the Hilbert space H “(w), [Szyld 2006] ensures

1 = Pull 1wy = IPoll £a-1(w)) < Cist- (4.46)
Hence
1€ = Prtll 10wy < Ciswlll = x|lg-1(w)
concludes the proof because y € F(7,,) is arbitrary. ]

We illustrate the approximation of possible parts of the residual with the projec-
tion P in a series of three remarks. For that purpose, the approximation quality
is to be measured with a local H~!(w)-norm, and it is instructive to compare with
the operator I14 from (4.26). Recall that the operator I14 is used implicitly in the
standard approach (see Sect. 4.2) to approximate the discrete functionals Fo-.

Remark 4.32 (approximating functions) For functions, the local error with Py
is uniformly dominated by the one with IIy. More precisely, if m, > 0 and
t € H(Q) satisfies (€, w) = fg fw where f € LP(Q) with p > 2d/(2 + d), then
Corollary 4.31 (local near-best approximations) and Il f = ZTGT(H?Z Pxr €
F(7,,) imply, for any local meshed subdomain w,

1 = Prlllg-1(w) S If =y fllg-1(w)-

Observe that, although ¢ is a function, P4 is typically not a function. This property
might look undesirable but it is crucial for an advantage of P4 over [14 and closely
related to the fact that the opposite inequality does not hold; cf. Remark 4.34 about
stability.

Furthermore, supposing f € L*(Q) and combining the preceding inequality with
Lemma 2.2 (first Poincaré inequality) gives

e =Pyl sy S D, WEIF =TI FllTa, (4.47)
T'cwr

which establishes that the local Ps—-oscillation of functions is uniformly dominated
by its classical I[1q-counterpart but not vice versa.
In Sect. 7.3.1 this case is considered in the context of adaptive approximation.

Remark 4.33 (approximating admissible functionals) For functionals allowing
for the application of Il the local error with P is again uniformly dominated by
the one with I1+. In view of the previous remark, let us consider only £ € H~'(Q)
such that (¢, w) = fzgw where g € LP(X) with £ := Upc¢F and p > 2(d — 1)/d.
Note that we have again I+ € F(7,,) as (Il+€,w) = ZFeffF(H;“g)w for all
w € Hé (€). Corollary 4.31 (local near-best approximations) thus ensures, for any
local meshed subdomain w,

1€ = Prellg-1(w) S 1€ — 7|l g-1(0)-

Moreover, supposing g € L*(X) and combining the scaled trace theorem (4.12)
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with Lemma 2.2 (first Poincaré inequality) yields

2 § 2
||£ - PTK“H’I((UT) < hFHg - Hr]?llgHLZ(F)'
FCowr
FZowr

Also this case will be revisited in the context of adaptive approximation, namely in
Sect. 7.3.3.

Remark 4.34 (stability of approximation) The error with P+ is stable, while the
one with I1g is not. To see this by example, we restrict to (my, my) = (0,0), fix
some interior face F' € ¥ and, for £ > 0 sufficiently small, consider

1 &
(s, W) :z/f,gw = —/ /w(y+snp)dyds, w EH(])(Q),
Q 2e —-& JF

where f. = (26)~! y£, is amultiple of the characteristic function of F, := {x+snp
xeF,—e<s<eg} As

1 E S
(t’g—ép,w>=—/ // Onpw(y +tnp)dtdyds
2e - JF JO
1 &
<L / / Vo)l deds < [Fo 2 Vw20,
2¢e -& JF,

the functions (€¢) s~0 tend to the proper functional df:
ty — 6p in H(Q).

Combining the convergence with the local stability of P, see (4.46), yields

I€e = Prlellg-1(wp) — 10F = Prorllg-1(wp| < I = Pr)(le = 6F)la-1(0p)
g ”58 - 6F||H_]((l)F) - Ov

the stability of the error with P4. Furthermore, since Ps0r = Jf, the stability
entails here ||{z — P7lc|lg-1(,) — 0. For Ilg- however, the approximation on
the skeleton and in the volume are independent of each other. Hence, combining
[I+6F = 0F, which follows from (4.26), with lim._,g l'I(%f‘g = |F|/Q|T|) for the
two elements T € 7 containing F, leads to

loF =7 0F || g1 =0 < EE{) I€e = Tgtlell g-1(cp)-

Measuring the error in weighted L?-norms instead of the H~'-norm results in a
more dramatic instability. Indeed, denoting by 1x and Ok the constant functions
on a simplex K equal to 1 or 0, the two sides translate in

1
hillle =T 1l 2y + | hrllOr = T19.07 [l 2y = 0,
TeTr

1
lii% (hfrHOF ~ 11907 || 2y + Z hrll fe - H(%ngLZ(T)) = 0o,
T €eTr
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Note that such a transformation of volume contributions into contributions on
the skeleton may occur by perturbation in the right-hand side or, in the opposite
direction, by an improvement of the Galerkin approximation thanks to refinement.
In view of this instability of I1, the inequalities in the preceding Remarks 4.32
and 4.33 cannot be reversed - a fact that can be inferred also from Remark 4.19.
The above perturbations of § are in the domain of I14. For the functionals

(Lo, w) :=/W(y+8nF)dy, w € Hy(Q)
F

however, it is not clear how to directly apply Il for & # 0. To the contrary, the
approximations P¢€ are defined and stable around 0. Noteworthy, PTK uses
volume contributions to compensate for the displacement in the representation of
the singular contribution.

4.6 Discretized and oscillatory residual

We now turn to the proper a posteriori analysis, that is we shall derive upper and
lower bounds of the error, implementing the following plan, which is motivated in
Sect. 4.3. We use the projection P4 onto discrete functionals F4 to split the residual
into discretized and oscillatory parts. Then the quantification of the oscillatory
residual is reduced to data oscillation through suitable choices of the degrees
(my, my) of the discrete functionals. The discretized residual can be quantified in
various manners; see Sections 4.2 and 4.9 below.

We start by introducing indicators reflecting the announced splitting of the
residual into discretized and oscillatory parts. They are vertex-indexed and, given

z € V, defined by
EP(2)* = i (2)” + oscr(Ry,2)  with (448)
1) = IPTR7 | g-1(w,) and 0scr(Ry, 2) := (I = PORT -1y

Note that these quantities are not proper indicators: they still need to be quantified
in a computable manner. By using ‘abs’ (shorthand for ‘abstract’), we hint at the
fact that 77a‘bg can be quantified by various approaches.

Lemma 4.35 (splitting of local residual norm) For any vertex z € V, the local
residual norm is equivalent to the abstract indicator from (4.48):

EL (@) < IRT 1wy < V2EL(2),
\/_ IStb

where Cisy is the constant of Lemma 4.28 (local H! stability).

Proof. As announced, we use the linear projection P4 in order to split the residual
into a discretized and an oscillatory part:

Ry =PsRq+ (I — Pr)Rq. (449)
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The upper bound of the local residual norm then readily follows from the triangle
inequality:

IRT 511wy < 15°(2) + 05e7 (R, 2) < V2E§°(2).

To show the lower bound, we exploit the local stability of Py, cf. (4.46), to obtain

7@ = IPTRTN 110 < CiswllR7 1w,

and
oscr(R7,2) = (I = PORT -1,y < Ciswl| R 1)

Squaring both inequalities, summing them, and then taking the square root finishes
the proof. U

In many a posteriori analyses, this lemma is replaced by steps breaking a possible
true equivalence between error and estimator. Therefore, the following remark
points out the key ingredients.

Remark 4.36 (ensuring proper equivalence) The fact that the projection P4 and
so also I — Pq are linear and locally bounded operators precludes overestimation;
see also Remark 4.19. Comparing with Sect. 4.2 and I14 in (4.27), we see that the
local stability in H~! is crucial to that end and, in view of Remark 4.34, requires
discrete functionals with contributions on the skeleton.

Next, we want to simplify the residual oscillations oscq (R, z), z € V, in the
spirit of Remark 4.14. This will be dependent on the coefficients A and c of the
differential operator and involve the following ‘polynomial degrees’:

na=min {k e No | A4 e (s}, (4.50a)
ne := min {k eNoU{-1}|ce s’;:‘l} , (4.50D)

where we use the convention min () = co. We shall say that the differential operator
—div(AV:) + ¢(-) in (2.5) has discrete coefficients whenever max{na,n.} < oo,
otherwise it has nondiscrete coefficients.

Lemma 4.37 (data oscillation reduction for discrete coefficients) If the coeffi-
cients A and c are discrete, the choices

mi=ng+n-1,

n+ng, ifc+0,

my =max{n —2+ns,m.} with m.= ;
0, otherwise

ensure that the oscillatory residual reduces to data oscillation of the right-hand
side:

(I =Pr)Ry=f—-Psf.
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Proof. The choices for m; and m, yield, for any face F € ¥ and any element
TeT,

[AVus]l - np € Py (F) and  div(AVug)|r € Py, (T).

Furthermore, if ¢ # 0, we also have cug|r € P,,(T) and the claimed identity
follows from — div(AVuqg) + cugq € Fq. L]

Remark 4.38 (Poisson equation with linear elements) In the case of the Poisson
equation with linear elements, the choices in Lemma 4.37 lead to m; = 0 and
my = 0. Alternatively, one may use m; = 0 and mp = —1 (recall we have set
P_i(T) = {0}), cf. [Diening, Kreuzer and Stevenson 2016] or [Siebert and Veeser
2007]. The choice here leads to an oscillation for which the standard oscillation
indicators hr||f — Iz fllr, T € 7, can be used as a surrogate; see also Remark
4.43 about surrogates.

If one of the coefficients, A or c, is nondiscrete, the range of the finite element
space V4 under the differential operator — div(AV-) + ¢(-) consists of functionals
whose densities are not piecewise polynomial. Consequently, the oscillatory re-
sidual cannot be reduced to the oscillation f — Py f, or to any other oscillation
of f involving discrete functionals with piecewise polynomial densities. The next
result illustrates the idea of a non-perfect remedy, namely bounding the residual
oscillation defined in (4.48) in terms of data oscillation and discrete stability. For
its formulation, we define global H~'-oscillations by

oscr(0)? := Y oser(,2)?, €€ H Q) 4.51)
zeV
which, in contrast to ||({ = P7){||-1(q), is bounded in terms of ¢; cf. Remark 4.29
(failing global H~!-stability).

Lemma 4.39 (surrogate data oscillation reduction) Let m := min{ng,n — 1}
and m. := min{n.,n — 1} and define m| and my as in Lemma 4.37, but replacing
n4 and n., respectively, with m4 and m.. Given any approximations

Ac (S”’A’_1

dxd
e

and CE€ S',;ﬁ“’_l,
we then have, for all vertices z € V,

oscr (R, z) < oscr(f, 2) + CiswC(d, o)||A — Z”Lm(wz)”VMTHLZ(‘UZ)
+ CiswC(d, o) || h(c = Ol L) It 7l 12w

and thus
oscs(R7)? < 3oscr(f)?
3d+ 1), 0 o ) :
+ SN ) (14 = Al + CRC@ A = D))

where Cisy, is the constant from Lemma 4.28 (local H _l—smbility ), h the meshsize
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function defined by h|y = hr forall T € T, « is the coercivity constant from (2.29),
and Cp is the constant in Lemma 2.2 (first Poincaré inequality).

The bounds of Lemma 4.39 are obviously not convenient if A or ¢ are not
continuous. We therefore implement the underlying idea in Sect. 5.4 differently.

Proof. To verify the local bound, let z € V be any vertex. By linearity of P,
we obtain
oscy (R, z) < oscr(f,2)

+ 1 = Pr)( = divAVuD)) | -1y + 1 = PPt 11
and it remains to bound appropriately the two terms involving the coefficients A
and c. As the definitions of m| and m, ensure — div(AVuq) € Fq, Corollary 4.31
(local near-best approximation), the scaled trace theorem (4.12) and Lemma 2.2
(first Poincaré inequality) give

It = P (= div(AVUD) 1. < Ciswll = div (A = A)Vurll g1,

< CiswllA = Al IVurll 2 .-
As cuq € Fq thanks to the definition of mj, a similar argument using again
Lemma 2.2 and diam w, < Ch; on w, provides

(I = Pr)(cud)llg-1(w,) < Ciswll(c = Ourllg-1(e.)
< CCisllh(c = ODllLowollurll L2 w.)s

and the local bound is verified.

To show the global bound, we square the local bound and sum it over all
vertices z € V to obtain

oser(R7)* <3 )" oser(f,2)" +3(d + DCIIA = Al fwq I Vurll g,
zeV

+3(d + DClIh(c = DIyl 7 2
Hence, Lemma 2.2 (first Poincaré inequality) on € and discrete stability,

Cp
lurllzzg < CrllVurliize < 2= 1f @

finish the proof. U

The following remarks set Lemma 4.35 (splitting of local residual norm) and
the accompanying results Lemma 4.37 and Lemma 4.39 on the reduction to data
oscillation in the context of adaptive algorithms.

Remark 4.40 (structure of splitting) Combing Lemma 4.35 (splitting of local
residual norms) with Lemma 4.37 or Lemma 4.39 about reduction to data oscillation
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thus provides an abstract estimator with the following two global parts:

NP ) = ) s’
zeV

and, writing D = (A, ¢, f) for the data of the partial differential equation,

osc";t.’s(Z))2 := oscq(f),
osca.7l3s(1))2 := osc(f)? + Cy max ||A — A||im(wz) + C max || h(c — Z’)Ilim(wz),
zeV zeV
the latter provided (A, c¢) are not discrete. It is important to note the different nature
of these two parts. The first part Iﬁ’s(uﬂ, the abstract PDE indicator,

o is strictly related to the structure of the underlying PDE,

e involves only discrete functionals from F,, and

e the evaluation of its local indicators 77?7t.’s(u 7, z) requires the global computation
of the discrete solution u .

In contrast, the second part osc?,'fs(l)), the oscillation (indicator),

o depends only on the data O of the differential operator,

e involves non-discrete functionals, and R

e the evaluation of its local indicators oscq(f, 2), [|A = Al L=(w.), [M(c=O) || L>(w.)s
z € V, is completely local.

The respective properties ‘discrete nature’ and ‘local dependence’ of the two parts
are the key advantage over the whole local residual indicators || Rl g-1(4,.), 2 € V,
and will be instrumental in the algorithmic design in Sections 5 and 6 below.

Remark 4.41 (minimal regularity and regularizing P4) It is worth noting that
the results in this section do not involve any regularity beyond (4.2) and that the
projection P4 has a regularizing effect. In particular, we have

Im Py =Fq C H_%_E(Q) for any small € > 0

thanks to the trace theorem in fractional Sobolev spaces. As a consequence,
most techniques for a posteriori error estimation can be directly applied to the
discretized residual Ps-R, without any special twisting and under natural regularity
assumptions.

Remark 4.42 (reduction vs surrogate reduction) The kernel condition of Re-
mark 4.19 (avoiding overestimation) is not verified for the bounds in Lemma 4.39
(surrogate data oscillation reduction). These bounds may thus exhibit overestim-
ation and cannot be reversed. If we use the right-hand side of an overestimating
bound as a part of an estimator, we shall call that part a surrogate. This label marks
a crucial difference between the cases represented by Lemma 4.39 (surrogate data
oscillation reduction) and Lemma 4.37 (data oscillation reduction), which is free
of any overestimation.
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Remark 4.43 (surrogate data oscillation) Surrogates for data oscillation indic-
ators can be useful in order to provide more direct access for computation. For
example, if f € L*(Q), the bound (4.47) by the classical I15-oscillation can be
approximated by numerical integration. In such a context, it is useful to take the
following points into account:

o Computable surrogates, i.e. computable upper bounds, for data oscillation indic-
ators are in general impossible. In fact, generic data from an infinite-dimensional
space will not be completely seen by the finite information available at any stage
of a computation; cf. also [Kreuzer and Veeser 2021, Lemma 2 and Corollary 5]
illustrating this fact for oscq( f) with the help of orthogonality. Hence, comput-
able surrogates will hinge on additional a priori information on the given data.
We postpone a discussion of examples to Section 7.3.

e As a general rule, surrogates should be applied last. This avoids that other parts
of the estimators are also affected by overestimation; see Remark 4.46 (standard
vs modified residual estimator) below.

4.7 Modified residual estimation

In view of the splitting into PDE and oscillation indicators and the discussion on
the computability of the latter, it remains to quantify the abstract PDE indicators
n%t_’s(uT, 2), z € V. To this end, we can employ Corollary 4.30 (quantifying H~!-
norms of discrete functionals), resulting in a modification of the standard residual
estimator 8§7Ed(u 7, D) from Section 4.2. Alternative quantifications by other tech-
niques of a posteriori error estimation are discussed in Section 4.9 below. Doing

so, for simplicity, we consider only the case given by the following assumption.

Assumption 4.44 (discrete coefficients and discrete functionals) Suppose that
the coefficients A and c in (2.5) are discrete and choose the degrees (i1, m;) of the
discrete functionals in F4 according to Lemma 4.37 (data oscillation reduction for
discrete coefficients).

For nondiscrete coefficients, one essentially has to invoke Lemma 4.39 (surrog-
ate data oscillation reduction) instead of Lemma 4.37 in order to reduce to data
oscillation.

We shall employ the bisection method in order to refine the mesh. Since this
method is based upon the subdivision of elements, it is convenient to split the
estimator into contributions associated with elements and not with vertices as in
Sect. 4.6.

To define the modified residual estimator, we recall the representation (4.35)
of the H™'-projection P+, and we use Assumption 4.44 (discrete coefficients and
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discrete functionals) to set

g2 = Z EHT)?  with
TeT

E(TY = Exur, £, T)* = ng(us, T)* + oscr(f,T)*,

nrur, T s=hr > | [[AVurll -np = Prfllis,, (4.52)
F coT\oQ

+h | Prf = cug + div(AVU)17 27
oscr (£, 1 = I1f = Prfly -

Clearly, this is a variant of the standard residual estimator in (4.10), where the
main differences are given by the corrections Pg f, F € ¥, of the jump residual
and the replacement of f|r by Prf, T € 7, in the PDE indicator. As shown
by the following theorem and remarks, the modification leads to more accurate
a posteriori bounds.

Theorem 4.45 (modified residual estimator) Under Assumption 4.44, the modi-
fied residual estimator (4.52) is equivalent to the error: more precisely, we have

CLEr < IV — up)ll ) < Cubr,

where the constants Cyy > Cr, > 0 depend only on the coefficients (A, c), the shape
regularity coefficient o from (3.9), the polynomial degree n, and d.

Proof. To derive the upper bound, we use the ones of Lemma 4.1 (error and
residual), Corollary 4.6 (star localization of residual norm), Lemma 4.35 (split-
ting of local residual norms), Corollary 4.30 (quantifying H~'-norms of discrete
functionals) with stars and obtain

2 2 2
”V(l/t - M'T)HLZ(Q) < “RT”H—I(Q) < Z ||RT||H71((A)Z)

zeV
< D EP@ = ) nPur 2+ ) oser(f,2)
zeV zeV zeV
< >0 s T + ) oser(f, 2)?
z2eVTeT; zeV

with 7; = {T € 7 | T > z}. As a given mesh element appears in the star meshes
7, for at most d + 1 vertices, we have

D nrur T < @d+1) Y. nyur, T
zeVTeT; TeT

for the first sum and Lemma 4.8 (localization re-indexing) yields

Z oscy(f,2)* < Z oscr(f,T)*

zeV TeT
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for the second sum. Inserting the last two inequalities in the previous one, we
conclude the upper bound:

IV = up)2ag S D nrr, T + Y oser(£,T2 = ) E(T).
TeT TeT TeT
To show the lower bound, fix a mesh element 7 € 7. Applying the local lower
bounds in Corollary 4.30, Lemma 4.28 (local H~! stability) and Lemma 4.1 on the
local meshed subdomain wr defined in (3.12) yields for the PDE indicator

nr(uwr, T) S |PrR7llg-1or) S IRT 17 (4.53)

In the case of the oscillation indicator, we exploit —cuq + div(AVug) € Fq with
the help of Lemma 4.25 (algebraic properties) and apply Lemma 4.28 on the local
meshed subdomain wr:

oscr(f,T) = If = Prflla-1(wr) = I = PORTI 1wy S IRTI -1 (007 )-

Thanks to wr C wr, combining the last two inequalities gives the desired local
lower bound

EX(T)? = ny(ug, T)* +osco(f,T)*

(4.54)
SR g1y HIRT 51wy S IRTI H-1(wp)-

As the number of patches wr, T € 7, containing a given mesh element is uniformly
bounded by d and the shape regularity coefficient o7, summing this bound over all
mesh elements yields the global lower bound

D&MD S ) IR ) S V@ =42,
TeT TeT

with the help of Lemma 4.5 (localization of H~! norm) and Lemma 4.1. Thus the
equivalence of error and estimator is established. UJ

A detailed comparison of the modified residual estimator with the standard one
is in order.

Remark 4.46 (modified vs standard residual estimator) We compare the mod-
ified residual estimator (4.52) with the standard one given by (4.10a) and the local
split indicators (4.22). As a common characterizing feature, both residual estimat-
ors use properly scaled L2-norms of jump and element residual, ready for numerical
integration. However, we observe the following differences:

o while the modified estimator &4 is defined under the natural regularity assump-
tions (4.2), the standard estimator 8;3‘1 requires A € WL(Q;R™>)and f € LX(Q)
in addition;

e while the modified estimator &g is truly equivalent to the error, the standard
estimator may may overestimate it, limited however by Proposition 4.12 (partial
lower bound).
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By the domain test in Remark 4.19 (avoiding overestimation), we know that these
two points are interrelated. However, also the kernel test is at play in the overes-
timation. Indeed, revisiting the proof of Theorem 4.9 (upper bound with standard
residual estimator), we can replace the scaled L>-norms of the element residuals
on a star wz by ||r||g-1(,,) and the resulting vertex-oriented variant of the residual
estimator with unsplit local indicators is defined for all f € H ~1(Q). Overestim-
ation can, however, still occur non-asymptotically as well as asymptotically; cf.
[Cohen et al. 2012]. Indeed, in the case of the Poisson equation and linear finite
elements, the kernel test is obviously not satisfied. This shows that the splitting in
jump and element residual is quite delicate and highlights the crucial role of the
modifications of the standard residual estimator: not only do they allow for stability
in line with Remark 4.34 (stability of approximation) but also imply the kernel test.

To conclude this comparison, let us illustrate the second point of Remark 4.43
(surrogate data oscillation), namely that surrogates should be applied last. Using
(4.47) in Remark 4.32 (approximating functions), we may replace in the modified
residual estimator the H~'-oscillation osco( f) by the standard oscillation osc?}.d( ),
which can be readily approximated with numerical integration. Doing so, we first
split the residual with P4 and then apply I14 to obtain the surrogate. Note however
that, if we apply Il earlier to split the residual, the crucial modifications will not
appear and, therefore, also the PDE indicator of the standard residual estimator
exhibits overestimation.

4.8 Bounds for corrections and reduction of PDE estimator

In the following sections we shall use the modified residual estimator &4 from (4.52)
in adaptive algorithms. In their convergence analyses, not only its relationship with
the error is important, but also its relationship with the norm [|V(ug; — uy)|| 2
of (possible) corrections, where uq: is the Galerkin approximation to u over some
refinement 7, of 7. This section establishes corresponding upper and lower bounds,
as well as related results about the global PDE indicator

nrtur, f)° = ) nr(ur,T) (4.55)
TeT
and the global oscillation
oscr(f)? = Z osco(f,T)2. (4.56)
TeT

When it is important to indicate that the oscillations are measured in H~!, we use
the notation

oscy(f)-1 and oscq(f,T)-1.

Let 7; be a conforming mesh that is a refinement of 7, i.e. for any element
T € 7, there exists a submesh 7. r of 7. such that T = U{T, : T. € 7..r}. The
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Galerkin approximation in Vg is characterized by
ugp € Voo Blug,w]l ={(f,w) VweVq.

Hence, the discrete solution u4 on the original mesh 7~ is not only a Galerkin
approximation to the exact solution u satisfying (2.7) but also to ug;. The norm
IV(ug: — ur)llL2(q) of the correction therefore can be viewed as the error in ap-
proximating ug. on the mesh 7. This viewpoint suggests considering the variant

<R7', W) = B[I/tq; —ug, W] Yw e Vg (4.57)

of the error-residual identity (4.3) and introducing the discrete dual norm

(R, w)
IRF vy y == sup to———

(4.58)
weve VW2

of the residual as a counterpart of ||Ryl|f-1q). Arguing as in the proof of
Lemma 4.1 (error and residual), we thus readily obtain the following quantitat-
ive relationship between the correction and the residual.

Lemma 4.47 (correction and residual) If 7. is a refinement of the mesh T, the
norm of the correction ug. — uq is equivalent to the discrete residual norm. More
precisely,

1
MHRTH(V%)* < |IV(ug —upll2g) < E”RT”(Vq;)*

where ||B|| = a > 0, are, respectively, the continuity and coercivity constant of the
bilinear form 8.

We first exploit the upper bound in Lemma 4.47. As the inclusion V4. C Hé (Q)
implies

IRFlevry < IRTN 1) (4.59)
Theorem 4.45 (modified residual estimator) immediately yields the upper bound
IVug, —upllr2 @ < CuSrus, f). (4.60)

This bound however appears to be not accurate in view of the use of (4.59). We
shall sharpen it by following the line of its proof but exploiting the full orthogonality

(R, w)=0 VweVq 4.61)

with suitably tuned Scott-Zhang interpolation [Scott and Zhang 1990].

In order to prepare the use of this interpolation, denote by N the Lagrange nodes
of order n of the mesh 7~ and by ¥ and 7., respectively, the (d — 1)-dimensional
faces of 7~ and 7, including boundary ones. Givenanode z € N, fixaface F, € ¥
such that F, contains z and the following conditions are met:

7€ 0Q = F, C0Q,



AFEM 93

{FeFNF.|F>57} +#0 = F; € F..

Furthermore, denote by ¢ the polynomial in P,,(F7) satisfying
Vy eN -/F !VE% = 5yz,

where {¢/y }ycn is the Lagrange basis of S';:O, and define

Ipw= ) < /F w;w> e (4.62)

ZeN

The two conditions on the fixed face F, then ensure, respectively,

weH)Q) = IrweVr, (4.63a)

weVgandT €T NT, = Iqgw=wonT. (4.63b)

In particular, if w € V4, its approximation /7w € V4 is an admissible test function
and coincides with w whenever possible. Finally, /7 has the following stability and

approximation properties, where the hidden constants depend only on d, n, and the
shape regularity coefficient o: for any element T € 7 and any face F € 7,

IVIrwll 2y S 1YW 20y (4.64a)
lw = Igwll2ay S hr VWl 2(0p)s (4.64b)

1
Iw = Irwll2py < hplIVwli L2 (4.64¢)

(wF)*
The sharpening of the simple upper bound (4.60) lies in the fact that only a part

of the estimator in (4.52) will be invoked. To formulate this, we define

1/2

Ertur, £, T) = | ), Ertur, f,T) (4.65)
TeT

where 7~ C 7 is a subset of elements in 7. In the same vein, we shall denote
ny(ur, f,7) and oscq(f, 7).

Theorem 4.48 (upper bound for corrections) Let Assumption 4.44 hold and let
7. be a refinement of the mesh 7. The correction ug: — uqg is bounded in terms of
the indicators of the refined elements T\ 7.:

Vg = us)ll 2@ < Coba(ur, £, T\ ),

where the constant Cyy > 0 depends only on the dimension d, the coefficients A
and c, the polynomial degree n, and the shape regularity coefficient o from (3.9).

Proof. [1] Localization and splitting of the residual norm. Inlight of Lemma4.47,
it suffices to bound the discrete residual norm [[Ry]|v,.). Given w € Vo, we
prepare the localization of the residual by full orthogonality (4.61) and split it with
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help of the projection P on discrete functionals:
[(R7, w)| = (R, w = Igw)|
< KP7Ry,w — Igew)| + [{f — Prf,w — I7w)|,
where we used the identity R — PR = f — P4 f in the last step. In light of
Erlur, f,T\ T =ng(ur, £, T\ T)* +oser(f, T\ T,

it remains to bound the two terms with discretized residual PR+ and the oscillation
of f appropriately.

Bounding the discretized residual. We adopt the notation (4.35) for the
densities of P¢, and exploit the piecewise nature of the discretized residual and the
local invariance (4.63b) of I+ to deduce

(PrR7,w — Igw)

1
= . / (PrROWw = Irw)+5 > | (PeRW = I7w)
r Fcar\oe’F

TeT\T-

Invoking the local approximation properties (4.64b) and (4.64c) of 14 leads to the
desired bound for the discretized residual:

|<P7'R7',W—I7'W>|S Z UT(uT’f’T)HVWHLZ(wT)
TeT\7-

snr(ur, LT\ T) 1YWl 2)-

Bounding the oscillation. We need to split the oscillation into suitable local
contributions and first proceed similarly to the proof of Lemma 4.5 (localization
H~ ! norm) (i). Writing

w—Iyw = Z(w —Iw)¢, and €Qp:= U T,
zeV TeT\T.
we have (w — Iqw)¢p, € H(l)(cuZ N Qp) thanks to (4.63b) and, for any 7 C w, N Qg
IV (0w = Irw)d2 )2y < 162V W = Iew)l 2y + 1w = Iew)V | 27
< IVw = Iew)ll 2y + C@a VW 2o
S IVwll2eewr)
by means of 0 < ¢, < 1, |[V¢.| < C(d)oh3!, (4.64a), and (4.64b). Hence, we get
(f = Prfow =Irw)| < D" 1(f = Prf.(w = I7w)s)]

zeV

< N = Prs Ul nan IV (00 = 17w)2) 2200, n00)
zeV

$ D 1 = Prflla o 1YW 20 gy o)
zeV
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12
< (Z ||f—PTf||§1_|(wzmQO)> IVwllL2)-

zeV

Since

DN =Prfl oy < D, W =Pl

zeV TeT\7.

the oscillation of f is therefore bounded by

I(f = Prfow —Igw)| < oser(f, T\ TOlIVwll 2

and the proof is complete. Ul

Proposition 4.12 (partial lower bound) as well as Lemma 4.35 (splitting of local
residual norm) illustrate that the test space V7-is closely related to lower bounds for
the error. This observation suggests establishing lower bounds for the correction
IV(ug — ug)|l L2y by ensuring conditions like

VH(Te) € V(T

where w is a 7-mesh subdomain. Inspecting the construction of V7., we realize
that such conditions can be achieved if max{m,m>} < n — 1 and the cut-off is

implemented with hat functions of a virtual refinement of 7.

Lemma 4.49 (cut-off by refined hat functions) Ler 7, be the minimal bisection
refinement of T such that the relative interior of each element T € T and each face
F € F of the original mesh T~ contains at least one vertex from T1. Then there exist
hat functions ¢7, T € T, and ¢, F € F, in SVO(T5) satisfying Assumption 4.21 if
max{m,mp} <n-—1.

Proof. The details of the proof depend on bisection and we therefore restrict to
the case d = 2; for d > 2, the following reference situation used to define the
hat functions is replaced by several ones with “tagged” reference simplices. Let
T = T5 be the reference element in R? with the standard enumeration of its vertices
20 = 0,71 = e1, and 73 = e,. Furthermore, let 7y be the mesh obtained by applying
5 bisections so that vertices in the interiors of 7 and of its faces are generated.
Denote by q@}, 5 r, F' C f, the four hat functions in Sl’o(ﬁ) associated with these
generated vertices. Given an arbitrary element 7' € 77, let Hy denote the bi-affine
map T — T preserving the numbering of the vertices for bisection and define the
pull-backs

ér = Hy (5;) ¢rlr = Hy (‘ZHT(F))’ FeT,

and extend by O off 7 or wr. As the extension operators Er preserve the polynomial
degree, see Lemma 4.20 (extending from faces), max{m,m>} < n—1, and

{H;l(ii) | i:+ € ﬁ} = {T+ €T | Ty C T},
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the hat functions ¢, T € 7, and ¢p, F € F, then satisfy Assumption 4.21 with
Gr = H;' and S* = S™0(7). O

Definition 4.50 (interior vertex property) A mesh element T € 7 satisfies the
interior vertex property with respect to 7, > 7 whenever each interior face F C
OT \ 9Q of T and each element in wr (defined in (3.12)) have in their relative
interiors at least one vertex from 7.

A set M c T satisfies the interior vertex property with respect to a refinement
7. = 7 if each element T € M satisfies the interior vertex property.

The interior vertex property is valid upon enforcing a fixed number b of bisections
(b =3,6 for d = 2,3). An immediate consequence is the following lower bound
for corrections.

Theorem 4.51 (lower bound for corrections) Suppose A is piecewise constant
over T and ¢ = 0, define Pq with the help of the cut-off functions in Lemma 4.49,
and denote by M the subset of elements in T satisfying the interior vertex property
with respect to T. Then

D Ertur, £, < ClIVGr —ur)Fagy + D N = Prfll i,
TeM TeM

where C depends on d, the shape regularity coefficient o, the coefficients (A, ¢),
and on the polynomial degree n.

Proof. |I| We first show a local bound with the PDE indicator nq(us, T). In view
of A € Sg’._l and ¢ = 0, we choose m; = n — 1 and m, = n — 2 as the degrees for
the discrete functionals. We can thus apply Lemma 4.49 and construct P4 with
the refined hat functions. Let 7 € M and so, using the interior vertex property
and the notation associated with wr in (3.12), we deduce V*(77) € V(7.,T) :=
V(TN Hé(a’?r), where 77 := {T € T | T C wr}. Combining this with inequality
(4.45) and Definition 4.24 (projection onto discrete functionals), we conclude

nrus,T) S ||P‘7'R7'||V+(7~§~)* = ”R‘T”V+(7~§~)* < ”RT”V('E,T)*‘

To collect the local bounds of the first step, we first show that, for any
e V(T.)",

2 2
DR, < @D oy
TeT

To this end, we just repeat the proof of Lemma 4.5 (localization of H~'-norm),
replacing the spaces Hé(w,-) and Hé(Q), respectively, with V(7.,T) and V(7).
Hence, squaring and summing the bound of the first step as well as using Lemma 4.1
(error and residual) yield

D TP £ D IRAR gy < IV —uplsg,.  (466)
TeM TeM
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We finally prove the claimed bound by simply inserting (4.66):
D, Ertur f. TV = ) (nr(ug T) + oser(f.T7)

TeM TeM

< ClIV s = up)}a, + ). oser(f,T)
TeM

and the proof is finished. O

Remark 4.52 (oscillation and correction) In general, fixing first the finer mesh
7., it is impossible to bound oscillation indicators oscy(f,T) by some suitable
correction. Indeed, these indicators can contain contributions to f and so to Rs of
“arbitrarily high frequency”, while the correction can control only contributions of
the residual Rs with frequencies representable over 7;; cf. (4.58).

Monotonicity properties of the error |u — us|y l@ = IV(u — uq)ll 12 and the
PDE error estimator nq-(ug) = ny(us, f) with respect to 7~ would be useful but fail
to hold. To investigate this issue, we consider two admissible meshes 77, 7, € T,
the latter being a refinement of the former 7, > 7, and a third admissible mesh
7 < 7. We further assume that data D = (A, c, f) is discrete over 7 in the sense
that O € Dz where

dxd

D‘f' = [Sg\__l’_l] X S;i__l’_l X F‘f'

and D does not change in the transition from 7~ to 7 irrespective of the degree of
local refinement; in particular f = Pz f € Fz. We will later denote discrete data

asD = (Z, c, f) to distinguish it from exact data O, and to study their discrepancy,
but we prefer to keep the simple notation D = D now because there is no reason
for confusion. In particular, this implies that the bilinear form in (2.8) and forcing
function are the same for both Galerkin solutions u4 € V4 and uq. € V4, whence
the energy errors are monotone according to (3.8)

lle —uslle < llu - urlle,

but not |u — us|y L@ Moreover, ns(uq) is not monotone because the discrete
solution ug € V4 changes with the mesh. It is thus useful to quantify the behavior
of no(ug) in terms of 7 and u4 following [Cascén et al. 2008]; see also [Morin,
Siebert and Veeser 2008]. We do this next.

The first lemma exploits the structure of the PDE residual estimator, namely the
presence of a positive power of the local meshsize, and expresses the reduction
of no-(v, f) relative to ng(v, f) for fixed functions v € V4 and f € Fq. This
quantitative property is instrumental in studying convergence of AFEMs for coercive
problems in Section 6 as well as discontinuous Galerkin methods in Section 9 and
inf-sup stable problems in Section 10.

Lemma 4.53 (reduction property of the estimator) If the elements of M C T
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are bisected at least b > 1 times to refine T into T, and 1 = 1 — 27b/d then
N7, [T < g, fLT? = Anr(v, LMY W eV, f €Fr. (4.67)
Proof. GivenT € 7, we rewrite (4.52) as follows
Ny (v, 1) = hy jr(v, T)? + hire(v, T)?
with ne-(v,T) = no(v, f,T) and

Jr, TV = jr, £,17 = > N TAW] - np = Prfl, o,

FeF
Fcor

rT(V, T) = rT(V’ f’ T) :”PTf + le(AVV) - CV”LZ(T),
where f = Pqf = Pg.f € Fq does not change from 7 to 7.. We readily have
D, nn0 L) <nr(n 1)
T.e7,, T.CT

because hy, < hr forall T, ¢ T and T, € 7.. If, in addition, 7 is bisected at least
b times, then any such 7, satisfies hy, < 2-d hr, whence

>z T)? < 2. T
T.€%;, T.CT
Therefore, adding over T € 7~ we obtain
_b
nr@?= > > T <27 Y e T+ Y g, 1)
TeT T.€7:, T.CT TeM TeT\M

which implies the assertion (4.67). O

The next result complements Lemma 4.53 in that it expresses the Lipschitz
continuity of n4(v, f) withrespect to the argument v € V4forfixed 7 and f € F.

Lemma 4.54 (Lipschitz property of the estimator) Let 7 and f € Fq be fixed.
There exists a constant Cr;, proportional to ||Al|p=~) + ||c|| =) such that

7, ) = 7w, Ol < Crplv =wlgiq)y Yv,w € Ve (4.68)
Proof. Since ny(v) = no(v, f) isthe £2-norm of the vector My, T)reg € R*T,
applying the triangle inequality gives
2 2
) = nr* < > |1, T) = 0w, )|
TeT
: : 2 2
< 3 heljg .1y = jrw, D + By |rr . T) = ro(w, T,
TeT

We first consider the jump terms and apply again the triangle inequality followed
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by an inverse estimate to find that

. D) = jrw. D < 7 1 TAVE = w)ll - nel2sy

FeF
FcoT

-1 2 2
< hT ”A”Lw(g)”V(V - W)”Lz(wT),

where wr is the patch of 7. A similar reasoning for the element residuals yields

2 .
|rT(V’ T) - r‘T(W, T)l < ||C(V - W)”iZ(T) + ” le(AV(V - w))lliZ(T)

S lelB @l = WIE s, + AP 1A« IV0 = w25 -
because A is piecewise polynomial. Finally, adding over T € 7 and applying

Lemma 2.2 (first Poincaré inequality) concludes the proof. U

Since the estimator n4(v, f) depends explicity on Ps f, and P+ f may change
with 7, it is crucial to account for the variations of n4(v, f) while keeping 7~ and
v € V¢ fixed. This is the purpose of our next result.

Lemma 4.55 (estimator dependence on discrete forcing) Let 7 and v € Vg be
fixed. Then there exists a constant Cy;, such that

1/2
|UT(V7 f) - UT(V, g)| < CLip (Z ”f - g”il_l(a)'[)) Vf’g € FT (469)

TeT

Proof. We proceed elementwise, as in Lemma 4.54, except that after applying the
triangle inequality we end up with the weighted L?-norms

WENf = 8l + o f = 8l 2ory VT ET.

Extending these norms to patches wr and its interior faces o, and appealing to
Corollary 4.30 (quantifying H~'-norms of discrete functionals), we deduce

WS = 8P sy + T = 81y 1 = 811
Adding over T € 7 finishes the proof. O

In the subsequent applications of Lemma 4.54 the discrete coeflicients (A, ¢) may
change with the change of the supporting mesh 7 but they will always be uniformly
bounded in L*(£2); hence the constant Cyjp is uniformly bounded as well. Upon
combining Lemmas 4.53, 4.54 and 4.55 we obtain the following crucial property.

Proposition 4.56 (estimator reduction) Given 7 € T and a subset M C T of
elements marked for refinement, let REFINE be the procedure discussed in Section
3.5 that bisects the elements of M at least b times and T, = REFINE (T, M) be
the resulting conforming mesh. Let the coefficients (A, c) be discrete and fixed.
Thenfor A =1-27%"4 forallv e Vo, v, € Vo, f € By, f. € By, and any § > 0

N7 0er for T < (L 4+8) (07 (v, f.T) = Anr(v, fL M)?)
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* €%

+2(1+67HCp, (Iv* - vli,ol(g) + Z Ifs = f||12q-1(wn)> ’
T.e7:

where Cy;, is the constant in Lemmas 4.54 and 4.55.

Proof. For any 6 > 0, write

N7-es fus TP < (1407 (v, T+ (1467 (072 £ T) = 020, £ T0))

and apply Lemma 4.53 to the first term and Lemmas 4.54 and 4.55 to the second
one combined with a triangle inequality. U]

We finish this section by investigating the behavior of the global oscillation under
refinement.

Lemma 4.57 (quasi-monotonicity of oscillation) If f € H™'(Q) and 7,7, € T
with T, > T, then
0scq:(f) < Cosc 05c7(f),

where Cos. depends only on the shape regularity coefficient o and d.

Proof. GivenT € 7 ,letT, € 7. such that T, c T. Since 7 is a refinement of 7,
this implies that the patch wy:(7) in 75 around 7. is contained in the patch w(T)
in 7 around 7. Thanks to Lemma 4.31 (local near-best approximation), we derive

oser(fs T = 1 = P fN31 w0, 1y < Cisold = PO N1, 1y
and therefore, with the help of (ii) of Lemma 4.5 (localization of H~!-norm),

Z OSC‘E(f’ T*)Z < ClzstbCOVﬂ”(I - PT)f”éfl(a)T(T)) = ClzstbCOVrl OSCT(f, T)z’
T.cT

where C,yy is bounded in terms of the shape regularity coefficient o and d. Hence,
summing over T € 7 yields

oser(f) = D" > 0ser(f, 1) < CigyCom 0scr(f)?

TeT T.cT

and the proof is finished. U

4.9 Alternative estimators

In Sect. 4.7 we used the H™'-projection P to derive a posteriori bounds for the
error in the spirit of the standard residual estimator. The goal of this section is to
illustrate that the approach with P4 can be combined also with other techniques of
a posteriori error estimation, generalizing and expanding the discussion in [Kreuzer
and Veeser 2021, Sect. 4] with the H~!-projection P

Alternative techniques have been developed with the desire to reduce or even
circumvent that constants spoil the relationship between error and estimator. In the
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framework of the aforementioned approach, we shall see that the various techniques
based upon

e [ocal (discrete) problems,
e hierarchy,
o flux equilibration

amount to different ways of quantifying a local norm of the discretized residual
P4Rq. This observation is useful for comparing the techniques and for a common
treatment in the following sections about adaptive algorithms.

As in Sect. 4.7 on modified residual estimation, we shall consider only the case
given by Assumption 4.44 (discrete coeflicients and discrete functionals). For the
hidden constants in the results of this section, it is useful to keep in mind Remark 4.4
(constants in error-residual relationship).

Theorem 4.45 (modified residual estimator) analyzed an element-indexed version
of the residual estimator. For the sake of simplicity, we shall refrain here from such
an element-indexed setting and remain in the vertex-indexed setting of the abstract
analysis of Sect. 4.6. In order to facilitate the comparison with the other estimators
below, we offer the following vertex-indexed variant of Theorem 4.45. For z € V,
weset ¥, ={F e€F |z€ F}and 7; := {T € T | z € T}. Given the Galerkin
approximation u¢- from (4.1), define the PDE indicator by

nE ) = ) 2’ with
zeV

2 E 2 § 2 2
UI;S(”T, Z) = hF||PFRT||L2(F) + thlpTRT||L2(T)a
Fe¥, TeT.

where R+ = f + div(AVuqg) — cuq € H™Y(Q) is the residual and Pg, F € F
and Pr, T € 7 yield the polynomial densities of Ps; see Definition 4.24. The
vertex-indexed modified residual estimator is then

EF = 8 (ur, ) =g (ur)’ +oscr () (4.70b)

(4.70a)

Theorem 4.58 (vertex-indexed modified residual estimator) Suppose Assump-
tion 4.44. The modified residual estimator (4.70b) is equivalent to the error:

min{ 1 ’ CL,res}

*
ClStb Ca

ar;is S |IV(u - ”‘7')”[,2(9) < max{l, CU,res}Cdclocar;zs,

while its PDE indicator (4.70a) is locally equivalent to the discretized residual: for
all vertices 7 € V,

CL,resnge's(u‘Tv 7) < ”P’TR‘THH-I((UZ) < CU,resnfje-s(uT’ 2).

Here, C1, o5 and Cy res are the hidden constants of Corollary 4.30 on stars, Cl’gtb

is the stability constant of Pq on stars from Lemma 4.28, Cio is the constant
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from Corollary 4.6, C4 = \2(d + 1), and the hidden constants depend only on the
error-residual relationship in Lemma 4. 1.

Proof. Local equivalence is a reformulation of Corollary 4.30 (quantifying H~!-
norms of discrete functionals) on stars. The global bounds follow by combining
local equivalence with Lemma 4.1 (error and residual), Corollary 4.6 (star localiz-
ation of residual norm), and Lemma 4.35 (splitting of local residual norms). [

Adjoint projection

The projection Py relates residual Rg- and discretized residual P7-R4-. In order to
exploit this relationship on the test space Hé (L), we shall need the adjoint P to
the projection P4. Curiously, operators employed in this vein appeared first; see,
e.g., [Morin, Nochetto and Siebert 2003] and [Veeser 2002].

Given w € Hé (€2), the function P7-w can be directly defined by requiring
PoweVi: (6, Pow)=(,w) Vl{eFs 4.71)

This definition is well-posed thanks to Lemma 3.1 (discrete inf-sup condition)
and Lemma 4.25 (algebraic properties), especially (4.37) and (4.38). Clearly,
P is a linear projection onto the finite-dimensional subspace V- C Hé(Q). A
representation as interpolation operator will be derived in Corollary 4.61 below.
Using both definitions of P+ and P, we see that they are actually adjoint:

(Prt,w) = (Pgl, Prw) = ((, Prw) Ve H ' (Q), w e H)(Q).  (4.72)

Consequently, Lemmas 4.25 and 4.28 (local H~! stability) show that P is alocal
operator with

||P*T”L(H0'(w)) = ||P‘T||L(H-1(w)) < Cisib- (4.73)
The choice £ = R4 in (4.72) leads to
(PR, w) = (PrRy, Pyw) = (Ry, Prw)  Vw € Hy(Q),

where the two identities show that the discretized residual P7R¢ can be analyzed
with discrete test functions in V- only, cf. the norm equivalence in Lemma 4.28.
Restricting to discrete test functions in V- = Im P7., we obtain:

(P7R7,w) = (R, w) VYw € Vi (4.74)

An estimator based upon local problems

Local dual norms can be quantified by solving local problems. Requiring com-
putability of these solutions leads to finite-dimensional or discrete local problems.
In other words, we lift the residual to local and finite-dimensional extensions of
the finite element space. Starting with [Babuska and Rheinboldt 1978], this idea
was used to soften the impact of constants in the relationship between error and
estimator; cf. [Verfiirth 2013, Remark 1.22] for more references.

Within the approach of Sections 4.1 and 4.6, we can use local discrete problems
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to quantify the local H~'-norms of the discretized residual Ps-Ry. In this manner,
constants arise only due to the localization of the residual norm and to the splitting
into discretized and oscillatory residual by the H~!-projection P-.

We start by introducing the vertex-oriented PDE indicator. Given the Galerkin
approximation u¢ from (4.1), set

1 b . Ipb
Plur) = ) nPwr, 2’ with nPwr,2) = 1Vella,),  (4758)
zeV

where v, € V*(7;) is the solution of the local problem
/ Vv, - Vw =(Rr,w) VYw € VH(T). (4.75b)
wz

Note that this problem is discrete for dim V*(7;) < co and therefore can be solved
up to machine precision. The resulting estimator is then

& = &L ur, )7 =0y (ug) +oscr (/). (4.75¢)

Theorem 4.59 (estimator based on local problems) Under Assumption 4.44 the
estimator (4.75) based on local problems is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound so that

1 ]pb

* ‘7'
ClStb Ca

S IV = Pl 20 S Cliy CaClocE

and, for all vertices 7 € V,
1 b
o (7, 2) < |PFR7| 110, < Clstbﬂrr (ug,2)

where Cl’é p IS the stability constant of Py on stars from Lemma 4.28, Cioc from

Corollary 4.6, C4 = V2(d + 1) and the hidden constants depend only on the error-
residual relationship in Lemma 4.1.

Proof. 1t suffices to show the local equivalence for the PDE indicator; cf. The-
orem 4.58 (vertex-indexed modified residual estimator) and note Cl’étb > 1. Let
z € V be any vertex. In view of (4.74), the definition of v, € V*(7) readily
implies

Ipb
Ny (wr.2) = IVl 2w, = IPTRT vy -

Hence Lemma 4.28 on the local H™!-stability of Ps yields the asserted local
equivalence of PDE indicator and discretized residual PsR. L]

A stable biorthogonal system for Fq X V7

Stable biorthogonal systems induce linear bounded projections, which enjoy near-
best approximation thanks to the Lebesgue lemma. Supposing Assumption 4.21
(abstract cut-off), we now outline the construction of such a system for the finite-
dimensional product Fg-x V’,}. The constructed system will induce both projections
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P and its adjoint P7.. This generalizes the bi-orthogonal system in [Kreuzer
and Veeser 2021, Sect. 3.4] to arbitrary degrees of the discrete functionals and
provides an alternative approach to P, its local stability as well as its computation.
Furthermore, we use it for devising an hierarchical estimator.

The construction is implemented in an affine equivalent manner and our first
step consists in setting-up a suitable reference biorthogonal system. Let T := T, be
the reference element, F := T;_; X {0} C T be the reference face, and denote the
polynomial degrees in Fq- by m; € Ny and m, € Ny. Writing

K| := dim P, (F), Ky := dim P, (T),

assume that we are given orthonormal bases 4.1y 4 F.K) € Pml(f ) and

471y 49F k) € Py, (T) in the sense that

-/F; Q(f’k)Q(f,1)¢f5 = Oki» Aq(f,k)q(f,l)¢f = Okl (4.76)

for all admissible k,/, i.e. k,{ € {1,...,K }or{l,...,K>} depending on the
underlying domain. These bases induce the reference functionals

ﬁ(ﬁ’k)(w) :=‘/ﬁq(ﬁ,k)w, f(ik)(w) :='/fq(ik)w,

on H(T), which in turn span the reference space F. In order to define comple-
menting test functions, let E be the extension operator (4.4) associated with the
reference face F adapted to the current situation with the only element T, and,
given some v € L*(T), define Qv € Py, by

/Aq (Qv)or = /Aqv Vq € Pryy. (4.77)
T T
We thus define the reference test functions

Wi =45t k=1.....K, 4.78)

—~

BEn =i~ (QVF )07 k=1..K,
with ¥z ) = (Eqz )05 Note Wz, # 0. Writing 7 := {(F,k) | k =
...} Uu{(T, k)| k=1,...,K,}, we then have

W eV = {(Eq1)¢f +q207 | 41 €Ppyq2 € sz}
for all i € 7 and the biorthogonality
Vi,jel (&,w;)=6i; (4.79)

thanks to (4.76) and (4.77). We thus dispose of a biorthogonal system in the
reference product F x V*.
Using pull-backs with some minor tweaks, this reference biorthogonal system
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induces a global biorthogonal one. To this end, we employ bi-affine maps GF,
Gr, and G(r F). Here, e.g., given a pair (T, F) € 7 x F with F C T, the map
G(r,r) is bi-affine and sends vertices into vertices such that Gr, F)(f) =T and
G, F)(I? ) = F. The fact that these maps are only unique up to some renumbering

of the vertices is irrelevant as all objects in the reference situation on (f, F ) are
invariant under such renumberings. We denote the respective inverse maps of G,
Gr,and G7,F) by Hr, Hr, and Hr ). Motivated by the transformation rule, we
introduce the scaled pull-backs, for F € ¥,T € 7, k admissible,

1 1
F1)? . 71\ .
q(F k) = <m Hpd py 4Tk = [l Hr 47 1 (4.80)

of the reference orthonormal bases in (4.76). These lead to the basis

UF W) 1=/Q(F,k>w, Ut (W) 2=/Q(T,k)w, (4.81)
F T

of F, while the associated test functions are given again through pull-backs:

(TN _(1IFN? . -
W(T .k) = m HTW(T,k)’ W(F.k)|T = m H(T,F)W(f,k) (4.82)

forallT € 7, F € ¥ with F C T and all admissible k. Note that wr ) € Hé(Q).
Finally, we introduce the index set

Ii=(Fx{l,....Ki}) U (T x{1,....K2}).
and observe that w; € V¥_foralli € I.

Lemma 4.60 (biorthogonal system) The pairs ({;,w;), i € I, provide a stable
biorthogonal system of the product Fy- x VI indeed, (;,w ;) = 6;; forall i, j € 1
and, writing I, :={(S,k)e I | S> z}forall 7z €V,

Dl -1 VWil 20,y < Closs

iel;
where the constant Ct:os depends only on d, my, my and the shape regularity
coefficient o from (3.9).

Proof. [1] We first establish the biorthogonality. Thanks to the transformation
rule, the scaled pull-backs (4.80) indeed form local orthonormal bases of P, (F),
Fe¥f,and P,,,(T), T € T:

/FCZ(F,k)Q(F,Z)ﬁbF = /ﬁq(ﬁ,k)q(ﬁ,l)(bﬁ = Okis ‘/T‘I(T,k)Q(T,l)¢T =0n (4.83)

for all admissible k and /. This orthonormality, combined with the local supports
of the pairs ({;, w;), i € I, shows the biorthogonality, except for the cases when
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(T,F) e 7 x¥ with F C T and k, [ are admissible. Here transformation rule and
the definition of Q imply

1

ITIIF]
<€(T,k),w(F,1)>=/Tq(r,k)wm,z>= (W) /féuf,k)w(f,z)

1
IT|F|\° _
- (i) Fars (e @isaor) =0

and biorthogonality is verified.

It remains to show the stability bound for any vertex z € V. Giveni € I, we
have either i = (T, k) with T € 7 ori = (F, k) with F € ¥. On the one hand, the
functional ¢; satisfies

1
”€(T,k)”H—1(wZ) S hr or ||5(F,k)||H—l(wz) < hf;

since, by passing to the reference element and using orthonormality (4.83), (a
variant of the) Poincaré inequality (2.2) and the trace inequality on 7, we have

1

AW .
(b k), W) =/T61<T,k)W= (ﬁ _4d 0TV

LN .
7l laz il 2 IGT Wl 27

1

7|
< <| |Q(T k)| ¢T ”V(GTW)HLZ(T) < hT||VW”L2(T)

or, withT € 7 suchthat7 O F,

IA

IF|\*
(b pyw) = /Fq<F,k>w = (ﬁ I;q(f,k)G(T W

1

N e 3
= ||q(F,k)||L2(F)|| (T,F)WHLZ(F)

IA

|F|

<|—> (/ 197 1| ¢F> IV(Gir W)l
<| 71\’
|

IT|

A

1
) hr 1YWl 2y S hplIVWIl L2ery.

! 51)

A

E)
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On the other hand, we obtain that the function w; verifies
.~
v _ (1T V(. <\ < Bl
” W(T,k)”L2(T) = m ” ( Tw(f,k))”Lz(T) S fr ”W(f’k)”LZ(f) S Np

or

L T —
IVwEollzay = (m ”V(H(T,F)W(f’k))”LZ(T)

1
(TN~ -1

< hr (m) IWF olleg < he'
Using these inequalities to bound ||£; || -1 Vwilly2¢.,.y, sSumming over alli € I
g q H'(w,) L2(w:) g z

then establishes the stability bound as the cardinality #/, is uniformly bounded in
terms of the shape regularity coefficient o . Ul

Corollary 4.61 (projections as interpolation operators) The biorthogonal sys-
tem (6;,w;), i € I, induces the H™'-projection Pq from Definition 4.24 and its
adjoint P’,;_. Indeed, we have

Pyt = Z(f, widt; and Pyw = Z(&-, wiw;
iel iel
forall ¢ € HY(Q) and w € Hé(Q). The stability of the biorthogonal system then
provides an alternative proof of the H™'-stability on stars of both projection P
and P, entailing C),, < Clq.

Proof. [1]We only show the identity for Py the one for P can be verified along
the same lines. The biorthogonality in Lemma 4.60 readily implies

<Z<5, wi>£i,wj-> = D Ubwidliwy) = (Lwy) Vi€l
iel iel
Aswj,® € [ is a basis of V7, we conclude the claimed identity for Pg-.

To verify the stability statement, we again restrict ourselves to the case of
the projection P4. Observe first that the proof of the stability of the biorthogonal
system does invoke the local stability of P4 Thanks to the representation of P
and the stability of the biorthogonal system in Lemma 4.60, we have

(Prt,w) = Z(f,wi><fi,w> < Coosllell 1w 1YWl 12,
i€l
where I, := {(S, k) € I |S > z}. The proof is finished. Ul

The following two remarks illustrate the practical and theoretical usefulness of
the representation formulae.
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Remark 4.62 (alternative computation of Py) A by-product of Corollary 4.61
is a way of computing P4 for a given functional £ € H~'(Q) that “diagonalizes”
the approach in Remark 4.26. In fact, given reference orthonormal bases as in
(4.76), we can compute the functionals ¢;, i € I, and test functions w;, i € I, by
means of the formulae (4.78), (4.80), (4.81), (4.82) whence, evaluating (€, w;),
i € I, everything in the representation of P4 in Corollary 4.61 is at our disposal.

Example 4.63 (global instability of P-and P7) While the projections Pg and
P arelocally stable, both may become globally unbounded under mesh refinement.
To see this, recall (4.73), note || Pr|| p(g-1(q) = ||P;_||£(H01(Q)) and, following the
spirit of an example in [Tantardini ef al. n.d.], consider

W= Z ¢. € HY(Q).
z2eVNQ

Then, for all quasi-uniform meshes 7~ with shape regularity coefficient o, there is
a constant C depending on o and quasi-uniformity such that

VP2 L MTeT | TnoQ=0)

P* 2 > > .
1P 11 1991, #HT e T |TNIQ 0}

(4.84)

Obviously, the last term tends to co under uniform refinement.

To prove (4.84), we proceed in several steps, mostly hiding constants depending on
quasi-uniformity of 7~ and, as usual, the shape regularity coefficient o and d.

We first bound [|Vw|| ;2 from above. Noting that
w=1 on U T,
TNoR=0

the bound [V, || =) < hy!' readily implies

IVwiZog = >, VWl SHT €T [TNOQ#0}hE2, (485

TNoQL+D
where hq4 stands for the meshsize of 7.

The lower bound for ||[V(PZw)||2(q) is more involved. We start by showing
the following representation for any 7 € 7 with T N 0Q = 0:

Pi}w|T =H;v (4.86)
with the fixed function

1
= - F1\° _
V= Z (/% (I(T,k)> WTnt Z ( 7l ﬁQ(f,k) W k) € Po,

(T, kel (F',k)

where the indices of the second sum vary according to F’ C T, k=1,...,K; and
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w( F’.k) 18 given by (4.82) with the transformation H 4 T.Fry Note first that, thanks to
=1 on T and (4.80), the coeflicients in the expansion of Pow|r satisfy

12
T 1), w) = / q(T k) = @ /Aq(f 3
T |T| T

and, forany F C T,

1/2
(EF k)W) = / q(F.k) = @ /Jl(f 5%
F |F| F ’

Combining these identities with (4.82) yields the claimed identity (4.86) and it
remains to verify v ¢ Py. Suppose v = ¢ € R. As a consequence, for any face
F'cTandk € {1,...,K;}, we have

= /2 -1/2 1/2 -1/2
¢ =Wk = | FI"IF V20 5 4 = |FIPLF | e,

As not all faces of the reference simplex have the same volume, this yields ¢ = 0.
From (4.78) and (4.76), we infer that the coeflicients in the definition of v _vanish.
In particular, /T 471 =0 forall k = 1,..., K, means Q1 = 0, where Q is the
operator given in (4 77). This however is a contradlctlon because the restriction of
Q to P,,, is injective. Hence, v ¢ Py is proven.

We are ready to show the bound for |[V(P7-w)l[;2q). Given any element
T € 7 with T N 0Q = 0, we pass to the reference element to exploit the previous
step and obtain

* * d/2-1 —~
IVl 2y = IVEF DN 2y 2 B2 IO 2,

with [|[VV]| . T > 0 independent of 7. Consequently,

VP 2o = D, VP2, 2 #T € T | TN oQ =0} hi>
TNoR=0

because 7 is quasi-uniform. Combining this lower bound with the upper bound
(4.85) of the first step, we conclude (4.84).

A hierarchical estimator

Like estimators based upon local problems, hierarchical estimators aim at softening
the impact of constants in the lower bound, with the difference that they are explicit.
While global higher order extensions were used originally, [Bornemann, Erdmann
and Kornhuber 1996] use an extension tailored to the residual structure and derive
an upper bound with indicators testing the residual with a basis of the extension.
One may expect that such explicit indicators come at the price of increased constants
in the upper bound. For the following example, this expectation is confirmed by

*
the inequality ClStb < Clos-
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Given the Galerkin approximation u 4 from (4.1), the hierarchical PDE indicator
is defined by
hler(u ) _ Z nhler(uT’ Z)2 with nhler(u(r’ ) - max 5 T W>| (4873)
o=y il [|[Vw; ||L2(w )
with / and I, as in Lemma 4.60 (biorthogonal system). Note that the test functions
w;, i € I, are available, cf. Remark 4.62, and therefore n},‘r‘er(urf) is explicit. The
resulting estimator is then

Theorem 4.64 (hierarchical estimator) Suppose the coefficients A and c are dis-
crete. The hierarchical estimator (4.87) is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound.:

-, ENT < IV — up)ll 2 S CrosCaClocEne”
ISth

and, for all vertices 7 € V,

hi hi
ler(“T? Z) < ”PTRT”H '(u)z) < CbOSU’]l'er(u'Ta Z)’

where Ci, is the stability constant of Py on stars from Lemma 4.5, Cioc from

Corollary 4.6, Cq4 = V2(d + 1), and the hidden constants depend only on the
error-residual relationship in Lemma 4. 1.

Proof. 1t suffices to verify the local equivalence for the PDE indicator; cf. The-
orem 4.58 (vertex-indexed modified residual estimation). Its lower bound simply
follows from (4.74): for all i € I,, we have

KR7, wi)| = {PTR7 wi)| < IPTRT I 100y VWil 120,

To show its upper bound, let w € Hé(wz) and, with the help of Corollary 4.61
(projections as interpolation operators) and Lemma 4.60 (biorthogonal system),
we derive

(PrR7,w) = > (R, wi) (G, w)
i€l
(R, wi)
< Z Vo, ||L2(l )”Vwi“Lz(u)z)||€i”H*1(wz)“VW”LZ(wZ)
w

< C bOS n};er(u% 2) ||VW”L2(Q)Z)

and the local equivalence is established. UJ
Remark 4.65 (different test functions) The hierarchical estimator (4.87) does not
generalize the one in [Bornemann ef al. 1996] as it uses slightly different test

functions for edges. The given framework however applies to their variant, too; cf.
[Kreuzer and Veeser 2021, Sect. 4.1].
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Alternative localization and residual splitting

Lemma 4.5 (localization of H~!-norm) is not well suited for reducing or avoiding
constants in the upper bounds. The following modification however allows this.

We replace the local spaces H(w;), z € V, with

{weH ()| [ w=0}, ifzeVngQ,
W, = @z
7w e H' w,) | w=00ndw, ndQ}, ifzeVNnaQ,

endow them with the norm ||V - ||;2(,.), and denote by W7 the respective dual
spaces endowed in turn with

1€||w= := sup {(f,w) | we W, [[Vwll 20, < 1}. (4.88)

Lemma 4.66 (alternative localization of H-!-norm) Letr ¢ € H™'(Q) be any lin-
ear functional.

(i) If (€, ¢,) = O for all interior vertices z € V N Q, then
1€, 1) < @+ D) D 116 L11 -
zeV
(ii) We have
D16l < (d+ DCRNER, 1
zeV
where Cioc is the constant in Lemma 4.5 (i).
Proof. The proof is essentially a regrouping of the arguments in Lemma 4.5,

where the constant Cjo. in the stability bound (4.6) now arises in the proof of the
lower bound from the following argument: we have

lgLllw: < Croclllllg-1(0,)- (4.89)
thanks to
(B2low) = (€ bow) < Nl i1 IVOVO 1200
< Ciocllell 1w VWl 2w )
forall w € W,. L]

The question arises whether the inequality (4.89) between the two local dual
norms can be reversed. The following lemma reveals that this is only partially
possible, covering discrete functionals as arguments.

Lemma 4.67 (partial equivalence for local dual norms) Ifz € V N Q is an in-
terior vertex, the functional € = ¢21 satisfies

lgLllw: =0 and ||€l|g-1(0.) > 0.
Furthermore, for any vertex z € V,

1l 1w,y < Cellg=Lllw: V€€ E(T),
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where the constant Cr depends only on d, the shape regularity coefficient o, and
the degrees m| and my of the discrete functionals.

Proof. We show the claims on the functional £ = ¢5;1 for an interior vertex
z € V N Q. By the definition of W, we have, for all w € W,,

<¢Z€’W> = / w = Oa

whence ¢.¢ € W with ||¢_£][w: = 0.
To verify that £ = ¢;1 € H (w;), we write d, := dist(-, dw,) for the distance
function of the star boundary and shall use the weighted Poincaré inequality
Yw € H(l)(wz) ”Wdz_,lHLz(a)z) S ”VW”LZ(a)Z)’

which follows from the Hardy inequality; cf. [Sacchi and Veeser 2006, Lemma 3.6].
Consequently, exploiting also d, < ¢, on w,, we obtain, for all w € Hé(Q),

(Cowy= [ (¢z'd)wd:") < lw "2 wd: 'l 120, S |02 PIVWI 20,

Wz
This and (£, ¢.) = |w.| ensure £ € H™'(w_) with ||€]|-1(,,., > 0.

We start the proof of the asserted inequality by checking that || - || -1, is
a norm on F(7;). To this end, consider gr € Py, (F), F € ¥; and g1 € P,,,(T),
T € 7 such that, for all w € Hé(wz),

0=(l,w):= Z /FQFW+Z/TqTW-

Fef; TeT.

We need to show ¢ = 0. Testing with w € Hé (1), T € 7, the fundamental lemma
of the calculus of variations yields gr = 0 for all T € 7;. Similarly, testing now
with w € H}(wp), F € F, gives g = 0 for all F € 7;. Thus, £ = 0 holds.

Next, we check that also ||¢; - ||lw: is @ norm on F(7;). This time, consider
qr € Py, (F), F € ¥, and g7 € P,,,,(T), T € 7 such that, for all w € W,

0=(gl,w):= Z /¢zqFW+ Z /‘ﬁquW,
Fer. v F Ter /T

and again, we need to conclude £ = 0. If z € V N 9Q is a boundary node, we
obtain £ = 0 by the arguments of the previous step. We are thus left with the
case z € V N Q of interior nodes. Given w € H'(w,), we set c,, = fw w and

ce = |lw, |7 {¢,€, 1), and observe
0=(gpt,w—cyw)={ L —coe,w—cCyp)= (P, —cp,w).

Hence, testing with w € H)(T), T € T, we deduce ¢.qr = c, oneach T € 7.
This is however only possible if c, = 0 and g7 = Oforall T € 7. Therefore, testing
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with w € Hé(a)p), F € 7, yields gr =0 for all F € ¥, and € = 0 is established in
general.

To conclude the asserted inequality, note that F(77) has finite dimension and,
for a fixed polynomial degrees m; and m5, is invariant under continuous piecewise
affine transformations. Furthermore, both norms scale in the same manner. We
therefore can pass to reference stars and use there the equivalence of norms in
finite-dimensional spaces. Transforming the inequality back from the reference
star then finishes the proof. U

The alternative localization entails that we need to adapt Lemma 4.35 (splitting
of local residual norms). Relying on the local H~'-stability of P4, Lemma 4.67
(partial equivalence for local dual norms) reveals that the adaptation has to be global.

Lemma 4.68 (alternative splitting) Using the local norms || - |lw:, z € V, the
residual can be split into discretized and oscillatory residual:

1 2 2
s 2 (I6<PrRrIR, +116-( = PRI, )
(Clgtb)zcdcloc zeV
<RI g < €5 Y, (I6PrRrIR,. + 162U = POR7IE,. ).
zeV
where Clgtb is the stability constant of Pq on stars from Lemma 4.28, and Cq =

V2 +1).

Proof. Combine the localization in Lemma 4.66 with the proof of Lemma 4.35,
replacing the local norm || - || 5-1(,,,) in most places but apply (4.89) before using
the local H™!-stability of P U

An estimator based on flux equilibration

Estimators based on flux equilibration have been designed with the goal to obtain
constant 1 in the upper bound. The principal obstruction that computation can
access only a finite-dimensional part of infinite-dimensional objects like the residual
norm is overcome by means of the Prager-Synge theorem. Realizations of this
approach can be found, e.g., in [Ainsworth 2010], [Braess, Pillwein and Schoberl
2009], [Ern, Smears and Vohralik 2017], and [Luce and Wohlmuth 2004].

The definition of the PDE indicator needs some preparation. Let d € {2,3},
as in the aforementioned works, and let z € “V be vertex. Given the operator
my i {pl | € € HY(Q)} — W} defined by

¢Z€ _ <€’ ¢Z>

”Z((bzf) = |wz|
o if 7€V NoQ.

, ifzeVnNQ,
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and
. ow,, ifzeVNQ,
72T 0w, \ 0Q ifzeVNoQ,

we introduce the local space D, # 0
D, = {£ € LX(w;;RY) | divé = (¢, PrR7)and € -np =0on F, YF C v, },
and its discretization
D7) :={é €D, | £ e RIN,(T) VT € T;}
with the Raviart-Thomas-Nédélec elements
RN, (T) = {£: T - R? | £(x) = q(x) + g(x)x with ¢ € (P,,)?, q € P, }
of order m := max{m, my} + 1. Given the Galerkin approximation uq from (4.1),
the PDE indicator is then given by

feq (u 2 . feq 2 . feq . .
)= E (uq with ug) = min 2. 4.90a
777— 4 777' ) 777— ( £eD.(7) ”f“L (wz) ( )

and the total estimator by
Et = &5 ur, 7 =P ) + 192 = Pr)lly. (4.90b)

Note that the local PDE indicators nf;q(urr, z) are computable up to machine preci-
sion.

Theorem 4.69 (estimator based on flux equilibration) Suppose that the coeffi-
cients A and c are discrete and that d € {2,3}. The estimator (4.90) based on flux
equilibration is equivalent to the error, while its PDE indicator is locally equivalent
to the discretized residual with constant 1 in the upper bound for the || - ||w: -norm,
so that

Cp f f
c ES < IV —up)ll 2 < Cals

I1Sth Cd C]OC 7

and, for all vertices 7 € V,

fi f¢
Cong(ug,2) < |- PrRyllw: < 0y (ug, 2)

as well as
Cp feq
Cloc UT
*

where Cp depends on d and the shape regularity coefficient o, C[§, is the stability
constant of P on stars from Lemma 4.28, Cioc comes from Lemma 4.5, C4 =
V2(d + 1), Cg from Lemma 4.67. and the hidden constants depend only on the
error-residual relationship in Lemma 4.1.

fi
(w7, 2) < |PFRT\ 1w, < Cong (g, 2),
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Proof. [1] We start by verifying the local equivalence for the || - [lw:-norm. Let
z € V be any vertex. The Prager-Synge theorem on the star w, implies

gz PrR7|lw: = I (¢ PrRO|w: = égrel]gn €N L2(e.)s

cf., e,g, [Verfiirth 2013, Proposition 1.40]. Hence the upper bound with constant 1
readily follows the inclusion D,(7") C D,, while the lower bound is a consequence
of the nontrivial inequality

m1n < min ,
o min 1€l < min 1€l

where Cp depends only on d and the shape regularity coefficient o; cf., e.g., [Braess
et al. 2009, Theorem 7] and [Ern et al. 2017, Theorem 1.1].

We verify the local equivalence for the || - || -1, )-norm. On the one hand,
combining the first equivalence with (4.89), we obtain

CID)U(;- (ur,2) < ¢zPrR7llw: < CocllPTRT | 510
On the other hand, using Lemma 4.67 instead of (4.89) yields

IPrR\g-1(w,) < CrllgPrRllwr: < C]FU(;— (ug,z)
and the equivalence for the || - || -1, is verified, too.

The global bounds follow by combining Lemmas 4.1 (error and residual),
4.68 (alternative splitting in discretized and oscillatory residual), and 4.37 (data
oscillation reduction), as well as the first local equivalence. Ll

Remark 4.70 (improved upper bound) Applying the Prager-Synge theorem on
Q, we can improve the upper bound in Theorem 4.69 to

1/2
IV@u—urlli2q) S 1€alli2g+Vd +1 <Z 7z (¢2(Prf = 1)) ”%?vz> 4.91)

zeV

with §g = XY ey &, where §, = argmingcp_(o) |11l 12(w,) are the minimizing
vector fields associated with the PDE indicators, extended by O off w,.

To see this, we derive, thanks to the partial orthogonality (4.4) of the residual
and Lemma 4.37 (data oscillation reduction),

divég =Y m:(¢-PrRy) = ) m(¢:Ry)+ Y m:(¢(PrRy - Ry)

zeV zeV zeV
= > ¢Rr+ ) 7w (¢(Prf - ) = Ry + 67
zeV zeV

with 67 := ) ﬂz(¢z(PTf - f)). Hence,
IV —up)ll2) S IRl < IRT+ 7 lg-1@) + 107l H-1)»

inserting € in the Prager-Synge theorem on £ and Lemma 4.66 (alternative
localization of H~'-norm) establish the claimed bound.
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In view of the bound (4.91), the alternative local PDE indicators ||¢ ;/ g allz2(w.)
z € V, may be used in an adaptive context. Note however that this alternative does
not necessarily strengthen the link with the local residual as the definition of &
suggests an increased overlapping in the lower bound.

4.10 Other boundary conditions

This section illustrates that the preceding analysis of homogeneous Dirichlet con-
ditions can be adapted to other boundary conditions. In particular, we discuss

o Robin and Neumann boundary conditions, as an example for variationally for-
mulated boundary conditions,

o the pure Neumann problem, with its global solvability constraint,

e non-homogeneous Dirichlet boundary conditions, formulated in an essential
manner.

Mixed boundary conditions, suitably discretized, give rise to a posteriori error
estimators combining in a straightforward manner the indicators of, for instance,
the first and third of the above groups. We therefore omit further details for such a
setting.

Robin and Neumann boundary conditions

The Robin bilinear form in (2.13) is coercive and continuous in V := H'(Q)
provided its coefficient p > pg on an open subset of JQ for some constant pg > 0,
according to the norm equivalence (2.31). Consequently, (2.12) admits a unique
solution u € V. If V@& = S';O is the subspace of V of continuous piecewise
polynomial functions of degree < n, then the Galerkin counterpart of (4.1) reads

ugeVq: Blug,v]l=L0Vv) VveVq,
with € = f + gdgq € V*; cf. (2.13). Its residual Ry € V* is defined as
(R, w) :=Lt(w) = Blug,w] wevV,

and ||R ||+ is equivalent to the error |[u — us| g1(q) due to Lemma 4.1 (error and
residual), whose proof easily extends to V.

The global norm ||Rs ||y« also localizes to all stars w, because Galerkin or-
thogonality (R, ¢,) = 0 is now valid also for boundary vertices z € V N 9Q.
Indeed, the proof of Lemma 4.5 (localization of H ~l_norm) extends with minor
modifications, where the local spaces for boundary vertices z € V N JdQ are
now {v € H'(w;) | v = Oondw, \ 0Q}. Also the proof of Lemma 4.66
(alternative localization of H~'-norm) is easily modified, using the local space
{veH (w,) | fw v = 0} at the boundary, too.

The next key stz:p is the construction of a projection Py : V* — Fq that mimics
the projection operator P4 of Section 4.4. For that purpose, the space of discrete
functionals Fq has to include boundary face Dirac masses qrdr with densities
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qr € Py, (F) for F c 0Q. Consequently, g can be approximated on d€2 similarly
to the forcing f in Q, while the coefficient p is at play like the coefficient c.
Indeed, considering for simplicity only the case of discrete coefficients (A, c, p),
the condition m| > n, + n arises in addition to those in Remark 4.14. With these
caveats, the tools developed in Sections 4.3, 4.4 and 4.5 give rise to a suitably
adapted projection P4 to split the residual R4 into a discretized residual PyRq
and an oscillatory residual (f — Psf)+(gd9a — P7(gdsq)). Here géso — P7(gds0)
is supported only on J€2 and therefore contributes only to the oscillation indicators
based upon the aforementioned new local spaces for boundary stars. This modified
oscillation osc};_ob(Z)) with D = (A, c, p, f,g) and be combined with any of the
presented PDE indicators, but we focus on residual estimation. In fact, the new
discrete residual PsR4 leads to a definition of the PDE estimator r]l;’b(urr) as in
(4.52), but with additional contributions related to the boundary faces. Given any
boundary face F of 7, such a contribution reads

hell [AVF7us]l -np+pusr— PF8||%2(F)

and measures the discretized Robin residual. Combining as usual the PDE estimator
n?ﬁ’b(urr) and oscillation oscl;f’b(t’) yields the total estimator 8§.°b(u¢, £), whence
the following variant of Theorem 4.45 (modified residual estimator) follows: for

discrete coefficients (A, c, p), the H'-error and SRTOb(u(;-, {) are equivalent

CLER g, ) < lu — urll iy < CuEEP . 0.

The estimates in Section 4.8 for corrections and estimator reduction extend as well.

Pure Neumann problem
Neumann conditions are already covered by the previous section, except for the
case of the pure Neumann problem with p = 0 on d€2 in (2.12) requiring, as key
novelty, the solvability constraint £(1g) = 0, i.e. right-hand side applied to the
constant function equal to 1 gives 0. For such problems, unique exact and discrete
solutions exist provided we choose V to be the subspace of H'(Q) of functions with
zero mean value and V¢ its natural finite element counterpart of degree n.

The residual R is defined on all H'(2) and satisfies (R, 1q) = 0. Combining
this fact with Lemma 2.3 (second Poincaré inequality) and infcer ||V — ¢|l12q) =

Iwll 12 withw = v — fQ v € V, we derive

3 (Ry,w) (Ry,w) (R, v)
Yr=SUp ————— A~ SUp ———= sup —————

IR v ~
wev |l W||L2(Q) wev ||W||H1(Q) veH(Q) ||V||Hl(sz)

=Ryl g1y

Consequently, localizing [[Ry||g1(q)- as in the previous section, we can derive
a posteriori error estimators with suitable contributions from the boundary 9Q.
However, the projection P4 from the previous section cannot be used to gen-
erate discrete data in some auxiliary problem because (¢, 1g) = 0 does not
imply (Ps¢,1qg) = O in general. Further, a simple modification like Ps¢ —
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(P7,10){1q, 10)~" 1o with a global correction destroys the crucial local approx-
imation properties.

To address this issue, we modify the projection P4 such that the new projection
P enforces locally (PrC, 1) = (€, 1) in the spirit of the construction of the
Lagrange multiplier in [Fierro and Veeser 2003]. To this end, recall that P4 is
now defined on H'(Q) and its range, the discrete functionals F(7"), includes also
boundary face Dirac masses, and that the first localization involves the local spaces
V, ={veH(w;) | v=00ndw, \ dQ}, z € V. Given { € H'(Q)*, set

5 = ~ Pyl —¢,
Prei= 3 6Pt with Pt ppe- L2000
z€V /wz o

Lemma 4.71 (new projection) The operator (4.92) is linear, local, and satisfies

lo.. (4.92)

(P, ¢,y =L,y VzeV and (Prl,1)=(¢,1).

Furthermore, ﬁz provides near-best approximation in F(7)|v_ and

16 = Preliz gy < Cioe ), IE =Pl
zeV

Proof. [1]We start with the algebraic properties. By the definition of FZ, we have

the local relationships (¢ — P, ¢, ¢,) = 0, viz. (¢,(€ — P,€),1) =0 for all vertices
z € V. Summing over all vertices immediately yields the global (¢ — P5¢,1) =0

To show that P, is near-best approximating in F(77)|v_, we bound its error in
terms of the one of P4. The triangle inequality readily gives

(P‘Tf_f"l’z)l

[e.

while a variant of Lemma 2.2 (first Poincaré inequality) and the properties of ¢,
deliver

16 = P Ll < |I€ = Prlllv: +

]

vz

<P7—€ -4, ¢Z>

/a) 2

I S |wz|_lhz”<PT€_€a ¢z>1wz||L2(wz)

z

vz
< M@z "2heIE = Prellv: V8zll 2.y < 1€ = Prellve.
Hence, the error of P, is dominated by the one of P,

16 = PeLllv: < 1€ = Prellv:. (4.93)

and the near-best approximation of ﬁz follows from Corollary 4.31 (local near-best
approximation), adapted to the setting at hand.

It remains to prove the claimed inequality. Given w € H'(Q), the definition
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of Py and the first stp yield the following identity
(€= Prt,w) = )" (£, wo:) = ($PL,w)

zeV
= D (0= Peliwas) = ) (L= Pol,(w =)o),
zeV zeV

with ¢, = fw w. Proceeding as in Lemma 4.5 (localization of H -1 norm) estab-
lishes the desired inequality and concludes the proof. U
The operator Pr possesses additional enhanced global properties, which are not
needed here. Lemma 4.71 and (4.93) allow us to solve auxiliary pure Neumann

problems with discrete data P-¢, with the option of replacing in the local indicators
the restrictions of P4 with P,.

Non-homogeneous Dirichlet boundary conditions

Let V := H(Q) and V& := S';O be the subspace of V of continuous piecewise

polynomials of degree < n. Given Dirichlet boundary data g € H'/2(I"), where
I' := 0Q for simplicity, recall that u € V(g) = {v € V | v = gon I} satisfies
(2.10). Let g5 € S’;io be a continuous finite element approximation of g on I" and
V(gq) be the subspace of V4 of discrete functions with trace g. The Galerkin
approximation of u satisfies

ur € Vo(gr):  Blug,v] =(f,v) Vv e Vg ().
The error e = u — uq obviously satisfies Galerkin orthogonality
Bleq,v] =0 Vv e V4(0),

butin general e = g — g7 # O onI". We follow [Sacchi and Veeser 2006] to derive
a posteriori bounds of ||es|| 1 (q) using minimal regularity g € H 12,

We start with an orthogonal decomposition of the error e4 arising from the two
equations of the problem. Let Rg = Rg(us, f) € H ~1(Q) be the Galerkin residual
already introduced in Section 4.1, namely

(RG,v) = {f,v) — Blug,v] Vv e V()= H)(Q),
and define the Galerkin error e as its representation in Hé(Q):
ec € HY(Q): Bleg,v] =(Rg,v) ¥ve V().

Furthermore, let Rp = Rp(g) = g — g7 € HY2(T") be the Dirichlet residual,
represented by the Dirichlet error ep defined by

ep €Vig-17g): Blep,v] =0 Vv e V(0.
Then eq = e + ep and the orthogonality Blep, eg] = 0 yields

2 2 2
lerlle = llec il + llen g
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while the derivation for homogeneous Dirichlet conditions readily provides

leglle ~ [IVeGll2) = Exlug, 1),

where the Galerkin estimator Eq-(us, f) is defined by (4.52), or any other estimator
from Sect. 4.9. It thus remains to clarify whether ||es||q is definite in the sense
llerllo =0 = eq = 0and to derive suitable lower and upper bounds for ||ep || -

To this end, we need to be more specific about the choice of g5 Let g = I5g
be the Scott-Zhang quasi-interpolant of g, which is defined locally using boundary
values of g exclusively [Scott and Zhang 1990, Brenner and Scott 2008] and satisfies

veVqr=Iyv=v onl, (invariance) (4.94a)
||1TV ||L2(F) ||v”L2(F) Vv e V. (Stablhty) (494b)
These two properties ensure a variant of the equivalence || - || g1q) = IV - |2

for functions with zero trace on I'.

Lemma 4.72 (equivalence for vanishing discretized trace) There exists a con-
stant C depending only on the shape regularity of T and Q such that

”V”HI(Q) < C”VVHLZ(Q) Yv € V with I‘TV:OOYI I.

Proof. Note that the core of the claimed inequality amounts to a variant of the
first Poincaré inequality In view of the norm equivalence (2.31), it suffices to
prove that ||v]l 2y S [[Vvll2q). Letting vg := f v, and using (4.94a) yields
v=v—Iqv=(w—-7vg)— Iy (v — ¥g) onI'. Consequently, (4.94b) implies

Wliz2ay < v =vallaey < v = vallmia) < IVVIliL2q), (4.95)
because of Lemma 2.4 (traces), and Lemma 2.3 (second Poincaré inequality). [
Observing Iges = Igg — 12 78 =0onT’, we can apply Lemma 4.72 to get

C max{ay, ||c||z=@)}

C
lerll i) < ClIVerllag) < a|||€fr|||9 < ller !l gy

establishing in particular that ||es||q is definite. In the same vein, we derive

llenlle ~ llenllaiq = IVenllr2@)

for the Dirichlet error.
With the intent to achieve directly computable bounds for the Dirichlet error, we
next establish the equivalence [lep|| 1) ~ |§ — 17812y, Where the intrinsic

H'2-norm combines the L2(I')-norm with the seminorm

v = v)I?
|V|H1/2(F) // |_x_y|d dxdy

This equivalence follows with the help of the trace and extension theorems for
H'2(I), see, e.g., [Hackbusch 1992, Theorem 6.2.40]. In fact, on the one hand,
that trace theorem immediately gives [|g — I7gl g2y S llenllg1(q)- On the other
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hand, let y € H'(Q) denote the extension of g — Iyg from [Hackbusch 1992,
Theorem 6.2.40]. Then

lenllaiq) s lenlle < lixlla < lxllaiq s g = I8l

where the second inequality is thanks to B[ep,ep — x] = 0.
We are left with the issue that the H'/2(I")-seminorm is nonlocal. To handle this
delicate matter, we invoke its localization due to [Faermann 2000, 2002]

2 lvx) = vl
Wl < g ﬁ(/ /wF Ix — y|d dx d ”V||L2(F)
€

where F' € ¥ is a generic face of 7~ lying on I" and wp is the patch on I" associated
with F. The last term seems problematic. However, applied to v = g — I7g, we
can mimic the steps of (4.95) with local variants of (4.94), but using in the last
step the second Poincaré inequality in H'/?, see, e.g., [Sacchi and Veeser 2006,
Lemma 3.2]:

= 2 2
”v”LZ(F) - ||V ITVHLZ(F) ”V - vFHLZ(wF) < hF|v|Hl/2(wF)

where v is the mean value of v on wg. Note that this bounds also means that the
L>-partin ||g —I7g| 12(ry 18 (locally) controlled by its seminorm. Altogether, this
leads to defining the Dirichlet oscillation with the following local indicators:

0scr(8)iy = ). oser(g, F)} s
Fefr

— _ _ 2
oser(g, F)? ) 1= / / (g — I78)(x) — (g — I78)(Y)| d dy.

lx — y|4

(4.96)

We observe that oscq(g, F) is a double singular integral but computationally ac-
cessible, for instance, by using suitable quadrature provided g is continuous [Sacchi
and Veeser 2006, Section 4.1].

Proposition 4.73 (Dirichlet oscillation) There exist constants D1 > D, > 0 de-
pending on the shape regularity of T and geometry of I, such that
Dy oscr(g)12 < |[Vepllr2q) < D1oscq(g)1)2-

Proof. The preceding derivation verifies the upper bound. For the lower one, note
that for any v € H'(Q) such thatv =g — I;gonT

_ 2
osc(r(g)?/z= Z OSCT(g,F)l/Q— Zf /IV(T; ;I(ZN dx dy

Fedr Fefr
. 2
< / Vo) =V 2
rJr

1/2 ’
b= 14 =AM

because the patches wr, F' € Fr, possess a uniform overlapping property due to
shape regularity of T. Applying this to v = ep finishes the proof. U
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For suitable settings, local lower a posteriori estimates for the Dirichlet error ep
can be derived; see [Sacchi and Veeser 2006, Theorem 3.2].
Combining the Dirichlet oscillation with some Galerkin estimator E4-(us, f) by

EP (g, f,8) = Erlug, )’ +0scr(8)] 5,
the preceding discussion is summarized by the following result.

Theorem 4.74 (estimators for general Dirichlet condition) If Assumption 4.44
(discrete coefficients) is valid, then there exist constants Cp < Cy depending on
(A, c), Q T, and the shape regularity of T such that

CLEY (ur. f.8) < IV — up)ll 20y < CuEX (ur. f.8).

5 Convergence of AFEM for Coercive Problems

In this section we consider the coercive problem (2.5) with the intent to design
and analyze three AFEMs in increasing order of complexity and applicability,
depending on properties of data . Our basic regularity assumption on data reads
D =(A,c, f)e D, where

D := L®(Q: R4 x L*®(Q) x H'(Q). (5.1)

We approximate 9 with discrete data D=(4A,c, f) € Dz, where
_1,-17dxd 1
D7 = [S’r/;l’ N xs';l’ 'xF~ (5.2)

is subordinate to a partition 7 € T. We will often assume that data is discrete,
meaning precisely that D = D.

We start with the one-step AFEM, hereafter called GALERKIN, which is the
standard SEMR loop

SOLVE — ESTIMATE — MARK — REFINE

introduced in [Dorfler 1996] and further developed in [Morin, Nochetto and Siebert
2000, 2002, Cascon et al. 2008]. This is the simplest algorithm in that it requires
data D = (A,c, f) to be discrete, but it is a building block for the other two
methods. After reviewing a few crucial properties of error and estimator in Section
5.1, we fully discuss GALERKIN in Section 5.2.

The second algorithm is the one-step AFEM with switch, which still assumes the
coeflicients (A, c) to be discrete but allows for general forcing f € H~'(Q). This
is a new contribution of this survey that, similarly to [Kreuzer et al. n.d.], exploits
the structure of the error estimator Eq-(u, f) of Section 4

Eq(ug, £)* = ny(usr)® + oser (f)2,,

and its equivalence to the energy error. The PDE estimator n4(uq) relies on the
discrete forcing Psf € Fq and is fully computable, whereas the data oscillation
oscq(f)-1 encodes the infinite dimensional nature of f and could be estimated in
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important cases of practical interest further discussed in Section 7.3. The quantity
oscq(f)-1 measures the deviation of f from being discrete and may dictate the
pre-asymptotic regime of AFEM. Therefore, oscs(f)-1 must be handled separately
from ns(us); hence the name of the new method, hereafter called AFEM-SW.
Assuming that oscq(f)-; is computable, the module

[7] = DATA (T, f,7)

deals with oscq(f)-; whenever it is large relative to Sq(u, f). In fact, it creates
an admissible refinement 7~ of the input mesh 7 such that osc7:( f)-1 is below the
desired tolerance 7, i.e. oscz(f)-1 < 7. We explain the role of data oscillation for
error analysis, design AFEM-SW and prove its linear convergence in Section 5.3.
The third algorithm deals with variable data © and various degrees of regularity
of D, and is able to handle discontinuous coefficients (A, c) not aligned with
admissible meshes 7 € T emanating from 7. To handle the multiplicative structure
of (A, ¢) in the model problem (2.5), we consider the following two-step AFEM:

Algorithm 5.1 (AFEM-TS) Given an initial mesh 7, an initial tolerance &g, and a
parameter w sufficiently small to be determined later, iterate

AFEM-TS (7, &9, w)
k=0
[7%, Di] = DATA (Tx, D, w &%)
[Tis1s ti+1] = GALERKIN (Tx, Dy, 1)
Ek+1 =%ek; k — k+1

This structure was first proposed in [Stevenson 2008] and further explored in
[Bonito et al. 2013b, Cohen et al. 2012, Bonito et al. 2016, Bonito, Cascén, Morin
and Nochetto 2013a, Bonito and Devaud 2015]. The three components of data

= (A, c, f) € D are first approximated by discrete data D= (A c, f ) € D, as
deﬁned in (5.1) and (5.2), within the module

[T, D] = DATA(T, D, 7)

to accuracy T = we significantly smaller than €. This is achieved by an algorithm
similar to Algorithm 3.18 (greedy algorithm), which is fully discussed along with
applications to » D in Section 7. The resulting admissible refinement 7 of 7 and
discrete data D over 7 are next taken by GALERKIN to reduce the PDE error to
the desired tolerance &, namely the module

[T, us] = GALERKIN (T, D, &)

constructs a refinement 7~ of 7~ with discrete data 5oner 7 such that ne(us) < €.
We point out that if data is discrete, i.e. D = D, then DATA is skipped and
AFEM-TS reduces to GALERKIN. We tackle AFEM-TS in Section 5.4, where we
prove a perturbation estimate with respect to D and next discuss convergence
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properties of AFEM-TS. We will extend this approach to discontinuous FEMs in
Section 9 and to mixed FEMs for (2.5) as well as the Stokes system (2.14) in Section
10.

5.1 Properties of error and estimator

We follow Cascén, Kreuzer, Nochetto, and Siebert [Cascon ef al. 2008] and sum-
marize some basic properties of GALERKIN that emanate from the symmetry of
the differential operator (i.e. of A) and features of the modules. In doing this,
any explicit constant or hidden constant in < will only depend on the uniform
shape-regularity of T, the dimension d, the polynomial degree n, and the (global)
eigenvalues of A, but not on a specific grid 7 € T, except if explicitly stated.

We recall that the bilinear form $ in (2.8) with continuous coefficients (A, ¢)
is symmetric, coercive and continuous in the space H(l)(Q) (see (2.30)), namely
Ivile = B[v,v]% is a norm equivalent to |v| H (@ with equivalence constants

0<cg<Cg

cglv 12%‘@) < [IvII3 < Cglv 23(9) Vv € Hy(Q). (5.3)

The module DATA approximates (A, c) over a mesh 7 by piecewise polynomial

coefficients (;4;, ¢) obeying side constraints so that the corresponding perturbed
bilinear form B still defines a uniform scalar product in Hé Q)

Ivlla = Blv.v]* Vv e HY(Q), (5.4)

which satisfies (5.3) with constants 0 < ¢z < Cg independent of 7. We hope this
slight abuse of notation will not create confusion because we will always refer to the
energy norm in (5.4) when dealing with B. We denote by i = u(ﬁ) € Hé(Q) the
solution of (2.7) with coeflicients (Z, ¢) and forcing function either f =feH Q)
or its projection f = Py f € Fq defined in (4.35), namely

Bla,v] = (f,v) Vv e H\Q), (5.5)

In the sequel, we will often compare discrete functions on different meshes.
Given 7 € T, we denote by 7. € T an admissible refinement of 7~ and write

T<7 o TT)cTT) (5.6)

in the sense that the supporting tree of 7 is contained in that of 7.. Forany 7, > 7,
we have the following crucial property.
Lemma 5.2 (Pythagoras) Let ; > 7 > 7 and let i € H\(Q) be the solution

of (5.5) with discrete coefficients (Z,a over T. The corresponding Galerkin
solutions ug € Vg and uq- € V- with coefficients (A, ¢) and forcing f € H™(Q)
satisfy the orthogonality property

- 2 —~ 2 2
lw =vrllg = llu—urllg +llug —verll Yvr € Vo (5.7
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Proof. Exp101t the nestedness property V4 C V-, and the Galerkin orthogonahty
property B [ — ug, vy — ug] = 0in V- for the scalar product induced by 8. O

Property (5.7) is very restrictive: it relies on space nestedness and is valid
exclusively for the energy norm. However, it is instrumental for the subsequent
analysis in the energy norm or the equivalent norm | - |5 (@ but it does not extend

to other, perhaps more practical, norms such as the maximum norm. This is an
important open problem and a serious limitation of this theory.

We recall that the residual a posteriori error analysis of Section 4 relies on
the projection operator Py : H~'(Q) — Fg, with element and face components
Py flr =PrfforT € T and Py f|p = Pr f. The full local error indicator

Erlur, f.T)" = nr(ur, T)? + oser(f, T2,
splits into a computable PDE error indicator with discrete coefficients (Z, C)
nr .1 = kg IrMliz +hr j0l5r VT € T, (5.8)
where the interior and jump residuals are given by
r0)|r = Prf +div(AVv) —¢v VT € T
j0lE = [AVV] -nlp - Ppf VFeF,
and j(v)|r = 0 for boundary faces F, and data oscillation
oser(f, T2y = If = Prfll iy, YT ET, (5.10)

where wr is the patch associated with 7. The corresponding global quantities are

Erur, [ = ) Eur, £,T)%,

TeT

nrr)? = ) nrur, TR, oser(f)? = > oser(f,T),

TeT TeT

5.9

(5.11)

and have the following a posteriori error estimates proved in Theorem 4.45 (modi-
fied residual estimator) for the Hé-norm.

Proposition 5.3 (a posteriori error estimates) Ler i € Hé (Q) be the solution of

(5.5) with discrete coefficients (Z, ) over T € T but general forcing f € H(Q).
Then, there exist constants 0 < Cp < Cy, depending on the shape regularity of T
such that the Galerkin solution uq € YV satisfies

CrLEr(ur, f) < |u = urlyq) < Cu Erlur, f), (5.12)

Moreover, if || - || stands for the energy norm in (5.4) with equivalence constants
<Cgz satisfying (5.3), then (5.12) yields

C Eq(ur, ) < lu —uglle < Cy Eg(ur, f), (5.13)
with C; = \/Cé‘CU and C; = \/%CL.
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There is a fundamental difference between (5.12) and earlier versions of a pos-
teriori error estimates, going back to the seminal paper [Babuska and Miller 1987];
see also [Ainsworth and Oden 2000, Braess 2007, Nochetto et al. 2009, Verfiirth
2013]. It is about the role of data oscillation osc4(f)-1, which is now dominated
by the error |iu — ugl|y 1( and does not spoil the lower bound. This is due to the

fact that osco(f)_; is evaluated in the natural space H~!(Q) and quantifies the dis-
crepancy between f and a suitable projection P4 f which gives rise to a quasi-best
local approximation of f. We refer to [Nochetto et al. 2009] and [Kreuzer and
Veeser 2021] for a discussion of data oscillation.

Suppose now that we have two conforming meshes 7, 7. € T with 7, > 7. Let

R = 'Rrr_y]; = T\(E (5.14)

be the subset of refined elements of 7, namely, those elements in 7 that are no
longer in 7,. We stress that the upper bound in (5.12) cannot be local due to the
nonlocal nature of the error |u — ug]| H (@) However, in view of Theorem 4.48
(upper bound for corrections), the following remarkable local upper bound for
Galerkin solutions uq € Vg, uq- € V- holds

lug —ugllo < CiE5ur, f,R), (5.15)

where forS c 7, E7-(us, f,S) = ( Yres &rur, f, T)2) 12 is the error estimator
restricted to S. Consequently, solely the elements where 7~ and 7, differ, namely
the set R, account for the discrepancy between ug and u;. This turns out to be
consistent with (5.13) because 7 has to be refined everywhere to get to #, whence
R=7T.

In contrast to the upper bound in (5.12), the corresponding lower bound is local
according to Theorem 4.45 (modified residual estimator). This is due to the local
nature of the PDE (2.5). However, when comparing us and ug;, this bound is
not valid unless the interior vertex property (given in Definition 4.50) is satisfied
[Morin et al. 2000]; in fact, we present a counterexample later in Example 5.7 taken
from [Morin et al. 2000].

The interior vertex property is valid upon enforcing a fixed number b of bisections
(b =3,6ford =2,3). An immediate consequence, proved in Theorem 4.51 (local
lower bound for corrections), is the discrete lower a posteriori bound for piecewise
constant diffusion coeflicient A and reaction coefficient ¢ = 0 on 7,

Cri1Eq(ug, fL M) < lug —uglla + Cr 2 osca(f, w(M))-1, (5.16)

where w(M) := U{wr : T € M} is the union of all patches of elements in M and
oscr(f, wM))? | = Xr e 0ser(f, T)?,; we refer to [Morin ef al. 2000, 2002].
We stress that if f = Pof is discrete, then oscq(f)-1 = 0 and (5.16) reduces to

Congur, M) < lugr — uslla. (5.17)

One serious difficulty in dealing with AFEM is that one has access to the energy



AFEM 127

error || — us|lq, or equivalently to | — us| Hl©Q> only through the full error
estimator &5-(ug, f). Lemma 5.2 (Pythagoras) implies monotonicity of the energy
error with respect to 7, namely for 7. > 7~

i —uglle < llu - urlle.

However, the PDE estimator n4(u ) fails to be monotone for fixed discrete coeffi-
cients (Z, ¢) because it depends on the discrete solution s € V4 that changes with
the mesh. The following estimate, proved in Proposition 4.56 (estimator reduction),
quantifies the deviation of n4(u) from monotonicity: there exists 4 > 0 such that
forany 6 > 0,v e Vyand v, € Vg,

N7 T2 < 1+ 68) (7 (v, T = Ang(v, MY?)

+2(1 +6_1) CLip <|||V* - vlig + Z I1P7f - P7¥f||12LI‘1(wT)> ’

TeT.
where Ci, depends on (A, ¢) and the shape regularity constant of T. We refer to
[Cascén et al. 2008, Morin et al. 2008] for the case Ps-f = Py f = f € L*(Q).
5.2 Convergence for discrete data: one-Step AFEM

We now present the four basic modules of GALERKIN, the one-step AFEM within
Algorithm 5.1 (AFEM-TS), namely

SOLVE — ESTIMATE — MARK — REFINE, (5.18)

discuss their main properties, and prove a contraction property between consecutive

iterates of GALERKIN. According to Algorithm 5.1, given discrete data O over a

conforming mesh 77, created by DATA, and a desired tolerance & > 0, the module
[T, us] = GALERKIN (T, D, &) (5.19)

stops the loop (5.18) as soon as the error tolerance ¢ is reached, i.e. as soon as

ny(ur) < &. (5.20)

Since the data never change within GALERKIN and is always discrete, we assume
in this section that 9 € D¢ and do not use the hat symbol to indicate quantities
defined using the (discrete) data.

5.2.1 Modules of GALERKIN
Module SOLVE. If 7 € T is a conforming refinement of 7y, and V4 is the finite
element space of C” piecewise polynomials of degree < n, then

[us] = SOLVE (7)

determines the Galerkin FEM solution exactly, namely without algebraic error,

ugreVq: Blurv]= / Vv - AVug+ cvu = (f,v), (5.21)
Q
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where f € H~(Q). However, if f € Fqis discrete as defined in (4.35), then

<f,V>=Z/TQTV+Z/quv Vv € Vo

TeT Fe¥

The assumption of exact solvability is made for simplicity. The algebraic error
committed in solving (5.21) by iterative solvers can be accommodated within the
forthcoming theory. We refer to [Stevenson 2007, Daniel and Vohralik 2023] for
details about how to relate the algebraic and PDE errors.

Module ESTIMATE . Given a conforming mesh 7 € T and the Galerkin solution
ug € YV, the output of

[{n7(us,T),05cs(f,T)-1}re7] = ESTIMATE (g, 7, D)

are the element error indicators nq(ug, T) defined in (5.8) with the discrete data
D, namely

nr(ug, TV = B2 r)l + bl jup)l3, T eT,

and element data oscillation oscq(f, T)—; defined in (5.10), namely

oscr(f, T)-1 = Ilf = Prflla-1(wp)-

We observe that for discrete forcing f = P+ f, global data oscillation vanishes

oscr(f)-1 = IIf = Prfllm-1q) = 0; (5.22)

this property is always valid within GALERKIN. In this case, the output of
ESTIMATE reduces to just the PDE error indicators. Given S C 7°, we denote

(v, 82 = > g, T, nr(v) =nr(v,7) veVr.
TeS
Module MARK. Given 7~ € T, the Galerkin solution ug4 € V¢, and element error
indicators {ns(ug, T)}r e, the module MARK selects elements for refinement
using Dorfler Marking (or bulk chasing) [Dorfler 1996, Morin ez al. 2000, Nochetto

et al. 2009, Nochetto and Veeser 2012], i. e., given a parameter 6 € (0, 1] the output
M of

[M] = MARK({n7(us, T)}rer, T, 6)

satisfies
ny(ug, M) > Ons(us, 7). (5.23)

This marking guarantees that M contains a substantial part of the total (or bulk)
error, thus its name. The choice of M does not have to be minimal at this stage,
that is, the marked elements T € M do not necessarily must be those with largest
indicators.
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Module REFINE. Let b € N be the number of desired bisections per marked
element. Given 7~ € T and a subset M of marked elements, the output 7; € T of

[7] = REFINE (7", M)

is the smallest admissible refinement 7. of 7~ so that all elements of M are at least
bisected b times. Therefore, we have g < hg and the strict reduction property

hrlr <271hely VT eM, (5.24)

where hq : Q — R* is a piecewise constant meshsize function that coincides with
hy = |T|"/? onevery T € 7. We finally let

R = R’/"_>7; = T\ﬁ

be the subset of refined elements of 7~ and note that M C R.
Concatenating these four modules we get the standard SEMR one-step AFEM.

Algorithm 5.4 (GALERKIN) Let 7 > 7, be a conforming refinement of a suitable
initial mesh 7. Let data D = (A, ¢, f) € D4 be discrete on 7 and € > 0 be a
stopping tolerance. The following one-step AFEM creates a conforming refinement
7. =2 7 and Galerkin solution ug; € Vg for data D such that s (us) < &:

[T+, uq:] = GALERKIN (7, D, €)
setj=0,7%=7
do
[u;] = SOLVE (7;)
[{r]j(uj, T)}T 67;] = ESTIMATE (Ltj, 7}, D)
itnu;) <e
return 7;,u;
[M;] = MARK ({n;(u;. T)}re7;. 7. 6)
[7j+1] = REFINE (7;, M)
je—j+1
while true

5.2.2  Contraction property of GALERKIN

A key question to ask is what is (are) the quantity(ies) that GALERKIN may contract.
In light of (5.7), an obvious candidate is the energy error |lu —u|lo, where
uj € Vj = Vg solves the problem

Bluj,w] =(f,w) YweV;. (5.25)

We now show that this is in fact the case for discrete data © € D4 provided the
discrete local estimate (5.17) holds. The latter is a consequence of the interior
vertex property of Definition 4.50 whenever A is piecewise constant and ¢ = 0 in
7 and data oscillation vanishes oscs(f)-; = 0 [Morin et al. 2000, 2002].

Lemma 5.5 (contraction property with discrete lower bound) Letdata D € Dy
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be discrete and u = u(D) € Hé(Q) be the corresponding exact solution. If the
subset M; C T; of elements marked by MARK satisfies the discrete local estimate
(5.17) with respect to Tjy1 > T}, then for a = (1 - (0%)2)1/2 < 1 the Galerkin
solutions uj € Vj,u;i1 € Vi of (5.25) satisfy

= ujaille < alle = u;llo, (5.26)

where O < 0 < 1 is the parameter in (5.23) and C1 > C, are the constants in (5.13)
and (5.17) respectively.

Proof. For convenience, we use the notation
ej=lu—-ujla, E; =llujn —ujlla, nj =n;w; 7)), njiM;) =n;u;, M;)

and recall that &g (u;, f) = 1; because oscz;(f)-1 = 0. The key idea is to use the
Pythagoras equality (5.7), namely ¢2 = e? - Ejz., and show that E; is a significant
portion of e ;. Since (5.17) implies

applying Dérfler marking (5.23) and the upper bound in (5.13), we deduce

Cr\?2
2 2022 2\° 2
E; > C0°n; > (0C1> e;.

This is the desired property of E; and leads to (5.26). U]

The contraction property (5.26) is very special and only valid for the energy
norm. For the Hé -norm we have the following simple but useful consequence.

Corollary 5.6 (linear convergence) If cg < Cg are the constants in (5.3), then

C(B k—7
- ’_ -J — Y- 1
|u Mle(}(Q) S cs a |M u‘llHOl(Q) k Z J Z 0

We wonder whether or not the interior vertex property is necessary for (5.17),
and thus for (5.26). We present an example, introduced in [Morin et al. 2000, 2002]
to justify such a property for constant data and n = 1.

Example 5.7 (lack of strict error monotonicity) Let Q = (0, 12 A=1Ic=
0, f = 1 (constant data), and consider the sequences of meshes depicted in Figure
5.1. If ¢ denotes the basis function associated with the only interior vertex of the
initial mesh 7y, then ug = u; = % ¢o and uy # uj.

The mesh 77 > 7 is produced by a standard 2-step bisection (b = 2) in 2d. Since
ug = u; we conclude that the energy error does not change ||u — uglla = lu — u1la.
whence (5.17) fails, between two consecutive steps of GALERKIN for b = d = 2.
This is no longer true provided an interior vertex in each marked element is created,
because then Lemma 5.5 (contraction property with discrete lower bound) holds.
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Figure 5.1. Grids 7y, 71, and 7; of Example 5.7. The mesh 77 has nodes in the
middle of edges of 7y, but only 7; has nodes in the interior of elements of 7.
Hence, 7; satisfies the interior vertex property of Definition 4.50 with respect to 7y
whereas 77 does not.

Circumventing the discrete lower bound. Enforcing (5.17) requires a minimal num-
ber b.. of bisections, say b, = 3,6 for d = 2,3, to guarantee the interior vertex
property. This can be quite taxing, especially for d = 3, and relies on the strong
assumption of A being piecewise constant and ¢ = 0 on 7. It is clear from the
preceding discussion that the energy error alone cannot be expected to contract
between consecutive iterates. We explore next what quantity to monitor instead
of the energy error in the analysis, with the aim of avoiding (5.17) and building
a theory applicable to general discrete coeflicients (A, ¢). This exploits the spe-
cial structure of residual estimators and does not directly extend to non-residual
estimators.

Heuristics. According to (5.7), the energy error is monotone [lu —uj4iflo <
ll — u; ||, but the previous Example shows that strict inequality may fail. However,
ifu ;.1 = uj, estimate (4.67) reveals a strict estimator reduction 41 (u4+1) < n;(u;).
We thus expect that, for a suitable scaling factor y > 0, the so-called quasi error

L3 Gup) = flu = ujllg, +y m3u)) (5.27)

may contract. This heuristics illustrates a distinct aspect of AFEM theory, the in-
terplay between continuous quantities such the energy error [|u — u || and discrete
ones such as the estimator 17;(u;): no one alone has the requisite properties to yield
a contraction between consecutive adaptive steps. This result was originally proven
in [Cascon et al. 2008].

Theorem 5.8 (general contraction property) Let D € Dq be discrete data. Let
0 € (0, 1] be the Dorfler marking parameter, and {7;,V j, u j}‘;.":0 be a sequence of
conforming meshes, finite element spaces and discrete solutions u; € V; created
by GALERKIN for the model problem (5.25). If u = u(D) € Hé(Q) is the exact
solution of (5.5), then there exist constants y > 0 and 0 < a < 1, additionally
depending on the number b > 1 of bisections and 0, such that for all j > 0

e = i By + 21 o) < @ (Wl = B + 9 3 ) (5.28)
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Proof. We split the proof into four steps and use the notation in Lemma 5.5
(contraction property with discrete lower bound)

[] The error orthogonality (5.7) reads
2 2 2
ej+1:ej—Ej. (5.29)
Employing Proposition 4.56 (estimator reduction) with 7 = 7;, 7. = 741, v =
uj,vi. =ujy and f = f, € F; gives
My < (L+0)(; = Am;(Mp) + (1 +67) CF ES. (5.30)

After multiplying (5.30) by v > 0, to be determined later, we add (5.29) and (5.30)
to obtain

2 2 2 —1y 2 2 2 2
€ FY Ny S €5+ (y(l +6 )Gy - 1) Ei+y(1+96) (17]- —/lnj(M_,')).
We now choose the parameters J, y: let § satisfy

) =1-22
(1+6)(1-26%) =1 >

and y verify
y(A+shHct, =1.
Note that this choice of y yields
o+ Y Mo S €5 +y(1+0) (0] — Am;(M))). (5.31)
We next employ Dorfler Marking (5.23), namely 1,(M;) > 6n;, to deduce
‘3§+1 +yn§+1 < e? +y(1+0)(1 - /192)77?

This, in conjunction with the choice of ¢, gives

2 b ynt <+ 1—1—‘92 2 (5.32)
sl TV N S €; 7Y 5 ) :

which we write

2

2 2
2 2 yAO” 5 67\
€ Y M Sej_Tnj"'V(l_T n;-

Finally, the upper bound in (5.13), namely ¢; < C n7;, implies that

2 2 yA6? 2 16? 2
€ FY M < <1— 4C12>ej+y<l—T nj.

This in turn leads to

2 2 20,2 2
€ tYNig S« (ej+ynj),

y16?
2
4ci

1- ’IT"Z} < 1, and thus concludes the proof of theorem.
O

with @2 := max {1 -
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Remark 5.9 (basic ingredients) This proof solely uses Dorfler marking (5.23);
Pythagoras identity (5.7); the a posteriori upper bound in (5.13); and Proposi-
tion 4.56 (estimator reduction). The proof circumvents the use altogether of the
lower bound in (5.13) and the discrete lower bound (5.17).

The contraction property (5.28) is valid for a suitable combination of the energy
norm Jlu — uj|lo and the PDE estimator 7;(u;). We cannot expect this type of
result for the underlying space norm [u — u |y L@ We have instead the following

statement, whose structure reflects the possible stagnation of |u — u;|y L@ during
the refinement process, as documented in Example 5.7.

Corollary 5.10 (linear convergence of error) If the assumptions of Theorem 5.8
are valid, and 0 < a < 1,y > 0 are the constants in (5.28), then there holds

= uiel g @ < Coa* I u - il Yk2720, (5.33)

with C, = (S—Z'f(l + %))1/2 > 1 and constants Cg > cg > 0 and C, > 0 given in
(5.3) and (5.13) respectively.

Proof. Simply concatenate (5.3), (5.28) and (5.13) to obtain
cglu— uk|i,01(g) < flu = will +y micCur)?

< 6 (Ju = u I + v nwy)?)

. Y
< a0 (CB(I ¥ E)) =il 0

2

This implies (5.33) and concludes the proof. U

We stress that, in contrast to (5.28), (5.33) does rely on the lower bound in (5.13).
This is not the case if we express linear convergence in terms of the PDE estimator.
The proof is similar to the preceding one and is omitted.

Corollary 5.11 (linear convergence of estimator) Ifthe assumptions of Theorem
5.8 are valid, and 0 < a < 1,y > 0 are the constants in (5.28), then there holds

me(ug) < Cya* i) Vik=j>0, (5.34)
. CI\1/2 . .
with Cy = (1+7) > 1 and Cy given in (5.13).
Remark 5.12 (stopping) In view of (5.34), (5.12), we realize that GALERKIN

requires j < J iterations until the stopping criteria n7; < ¢ is satisfied and delivers
the error |u — I/lleOl(Q) < Cye, where

£
log Cyno

loga

J<1+
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5.2.3 Discontinuous coefficients: Kellogg’s example

We examine a simple yet quite demanding example with piecewise constant coef-
ficients in checkerboard pattern for d = 2 due to [Kellogg 1974/75], and used
in [Morin et al. 2000, 2002] as a benchmark for GALERKIN. We consider
Q = (-1,1)2, A = a;I in the first and third quadrants, and A = a1 in the second
and fourth quadrants. This checkerboard pattern is the worst for the regularity of
the solution u at the origin. For f = ¢ = 0, a function of the form u(r, 8) = r¥ u(6)
in polar coordinates solves (2.5) with nonvanishing Dirichlet condition for suitable
0 <y < 2 and u [Morin et al. 2000, 2002, Nochetto er al. 2009]. We choose
v = 0.1, which leads to u € H*(Q2) for 1 < s < 1.1 and piecewise in le, for some
p > 1. This corresponds to diffusion coefficients a; ~ 161.44 and a, = 1, which
can be computed via Newton’s method; the closer 7 is to 0, the larger is the ratio
ai/ay. The solution u and a sample mesh are depicted in Figure 5.2(left).

G—a [u- uT‘H&(!B
E 0—o© 7l
3 Ty ]

Figure 5.2. Discontinuous coefficients in checkerboard pattern: (left) graph of
the discrete solution u, which is u ~ r*-!, and underlying strongly graded grid 7
towards the origin (notice the steep gradient of u at the origin); (right) estimate and
true error in terms of #7 (the optimal decay for piecewise linear elements in 2d is
indicated by the green line with slope —1/2).

Figure 5.2 (right) documents the optimal performance of GALERKIN: both the
energy error and estimator exhibit optimal decay (#7°)~!/2 in terms of the cardinality
#7 of the underlying mesh 7 for piecewise linear finite elements. On the other
hand, Figure 5.3 displays a strongly graded mesh 7~ towards the origin generated by
GALERKIN using bisection, and three zooms which reveal a selfsimilar structure.
It is worth stressing that the meshsize is of order 107!0 at the origin and that
#7 ~ 2 x 103, whereas to reach a similar resolution with a uniform mesh 7~ we
would need #7~ ~ 10%°. This example clearly reveals that adaptivity can restore
optimal performance even with modest computational resources.

Classical FEMs with quasi-uniform meshes 7 require regularity u € H*(Q) to
deliver an optimal convergence rate (#7°)~'/? with polynomial degree n = 1. Since
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() (b) (©) (d)

Figure 5.3. Discontinuous coefficients in checkerboard pattern: (a) final grid
7 highly graded towards the origin with cardinality #7~ ~ 2000; (b) zoom to
(-1073,1073)%; (c) zoom to (-107%,107%)2; (d) zoom to (-1072,107%)%. For a
similar resolution, a uniform grid 7~ would require cardinality #7~ ~ 10%°.

u ¢ H°(Q) for any s > 1.1, this is not possible for the example above. However, the
problem is not quite the lack of second derivatives, but rather the fact that they are
not square integrable. In fact, the function u is in WIZ, for p > 1 in each quadrant,
and so over the initial mesh 7y, namely u € W127 (; 7). The computational rate
of convergence (#77)~'/? is consistent with Corollary 3.20. We will prove that
GALERKIN delivers this rate in Section 6.

5.3 Data oscillation: one-Step AFEM with switch

In Section 5.2 we assumed that the full data D = (A,c, f) € Dy ii discrete,
and in particular f = Pgf € Fq. The finite dimensional nature of O allowed
us to develop a rather simple theory of convergence for GALERKIN, the one-step
AFEM, that hinges exclusively on the PDE local error indicator ng(u, T) defined
in (5.8). We now keep (A, ¢) discrete, whence the elliptic operator in (2.5) includes
the Laplacian, but explore the role of a general forcing f # P4 f. Therefore, in
contrast with (5.22), we now investigate the effect of data oscillation (5.11)

2 2
oser(£)2 = Y If = Prfl e,
TeT
for any 7~ € T, and present a linear convergence theory. We recall from Theorem
4.45 (modified residual estimator) that the total error estimator E7(uq, f)* =
7]7‘(147')2 + oscq(f )El is equivalent to the H Lerror, namely

CrLE7(ur, f) < IV —uq)ll 2 < CuSrlur, f). (5.35)

As in the previous section, to simplify notation we do not use the hat symbol to
indicate quantities defined with the discrete data (A, c).

5.3.1 Role of data oscillation

At a first sight, it might seem that Example 5.7 (lack of strict error monotonicity)
is very special and can only occur at the beginning of the refinement process. We
now show that this situation can happen at any stage and that even an interior vertex
property may not guarantee error or data oscillation decrease.
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Example 5.13 (interior vertex) Let the polynomial degree be n = 1, fix m € N
and consider (5.21) with A = I the identity matrix, ¢ = 0, Q = (0,1)> and
checkerboard f given by the following expression and depicted in Figure 5.4 (left)

I ifxe@2™ @+ D)2 xG2™"™,(G+1)27) and i + j odd

f) = .
—1 otherwise.

We start with the same mesh 7 with four elements as in Example 5.7, and construct

recursively grids Tx4+1 € T, k > 0, as a conforming refinement of 7; € T via two

newest-vertex bisections of every triangle of 7¢; see Figure 5.4 (right). Since f is

L?-orthogonal to every piecewise linear basis function of the space Vg, = S}i’_k for
0 < k <m -1, we deduce that u; = 0 and the energy error does not change

lu— uglle = lu —uzlle 0<k<m-—1. (5.36)

Figure 5.4. Representation of the checkerboard function f of Example 5.13 for
m = 3 (left), and grids 7 for k =0, 1,2 (right).

We see that this procedure creates three interior vertices in every triangle of 7x
after two refinement steps, namely in 7x,, as long as k + 2 < m. Since the error
does not change, we conclude that the interior vertex property is necessary for error
reduction but is not sufficient in the presence of data oscillation osc; (f)-1 # 0.
We conclude

Data oscillation oscy(f)-1 is not generally of higher order than the

error, especially in the early stages of the adaptive process. (5.37)

On the other hand, for k = m the discrete solution ug;, does no longer vanish
globally, but is still zero along the lines where f changes sign due to the symmetry
of the problem, and the same happens with ug, ,,. Therefore, the behavior of
ugm and ug,,, in a fixed square, where f is constant, is exactly the same as in
Example 5.7. This implies that u, = u,,,, and illustrates that the rather special
situation of Example 5.7 can occur at any stage of the refinement process.
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Example 5.14 (vanishing of P4 f for n = 1) Since P+f is constructed locally
upon testing f against cubic and quadratic bubbles (see Remark 4.26 (local compu-
tation)), and f of Example 5.13 is highly oscillatory, we realize that P f is rather
small relative to f in H~'(Q), but it is not zero. This is due to the lack of complete
symmetry of the checkerboard pattern and the triangular grid. Suppose that each
square of Fig. 5.4, where f = =*1, is further split across the diagonals into four
triangles, and that f is assigned the alternating values +1 and 1 in each triangle
depending on whether f was originally 1 or —1 in that square; this configuration
is displayed in Fig. 5.5. Suppose further that the coefficients (A, c¢) of the operator
(2.5) are piecewise constant, as it happens for the Laplacian, the polynomial degree
is n = 1, and the definition (4.39) of Py over a triangle T € 7 uses g € Py rather
than P;. In light of (4.39) and (4.40), symmetry yields forall T € 7 and F € F

/Tf¢T=O = Prf=0, /Ff¢F:O = Prf=0, (5.38)

whence Py f = 0. Since also uq = 0 because f is orthogonal to all basis func-
tions of V4, we deduce E7(uq, f) = 0 and all the information about the error
llu — usllo # O resides in the data oscillation oscq(f)-; # 0. Moreover, the fact
that P¢f = O for several iterations reveals the important property that oscq(f)_;
may not change upon refinement because

oser(F% = > 1A (5.39)
TeT

Since ||lu — us{lg = oscq(f)-1, according to (4.45), a special care must be exercised
to reduce data oscillation when it dominates. This justifies the structure of the
algorithm one-step AFEM with switch below.

Figure 5.5. Refinement of the shaded according to the process described in Ex-
ample 5.14.

Example 5.15 (vanishing of P4 f for n > 1) Given n > 1 a polynomial degree
and 7k, k = 1, ..., m, uniform refinements of 7, there are finitely many conditions
to verify for f € H ~1(Q) to be orthogonal to Vg; and to Fg; . Since dim H Q) =

dim L?(Q) = oo there are infinitely many loads f € H™'(Q) as well as in L*(Q)
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that yield ug; = P f = 0, which implies (5.36). Moreover, g (ux) = 0 and
Eq(ug) = oscqy (f)-1 satisfies (5.39). One explicit example is as follows.

Given an initial mesh 7y, suppose that f consists of line Dirac masses supported
on the skeleton of 7 with densities gr on F' € F7; made of piecewise polynomials
of degree 2n + 1. We further assume that the gr are orthogonal to P, over F
as well as over all sub-faces obtained from m > 1 uniform refinements of 7y; see
Fig. 5.4. In such a situation, (5.38) applies and ug; = P¢ f = 0, whence (5.36)
and (5.39) are valid for 0 < k < m.

These three examples reveal the following crucial and novel feature about the
interplay of the energy error ||u — us|q and data oscillation oscq(f)—;:

Data oscillation oscq(f)-1 may be responsible for the energy error
lu — ugs|lo to stagnate, even with the interior vertex property, and
may entirely dominate it relative to the error estimator Eq(us, f) over
many mesh refinements unless it is reduced.

(5.40)

5.3.2  Reducing data oscillation

The PDE error estimator n4-(ug) in (5.8) is fully discrete and thus computable.
In contrast, the computation, or rather estimation, of oscs(f)-; hinges on a priori
knowledge of f and cannot be assessed in general. Assuming that the local
indicators introduced in Lemma 4.8 (localization re-indexing)

oser(£,T)-1 = If = Prfllgg-1wp) TET (5.41)

are computable without further regularity than f € H~'(Q), it is natural to think
of tree approximation as the algorithm of choice to reduce oscs(f)-; [Binev and
DeVore 2004, Binev, Fierro and Veeser 2023, Binev 2018]. However, this optimal
algorithm is not readily applicable because of the lack of a suitable sub-additivity
property.

On the other hand, greedy algorithms, such as that in Section 3.6 (constructive
approximation), do not work under minimal regularity. In Section 7.3, we present
practical examples of rough f for which oscs(f)-1 can be replaced by a larger com-
putable surrogate estimator 0scq(f)_;. The latter splits into element contributions
and is amenable to a greedy strategy. Since this is specialized and technical, we
prefer to postpone the full discussion to Section 7.3 and assume now the existence
of a module DATA with the following property: given a tolerance 7 > 0 and a
conforming mesh 7~ € T, DATA constructs a conforming refinement 7, € T

[7:] = DATA(T, f, 1),

such that oscy-(f)-1 < 7. The complexity of DATA depends on the decay rate of
the best approximation error mingcr,, 0scs(f)-; of f with N degrees of freedom.
We address this important issue in Section 7.3 for each example separately.
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5.3.3 Linear convergence

The following algorithm, AFEM-SW, a one-step AFEM with switch, is a minor,
but essential, modification of GALERKIN in that the call to the modules MARK
and REFINE is conditional to the size of oscq(f)-; relative to Eq(us, f). This
structure is consistent with the heuristic discussion in [Cascon et al. 2008, Section
6] to avoid separate marking. A similar algorithm is being developed in [Kreuzer
etal nd.].

Algorithm 5.16 (AFEM-SW: one-step AFEM with switch) Let 7 be a suitable
initial mesh, the coeflicients (A, c¢) be discrete over 7y, and € > 0 be a stopping
tolerance. Given parameters 0 < 6, w, ¢ < 1, AFEM-SW iterates the following loop
until Eq(ur, f) < &:

[T, us] = AFEM-SW (7, D, €)
setj=0
do
[u7;] = SOLVE (7;)
[7]7}(117}), OSC7;(f)_1] = ESTIMATE (u7;, 7}, D)
if87;(u7;,f) <e&
return 7},ur,7
else if osc; (f)-1 < 0 = WEF; (ug;, f)
[M;] = MARK ({n7; (u7;, }re7;> 7}, 0)
[7+1] = REFINE (7;, M)
else
[77+1] = DATA(T;, f,é07))
je—Jj+1
while true

Note that SOLVE computes the Galerkin approximation using the exact right-
hand side f € H™'(Q) (not necessarily in Fy;), thereby preserving the Galerkin
orthogonality property. Moreover, ESTIMATE is now responsible for computing
the PDE estimator

ny; () = ng; g, £, 75)

using P, f € Fg;, as well as data oscillation osc; (f)-1, which together give

5 5\ 12
Ex;ur;s ) = (nr; ) + oser, ()
and MARK consists of Dorfler marking (5.23) with parameter 6.

We proceed as in Section 5.2.2 to prove linear convergence of AFEM-SW. We
first show a contraction property for the quasi-error, which instead of (5.27) reads

Lr(ug;, )7 = Nl = ug g +yn7; (ug)® + oser; ()2, (5.42)
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where u = u(A, c, f) is the Galerkin solution with (A, ¢) discrete but f exact and
the scaling parameter satisfies 0 < y < 1.

Theorem 5.17 (contraction property of AFEM-SW) Let (A, ¢) be discrete coef-
ficients over Ty and let f € H"Y(Q). Let 0 € (0, 1] be the Dorfler parameter and
(77,Vj,u;) be the sequence of conforming meshes T, finite element spaces V j,
and Galerkin solutions u; € V; produced by AFEM-SW. There exist parameters
0 < wo < 1 sufficiently small and 0 < vy < 1 and 0 < @ < 1 such that for any
w < wo and & < 1/2 the quasi-error {7; in (5.42) contracts

{7;+1(u7;+1,f) < agq;(u@,f) j=0. (5.43)

Proof. We argue as in Theorem 5.8 (general contraction property) upon distin-
guishing the two possible cases within Algorithm 5.16. But first, we must account
for a crucial difference: the discrete forcing function Pg; f used in the definition of
the estimator S; (ug;, f) changes in each iteration. We use the same notation as in

Theorem 5.8 along with osc; := oscq; (f)-1, 8]2. = n? + osc?, and P; := Py;.

[] Estimator reduction property. In view of Proposition 4.56 (estimator reduction),
we need to estimate the discrepancy between discrete forcing functions

2 2 2
PP F P iy <2 2 (1 = Pt f s o I = P i) -
T €T+ T €Tj41
For the first term we recall Lemma 4.57 (quasi-monotonicity of oscillation) to write
2 2 2 2
Z If - Pj+1f||H71(wT) =08C7, < e 08C5
T €741

For the second term, instead, we combine the projection property P;,1(P;f) = P; f
with Lemma 4.5 (localization of H~!-norm) and Corollary 4.31 (local near-best
approximation), and the fact that 77, is a refinement of 7}, to see that

D =P PPy, < Ch D, I =Pif I

T'Cwr T'Ccwr

< CiypCamoser(fowr)* VT € T;.
Adding over T and recalling Proposition 4.56 we end up with

N7 Wjats [ T < (L +8) (7 £, T = Ang; (ug, fL M)

—1\ 2 2 2
+(1+6 )CLip (|uj —uj+1|H01(Q)+oscj),

(5.44)

for a constant Cyjp large enough to absorb all preceding constants, and any 6 > 0.

l-w
We then proceed as in Theorem 5.8 with the quantity e? + yn?, and observe that

2
Case osc; < wE;. We first observe that % > (1 — w?)E? and osc? < —2—n2.
J J ; J J ;
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the choices of ¢ and y

2
1-4& 26> 5 1

6S_1+ = N S S ’
1-16%  2(1-26%) Y ACE,  2(1+o7h)CE

(5.45)

imply y(1 + 5—1)c§ip < 1/2. This, together with (5.7) and (5.44), leads to

eiﬂ +y17§+1 < e? +y<l - %02>773 + % oscﬁ;
compare with (5.32). We invoke the upper bound in (5.13) to write
2 2y 02 2 e? e?
njz(l—a))ajz(l—w)c—lzzz—c%

provided w? < 1/2, whence

2 2 Y6y , A%\ 5 ya6” 5 1,
ei YNy < (1— 8C12)ej+y<l—T>nj—Tnj+—osc-.

We next consider the data oscillation, for which we invoke Lemma 4.57 (quasi-
monotonicity of oscillation)

2
2 2 W2 2 2.2
05Cj41 < Cosc 0SCj, osc; < Cooe ——n7 < 2C5.w7n;.
J 1— w2l J

Adding the two preceding inequalities yields

2 2 2 2 7/192 2
§j+l = ej+1 +’)/7]j+1 +OSCJ-+1 S(l - W)e,
1
10? 5 )
+ (1 — ?) (ynj +oscj)
16* 107 1
+ [ — ’y? + 2(C§SC -1+ ? + 5)0)2]7’]5
We drop the term —% + ”T(ﬂ <Oandlety = 46%, which is consistent with (5.45).

Lip
We seek conditions on w that make the factor of n? non-positive. Imposing

2 2
W? < 7/102 - 129 6 (5.46)
16C%.  64C3.CL
yields
S @14
with
5162 2162
2
a7 .= max 1——, ——}<1.
! { 3202C? 8

Lip
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Case osc; > w&;. The module DATA with input parameter £ < 1/2 gives
08Cjy1 < EwEj < &osc;.
We now exploit the contraction of osc; to compensate the moderate increase of 775

and presence of osci, both governed by (5.44). In fact, y(1 + 6‘1)Cfi p = % yields

1
G+ YN S € +y(L+0); + 3 0sc’ .

We add osc , to both sides and rewrite the right-hand side to arrive at

1—26
2 _ 2 2 2 2
{ip1 = €y T YNy H0SC,, e —

2
]
1+22
+<1—6>yn,< ; >sc§
- 22

+ 26)/77]

2
3 SCj.

Our next task is to find conditions on w for the last line to be non-positive. To this
end, we resort to the upper bound n? <w? osc? and ¢ < 1/2 to obtain

1 —2¢2 26 1
26777§— 8§ osc§<<—y——>osc2.§0

provided we impose the relation

w? > 326y = —6°. (5.47)

We next use the upper bound e; < C1E; < Ciw™! osc; to write

1 -2&2 ( w? )
2 2 2
e — oscs < |1- e“
J Jj= 2 |0
8 16C7

whence we end up with

2 2,2
G = 5

provided we define

2 3 +2&2
oz%:zmax{l— d ,1 -9, §}<1.

16C? 4
Choosing the parameters. We see that the asserted estimate (5.43) is valid with
a = max{aj,az} < 1 provided the constraints (5.46) and (5.47) are compatible,
ie.,

8
CLip

5 26?

<——95
64C3cCry,

5% <
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2 2
h = 40~ ap = —— 40" __ Then, for all w <
We choose 9§ SCL.Cy and wy Lo en, for all w < wy,
there exists 0 < g that satisfies the previous inequalities as well as y = 2 C‘Sz <1,
Lip
perhaps upon reducing 6g. This completes the proof of Theorem 5.43. U

Note that we could replace the conditional 0507;( -1 £ w 877 (uy;, f) by

osc7; (f)-1 < wng; (ug;), but the tolerance 7 of DATA cannot be
7= ¢ W)

because the algorithm may not terminate when ns; (u7;) = 0, see e.g. Examples
5.13 - 5.15. In fact, the tolerance 7 = {w&E7;(ug;, f) is dynamic and relative to
Eq;(ug;, f). This avoids separate marking, which was shown in [Cascon e al.
2008, Section 6] to give non-optimal convergence rates. In contrast, we will prove
in Section 6 that Algorithm 5.16 is rate optimal.

It turns out that Theorem 5.17 yields linear convergence of error and estimator.
Corollary 5.18 (linear convergence of error) For 0 < @ < 1 and 0 < w < wy,
¢ < % as in Theorem 5.17, and C,, = (1 + Cz_l)l/2 with Cy as in (5.13), there holds

k—i .

Proof. We again use the same notation as in Lemma 5.5 and Theorem 5.17. In
view of the definition (5.42) of quasi-error {; := {7;(u7;, f), we thus have e; < {;
and

{]2- < e? +n? +osc§ < (1 +C2_1)e§
because C2&; < e; from (5.13). This implies
ej<gj<Cie; Vj20,
and invoking Theorem 5.17 (contraction property for AFEM-SW)
& < 2 < a? 72 < a2k DC2
gives the desired estimate. U

We stress that Corollary 5.18 relies on the lower bound in (5.13) whereas Corol-
lary 5.19 uses only the upper bound. Its proof is similar and thus omitted.

Corollary 5.19 (linear convergence of estimator) For 0 < @ < 1 and 0 < w <
wo, & < % as in Theorem 5.17, and Cy = ((1 + Clz))/_l)l/2 with Cy as in (5.13),
there holds

Enlug, f) < Coa* Ex(ug, f) Vk>j20.

5.4 Convergence for general data: two-step AFEM

We now remove the restriction of Sections 5.2 and 5.3 of discrete data and allow
for general data D = (A, ¢, f) € D as defined in (5.2). The current goal is to study
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Algorithm 5.1 (AFEM-TS), which concatenates the modules DATA and GALERKIN.
We start with the study of continuous dependence with respect to data . We next
discuss the approximation of 9 within the module DATA, the computational cost
of GALERKIN, and eventually the convergence of Algorithm 5.1.

5.4.1 Perturbation theory

We start with a brief discussion of data perturbation. Given constants 0 < @] < a;
and 0 < ¢; < c¢;, we define the constrained spaces for the diffusion and reaction
coeflicients by

M(a, @) = {A € LY(QRED) : 0 < a1 < 4;(AX)) < @

sym

forae. xeQ,1<j< d}, ©:48)
where 1;(A(x)) denotes the j-th eigenvalue of A at x € Q and
R(ci1,c2) =={c € L®(Q):c; S c(x) < ¢y forae. x € Q}. (5.49)
The coeflicients (A, ¢) are assumed to satisfy the structural assumption
A € M(ay,a3), ¢ € R(cy,cp); (5.50)

see (2.6). This guarantees coercivity and continuity of the bilinear form 8 in (2.8),
and thus unique solvability of (2.7).

Regarding the discrete coefficients, (Z, ¢) will ultimately be piecewise polyno-
mials in a grid 7 € T. The side constraints in (5.48) and (5.49) are generally
violated by any linear projection onto piecewise polynomials of degree n — 1 > 1,
e.g. the L2-projection, and require a nonlinear correction maintaining high order
accuracy. This is a crucial but delicate matter addressed later in Section 7.2. For
the moment, we simply assume that the discrete coefficients (Z, c) satisfy

A€ M@,@), ¢eR@,), (5.51)
with
aj —~ —~ (03] —~ —~
— <) £ a2 < Cpraz, ——5 <c1 <02 < Cerlar +¢2) (5.52)
2 4c?

where Cp > 0is the Poincaré constant in (2.2) and C., > 1 is a constant; see (7.21)

and (7.23). This implies coercivity and continuity of the perturbed bilinear form

Blv,w] := / Vv - AVw + cvw, Yv,w € Hé(Q), (5.53)
Q

because for all v, w € H(l) (Q)

ol —~ al 2 a’] 2
Blv,v] > «a V] - — v[c > —|v
b2 @ [ 9 4CI%/QH S
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and
|B[v,w]| < /52|Vv| [Vw| +calv| |w] < (ng+32C%)|V|H01(9)|W|H01(Q).
Q

Therefore, the energy norm |||v|||§2 =8 [v, v] is equivalent to the Hé—seminorm

< VI, < Czlvl3,, (5.54)

112
CB|V|H0'(Q) Hl©Q
where ¢z = Zand Cgz= &2+52C Hence, the Lax-Milgram Theorem guarantees
the existence of a unique solution u = u(Z)) € H (Q2) of the perturbed problem

(5.5) defined using the discrete data D= (A c, f ).
We now quantify the effect of perturbing data from O to D in the space

D(Q) := L"(Q; R4y x W5 (Q) x H (), (5.55)

where 2 < r < c0and 0 < s < 1, 54 505 < q < 00 Wq‘S(Q) is the dual of W;;*(Q)

with ¢g* = %. The use of r = oo for A entails the further assumption

A is piecewise uniformly continuous over a generic mesh T € T, (5.56)

which turns out to be rather restrictive but customary in the theory of AFEM. Our
present approach allows for » < oo and thus for discontinuous coefficients (A, ¢)
non aligned with 7°, which is important in practice. However, it requires the
following slightly stronger regularity property of the solution u € H(l) (Q) of (2.7):

IVullLr@) < Cpllfllw, 1@ 2 <P < Ppo (5.57)

We refer to Lemma 2.13 (Wll, -regularity) that shows the existence of C}, > 0 and
po > 2 that only depend on Q, a1, @, and c5.

Lemma 5.20 (continuous dependence on data) Let D = (A,c, f) € D be such
that A € M(aq, 012) and ¢ € R(cy, ¢3). LetD = (A c, f) € D be an approximation
of D such that A € M(ay, @) and ¢ € R(¢y,¢3). Let2 <r < 00,2 <r, = 2_r2 <
po be so that f € Wr* Q). Ifu=u(®D),u= u(Z)) € HO(Q) are the solutions of

(2.7) and (5.5) with data D, 13 respectively, and u satisfies (5.57) with p = r, in
case r < oo, then for any 0 < s < 1 and 5=; < q < oo there holds

IV =0l 2 < C(O, QD - Dllﬁ(g), (5.58)

where the constant C(D, Q) depends on D, Q, po, q and s, and blows up as
q— 5= for d = 2 while it remains bounded for d > 2.

Proof.  Subtracting the weak formulations (2.7) for u and (5.5) for u, and reorder-
ing, we easily obtain for any v € Hy(Q)

/VV.ZV(u—m+Ev(u—m:/Vv-(Z—A)Vu+(3—c)vu+<f—f,v>.
Q Q
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We choose v=u—1u € Hé () and invoke (5.54) to deduce
C§||VV||iz(Q) < '/QVV (A - A)Vu+C-cvu+ (f - f, V).
We estimate each term separately, starting with the first and last terms
/QVV : (Z - A)Vu < ||X - A||Lr(£2)||VM||LV*(Q)||VV||L2(Q) (5.59)

with2 <r, = rZTrz < po, as well as

= ) < f = fllar@lIVVligiq)-
For the reaction term, which is more delicate, we invoke the duality pairing W‘q‘) -

—_ ’ _ q .
W forany 0 < s < 1and g =2 1 to obtain

/Q @~ cyu < 117 - ellwg @ Ivilws @

We now estimate IVMlW;,(Q) < [vulw o) where 1/p” = min{1, (1 - s)/d + 1/q’}
guarantees that W;),(Q) C W;;,(Q) [Iljeoni 2009, Theorem 14.32]. Recalling that
q > d/(2—s), we deduce

1—s+i: 1—s+1_l>d—l
d q’ d q d

whence 1/p’ > 1/2 and there exists ¢ < oo satisfying 1/t +1/2 =1/p’ and

1
2_’
2

vulws@ < IVVll2@llulliie + Vil Vall 2 q)-

Using the definition of p’, we obtain the explicit expression ¢ = max{2, ¢y}, where
2dq
to = .
g2 -s)+d) -2d

Moreover, for the Sobolev embedding H Q) — LY(Q) we require

1 1
1-d (— — —) >0 = > ,
21 A
which is our assumption on g. Therefore, as ¢ — 5%, we see that tg — 2%

and the limit is infinite for d = 2 but finite and larger than 2 for d > 2. Sobolev
embedding together with the first Poincaré inequality (2.2) gives the estimate

||VM||W;,(Q) < CEL DV 20 IVull 2g)-

where C(Q, t) is proportional to ¢ for d = 2.

We finally observe that the factors ||Vu||rr ) and ||Vul|;2q, appear in the
estimates of the coefficients A and c, thereby reflecting the multiplicative nature of
these terms. Since 2 < r, < py, they can be further bounded in terms of || f ”Wr;' @
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according to (5.57). This in conjunction with the preceding estimates yields the
assertion (5.58). O

A natural and rather popular choice of parameters (r, g, s) in Lemma 5.20 (con-
tinuous dependence on data) is r = g = oo and s = 0, but this would prevent the
coeflicients (A, ¢) from being discontinuous within elements; see (5.56). We will
explore this matter further in Section 7 (data approximation).

Remark 5.21 (L2-approximation of A) It is appealing to estimate the distortion
A-A4in L*(Q) rather than in L"(Q) because it is a simpler norm to deal with.
Since ||Al|r~@) < a2, ||Z||Loo(g) < @, and 2 < r < oo, we deduce

2 -~ 2
g S 1A —All;

P —~ 1_% P
”A - AHL’(Q) < ”A - A”Lw(Q)HA - AHLZ(Q) ~

L2(Q)
However, this may be sub-optimal in general. One important situation where this is
sharp corresponds to A being piecewise constant with jump discontinuities across
a Lipschitz hypersurface y and A=Aon every element 7 € 7 not intersecting y.
In that case, the equivalence

- ~ L
1A - AllLr@ ~ [{x € Q 1 AW) 2 AW)}|7,

is valid for 1 < p < oo, whence
2
r

”A - A”Lr(Q) ~ ”A - A”LZ(Q)'

5.4.2  Approximation of D: module DATA
In this section we briefly discuss the structure of DATA, which is the module of
Algorithm 5.1 (two-step AFEM) responsible for data approximation.

In the sequel we will no longer rely on the Banach space D(€) defined in (5.55)
and used in Lemma 5.20 (continuous dependence on data). We rather restrict the
error notion to the following stronger Banach space

D(Q) = L"(Q; Ry x L1(Q) x H(Q), (5.60)

where g =2 ford < 4 or g > % for d > 4; we justify the choice of ¢ below. Let
D and D4 be the spaces defined in (5.1) and (5.2) for a conforming mesh 7 € T.
Given D = (A, c, ) € D, let 67(D) be the best approximation error of 9 within
D¢ measured in the space D(£2), namely

O0r(D) = Ding 1D - Drllp@)- (5.61)
T T

This quantity characterizes the approximation quality of D¢, thereby having the-
oretical value. Since d7(9D) is hard to access in view of the norms involved in the
definition of D(€2), the module DATA computes the surrogate quantity

osc (D) = ||D - @HD(Q)

for some approximation De Dg- to be specified below.
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Assumption 5.22 (properties of DATA) Given a conforming mesh 7~ € T and a
tolerance 7 > 0, the call

[7, D] = DATA(T, D, 1) (5.62)

creates an admissible refinement 7~ of 7~ and discrete data @ = D'T’ € D(f such
that for a constant Cgaa

0sc=(D) = |D - Dllp@) < CoauT (5.63)

as well as the structural conditions (5.51) are achieved in a finite number of itera-
tions that depends on the regularity of 9, and such that

05¢(D) < Adata 6(D) (5.64)

with Agara > 1 depending only on the shape regularity of T, the polynomial degree

n and the Lebesgue exponents in the space D().

In view of Lemma 5.20 (continuous dependence on data), there exists a constant
Cp > 0 depending on D, Q, and the shape regularity of T, such that the exact
solutions u = u(D) and i = u(@) of (2.5) and (5.5), corresponding to data 9 and
D respectively, satisfy the error estimate

A brief discussion follows about computing osc(D), where 7 remains fixed
and is replaced by 7~ to simplify the notation. Specific details are given later in
Assumptions 6.10 and 6.11 of Section 6.10 and especially in Section 7.

Approximating the coefficients. We now construct approximations (Z,a using
local L?-projections and emphasize that this does not enforce the side constraints
in the structural assumption (5.51). We propose in Section 7 a nonlinear correction
satisfying the side constraints without sacrificing the accuracy.

GivenT € 7,and v € LP(T) with 1 < p < oo, we denote by IIrv = H?‘lv the
L*-projection of v onto the space P,,_; of polynomials of degree < n — 1, namely

IyveP,_;: /Hva:/vw Yw € P,_1. (5.66)
T T

Lemma 5.23 (L? -stability of II) For every 1 < p < co and v € LP(T), there
exists a constant C depending on p,n and the shape regularity of T such that

Iz v|leeay < Clvlieeay VT € T. (5.67)

Proof. 1Tt is trivial to see that ||z vl 2¢r) < [IVlp27). Let2 < p < oo and
combine an inverse estimate with a Holder inequality to write

d_d d_d
M vlieeay < Chy *I0rvllagy < ChE IVl < Clvilea).
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For 1 < p < 2 we proceed by duality. Let ¢ € L9(T) with g = % Then

/HTVSD = / vilr @ < |Vllecylldr @llracry < ClvIieayllellLacr),
T T

which implies (5.67) and concludes the proof. U
We immediately have the following simple consequence of Lemma 5.23.

Corollary 5.24 (best approximation of Ily) For every 1 < p < o and v €
LP(T), there exists a constant Cgy > 1 depending on p,n and the shape regu-
larity of T such that
v —=Tlrv|lLray < Cpa inf  ||v = wllLrar. (5.68)
weP,_1
Proof. We combine the invariance of IIy on P,_y, i.e. IIyw = w forw € P,_y,
with (5.67) to see that

v =TIrvliea) = |(v =w) =Hr (v =w)llLery < Cllv = wllLe ).
This implies (5.68) as asserted. U

The L?-projection is easily computable because it entails solving the linear sys-
tem (5.66). However, this flexibility comes at the expense of a best approximation
constant Cga > 11in (5.68) for p # 2. The best L -approximation of v in T is also
computable, because it boilds down to a convex minimization problem, and would
resultin Cpa = 1. This excellent property is superseded by the simplicity of (5.66),
which makes Il7 v the approximation of choice.

Corollary 5.25 (quasi-monotonicity of Ily) Let 7,7, € T be so that T < 7,
andletT € T,T, € T, satisfy T. C T. If Cpya is the constant in (5.68), then

v —Trvlizea) < Cpallv = Trvller) (5.69)
forall1l < p < oo, and Cpy =1 for p =2.
Proof. Simply use (5.68) to write
v —rvllLe) < Coallv =T vllLer) < Coallv = HrvllLe).
This is the desired bound. U

We are now ready to define the discontinuous P,_;-approximation v of v €
LP(Q). Inequality (5.69) with Cga > 1 is fine for most instances except Lemma
7.5 below. Therefore, we introduce a nonlinear modification of the obvious choice
vfor T € 7, namely v = IIyv. We give a recursive (and computable) definition
as follows: If T € Ty, then v|y := IIyv; if T € T let v]pary € Py_1 be the
approximation of v in the parent element P(7T) of T, and set

(5.70)

Sy = Irv if [v —=Orvleay < v =VieallLe ),
T =9 ; ~
vlpa) if v =Tz v|leeay > v =Vlea)llLe ).
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We then define
OSCT(V,T)p = ||V —v”LP(T) VT € T (5.71)

Since the chain of elements emanating from 7y and culminating with 7T is unique,
the notion oscy(v, T),, is well defined and independent of 7~. The following result
is an immediate consequence of (5.70).

Lemma 5.26 (monotonicity of oscillation) Forall 1 < p < oo, 7,7, € T with
T <9, andT, € 7,,T €T sothatT, C T, there holds

osc (v, T*)p < oscr(v, T)p- (5.72)

Consequently, forany n > 1 and T € 7, let A € [S"T_l’_ 19xd. & €Sy L1 pe
defined locally via (5.70), and let the surrogate element error indicators of (A,c)
be given by

oscr (A, T), := |A = Allrry,  oseq(c,T)g = |lc = Ellacr) » (5.73)

for some 2 < r < oo and % < g < oo according to (5.58) for s = 0. The simplest
choice ¢ = 2 yields ¢ = Iy ¢ in (5.70), but requires the restriction d < 4, which
is fine in practice.

For n = 1 the situation is a bit special on two counts. First, II7v reduces to
meanvalues of v, namely

Ir A : A, II T 74
P A ey e vrem. G

for A € M(ay,a),c € R(cq, cy) defined in (5.50). Hence, Ac M(a;, @) with
@) = a1, @y = az and ¢ € R(Cy,») with €] = ¢, C» = ¢, i.e., the L?-projections
(5.74) on piecewise constants over 7~ as well as Aand ¢ satisfy the side conditions
in (5.51) without changing the original range of parameters. In addition instead
of (5.73), we can exploit superconvergence in W 1(Q) with q > 57— =d in (5.58).
In fact, we utilize the orthogonality of I1y in conjunctlon with (5. 68) and (3.16) to
obtain for an arbitrary function w € W(} (Q) and ¢g* %

/(c —Mrcow = /(c ~Mzrc)w —Tirw) < hyllc = HTC||LV(T)|W|W(11*(wT)
T

d d

wheret =1-4<+4£ =1+ 7 % > Qand r* = rrj We consider two cases:

r=200. Ifr= 2ands =1,theng > dresultsin0 <t <2 — % and entails the
restriction d < 4. This implies ||c — aqu—I(Q) < oscq(c) where

OSC‘T(C,T)Z = hé—v“C —HTC”LZ(T). (575)
If r =coand s = 1, then g = co yields # = 1 and ||c — aqu—l(Q) < 0scq(¢)0o Where

OSCT(C, T)Oo = hT ||C - HTC||L°°(T)~ (576)
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Approximating the load. Dealing with f € H™'(Q) is trickier for several reasons.
First the norm in H~'() is nonlocal, so its localization is non-obvious. We recall
the definition (4.52) of local oscillation oscq(f,T)-; for T € 7 and Corollary 4.31
(local near-best approximation) to deduce
oscr (f,T)-1 = [If = Prflla-1(wp) < ClStbxeiEngf f = xllg-1wpy (577
wr
where Cisy, is the constant in Lemma 4.28 (local H~!-stability); equivalently,
oscy(f,T)—; delivers a near best approximation of f in H~'(wr). The second
issue at stake is that without further assumptions on f, it is not possible to evaluate
or bound the left hand side of (5.77). In Section 7 we will consider several classes
of loads amenable to computation and yet relevant in practice.
A popular variant of this approach for f € L?(Q) replaces y in (5.77) by the
L?*-projection ITs- onto discontinuous piecewise polynomials of degree n — 1, and
sets f = I14f. This leads to the standard local weighted L?-element error indicator

oSer(f,T)-1 = hrllf = flloqy VT €T (5.78)

Data error estimators. They are the following quantities for the coefficients (A, c)

oscy(A), := ( Z oscf,-(A,T);> ?,

Ter (5.79)

oscy(c)g = ( Z oscﬂc,T)Z) E’

TeT

which accumulate in £” and ¢4 for 2 < r < oo and % < g; recall that ¢ = 2 is an
admissible choice provided d < 4. In contrast, the global error estimator for f

oser(f)-1 = ( D, oser(f. T>%1)2 (5.80)

TeT
accumulates in £2. The total data error estimator satisfies (5.64) and reads
oscr(D) = oscg(A), +oscg(c)y +osca(f)-1 . (5.81)

The module DATA. This module reduces the oscillation of data D = (A, ¢, f) se-

quentially. It consists of a linear approximation followed by a nonlinear correction.
Given a coefficient v = A,c, a mesh 7 € T, a tolerance 7, an accumulation

index 1 < p < oo, and a number of bisections b > 1 per marked element, the call

[7.7] = GREEDY (v, T, 7, p,b)

returns a conforming refinement T of T anda piecewise polynomial approximation
v of v over 7 such that the oscillation computed with v — v satisfies

oscx(v)p < T.
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For the load function f, since the computation of oscs(f)-; is impossible without
further assumptions on f, we will consider three surrogate estimators 0sco(f)_1
in Section 7.3 that also accumulate in £” such that, for all 7~ € T,

osc7(f)-1 < Caa0SC7(f)-1,

where Cgaa > 1. GREEDY applied to the surrogate estimator constructs T>7
satisfying

6§/C7-(f)_1 <7t = OSC,;-(f)_l < CyataT. (5.82)

In all cases, the routine GREEDY is similar to that in Algorithm 3.18 (greedy
algorithm) with several important distinctions: it accumulates the local error in-
dicators in the {P-norm and starts from any mesh 7~ > 7 to save computational
work.

Finally, the structure of the module DATA is as follows: it concatenates GREEDY
with CONSTRAINT-A and CONSTRAINT-c in order to satisfy Assumption 5.22
(properties of DATA). The routine GREEDY deals with pure approximation without
constraints: called with tolerance 7/3, it sequentially reduces the oscillation for
A, ¢, f with the most recent updated mesh to reduce their errors so that

oscz(A), < 7/3, oscx(c)y < 71/3, 6§'crf(f)_1 <7/3

on a conforming refinement 7 > 7. This is discussed in detail in Section 7.1.
From (5.82), we get oscz( f)=1 < C4aa7/3. On the other hand, the resulting

coefficients (A, ¢) most likely do not satisfy the constraints (5.51) for n > 1. This
requires a further nonlinear correction

[A] = CONSTRAINT-A(7,A),  [¢] = CONSTRAINT-c (7, o),

that enforces (5.51) on the same grid 7 without compromising the accuracy gain
produced by GREEDY : there exists a constant > 1, still denoted Cgj¢, for simplicity,
such that

osc(I:(Z)r < CqataT/3, osc,/:(aq < CaaaT/3 = 05¢x(D) < CaaaT.

For instance, for a fixed parameter L > 2, we get @) = %aq and @ = (1 +4L)F
for the parameters in (5.51). We give details in Sections 7.2, 7.3, and 7.4.

The optimality properties of DATA hinge on the performance of GREEDY and the
regularity of D. Since this is not necessary for the present convergence assessment,
we discuss it later in Section 7.

5.4.3 Computational cost of GALERKIN
The output pair (‘7‘ , 5) of DATA is next taken by GALERKIN, the one-step AFEM

of Algorithm 5.4 in Section 5.2.1, to run an inner loop of the form (5.18) with

fixed discrete data D and initial mesh 7. The call (5.19) of GALERKIN stops as
soon as the error tolerance ¢ is reached, which takes a finite number of iterations
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because GALERKIN is a contraction between consecutive iterates, and creates the
next mesh-solution pair (7, u4). It is worth noticing that, in the absence of this
stopping test, the Galerkin solution us would converge to the solution i = u(ﬁ) of
(5.5), which is not the desired solution u = u(D) of (2.5).

We stress that, in view of (5.63) and (5.65), the relative resolution of the modules
DATA and GALERKIN is critical for the discrepancy between the exact and perturbed
solutions u and u. This is ultimately responsible for the performance of AFEM-TS
and is studied in Section 6.

We now investigate the number of iterations within GALERKIN, which dictate
its computational cost. We point out that at iteration £k — 1 > 0 of AFEM-TS, the
output (7%, ux) of GALERKIN, and thus of AFEM-TS, satisfies

mi(ur) = ng ) S g1 = fuk — -1l < Cugre (5.83)

according to (5.12). We recall that uy_; = ﬁk_l(ﬁk_l) € Hol(Q) is the exact
solution with discrete data 5k_ 1, and that Eq; (ug, f) is defined with discrete data

@k_l and satisfies Eq; (uk, f) = ng; (ur) because data oscillation oscq (f)-1 = 0.
The next iteration k of AFEM-TS calls DATA, which in turn refines the mesh 7
to 77< and updates the data approximation from Z)k 1 to Z)k over ‘E The pair
(7;2 Dk) determines the first Galerkin solution ug o € Vi o = VAk of GALERKIN

and corresponding estimator 7 o(u#x,0) With 7x o = 77<, which must satisfy

Nk.0(k,0) > &k (5.84)

for GALERKIN to be executed. The reduction of nq; (ux, ;) for j > 1 dictates the
number of iterations of GALERKIN. We examine this next.

Proposition 5.27 (computational cost of GALERKIN) If the assumptions of The-
orem 5.8 are valid, then for any k € N, the number of subiterations Jy inside a call
to GALERKIN at iteration k of AFEM-TS is bounded independently of k.

Proof. The j-th error ey ; := |uy — uk,leOl(Q) within GALERKIN converges lin-
early in view of Corollary 5.10 (linear convergence of error) because the dis-
crete data Dy is fixed in these inner iterations. Exploiting the lower bound
Crni,j(uk,j) < ex,; stated in (5.12), we thus deduce

Mi,j(uk, ) < Cilex; < Cr'Cuadeg, j2i20,

whence 1y j(ug ;) < C#ajek,o with Cy := CZIC*. The number of iterations
of GALERKIN depends on the size of g o(ux o) relative to ;. We assume that
nk.0(Uk,0) > €k according to (5.84). We first prove that nx o(ux,0) < ex and next
argue that Ji is bounded uniformly in k. We proceed in two steps.

(] Bound on |y — ur0lg1q): Since ux € Vi € Vi = V7, and the Galerkin
f 1
solution uy o € Vi o minimizes the error [|ug o — ug|lo in Vi o, relative to the
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energy norm induced by the bilinear form B with discrete data Dy, we deduce

llug,o = urlla < llux — uxlle < \/C§(|uk — -1l @ + lie-1 = ﬁk|Hd(g)),

where the last inequality uses (5.3) for B. Invoking the a posteriori upper bound
(5.13) and the termination condition of GALERKIN at step k — 1, we obtain

|ug — ﬁk—llHOl(g) < Cu&q(uk, f) = Cuni(ur) < Cyek-1 = 2Cy .
On the other hand, using (5.65) with 7 = wey and 0 < w < 1, we arrive at
| — I/Tklﬂol(g) < Cieg,
with C1 = wCp. The triangle inequality thus yields
|1’4\k71 - ﬁk|HO1(Q) < u- ﬁk—1|HO1(Q) +|u - ﬁk|HO1(Q) < Ci(gk-1 +&r) =3Cr &k,

whence

. Cz
k0= |I/£k’0 - Mk|H01(Q) < C_A(2CU + 3C1)8k =: Creg.
B

Bound on Ji: We observe that GALERKIN stops once 7 ;(ux, ;) < &i. Since
the smallest such j is Ji, we see that

Ti-1 Ti—1
ek <M, sp—1(Up, g -1) < Coa’* ep g < CpCrera™ .

1 . .
M uniform in k. UJ
log @

This implies the asserted bound J; < 1 +
5.4.4 Realization of AFEM-TS
We now make the two step AFEM algorithm precise.

Algorithm 5.28 (AFEM-TS) Given an initial tolerance &9 > 0, a target tolerance
tol and initial mesh 7y, as well as a safety parameter w € (0, 1], AFEM consists
of the two-step algorithm:

[T, us] = AFEM-TS (79, &9, w, tol)

set k = 0 and do
[7. D] = DATA (7%, D, w £x)
[Tis1, k1] = GALERKIN (¢, Dy, &)
Ek+l = %Sk
k—k+1

while g,_; > tol

return 7, uy

Proposition 5.29 (convergence of AFEM-TS) For each k > 0 the modules DATA
and GALERKIN converge in a finite number of iterations, the latter independent
of k. Moreover, there exists a constant C, depending on 9,2, d, n, the Lebesgue
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exponents r,q in D(Q), the parameters a1, @z, c1,cy in (5.48) and (5.49), and
the shape regularity constant of T, such that the output of the (k + 1)-th iteration
[Tx+1, uk+1] = GALERKIN (Tx, D, €1) satisfies |u — uk+1|H01(Q) < C.eg for all

=
k > 0. Therefore, AFEM-TS stops after K < 2 + k;igtgl iterations and delivers

|u - uKlHOl(Q) < C*tol

Proof. Inview of Assumption 5.22 (properties of DATA) the module DATA iterates
a finite number of steps to reach tolerance T = wey for every k > 0. Moreover,
the number of iterations of GALERKIN is independent of k due to Proposition 5.27
(computational cost of GALERKIN), whence we deduce that each loop of AFEM-TS
requires finite iterations. Thus, the output ug of the (k + 1)-th loop satisfies

|u - uk+1|HO](Q) < lu- ﬁk|H01(Q) + ik — g |H01(g) < (CUCD + CU)ek = C.&p,

according to (5.65) with 7 < wey and (5.83) for all k¥ > 0. Finally, AFEM-TS
terminates after K loops, where K satisfies %tol < gg-1 < tol, and the asserted
estimate holds. ]

This elementary proof gives no insight whether the Hé—error decays optimally
in terms of degrees of freedom. We assess this fundamental question in Sections 6
and 7, but investigate it computationally in Section 5.4.5.

A two-step algorithm similar to AFEM-TS was first proposed in [Stevenson 2008],
and further explored in [Bonito ef al. 2013b, Cohen et al. 2012]. Note that other
quantities, such as the number of degrees of freedom, could be employed to stop
AFEM-TS instead. It is also worth realizing that the structure of the algorithm is
independent of the size of tolerance tol. In this vein, a user could take gy = tol,
provided tol is affordable by the computational resources at hand. With such a
choice, the modules DATA and GALERKIN run only once, in sequence: data are
approximated to the desired accuracy in one shot, then fed to the PDE solver which
produces the approximate solution. Since the quasi-optimality theory in Section 6
would also hold for this choice of £¢, one might wonder why not using this simpler
strategy. We stress that iterating over & has the following advantages:

e Restarts: Dynamical shrinking of tol, for instance to account for the user
decision to improve the accuracy, does not entail a restart of AFEM-TS but rather
a continuation from the previous computed solution. In this sense, the resulting
iteration would be similar to the proposed structure of AFEM-TS.

o Computational resources: AFEM-TS allows for “balanced investment" of com-
putational resources between the modules DATA and GALERKIN. If the stopping
criterion, either accuracy or number of degrees of freedom, is unrealistic for
the problem at hand, AFEM-TS would still produce a discrete solution with
equilibrated data and solution errors.

o Nonlinear problems: The interleaving approach of AFEM-TS appears to be
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better suited for treating nonlinear problems for which data 9 may depend on
the solution. Therefore a call to GALERKIN, and corresponding solution update,
must precede a call to DATA.

e [terative solvers: If an efficient iterative solver is adopted within SOLVE, then the
previous discrete solution of GALERKIN could be taken as initial iterate, thereby
making SOLVE fast because e"zl 1 . If instead one computes with DATA alone
until the fixed tolerance tol is reached then GALERKIN would work directly on
fine meshes, which are not adapted to the geometric domain singularities, and
without good initial guess. This would lead to fewer but heavier iterations of
GALERKIN, which is detrimental from a linear algebra perspective.

5.4.5 Computational assessment of AFEM-TS
In this section we explore computationally the relative performance of GALERKIN
and DATA, for the two-step AFEM, and elucidate the behavior of data and coeffi-
cient oscillations within DATA. Our observations motivate the rigorous study of
Section 6, which provides theoretical support to our experiments. The numerical
computations are made with the help of [Funken, Praetorius and Wissgott 2011].
We consider problem (2.5) in the L-shaped domain Q = (-=1,1)% \ ([0, 1] x
[—1,0]), with diffusion term A = al, where

a(x,y) = 1 +exp(=50((x + 0.5)* + (y + 0.5)%)) +exp(=50((x + 0.5)* + (y — 0.5)})) ,
and reaction term
c(x,y) = 1 +exp(=50((x + 0.5)* + y%)) + exp(-50(x* + (y — 0.5)%)) ;

note that the Gaussians in the definition of @ and ¢ have the same intensity but are
located in different places within Q. The load term f and the Dirichlet boundary
conditions are chosen in accordance with the analytical solution

u(x, y) = 3 sin(2a/3) +exp(=1000((x — 0.5 + (y — 0.5)%)) ,

where (r, @) are the polar coordinates around the origin. Notice that the exact
solution u is singular at the reentrant corner: it belongs to the Sobolev spaces
H (Q)%_S with & > 0 and W;(Q) with p > 1. It also exhibits a rapid transition
of order 1073/2 around the point (0.5, 0.5) due to the presence of a very narrow
Gaussian. The Gaussians are meant to test the performance of the module DATA,
while in addition the corner singularity of the solution tests the execution of the
module GALERKIN.
We utilize the following parameters in the numerical test

=05 w=1, tol=2"* hy=0.125, g =1.

Notice that the number of iterations of the algorithm AFEM is K = log,(€p/tol) =
4. We compute the relative H'-error between the exact solution x and the FEM
solution u4 and notice that its decay rate is (#7~ y"1/2 in Fig. 5.6 (left). This rate
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Figure 5.6. Left: estimator ny(us), data error oscz(D), and relative H I_error
obtained with the algorithm AFEM performing b = 3 bisections per marked element.
The optimal decay is indicated by the dashed line with slope —0.5. Right: Diffusion
error osc(;(A), reaction error oscf(c), load error osc,;( f)-1, obtained with the
algorithm AFEM.

is consistent with that of the PDE estimator n5(u5) and data estimator oscq(D).
In Fig. 5.6 (right) we display the component of the data error osc(/:(A), oscz(c),
0scz( f)-1 defined in (5.79) and (5.80) with local contributions defined in (5.73)
for A with r = oo, in (5.76) for ¢ with t = 1 and (5.78) for f. Recall that at each
iteration k, DATA circles through osc(A), oscz(c), and oscz(f)-1 reducing each
of these oscillations to 1/3 of the iteration tolerance £, = 2%, The presence of the
weight A’ in oscz(c) considerably reduces the influence of the approximation of
¢, which is below threshold from the start and thus never generates any refinement
(see Table 5.1). The local oscillation for f also includes a weight vanishing as
h — 0 but osc=(f)- is above the desired tolerance, which would in principle
generate refinements. However, since at each iteration DATA considers oscz(A)
first and the regions refined to reduce osc(f)-; are included in the regions needed
to be refined to reduce ny(us) and osc(;.(A), the GREEDY routine applied to f does
not refine any element except during the first iteration when the Galerkin error has
not yet been reduced by the algorithm. Overall, the reduction of the Galerkin error
is driving most of the refinements. The number of marked element to reduce the
approximation errors of A, ¢, f, and the residual estimator are reported in Table 5.1
along with those when b = 1 refinement is used per marked element. In Figure 5.7,
we provide the resulting meshes after the first iteration of DATA and GALERKIN.

5.5 Convergence for other boundary conditions

We consider first the variational problem (2.13) with Robin boundary condition. We
approximate data D = (A, ¢, p, f, g) by piecewise polynomials D = (4, ¢, p, £, 2),
The only difference with respect to (5.2) is that the new functions (p, g) are approx-
imated on Q by discontinuous polynomials (p, g) of degree n — 1 and 2n — 1. The
projection operator P4 approximates gdsq by gdsa = P7(gdsq) without compon-
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X 0sc=(A) oscz(c) || oscz(f)-1 ny(ug)

b=1 [ b=3 | b=1 | b=3 |[ b=1 [ b=3 || b=1 b=3
132116 0 0 || 26 | 13 363 308
21 16 | 16 | © 0 0 0 1636 1138
31120 43 || 0 0 0 0 7447 4227
411231 62 || 0 0 0 0 || 42792 | 15268
51 82 | 138 | 0 0 0 0 || 144345 | 102350

Table 5.1. Number of marked elements to reduce the data and Galerkin errors at
each iterations k = 1,2, 3,4 of AFEM-TS when using b = 1 and b = 3 refinements
per marked element. Regardless of the value used for b, the reduction of the
Galerkin error is driving most of the refinements followed by the error in the
approximation of the diffusion coefficient A. The approximation of f is subordinate
to the approximation of u and A arising earlier in the adaptive loop and thus does
not generate any refinement except during the first iteration when the Galerkin error
has not yet been tackled by the algorithm. The approximation of ¢ is below the
final tolerance from the start and does not generate any refinement.

SRR

Figure 5.7. Resulting meshes after the first iteration of DATA (left) and after the
first iteration of GALERKIN (right). DATA marked 29 elements for refinement while
GALERKIN marked 308 elements. Refer to Table 5.1 for more details.

ent in the bulk because gdq is a line Dirac mass aligned with the mesh. Discrete
functions (p, g) must be produced by DATA, subject to a sign constraint on p. The
approximate bilinear form 8 and linear functional £ read

B[w,v] Z=/VV-ZVW+EVW+/ pow, {v) := (f,v)+/ gv. (5.85)
Q 0 Q

The a posteriori error estimates of Section 4 extend to this pair (@,Z). The
algorithms GALERKIN, AFEM-SW, and AFEM-TS are similar to those above and
possess a similar supporting convergence theory. The Neumann boundary condition
is a particular case with p = 0. We do not pursue this any further.

However, the pure Neumann boundary condition is special because of the global
compatibility condition Z(l) = (Z 1) = 0. In Section 4.10 we introduce a new



AFEM 159

projection operator P, a modification of P, with the requisite properties of local
approximation and global compatibility (P7¢, 1) = 0 provided £ € H Q) satisfies
(¢,1) = 0. We thus set £ = P4 to solve the Galerkin problems and use P, in the
local indicators. We do not explore this matter further.

For a non-homogeneous Dirichlet boundary data g € H'/2(0€Q), DATA must
produce a continuous piecewise polynomial approximation g of degree n, thereby
consistent with the Galerkin solution us. The Dirichlet oscillation oscg(g)1/2 is
defined in (4.96) and is locally computable. Data oscillation now becomes

oscy(€) = osc(f)-1 +0scy(g)1)2

and added to the PDE estimator n4(u4) for g = 0 gives a full estimator equivalent to
the error, according to Theorem 4.74 (estimators for general Dirichlet conditions).
With these minor modifications, the convergence theory for GALERKIN, AFEM-SW,
and AFEM-TS extends to this case. We do not provide any further details.

5.6 Convergence for alternative estimators

We have so far developed a convergence theory for the residual estimator Eq-(u s, f).
The purpose of this section is to extend this theory to the three alternative estimators
discussed in Section 4.9, namely

o S;Qb(uT, f)? = T].l;)-b(uT)z +oscy(f)?,: estimator based on local problems;
o &N (ug, f)? = gt (ug)? + oscq(f)2,: hierarchical estimator
° &f;_q(urr, f)? = nf;q(uT)z + oscq(f )%1 : estimator based on flux equilibration.

They are all computed on stars w, with z € V and possess a similar structure. The
first term is the PDE estimator, from now on called {s(u4) to refer to any of them,
and is locally equivalent to the discrete residual PRy

{r(ur,2) ~ |PrR7Alg-1(,y Yz EVi (5.86)

see Theorems 4.59, 4.64, and 4.69. In fact, they are all different mechanisms to
extract information from PsR4-. Since the vertex-indexed residual PDE indicator
ny(ug,z) = r]fie.s(u(r, 7), defined in (4.70a), is also proven to be equivalent to
|P7R7 |l -1 (c.) in Theorem 4.58 (vertex-indexed modified residual estimator), we

deduce the existence of two equivalence constants C]e_q <C ;:]q such that

Cilnr(ur, 2) < {r(ug,2) < Ciinr(ur,z) Yz eV, (5.87)

Following [Kreuzer and Siebert 2011], we will exploit this property to prove
convergence of AFEM driven by {s(u4). An obstruction for a direct convergence
theory is that our preceding results rely heavily on Lemma 4.53 (reduction property
of the estimator), which is not necessarily valid for any of the alternative estimators.
We refer to [Cascon and Nochetto 2012] who present a direct approach based on
the local lower bound for discrete solutions of Theorem 4.51 (local lower bound for
corrections). The latter is guaranteed by Definition 4.50 (interior vertex property)
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for operators with coeflicients A piecewise constant and ¢ = 0, and any polynomial
degree n > 1, but we do not know its validity for more general coeflicients (A, c).

The key for convergence is imposing a Dorfler marking. We say that a set of
vertices My satisfies a Dorfler property with parameter 6 < 1 if

Grlur, M) = ) Lrlug, 2 2 0 ) Lrlur, 0’ = Lrug). (5.88)

ZEMey zeV

Let M be the collection of elements contained in the stars w, with z € M. Then
MARK marks all elements in M, and REFINE bisects them & > 1 times. This gives
rise to a star-driven GALERKIN procedure.

Lemma 5.30 (Dorfler property) If the set of vertices Meq, satisfies a Dorfler
property with parameter 0 for {s(ug), then M satisfies a Dorfler property with
eq

parameter 0= %Hfor ng(us).
U

Proof. Simply use (5.87) to derive (5.88) for ngy(us) with parameter 0. ]

Hence, star-driven procedures for {7(u ) lead to the corresponding counterparts
for ng-(uq). It turns out that algorithms GALERKIN, AFEM-SW, and AFEM-TS can
be reformulated for vertex-indexed indicators {ns(u s, z)} ;v as defined in (4.70a),
without changing their essential properties. We may thus wonder about them driven
by {{7(us,2)};ev instead. Since these algorithms hinge on the Dérfler property
(5.88), Lemma 5.30 gives rise to similar convergence properties for {s(u4)-driven
algorithms provided (5.88) is enforced. We state this next without proof.

Corollary 5.31 (convergence of GALERKIN) [f the coefficients (A, c, f) € Dq,
then there exist 0 < @ < 1 and C,, Cy > 0 such that the solution-estimator pairs
(uj, {;(uj)) of GALERKIN converge linearly, namely for all k > j > 0

—k—j —k—j
|u — ”k|H(}(Q) <Coa"u _uleO](Q)v Cr(ug) < Cypa Jévj(”j)-

Corollary 5.32 (convergence of AFEM-SW) [f the coefficients (A, c¢) are discrete
and f € H'Y(Q), then for 0 < w < wy, & < % as in Theorem 5.17, there exist
0 <a < 1and C,, Cy > 0 such that the solution - estimator pairs (uj, Ejuj, f))
of AFEM-SW, where 8j(uj,f)2 = g,’j(uj)2 + oscj(f)zl, converge linearly: for all
k>j>0

ki ki
|u — Mk|H01(g) <Cia"u- Mj|H01(g), Ex(uk, f) < Cga" "/ Ej(uj, f).

Both GALERKIN and AFEM-SW converge under restrictions on data O =
(A,c, f). For arbitrary data D, AFEM-TS concatenates GALERKIN and DATA,
the later being unrelated to {7(u4). Therefore, Corollary 5.31 and Proposition
5.27 (computational cost of GALERKIN) yield the following extension of Proposi-
tion 5.29 (convergence of AFEM-TS).

Corollary 5.33 (convergence of AFEM-TS) The algorithm AFEM-TS driven by
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=0
log +o1

Tog2 iterations and delivers the error

{7 (ug) stops after K < 2 +
|u — uKlHOl(Q) < C.tol.

The number of iterations of GALERKIN is bounded uniformly for all outer loops.

6 Convergence Rates of AFEM for Coercive Problems

The ultimate goal of AFEM is to produce a quasi-best approximation uq € Vg to
the solution u € V of (2.7) with error measured in V = Hé (Q). The performance of
AFEM is measured by the size of the error |u — uq|y I relative to the cardinality
#7 of 7. The latter usually reflects the total computational cost of implementing
AFEM. As a benchmark, it is useful to compare the performance of AFEM with
the best approximation of u € V and D = (A,c, f) € D, provided we have full
knowledge of them. This is the main purpose of this section.

Under suitable assumptions on the solution « and data 9, we prove the existence
of constants C(u, D) > 0 and s € (0, 5] such that

lu = ug |0 < Clu, D) (#7x) (6.1)

provided s is the best decay rate with meshes in T with a comparable number of
degrees of freedom. The upper bound % of s is dictated by the best decay rate with
polynomials of degree n > 1 in dimension d unless u is degenerate (for instance,
u belongs to a finite element space V4 with 7~ € T). The dependence on D of
the constant C(u, D) accounts for the multiplicative structure of the interaction
between the coeflicients (A, ¢) and u, and cannot be avoided in general.

A crucial insight for the simplest scenario, the Laplacian and piecewise constant
forcing f, is due to [Stevenson 2007]. It has been extended to operators with
variable coefficients by [Cascon ef al. 2008] and later expressed in terms of the
estimator by [Carstensen et al. 2014]. It reads as follows:

if a marking strategy reduces the PDE estimator ng(uqg) to a fraction
of its current value, then the refined set of elements R inherits an error ~ (6.2)
indicator ng-(ug, R) comparable to ny-(us), hence a Dérfler marking.

This allows to compare meshes produced by AFEM with optimal ones and to
conclude a quasi-optimal error decay. To this end, we introduce in Section 6.1
approximation classes for functions in V and D, tailored to the decomposition of
Q into conforming refinements of an initial conforming partition 7y, the root of T.
We will assume that u = u(9D) € Vand D = (A, ¢, f) € D belong to these classes
which, however, are not characterized in terms of regularity of # and 9. In Section
6.2, we investigate the approximability properties of perturbations u = u(ﬁ) of the
exact solution u, namely exact solutions of (5.5) with perturbed data D. Next, in
Section 6.3, we consider a conforming refinement 7. € T of a partition 7 € T,
and give conditions under which an optimal Dorfler marking property holds. We
first apply this in Section 6.4 to study and derive rate-optimality of GALERKIN and
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AFEM-SW, the one-step AFEMs. We then combine the quasi-optimal performances
of GALERKIN and DATA to prove rate-optimality of the two-step AFEM in Section
6.5. We conclude in Section 6.8 upon bridging the gap between appproximation
and regularity classes. In particular, we give sufficient conditions for functions in
Besov, Sobolev and Lipschitz spaces to belong to the approximation classes.

6.1 Nonlinear approximation classes

In Section 6.1.1 we discuss approximation classes for functions in V, which are
applicable to the solution # of (2.7). In Section 6.1.2 we turn our attention to
approximation classes for functions in D, which are in turn applicable to data D.
We refer to [DeVore 1998], as well as [DeVore and Lorentz 1993, Binev et al. 2002]
for a discussion within nonlinear approximation theory.

6.1.1 Nonlinear approximation classes for functions in V
For any N € N, N > #7;, we define the following collection of partitions within T

Ty = {‘T:‘TGTsatisﬁes #TSN}.

This is the set of conforming meshes generated from 7y with at most N — #7
bisections. Given v € V we let o (v) be the smallest approximation Hé-error
incurred on v with continuous piecewise polynomial functions of degree < n over
meshes Ty :
on(V) = '/‘leanN v;rél{j(r |v vfr|H01(Q). (6.3)
This is a theoretical measure of performance in that finding a mesh 7 € Ty
that realizes o (v) has exponential complexity. Proving a bound |v — v7|; o <
Cioc,n(v)for 7 € Ty with C; < 1 < C independent of N, the so-called instance
optimality, is rather difficult and beyond the scope of this survey. In fact, a function
v € Vg with 7 € Ty could be the solution of our model problem (2.7), because
we allow forcing f € H ~1(Q). Hence, we see that o (v) = 0 and AFEM should
then capture v exactly on a finer mesh 7 € Tcz—l ~- We refer to [Diening et al.
2016] for a proof of instance optimality for a forcing f € L?(Q) and the Laplace
operator, namely for coefficients A = I and ¢ = 0.
We will instead be able to prove that the error [v — vr|y I( for the Galerkin

solution v¢ for 7~ € T decays in terms of N with the same rate N as o (v); we
thus say that AFEM is rate-optimal. We first note that forv € H™!'(Q)and 7 € Ty
quasi-uniform, we expect to have

inf |[v—v sN_%v n+ 6.4
V'TEV'Tl 7'|H01(Q) | |H LQ) (6.4)

because the global meshsize /4 and N satisfy 4 ~ N~'/4_ This error estimate within
the linear Sobolev scale provides the largest possible decay rate —n/d.

Definition 6.1 (approximation class of #) Given 0 < s < n/d, the class A :=
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Ay (Hé (Q); 75), relative to the partition 7y and approximation in the Hé—norm by
continuous piecewise polynomials of degree < n on the forest T emanating from
79, is the set of functions v € V = Hé (€2) such that

[v|a, := sup (NSO'N(V)) < o0 (6.52)
N >#7,
whence
on(W) < [v[a,N™° VN > #7. (6.5b)

We also write A; = AY to emphasize continuity of the discrete functions in Vg =
8'7’10 NV with 7 € T. The quantity |v|4, is a quasi seminorm in Ag, which is not
a linear space but rather a nonlinear class of functions. Notice that as s increases,
the cost of membership to be in A; increases, namely A, C A, for 51 > 5.

We may as well consider approximating v € V with discontinuous piecewise
polynomials S'fr’_l of degree < n, which is a richer space than S’;O. We can likewise
define the corresponding modulus of approximation

0'](\;1)(\/) ;= inf  inf 1 lv — vfr|H01(Q;ﬂ (6.6)

TelTn V‘]’ES;’:7

and approximation class A;l = A;l (Hé (Q); 76) of functions v € Hé (€2) such that

[v]ao1 := sup (NSO'](\;D(V)) <o = 0'1(\;1)(\/) < |v|A;1N_S. 6.7)
’ N >#7 ’

It is obvious that O'I(V_l)(v) < ony(O) for all v € Hé(Q) because 8'7’:0 C S';i_l.
However, we have the following equivalence result taken from [Veeser 2016].
The original proof, although more complicated and for a different notion of error
relevant to discontinuous Galerkin approximations, can be traced back to [Bonito
and Nochetto 2010, Proposition 5.2]; see Proposition 9.4.

Proposition 6.2 (equivalence of classes) Assume that all stars of meshes T € T
are (d — 1)-face-connected. Then, there exists a constant Cug that depends on the
shape regularity of T, the dimension d and the polynomial degree n > 1, such that

oN() < Cagay V() W e HY(Q), N = #%.
Moreover, the approximation classes coincide AY = A1,

Proof. We simply resort to (3.19) of Proposition 3.9 (approximation of gradients),
namely for v € H(l) (Q)

| min,, gn.0 |v—w|H01(Q)
<

- T < CyG,
M, gt IV = Wil @i

and use the definitions (6.3) and (6.6). This completes the proof. ]

In the rest of the paper we will make the following approximability assumption.
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Assumption 6.3 (approximability of #) The exact solution u € Hé(Q) of prob-
lem (2.5) belongs to the approximation class Ag (Hé (Q); 75) with s = s, € (0, 3].

The following condition (6.8) is simpler to handle in practice than (6.5).

Lemma 6.4 (membership in Ag) Let v € A and gy := inf% Vg v — vl H] (@)
Then for all 0 < & < gq there exist T, € T and v, € V¢ such that

Lo
|v —VngOl(Q) <e #HT<1+ |v|&ss 5. (6.8)

Proof. Given 0 < &€ < &g, let 7o € T be a conforming refinement of 7y with
minimal cardinality and v, € Vg such that

|V - VngOI(Q) S E
Therefore, if £ < &9 we deduce from the minimal property of 7 that

inf v —vrlgq >e YT €T: #T <#7.-1.

vyeVq

If N :=#79; — 1, definition (6.5) implies

e< inf inf |v—-v ven = o (W) < |v]a N75
7ETN\WEV¢| Tli@ = oND) < o N,

whence
1
#Te=1+N <1+ &5,

as asserted in (6.8). On the other hand, if & = gy we see that

1 _1 1 _1
eo < Ia, (i) = #Tosvl) ey <1+Dvl} e

This completes the proof. U

Remark 6.5 If d = 2 and n = 1, then Corollary 3.20 (optimal convergence rate)
shows that Wf,(Q) c A2 for p > 1. The space W%(Q) is much larger than
H?(Q), fits within the nonlinear Sobolev scale, and delivers the same decay rate as
(6.4). We will investigate the connection between approximation classes A and
regularity classes in any dimension d and for any polynomial degree n > 1 later in
Section 6.8.

6.1.2 Nonlnear approximation classes for data in D

Given data D = (A, ¢, f) € D and a mesh 7~ € T, we consider the best approx-
imation of D by discrete (piecewise polynomial) data D= (A c, f ) € Dy, where
D and Dy are defined in (5.1) and (5.2). We measure the error in the space D (L)
defined in (5.60) with g =2 ford < 4 or g > % for d > 4. We now discuss the
best approximation errors for the components of data in D(£2), which are used to
define the corresponding approximation classes. For the coefficients (A, c¢), they
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are characterized by the quantities

07(A), == _ inf IA-Allr@. 87(c)g = Slgl_fl e =cliLag (6.9)
CES,

—-1,-1
AE[S; ]dxd -

forr, g € [2, oo] as above. Note that A and Cin (6.9) are unconstrained in the sense
that they do not necessarily satisfy the structural assumption (5.51) and are thus not
suited coefficient for the perturbed problem (5.5). We define the best constrained
approximation errors for A € M (a1, @) and ¢ € R(cy, ¢2) by

Sr(A)y = _ o nf A= Al .
N A€[S, .’ 19dnM (@, @) 6.10)
O7(c)g = inf llc = llza@).
cesl " 'nR@1.6)
where in view of (5.52)
G1= 2 @y = Coptrr, Tl = ——L, 5 =C 6.11
@ =, @2 = Cartz, €1 = “ac c2 = Cen(ay + €1). (6.11)

P
We anticipate that in Section 7.4, we prove the equivalences

S7(A)r < 67(A)r < Caad7(A)rs  67(0)g < 57(0)g < Caaad7(C)gs (6.12)
forall A € M(ay,a) and ¢ € R(cq, ¢p); see Remarks 7.13 and 7.17. For the load
function f, the definition (4.56) of oscq(f)-1 suggests to consider
1
2

O7(f)-1:= (Z _inf ||f—f||f{1(w)) ’

T E'Tf EIF;Twr

All these best approximation errors are hard to evaluate and are thus replaced
by the computable oscillations defined in (5.79) and (5.80) in practice. We recall
that they rely on the local L2-projection operator I1s for (A, ¢) and the local
H~!-projection operator P¢ for f to compute linear approximations O of D to a
desired accuracy. These projections are later modified nonlinearly to give rise to
D satisfying the side constraints (5.51) without compromising accuracy. We recall
that the DATA module is assumed to construct approximations so that

0sc7(A)r < Adatad7(A)r, 08c7(C)g £ Adatad7(C)g, 0sCT(f)-1 < Adatad7(f)-1

with a mesh independent constant Aga,; see Assumption 5.22. We discuss in
Section 5.4.2 practical realizations of DATA.

For the purpose of assessing the cardinality of AFEM, we do not need the specific
form of D but rather the decay of the best approximation errors in terms of degrees
of freedom. Therefore, we postpone until Section 7 the construction of D for
n > 1 and to Section 6.8 the discussion of regularity properties of O that guarantee
membership in the following approximation classes.

Definition 6.6 (approximation classes of A) For 0 < a; < a3,2 < r < oo, let
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M := M, (L™ (Q; R?); 75) be the set of matrix-valued functions A € M (a1, @2)
satisfying

IA

A, == sup (Ns inf ET(A),) <o = inf 67(A) <Ak N7 (6.13)
€ln

N >#7, TeTn
Definition 6.7 (approximation classes of ¢) The class C; := C; (Lq (Q);?B) is
the set of functions ¢ € R(cq, ¢2) such that
lcle, = sup <NS inf ST(c)q) <o = inf o7(c)y < lcle, N5, (6.14)
’ N >#7; eTn TeTn
Definition 6.8 (approximation classes of f) The class F, := Fy(H™'(Q); 75) is
the set of functions f € H~'(Q) such that

flz, == sup (NS inf 6¢(f)_1) <oco = inf §7(f)_1 < |fleN"5. (6.15)
NZ#(](') TeTN TeTN

Since the polynomial degree of discrete coefficients (Z, ¢) in definition (5.2) is
n — 1, we expect decay rates s4, s < n/d according to nonlinear approximation
theory. The specific values of (s4, s.) depend on the regularity of (A, c), a delicate
topic that we further investigate in Sections 6.8 and 7. However, because u and
D = (A,c, f) satisfy the elliptic problem (2.5), the above approximation classes
are somewhat related. We now quantify this statement.

Lemma 6.9 (relation between approximation classes) Let 2 < r,q < oo be so
that ¢ < q. If u € Ay, (H(Q):T), A € My, (L"(R™);75), and ¢ €
Cy. (L1Q): To), with O < s, 54,5 < 5, then f € Fy, (H'(Q); T) and

e, < C(|u|A\Su +1AR,, + |c|@SC>, sp =min{sg,sa e}, (6.16)

where the constant C > 0 depends ||M||WPI(Q), p = % and ay,az,c1,¢p. In
particular, if (A, ¢) are discrete in 9, then

|fle,, < Clula,,, sf =54 (6.17)
r

Proof.  Let L[u] := —div(AVu) + cu be the operator in (2.5) and note that f =
L[u] € H'(Q) can be approximated by f = —div(AVV) + ¢v € Fs, where the

discrete space Fq-is given in Definition 4.17 and v € sn0 A e (S’;:l’_l)dXd, c e

S’,;._l’_l. Let’s now express f — fas follows
f=F==div((A - A)Vu) + (c - Du — div (AV(u - 1)) + &u - V),

and recall that we have to estimate || f — f|| H-1(wy) for every T € 7, rather than a
global norm in H~'(Q), to get an upper bound on §¢(f)_;. Therefore, we proceed
as in the proof of Lemma 5.20 (continuous dependence on data) to obtain

712 2 Tn2 2 2
DU = iy S IVl 0o lA = ALl gy + 1Vl 0 lle = T 0
TeT
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T2 2 2 =12
+ ||A||L°<’(Q)”V(u - ﬂ”Lz(g) + ”a|Lw(Q)“M - Vlle(Q)’

where p = rz%l and ||Vul|Lr@) < oo according to (2.41) and % < g < oo. Note
that thanks to (6.112, |A]| L) < @y = Copar and ||a|Lw(Q) < ¢y = Co(aq + ©2).
Moreover, since v, A, ¢ can be chosen separately, invoking (6.5), (6.13), (6.14), and
(6.15), we realize that

inf § 1 < inf  inf ||V(u -V
A 7(f)-1 Py ot IV =Wl 20

+ inf inf  |A-A|Lr@
TeTn KE[S;_I’_I]dXd

+ inf inf c—c¢
TeTy zegit I cllLa@)

< |M|ASM N5« 4 |A|MSAN_SA + |C|(CSCN'_SC
gives (6.16) with sy = min{s,, 54, s¢}; (6.17) is a trivial consequence. ]

Estimate (6.17) will be useful later in Theorem 6.20 (rate-optimality of one-step
AFEMs). It is important to realize that the multiplicative structure between solution
u and coefficients (A, ¢) is hidden in the constants C in (6.16) and (6.17). Moreover,
these estimates are possible due to the fact that the space H~'(Q) is the range of
the linear operator L : Hé (Q) — H™'(Q) and that the discrete functions in Fy are
images by L of functions in V4. This would not be true for L>-weighted surrogates
of §(f)_1 that typically overestimate the error in H~1(Q).

Assumption 6.10 (approximability of data) There exist s, s¢, sy € (0, 5] such
that data O = (A, ¢, f) € D satisfies A € M,,c € C,_, f € ]st.

We recall that, if oscq(D) = || D — 5” D) > CaaaT OVver a conforming refine-
ment 7~ € T of 9y, then the call

[T, D] = DATA (T, D, 1)

produces a conforming refinement 7 of 7 and approximate data D= (Z, c, f) €

Dz over 9 that satisfies osc%(Z)) < Adamé,]:(i)) and for r, g € [2, 0]

0sc(D) = 0scz(A); +0scz(c)y +0sc=(f)-1 < CaaaT,

as well as the constraints A € M(a;, @) and ¢ € R(cy,c») defined in (5.51).

We will show in Section 7 that the routine responsible for reducing oscillations,

namely GREEDY , exhibits optimal performance in the sense that the cardinalities

Ng(A), No(c), N (f) of the sets of elements necessary to reduce the individual

oscillations of (A, ¢, f) below the threshold Cdata% starting from any 7 > 7 satisfy
1 1

sS4 -4 Lo oL
N7(A) < |A|MZAT 4, Ng(c) |C|&CT e, Ny(f) < |f|]p_ff7 . (6.18)
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Therefore, the cost of one call to DATA can be quantified by the total number N4(D)
of elements marked, which obeys the relation

Ny(D) = N5(A) + Ng(c) + Ny(f)
L 1 € | S L 1
s “5A se 750 Sf s s S
S |A|1\£YAT A+ IC'CXCT se + |f|FSfT I < |D|A€)T D

with
0 1 % S
sp :=min{sa, sc,57},  |Dlay = <|A|§ESA +lelg + |f|]pjsff> - e

It is thus natural to make the following assumption on DATA.

Assumption 6.11 (quasi-optimality of DATA) The call [T, D] =DATA (T, D, 1),
from an arbitrary conforming refinement 7~ of 7y with tolerance 7, marks the

number of elements Ny(D) to produce an approximation D of D over T so that
1

—~ L 1
0sc(D) = |D - Dlp@ < Caat. Ne(D) s D2 755 . (6.20)

6.2 e-approximation of order s

Inspection of the structure of algorithm AFEM-TS (Algorithm 5.28) reveals that the
approximate data Oy is fixed inside GALERKIN. Therefore, the performance of
GALERKIN is dictated by the regularity of the exact solution iy, = ux(Dy) € Hé (Q)
with data Dy, rather than the exact solution # = u(9) with data . We know that
u € A and wonder what regularity is inherited by uy. This leads to the following
concept introduced in [Bonito et al. 2013b, Def. 3.1 and Lemma 3.2].

Definition 6.12 (g-approximation of order s) Givenu € Ay(H,(Q); %) and& >
0, a function v € Hé(Q) is said to be an e-approximation of order s to u if
lu—vl|y L@ < ¢ and there exists a constant C > 0 independent of &, u and v such

that for all 6 > ¢ there exists N > #7 satisfying
1
oN(M) £S5 N<1+Clul} 575, (6.21)

Lemma 6.13 (g-approximation of u of order s) Letu € A (Hé (Q); 76) andv €
H(l) (Q) satisfy |u — v|H01 @ < & forsome( < & < &g with &y defined in Lemma 6.4.
Then v is a 2e-approximation of order s to u.

Proof. Leté > 2&. By definition (6.3) of oy (v), it suffices to invoke the triangle
inequality to realize that

o
onW) < |lu- v|H01(Q) +on) < 7 + on (1).

Since u € Ay (Hé(Q)), in view of Lemma 6.4, there exist N > #7pand 7 € Ty
_1

5 Loy
N < 3. NS1+|M|AS<§)
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The estimate (6.21) thus follows with constant C = 25, L]

This is a simple but crucial result to study AFEM-TS. It says that any function
v that is e-close to a function u € A (X; 7p) in the norm of the space X defining
the approximation class As(X; 79) can be approximated with a similar decay rate
as u in X for as long as the desired accuracy does not exceed . In other words, the
approximability of u is inherited by v up to scale e. However, beyond the scale &
the approximability of v may differ from that of u. Note that neither the definition
(6.3) of oy (v) nor Lemma 6.13 require X = H)(Q).

6.3 Properties of Dorfler marking

We follow the ideas of [Stevenson 2007], [Cascén ef al. 2008] and [Carstensen
et al. 2014] to explore the insight (6.2) about Dorfler marking. Hereafter, we recall
(5.6) and consider two admissible partitions 7, 7 € T such that 7 < 7, i.e. the
latter is a refinement of the former obtained by applying (newest-vertex) bisection
to some of the elements of 7.

In the sequel, weletu = u € Hé () be the exact solution with discrete coeflicients

(Z, ¢) over a fixed mesh 7 < 7 and forcing function f that may or may not be
discrete. We rewrite the a posteriori error estimates (5.12)

CoL&r(ur, f) < @ —urlyyq) < Cu&r(ur. f), (6.22)

where the total estimator 8rr(u 7 f ) consists of the PDE estimator n4(us, f) and
the oscillation oscs(f)-; and reads, according to (5.11),

Eq(u, f)2 = nr(ur, f)* +oscr(f)?).

We also recall that when f = Psf € Fqis discrete, osc(f)-1 = 0 and &r(ur;-, f )
reduces to nsy(us, f), and that Pof is used within nq(us, ) rather than f.
The global nature of the elliptic boundary value problem (2.5) prevents upper a
posteriori energy error estimates such as (6.22) between the continuous and discrete
solution to be local. Remarkably, the situation for two Galerkin solutions ugq € Vo
and ug. € Vg is different, as stated in Theorem 4.48 (upper bound for corrections)

luz: —url @ < Cu Erur, f.R), (6.23)

where R = 7\7. is the refined set defined in (5.14). It thus turns out that
lug — ug| H (@) is controlled by the estimator E4(uq, f,R) on the set of ele-
ments R where the meshes differ. This crucial observation goes back to Stevenson
[Stevenson 2007]; see also [Cascon et al. 2008, Nochetto et al. 2009].

In the sequel we impose restrictions on the ranges of the Dorfler marking para-
meter (5.23) and the threshold parameter w for GALERKIN and AFEM-SW. We
will impose a different restriction later on w for AFEM-TS.
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Assumption 6.14 (marking parameter) Let 0 satisfy 6 € (0, 6y) with
0o := min {(2CLip5U)_l, 1},

where Cjp, 5U are the constants in (4.68) and (6.23) respectively.

Assumption 6.15 (restriction on w) We assume 0 < w < wg < 1 with

92_92
wo = 0
2+ 6 - 62

We now ready to make Stevenson’s insight (6.2) precise.

Lemma 6.16 (Dorfler marking) Let Assumptions 6.14 and 6.15 hold and 0 <
u < % Let T € T, and let 7. € T be a refinement of 7 with respective Galerkin
solutions ug € Vo and ug: € Vq; let R = T \ Tx be the refined set. Assume that

the oscillation on T is dominated by the total estimator

oscy(f)-1 < wEg(ur, f) (6.24)
and that
n(ug, f) < pnyur, f). (6.25)
Then Dorfler marking is valid for any 0 < 6 < 6
Onr(ur, f) < nrur, f,R). (6.26)

Proof. We invoke Proposition 4.56 (estimator reduction) with 6 = 1 along with
the localized upper bound (6.23) to write

nrtur, [ < 2n7ur, £ +2CE, (CErtur, £LRY +oser(F2,).

The last term accounts for the presence of Py f and Pg f in the definitions of
ny(us, f)and no-(ug, ). Inview of (6.24) and the definition (5.11) of the total
estimator, we have

2

w
oscr(f)-1 < onr(ur), o*:= =3

so that
no(ur, [ < 7, ) +2CH,Ch (nrus, £, R + 20" (ur, f)7) .

Using (6.25) and rearranging the above expression we obtain

1—242
(63 - 202 nrtur, )? < | = =207 | nrur £ < nrlur, ,R)?
2CLipCU

provided 0 < u < %, because of the definition of 6 in Assumption 6.14. Finally,
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for any 6 < 6y we realize that w(y from Assumption 6.15 satisfies
2

w 1
oli=—2o=_(2-0") = 0*=02-202 <6 -207,
1-wy 2
and Dorfler marking is valid for R with parameter 6. L]

We remark that Lemma 6.16 requires that the oscillation on 7~ is dominated by
the total estimator to guarantee a Dorfler marking property. This is always the
case when f is discrete as in Algorithm 5.4 (GALERKIN) because in that case
oscy(f)-1 = 0, or within Algorithm 5.16 (one-step AFEM with switch), which
marks elements for refinement only if this property holds.

We also see that 6y in Assumption 6.14 corresponds to the choices y = % and
6 = 1. However, the proof reveals that for u — 0 we could obtain the largest
possible value 6 = (CLipCU)‘l, thereby the less restrictive. Since this is just twice
the value of 6y in Assumption 6.14, the practical choice u = % is justified.

Lemma 6.16 hinges on two ingredients: the Lipschitz property (4.68) and the
localized upper bound (6.23) of the estimator. In particular, it does not rely on the
lower a posteriori error estimate in (6.22), as the original proofs in [Stevenson 2007]
and [Cascon et al. 2008], and easily extends to discontinuous Galerkin methods
in Section 9 and inf-sup stable methods in Section 10. The original statement is,

2
however, a bit more insighful: if 67 = 52, then for all 0 < @ < 6, w® < 62 — 6
1

lu —uzlle < pllu —urlla = nrsr,R) 2 On7(ur)

provided 0 < pu < 22, We see that the threshold 0y is related to the gap between
reliability constant C; and efficiency constant C, in the a posteriori bounds (5.13)
in the energy norm; hence the ratio % < 1 is a quality measure of the estimator
ng(ug). Itis thus reasonable to be cautious about marking decisions if the constants
C1 and C; are very disparate, and thus the ratio C,/C] is far from 1. This justifies
the constraint 0 < 6.

6.4 Rate-optimality of one-step AFEMs

Recall that M is the output of the module MARK and that 7;, u; are the meshes
and associated Galerkin solutions generated within Algorithms 5.4 (GALERKIN)
and 5.16 (one-step AFEM with switch). To express the cardinality N;(u) of M; in
terms of [u—u;|y (@) We must relate the performance of these one-step AFEMs with
the approximation classes Ay = Ay (Hé (Q); 76) for u and Fy = Fq (H Q) ‘75) for
f, which are never used in the design of these algorithms. Even though this might
appear like an undoable task, the key to unravel this connection is given by Lemma
6.16 (Dorfler marking) and the following assumption.

Assumption 6.17 (cardinality of M) The module MARK selects a set M in (5.23)
with minimal cardinality.
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According to the equidistribution principle (3.24) and the local lower bound
(4.54) in the proof of Theorem 4.45 (modified residual estimator) for discrete
coefficients, i.e.,

Crngw;,T) < CLE7(uj, £,T) < lu = 1wy

it is natural to mark elements with largest error indicators. This explains the choice
of a minimal set M in Assumption 6.17.
We are now ready to bound the cardinality of M; in terms of |u — u |y @)

Proposition 6.18 (cardinality of M;) Let Assumptions 6.14, 6.15 and 6.17 be
valid. If u € A5 and

oscr; (f)-1 < wEg;(uy, f),

then the cardinality N j(u) of M; satisfies

1

1
Nj(u)s|u|gs|u—uj| Vj=>0.

@
Proof. Let Ceen = 1/5—;‘ and let 0 = y%n j(uj) with u < % the quasi-
monotonicity constant in (3.8). We invoke (6.8) for u € A to find a mesh 75 € T
and a Galerkin solution us € Vg3 so that

o1
lu —urslpi@ <6, #75 < luly 67>

Since 7s may be totally unrelated to 7;, we introduce the overlay 7. = 7; @ 75.
We exploit that 7, > 75, hence the space nestedness Vq; C V-, along with the
property that the Galerkin solution u7; € V4 minimizes the energy error in Vg
1 Cc Cc
nr(ur) < C—L|M —urlgiq) < C—Zalu —us|mi @ < C_Lea5 = pnj(uj),

because of the lower bound in (5.12) and (3.8). Therefore, Lemma 6.16 (Dorfler
marking) implies that the refined set R = 7 \7. satisfies Dorfler marking with
parameter # < 6y. Since MARK delivers a minimal set M; with this property,
according to Assumption 6.17, we deduce

1
Nj(u) = #M; < #R < H#T, —#T < #7, —#7 < |M|As(s—é,
where we have used Lemma 3.17 (mesh overlay). The assertion follows from

osc;(f)-1 < w8Ej(u;, f) in Assumption 6.15 and the upper bound in (5.12)

Cu
|Lt — uleOl(Q) < CUgj(uj,f) < ﬁf}j(ll]’)’

and completes the proof. U

We next prove rate optimality of the one-step AFEMs of Algorithm 5.4 and
Algorithm 5.16. To this end, we need an additional assumption.
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Assumption 6.19 (initial labeling) If the initial mesh 7y is made of simplices,
then let the initial labeling (3.35) for d = 2, or that of [Stevenson 2008, Section 4]
for d > 2, be valid.

This assumption ensures the validity of Theorem 3.16 (complexity of REFINE ):
if M; C 7; is a set of marked elements for a sequence {T ! of consecutive
refinements of 7y, then the cardinality of the k-th mesh satlsﬁes

j=0

k-1
#Ti —#T5 < D Y #M;, (6.27)
j=0
with a unlversal constant D dependmg only on 7y and d. We always assume that
#T, > #’T, whence #7;, — #7 > #712 and, if D= 3D, (6.27) reads instead

x~
—

#T, <D Y #M,, (6.28)

J

Theorem 6.20 (rate optimality of one-step AFEMs) ForAlgorithms 5.4 (withT =
o) and 5.16, let Assumptions 6.14, 6.17 and 6.19 be valid, and in addition let the

parameter w > 0 satisfy Assumption 6.15 for Algorithm 5.16. If u € A, then both
one-step AFEMs give rise to sequences {Tx, Vi, ur }y_, such that

|u — uleOl(Q) S lula, #7507 (6.29)

Il
[«

Proof. 'We consider first Algorithm 5.4, for which the forcing f € Fg; is discrete,
whence osc;(f)-; = 0forall j > 0 and w = o = 0 in Assumption 6.15. In view
of (6.28), we apply Proposition 6.18 (cardinality of M) to infer that

k—

—_~ 1
_DZ #M; <|u|A Z|u H(Q)

j=0 j=0

We now recall the inequality |u — ui |y L@ < C.a* T u - ujily L@ from Corollary
5.6 (linear convergence), and replace the sum above by

L
Z Ju = H @ =l H (Q)Z Tl _uleO'(Q)

_as

because 0 < @ < 1 and the geometric series is summable.
We next deal with Algorithm 5.16. If the algorithm calls MARK, then osc ;(f)-1 <
w&j(uj, ) and the number of marked elements N;(u) obeys Proposition 6.18
1 _1
Nju) < |u|AX|u - uleol(Q).
Instead, if the algorithm calls DATA, then osc;(f)-1 > 0 = w&Ej(uj, f) and DATA

returns a mesh 77, and reduces the oscillation osc;;1(f)-; < o with optimal
complexity. To quantify the cost, we recall that u € A; yields f € Fy according to
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Lemma 6.9 (relation between approximation classes) and | f|g, < |u|a,. Therefore,
the number of marked elements N;(f) to reduce osc;(f)-; to tolerance o; satisfies

_1

L S -1
Ni(H) 5 U180 S Wl 850 75 S Ml =gl o

because of (5.12). It thus remains to sum over j, apply again (6.28)

k—

#7: <D Y (N;jw) +Nj(f) < |u|1/§Z|u

J=0

—_

H Q)’

and finally argue as before with the help of Corollary 5.18 (linear convergence of
error). ]

6.5 Rate-optimality of two-Step AFEM

The output of [‘ﬁ,@k] = DATA (7x, D, wey), in the k-step of AFEM-TS (Al-
gorithm 5.28), is fed to [Tx+1,uk+1] = GALERKIN (7x, Di, £x), which in turn
iterates Jx times. We denote by (7x, j, Mk j, ug; ;) the triplets of grids, marked sets

and discrete solutions computed within GALERKIN (7’, [)k, gr)for0 < j < Jp.
We further assume that

ek =N (g o Di) > &k

for otherwise the module GALERKIN is skipped. In view of the lower a posteriori
error estimate in (6.22) for discrete data Dy, we infer that

where i € Hé(Q) is the exact solution of (5.5) with approximate data @k. The
module DATA guarantees (5.63) and (5.65), namely

1D = Dilp@ < Camawsr = |u =kl pi) < Cowsk, (6.30)

where u = u(D) € Hé () is the exact solution of (2.7). We see that the parameter
w controls the discrepancy between u and uy = uy(Dy) relative to e,. We now
make an assumption on the appropriate size of w, which replaces Assumption 6.15
for AFEM-SW.

Assumption 6.21 (size of w) The parameter w in AFEM-TS satisfies a) € (0, wo]

where wq = =3¢, CC with Cee, as in (3.8) and the parameter 0 < u < 5 appears in
Lemma 6.16 (Dorﬂer marking).

Consequently, if Assumption 6.21 is valid then (6.30) yields for w < wq

uC
U = Tl g1 < ﬁgk' 6.31)

Corollary 6.22 (cardinality of marked sets) Let Assumptions6.14,6.17, and6.21
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hold. Ifu € Ay (Hé(Q); 76) and € > &k, then GALERKIN is called and there exists
a constant Cy such that for all 0 < j < Ji

M < Colul)[ lu = [t (6.32)
and
#Mu; < Colul)* &;'1°. (6.33)

Proof. We argue as in Proposition 6.18. Fix 0 < j < Ji and set

CL
53:#_’7‘&,(“72,) = 62# Ek-

CCea ’ ’ CCea

Since [u—uty| g @ < %, by virtue of (6.31), we deduce that ity is an §-approximation
of order s to u according to Lemma 6.13 (e-approximatiom of order s). Therefore,
there exists an admissible mesh 75 € T such that

and we proceed exactly as in Proposition 6.18 to show that

|—l/s

1 1 1 1 _1
#Mij < |M|j&s6 5 o~ |u|gs|u — U, Hi@ < |u|;§s‘9kS'

This concludes the proof. U

Corollary 6.23 (quasi-optimality of GALERKIN) Let Assumptions 6.3, 6.14, 6.17,
and 6.21 be valid. Then, the number of marked elements Ny (u) within the k-th call
to GALERKIN satisfies

11
Ne(w) < JColul} e,
where J > J is a uniform upper bound for the number of iterations of GALERKIN.

Proof. Use Ni(u) = Z]J.’;(; ! #M,; and combine Corollary 6.22 (cardinality of
marked sets) and Proposition 5.27 (computational cost of GALERKIN). ]

We finally address the rate-optimality of the two-step algorithm AFEM-TS, by
proving the announced bound (6.1).

Theorem 6.24 (rate-optimality of AFEM-TS) Let Assumptions 6.3 (approximab-
ility of u), 6.10 (approximability of data), 6.11 (quasi-optimality of the module
DATA), 6.14 (marking parameter), 6.21 (size of w), and 6.19 (initial labeling) be

valid. Then, AFEM-TS gives rise to a sequence (Tx, Vo, “72)5:0 such that

= url ) < Cu,D)#7%)" 1<k<K,

where 0 < s = min{s,, Sp} = min{sy, s, S¢, 57} < 5 and

€1

1 L s
S SA Sc Sf
C(u,D) = <|u| o oHlAlLL el + |f|FSf>
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with constant C, > 0 independent of u and D.

Proof. In view of Assumption 6.3, Corollary 6.23 implies that the number of
marked elements Ny (1) within the (k + 1)-th call to GALERKIN satisfies

1 1

Ni(u) < C3|u|§iug;b‘u

with 5, < % and C3 > 0 a suitable constant. Moreover, by Assumption 6.11 the
number of marked elements Ny (9) within the (k + 1)-th call to DATA satisfies

1 1

Ni(D) < c3|1)|g73® £,

with 59 < 3 The total number of marked elements in the (k + 1)-th loop of
AFEM-TS is thus

1 1

L —_ _1
Nu(D) + Ny (u) < C3(|u|g1u + |@|gf0) .

Upon termination, DATA and GALERKIN give

—~ uCr CL
lu — up| 10y < g < ks
Hy @ 2CCea 4CCea

|ux — Uit gl @) < Cunin Uit Dx) < Cyer,

because of (6.31), (6.22) and the fact that 4 < % This implies by triangle inequality

CL
u-—u S<—+C >8 = Cyég.
| K+l @ aco +Cu ek = Caen

Therefore, applying Theorem 3.16 (complexity of REFINE ), the total amount of
elements created by k + 1 iterations within AFEM-TS, besides those in 7y, obeys
the expression

_ & - 1 LS 1
#7601 < D ) (NJD)+N;@w) < DCs(ulj +1DI2 ) e
=0 '

according to (6.28). Since g; = 27/ gy and Z?;& (2_%)1' < 1_2;_1/5 we obtain

1 L _1
BT < c(|u|g;u + |@|§;D) e’

. DC . . .
with C = 1_231‘9/2 provided #7;.,1 > %#76. This together with |u—uk+1|H01(Q) < Cheg

gives the asserted estimate after 1 < £+ 1 < K loops. U
Remark 6.25 The thresholds 8y, wg play no role in Proposition 5.29 (convergence
of AFEM-TS) but are critical in Theorem 6.24 (rate-optimality of AFEM-TS). The

former takes care of the discrepancy between error and estimator [Stevenson 2007,
Cascon et al. 2008, Nochetto et al. 2009, Bonito and Nochetto 2010, Nochetto
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and Veeser 2012]. The latter guarantees that the perturbation error (6.30) is much
smaller than &, and enables GALERKIN to learn the regularity of u# from ﬁﬁ
[Stevenson 2007, Bonito et al. 2013b].

Remark 6.26 We claim that the convergence rate s = min{s,,sp} cannot be
improved to s, (the optimal rate for approximations of u € A (H Q); %o ))
when sp < s, by any algorithm that uses approximations D = (A c, f ) of data
D =(A,c, f). Infact, given any § > 0 consider the ball
B(D,8):={DeD:|D-Dlpg < 6} (6.34)

where D(Q) is defined in (5.60). If u,u € H&(Q) are the exact solutions for data
D, @, then there are constants 0 < ¢, < C, such that
C*5S Sup |l/l_ﬁ|Hl(Q) S C*é
DeB(D,5) 0

The rightmost inequality is a consequence of Lemma 5.20 (continuous dependence
on data). For the leftmost inequality, consider first a perturbation f ={1+0f
of the source term with coefficients (Z, ¢) = (A, c), whence ||D - 13|| D@ = 0.
Proceeding as in (2.30), the coercivity and continuity of the bilinear form B imply

cglu _i[|H01(Q) < ||f_f||H*1(Q) =0<Cglu- mHl(g)'

On the other hand, if £ = f and (4,0) = L(A,c) witha = 1+ -, then

HDII
g @ . IIfIIH—1<g)
IDllpe ~ CsllDlpew

This argument takes care of the multiplicative nature of (A, c¢) in (2.5), which makes
u = au, and proves our claim.

1D - Dllpw <9, lu =l o) =

6.6 Rate-optimality of AFEM with other boundary conditions

The key ingredient for rate-optimality of AFEM, regardless of boundary conditions,
is the validity of Lemma 6.16 (Dorfler marking). This lemma provides a bridge
between FEM meshes and optimal meshes and, in turn, hinges on three proper-
ties of the PDE residual estimator nq(ugs, f): Theorem 4.48 (upper bound for
corrections), Lemma 4.54 (Lipschitz property of the estimator), and Lemma 4.55
(estimator dependence on discrete forcing) to account for the possible change in the
discrete forcing Psf. Since their proofs are insensitive to boundary conditions,
because they do not alter the structure of ns(us, f) , we conclude their validity as
well as for Robin, Neumann and non-homogeneous Dirichlet conditions.
Therefore, our three AFEMs based on Dorfler marking deliver the same asymp-
totic convergence rates associated with the approximations classes A, for the solu-
tionu € H'(Q) and A, fordata D = (A, c, p, {) for Robin and Neumann boundary
conditions and D = (A, ¢, f, g) for Dirichlet boundary conditions. We need three
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new approximation classes for p € P (L*(9€); %), € € L, (H 1(Q)*; 75) for Robin
or Neumann conditions and g € Gy, (H 1209Q): Tp).

If coefficients (A, ¢, p) are discrete for the Robin condition, then Lemma 6.9
(relation between approximation classes) extends and yields

(C-tvy=Blu-a,v] = |6 Llv < Cllu—llv,

withV = H'(Q)and 8 = B, { givenin (5.85). Thisin turnimplies |¢|;,, < Cluls,,.
s¢ = s, and the validity of Theorem 6.20 (rate optimality of one-step AFEMs). In
AFEM-TS, DATA approximates ¢ along with the other data and Theorem 6.24 (rate-
optimality of AFEM-TS) is also valid for Robin and Neumann boundary conditions.
We do not explore this matter any longer.

For non-homogeneous Dirichlet boundary conditions the analysis is simpler. If
g is discrete, then there is no difference with g = 0. If not, we note that the
solution map g +— u (all other data being fixed) is affine and that the error and
augmented total estimator Eq-(ug, f,g) := Eg(ug, f) + 0scy(g)12 are equival-
ent (Theorem 4.74). This indicates that the role of g is similar to the role of
f. Therefore, it suffices to replace Eq(uq, ) by Eq(us, f,g) and oscqy(f)-;
by oscq(f)-1 + 0scq(g)1/2 in AFEM-SW. For AFEM-TS, the approximation of g
is handled by DATA along with the other data. Hence, we again conclude that
Theorems 6.20 and 6.24 extend to non-vanishing Dirichlet conditions.

6.7 Rate-optimality of AFEM driven by alternative estimators

We recall the notation {g(uq) of Section 5.6 for any of the three alternative
estimators in Section 4.9 and the crucial local properties (5.86) and (5.87).

As already alluded to in Section 6.6, the key instrument for rate-optimality is
Lemma 6.16 (Dorfler marking). We now check the validity of its three main pillars:
Theorem 4.48 (upper bound for corrections) and Lemma 4.54 (Lipschitz property
of the estimator) and Lemma 4.55 (estimator dependence on discrete forcing) to
account for possible change in the discrete forcing P4 f. It turns out that if they
were valid for {5 (uq) = {5 (us, f), then statements about rates of convergence
similar to those for n4(u4) would follow for {(uq).

Lemma 6.27 (localized discrete upper bound) Let 7,7, € T and 7, be a refine-
ment of T. Let the coefficients (Z, ©) be discrete over T and f € H'(Q). Then
the error between the corresponding Galerkin solutions us € Vo and ug- € Vo is
bounded by the indicator in the refined set R plus data oscillation

1
_ ean —1 — 2
lug —uzlpi o < Cu ((CLq) Cr(ur, R)! + OSCT(f)%1> E

where R := {z eV:TeT\T,TcC a)z} collects all vertices whose associated
stars change from T to 7.

Proof. 1t suffices to realize that 7\7; ¢ U{w, : z € R}, and appeal to Theorem
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4.48 and (5.87) to arrive at
—2
lug— ulei,l(g) <Cy (UT(MT, R)* + oscr(f, R)ﬁl)
0
— —
< Co (nrtur, R? + oser(£72,)
=2 eq\ —2 S5\2 2
<Cy ((CL ) Lr(ur, R + OSCT(f)_1>-
This is the desired estimate. U

Lemma 6.28 (Lipschitz property of the estimator) Ler the coefficients (Z, c) be
discrete over T . There exists Cp;, such that

|¢7(v1) = L7 (v2)| < Criplvi - Vleé(g) Vvi, vy € Vo

Proof. We resort to the star equivalence (5.86) between discrete residual and
estimator. It thus suffices to derive the Lipschitz property for ||PrRy(v)||g-1(e.)

with respect to v € V4 for all z € V. Since P+Ry(v) = Py f — @[v, -], we get

(PrR7(v1) = PrRy(v2), w) = Vw - AV(v) = va) + Evy — vo)w

Wz

forall w € H(l) (w;). Therefore, Lemma 2.2 (first Poincaré inequality) yields
IPrR7(v) = PrRT2) -1y < CADIVE = V2llp1aoy

where C(Z,a depends on the L*-norms of (Z,a. Finally, using the triangle
inequality to accumulate over z € V together with (5.86) gives the assertion. [

Lemmas 6.27 and 6.28 lead to Lemma 6.16 (Dorfler marking) for {4 (uq). If
we further choose a minimal set M of vertices that satisfies Dorfler property
(5.88), then the previous rates of convergence for the three algorithms GALERKIN,
AFEM-SW, and AFEM-TS but now driven by {7(u) are valid provided u € Ag,
the approximation class in Definition 6.1. We do not restate these results.

6.8 Approximation vs regularity classes

The purpose of this section is to reconcile the notion of approximation classes,
discussed above, with that of regularity classes. We recall the DeVore Diagram of
Fig. 2.1 that depicts the Sobolev line for the energy space Hé (€2), namely

. d d
sob(Hj) = sob(W3) = s- 5= 1- 7

The differentiability s > 1 is only limited by the polynomial degree n, so s €

[1,n + 1]. On the other hand, the integrability p is not restricted to be p > 1

as is customary with Sobolev spaces. For example, for d = 2 and s = n+ 1, we
get p = % < 1 provided n > 2. Therefore, to take full advantage of nonlinear

approximation theory, we need to abandon the framework of Sobolev spaces W, (£2)
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and deal with Besov spaces Bj, ,(2) (frequently denoted B; (L (L2)) or B (L ,(€2))
in the literature) with integrability index p € (0, oo]. The second index g € (0, oo] is
useful to characterize special limiting cases; we will provide below a few interesting
examples but take p = g most of the time. At this point, we only mention that
when s is non-integer and 1 < p < oo, B}, ,(Q) = W;,(2) while when r is integer
W’ (Q) for p # 2 is not a Besov space but it is slightly smaller than B’ (). The
case p = 2 is special since B} 2(Q) = H®(Q) even when s is an 1nteger

This section is devoted to the definition and properties of Besov and Lipschitz
spaces, including their close relation to approximation classes. Our presentation
follows closely [Binev et al. 2002] for n = 1 and [Gaspoz and Morin 2014, 2017]
forn > 1, butit adds a few new ingredients. Since our results involve three different
type of spaces to account for the particular cases when the differentiability is integer,
itis pertinent to introduce the following abstract space X;,(€2) with differentiability
index s € (0,n + 1] and integrability index p € (0, o]

B, ,(€) s€(0,n+1),p € (0,00],
X;(Q) = W"*l(Q) s=n+1,pe[l,], (6.35)
Llpn+1(Q) s=n+1,pe(0,1).
Here Lipj,(Q) = Lip(s, LP(Q)), s € N, are the Lipschitz spaces; see (6.58) below.

For s e Nand 1 < p < oo the Sobolev spaces coincide with the Lipschitz spaces
[Leoni 2009, Theorem 10.55], i.e

Lip},(Q) = W (Q), seN, 1 <p <o, (6.36)
while for p = 1 we only have

W;(Q) — Lipj (L), s € N. (6.37)
We use the following conventions: XIS,(Q) = LP(Q) for s = 0; X;(Q; 7)) is the
space of functions with piecewise regularity X}, over 7~ € T; X} (Q;R™) is the

space X Is, () of vector or matrix-valued functions.
We will prove in Section 6.8.4 the following crucial approximation results for
functions in L9(Q) by discontinuous piecewise polynomials S’;_l of degree n > 1
over conforming refinements 7~ of 7y. It turns out that this will also allow us to

deal with approximations in Hé (€2) by continuous piecewise polynomials Vg of
degree n > 1.

Theorem 6.29 (regularity yields approximation) Let g € [1,00],p € (0, 0],
s € (0,n+ 1] and a function g € L9(Q) satisfy g € X,(Q) with s — % + g > 0.
Then, there exists a constant C = C(p, q, s,t,d, Q, Ty) such that

En(g,Q)q := inf inf g —v|La@) < Clglxz@N~ a. (6.38)
TEeTN veSE™

Therefore, g € As = As (Lq(Q) T) and
|g|A\% < Clglxs@)- (6.39)
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We see that the decay rate 5 in (6.38) is proportional to the difference of the
differentiability indices between the space X ;,(Q) and L9(Q) provided the Sobolev
numbers satisfy the relation

sob (X5()) > sob (L1(Q)),

which implies that the embedding of X ;, () into L4(€2) is compact. The factor d
in the denominator is a manifestation of the so-called curse of dimensionality. The
limiting case s = n + 1 entails dealing with Sobolev spaces W(€2) and Lipschitz
spaces Lip),(€2) depending on whether p > 1 or p < 1.

6.8.1 Modulus of smoothness

Difference Operators. Since we intend to allow p € (0, 1), the underlying functions
in By, ,(€2) might not be locally integrable, whence they might not be distributions
in Q. Therefore, the notion of weak derivative does not apply, which in turn has the
drawback of being defined for integers and not for fractional numbers. This leads
to the most standard definition of Besov spaces Bj, ,(€2) using difference operators,
which only requires integrability in LP () and is valid for any s > 0, p, g € (0, o0].
Other definitions, which provides equivalent results in the range 1 < p, g < oo can
be found in [Adams and Fournier 2003, Bergh and Lofstrom 1976].
Given a bounded Lipschitz domain Q C R4, and a vector & € R¥, we set

Qp = {xEQ: [x,x + h] CQ}

where [x, x + h] denotes the closed segment connecting x and x + &, and define the
first-order difference operator to be

x+h)—g(x) xeQy,
Alg() = Al(g,x, Q) = {5 8 " (6.40)
0 otherwise.

For k € N, k > 1, we define the k-th difference operator by iteration
Afg(x) = A} (AF ) g(x) x € Qup (6.41)

and observe that it has the explicit form

k -k
Mooy d S (D) gl i) [rx+kh] €@
p&(X) =1 j=0 J
0 otherwise.
Note the property
peEPr = AMp=0 Vh (6.42)

Smoothness. Given p € (0, 0] and t > 0, we define the modulus of smoothness of
order k in L?(Q) to be

wr(g, Dp = wrl(g,1,Q), = sup [|A g||Lr (). (6.43)
|h|<t
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We note that if wi(g,1), = o(t"*) as t — 0, then g is a.e a polynomial in P, and
g¢P, = wi(gn,=C"0o<r<1 (6.44)

for some C > 0 [DeVore and Lorentz 1993, Proposition 7.4]. We also observe that
the definition (6.43) only requires L?-integrability of g and leads to the following
celebrated Whitney estimate of the best approximation error

E.(g,G)p = vigpf lg = vllLr)

of g by polynomials of degree < n in G C Q [Binev et al. 2002], [Dekel and
Leviatan 2004, Theorem 1.4] [Gaspoz and Morin 2014, 2017, Lemma 4.4].

Lemma 6.30 (Whitney’s lemma) Let T € T be an admissible grid, and letT € T
be a generic element. If 0 < p < c0oandn > 0, then

En(g7 T)p S Cwn+l(ga hT9 T)p Vg € LP(T)’
where C = C(p,n,d, 7g) but is independent of g and the size of T.

6.8.2 Besov spaces
Given s > 0and 0 < p, g < oo, the Besov space B, (L) is the set of all functions
v € LP(Q) such that the following quantity is finite

1
O [—s qdr\4
|V|B}‘,vq(§2) = (/(‘) [t wk(V,t)p] : ) 0< q < oo, (645)
Sup,~o [ wr(v, 1)) ] q = oo,
with k = [s] + 1 € N and [s] stands for the integer part of s. If we split the integral

in (6.45) for 0 < g < oo in dyadic intervals, we obtain the following equivalent
expression for |v|gs (@)

2—m
dt
=D C (v, Y 2w, 27 (646
|V|Bp,q(s2) mez/z”" wi(v )pt wi (v ) (6.46)

mezZ

here we have used that both wy(v,7), and ™ are monotone functions of ¢. The
hidden constants depend on s and g but are otherwise independent of v, k and p.
Note that, with obvious changes, (6.46) is also valid for g =

vIBs @ = sup 2™ wr(v,27"),. (6.47)

mez

We point out that |v| B3, (@) 1s a semi-norm for p,q > 1 and is otherwise a
semi-(quasi)norm in that the triangle inequality is valid up to a constant larger than
1; note that |1] B}, @ = 0. The quasi-norm of B}, ,(Q) is defined to be

viles, @ = IVllLe@) + V183, @)-

If an integer k” > k is chosen in (6.45), then the ensuing quasi-norms ||v| s (@)
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are equivalent. This hinges on the Marchaud inequality [DeVore and Popov 1988,
eq (2.6)], [Ditzian 1988, Theorems 1 and 3]

wr(v,1), < Ct* (”V”LP(Q) + (/ (Z_kwkr(v,z)p)p?z> ) . (6.48)

The following lemma characterizes the precise blow-up of |v| B} @ aSS > n+ 1.

Lemma 6.31 (blow-up of |V|B;’p(g)) Lets € (O,n+1),p € (0,00]. Then

1
-5 1
viBs @ < (p(n +1- s)) P ”v”Bﬁf},(Q) Vv € B, (Q).

Proof. We take p < oo and combine the definition (6.45) with (6.48), after
replacing the upper limit of integration by diam(Q) ~ 1, to write

1
pdt
4 —-S
s ~ t ,t — < IT+11,
[v] 5 Q) ./O ( wnp1 (v )p> p

with

! ! !
_ (n+1-s)p —(n+1) p%ﬂ — (n+1-s)p p ﬂ
I_/O t /t (Z wn+2(V,Z)p> . 11 = A t [y e

Exchanging the order of integration yields

! Py [F v d
I= / (z_(”+1)wn+2(v,z)p> (/ t("”‘”l"ldt) ]
0 0 z

1 b rdz 1 »
= —_<l—_— .
pn+1 —s)/0 (Z “””Z(V’Z)") : = porion e

Since 11 = (p(n +1- s))_1 ||v||IL7p(Q), the proof is thus complete. Ul

The following equivalence between Sobolev and Besov spaces is valid for frac-
tional differentiability s [Leoni 2009, Proposition 14.40] (see also [Bergh and Lof-
strom 1976, §6.4.4], [Adams and Fournier 2003, §7.33, §7.67]): foralls > 0,s ¢ N
and p € [1, o]

Bf,’ () = W;(Q). (6.49)
However, if s € N is an integer, then B;,’ q(Q) is defined using k£ = s + 1 differences

whereas W (Q) involves s weak derivatives in L () provided p € [1, eo]. It turns
out that for integer values s € N the spaces differ

B;, (Q)# Wy(Q), p#2, (6.50)

except for the exceptional case p = 2 for which B} ,(€2) = H*(€2) [DeVore 1998].

The Besov semi-norm is sub-additive in the following sense: if {Ti}i’\; s a
disjoint collection of elements 7; € 7 and 7 € T, p € (0, 0] and s > 0, then there
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exists a constant C depending on p, s, d and 7 but independent of N such that

N

p p
Z:‘ Vs iy < CIVIGs o ¥v € B}, (). 6.51)
=

The localization of Besov norms is more general than (6.51). In fact, if ws(T)
denotes the patch of elements in 7 around 7 € 7 (first ring), then the following
is valid with equivalence constants depending p, s, d and 7j but independent of N
[Binev er al. 2002, Lemmas 4.3 and 4.4]

p ~ p s
TZ‘i'|V| Be wriy = CVGs o YV € B}, (). (6.52)
€

The following statements about embeddings between Besov spaces on bounded
Lipschitz domains Q will turn to be useful in the sequel [Triebel 2010, §3.2.4,
§3.3.1:if0 < p £ 0,0 < g1,gy < o0, and s1, 52,5 > 0, then

s1>sy = B _(Q)— B?_ (Q),

P.q1 P.q1 (6 53)
q1<q = B, (Q) = B, Q).

Because of the second relation in (6.53), statements valid for all second index ¢
are written for the largest space corresponding to ¢ = co. In addition, for all
0<p,q,r <ooands > 0, the discrepancy between the spaces B;, .(€2) and L7(2)
is the quantity

[ (6.54)

The discrepancy ¢ governs the embedding between these two spaces [Leoni 2009,
Theorems 14.29 and 14.32], [DeVore 1998], namely

§>0 = B (Q > LIQ); §=0 = B () = LIQ), g # o, (6.5

and the embedding is compact when 6 > 0. Notice that ¢ = 0 determines the
Sobolev embedding line of the DeVore diagram in Fig. 2.1.

We stress that when 6 > 0 the third parameter r in B, ,.(€2) plays no role in
(6.55) involving the largest space B;‘,’OO(Q), see (6.53). However, it turns out to
be useful to quantify regularity in extreme cases. For instance, the characteristic
function yg of a smooth set G & Q satisfies

1 L
XG € By o (\Bp () 0<p,r <oco.
Moreover, the Lagrange basis functions {¢,},cn of Vo satisfy forany 0 < p < oo
[Gaspoz and Morin 2014, Proposition 4.7]
dlp g, L 1
|supp ¢o| @t 0 <1< |suppp|d,

Wn1 (@2, Dp = { 1
| supp .| t > |supp ¢.|4.
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This readily implies that forall 0 < s < 1+ % and 0 < g < o0
1+1L
Vo CB), (), Vqc B;;’,(Q). (6.56)

6.8.3 Local approximation

We are now in the position to prove a key approximation estimate. In finite element
theory it comes by the name of Bramble-Hilbert Lemma whereas in nonlinear
approximation theory it is called Jackson Theorem. We distinguish between the
case 0 < s < n+ 1 and the limit integral case s = n + 1.

Proposition 6.32 (Bramble-Hilbert for Besov spaces) Letr 7 € Tand T € T.

LetO < p,qg <00,0<s<n+l, andeithers—%+g >0,9g <coors > %,q:oo.

Set r = co when s — % + g > 0 and r = p otherwise. Then we have
. s—dyd )
Plgﬂ)fn Ilv=PliLaqry < Chy © “vlgs, .y Vv € B, (D), (6.57)

where the constant C = C(p, q, s,d, n, 7y) is independent of v and T.

Proof. We first point out that we could use k = n+ 1 > [s] + 1 in the definition
of |v|gs . (r) according to (6.48). We next proceed in three steps.

[] Suppose first that 7 is the master element, namely |T| ~ 1. If P € P, is an
arbitrary polynomial, using that the discrepancy 6 = s — % + % > 0 yields

Ey(v,T)g < |lv="Pllacr) S Iv=Pllsy,.a)=lv—="Pllera)+ v = Plas )
due to the embedding (6.55). Since the definition of w,4+1(v,), involves n + 1
differences, we deduce AZ”P = 0 in view of (6.42), whence |v — P| B .(T) =
[v| BS, . (T)- We now take P to be the best approximation of v in LP(T) to derive

E (v,T)g S En(v,T)p + VB, 1)

We perform a scaling argument from the element 7 € 7~ to the master element
T. Letx = |T|~"/“x be the change of variables and note that

1
Wn1 (v, 1,T)p = sup [|AT vllLe(r)
|h|<t

1 - 1 SN
=|T|» |§1T£)t ”AZTTl’l/‘Iv“LP(f) =|T|? wpr1(v, 1, T)p

with 7 = ¢|T|~'/4, whence

°° rdt
" s = =S s by T ) -
Ile‘p,,.(T) A (t Wp1 (v, )p p

=5 [ (Fona@aT,) L=,
0 TR By @)
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Therefore, since E,(v,T) = |T|%En(ﬁ, f)q, we obtain

11 s_1.1
E (v, T)g < |T|a" P E,(v,T)p + T4 7 4 |vps 1),

p.r

It remains to estimate E,(v,T), which, in view of Lemma 6.30 (Whitney’s
lemma), satisfies E,,(v,T), < Cwp41(v, hr,T), with hy = |T|'/4 ~ 27™ for some
m € Z. Since k = n+1 > [s] + 1, invoking the equivalent definition (6.48) of
IVlsy,, ) vields
En(v, Ty S @t (0,27, 1Y S B ) 27 w0 (0,27 T = i ol -
mezZ

Inserting this estimate into that of Step 2 gives (6.57), as asserted. U

We now consider the integer case s = n+ 1. The first thing to notice is that (6.57)
cannot possibly be valid: the definition (6.45) requires k = [s] + 1 = n+2, whence
any polynomial g € P,.1 \ P, satisfies E,(g,T), > 0 as well as w,42(g,7), =0

according to (6.42). Lemma 6.31 (blow-up of |v|pgs (q)) reveals that replacing
the semi-norm |v|ps (@) by the full norm [|v|| B (@) is not a good idea either. To

overcome this problem, we now introduce the space Lipf, (Q) :=Lip (s, Lr (Q)) of
s-Lipschitz functions with values in LP (), 0 < p < oo [DeVore 1998, p.92]

8ltipg @ = sup (1 wni (81,2, ). (6.58)
t>0

Comparing with (6.45) we realize that Lip‘;,(Q) = B;,W(Q) provided s ¢ N but
Lip),(Q) # Bj, () when s € N. Moreover,

s=s-219.0 5en o LipS,(Q) < L1(Q), (6.59)
P q

with compact embedding. If 6 = 0 and p > 1, g # oo, the above embedding is
continuous in view of (6.36) and (6.55).

Proposition 6.33 (Bramble-Hilbert for Lipschitz spaces) Let 7 € T and T €
T. If p € (0,00), g € (0,00], k = 0 integer, and k + 1 — % +§ > 0, with strict
inequality when p < 1 or q = oo, then we have

i,.d
k+1-<+ K+

I}gﬂgk v = Plizacry < Chy 7 Wy ¥ € Lip,"(T), (6.60)

where the constant C = C(p, q,d, k,7y) is independent of v and T.

Proof. In view of (6.59), we proceed as in the proof of Proposition 6.32, except
for the following change in Step 3. For hr =~ 27", we have instead

Ek(v7 T)p s (Uk_}.](v, Z_m’ T)p

< h;(j-l SUI% <2m(k+l)wk+1(v,2_m,T)p) — h§"+1|V|Lip;<7+1(T)-
me
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This concludes the proof. U

It is instructive to realize that Propositions 6.32 and 6.33 extend to Besov and
Lipschitz spaces the usual Bramble-Hilbert lemma for Sobolev spaces [Brenner
and Scott 2008, Lemma 4.3.8].

Proposition 6.34 (Bramble-Hilbert for Sobolev spaces) Let 7 € Tand T € 7.

Forall 1 < pq,_ooand0<s§n+1suchthats—4+— 0 with strict
inequality when q = oo, then
dyd
1nf v —=Pllracy < Ch “Wlwsay Vv e Wy, (6.61)

where the constant C = C(p, q, s,d, n, Ty) but is independent of v and T.

Proof. 'When s is fractional, W;;(T) = B;, p(T) in view of (6.49) and the result
follows from Proposition 6.32. Instead, when s is integral, we invoke (6.36) and
(6.37) to deduce the result from Proposition 6.33. U

6.8.4 Global approximation: direct estimates

We now collect local contributions from Propositions 6.32, 6.33 and 6.34, de-
pending on the range of parameters p, g, s, to find global error estimates for the
solution u as well as the coefficients (A, ¢) of (2.7). They are trivial consequences
of Theorem 6.29, which we prove first. The analysis of the forcing function f is
somewhat different, due to the non-locality of the corresponding norm H~'(Q),
and is postponed to Section 7.3.

Proof of Theorem 6.29. Since the discrepancy 6 = s — 4 +4 > 0, the embedding

X3 (Q) — L9(Q) is compact according to (6.55) and (6. 59) quven geXxs (Q) we
con31der the surrogate quantity eq(g,7T) := Ch‘s |g1x3(r), which satisfies

En(g.T)g = Vigpf lg —vllrar) < er(g,T) VT €T

by virtue of Bramble-Hilbert Propositions 6.32, 6.33 and 6.34. We finally combine
Proposition 3.19 (abstract greedy) with the subadditivity property (6.51) to deduce
the desired estimate (6.3). The remaining estimate (6.39) follows from the definition
of |g|a . This concludes the proof.

Inspélction of this proof reveals that our estimate is stronger than (6.38). In fact,
we need the weaker regularity

p _ p
Iglxg(g;ry-) = Z |g|X£,'(T) < 00,
TeT
which allows for piecewise Besov smoothness of g very much in the spirit of (3.20).
This may accommodate singular behavior of g aligned with the initial mesh 7.

Corollary 6.35 (approximation class of u) Let the solution u € Hé(Q) of 2.7)
satisfy u € XIS,(Q) withs € (0O,n+1],p € (0,00] and s — 1 — % + % > 0, where
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X}(Q) is defined in (6.35). Then u € Ay (Hy(Q); %) and
|M|A% < lulxs@)- (6.62)
Equivalently, on (1) defined in (6.3) satisfies
on@) S lulxy@N T N = #T. (6.63)
Proof. In view of (3.19) of Proposition 3.9 (approximation of gradients), namely

inf IV =Wl2q) iélnf_l IV =) 2@)
VES L

n,
VEST 7

we realize that it suffices to bound the element errors for g = Vu € L*(Q;R9) by
vector-valued discontinuous piecewise polynomials of degree < n — 1. Therefore,
applying Theorem 6.29 (regularity yields approximation) with n replaced by n — 1
gives the desired estimates (6.62) and (6.63). ]

We now turn our attention to the coeflicients (A, c). Regarding A, Lemma
5.20 (continuous dependence on data) shows that the natural function space for
A is L®(Q, R¥*4) provided u € Hé(Q). However, Lemma 5.20 also allows for
A e L"(QR¥) 2 < r < oo, provided u € W},(Q) with2 < p = rZTrz < pi
which in turn is guaranteed by Lemma 2.13 (Wll,—regularity). The latter permits
discontinuities of A within elements, which is of practical importance. Therefore,
we consider the most general situation 2 < r < oo in the sequel.

Corollary 6.36 (approximation class of A) For 0 < a; < @y and2 < r <
let the diffusion coefficient A € M(ay, ay) of (2.7) satisfy A € X;,(Q;Rdx‘l) with
s € (0,n],p € (0,c0] and s — g +4 > 0. Then A € Ms = M ((L"(Q)?*4; Tp)
and

|Alis S |Alxs@)- (6.64)

%
Equivalently, 57(A), defined in Section 6.1.2 satisfies
inf or(A) S |Alxg@N "4 YT € Ty, N > #7, (6.65)
eln

and this error decay is achieved by Algorithin 3.18 (greedy algorithm).

Proof. Simply recall the relation (6.12) between the best constrained and uncon-
strained approximation errors and apply Theorem 6.29 (regularity yields approx-
imation). ]

Consider the special case s = n and r = oo in Corollary 6.36. We readily see that
p > % which might be less than 1 for n > d, hence the need for Besov spaces.

We finally deal with the reaction coefficient ¢ € L™(€2). According to Lemma
5.20 (continuous dependence on data), and the discussion in Section 5.4.2, a natural
space for ¢ is L9(Q) with % < q < oo, s =0; we could take g = 2 for d < 4.
Section 5.4.2 also reveals that the case n = 1 is somewhat special in that we can
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exploit superconvergence in W, 1(Q) with ¢ > d. In fact, combining the argument
following (5.75) with (5.68) yields

- 2 2 2 2 2 2
inf ||c - alw—l(g) < g h e - HTC”LZ(T) < E h¥ 67(c,T); = oscy(c);
eyl a

T TeT TeT

withO <r=1- ‘% +g <2- % provided d < 4. This gives the following statement.
We note that (5.76) could also be combined with (5.68) for n = 1 to obtain a similar
result for oscq(c)o With t = 1 and any d > 2; however, we do not elaborate further.

Corollary 6.37 (approximation of ¢) Let0 < ¢ < ¢y and the reaction coefficient
¢ € R(cy,cp) satisfy ¢ € X;(Q) withs € (0O,n],p € (0,00]. Ifn > 1, g > %, and
s—4 +§ > 0, then c € Cs =Cs (Lq(Q);’JB) and

P
lcles < lelxp@- (6.66)

Ifinsteadn=1,qg>ds—%+920,0<r=1-9+%<2-%andd <4, then
¢ €Csu :c%(ﬁ(g)ﬂa) and

lcles, S lelxs@)- (6.67)
d

Equivalently for alln > 1, gf(c)q defined in Section 6.1.2 satisfies
inf o < s - > #
A 07(c)g < lelxs@N VT € Tn,N > #7,

with t = 0 when n > 1. This error decay is achieved by Algorithm 3.18 (greedy
algorithm).

Proof. In view of (6.12), inequality (6.66) is a direct application of Theorem
6.29 (regularity yields approximation). The superconvergence rate in (6.67) is a
consequence of (6.12) and the proof of Proposition 3.19 (abstract greedy) with s
replaced by s + 7. Ul

We finally go back to the abstract space X ;; (L), defined in (6.35), and introduce

the corresponding abstract approximation class Xs = Xs (Lq (Q); ‘76) of functions
v € L4(Q) such that

S S
vk, = su Nd inf oscq(v <o = inf oscq(v), < |v|x, N 4.
| |X% NZE%( A 7(V)q) A 7()g < | |X§

Consequently, Theorem 6.29 (regularity yields approximation) implies
X;,(Q) C X%, |V|X§ < |V|XI§(Q). (6.68)
We will utilize this abstract notation and estimates in Section 7 while discussing

the approximation of data O = (A, ¢, f) by a greedy algorithm.

6.8.5 Global approximation: inverse estimates
Theorem 6.29 gives sufficient regularity properties for a function g € L9(Q) to
belong to an approximation class As (L’f (Q); 76); this is called direct estimate.
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Such regularity is written in terms of a Besov space B;, ,(€2), except in the limiting
case s = n+ 1. The converse statement is also true and is called an inverse estimate:
if g belongs to an approximation class Aé (Lq (); ‘76), then it is a member of a

Besov space Ef,’p(Q) provided¢t > sandO0O < s <n+1,s— % + g = 0 [Binev et al.
2002, Gaspoz and Morin 2014]. _
Several comments are in order. The Besov space B;’ p(Q) is defined via a

multilevel decomposition of L”(€2) and coincides with B;’,’ p(Q) only when s <

1+ %. This restriction of s is natural because V4 C Ef, p(Q) for all s but Vo C
o . l . .

]E; p(€)requires s < 1+; according to (6.56). The discrepancy between the spaces

B}, (@) and LI(Q)is 6 = s — 4+ 4 = 0, but the decay rate 1/d of A+ (L9(Q); o)

is larger than s/d. This accounts for the embedding of A« (L9(Q); )

S P t p s—t
Z (o’zn,(g)23"> < sup (Gznr(g)23"> Z 2@ < gl

neN neN neN d

into a space with decay s/d and summability ¢4 that in turn embeds into E;, »(€2)
[Binev et al. 2002, Gaspoz and Morin 2014]. This reveals that there is no complete
characterization of the approximation class A in terms of Besov regularity.

7 Data Approximation

This section focuses on the module DATA of Algorithms 5.1 (AFEM-TS) and 5.16
(one-step AFEM with switch). According to Assumption 6.11 (quasi-optimality of
DATA), the call

[7, D] = DATA(T, D, 1) (7.1)

is meant to construct a quasi-optimal conforming refinement 7 of T € T and
approximate piecewise polynomial data D = (A, ¢, f) € Dz over 7 that satisfies

1D - Dllp@ < CaaaT (7.2)

as well as the constraints A € M (@1, @) and ¢ € R(cy, ¢3) defined in (5.50).

Sections 7.2.2 and 7.2.3 are devoted to the construction of (A, ¢). To approximate
the coefficients (A, ¢) we proceed in two steps. First, we solve an unconstrained
approximation problem upon computing the L-projection (A, ¢) of (A, ¢) onto the
space of discontinuous piecewise polynomials of degree < n — 1; this step is linear,
easily achieves the desired accuracy, but does not guarantee the monotonicity of
oscillations with respect to refinement (5.72) and violates the constraints in (5.50)
unless n = 1. Second, we resort to the nonlinear selection (5.70) of the local
L? approximation to force the resulting oscillations to be monotone. Third, we
solve a constrained problem, which modifies (Z, ¢) locally into (;1, ¢) and restores
(5.50) without accuracy degradation; this is a delicate nonlinear procedure executed
element by element, introduced and discussed in Section 7.2.
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The approximation of the right-hand side f € H~!(Q) is a conceptually different
linear process. Without further structural assumptions on f it is not possible
to evaluate oscs(f)-1 and reduce it. Hence we introduce surrogate estimators
0scq(f)-1, which are larger than oscs(f)-1, but computable, for several classes of
forcing functions f relevant in practice. We discuss this in Section 7.3.

We start in Section 7.1 with a presentation and assessment of quasi-optimal
GREEDY algorithms to reduce the data error. An important consideration is that
the local error estimators {oscq(v, T)}r es may accumulate in £ as well as in £4
for g < co. Both are handled via a GREEDY algorithm similar to Algorithm 3.18
but with different stopping criteria when the local errors accumulate in £9 with
q < oo. The module DATA combines both: its structure is displayed in Algorithm
7.23 and its performance is elucidated in Corollary 7.24 below.

7.1 Quasi-optimal GREEDY algorithms for data reduction

Algorithm 3.18 (greedy algorithm) is well suited for dealing with local error es-
timators oscq(v, T), that accumulate with respect to T € 7 in the space £*. This
is the framework for approximating coefficients v = A, ¢ in L*(Q), in which case
the local error estimators oscy(v, T)s are defined in (5.73) for r = g = co. This re-
quires that v = A, ¢ be piecewise uniformly continuous on 7 for oscq(v; T)eo — 0
as hy — 0. However, for discontinuous (A, ¢) and the forcing function f, the accu-
mulation of oscy(v,T), forv = A, ¢, f is in £9 for g < co. In this case, Algorithm
3.18 does not provide a direct relation between a desired output tolerance 7 for the
total error

l/q
Eq(v)g := [{oscq(v, T)g}rerllea = (Z OSCT(V,T)Z>
TeT
and the threshold &; recall that osc(v, T)4 := ||v = V||pacr) for T € T
Another subtle difference from Algorithm 3.18 is that the algorithm GREEDY
below does not start from 7y but from any 7~ € T. Since DATA and thus GREEDY is
called repeatedly within AFEM, it seems advantageous to exploit the mesh refine-
ment already performed in the adaptive process rather than restarting from scratch;
this thus improve the computational efficiency.

Algorithm 7.1 (GREEDY ) Given a tolerance 7 > 0, 0 < ¢ < oo, a number of
bisection b > 1 performed per element to be refined, and an arbitrary conforming
grid 7 € T, not necessarily 7y, GREEDY finds a conforming refinement T >T of
7 by bisection and v € S;ﬂ_]’_l such that E#(v), < 7:

[7,7] = GREEDY (T, 7, ¢, b, v)
[v] = PROJECT (77, v)
while Eq(v)q > 7
[M] = argmax{oscy(v,T)y : T € T}
[7] = REFINE (7, M, b)



192

[¥] = PROJECT (7, v)
return 7,7

In GREEDY above, the element 7" with largest error is refined as long as the total
error E7(v), exceeds the target tolerance 7. When the largest error is achieved
by several elements, an ad-hoc criteria such as lexical order is used to break ties.
We also recall that the routine REFINE bisects all the elements in M (in this
case only one) b times and performs additional refinements necessary to produce
a conforming subdivision. PROJECT computes the local approximations v of v
needed to evaluate oscy(v, T)y; refer to Section 5.4.2 and (5.70) for the definition
of v. The dependency on v in oscq(v, T), and Eq(v) is not indicated.

To discuss the performances of the GREEDY algorithm, we recall that X3, (Q; 79)
is the abstract space defined in (6.35) which satisfies

P P
2. Vixyr) ® Plxyem (7.3)
TeT

forall 7 e Tandv € X;,(Q;%).

The GREEDY algorithm analyzed in Proposition 3.19 (abstract greedy) relies on
the abstract assumptions (3.40), (3.41), and (3.42). With the aim of reducing the
data oscillations, we make these assumptions more concrete.

Assumption 7.2 (admissible set of parameters for GREEDY ) We say that the set
of parameters (v, s, 7, p, q) is admissible for GREEDY with local oscillations {osc(v, T)g } 17
if 0 < p,g < o0, 5,t > 0 satisfy

(i) v e X3(Q;%);
(i) t+s5 >0, s—%+

p<l
(iii) forr :=r+s-<2+4>0
P q

g > 0 with strict inequality when g = 0 or s = n + 1,
d

oscr (v, T)g < Hylvixsay YT €T, T €T. (7.4)

When the local oscillations considered are clear from the context, we say that
(v, s,t, p, q) is admissible for GREEDY .

Relation (7.4) replaces (3.41) and is a regularity assumption guaranteeing a
convergence rate when approximating v by v = PROJECT (7, v) (appearing in
the definition of oscy(v,T),). We refer to Propositions 6.32, 6.33, and 6.34 for
examples where Assumption 7.2 holds. Note that in view of (6.55) and (6.59), the
conditions (ii) in Assumption 7.2 guarantees v € X,,(€2) ¢ L9(€2). The parameter
t > 0 reflects a possible additional power of / in the oscillation term, see for e.g.
(5.75), (5.76) and (5.78). Furthermore, in view of (7.3) assumption (6.51) is always
satisfied by the X ; (€; 7o) semi-norms, and (3.28) is not needed any longer.

As alluded to above, the case g < oo is more complex to analyze and cannot
solely rely on the decay property (7.4) as in the proof of Proposition 3.19. It
requires the local oscillations to be monotone with respect to refinements.
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Assumption 7.3 (monotonicity of local oscillations) We say that for 0 < g < oo,
the local errors satisfy the monotonocity property in ¢4 if for any v € L9(€), any
T,7. € Twith7, > 7 andany T, € 7., T € 7 with T, Cc T, we have

oscr (v, Ti)g < oscg(v, T)gq. (7.5)

In view of Lemma 5.26 (monotonicity of oscillation), Assumption 7.3 holds for
the oscillations on A and ¢ given in (5.73) and (5.75), but not for the oscillations
(5.77) of f. However, in Section 7.3 below we derive computable surrogates for
the local error oscy(f,T)-1. These surrogates satisfy the monotonicity property
and are used in turn to drive the GREEDY algorithm. In passing, we note that we
refrain from using the right-hand side of inequality (7.4) as surrogate for the local
oscillation. In fact, it is monotone with respect to refinements but at the expense
of being difficult to evaluate because it involves the semi-norm |v| X3(T)-

The following result is the counterpart of Proposition 3.19 (abstract greedy) for
GREEDY with errors accumulating in {9, 0 < g < oo, and still starting from 7.
We address the case where 7~ # 7 in Lemma 7.5 below.

Proposition 7.4 (performance of GREEDY ) Let the initial subdivision Ty of  C
R satisfy Assumption 6.19 (initial labeling). Let T > 0 be the target tolerance
and b > 1 be the number of bisections performed on each marked element. Let
(v, s,t, p, q) satisfy Assumption 7.2 (admissible set of parameters for GREEDY )
with local errors {oscy (v, T) g 1 c5 which in turn verify Assumption 7.3 (monoton-
icity of local oscillations) in £1. Then GREEDY (7y, T, q, b, v) terminates in a finite
number of iterations and

Er(v)g < T < Cvlxsum (#T) . (7.6)

with a constant C = C(p, q, s, b,d,Q,7y). Furthermore, v € X% and |v|x,,, S
a

~

[v] x3@;7)- Moreover, the estimate (7.0) is valid for tensor-valued functions v.

Proof. Since the proof is similar to that of Proposition 3.19 (abstract greedy)
with eq(v,T), = oscq(v,T)4, we only report the new ingredients. We recall that
we use the convention 1/c0 = 0. Let 77,..., 7% be the sequence of refinements
produced by GREEDY, and T1,...T; be the sequence of marked elements. We
need to estimate #M = k with M ={Ty,...,T}. Set

0; = osc; (v, Ti)g, 1<i<k) and 6 =081
Then, there holds
1 1
E7z(V)g <7< Eq_ (v)q <6 #T—1) <6 #Tp)4. (1.7

On the other hand, since REFINE does not increase the element estimators oscy; (v, T;)
thanks to (7.5), one has ¢; > ¢ for any i, whence

osci;(v,Ti)g =0; 26, VI<i<k.

Let us now partition M into disjoint subsets #; as in the proof of Proposition 3.19.
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If T; € P}, (7.4) implies

_ir
0 <oseq; (v, To)g < hyvixsan <277 ixsa »
whence, exploiting the 7 summability (7.3) gives

O
#P; < 67P2772 v 5 (@T)"
which is similar to (3.45). Recalling (3.44), and proceeding as in the proof of
Proposition 3.19, yields

st 1
0 < vixg@im H#Te —#T) @ 4.
We conclude the proof using (7.7) and the bound #7; > co#7 for co > 1. ]

In contrast to Section 3, and most of the existing literature, Algorithm 7.1 starts
from a refinement 7~ of 7y rather than 7 and thus exploits the mesh refinement
already performed in the adaptive process. We now give a simple argument, updated
from [Bonito et al. 20135b], that shows that the number of elements N(7, 7, b, v)
marked by GREEDY starting from 7~ with target tolerance 7 and refined b > 1
times is dominated by N(7, 7, 1, v), namely

N(T,7,b,v) < NP, 7,1,v). (7.8)

Estimate (7.8) is crucial because it avoids studying the cardinality of GREEDY
starting from 7 # 7y directly, and simplifies the analysis. Even though (7.8) is
plausible, the fact that the output of GREEDY (7, 7, ¢, 1, v) is unrelated to 7~ makes
it non-obvious. In fact, note that we do not claim that N(7, 7, b,v) < N(%y, 7, b, v),
which is unclear. The proof presented below hinges on the fact that all the elements
refined within GREEDY (79, 7, g, 1, v) are either refined because they are marked by
GREEDY (and thus of largest oscillation) or because their refinement is necessary to
guarantee conformity of the resulting subdivision. For our purposes, (7.8) suffices.

Lemma 7.5 (GREEDY starting from 7) Lett > 0be atarget tolerance and b > 1
be the number of bisections per marked element. Assume that the local errors
employed by GREEDY satisfy Assumption 7.3 (monotonicity of local oscillations) in
t4. Then, the number of elements N(7, T, b, v) marked by GREEDY (T, 7,q, b, V)
satisfies (7.8) for any admissible refinement T € T of 7.

Proof. We simply write GREEDY (75, 7, 1) and GREEDY (7, 7, b) because v and
q are fixed. Let N := N(7, 7, 1, v), and recall that the bisection rules define a unique
forest T emanating from 7y and a unique sequence of elements {7;} f\i , marked by
GREEDY (75, 7, 1). We denote by {77} the sequence of intermediate subdivi-
sions built within GREEDY (7, 7, 1) starting with 7° = 75: T; € 777! is bisected
once by REFINE which also produces the smallest conforming refinement 7 of
gi-l containing the two children of 7;. We thus say that GREEDY (7, 7, 1) satisfies
the minimality property that all the elements refined are either marked elements
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because their error is largest or necessary to guarantee conforming subdivisions.
Notice that this is not true for GREEDY (7y, 7, ») when b > 1.

For any 7~ € T, we let A7 be the set of indices j € {I,..., N} such that 7} is
never refined in the process to create 77, i.e. T; is either an element of 7 or a
successor of an element of 7. We show that

N(T,71,b,v) < #Aq (7.9)

by induction on #A¢. If #A4 = O then 7 is a refinement of 7V, whence the
monotonicity of the total error

Er(v)g < Eqn(v)y £ 7,

guaranteed by (7.5), implies that N(7°, T, b, v) = 0; this satisfies (7.9) as desired.

We now assume that (7.9) is valid for any 7~ € T such that #A+ < k, a non-
negative integer, and deduce it must also hold for any 7 € T such that #A¢+ < k+1.
Let 7~ € T be one such mesh, namely #A+ = k + 1. If Eq(v), < 7 then
N(T,7,b,v)=0and N(7,7,b,v) < #Aq4 holds trivially.

When instead Eq(v), > 7, we let j be the smallest index in As and show
that 7; € 7 using the minimality property of GREEDY (7, 7,1). Assume by
contradiction that 7; ¢ 7 but 7; belongs to a refinement 7 of 7 and is thus a
successor of an element 7 € 7. Note that T is refined by GREEDY (7, 7, 1) to
produce T; but was not marked because otherwise T = T; forsomei < jandi € A,
which would contradict the minimality of j. Hence, T must have been refined by
the REFINE routine to guarantee conformity when bisecting a marked element 77,
¢ < j. Invoking the minimality of j again yields that £ ¢ As and Ty cannot be in 7~
because T, has been refined to get to 7~ by definition of Ag~. Since REFINE refines
the minimal number of non-marked elements to guarantee conformity, and 7 is
conforming, T must have been refined as well when refining 7, in the process of
constructing 7~ and therefore cannot be in 7°. This is a contradiction and 7; € 7.

Therefore, 7~ is a refinement of 77! because all the elements marked or refined
to ensure conformity by GREEDY (7p, 7, 1) have been refined in the process of
creating 7. Moreover, T; € 7 is the element with largest error oscy(v, T;) within
7 (with ad-hoc criteria to break ties), because oscq-1(v,T}) is largest in 7 -1 by
definition of 7; and monotonicity of the local error (7.5); hence T; must be the first
element marked by GREEDY (7, 7, b). Let 7 be the subdivision obtained from
7 upon bisecting b times T;. Notice that As is a strict subset of A, because
J € Ag~, so that the induction assumption yields

NT,t,b,v) =1+ NT*,7,b,v) < 1 +#Aq < #Af.
This proves (7.9) and (7.8) follows immediately since #Aq < N(7, 7, 1, v). L]

Estimate (7.8) is critical to analyze the performances of GREEDY starting from
any admissible subdivision 7~ € T. We emphasize that the complexity estimate
provided by Corollary 7.6 is expressed in terms of number of marked elements
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N(7,7,q,b,v) and tolerance 7 instead of error and cardinality of 7. This is why
GREEDY can start from any mesh 7~ € T.

Corollary 7.6 (performance of greedy) Let the initial subdivision T of Q c R?
satisfy Assumption 6.19 (initial labeling) and T € T be any admissible refinement
of To. Let T > 0 be the target tolerance and b > 1 be the number of bisec-
tions performed on each marked element. Let (v, s,t, p, q) satisfy Assumption 7.2
(admissible set of parameters for GREEDY ) with local errors {oscq(v,T)g}1 e
which in turn verify Assumption 7.3 (monotonicity of local oscillations) in €4. The
number of marked elements N(7,7,q,b,v) by GREEDY (7,1, q, b, v) satisfies

d_
N(T,7,4,b,v) < CIvlii g7 5. (7.10)

with a constant C = C(p, q, s, b, d,Q,Ty). Moreover, the estimate (7.10) is valid
for tensor-valued functions v.

Proof.  Invoking Proposition 7.4 (performance of GREEDY ), which gives rise to
amesh 77, and Lemma 7.5 (GREEDY starting from 7), we readily deduce

—~ d_
N(T,7,4,b,v) < N(T5, 7,9, 1,v) < #T < CIvIii )77+,

which is the desired inequality (7.10). O

7.2 Constrained approximations

We discuss how the approximations produced by GREEDY (see Corollary 7.6) can
be modified to satisfy the structural assumption (5.51) without sacrificing their
accuracy.

7.2.1 Constrained approximations of scalar functions

The approximate data D = (A7 f) constructed in the previous sections using
the GREEDY algorithm are not guaranteed to satisfy the necessary conditions for
perturbed problem (5.5) with D = D to have a solution & = u(Z)) e H! (€2). Recall
that the data D = (A, ¢, f) € D(Q) is assumed to satisfy the structural assumption
(5.50), i.e., A € M(a;,az) and ¢ € R(cy,c2) with0 < @) < @ and 0 < ¢ < ¢3.
It turns out that constructing approximate data 9 with the same constraints is a
difficult task. We follow [Bonito et al. 2013b] and modify the data D to obtain
D= (Z, c, f) in such a way that the approximation property of Dis preserved,

1D - Dlp@) < CaaallD — Dllnie)

while ensuring that

- aq —~ —~ aq —~
A M(—,c ) R(-2L ca ). 711
€ 5 C ce ( 4C123 Cz) (7.11)
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Here C is a constant independent of relevant quantities (we make this more precise
below). In particular, the data D satisfies the structural assumption (7.11) which
guarantees that the perturbed problem (5.5) has a unique solution. Note that the
general case is more subtle than when the data are approximated by piecewise con-
stant approximations (5.74), which are directly satisfying the structural assumption
and used as motivation in Section 5.4.2.

We start by discussing a process modifying the approximation of a strictly
positive scalar function v € L*(Q), i.e. v € R(cy,c3) for some 0 < ¢ < ¢3; see
(5.49). Because the polynomial degree used to approximate the data might differ
depending on the application, we use m € N to denote a generic polynomial degree.

We think of v € S",;’_l to be an approximation to v not necessarily strictly positive.

The following process modifies v locally to construct v € 8’7"3_1. It involves a

parameter L > 2 responsible for the truncation of v whenever it is too large, i.e.,
Vv > Lcy. ForT € T, we set V|r := vy where

2 ~ when [[V]|z=a) = Lea,
vr =1 Vlr —minyer V(x)+ 5 when otherwise min,cr v(x) < C—z', (7.12)
VT otherwise.

Corollary 7.9 below is in essence Proposition 3 of [Bonito et al. 2013b] and
states that the constructed Vv satisfies

- 1 .
0< ‘l <v< (5 +2L> c7, a.e. in Q.

This is at the expense of inflating the approximation error in L?, 1 < g < oo, by
a multiplicative constant C only depending on d, m, cz/cy, g, L and the shape
regularity of T

v =VllLaay < Cllv =VllLa).

In preparation for this result, we introduce the following notations. We denote by
C; the smallest constant such that for any 7 € 7 and any polynomial P € P,,(T),
the inverse inequality

VPl Lory < CrlIP|| ey T4, (7.13)

holds. The inverse inequality constant C; only depends on the shape regularity of
T, m and d. Note that for such polynomial P € P,,(T), we have

|P(x) = PG| < CrlIPll ey T x = y|,  Vx,yeT.

Consequently, for any p > 0 and x € T, we define

T(x,p) :=T N B(x,p|T|'4/Cy),
which is motivated by the fact that for x € T and y € T(x, p) we have
|P(x) = PO)| < CrlIPll o) [T )x = yI < plIPllLocry. (7.14)
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Critical for the analysis below is the existence of a constant 0 < Cs(p) < 1
depending on p but also on d, m, and the shape regularity of T, such that

IT(x,p)| = Cs()|IT| VxeT, TeT. (7.15)

This constant Cs(p) assesses the area of a subset of 7" where the polynomial P
varies no more that p||P||z~(r) away from P(x).

We are now in position to analyze the effect of the nonlinear correction (7.12).
We proceed locally over each T € 7~ and start with the case where ||V]|L~(r) is large
(Lemma 7.7). We then discuss the case where v(x) is small on T (Lemma 7.8)
while for the remaining case, the function v does not need to be modified on 7.
These three cases are collected in Corollary 7.9 for scalar valued functions and in
Corollary 7.11 for matrix valued functions. In all the arguments below we used the
convention a'/® =1 for any a > 0.

Lemma 7.7 (locally enforcing constraints for large approximations) Let 7 €
T be any conforming refinement of Iy satisfying Assumption 6.19 (initial labelling).
Letcy >0, T € T and vy € L*(T) satisfying 0 < vr < ¢y a.e. inT. Furthermore,
form > 0and L > 2, assume that vy € P,,(T) satisfies

VT llL=r) = Lca. (7.16)

Then for the constant function vy = ¢, € P,,(T) there holds
1~ 1
— < <Lch<|=+2L .
ot < (Lo
Moreover, for 1 < g < oo, we have

vr =vrlleaary < Cllve = vrllLacr)s

-1/q
where CJ = Cs and Cs = Cs(1/2) is the constant appearing in (7.15) with

-2
p=1/2

Proof. Letxo € T and ¢, 7 defined by the relation

car = vr (o)l = IIvr L)
In view of the Lipschitz property (7.14) applied to P = vy and with p = %, we have

_ N o,
V7 (x) = V7 (x0)| < TT

forx € Ty := T(xg, %) C T. Recall (7.15), which implies that |Ty| > 55|T| for some
constant Cs := Cs(1 /2) only depending d, n, and the shape regularity of T. On the
one hand, this implies that vr |7, is bounded below with [vr (x)| > CZTT forx € Ty
and, on the other hand, v is bounded from above by

OSVT(X)SCZSL_IEQ,T, xeT.
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Consequently, for x € Ty and since L > 2, there holds
— c: ~
0<vr(x) < L_lcz,T < % < vr ()|

and thus

—_ _ 1 1\ _ L-2_
— > — > - — — =
v () =vr ()] = [vr(x)| —vr(x) > <2 L) T 2L T,

which indicates that vz and vy are sufficiently far apart on a substantial portion 7
of T. Thus is responsible for the L7-bound below. In fact, we have

-2
e | Tyl 7.17
2L C2,T| Ol ) ( )

whence, from the definition V7 := ¢, and using (7.15), we deduce

-1/q
S

L-2
as desired. ]

v =vrllaay = vr =vrllLam) =

Ivr =7 llzaer) < 2¢2|T1V9 <2076 7 |T)'9 <

v = vrllzacr)

Lemma 7.8 (locally enforcing constraints for small approximations) Ler 7 €
T be any conforming refinement of Ty satisfying Assumption 6.19 (initial labelling).
Let 0 < ¢y £ ¢, T € T and vr € L™(T) satisfying ¢y < vr < cp ae. inT.
Furthermore, for m > 0 and L > 2 assume that v € P,,(T) satisfies

V7|l L=y < Lea (7.18)
and
in v (x) < = (7.19)
EcnelTI’l vr (X I .

Then the function vy = % +Vr — minger v (x) € P, (T) is such that

C1

—~ 1
?SVT S2LC2+%S <2L+5> Cco

and
vr —VrllLaery < Cilve = vrllaar,

where C1+ =1+ C;l/q(p))) and Cs(p) is the constant appearing in (7.15) with
p =c1/2Lc2).

Proof. We define xg € T, ¢| 7 € R by the relations
ZI,T = VT ()Co) = min VT (X)
x€T
From the Lipschitz property (7.14) and the assumption (7.18), we find that

7 () = Fr (o)l < 5
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for x € Ty := T(xp, p) with p := 22—162 Recall (7.15), which implies that |Ty| >

55 |T| for some constant 55 := Cs(p) only depending d, m, c»/c1, L, and the shape
regularity of T.
For x € Ty, we proceed by estimating the difference

v (0) =7 (x) = v (¥) = 7 () = V7 (x0)) = 7 (x0) = €1 —%—a,r = %—a,r >0

because ¢ 7 < c¢1/2 by assumption (7.19). This implies that
1 ~ ~
|Tp|"/4 (3 - Cl,T) < |vr =vrllzaa)s

and vy and V7 are uniformly far apart in the substantial part Ty of T. Therefore,
vr =vr + (5 —c1,7) satisfies

because c1,7 > —||V||L=) = —Lc by assumption (7.18), and

N _ c1 -
v =vrllcay < vr =vrllLaa) + (? - CI,T) T|"e

~ ‘T ~ ~—1
<lvr =vrllLaa) + (3 - Cl,T) (o 411
~ N
<(1+Cg /q) v =vrllLaa).
This proves the assertions. U

Corollary 7.9 (locally enforcing constraints) Let 7 € T be any conforming re-
finement of Ty satisfying Assumption 6.19 (initial labelling). Let 0 < ¢; < ¢,
T € T andvy € L=(T) satisfying cy < vy < cpa.e. inT. Then, form >0, L > 2,
and vy € P, (T), the function vy € P, (T) defined in (7.12) satisfies

_ 1
% <yr < <§+2L) 1) a.e inT.

Moreover for 1 < g < oo, we have
lvr = vrllLaery < max(Cy, CH|lvr = vrllzaqry VT € T,

where CT and C; are the constants appearing in Lemmas 7.8 and 7.7, which only
depend on d, m, cy/c1, L, and the shape regularity of T.

Proof. The desired results follows from Lemma 7.7 when
VT =Ty = Lea
and from Lemma 7.8 when
C1

V7l < Lc and minvr < —.
V7 Il LTy 2 minvr < -



AFEM 201

In the remaining case

_ L~ C1
VT llLe) < Lea and minvy(x) > —,
x€T 2
since vy = vy satisfies the desired constraints there is nothing to prove. U

7.2.2  Constrained approximation of the diffusion coefficients
For matrix-valued functions, the constraints are on the eigenvalues of the matrix
rather than on the coefficients themselves. Although this requires a few adjust-
ments, the process is similar to the scalar case. We recall that for 0 < a; < a3,
M(ay,ap) C L™ (Q ngxnf’) denotes the class of symmetric matrix-valued functions
whose eigenvalues lie between a1 and a;; see (5.48).

Algorlthm CONSTRAINT-Ais based on (7.12) and modifies approximations

€ (S"A “hydxd of A € M(ay,a) to produce uniformly positive definite ap-
proximations A € (S5 ~hydxd of A,
Algorithm 7.10 (CONSTRAINT-A) Given a threshold parameter L > 2,0 < a; <

ap, a conforming refinement 7~ € T of 7y, and A€ (S"A _l)dXd this routine

constructs a positive definite Ac (S"A _l)dXd

[A] = CONSTRAINT-A (7, ay, a2, L, A)
ForT € T
a7 =inf{y’A)y, x €T, |y| =1}
arr =sup{|[y'Ax)yl, x €T, |y| =1}
if 52’7" > Lay

Alr = a2l y
elseifa;r < 3
Alr =Alr - (S -a17) Ly
else
Alr = Alr
return A

Notice that CONSTRAINT-A preserves symmetry, i.e, if Ais symmetric so is the
output A. In addition, whenn =1 and A € (Sg’._l)dx‘i is the piecewise constant

local average of A, the output A of CONSTRAINT-A is A = A since in that case
the parameters a7 and @, 1 satisfy

~ (03] ~
alr = ap > > and art < ap < Lay, VYT € 7.

This is consistent with the observation made in Section 5.4.2.

The next corollary hinges on Corollary 7.9 (locally enforcing constraints) to de-
rive properties of CONSTRAINT-A . In passing, we recall that for A € LP(Q; R¥*9)
we write

AllLr @ = [lAlllr@:
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where for x € Q, |A(x)| is the spectral norm of A(x).

Corollary 7.11 (locally enforcing constraints for matrices) Let the threshold be
L>20<a £aandA € M(ay,az). Let T € T be any conforming refinement
of 7o and A € (Sgi“’_l)dx‘l be a symmetric approximation of A. Then the output

[Z] = CONSTRAINT-A (T, ay,as, L, Z) is symmetric and satisfies
aq ~ 1 . .
TS/IJ-(A)S §+2L ar ae. inQ,1<j<d.

Moreover for 1 < g < oo, we have
IA = Allzaery < CaanallA = AllLaery VT €T,

where Cyaq = max(C{, Cy) and C} and C; are the constants appearing in Lem-
mas 7.8 and 7.7, which only depends on d, na, ay/ay, L, and the shape regularity
of T.

Proof. We observe that A is not assumed positive semi-definite. We argue locally
and fix T € 7. Letazr > 0 and yp € R be such that |yo| =1 and

@1 = sup [yhbA(X)yol ;= sup  sup [y Ax)yl.
xeT x€T yeR4,|y|=1

We first consider the case a7 > Lay for which A |7 := axl,. Forx € T, we set
a(x) =y,AX)yo  and  ar(x) =y A@)yo € Pu, (D).
These notations allows us to reduce to the scalar case upon noting that
la - arlizaa) < 1A = AllLacr

and @) < a < ap ae. in Q. Because ar 7 > Lap, Lemma 7.7 with m = ny
guarantees that ar := a; satisfies

la —arllLaa) < Cilla = arllrary < C31lA = AllLa).
Consequently, the matrix-valued approximation A |7 = aply satisfies
IA - Allaqry = lla - arllLaa) < C31A = AllLaqr).

This proves the desired result when @ 7 > La;.
We now consider the case where @, 7 < La; and define a1 7 € R, y; € R with
|y1| = 1 by the relations

@1 = inf y' A(x)y; = inf inf y'A(x)y.
ar = inf y; ()y1 inf |§r|l= Y (x)y
We also redefine the associated scalar functions for x € T using y; instead of yq
ax) =Y A@yr  and  ar(®) = y{A®y1 € Py, (7).

Ifa;r < 5 then Z|T =Alr + (5 —ai,r)I4. Lemma 7.8 with m = n4 ensures
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a

that ar = ar + 5 — a7 satisfies

- 1
% <ar < <§+2M>a'2

and

lla —arllrary < Cilla —arllraay < CI 1A — AllLacr).

Thus, ZlT satisfies the desired properties provided a> 7 > La; as well.
It the remaining case a»r < Lap and aj 7 > %, the function A|r = Alr
satisfies the desired properties and there is nothing to prove. U

As a corollary, we report the complexity of an algorithm that concatenates the
linear approximation of GREEDY with the nonlinear correction into the constraint
of CONSTRAINT-A . We recall from Corollary 6.36 (approximation class of A) that
the admissible set of parameters of A for GREEDY are ng <n—1

d d
sa€0,na]l, pac0,0], gac[2,o], sa——+—>0, 14=0.
PAa  4aA
Corollary 7.12 (complexity of constrained GREEDY for A) Let the initial mesh
To of Q © RY satisfy Assumption 6.19 (initial labeling) and T~ € T be any admissible
refinement of Ty. Let T > 0 be the target tolerance, b > 1 be the number of
bisections performed on each marked element, and L > 2 be a threshold parameter.
Furthermore, assume that (A, sa,ta, pa, qa) satisfies Assumption 7.2 (admissible
set of parameters for GREEDY ) with local oscillations {||A — A lLaa ) }T e and,
in addition, A € M(ay, @) for some 0 < ) < ay. The algorithm

[7,A] = GREEDY (T, 7, qa, b, A)
[A] = CONSTRAINT-A (T, a1, as, L, A)

where GREEDY is applied to the d(d + 1)/2 distinct components of A, marks N
elements of T for refinement with

d_
N < C|AIA,

.
XA @)

_d
S (7.20)

and C = C(pa,qa,sa,b,d,na, az/ar, L,Q,T). Moreover, A € (S;’f"_l)dw
satisfies
ay

AeM@,a): = T @=a +4L>%, (7.21)
and there is a constant Cguy, > 0 such that

A - AllLa@) < CiaraT-

Proof.  This result follows upon invoking Corollary 7.6 (performance of greedy)
and Corollary 7.11 (locally enforcing constraints for matrices). U
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Remark 7.13 (constrained approximation class of matrices) As a consequence
of Corollary 7.12, we realize that for A € M (a1, ay),

57(A), < 67(A), < Caaab7(A)y,

where the best approximation error 67(A), and best constrained approximation
error 65(A), are defined in (6.9) and (6.10).

7.2.3  Constrained approximation of the reaction coefficients

If the reaction coefficient ¢ € R(cy, ¢p) is strictly positive (c¢; > 0), then Corol-
lary 7.9 (locally enforcing constraints) with m = n. directly applies to v; = c|r,
T € 7, and guarantees that the approximate coefficient ¢ € S’;f’_l defined on
T € T by c|r := vr satisfies

CeR(GLT): ==, G=(0+40)2.
2 2

However, reaction coefficients are not necessarily strictly positive on Q and Co-
rollary 7.9 cannot be invoked directly. Instead, we take advantage of the fact
that the perturbed problem (5.5) is still well-posed provided ¢ > —a;/ (ZCIZJ) and

the approximate diffusion coefficient A € M(a;,@;) of A € M(ay, a,) satisfies
@) > ai/2 according with (5.52); hence ¢ > —a;/ (4C123). Therefore, we apply

Corollary 7.9 to the shifted reaction coefficient v = ¢ + g—;, which satisfies
P
a a
\ Z=C1+—;SV302+—;=IV2. (7.22)
Cp Cp

Below is the proposed algorithm for the construction of ¢ in the general case ¢ > 0.

Algorithm 7.14 (CONSTRAINT-c) Given L > 2, @; > 0, a conforming refine-
ment7 € Tof 75, and ¢ € S’;f’_l, this routine constructs ¢ € S'#"_l as follows:

[c] = CONSTRAINT-c (7, a1, L, c)

S_ =, @
v
ForT € T
if |[V][zery = Lvo
vlr =v2

else if minyer v(x) < 5
Vir =V — minyer v(x) + 5
else
vlr =vlr
A
c=V c
return ¢
We note that if n. = 0, then ¢ is the piecewise average of ¢ and CONSTRAINT-

c does not modify ¢ which already satisfies the structural assumption (7.11).



AFEM 205

The next result shows that the output ¢ of CONSTRAINT-c is a modification of ¢’
which satisfies ¢ € R(c1, ¢3), with

- ¢ a ~ 2 @
Ccli=——— and cr=(1+4L)—+ 4L -1)— 7.23
=573 c 2= ( ) > ( ) 22 (7.23)
without affecting the approximation of ¢ in L9, 1 < g < co (up to a multiplicative

constant). In particular ¢; > — which is necessary for the well-posedness of

L
2¢3°
the perturbed problem (5.5) when A e M@, ).

Corollary 7.15 (locally enforcing constraints for nonnegative scalar functions)
Let A € M(ay,a) with0 < @1 < @y, and ¢ € R(c1,c3) with 0 < ¢1 < ¢y Let
L > 2 and v < vy be defined in (71.22). Let T € T be any conforming refinement
of Toand ¢ € ng’_l. Then the output [¢] = CONSTRAINT-c (T, @1, L, ¢) satisfies

c1<c<qcp a.e. in £,
where ¢1 and ¢, are given by (7.23). Moreover for 0 < g < oo, we have

llc = €liLary < Caaralle = €llLacr) VI €T,

where Cau, is a constant only depending on d, n, vo/vi, Q, L, and the shape
regularity of T.

Proof. Set « := g—; and v := ¢+« € R(c1 +k,cy + k) so that c; + k > 0. On

3
each T € 7, we invoke Corollary 7.9 (locally enforcing constraints) with m = n.,
vr = ¢|r + k and where c1, ¢; are replaced by ¢ + «, ¢ + k respectively. Hence,
we deduce that the function v constructed within CONSTRAINT-c satisfies

clL+k cr+K
<v<(1+4L
;- <vs(+db—
and
v =Vllzaar) < Caawllv = VllLacr) VT € T, (7.24)

with a constant Cgy, depending on d,n, v, /vy, L, and the shape regularity of T.
Shifting back, ¢ = v—« and ¢ := v — k, we find that the approximation ¢ constructed
by CONSTRAINT-c satisfies

+ - +
Clzk—KSCS(l+4L)622K—K

or equivalently
C1 k —~ (6] K
——=—<c<(1+4L)—=—+@AL-1)=.
5 ==l )7+ )3

Q)

In view of (7.23) and k = C—;, this is the first desired inequality in disguised.

Furthermore, the secondP desired inequality follows from (7.24) because for
Te7 wehavec—c=v-vandc—c=v—V. O
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The next corollary combines the linear approximation of GREEDY together with
the nonlinear correction into the constraint of CONSTRAINT-c. We recall from
Corollary 6.37 (approximation class of c¢) that the admissible set of parameters of
¢ for GREEDY are n. <n—1,s. € (0,n.], pc € (0, ]

d d d
ne>0 = g.>=, sc——+—>0, t.=0;
2 Pe  dc
d d d
ne=0 = ¢g.=2, sc—-——+=>0, 0<t,<2—-—=.
Pc 2 2

Corollary 7.16 (complexity of constrained GREEDY for c¢) Let the initial subdi-
vision T of Q < R? satisfy Assumption 6.19 (initial labeling) and T € T be any
admissible refinement of Ty. Let T > 0 be the target tolerance, b > 1 be the
number of bisections performed on each marked element, L > 2 be the threshold
parameter, and @, > 0. Furthermore, assume that (c,s¢,tc, Pe,qc) satisfies As-
sumption 7.2 (admissible set of parameters for GREEDY ) with local oscillations
{llc = €llLac )} T e7 and that ¢ € R(cy, ¢2) for some 0 < ¢y < ¢p. The algorithm

[7,¢] = GREEDY (T, 7, gc, b, )
[c] = CONSTRAINT-c (T, @, L, )

marks N elements of T for refinement with

N < Cle] ;;;‘ig;%)r‘ﬁ (7.25)
and a constant C = C(p¢, qe, S, b, d,ne,va/vi, L, Q, 7o) with vi < v, defined in
(7.22) to construct T The function ¢ € S;lf’_l is a piecewise polynomial of degree
< ne over T and satisfies

¢ € R(cy, ¢2),

Clata only depending on d, ne, va /vy, Q, L, and the shape regularity of T such that

where ¢\ < ¢ are given by (7.23). Moreover, for 1 < q. < oo, there is a constant

llc = ¢llrac @) < CaaraT-

Proof. Simply apply Corollary 7.6 (performance of greedy) and Corollary 7.15
(locally enforcing constraints for nonnegative scalar functions). U]

Remark 7.17 (constrained approximation class of scalars) Corollary 7.16 im-
plies that for ¢ € R(cy, ¢3),

§7(C)g < 67(¢)g < Caatab7(C)g

where the best approximation error d7(c), and best constrained approximation
error 67(c), are defined in (6.9) and (6.10).
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7.3 Approximation of the load term f

We now turn our attention to the question of designing a practical algorithm for
reducing the global oscillation

Er(f2 = D I =Prflyn ® 2, 1F = Prflyag,,,  (126)
TeT zeV
where the projection Py is defined in (4.34). The approximation of functionals in
H~'(Q) is rather intricate and out of reach without assuming additional structure
enabling practical evaluation of their actions on polynomial functions.

We examine three cases of independent interest. In Section 7.3.1 we consider f €
L49(Q) for g satisfying 2d /(d+2) < g < oo, which includes the most common setting
f € L*(Q). Sections 7.3.2 and 7.3.3 present examples of right-hand sides not in L'.
In Section 7.3.2 we treat the case f = gor, where I is an hyper-surface not neces-
sarily captured by the faces of the subdivisions and g € L9(I'), g > 2, while in Sec-
tion 7.3.3 we consider f = div g forsome g € L*(Q;R%). Inall cases, the total error
E4(f)-1 is estimated by a surrogate ET(f)_l, namely Eq(f)-; < Cdatagfr(f)_l

Er(f? = ). &er(f.T)}
TeT
with a definition of oscq(f, T'), depending on the situation but local to T € 7~ (and
not on stars). This allows Algorithm 7.1 (GREEDY ) to reduce E 7(f)-1.

Before starting, we recall relevant definitions and results from Section 4 (a pos-
teriori error analysis). For z € V, we denote by 7; c 7 all the elements in w,
and 7, c F all the faces in w,. For £ € H~1(Q), the restriction Ps-¢ |w, belongs to
the space F(7;) = F,;, m,(7;) made of functional whose action against w € Hé (wy)

reads
{E,w) = Z ‘/Tqu+ Z /Fqu (7.27)

TeT, Fef,

for some gr € Py, (F), F € ¥, and g7 € P,,,(T), T € 7;. The polynomial degrees
are chosen to be m| = n — 1 and my = n — 2 but can be general in this discussion.

Corollary 4.31 (local near-best approximation) guarantees Pst|,, is the quasi-
best discrete functional in F(77), namely

16 = Prllls- o) < Cp Inf IE=Xlla-100)- (7.28)

This will be used repeatedly to replace P7-¢ by more tractable quantities and justify
the use of GREEDY algorithms to reduce (7.26).

7.3.1 The case f € L1(Q)

In this section, we show how to reduce the oscillation error (7.26) when f € L9(Q),
with g > % to guarantee that L9(Q) compactly embeds in H~!(Q). Note that
this not only includes the most treated case in the literature f € L?(Q) but also the
more intricate cases g < 2 originally analyzed in [Cohen et al. 2012].
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If TI+f is the L?-projection of f into the space S’,}f ! of discontinuous piecewise
polynomials of degree ny, let f € Srg’_l be defined by (5.70);ny =n—1in some
applications but not always. Since f|,,_ € F(7;) by taking gr = 0 and g7 = f|r
in (7.27), the local near-best approximation property (7.28) of P4 implies

1 = Prfll-scon) < CPIF = Flla-tcan

Furthermore, for v € Hé(a) 2) one has

(f=fov<If- f”L‘i(wZ)HV”LCY(wZ)
2d

% guarantees that 1 < g < -
and thus sob(H') > sob(L9). Therefore, Lemma 2.2 (first Poincaré inequality)

yields

where é + % = 1. Note that the restriction g >

- . 1+d(i-1 -~
1 = 1w, S diam() 72| f = fllzago.)-

Returning to (7.26), after rearranging the terms element-wise and invoking the
shape-regularity of T, we obtain Eq(f)-; < CaaaE7(f)-1, Where

Er(f)?, = Y 68cr(f, 1) (7.29)
TeT
and 65¢7(f, T)g := |l = FllLaqr) with £ := 1+d(3 = 1) > 0.

In view of the definition (5.70), the local oscillations osc(f,T), satisfy As-
sumption 7.3 (monotonicity of local oscillations) in £? and we can now employ
Algorithm 7.1 (GREEDY ) with local errors oscs(f, T)4 accumulating in £2. Recall
that we use the convention XJ(Q; 7p) = L4(Q).

Corollary 7.18 (approximation class of f € L9(Q)) Let the initial subdivision
To of @ < R? satisfy Assumption 6.19 (initial labeling) and T € T be any ad-
missible refinement of Ty. Let T > 0 be the target tolerance and b > 1 be the
number of bisectionf per{‘ormed on each marked element. Let 2d[(d+2) < g < o0

and sett = 1 +d(5 - 5). Let (f,s,t, p,2) satisfy Assumption 7.2 (admissible

set of parameters for GREEDY ) with local oscillations {0sc(f,T)g}re7. Then
[T, f] = GREEDY (T ,7,2,b, f) terminates in a finite number of steps with

EZ(f)-1 < 7, whence
E«?(f)—l < CdataT-
Moreover, the number N of marked elements by GREEDY satisfies
= _d
N < |f|X1§(Qs7—O>T s+, (730)
In particular, f € F a with |flr , < |Ifllxs@7%):
S+t S+

Proof. Directly apply Corollary 7.6 (performance of GREEDY ). UJ
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7.3.2 The case f = géc
We now consider the case where the right-hand side data f is a density supported
on a Lipschitz hyper-surface C ¢ Q in R? with (d — 1)-measure |C| < co.

The intricate interactions between bulk and interface contributions on P4 makes
it difficult to analyze when f = gd¢ with density g € L9(C). We take a simpler
approach, likely suboptimal when n > 1 and d > 2, which discards Ps in view of
the near-best approximation property (7.28)

If = Prflla-1(w,) S IfllE1(w.) (7.31)

The right-hand side of the above estimate is the starting point of the analysis in
[Cohen ef al. 2012] assuming n = 1 and d = 2.
We start with the derivation of a first upper bound for the local error || f|| -1(,,.)-

Lemma 7.19 (local oscillation) Ler 7 €T, z € N, and q > @. Ifg € L1(C)
andt = % — L@ =1) >0, then there holds

q
_r_
1l S loz 0 ClET gllLatwney S D) Hrllgliaaney.  (732)
T Cwy
Proof. Forv e H(l)(wz) and é + 617 =1, we have
= [ v < lglisono s,y (7.33)
w;NC

We realize that H'/?(w, N C) compactly embeds in L7 (w, N C) because

¢ = sob(H'2(w, 1 O)) - sob(LT(w, N C) = 2 — (d - 1) G B %)

2

d 1
=——-—(d-1)>0,

2 q

provided g > @. Consequently, we find that

_t
||V||L5(w nc) S lw, N Cla-1 ||V||H1/2(w ne)-
z z

It remains to invoke the continuity (2.4) of the trace operator to write

ot
“VHUY(wznc) S |lw NClET V[ g1,

which, together with (7.33), yields the first estimate in (7.32). To deduce the second
estimate, it suffices to note that |w, N C| < diam(w,)?~! < h;lfl for T C w, and
that [|g||La(w.nc) < 27 cow. 18llLanc)- O

Estimate (7.31) and Lemma 7.19 provide a surrogate for data oscillation

Er(f7 = ), 0%¢r(@. 1)y, 6578, T = Wyllgllarney,  (7.34)
TeT
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where ¢ = % - 3(d — 1). The quantity oscq(g, T)4 verifies Assumption 7.3 (mono-
tonicity of local oscillations) with Q replaced by C because of its element-wise
structure. Therefore, Proposition 7.4 (performance of GREEDY ) states that Al-
gorithm 7.1 (GREEDY ) can reduce E4(f)-;. This is in contrast with the star-wise
GREEDY algorithm analyzed in [Cohen et al. 2012], which requires that all marked
stars are refined d times to ensure all the faces in the marked stars are refined.

We now discuss the performance of GREEDY with local indicators oscq(g, 7).

Lemma 7.20 (approximation class of f = gé¢) Let C C Q be Lipschitz hyper-
surface. Let the initial subdivision T of Q c R satisfy Assumption 6.19 (initial
labeling) and T € T be any admissible refinement of Jy. Let T > 0 be the target
tolerance and b > 1 be the number of bisections performed on each marked element,
and 2(d — 1)/d < g < oo. Then [T, f] = GREEDY (T, 7,2, b, ) terminates in
a finite number of steps with surrogate estimator E=(f)-1 < 7 defined in (7.34),
whence

EZ(f)-1 < CdataT.
Moreover, the number N of marked elements by GREEDY satisfies

Ad-1)_—
< llglfsg 72, (7.35)
In particular, f = g6¢c € F - with |f|F 4 < llgllzace

-1)

Proof. This proof mainly follows the proof of Proposition 7.4 (performance of
GREEDY ) but requires a few modifications to account for the geometry of the
problem. Since in turn the proof of Proposition 7.4 describes modifications to the
proof of Proposition 3.19 (abstract greedy), we now provide a complete proof. We
proceed in several steps. We first consider the call GREEDY (7, 7,2, 1, f) from 7
with one bisection » = 1 and accumulation in £2, and discuss the general call from
7 with b > 1 in the last step of this proof.

[1] Termination. Since hy decreases monotonically to O with bisection, so does
oscy(g,T),. Consequently, GREEDY terminates in finite number k > 1 of itera-
tions. Let T, ... Ty be the sequence of marked elements, with M = {T1, ..., T} } and
71, ..., Tx be the sequence of refinements produced by GREEDY starting from 7.
Upon termination, the surrogate error satisfies Eq; (f)-1 < 7, whence Eq; (f)-1 <
CaataT-

Counting. To estimate the cardinality of 7, we need to count #M. Set
0i :=o0scq (g, Ti)g, 1<i<k, and 0 =081
Then, there holds
Ez(f)-1 7 < Eq_(f)o1 < S(#Te1)? < 6 #T0)2. (7.36)

We organize the elements in M by size in such a way that allows for a counting
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argument. Let P; be the set of elements T of M with size
27U < T <27 = 2% <hp <277

We first observe that all T”s in P; are disjoint. This is because if T7, T, € #; and
f”l N fz # 0, then one of them is contained in the other, say 73 C T3, due to the
bisection procedure which works in any dimension d > 1; see Section 3.5. Hence,

1
71| < 1|

contradicting the definition of #;. On the one hand, this implies the first bound
_ =1 (+d=1

d #P <ICl = #P<ICl2T 4, (7.37)

where we used that hglf] ~ |lwr N C|since T N C # 0 for all marked elements.
Recall that wy stands for the patch of elements around 7.

On the other hand, the monotonicity of the local error indicators oscs;(g,T)g =
h gl Lar nc). implies that REFINE does not increase osc;(g, T), and thus

§ < 6; =oscy(g, Ti)gs 1<i<k-1,

where 1 = 4 — 2(d — 1). In view of (7.34),if T; € P}, then we obtain

—_ _jt
0 <oscq(g,T)g <2 4|IgllLane)-

Therefore, accumulating these quantities in £9 yields

_itg
STHP; S 27 |lgllYy e
and gives rise to the second bound
tq

_g A—114
#P; < 679270 gl 0y (7.38)

Cardinality. The two bounds for ## in (7.37) and (7.38) are complementary.
The first one is good for j small whereas the second is suitable for j large (think
of 6 « 1). The crossover takes place for jy such that
Jo+(d-1) _ _M . _2
2T O 25T gl e, = 20 2 1CIT6 gl

upon using the expression for . We now compute

Jjd-1) _ _tq .
k=#M= Y #P; < > 270 |Cl+677 |glldy >, 2747,

J J<Jjo J>jo

jd-1) Jotd=1) g . _tajy
Yot a2t Yy,

J<Jjo J>Jo

Since

we can write
2(d-1)

-2 a
#M < |CI 9T (67 gl Lacey)
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We finally apply Theorem 3.16 (complexity of REFINE) to arrive at

2d-1)

#TE — 4T < #M < |CI'a@ (57 gllrao) 7 -

or equivalently
__d
5 5 |CIFT T gl Lacc) (#T - #75) ™.
We deduce from (7.36) that

d _2 d +

T < ST < 1CIFT4 |ll e (HT — #7) D

D=

or equivalently

2Ad-1)_-
#Tx —#75 < gl e o 7Y, (7.39)
From this we conclude that f = g6¢ € Fz(dl . with [flr | < llgllzacc) as desired.
2(d-1)

Starting from 7. To derive similar properties for GREEDY starting from 7~ € T,
we proceed as in the proof of Corollary 7.6 (performance of greedy). We distin-
guish the output [7, f] = GREEDY (%, 7, 2, 1, f) starting from 75 and performing
b = 1 bisection per marked element with [‘7’ , f] = GREEDY (7, 1,2, b, f) starting
from 7 € T and performing b > 1 bisections per marked element. Lemma 7.5
(GREEDY starting from 7°) guarantees that GREEDY (7, 7,2, b, f) terminates
with E, 7:( f)-1 £ 7. Moreover, Lemma 7.5 also ensures that the number of marked
elements satisfies

2(d-1)_-
N <#T - #7 < llglfo o) e 24,

where we used (7.39) to derive the last inequality. This ends the proof. U]

7.3.3 The case f = div g with g € L*(Q;R?)
A characterization of distributions in H~'(Q) is given in [Evans 2010, Section
5.9.1]: they are of the form

f=fo+tdivg

with fy € L*(Q),g € L*(Q;RY). Since we have already treated separately the
ubiquitous case g = 0 in Section 7.3.1, we consider now the case fy = 0. Therefore,

(f,v) =— / g Vv VveH)Q) (7.40)
Q
gives the action of f on v and its norm is [Evans 2010, Section 5.9.1]

£l -1 = inf {llgll 2 : & € L*(QRY) satisfies (7.40)}. (7.41)

Since adding the curl of a smooth vector field to g does not change (7.40), we
realize that the actual computation of (7.41) is problematic. We assume here that
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g is given and simply deal directly with g thereby exploiting the relation
1f -1 < llgllrz2 @) (7.42)

this leads to a surrogate estimator. We first approximate g by discontinuous piece-
wise polynomials of degree ny < n — 1, namely we compute the L?-projection
g+ = Ilyg onto [ng’_l]d, then we let fr := divgs € Fr ¢ H™'(Q) be the
approximation of f:

(fr.v)=~— Z /dingv - Z ‘/F [gr]] -nrv Vv e HY().

Ter VT FeF

We see that for z € V, fr|,,_ has the form of a functional in F(7;) (see (7.27))
with g7 = divgslr € Py,_1.qr = [[g7]] - nF € Py, forallT € 7,F € F, but
with smaller polynomial degree than functions in F(7;). We next exploit the local
near-best approximation (7.28) to replace Psf by fr

If = Prflla-1w) < CrIf = frlla-1(w.) < CPllg — g7l 12(w.) (7.43)

by virtue of (7.42) with Q replaced by w,. This leads to the surrogate element-
wise oscillation osc7(g,T)2 = |lg — gll;2(r). Which satisfies Assumption 7.3
(monotonicity of local oscillation). We thus have the global surrogate

Er(f?, = ) 05¢r(g, 13,

TeT

Corollary 7.21 (approximation class of div g) Let the initial subdivision Ty of
Q c RY satisfy Assumption 6.19 (initial labeling) and T~ € T be any admissible
refinement of 7y. Let T > 0 be the target tolerance and b > 1 be the number
of bisections performed on each marked element. Let (g,s,0,p,2) satisfy As-
sumption 7.2 (admissible set of parameters for GREEDY ) with local oscillations
{osc(g, T}t er Then (7, f] = GREEDY (7 ,71,2,b, f) terminates in a finite
number of steps with EZ(f)-1 < 7, whence E=(f)-1 < CaaaT. Moreover, the
number N of marked elements by GREEDY satisfies

4 _d
N < gl o7 -

In particular f = divg € Fs with
[fles < lgllxs@-

Proof. Apply Corollary 7.6 (performance of GREEDY ) withg =2to g. U

7.4 DATA module

We summarize now in one single algorithm, called DATA, all the developments in
Sections 7.2.2, 7.2.3, and 7.3. We first recall that Corollaries 7.12 (complexity of
constrained GREEDY for A) and 7.16 (complexity of constrained GREEDY for c)
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deliver piecewise polynomial approximations (;1, ©) of the coefficients (A, ¢) over
an admissible mesh 7 that satisfy both the global errors estimates

E%(A)qA < CgaaT, E(}‘-(C)qc < CgaaT,

where 2 < g4, g, < oo are the corresponding integrability indices, as well as the
structural constraint (5.51).

The situation for the load f is more intricate due to the evaluation of the nonlocal
norm H~!(Q), which requires further structure of f besides regularity. Section 7.3
provides three examples of practical significance that allow for computable sur-
rogate errors Eq(f)_1 larger than the desired oscillations Eq(f)-;. Since these
examples have different requirements for the approximation procedure to work, we
gather the salient structural points in the following assumption.

Assumption 7.22 (structure of f) Let (s, pf) denote the additional regularity-
integrability indices of f beyond the basic H~!-regularity, which are required by

Assumption 7.2 (admissible set of parameters for GREEDY ). Let | f | % " @) be a

measure of piecewise regularity of f in 7y expressed below in terms of surrogates.
Assume that either one of the following cases holds and note that all accumulate
local oscillations in £2.

o feLiQ), with 24 < g < co. Let 65¢o(f,T)y = bl I|f = flizacr) be the local
oscillation with 7y = 1+ d(— - —) > 0and (f,sr,tr,pys,2) satisfy Assumption

7.2, andsetlfl e |f|
PR D WA Y

o f = gdc where C C Q is a Lipschitz hyper-surface and g € L9(C) with
2(‘21 < q < oco. Let oscy(g,T)g = My llgllLarnc) be the local oscillation

with r = ¢ - L(d—1) > 0. Set sy = 0,17 = d/(2(d - 1)). py = q. and
713 @y = gllzacc

o f = drvg with g € L*(Q;RY). Let 6sco(f,T)2 = |lg — N7gll 2y be the
local oscillation, s = 0, and (g, 5,17, ps,2) satisfy Assumption 7.3, and set

s o = 181k @)

In all these cases, GREEDY algorithms with tolerance 7 > 0 reduce the surrogate
error Eq(f )31 and eventually guarantee that

E7(f)-1 < CaaT,

where Cgaa > 1 is the constant appearing in Corollary 7.18, Lemma 7.20, or
Corollary 7.21 depending on Assumption 7.22 (structure of f).

Algorithm 7.23 (DATA) Given a tolerance 7 > 0 and an arbitrary conforming grid
7 € T, not necessarlly 70, DATA finds a conformrng refinement 7 > 7 of 7~ and
approximate data D= (A c, f ) € Dz over 7 such that

1D - Dlip@ = E#(A)g, + E#(c)g, + EZ(f)-1 < CaaaT
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[T, D] = DATA(T, 7, D)

[7a, A] = GREEDY (T, 7/3, g4, b, A)
A = CONSTRAINT-A (74, a1, a3, L, A)
Set @ = a; and @, = (1 +4L)%
[7c,c] = GREEDY (7a,7/3,4¢, b, ¢)
¢ = CONSTRAINT-c (72, @), L, ©)
[T, f] = GREEDY (72, t/3,2, b, f)
return ’/7\',5

Note that DATA depends on the threshold parameter L > 2 used in CONSTRAINT-
Aand CONSTRAINT-c, although for simplicity it is not listed among the input
parameters.

The next result summarizes the properties of DATA.

Corollary 7.24 (performance of DATA) Let the initial subdivision Ty of Q ¢ R4
satisfy Assumption 6.19 (initial labeling) and T~ € T be any admissible refinement
of To. Let b > 1 be the number of bisections performed on each marked element.
Let the assumptions of Corollaries 7.12 and 7.16 for the coefficients (A, c) be valid,
and let f satisfy Assumption 7.22. _

For any target tolerance T > 0 and any threshold parameter L > 2, [T, D]
DATA (7, T, D) terminates in a finite number of iterations and outputs D, T €
such that A is symmetric and

—~

= 1l

A € M@, @), ¢ € R(cy, ),

where @y, @y are given by (71.21) while ¢y, ¢, are given by (7.23). Moreover, there
is a constant Cyuy, > 1 such that DATA terminates with

1D - Dllp) < CaataT,

and the number N of elements marked to construct T satisfies

< _a
N<IDI 7 (7.44)

d

with sp = min{sa, sc +1c,5¢ +1t5}, and

A d < 2
= (|A|A + | +|f17 ) :
Dl = (141 0 * Flizem * 155

Proof. Since the local oscillations for A and c satisfy Assumption 7.3 (monoton-
icity of local oscillations), we deduce that global oscillations do not increase upon
refinement, namely for 7 > 9. > T4

E,]A.(A)qA + E,]A.(C)qc < Er];\(A)qA + E7;(C)qc.
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In view of Corollaries 7.12 and 7.16, this in turn implies
2
E?(A)qA + E?(C)qt‘ < CdatagT-

For the load term f, we invoke Corollary 7.18, Lemma 7.20, or Corollary 7.21,
depending on Assumption 7.22 (structure of f), to infer that

1
Ez(f)-1 < CdatagT-
Hence,
1D - Dllp@) = E#(A)g, + Ez=(C)g. + E=(f)-1 < CaataT

as desired. The complexity estimate (7.44) directly follows from the complex-
ity estimates given in Corollaries 7.12 and 7.16 for (A, ¢), and Corollary 7.18,
Lemma 7.20, or Corollary 7.21 for f depending on its structure. U]

Similar ideas apply to approximate non-vanishing Dirichlet data or boundary
flux condition for Robin or Neumann problems, but we do not elaborate on this.

8 Mesh Refinement: The Bisection Method

This section is devoted to the complexity analysis of REFINE for A-admissible
triangulations. Precisely, we prove the existence of a constant D > 0 such that

k=1
#T - #To <D Y #M;, k20,
j=0
This kind of result holds for conforming meshes (A = 0) and was stated in Theorem
3.16, and for nonconforming meshes (A > 1) as anticipated in Theorem 3.29. The
results of Sections 8.1 and 8.2 are valid for d = 2 but the proofs of the cited
theorems extend easily to d > 2. We refer to the survey [Nochetto er al. 2009] for
a full discussion for d > 2.

8.1 Conforming meshes

8.1.1 Chains and labeling for d = 2

In order to study nonlocal effects of bisection for d = 2 we introduce now the
concept of chain [Binev et al. 2004]; this concept is not adequate for d > 2
[Nochetto et al. 2009, Stevenson 2008]. Recall that E(T') denotes the edge of T
assigned for refinement. To each T € 7 we associate the element F(T) € T
sharing the edge E(T) if E(T) is interior and F(T) = @ if E(T) is on Q. A chain
C(T,T), with starting element T € 77, is a sequence {T, F(T), ..., F"™(T)} with
no repetitions of elements and with

F™Y(T) = FX(T) for some k € {0,...,m — 1}, or F"\(T) = 0;

see Figure 8.1. We observe that if an element 7 belongs to two different grids,
then the corresponding chains may be different as well. Two adjacent elements
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Figure 8.1. Typical chain C(T,7) = {T; };:O emanating from 7" = Ty € 7 with
T, =FT;-1),j > 1.

T,T’ = F(T) are compatibly divisible (or equivalently T, T’ form a compatible
bisection patch) it F(T') = T. Hence, C(T,7) = {T, T’} and a bisection of either
T or T’ does not propagate outside the patch.

Example (chains): Let ¥ = {Ti}g1 be the forest of Figure 3.5. Then C(Ts, 7)) =
{T6, T7},C(Ty,T) = {To}, and C(T19,7) = {T10,13,T»} are chains, but only
C(Ts, T) is a compatible bisection patch.

To study the structure of chains we rely on the initial labeling (3.35) and the
bisection rule of Section 3.5 (see Figure 3.7):

every triangle T € T with generation g(T) = i receives the label
@@+ 1,i+ 1,i) with i corresponding to the refinement edge E(T),
its side i is bisected and both new sides as well as the bisector are
labeled i + 2 whereas the remaining labels do not change.

(8.1)

We first show that once the initial labeling and bisection rule are set, the resulting
master forest F is uniquely determined: the label of an edge is independent of the
elements sharing this edge and no ambiguity arises in the recursion process.

Lemma 8.1 (labeling) Let the initial labeling (3.35) for Ty and above bisection
rule be enforced. If Ty < T < - -+ < 9, are generated according to (8.1), then each
side in T has a unique label independent of the two triangles sharing this edge.

Proof. We argue by induction over 7x. For k = 0 the assertion is valid due to the
initial labeling. Suppose the statement is true for 7;. An edge S in 74+ can be
obtained in two ways. The first is that S is a bisector, and so a new edge, in which
case there is nothing to prove about its label being unique. The second possibility
is that S was obtained by bisecting an edge S” € Si. LetT, T’ € 7% be the elements
sharing S’, and let us assume that E(T”") = S’. Let (i + 1,i + 1,1) be the label of T,
which means that S is assigned the label i + 2. By induction assumption over 7%,
the label of S’ as an edge of T is also i. There are two possible cases for the label
of T:

e Label (i + 1,i+ 1,i): this situation is symmetric, E(T) = §’, and S’ is bisected
with both halves getting label i + 2. This is depicted in Fig. 8.2.

e Label (i,i,i — 1): a bisection of side E(T') with label i — 1 creates a child 7*" with
label (i + 1,7 + 1,§) that is compatibly divisible with 7’. Joining the new node of
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i+l i+1
i+1 i+1
i+1 i+1
i+1 i+1
S'=ET’)=ET)

Figure 8.2. T and T’ form a compatible patch, as they share the generation.

T with the midpoint of S’ creates a conforming partition with level i + 2 assigned
to S. This is depicted in Fig. 8.3.

i+1
i+1

i+1

Figure 8.3. T’ form a compatible patch with the child 7" of T, indeed T has a lower
generation than 7.

Therefore, in both cases the label i + 2 assigned to S is the same from both sides,
as asserted. ]

The two possible configurations displayed in the two figures above lead readily
to the following statement about generations.

Corollary 8.2 (generation of consecutive elements) Forany 7 € Tand T, T’ €
T withT = F(T') we either have:

(a) g(T)=g(T")and T, T’ are compatibly divisible, or
(b) g(T)=g(T’") —1and T’ is compatibly divisible with a child of T.

Corollary 8.3 (generations within a chain) Forall T € Tand T € T, its chain
C(T,T)=A{T}] , with Ty = FX(T) have the property

gT)=gT)—k 0<k<m-1

and T,, = F"™(T) has generation g(T,;,) = g(Tyu—1) or it is a boundary element with
lowest labeled edge on 0Q. In the first case, T,,—1 and T,, are compatibly divisible.

Proof. Apply Corollary 8.2 repeatly to consecutive elements of C(T, 7). ]
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8.1.2 Recursive bisection

Given an element 7 € M to be refined, the routine REFINE_ RECURSIVE (7, T)
recursively refines the chain C(T, 7") of T, from the end back to 7, and creates a
minimal conforming partition 7, > 7 such that T is bisected once. This procedure
reads as follows:

[7:] = REFINE_RECURSIVE (7,T)
if g(F(T)) < g(T)
[77] = REFINE_RECURSIVE (7, F(T))
else
bisect the compatible bisection patch C(T, 7")
update 7~
return 7~

We denote by C.(T,7) C 7. the recursive refinement of C(T,7) (or completion
of C(T, 7)) caused by bisection of 7. Since REFINE_RECURSIVE refines solely
compatible bisection patches, intermediate meshes are always conforming.

We refer to Figure 8.4 for an example of recursive bisection C.(T19,7 ) of
C(T1o,7T) = {T,T3,T»} in Figure 3.4: REFINE_RECURSIVE starts bisecting
from the end of C (719, 7°), namely T3, which is a boundary element, and goes back
the chain bisecting elements twice until it gets to T'¢.

3 3 3 3 3 3
2 2 4 4
3 3 ¢ e
3
1 , N |2 RN CRE a 5
3 3
2 2 2 2
2 2
Figure 8.4. Recursive refinement of 719 € 7 in Figure 3.4 by

REFINE_RECURSIVE. This entails refining the chain C(Ty9, 7) = {T10, T3, T2},
starting from the last element 7, € 7, which form alone a compatible bisection
patch because its refinement edge is on the boundary, and continuing with 73 € 7~
and finally 779 € 7. Note that the successive meshes are always conforming and
that REFINE_RECURSIVE bisects elements in C (79, 7") twice before getting back
to Tqp.

We now establish a fundamental property of REFINE_RECURSIVE (7, T) re-
lating the generation of elements within C.(7T', 7") [Binev et al. 2004].

Lemma 8.4 (recursive refinement) Let 7y satisfy the labeling (3.35), and let T €
T be a conforming refinement of 7g. A call to REFINE_RECURSIVE (7,T)
terminates, for all T in the set M of marked elements, and outputs the smallest



220

conforming refinement T, of T such that T is bisected. In addition, all newly
created T’ € C.(T, T) satisfy

g(T") < g(T)+1. (8.2)

Proof. We first observe that 7 has maximal generation within C(7,7). So
recursion is applied to elements with generation < g(7), whence the recursion
terminates. We also note that this procedure creates children of 7 and either
children or grandchildren of triangles Ty € C(T,7") = {Ti}:io withk > 1. If T’ is
a child of T there is nothing to prove. If not, we consider first m = 1, in which case
T’ is a child of T} because Ty and T are compatibly divisible and so have the same
generation; thus g(T”") = g(T1)+ 1 = g(Tp) + 1. Finally, if m > 1, then g(Tx) < g(T)
and we apply Corollary 8.3 to deduce

g(T") < g(Ti)+2 < g(T)+1,
as asserted. O

The following crucial lemma links generation and distance between T and T’ €
C.(T,T), the latter being defined as [Binev et al. 2004]
dist(7’,T) := inf |x" —x|.

x'€T’,xeT

Lemma 8.5 (distance and generation) Let T € M. Any newly created T’ €
C.(T,T) by REFINE_RECURSIVE (T, T) satisfies

dist(7’,T) < D> 2-8T"/2, (8.3)

where Dy > 0 is the constant in (3.34).

Proof.  Suppose T’ c T; € C(T, 7") has been created by subdividing 7; (see Figure
8.1). If i < 1 then dist(7’,T) = 0 and there is nothing to prove. If i > 1, then we
observe that dist(7’, T;_1) = 0, whence
i-1
dist(T”,T) < dist(T;_, T) + diam(T; ;) < )" diam(Ty)
k=1
i-1
<D, Zz—g(m/z < D>
k=1

L ys@n)?
1—2-1/2 ’

because the generations decrease exactly by 1 along the chain C(T") according to
Corollary 8.2(b). Since 7" is a child or grandchild of T;, we deduce
g(T") < g(Ti) +2=g(Ti) + 1,

whence

2!72 T2
o e
d1st(T,T)<D21_2_l/22 .
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This is the desired estimate. Ll

The recursive procedure REFINE_ RECURSIVE is the core of the routine REFINE
of Section 3.5: given a conforming mesh 7 € T and a subset M C 7 of marked
elements, REFINE creates a conforming refinement 7, > 7 of 7 such that all
elements of M are bisected at least once:

[7:] = REFINE (7, M)
forallT e M N7 do
[7] = REFINE_RECURSIVE (7, T)
return 7~

It may happen that an element 7/ € M is scheduled prior to T for refinement
and T € C(T’, 7). Since the call REFINE_RECURSIVE (7, T’) bisects T, its two
children replace T in 7. This implies that T ¢ M N 7, which prevents further
refinement of 7.

In practice, one often likes to bisect selected elements several times, for instance
each marked element is scheduled for b > 1 bisections. This can be done by
assigning the number b(T) = b of bisections that have to be executed for each
marked element 7. If T is bisected then we assign b(T) — 1 as the number of
pending bisections to its children and the set of marked elements is M :={T € 7 |
b(T) > 0}.

8.1.3  Complexity of bisection for conforming meshes
Figure 8.4 reveals that the issue of propagation of mesh refinement to keep con-
formity is rather delicate. In particular, an estimate of the form

#Te — #T-1 < CH#M

is not valid with a constant C independent of k; in fact the constant can be propor-
tional to k according to Figure 8.4.

Binev, Dahmen, and DeVore [Binev er al. 2004] for d = 2 and Stevenson
[Stevenson 2008] for d > 2 show that control of the propagation of refinement by
bisection is possible when considering the collective effect:

k—1
#Ti —#T5 < D ) #M;. (8.4)
j=0

This can be heuristically motivated as follows. Consider the set M := U?;& M;
used to generate the sequence 7y < 71 < --- < T =: 7. Suppose that each element
T. € M is assigned a fixed amount C; of money to spend on refined elements in
T,i.e,onT € T \ Tp. Assume further that A(T, T,) is the portion of money spent
by T, on T. Then it must hold

Z MT,T.) < C;  forallT, e M. (8.5a)
T eT\7
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In addition, we suppose that the investment of all elements in M is fair in the sense
that each T € 7\ 7y gets at least a fixed amount C;, whence

Z AT, T.)>C,  forallT € T\ T. (8.5b)
T.eM

Therefore, summing up (8.5b) and using the upper bound (8.5a) we readily obtain
CHT -#T)< Y > AT.T)= Y > AT.T) < Cr#M,

TeT\T T.eM T.e MT €T \7

which proves (8.4) for 7~ and M. In the remainder of this section we design such
an allocation function 1: 7~ x M — R* in several steps and prove that recurrent
refinement by bisection yields (8.5) provided 7 satisfies (3.35), thereby establishing
Theorem 3.16 (complexity of REFINE ).

Construction of the Allocation Function. The function A(T, T,) is defined with the
help of two sequences (a(f));o:_l, (b(f)) ;10 C R* of positive numbers satisfying

Z a(t) = A < oo, Zz—f/z b(l)=B <o,  infb(l)a(l)=c, >0,
>1
>-1 >0
and b(0) > 1. Valid instances are a(€) = (£ +2)~2 and b(¢) = 2¢/3.
With these settings we are prepared to define 1: 7 x M — R* by

ATT = a(g(T) — g(T)), dist(T,T.) < D3 B278M)/4 and g(T) < g(T.) + 1
T , else,
where D3 := D5(1 +2(V2- 1)7"). Therefore, the investment of money by T, € M is
restricted to cells T that are sufficiently close and are of generation g(T') < g(T)+1.
Only elements of these generations can be created during refinement of 7, according
to Lemma 8.4. We stress that except for the definition of B, this construction is
mutidimensional and we refer to [Nochetto et al. 2009, Stevenson 2008] for details.
The following lemma shows that the total amount of money spend by the alloc-
ation function A(7, T;.) per marked element 7 is bounded.

Lemma 8.6 (upper bound) There exists a constant C; > 0 only depending on Ty
such that A satisfies (8.5a), i. e.,

D ATT)<C forallT. € M,
TeT\T

Proof. We proceed in two steps.
[']Given T, € M we set g, = g(T.) and we let 0 < g < g, + 1 be a generation of
interest in the definition of 4. We claim that for such g the cardinality of the set

T(T.,g) ={T € T | dist(T, T..) < D3 B278/? and g(T) = g}
is uniformly bounded, i. e., #7 (T, g) < C with C solely dependingon D, D,, D3, B.
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From (3.34) we learn that diam(7,) < D,278/2 < 2D,2-(&+D/2 < 2p,2-8/2
as well as diam(7) < D,278/% for any T € 7 (T.,g). Hence, all elements of
the set 7 (7., g) lie inside a ball centered at the barycenter of 7, with radius
(D3B + 3D>)278/2. Again relying on (3.34) we thus conclude

#T(T.,9)D1278 < Y |T| < c(D3B+3Dy)"2%,
T eT(T.,g)
whence #77(T., g) < ¢ D]' (D3B +3D3)* =: C.
Accounting only for non-zero contributions A(7', T,.) we deduce

g*+1 00
Yoarty=> Y ag.-g)<C ) aly=CA=C,
TeT\T% g=0 T €T (T.g) (=1
which is the desired upper bound. U

The definition of A also implies that each refined element receives a fixed amount
of money. We show this next.

Lemma 8.7 (lower bound) There exists a constant Cy > 0 only depending on Ty
such that A satisfies (8.5b), i. e.,

Z AMT,T)>C>  forallT € T\ T.
T.eM

Proof. We proceed in several steps.

['] Fix an arbitrary Ty € 7~ \ 75. Then there is an iteration count 1 < ko < k such
that Ty € 7k, and Ty ¢ Ti,—1. Therefore there exists an 71 € My,—1 € M such that
Tp is generated during REFINE_RECURSIVE (7k,-1, T1). Iterating this process we
construct a sequence {7 }]J.:1 C M with corresponding iteration counts {k }]J.:1
such that 7} is created by REFINE_RECURSIVE (Tij-15Tj41)- The sequence is
finite since the iteration counts are strictly decreasing and thus k; = O for some
J > 0, or equivalently 77 € 7.

Since T is created during refinement of 7, we infer from (8.2) that

g(Tj1) = g(Ty) — 1.

Accordingly, g(T;;1) can decrease the previous value of g(T;) at most by 1. Since
g(Ty) = 0 there exists a smallest value s such that g(Ts) = g(Tp) — 1. Note that for
J=1,...,5 wehave A(Ty, T;) > 0if dist(Tp, T;) < Dng‘g(TO)/d.
We next estimate the distance dist(7y, T;). For 1 < j < s and £ > 0 we define
the set

T(To. ¢, j) :=AT € {To,....Tj-1} | §(T) = g(To) + t}

and denote by m(¢, j) its cardinality. The triangle inequality combined with an
induction argument yields

dist(Tp, Tj) < dist(Ty, T7) + diam(T7) + dist(77, Tj)
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J Jj-1
< Z‘ dist(Ty_1, T;) + Z‘ diam(T}).
= 1=

We apply (8.3) for the terms of the first sum and (3.34) for the terms of the second
sum to obtain

J -1
dist(To, T;) < D» Z 2-8@-0/2 4 p, Z 2-8(T)/2
\/i 1 & £
—1
<1 + ) 2 8(T)/2
i=0
= Ds Z m(e, j) 2~ @+0)/2
£=0
= D32_8(T0)/2 Z m(& ]) 2—5/2.
=0

For establishing the lower bound we distinguish two cases depending on the size
of m(£, ). This is done next.
Case 1: m(€,s) < b(¢) for all £ > 0. From this we conclude

dist(Ty, Ty) < D32 ¢@/2 %" b(£) 272 = Dy p 2782
=0

and the definition of A then readily implies

D ATy, T = AT, Ty) = a(g(Ty) = g(Tp) = a(=1) > 0.
T.eM

Case 2: There exists £ > 0 such that m(¢, s) > b(€). For each of these £’s there
exists a smallest j = j(€) such that m(¢, j(£)) > b(£). We let £* be the index ¢ that
gives rise to the smallest j(£), and set j* = j(£*). Consequently
m(, j*—1) < b(l) forall{ >0 and m(t*, j*) > b(f").
As in Case 1 we see dist(Tp, ;) < D3B278T0/2 for all i < j* — 1, or equivalently
dist(Ty, T;) < D3B278T0/2  forall T; € T(Ty, ¢, j*).

We next show that the elements in 7 (Tp, £*, j*) spend enough money on 7. We
first consider ¢* = 0 and note that Ty € 7 (7o, 0, j*). Since m(0, j*) > b(0) > 1
we discover j* > 2. Hence, there is an T; € 7 (Tp, 0, j*) N M, which yields the
estimate

D AT, T = ATy, Ti) = a(e(Ty) - g(To)) = a(0) > 0.
T.e M
For £* > 0 we see that Ty ¢ T (Ty, £*, j*), whence T (Tp, £*,j*) ¢ M. In
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addition, A(Tp, T;) = a(¢*) for all T; € T (T, £*, j*). From this we conclude
DLAGTY = Y AT, T) = m(, ) a(e”)

T.e M T.€T(To,t*,j*)
> bl a(l™) > ll’nfl b(€)a(€) =c, > 0.
£>

In summary we have proved the assertion since for any 7o € 7\ 7o

Z ATy, T,) = min{a(-1), a(0),c.} =: C» > 0. (8.6)
T.e M
This completes the proof. U

Remark 8.8 (complexity with b > 1 bisections) To show the complexity estim-
ate when REFINE performs » > 1 bisections, the set M is to be understood
as a sequence of single bisections recorded in sets {Mk(j)}?:l, which belong
to intermediate triangulations between 7 and 741 with #Mg(j) < 27 THM,,

j=1,...,b. Then we also obtain Theorem 3.16 because
b b .
DTEMG) < D 2T My = 2F - DEM,.
J=1 Jj=1

In practice, it is customary to take b = d [Siebert 2012].

8.2 Nonconforming meshes

In this subsection, we consider two kinds of nonconforming meshes undergoing
a refinement process: a) quadrilateral meshes with at most one hanging node per
edge (A = 1 in the definition of A-admissible meshes), and b) triangular meshes
having global index bounded by a fixed, but arbitrary A > 1.

8.2.1 Complexity of bisection for nonconforming quadrilateral meshes

We examine briefly the refinement process for quadrilaterals with one hanging node
per edge, which gives rise to the so-called /-meshes. The refinement of T € 7~
might affect four elements of 7~ for d = 2 (or 2¢ elements for any dimension d > 2),
all contained in the refinement patch R(T,7) of T in 7. The latter is defined as

R(T,T):={T" € 7| T’ and T share an edge and g(T") < g(T)},

and is called compatible provided g(T") = g(T) forall T’ € R(T, 7). The generation
gap between elements sharing an edge, in particular those in R(T,7"), is always
< 1 for 1-meshes, and is 0 if R(T', 7°) is compatible. The element size satisfies

hy =278 hy VT e T
where Ty € 7 is the ancestor of T in the initial mesh 75. Lemma 3.15 is thus valid

hy < hy < D,278@ VT € T (8.7)



226

Given an element T € M to be refined, the routine REFINE_RECURSIVE (7,T)
refines recursively R(T,7") in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

[7:] = REFINE_RECURSIVE (7,T)
if g =min{g(T"”"): T"” € R(T,7)} < g(T)
let 7" € R(T,T) satisty g(T') = g
[77] = REFINE_RECURSIVE (7,T")
else
subdivide T
update 7 upon replacing T by its children
return 7~

The conditional prevents the generation gap within R(7', 7) from getting larger
than 1. If it fails, then the refinement patch R(T, 7") is compatible and refinining
T increases the generation gap from O to 1 without violating the 1-mesh structure.
This implies a variant of Lemma 8.4: REFINE_RECURSIVE (7,T) creates a
minimal 1-mesh 7, > 7 refinement of 7 so that for all newly created elements
T €97,

I < g +1 (8.8)

and T is subdivided only once. This yields Lemma 8.5: there exist a geometric
constant D, > 0 such that for all newly created elements 7” € 7

dist(T, T") < D287, (8.9)

The procedure REFINE_RECURSIVE is the core of REFINE, which is concep-
tually identical to that in Section 8.1.2. Suppose that each marked element 7 € M
is to be subdivided b > 1 times. We assign a flag g(T') to each element T which is
initialized ¢(T) = b if T € M and ¢(T) = 0 otherwise. The marked set M is then
the set of elements T with ¢(T') > 0, and every time T is subdivided it is removed
from 7~ and replaced by its children, which inherit the flag ¢(T) — 1. This avoids
the conflict of subdividing again an element that has been previously refined by
REFINE_RECURSIVE. The procedure REFINE (7°, M) reads

[7:] = REFINE (7, M)
forallT e MNT do
[7] = REFINE_RECURSIVE (7, T);
end
return 7~

and its output is a minimal 1-mesh 7, > 7, refinement of 7, so that all marked
elements of M are refined at least b times. Since 7. has one hanging node per side
it is thus admissible in the sense of (3.47). However, the refinement may spread
outside M and the issue of complexity of REFINE again becomes non-trivial.
With the above ingredients in place, a statement similar to Theorem 3.16 (com-
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plexity of REFINE ) for nonconforming quadrilateral meshes follows along the lines
of Section 8.1.3.

8.2.2 Complexity of bisection for A-admissible triangular meshes

Let 7 € TA be a A-admissible simplicial mesh. Given any T € 7, let us denote
again by E(T) the edge of T assigned for refinement, i.e., the edge opposite to the
newest vertex v(7T). Let us denote by x(7') the midpoint of the edge E(T).

Two elements T’,T" € T are said adjacent if E = T" N T" is an edge for at
least one element, and are said compatible if they are adjacent and both E(T") and
E(T"") belong to the same line (see Fig. 8.5, cases A and B).

v(T") v(T")
T V(TN) T v(T//)
V(T") V(T”)

case A case B case C case D

Figure 8.5. The elements 7’ and 7" are adjacent in cases A to D. They are
compatible in cases A and B, and non-compatible in cases C and D.

The following technical results will be helpful in the design of the refinement
procedure.

Lemma 8.9 (global index of a hanging node) Consider an edge E = [x’,x"] of
the partition 7. If x € H Nint E is generated by m > 1 bisections of E, then its
global index A(x) satisfies

A(x) = max(A(x"), Ax") +m .

Proof. If m = 1, then x = xj is the midpoint of E, and the formula is just the
Definition 3.24 of global index. If m > 1, then x is generated by bisecting some
interval [z’,7"’] C E, and A(x) = max(4(z'), 4(z""))+ 1. Exactly one between z’, 7"’
has been generated by m — 1 bisections, whereas the other one has been generated
by less than m — 1 bisections. Hence, one concludes by induction. U

Lemma 8.10 (reducing the global index of hanging nodes) Let H N int E con-
tain at least the midpoint xp; of E. Assume that a bisection of some element in
T transforms xp; into a proper node, and let Ayey, denote the new global-index
mapping of the nodes in H N int E after the bisection. Then there holds

Apew(®) < A(x) -1 Vx € HNintE .
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0 0

Figure 8.6. Three examples of distributions of proper nodes (red) and hanging
nodes (black), with associated global indices A. The bisection added in the middle
picture converts the centered node into proper, and induces nonlocal changes of
global indices on chains associated with it; if A = 3, the leftmost mesh is not
admissible and this procedure is instrumental to restore admissibility. The right
picture illustrates the creation of a proper node without nonlocal effects on global
indices.

Proof. 1f x = xp, then trivially Apew(x) = 0 < Ax) = 1. If x € HNintE is
contained, say, in (x’, x»s) and has been generated by m > 1 successive bisections
of E, then it is generated by m — 1 successive bisections of [x’,xps]. Thus, by
applying Lemma 8.9 we get

Anew(X) < max(Apew(x), Anew(Xpr)) +m — 1
max(A(x),0)+m -1 = Ax)+m -1
max((Ax), Ax"N+m—-1 = Ax)—-1.

IA

This gives the desired estimate. U

The result just established is the motivation for the proposed refinement strategy,
introduced in [?]. Indeed, it assures that in order to reduce the global index of a
hanging node sitting on an edge, it is enough to transform the midpoint of the edge
into a proper node. The situation is well represented in Figure 8.6.

The following remark will be useful in the sequel.

Remark 8.11 (facing element) Given a A-admissible mesh 7 andT € 7, let x(T)
be the midpoint of E(T), and suppose that A(x(7")) > A. Then x(T) is not a node
of 7°, whence the edge E(T) cannot contain any hanging node in its interior. We
conclude that there exists a unique adjacent element T € 7, T # T, such that
T NT = E(T). This element will be called the element facing T, and denoted by
F(T).

Given an element 7 € 7 which has been marked for refinement, we are ready
to identify those elements in 7 that need be bisected with T in order to create a
A-admissible refinement of 7. Figure 8.7 illustrates the possible situations.
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Adas

case A case B case C case D

Figure 8.7. Two elements T;_1 and T; in the chain C(7,T): T;_; can be bisected in
a A-admissible way, only after 7 is refined once (cases A and B), or twice (cases
Cand D)

Definition 8.12 (chain of elements to be refined) Define by recurrence the chain
of elements starting at T

CT,7T)=A{To,T1,..., Tk}

for some k > 0, as follows: set first Ty = T and, assuming to have defined 7; for
j =0, then

(i) if Ax(T;)) < A, set k = j and stop;
(i) if A(x(T})) = A + 1 and the facing element F(T}) is compatible with T}, set
Tjy1 = F(T)), k = j + 1 and stop;
(iii) if A(x(T};)) = A+ 1 and the facing element F'(T}) is not compatible with 77,
set Tj41 = F(T;) and continue.

Lemma 8.13 (properties of the chain of refinement) The chain C(T,7") has fi-
nite length, precisely it holds k < g(T') + 1, where g(T) is the generation of T,
defined in Sect. 3.5. Furthermore, the sequence of element generations { g(Tj)}f.:O
is not increasing.

Proof. We claim that step (iii) in Definition 8.12 reduces the generation by at least
one. In fact, T; coincides with or is a refinement of a triangle T € T sharing a full
edge with T;,; thus g(7;) > g(T). Such triangle T satisfies g(T) =g(Tjq1) +1,
whence

gT) =g —1<g(T)—1. (8.10)
Therefore, for as long as case (iii) is active, i.e. for all j < k, we have g(T;) <
8(Tp) — j and

0 < g(Tk-1) < g(To) — (k= 1),
which gives the first statement of the lemma. The monotonicity of {g(Tj)}f.:O
follows from (8.10) and the fact that g(Ty—) = g(T%) in case (ii). ]

Once the chain C(7,T) is defined, all its elements are refined, starting from
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the last one and proceeding backwards. This is accomplished in the following
procedure.

[7:] = REFINE_RECURSIVE (7,T,A)
if Ax(T)) < A
bisect T’
update 7~
else if F(T) is compatible with T
bisect F(T) and T
update 7~
else
[7] = REFINE_RECURSIVE (7, F(T), A)
return 7~

Proposition 8.14 (properties of REFINE_RECURSIVE) If7 is A-admissible, the
call [7.] = REFINE_RECURSIVE (7,T,A) outputs the smallest A-admissible
refinement T, of T such that T is bisected. In addition, every element T’ € T,
generated by this call satisfies

g(T’) < g +1. (8.11)

Proof. LetC(T,7)={T; }fzo and observe that, for j > 1, one or two bisections
of T; convert the midpoint of the edge E of T; shared with 7;_; into a proper node.
Therefore, Lemma 8.10 (reducing the global index of hanging nodes) implies that
the global indices of all interior nodes to E decrease by at least 1, and makes the
bisection of T;_; A-admissible as desired.

To prove (8.11) we take j > 1 and consider the following two mutually exclusive
cases. If T; and 7,_; are compatible, then 7 is replaced by two elements 7’ € 7
of generation

gT)=gTp+1<gM+1,
according to Lemma 8.13 (properties of the chain of refinement). On the other

hand, if T; and T;_; are not compatible, then 7} is replaced by one element of
generation g(7;) + 1 and two elements 7’ € 7, of generation

gT)=g(T)+2<gT;-)+1<gM)+1

because of (8.10). Finally, the element 7y = T is replaced by two elements of
generation g(T) + 1. ]

If one considers the chains starting at any element 7 € M, one obtains the
procedure REFINE (7, M, A), which reads

[7:] = REFINE (7, M, A)
forallT e M N7 do
[7] = REFINE_RECURSIVE (7, T, A)
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return 7

and outputs a minimal A-admissible mesh 7. > 7, refinement of 7, so that all
marked elements of M are refined.

Proof of Theorem 3.29 (complexity of REFINE for A-admissible meshes). The
arguments given in Sect. 8.1.3 for the conforming case can be adapted to the current
situation. The two crucial properties needed are the relation (8.3) between the
distance of two elements in a chain and their generation, which is valid for bisection
grids regardless of A-admissibility, and the relation (8.11) between generations of
elements. O

8.2.3  Mesh overlay and A-admissibility

Given two partitions 74 and 7, denote by 74 ® Tp the overlay of T4 and 73, i.e.,
the partition whose associated tree is the union of the trees of 74 and 7p. The
following property holds.

Proposition 8.15 (mesh overlay is A-admissible) If 74 and T are A-admissible,
then T4 ® T remains A-admissible.

Proof. Denote here by N the set of all nodes obtained by newest-vertex bisection
from the root partition 7g. Let Ny, Na, N, Na+p, resp., be the set of nodes of the
partitions 7y, 7a, 75, Ta ® T, resp.. It is easily seen that for each x € N\ N there
exists a unique set B(x) = {x’,x”} C N such that x is generated by the bisection
of the segment [x’,x”’]. Furthermore, if x € Na,p is a proper node of 7 (of 73,
resp.), then it is also a proper node of 74 @ 7p.

Let us denote by A4, A, Aa+B, resp., the global-index mappings defined on Ny,
N, Naip, resp.. It is convenient to extend the definition of 14 and A to the
whole N4, p by setting

/lA(x):+oo ifxENA+B\NA, /13(X)=+OO ifxENA+B\NB.
With these notations at hand, we are going to prove the inequality
Aa+p(x) < min(A4(x), Ap(x))  Vx € Nasg, (8.12)

from which the thesis immediately follows.

We proceed by induction on k = Ag4p(x), x € Nayp. If k = 0, the inequality
is trivial since A4(x), Ap(x) > 0. So suppose (8.12) hold up to some k > 0. If
x € Nayp satisfies Aa+p(x) = k +1 > 0, then it is a hanging node of 74 & 75 by
definition of global index, hence, it is a hanging node of 74 or 7p; without loss of
generality, suppose it is a hanging node of 74. If x is generated by the bisection of
the segment [x’, x”'], then again by definition of global index it holds

k+1=24:p(x) = max(Aarp(x”), Aasp(x”) + 1,

which implies
Aas(x) <k, Aarp(x”) < k.
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By induction,
Aa+p(x’) < min(Aa(x"), 1p(x")), Aa+p(x”’) < min(Aa(x"), Ap(x")),
from which we obtain
Aa+p(x) < max(Aa(x’), Aa(x)) + 1 = Aa(x)

since x is a hanging node of 74. On the other hand, either x € Np or x ¢ Np. In
the latter case, Ag(x) = +o0, and (8.12) is proven. In the former case, necessarily x
is a hanging node of 7, hence as above

Aa+p(x) < max(Ap(x'), Ap(x"")) + 1 = Ap(x),

and the thesis is proven. U]

9 Discontinuous Galerkin Methods

So far we have studied conforming finite element approximations. In this section
we present and analyze a two-step AFEM for discontinuous Galerkin methods (dG).
The core PDE routine GALERKIN is thereby replaced by GALERKIN-DG, which
hinges on the interior penalty discontinuous FEM. We regard dG as a prototype
non-conforming method of practical importance and thus the natural first step to
investigate the effects of non-conformity within adaptivity.

Finite element functions, being discontinuous, allow for non-conforming meshes
to support them. We consider A—admissible subdivisions, according to Definition
3.25, where A > 0 restricts the level of non-conformity, and denote by T* the
collection of all A—admissible refinements of an initial subdivision 7y; we refer to
Section 8 for details. However, we further assume that 7 is conforming to limit
the level of technicalities.

There are several novel but characteristic aspects of dG. The most notable one
is the appearance of jumps in its formulation, to compensate for the lack of H'-
conformity, as well as in the a posteriori upper bounds and the comparison of
Galerkin solutions on different meshes. The lack of monotonicity of these jumps
presents a formidable obstruction to the available proof teachniques in adaptivity.
However, we show in Lemma 9.11 that they are controlled by the residual estimator,
thereby enabling us to loosely follow the roadmap of the conforming method,
namely Sections 4, 5, and 6. Our approach is based on [Bonito and Nochetto 2010]
for the one-step AFEM.

The extra flexibility provided by non-conforming meshes, and corresponding
discontinuous functions, does not yield better asymptotic rate in H'. An early
manifestation of this fact, although written for conforming subdivisions, is Propos-
ition 6.2 (equivalence of classes for u). We extend this result below for general
A—admissible partitions.

One advantage of the two-step AFEM is that its design and analysis allows for
f € H™'(Q) without added difficulties: the function f is replaced by the discrete
functional f = P7f € Fq, which applies to functions in S';_l. This is in contrast
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with f, which cannot be applied to functions in S',}i_l. We exploit this property
and thereby extend the applicability of dG to load functions in H~!(Q).

Our intend is to analyze the following algorithm for the approximation of the
solution u € Hé (Q) to the coercive problem (2.7).

Algorithm 9.1 (AFEM-DG-TS) Given an initial tolerance gy > 0, a target tolerance
tol and initial mesh 7, as well as a safety parameter w € (0, 1], AFEM-DG-TS is a
two-step algorithm alternating between the resolution of data 9 and the Galerkin
solution uq¢:

(7, ug] = AFEM-DG-TS(75, &0, w, tol)

setk =0

do
[7%, Di] = DATA (Tx, D, w &%)
[Tx+1, tr+1] = GALERKIN-DG (7%, Dk, k)
Ek+l = %8k
k—k+1

while g,_; > tol

return T, uy

In AFEM-DG-TS, the module DATA (7", D, 1) is the same as described in Sec-
tion 5.4.2 except that it produces approximate data D € Dz, defined in (5.2),

subordinate with a A—admissible refinement T of o for A > O rather than A = 0
(conforming). The discrete data 9 also satisfies the structural assumption (5.51)
as discussed in Section 7. It is worth pointing out that the projection P4 used
to approximate the right-hand side f € H~'(Q) as well as all the results and al-
gorithms presented in Section 7.4 are restricted to conforming subdivisions T. We
briefly discuss in Section 9.7 the extension of P4 and DATA to A-admissible sub-
divisions. Algorithm 9.17 describes the module GALERKIN-DG, the counterpart
of GALERKIN for dG formulations.

In Section 9.1 we introduce notations and tools relevant for the characterization
of discontinuous finite elements. Among them is the operator I(;‘IG that projects
piecewise polynomial functions onto globally continuous piecewise polynomial
functions. It is instrumental to derive a Poincaré inequality on the discontinuous
spaces and guarantee that the approximation classes A;! for the solution u using
discontinuous approximation on A-admissible subdivisions are equivalent to their
conforming counter-parts A introduced in Section 6. We present the discontinuous
Galerkin method in Section 9.2. We start with the standard symmetric interior
penalty, discuss its drawbacks regarding the unnecessary regularity beyond Hé (Q)
imposed on the exact solution u, and describe a reformulation valid in Hé(Q).
The latter suffers from lack of consistency that needs to be accounted for. The
a posteriori estimates for the perturbed problem (5.5) are derived in Section 9.3.
Because the data is polynomial within GALERKIN-DG, the a posteriori estimators
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are oscillation free. The GALERKIN-DG module is analyzed in Section 9.4 while
the discussion of rate-optimality of AFEM-DG-TS is reserved for Section 9.5.

9.1 Discontinuous Galerkin setting

We start with an initial conforming subdivision 7y made of simplices or hexahedra
satisfying Assumption 6.19 (initial labeling). Given A > 0, the refinement pro-
cedure REFINE is designed to produce a A-admissible sequence of meshes T
obeying Theorem 3.29 (REFINE for A-admissible meshes). From now on, we do
not specify the dependency on A in the constants.

9.1.1 Basic setting

For 7~ € T*, we denote by V‘Tl = S';_l = [17e7Pu(T) the space of piecewise
polynomials of degree at most n > 1 subordinate to a partition 7. In contrast with
the conforming spaces

0 ._ ,0 1
V9 =80 n Hy©Q)

considered earlier, the space V‘Tl consists of (possibly) discontinuous functions
across the elements 7 € 7~ and do not necessarily satisfy the vanishing boundary
condition. Continuity across elements and vanishing boundary condition will be
weakly imposed in the discontinuous Galerkin formulations.

We recall from Section 3.7 that for a proper (interior) node P € P, the domain
of influence wq(P) = supp(¥p) is the support of the Lagrange basis function
Yp e V?r associated with the node P; we refer to Fig. 3.11. Since the sequence of
meshes is A-admissible, Proposition 3.27 (size of the domain of influence) shows
that the number of elements 7 € 7 such that 7 C w4(P) is uniformly bounded for
T e TA

The set of faces associated with a subdivision 7~ € T” is denoted ¥+ := F*(7"),
and it contains boundary faces as well as interior faces. The set of interior faces is
denoted ¥. For a face F € F*, we denote by {{v}}|r and [[.]] | the average and
jump operators across a face F'. To define them precisely, we associate for each face
F € F* one of the two unit normals nr. The choice of nr is fixed but irrelevant
as long as the outward pointing normal to Q is chosen for boundary faces. Let
T. € 7 be the elements that share the interior face F, namely F = T_ N T}, and
Fnr be their outward pointing normals. Now, given v € V‘Tl, let vy = v|r, and
define for an interior face F

{hlF = %(V— +v4)lF, VI F = (v= = va)lF, .1

By convention, we set {{v}}|F := v_ and [[v]] | := v— whenever F is a boundary
face. These definitions extend readily for vector valued functions.

We use the subscript 7 to denote the piecewise version of differential operators.
For instance, the broken gradient V7 is the piecewise gradient Vov|; = Vv|; for
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TeT andv € V;.l. For simplicity, we write

VI, = Z V22,

for any subset T € 7~ of elements and
22 = > V122,
Feo

for any subset o C ¥ of faces. We also define a meshsize function # := hy :
Q — (0, c0) such that il ~ diam(T) for T € 7 and h|r ~ diam(F) for F € F*.
With such notations at hand, the broken H' space

Er=H'(Q:T)= [ | H'®),
TeT
is endowed with the mesh dependent seminorm

W 7 1= 197V, + all ™2 [V 22 e 9.2)

where a is some positive parameter. We will prove below that this is indeed a norm.
W1th these notations, we can extend functionals f € Fg- in Definition 4.17 to
1 for 7 > 7. Before doing so, recall that for f €F-andv € H () we have

F=3 [Fe Y [P

TeT FeF(T) F

where, compared to Definition 4.17, we slightly abused the notation

flz = fr €Pya@)  flg = fr € Pouoi(F).

In view of this, we can extend the duality pairing to V‘l by setting

Forr= Y [For 3 [ Fion ©93)

TeT FeF

so that consistency in H(l) (Q) is preserved
(Fvr=Fv) W e HyQ. 94

9.1.2 Interpolation operator IgG
We shall need the interpolation operator 7. 7‘1G : By — V(‘)r from [Bonito and
Nochetto 2010]. Its construction is based on an original idea of Clément [Clément
1975], see also [Bernardi and Girault 1998] and other alternatives [Brenner 2003,
Bonito, Nochetto and Ntogkas 2021].

Before embarking on the construction of Z';lG, we introduce a few notations. For
an interior or boundary proper node P € P of the subdivision 7, we denote by

VO = HYQ@N [ Bl 9.5)
T cwr(P)
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the space of continuous piecewise polynomial with support on the domain of
influence ws(P) of P and vanishing on Q. When the underlying grid 7 is
clear from the context, we will simplify the notation and write V(}, = V?UT( P) and
wp = wg(P); we refer to Figs. 3.9 and 8.6.

We now construct I,ﬂG in two steps. First, we define Vp € V(}, locally as
satisfying

(v-Vpw=0, VweV. (9.6)
wp
The value Vp(P) is then used as the nodal value of IﬁGv, namely
18 = ) Vp(Pye, 9.7
Pep
and we recall that {y p } pcp is a basis of V(.)T (see Section 3); note that I,]Cle =0on
0Q for all v € Es. Moreover, including boundary proper nodes in the definition
(9.6)-(9.7) and replacing Hy(Q) by H'(€) in the definition (9.5), 719 easily extends
to S';:O without zero trace; we denote this operator 7, ;G+ Er— S’;:O. Animmediate
property of I;{G is local invariance:
veVd = v=If iT, (9.8)
where wr = J{wp : P € P,T C wp}; a similar property is valid for I,Z‘ii. We
next gather a few more properties satisfied by 7, ,ﬁG.
Lemma 9.2 (interpolation operator) Let Assumption 6.19 (initial labeling) hold
and let T € TA. Forv e Hé(ﬂ), there holds
v _If;{GV“L%T) S AVYI L2(wr)s “Vfr;{GV”LZ(T) S IVYVIl2¢or)s 9.9)
where wr is defined above. Instead, for v € Eq there holds

v - Ir,éGV”U(T) +[|AV(v - I(;{GV)HLZ(T) 9.10)
| )
S A2 [ 2wy + 1AV F 0 = TLgv)| 2 or )

: 2 o -1 _ qn-1
where Iy is the L* projection operator onto V= = Sz .

Proof. We start with (9.9) and let v € HS(Q). The definition (9.6) of the local
projection Vp € V(I)J yields for all P € P

. _d
IVelli2iwp) < Vl2wpy = IVellLowp) S diam(wp)™ 2 (VI 120 p)-

Proposition 3.27 (size of the domain of influence) gives diam wr < Chy, whence
the number of wp containing 7 is uniformly bounded. Combining this with the
definition (9.7) of 719 implies

TSIy s >0 V@l Welea S M,y YT eT. ©.10)
PeP.Tcwp
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Since 7, 7d.G reproduces constants exactly locally, according to (9.8), the first relation

in (9.9) follows from invoking the local L? stability property (9.11) together with
Proposition 6.34 (Bramble-Hilbert for Sobolev spaces). The second relation is
proved using the same arguments and an inverse inequality

dG -1 dG
IVIZ VI 2y S hy VIOHE%HJT O =vollzzry S IVVIlz2wr)- 9.12)

We consider now v € Eq-and let v = IIqv € V‘Tl. We intend to prove (9.10) by
dealing with v —v and v separately and applying the triangle inequality. Since v —Vv
has zero mean in 7' according to (5.66), we apply Lemma 2.3 (second Poincaré
inequality) to deduce

IV =Vllr27) S hrlIVO =)l 2er),

whence, combining an inverse estimate with (9.11), we further infer that

4G dG -
hr (VI -2y S 17D 2y S V-2 S AT IVO-D) 1207 )-

This argument yields the inequality (9.10) for v — V. It remains to deal with v.

We scale wr to a reference domain with unit diameter. Estimate (3.49) on
the size of the domains of influence guarantees that the number of such reference
patches is uniformly finite over T*. We relabel v as v and examine the seminorm
Il {[v1] I L2(#+nwp) ON the space of discontinuous piecewise polynomials

{V € HTCwPPn(T)l Vp = 0} >

where Vp is defined by (9.6). If this seminorm vanishes then v is continuous in
wp and thus v € VY, whence the seminorm dominates any norm in this finite
dimensional space. Consequently, scaling back gives

1
v - VP||L2(a)p) +[|AVy(v - VP)”LZ(wp) < (A2 [[v]] ||L2(7:+ﬂwp)‘ (9.13)

We now deduce corresponding estimates for I,;iG. ForT € 7 and P,Q € wr NP,
(9.13) implies that

1
Ve = Vollpaay + 1hVr(Ve = Voll 2y < 12 V1] |l 27 nwp)- 9.14)

Consequently, the definition (9.7) of IﬁG yields

v—I7d-Gv:v— Z Vpyp = -Vp) - Z (Ve = Volp,

Pewrn®P Pewrn®P
which, combined with (9.13) and (9.14), implies
v - If]qGVHLZ(T) +[[AV (v - fﬁGV)”U(T) < IR (vl |27 neor)-

This is the desired estimate (9.10) forv =V € V;.l. To finish the proof we still
need to express the right-hand side of the last inequality in terms of v € Eq4.
Applying the triangle inequality we are left with estimating || [[v — V]| || ;2 for
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any F € F* Nnwyr. If Tr € T is an element within wr that contains F in its
boundary, we employ the scaled trace inequality to arrive at
l —
hillv =Vll2py S hrlIVO =W 2y + 1V =V 2y S A IV =D 2075
Finally, collecting all the estimates completes the proof. U

We discuss now consequences of Lemma 9.2. The first one is that jumps are
solely responsible for controlling the discrepancy between v € V,}l and I;Gv € V‘,)r:

1

v = Z8%l 2y + 1BV 7 = I 2y < 102 (VD iaernary: (9419
because ITv = v in wr. We next observe that (9.10) is also valid for 719 with the
same proof. We can thus apply (9.10) for IﬁCjr tow=v—1, ,ﬁ(iv, use the invariance

of 71, ﬁci in S';:O, and its continuity across internal faces in ¥, to deduce

dG dG
v - I¢,+V||L2(T) + ||V (v - IT’+V)”L2(T) S NAVy(v - HTV)”LZ(wT)

| f G (9.16)
+ {102 [V 2(rnwr) + 1020 = I ) 2600 wr)-
A third consequence of (9.10) is the following Poincaré-type inequality on E.

Lemma 9.3 (Poincaré-type inequality on Eq) Let 7 € T be a A—admissible
refinement of Ty satisfying Assumption 6.19 (initial labeling). There exists Cp =
Cp(Q, 7), such that for all v € Eq there holds

Wl < Cr (957l + 1578 IVT e + 1A vl 20g ) O17)
In particular, if v =0 on 0Q then (9.17) is a dG version of (2.2).
Proof. We argue locally with (9.10). First we realize that an argument similar to
(9.12) yields [|Vq(v = Iy L2(wpy S IVTVI L2( ), Whence adding over T € 7~

v = ZE%l 2 + IV L2y S IVl + 172 [T Hl2e)-
It thus suffices to write
IVllz2e) < 129V 2y + v = T8l 120,

and invoke (2.2) for 7. ﬁGv € Hé (Q2) together with the preceding inequality. U

Another important property obtained using the interpolation operator I(]‘iG is that
the approximation classes Ag = Ag (Hé (L2); 7o) defined using globally continuous
piecewise polynomial approximations of degree < n on conforming subdivisions
are equivalent to those without global continuity on A-admissible subdivisions
T € TA, provided | . | 1,7 (defined in (9.2)) is used as norm on Es. We define

o 'wy:= inf inf |v-vo|i s (9.18)
N A n-1 ’
TETN VTES,].’
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and Al = A;l(Hé (Q); 7p) to be the class of functions v € Hé () such that

[v]y-1 := sup (NS(J']’\’,’_I(\/)> <o = (71'(,’_1(\/) < v[p-N7E.
y N 2#T *

Note the scaling parameter a for jumps in the definition of (J']'\’,’_1 isjusta = 1.

The following result can be traced back to [Bonito and Nochetto 2010].

Proposition 9.4 (equivalence of classes for u) Let 7y be an initial conforming
subdivision satisfying Assumption 6.19 (initial labeling). There are two constants
m € N and C > 1 such that for all N > #7y and all v € Hé(Q)

,—1 ,0 ,0 -1
oy (W) <o) and oy (W) < Coym ().
In particular, the approximation classes coincide A% = AS!, s > 0.

Proof. The start with the first inequality. For v € Hé(Q) and N > #7,, we let
7 € Tn be a conforming subdivision of 75 and vg. € V(,)r C V;.l be such that

00y — 0
on W)=y - vlul@-

Because v — v(,)f € H(l)(Q), we have ||v — v(3r||1,¢ =|v- v(,)leOl(Q) and thus

,—1 0 ,0
oy (W) < v - leHO'(Q) =0y ().

We now prove the second inequality. For v € HO1 (Q)and N > #7, let T € Tﬁ,
be a A-admissible mesh with N elements and v4- € V:rl be so that

1

v=vrlisr=oy ().

We first show that I,/in«r € ng satisfies
dG n,—1
- < >
v—1r V7'|H(}(Q) Soy ).
Indeed, using the triangle inequality we obtain
v =287 < v =velig + vy = 287 7
Interpolation estimate (9.15) yields
-1/2
v = Z5%vrlhr < 1072 rll e, (9.19)

because vq — I7d_GvT € V7!, whence
dG dG 1
v — I V‘TlHO'(Q) =|v -1 vl < CO';\L] ()

as claimed for a constant C > 1 independent of v and N. To assert an estimate
on 0'1'\‘/’0(1/), we now exhibit a conforming refinement 7~ of 7~ with a comparable
number of elements. To do this, we note that because 7~ € T is A-admissible, it is
the product of successive calls [7;] = REFINE (7;_1,T;-1), j = 1, ..., J, where 7} is
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the smallest A—admissible refinement of 7;_; such that the element T;_; € 7;_ is
bisected once. We now let 7~ € T be the conforming subdivision obtained from the

successive calls [7 ;] = REFINE (?J LATj-1} N 7_’] 1) with 7_”0 = 7, but where
this time REFINE produces the smallest conforming refinement of T j-1 where
the element of 7;_; is bisected once if T;_; € T . j-1 or otherwise T = -1
A simple induction argument, exploiting the minimality of the meshes generated
by REFINE, reveals that 7_.j > 7; for 0 < j < J. Consequently, Theorem 3.16
(complexity of REFINE ) guarantees that

J-1

#T —#T0 < D ) #({T;} T ;1) < DJ < D(#T - #75)
j=0

whence #7~ < D#7 < mN with m :=[D] because D > 1.
Therefore, V(‘)r C V?T because 7 is a conforming refinement of 7. Since

#7 < mN and Iﬁc’vfr € V%, we deduce
,0 1
oy () < v —IﬁGleHJ(g) < Coy™ (v),

which is the desired inequality. Finally, the equivalence of moduli of approximation
yields AY = A7! and completes the proof. U]

Remark 9.5 (equivalent classes for 9) The approximation classes for data D =
(A, ¢, f), namely M ((L"(Q))?*?); 75, Cs(L9(R); 7o) and Fs(H~1(Q); T5), are defined
for conforming subdivisions in Section 6. However, repeating the construction of
the smallest conforming refinement 7~ of any A-admissible subdivision 7, and us-
ing the fact that #7~ ~ #7 proved above, we deduce that these classes are equivalent
to their counter-parts on non-conforming meshes. Therefore, we do not repeat the
proof here and use from now on the same notation to denote the approximation
classes on A-admissible subdivisions.

9.2 Discontinuous Galerkin formulation

This section discusses the SOLVE routine at the core of the module GALERKIN-
DG. Recall that within the two- O-step method AFEM-DG-TS, data D = (A, ¢, f) is

approximated by D = (A c, f) € Dz subordinate to a partition 7 € T. For

a subdivision 7 € T, 7 > T, the Galerkin solution [ug] = SOLVE(T) is
constructed to approximate u = u(D) € Hé(Q), the exact weak solution of the

perturbed problem (5.5) with approximate data D= (;1, c, f) constructed using
Algorithm 7.23 (DATA). Corollary 7.24 (performance of DATA) guarantees that the

output [D, 7] of DATA satisfies the structural assumption

A € M@@y,a), e R@,E) (9.20)
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with0 < @ < @, and —2(’?‘2 < ¢} < ¢, upon replacing the Poincaré constant Cp by
the larger constant Cp appgaring in Lemma 9.3 in Algorithm 7.14 (CONSTRAINT-
c). We do not specify the dependency on @;, @z, ¢, and ¢, of the constants
appearing in the analysis below. We also emphasize that the constants involved
in (9.20) do not depend on 7 and are thus uniform among all the discrete data
constructed within AFEM-DG-TS.

Relation (9.20) not only ensures the existence and uniqueness of a solution
u e H(l)(Q) satisfying the perturbed problem (5.5) but also, as we shall see in
Corollary 9.8, the existence and uniqueness of its discontinuous Galerkin approx-
imation. We first present the standard symmetric interior penalty method and point
out its consistency requires the exact solution u € H*(Q), s > 3/2. To circum-
vent this rather restrictive assumption, we introduce lifting operators allowing a
reformulation valid in H'(Q). However, this reformulation is only consistent on
the conforming subspace V?r = V?rl N Hé (€2) and requires our analysis to decom-
pose the discrete space V‘Tl into VOT and its complement V# with respect to an
appropriate scalar product.

9.2.1 The symmetric interior penalty method
The symmetric interior penalty (SIP) formulation is the most standard discontinu-
ous Galerkin method. For 7~ € T?, it consists in finding us € V;_l satisfying

Brlurv] =(fv)r, eV, (9.21)
where By : V:rl X V‘Tl — R is the bilinear form defined by

Brlw,v] = /Q(VTV - AVgw +cwv) — Z ; [[V]] nF - {{KVTW}}
FeF+

- (Wl np - {AV}} +x He [wll [v] -
F F

FeF* FeF+

(9.22)

The parameter k > 0 is responsible for keeping the discontinuity of the Galerkin
solution under control and its value is discussed below. Unless specified otherwise,
all the constant appearing in the discussion below are independent of « and the nota-
tion A < B signifies A < CB with a constant C independent of the discretization
parameters and «.

A few comments regarding the weak formulation (9.21) are in order. An integ-
ration by parts reveals that the method is consistent whenever the exact solution
satisfies the additional regularity u € H*(Q), s > 3/2. However, we do not make
this assumption in the analysis below but rather extend the formulation to the en-
ergy space Eq D V‘Tl using lifting operators. The same integration by parts also

indicates that the term ) p o fF [[w]] nF - {{ZVV}} is not necessary but included

to achieve a symmetric formulation. Recall that A constructed by DATA is symmet-
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ric. In addition, the presence of (j?, V)¢ is not standard but allows for right-hand
sides f € F~ and in turn for f € H ~1(Q) within the AFEM-DG-TS algorithm.

9.2.2 Lifting operators
The interior penalty bilinear form (9.22) includes inter-element terms

>, [ uhne q@vrnpe 3 [ Inlnr@@ven 029
FeF* FeF*

which are not defined on H'(Q) but on H*(Q), s > 3/2. In turn, the method is
consistent when u € H*(Q), s > 3/2. The key ingredient to extend B4 [w, v] to
EsxEq without additional regularity is a lifting operator [Brezzi, Manzini, Marini,
Pietra and Russo 2000, Arnold, Brezzi, Cockburn and Marini 2002, Perugia and
Schotzau 2003, Houston, Schotzau and Wihler 2004, 2007, Bonito and Nochetto
2010] introduced in this section.

For n’ > 0, we define L;’: By — [S'fr,’_l]d by the relations

/ Ly -Aw= ) / [Vl mp - {AWY,  vwe sS4 (9.24)
Q FeF+ F
From this definition, we easily deduce a L? stability estimate.

Lemma 9.6 (stability of lift) Let 7 € T be a A—admissible subdivision of Ty
satisfying Assumption 6.19 (initial labeling). Assume A € M (ay, ap) with 0 <
a) <@y Forn’ >0andallv € S’,;_’_l, there holds

L5 1l < CINETY2 VT 2, (9.25)
where C = C(ay/ay,n’, 7p).
Proof. Letv € S”l’_] and set w = L"' [v] in (9.24) to write

U2 n 1 rn
1A L 12, = / L) ALY

-y /h V2 ([v]l mp - VP ALY (V]

Fef+
< A2 I o I P EALE VI L2
A local inverse estimate along with the eigenvalue bounds for AeM (a1, @y) yields

142 HALY I 2y < CALY D20

where C only depends on n’ and on the shape regularity constant of /5. Combining

the above two inequalities and taking advantage again of the assumption A €
M(ay, @,) implies (9.25). O

We record two estimates based on (9.25) and used multiple times in the analysis
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below. Combining the estimate (9.25) on the lifting operator with assumption
(9.20) and a Cauchy-Schwarz inequality we find that

/g L7 V] - AV5w < Gl (VI 2 V7wl ¥vow € By (9.26)

for a constant Cyig = Ciig(@1, @2, n’, 7o) and in particular independent of the dis-
cretization parameters and «. This, together with a Young inequality, yields for any
€ > 0 the second estimate for all v,w € Eq

~ C? €
! . lift -1/2 2 = 2

We now return to the SIP weak formulation (9.21) and take advantage of the
lifting operators to deduce an equivalent expression of the bilinear form B4 on
V;_l, which is well defined on E4. The problematic inter-elements terms (9.23) are
equivalently rewritten as

‘/L"T,[V] CAVaow + / L7 [w] - AVqy (9.28)
Q Q

provided
VoVl c (s

The above condition is satisfied when n’ > n — 1 for subdivisions 7~ made of
simplices and n” > n for hexahedra. To continue with an analysis incorporating
both case, we set n’ = n and write L := L. With this choice, the bilinear form

Bq in the symmetric interior penalty method (9.21) reads
Byrw,v] =agq|w,v] — / Lq[v] -ZVTW
e 1 (9.29)
- [ £rn1- A Y [ e .
Q Fer+ v F

forall w,v € V;_l and where we used
ag|w,v] = / Vv - ZVTW +cwy (9.30)
Q

to denote the bilinear form related to the conforming method.

Expression (9.29) is well defined for w, v € E4 and the weak formulation (9.21)
is well-posed. These two claims follow from Corollary 9.8 below, which in turn is
a consequence of the next result focusing on the bilinear form a; we recall (5.52).

Lemma 9.7 (properties of aq) Let T € TA be a A—admissible refinement of Ty
satisfying Assumption 6.19 (initial labeling). Furthermore, assume that A and ¢
satisfy the structural assumption (9.20). Then, we have

aglw,v] < @ +G|CHIvILrIwl,7 VYv,w € By (9.31)
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and

arlv,v] 2 ||Vfrv||Lz(Q) +min(0,e)Cp (1A [v] Vv € Er,

(9.32)

”LZ((]:+)’

where Cp is the constant in Lemma 9.3 (Poincaré-type inequality in Eq).

Proof. We start with the continuity estimate (9.31). The assumption on the
discretized coefficients implies that for v, w € E4 there holds

ar{w.v] < el|Vewll 2@ IVl + lealliwll 2@ vl 2)-

It remains to invoke Lemma 9.3 (Poincaré-type inequality on E4) to deduce (9.31).
Similarly for the partial coercivity estimate (9.32), we have

ar[v,v] = @ IVvli7a0 + Tl 20 = @IV, + min@, eDCRIVIT

L2(Q) L2(Q) LZ(Q)

and the desired estimate follows from the assumption —2—2 <c. U

For the next result, we recall that the discrete norm ||.||, 7 is defined in (9.2).
Corollary 9.8 (properties of B5) Let 7 € T be a A—admissible refinement of

To satisfying Assumption 6.19 (initial labeling). Furthermore assume that A and ¢
satisfy the structural assumption (9.20). There exist a constant C,yp; Such that

Brlw,v] € ConlVlerlwler  ¥v,w € Er. 9.33)

Moreover, there are constants Ksp, Ceoer > 0 such that for all k > Kgap, there holds

CeoerlVIs 7 < Brlv,v] Vv €Er. (9.34)
In particular, the Galerkin formulation (9.21) has a unique solution ug € V}l.

Proof. The continuity estimate is a direct consequence of the continuity estimate
(9.31), estimate (9.26) for the lifting terms, and Cauchy-Schwarz inequality

Ky / V1] < &llA™2 D] gz 12 001 D2,
FeFt
which holds for all v,w € Eq-.
We now focus on the coercivity estimate (9.34) and start from (9.32), which we
write for v € E4 as

—~

a -
S IVTVIZa, = max (0. =i CR) |2 [V 2 ey < arlvov]. (939)

Furthermore, the terms involving the lifting operators in the definition (9.29) of the
bilinear form B4 reduce to —2 /Q Lg[v] - AV4qv when w = v. Hence, the estimate
(9.27) with € = @ /4 implies that

2

AV \ IR
V] : TV ” TV||L2(7')+ a?l || [[ ]] ”L2(7:+
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Gathering the above inequalities and recalling definition (9.29) of B4, we find that

@ — -
TNV + = Ran)llA™ 2 V] 172 ) < Brlv.v]

LX(T) L2(F*
with
4C?
Kstab := —£ 4 max (O, -0 CIZJ).
a
The desired coercivity estimate directly follows provided k > Kap. ]

9.2.3  Partial consistency and role of the conforming Galerkin solution

From now on, we shall use the expression of B4 in (9.29) extending By to Eq-XEq-.
This reformulation comes at the price of a partial consistency. Since Ls[v] =0
whenever v € Hé () and the duality product (-, -)4 satisfies the consistency (9.4),
we have

Bel@,v] = arla,v] = (fLv)yy Vv € HY(Q), (9.36)

which indicates that the reformulation (9.29) using lifts is consistent on Hé(Q).
However, (9.36) does not hold for all v € V‘TI.

This suggests splitting V:fl into a conforming space where the consistency holds
and its orthogonal complement. We decompose the discontinuous space as

v} =Vl eV, (9.37)

where VOT = V,}] N H(l) (€2) is the finest conforming subspace of V:rl and Vﬂ,‘. is the
orthogonal complement with respect to the B[, -] scalar product. Note that the
later is well defined provided the assumption on the penalty parameter k > Kgp,
required by Corollary 9.8, is satisfied. From now on, we assume this is the case
and point out that although the constants appearing in the analysis below do not
depend on «, they may depend on Kg,p.

We also emphasize that there might not be a conforming subdivision associated
with V?T. The latter is the span of the basis functions associated with proper
nodes; see Figure 3.11 for an illustration and refer to Section 8 for more details.
Consequently, the analysis provided below relies on the decomposition (9.37) of
the space V4 rather than on a subdivision 7. It is also worth pointing out that the
conforming part uY)- € V9. of the Galerkin solution us- € V! satisfies

BT[M((;-, v] = (j?, V), Vv e VOT. (9.38)

Hence, ug.. is the conforming Galerkin approximation on V?r. As we shall see this
finest coarser conforming Galerkin solution plays a critical role in the convergence
of AFEM-DG-TS. This justifies the orthogonal decomposition (9.37) associated
with the B4 scalar product.

Another advantage of using the 84-orthogonal decomposition (9.37) is that it
offers a control on the non-conforming component of v € V}l by its scaled jumps.
To achieve this, the operator 7. 7‘1G defined by (9.7) is instrumental.
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Lemma 9.9 (control of non-conformity) Let 7 € T be a A—admissible refine-
ment of Ty satisfying Assumption 6.19 (initial labeling). Assume that Aand ¢
satisfy the structural assumption (9.20). For k > Kgyap, If v = Wt e V}l
according to (9.37), then

v e < &2 R12 [[Vl]] L2+ = V2R~ ] | 207+)-
Proof. Because Iﬁcv € V(‘)r’ the orthogonal decomposition (9.37) implies that
Br[vt,v*t] < Belv - I(]qu, V- Ir}i-Gv].

The desired result follows from the coercivity (9.34) and continuity (9.33) of B+
along with the interpolation estimate (9.10). U]

9.3 A posteriori error estimates

We derive aresidual error estimate for the discontinuous Galerkin method. Because
the data D € Dg-is discrete, the analysis is free from data oscillation. In the notation
introduced in Section 4, this means E4 = g where for v € E4

nrv) = > e, 1),

TeT
and

nr, TP i=hr D i) = Filge + B3 lrr I,
F COT\oQ

with jr()|p = np - [[AVy]] and re0)|r = F — v + divg-(AVa).
We start with a result mimicking the conforming argument, discuss its drawback
and improvement next.

Lemma 9.10 (a posteriori error estimates) Let 7 € TA be a A—admissible re-
finement of Ty satisfying Assumption 6.19 (initial labeling). Assume that A and ¢
satisfy the structural assumption (9.20). If k > Kyqp, then there holds

i = wrly 7 < G + 2 [ ] 0 9.39)
and
Cong(ur) < |u—ugle,7 (9.40)
for some constant Cy.

Proof. 'We start with the upper bound (9.39). To exploit the consistency (9.36)
in Vg., we decompose the error ¢ := & — us € Eq into a conforming part ¢? :=
i —uj € Hy(Q) and a non-conforming part et := —ug € V! according to
(9.37). The proof thus relies on techniques used in the conforming theory coupled
with Lemma 9.9 (control of non-conformity). We denote by C a generic constant
independent of the discretization and « but possibly depending on Kap.
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Using the coercivity (9.34) and partial consistency (9.36), we get
Ceoerlel? 7 < Brle.el = Brle, e® — Ire®] - Brle,uz], (9.41)

where /7 is the Scott-Zhang interpolant provided in Proposition 3.5. For the first
term, we note that since e® — I7¢° € Hé(Q) we have

Brle, e — I7€°] = arle, e — I7€°] — / Lole] - AV(e® - I¢Y).
Q

For the term involving the bilinear form a4 we proceed as in the conforming case
to arrive at

agle, e’ — 17¢°] < nr)|Ve' || 2q)-

This, combined with estimate (9.26) on the lifting operators and the H' stability of
the Scott-Zhang interpolant, yield

) 12
Brle, e’ - Ire] < (UT(MT)2+ A2 [[ug]] ||2Lz(¢+)) 1Vell 2 ()-

We rewrite e® = ¢ + ué. and use the estimate on the non-conforming component
provided by Lemma 9.9 along with a Young inequality to write

_ C
BT[e’ e() - I‘Teo] <C (UT(MT)Z + KHh 1/2 [[MT]] ||iZ(T+)> + %llveHZLZ(Q)’

For the second term in (9.41), the continuity (9.33) of the bilinear form B,
Lemma 9.9 again, and a Young inequality yield

CCOSI'
4
Returning to (9.41), we find that

Brle,ut] < lelZ o+ Cxllh™72 [[ur]]

2
“Lz(‘f—*')'

lelz < nrtur)?® + llh™ [[ur] (22 e

which is the desired upperbound.
We finally deal with the lower bound (9.40). For T € 7 and v € H(l) (T), we get

/ (—divg-(AVeus) + cug — f)v = / Vv - AV (i — ug)v + (@ — ug)v.
T T
For aninterior face F € F,v € H(l)(a)F)Witth ={T €7 : TNF # 0}, we have
[ WAVrrl == [ (divr@Frur)+aur - iy
F WF
- / Vv - AVl — ug) — ¢ — ug)v.
WF

The desired lower bound follows from the same arguments as in the conforming
case; we refer to Proposition 4.12 (partial lower bound). U
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Upper bound (9.39) may suggest adding the jump term «'/2||A~1/2 [[u]] | 27+
to the residual estimator n4(u#g). This would result in a clean upper bound but,
because of the presence of negative powers of the meshsize, would be at the expense
of destroying the monotonicity property of the estimator; see e.g. Proposition 4.56
(estimator reduction). The later is instrumental in the analysis provided below.

The next result mitigates the effect of the additional jump term by showing that
A= Y2 [[ug]] | 12(7+ can be bounded by ng-(u7)/« and thus can be absorbed by
the estimator in the upper bound provided « is sufficiently large. We follow the
proof provided in [Bonito and Nochetto 2010] and refer to [Karakashian and Pascal
2007, eq. (3.20)] for an alternative (original) proof.

Lemma 9.11 (discontinuity control) Let 7 € T" be a A—admissible refinement
of Ty satisfying Assumption 6.19 (initial labeling). Assume that Aand? satisfy the
structural assumption (9.20). There exists a constant Kjump > Kgap > 0 such that if
K > Kjump then there holds

1A g D 2y < & g (ug).

Proof. For v(;, € V(,} we realize that because [[vgw]] = 0, the coercivity estimate
(9.34) implies that

Ceoerckl|h™ 2 [[ug N 17 2y < Brlug = Vi, ug = v, (9.42)

We now rewrite the right-hand side of (9.42) to produce residual terms. Since uq
solves (9.21), we have

Brlug — v, ur =3 = (foug — vy — Br[vy, ug —v5]. (9.43)

We concentrate for the moment on the second term. Since [[vOT]] = 0, the stabiliz-
ation term vanishes as well:

¢ 3 [ I91 llur =511 =o.
Fer/F
Hence, writing vOT =us+ (vOT — uq), we deduce that

BV ur vy = arlus, ugr —vy]

—aglug — v ur —vy] - / AL ALrlug],
Q
where we invoked again the property [[v?r]] = 0 to infer that er[v?r] = 0. Integ-

rating by parts the first term on the right-hand side, adding it to the first term on
the right-hand side of (9.43), and using the extended definition (9.3) of the duality
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pairing leads to the following expression involving the residuals r¢(us), jo(us):
By [ug = v, ug — vy =/ re(ur)ur = vi) + ‘/gf (jr(ur) = F){ur —v5H
Q +

+arlug - Vi uy - V] - / Vur—vy) - ALylur].
Q

We point out that we have also employed the definition (9.24) of lift to rewrite the
resulting face terms. Inserting this estimate back in (9.42), together with the bound
(9.26) for lifts and the continuity estimate (9.31) of a, gives

k||~ [lur]] ||iz(¢+) < lur = v i o
+n7(ug) (||h_l(uT VP2 + 172 fur - V(r)r}}||L2(7f+)> :

Note that the presence of | . |; 4 rather than | . |7 on the right-hand side of the
above estimate is critical for the argument below. The former is independent of
k and can thus be absorbed on the left-hand side for sufficiently large « provided
vOT = J7d~Gu7—. In fact, the interpolation estimates (9.15) in turn imply

1A~ g = Z8Cu)l gy + 1072 ug = T8 Bl 2
+lug = Zugl 7 < 12 Lur ]l e
Hence, a Young’s inequality yields
(k= Reao) 1A~ Mt 1 1720wy $ & Cu)® + 18772 (g ] 12 g
and the desired estimate follows provided « is sufficiently large. U

As a direct consequence of the previous Lemma, we obtain a simpler practical
upper bound.

Corollary 9.12 (stabilization-free a posteriori upper bound) Under the assump-
tions of Lemma 9.11, there exists a constant Cy such that for all k > Kjymp we have

lu —urle,7 < Cuns(us). (9.44)

Proof. Combine the upper bound (9.39) and Lemma 9.11. U
The partial consistency (9.36) leads to partial Galerkin orthogonality

Bl —ur,v] =0 V¥v eV (9.45)

This would suggest that a quasi-best approximation (Cea’s lemma) result in the full
space V;.l is questionable. However, the lack of consistency is built into the jump
terms which are in turn controlled by the estimator weighted by a negative power
of the penalty parameter . It thus remains to resort to the lower bound to return
to the error and derive a quasi-best approximation estimate for sufficienlty large
k. We prove this result next, which expresses the important fact that dG is quasi-
optimal with respect to the norm | - |« 7 defined in (9.2). This has two significant
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consequences: first it leads to quasi-monotonicity of the error upon refinement
(see Corollary 9.14 below), and second it dictates the approximation class for dG
already alluded to in Proposition 9.4 (equivalence of classes for u).

Corollary 9.13 (Cea’s lemma) Under the assumptions of Lemma 9.11, there is
KCea = Kjump such that for k > Kceq, there holds

"’/7_ MT"K,T < CCea inf "’/7_ V‘T”K,‘T- (946)
VTGV;_I

Proof. 'We combine the orthogonal decomposition (9.37) and the partial Galerkin
orthogonality (9.45) to write

Brli —ur, i —ur) = Byl — ug, —vy] = Brli — ur, uz] + Brlu —ug, vyl

for all v& € V4. Invoking the coercivity and continuity of B4 in Lemma 9.8)
(properties of B) in conjunction with Lemma 9.9 (control of discontinuity) yields

i P

I —uglc.r < lu=vyles+« ug |l 2 + & vl iz

Applying now Lemma 9.11 (discontinuity control) results in
12~ QgD gy S € " nrtur) < €= urler
because of the lower bound (9.40). We thus end up with
it =l < 1= vl +& " lid = urler.
which for « sufficiently large gives the desired bound. U]
With this best approximation result, we deduce the following crucial property.

Corollary 9.14 (quasi-monotonicity) Under the assumptions of Lemma 9.11, there
is a constant Cyy, independent of the discretization parameters and « such that for
all k > Kjymp and all T, > T we have

7. < Cyolltt = ug| i, 7. (9.47)

Proof. We rely on the orthogonal decomposition (9.37) to write uq = uOT + u#
and on Corollary 9.13 (Cea’s lemma). Since ugw € V?r - V;.j, we see that

| — ug;

-1y~ ~ 0 ~ 0 ~ 0
Ccea”u - M7;||K,7; < ”” - ”7‘”/(,71 = |” - ”7"1—101(9) = "” - ”fr”K,T-

Therefore, adding and subtracting u; and making use of Lemma 9.9 (control of
non-conformity) together with Lemma 9.11 (discontinuity control) implies

—~ ~ -1/2
I@ - uglle 7z < 1 = ugle s+ & 2nr(ug).
It remains to invoke the lower bound (9.40) to deduce the desired result. ]

Corollary 9.14 assumes the same data. In estimating the cost of GALERKIN-DG
we need a variant of this result that allows for different data. We establish this next.
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Corollary 9.15 (quasi-monotonicity with different data) Ler7, > 7 and D,,D
be discrete data on these meshes. Let ., = u(D,),u = u(D) € Hé(Q) and
ug. € V;;],MT € V‘TI be the corresponding exact and Galerkin solutions. Under
the assumptions of Lemma 9.11, for k > Kjunp there holds

"ﬁ* - ”7;”:(,7; < CM()("E_ MT"K,T-'— |17* - ﬁlgg(g))- (9.48)

Proof. We proceed as in the proof of Corollary 9.14 with ., but in the last step
use the fact ug- and u are the functions associated with the same data D and thereby
satisfy Crng(ugq) < ||[u — uq||«,7 according to (9.40). Applying the triangle
inequality and the property [u. — ul«, 7 = |u. — uly L@ concludes the proof. [

We end this section with the dG counterpart of Theorem 4.48 (upper bound for
corrections). One striking difference is that the lack of consistency prevents the
discrete lower bound in the dG context from localizing to the refined set 7\ 7
for 7. > 7. Rather, it contains a global jump term that expresses the lack of
conformity and vanishes as k — oo in view of Lemma 9.11 (discontinuity control).
This is consistent with the upper bound (9.39). We use the notation wq(7) for a set
of elements 7 € 7 to denote T augmented by one layer of elements

W) = wr(t) = || o).
Tet
Lemma 9.16 (quasi-localized discrete upper bound) Let 7,7, € T, with 7, >
T, be two A—admissible refinements of 7o satisfying Assumption 6.19 (initial
labeling). Assume that Z and ¢ satisfy the structural assumption (9.20), ]? € Fq,
and denote by uq € V , Uz € V‘ the two Galerkin solutions associated with T,
7. respectively. There isa constant Cry such that for all k > Kgap we have

I = ur 2 o < C2y (18 (s (TN D) + AlIA™ 2 ([t e )

where ug. = 97. + ”T is the orthogonal decomposition according to (9.37).
Moreover, if K > Kjunp, there holds
lu: = urly 5 < Cly (n5-(ug, (T \ 7)) + k' (ug) - 9.49)
0

Proof. We decompose ug = U, + u; according to (9.37), exploit the partial

7_
consistency (9.36) for u - with = VO and f € Fqy C Fq; to obtain

By [ur,v°] = azlug: V'] = aglug. '] = Brlug. "1 = (F.00)7.
Since By [us, v°] = (f, v0) 7, we readily see that
BT[M% —ug, ] =0 v e Vg-.

We rely on this reduced form of Galerkin orthogonality to prove the assertions. To

: 0 0 _ 1 i 0 ._ 0 0 : P
this end, we write ug — ug = e, — ugp, with e, := ug — ug. Using the coercivity
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estimate (9.34) for v = u®

g —ur € Eq yields for k > Kgap

1S = url} & < Brlug —ug, ul — ur]
7T ey S ST TR A T K (9.50)
= B‘T[urr —ug,e ] B‘T[u(r —us, ”rr]

Note that the last term cannot be localized and accounts for the lack of consistency
of the dG method. However, it can be made arbitrarily small by increasing the
penalty parameter . In fact, combining the continuity (9.33) with Lemma 9.9
(control of non-conformity) gives

0 12 -1/2 0
Brlul —ur, u] < €217 Lur ] ool = urle.r.

_Z'dG 0

To localize BT[uf)]_ — uq, %], we choose v° , where the interpolation

operator IﬁG is given by (9.7), and exploit the reduced Galerkin orthogonality.
Since ¢? — I #Geo e H! 0(€2), the decomposition (9.29) of the bilinear form By-reads

Br[ul —ur, ed] = Brlu). —ur, e — I597]
—arludy —uwr el - 106 - [ Lrluf ur]- AV - 706D,
Q
We handle the first term as in the conforming case (Theorem 4.48), namely
arul — ur,ed) < nr(ug, (T \T)) luy. - M9r|H01(g)-

Note that the interpolation estimate (9.9) for 7. ﬁG is responsible for the appearance
of w(7 \ 7,) rather than the smaller set 7~ \ 7.

For the second term, we use the lift estimate (9.26) along with the H'-stability
of I,;'IG and [[”97:]] = 0 to write

[ £ty =) AT e < 7 LD i = 15
Inserting the estimates into (9.50), and recalling that 1 < Kgp < &, we find that
L = ugly 7 < KN Qug D] oo lul = wrler
+ (e AT + P L o) 1 = a0

Notice that u u(()r u
non- conformlty) we have

OT —uq+ uff so that in view of Lemma 9.9 (control of
0 0 1/2)7,-1/2
69 = u ey = Wl = u e s e = wrlier + A2 gl g,

The first desired inequality follows from the last two estimates. For the second
inequality, it suffices to further invoke Lemma 9.11 (discontinuity control). U

9.4 Module GALERKIN-DG

The main ingredients for the a posteriori estimation have been derived in the
previous section and we can now turn our attention to the adaptive method. In
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essence, it is the same as in the conforming case (Algorithm 5.4) but accounting
for the perturbation arising from the non-conforming setting. Compared to Al-
gorithm 5.4, SOLVE (7) determines the discontinuous Galerkin solution to (9.21)
and REFINE (7-, M) produce the smallest A-admissible refinement of 7~ where all
the marked elements M are refined at least » > 1 times.

Algorithm 9.17 (GALERKIN-DG) Let T > 7' be aA- adm1831ble refinement, A >
0, of a suitable initial mesh 7. Let data D = (A c, f ) € Dz be discrete on T
and € > Obe a stopplng tolerance. The following routine creates a A-admissible
refinement 7~ > 7 and discontinuous Galerkin solution ur € Vo ! for data D such
that ny(us) < €.

[7,us] = GALERKIN-DG (7, D, &)

set j=0,% = 7 and do
[u;] = SOLVE (7));
[{nj(;, T)}re7;] = ESTIMATE (u;, 75, D);
ifn;(u;) < &;

return (75, u;)

[M;] =MARK ({n;(u;, T)}rer;, 75, 6);
[T5+1] = REFINE (77, M,);
je—j+1;

while true

We start the analysis of GALERKIN-DG by investigating how the energy norm
B [v,v]'/? changes upon refining 7". Note that in the conforming case, Lemma 5.2
(Pythagoras) directly provides the relation ||z — us|lo < ||z — us|lo. In the non-
conforming setting, the constant on the right-hand side is no longer 1 and jumps
terms are present in the estimate. Regardless, it is possible to assess the effect
of refinement in the energy norm and, in turn, compare two consecutive Galerkin
solutions w4 and us- where 7~ € T and 7; = REFINE (7", M) for some M C 7.
This is the subject of the next three results but before embarking on this path, we
mention a key ingredient for this comparison to hold: the routine REFINE does not
refine elements in T more than d times for b = 1; see Corollary 3.31. This implies
forany F € ¥+ and F, € ¥," with F, C F, one has

Lemma 9.18 (mesh perturbation) Let 7 € T be a A—admissible refinement of
To satisfying Assumption 6.19 (initial labeling), M C T, and T, = REFINE (7", M).
Assume that A and ¢ satisfy the structural assumption (9.20). There is a constant
C such that for 0 < € < 1 and all v € Eq there holds

By [v,v] < (1+8)Br[v,v] +Ce 'k||h 2 [[v]] (9.52)

||L2(7:+
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Proof. Because Vq.v = Vqv when v € E4, we directly deduce that

By [v.v] =By [v.v] +2 / (Lr[v] - Lo D)) - AVyo

+«[|A7 2 [Iv]]

(9.53)

-1/2
KHh [[ ]] ||L2(7:+)’

” L2(7:+

where h. := hg; denotes the mesh size of 7..
Unlike the broken gradients, the lifting operators are affected by refinements.

However, this effect is controlled by the scaled jumps as we show now. Using

estimate (9.27) twice with € = ‘SCC‘)‘“ yields

2 /Q (Lr[v] - Ly [v]) - AV

2C -1/2 -
< 6Ceoul| V132 + =i (122 [V gy + 172 IV 2 e )-
coer

Hence, the coercivity estimate (9.34) gives

2 [(£ri) - Lr Do) - AV
Q
2CH, “12 12
< Byl ]+~ (I ] R ey + 182 1 )

€L coer

Inserting this back into (9.53), and using the fact that the jumps of v occur only on
F+ c F.F, the meshsize relation (9.51) proves the desired estimate. U]

Lemma 9.19 (comparison of solutions) Let 7 € T be a A—admissible refine-
ment of Ty satisfying Assumption 6.19 (initial labeling), M c T, and 7, =
REFINE (T, M). Assume that Aand T satisfy the structural assumption (9.20).
Letu = M(Z)) € H (Q) be the solution of the perturbed problem (5.5) with discrete

data Z) and denote by uqg € V_, L3 ug. € V‘T the Galerkin solutions associated to

T, 7. respectively with data D. Let Kjump be as in Lemma 9.11. There exists a
constant Ceomp such that for all k > Kjymp and all 0 < € < 1 we have

Brlu-us,u—ug] <(+e)Br[u—uru—us]

Ceoer 2 Ceomp
D) ”V']:(I/t-’]; - uT)HLZ((];) +— (

Proof. We invoke the partial Galerkin orthogonality (9.45) of # — us- upon testing

1 0.0 _ .0 0 .
with v = Uy uTEV(/.;.

nr(us)* +n7(ug)?) .

B-’];[l//t\— Mﬁ,ﬁ— M7;] = 87;[1/7— uq; +VO,I/T— uq; +VO] —Bq;[VO,VO].
Note that
i-ur+v° = U — U+ Uy — Uy

and VO] = IV 12(77)» Which is critical for the argument below. Hence,
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from the coercivity and continuity of B4 (Corollary 9.8), we deduce that
By [ —ug, w0 - ur]

1/2
< By (il — ur. @ — ur] + 2C 0 By [0 — ur it — ur) Pz — uk| . 7:

+Ccont||u7'_ T coer”V‘E(uT ”T)lle(q-)

We now apply the reverse triangle inequality and Young’s inequality

”V(];(M‘T MT)”LZ(T) = 2”V'T(M7’ MT)”LZ(T) ||V7;(MT M’]’)”LZ(T)
to deduce that forany 0 < & < 1

‘87;[;[_ M'K’ﬁ_ uﬁ] S(1 + S)Bﬂ[ﬁ_ M‘T’ﬁ_ MT]
CCOer

”VT(MT MT)”LZ(T) ||M7~ - uT"K Tz°

where C is for the remainder of thls proof a constant 1ndependent of the discretiz-
ation parameters and «.
To bound the last term we recall Lemma 9.9 (control of non-conformity)

-1/2 -1/2
lus —utle7: s K00 P Lug D ey + KPR Tur ] 2,

and notice that the last integral over F,* has weights relative to the local meshsize
of 7. > 7. Since for consecutive meshes the local meshsizes are comparable,
according to (9.51), we can write ||A~"/? [[us]] | L2(#+ instead. Inserting these
expressions in the preceding estimate, and using Lemma 9.18 (mesh perturbation)
to replace B4; with B4 on the right-hand side, yields

CCOCI‘

B(E [ﬁ_ ug, ﬁ_ l/l'7;] S(1 + 8)87-[1’7_ ug, ﬁ_ “‘7’] - ”V’];(l/l?; - u(]—)HiZ(r];)

= (I [l 1 gy 1772 Tt ) )

where 2¢ has been relabeled . Finally, to derive the desired estimate, it remains
to invoke Lemma 9.11 (discontinuity control). Ul

Combining Lemma 9.19 (comparison of solutions) with Lemma 9.10 (a posteri-
ori error estimate), we derive the following dG version of Lemma 5.2 (Pythagoras).

Corollary 9.20 (quasi-orthogonality of dG errors) Ifthe assumptions of Lemma
9.19 hold, then for all k > kgo = S22 and 0 < & < 1 there holds

£2Cy,
C,
~ 2 ~ 2
lit=ur 2 < (1 +4e) i = url ;= =5 1V = ur)ag
Proof. We make use of the lower bound (9.40), and set D := °‘"“p , to rewrite the

estimate of Lemma 9.19 as follows:

DN __ D\ _ C
(1= a—urll < (1o = )lT—url? - =22

”VT(M‘T MT)”L2(7')
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For k > kqo := % this inequality implies

1+2¢ C
—~ 2 —~ 2 coer 2
— < — — —
lu —ugly g < T lu = urly. + -9 V7 —ur)ll 2
It remains to realize that % < 1 +4eg provided & < %. U

The last ingredient to prove convergence of GALERKIN-DG is a dG version of
Proposition 4.56 (estimator reduction) with f = f. € Fo. It turns out that the same
estimate and proof are valid for dG except that the Hé-seminorm is to be replaced

by the broken Hé—seminorm. We thus state the result without proof.

Proposition 9.21 (estimator reduction) Given 7 € TA and a subset M C T of
elements marked for refinement, let T, = REFINE (T M) If f =Pgqf € Fq,
then there is a constant Cy;, such that for all v € V¢, v, € Vg and any 6 > 0

N7, T2 < (148) (07 (v, T = Ang (v, M)?) + (1467 Cy, IV 0 =W17 2 -

We are now in a position to prove a contraction property between two consecutive
iterations of the adaptive loop GALERKIN-DG.

Theorem 9.22 (contraction property) Let T be a A—admissible refinement of To
satisfying Assumption 6.19 (initial labeling). Let De Dz such that Aandc satisfy
the structural assumption (9.20). Let 6 € (0, 1] be the Dorfler marking parameter
used in the MARK module and {7;,V j, u J‘}Lo be a sequence of conforming meshes,

finite element spaces and discrete solutions u; = u;j(9D) € V; created within

GALERKIN-DG. If u € H(l)(Q) is the exact solution of (5.5) with discrete data 13
then there exist constants Keony = 0, ¥ > 0, and 0 < a < 1 independent of the
discretization parameters and k, such that for all k > Keony and 0 < j < J

B2+, (wje) < 0 (B2 + i (w)), (9.54)

where Bj := (87} [ —uj,u— uj])l/2 is the dG norm of u — u;.

Proof. In essence, we proceed as in Theorem 5.8 (general contraction property)
for the conforming case but with minor changes that account for non-conformity.
We only explain the differences below. For j > 0, we shorten the notations and

write n7; ;= n7;(u;) and Ej = ||V7,, (w1 — ”J')||L2(7;~+|)-
Corollary 9.20 (quasi-orthogonality of dG errors) gives for any 0 < £ < %
C
2 2 coer -2
B, < (1+4¢)B} - 5 E;.

Combining Proposition 9.21 (estimator reduction), written in terms of 7 = 7,
T+ = Tj+1, v = uj and v, = u 1, with Dorfler marking n(u;, M;) > 6n; yields

Mo < (14+6)(1-20%)n7 + (1 +67)CE ES
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for any 6 > 0. We now multiply this inequality by vy > 0 and add it to the previous
one with the following choice of parameters:

2
_ 1_% _ Ceoer
0= -1, Y=\
1-160% 2C2. (1+671)

Lip
Consequently, the terms involving Ej2 cancel out and we end up with

B§+1 +yn§+1 < (1 +48)3§ +y(1+6)(1- /192)773
2 2

0\ 20N
)85+ (1= )i

We finally choose € := %202 to obtain (9.54) with @® = max {1 - %02, - ,1792}’
and conclude the proof.

B
:<1+4s—y

Corollary 9.23 (linear convergence) Under the assumptions of Theorem 9.22,
and if 0 < @ < 1, v > 0, Keony > 0 are the constants in (9.54), then for all
K > Keony there holds

i = urle.7z < Coa* i = .75,
for some constant C, independent of the discretization parameters and k.

Proof. Let ei = |u - uk||i g, and Bi = B [u—uy, i—uy]?, and use the coercivity
estimate (9.34), the contraction property (9.54), the continuity estimate (9.33) and
the lower bound (9.40) to arrive at

- - Y
Ccoerei < Bi < o2k J)(Bﬁ + yn?) < @?k=D (Ccom + _2)6?
L

. . . o . 1/2
This is the desired estimate in disguised with C, := &— (Ceon + %) 2, O
coer L

We end the discussion on GALERKIN-DG by deriving the optimality property
of the Ddérlfer marking strategy. We mimic the proof of Lemma 6.16 (Dorfler
marking) but directly use the optimal parameter yu = % to simplify the argument.
We refer to the discussion after Lemma 6.16 for the role of u and its influence on 6.
Notice that 6 depends on k! because of its appearance in the perturbed localized
upper bound (9.49). It plays a similar role to o~ in Assumption 6.15 (restriction on
w) in the presence of oscillations (one step method with switch).

Lemma 9.24 (Dorfler marking) Let 7. > 7 be two A:admissible reﬁnemints of
To satisfying Assumption 6.19 (initial labeling). Let D € Dz such that A and
¢ satisfy the structural assumption (9.20). Let us € V‘Tl, ug. € V‘,El denote the
Galerkin solutions associated with T, T, respectively and u € Hé (Q) denotes the
solution to (5.5) with discrete data D. Assume k > Kp = max(Kyap, 4C£ipCzU). If
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1
n7(ug) < EUT(M’T) (9.55)
then the refined set T \ T satisfies the Dorfler property

e (ur w(T \ 7)) = b0 ny(us), (9.56)

1-4C}, C? k™
- 1
with 0 < 62 1= 6%(k) := o < .
0= "0 4c7,C2, ac7 C7,

Proof. To relate ng with 4, we invoke Proposition 9.21 (estimator reduction)
with 6 = 1, along with the localized upper bound (9.49), to write

2
nrtur)? < 207G+ 2CE,Cly (nr (ur, (T \ )+ K~ nrur)?)
This, combined with (9.55) yields

1 2
(2 2C},,Cluk ) nr(ur)® < 261 Clyny (ur (T \ 7))
for k > kp. This is the desired results in disguised. U

9.5 Convergence of AFEM-DG-TS

Algorithm 9.1 (AFEM-DG-TS) relies on two modules: GALERKIN-DG and DATA.
We have analyzed the performance of GALERKIN-DG in the previous section and
showed in Section 7 that the output [T, Di | = DATA(Tx, D, wey ) satisfies

| D - Dk”D(Q) Swer, = |u- I’/t\k|H01(Q) < Cpweg. (9.57)

Recall that u = u(D), uy = u(@k) € Hé(Q) are the exact solutions to (2.7) with

exact data D and discrete data Dy, respectively. We also recall that Dy satisfies
the structural assumption (9.20) uniformly in £ and thus Cp does not depend on k.

We start with a result guaranteeing that the cost of GALERKIN-DG does not
depend on the iteration counter k£ within AFEM-DG-TS.

Lemma 9.25 (computational cost of GALERKIN-DG) Forany k > Kcony and any
k € N, the number of sub-iterations Jy. inside a call of GALERKIN-DG at iteration
k of Algorithm 9.1 (AFEM-DG-TS) is bounded independently of k.

Proof. We proceed as in the proof of Proposition 5.27 (computational cost of
GALERKIN) for the conforming case, and focus on the essential differences. We
fix the iteration counter k > 1, recall that the output of the (k — 1)-th loop of
AFEM-DG-TS is [Tk, ux] = GALERKIN-DG (77< 1,Z)k 1, €k-1), and denote by Ty ;
and uy ; € P 1 _the j-th mesh and Galerkin solution to (9.21) with data Z)k in the
k-th loop of AFEM DG-TS. The exact solution to the perturbed problem (5.5) with
discrete coefficient Dk is Uy = u(Z)k).
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We recall that 7x o = ‘7;} is the mesh produced by DATA, and assume that
ug,o € Vi satisfies ng  (ug,0) > & because otherwise Ji = 0 and there is
nothing to prove. In view of Corollary 9.23 (linear convergence), all we need to
prove is that the error |ug o — x|, , entering GALERKIN-DG is bounded by &.
We resort to Corollary 9.15 (quasi-monotonicity with different data) to write

lur,0 = uile, 70 < CMo (||Mk = Up—1 e, 7 + ke — it\k—1|H01(g)) :

The appearance of the last term is the only difference with respect to Proposition
5.27. However, in view of property (9.57) of DATA, we infer that

|k — ﬁk—llH()l(g) < luy - Ul o)+ k-1 — Ul < Cpw(ek +&x-1) = 3Cpweg.
Moreover, the stabilization-free upper bound (9.44) implies
lur = Ur-1le. 7z < Cungy(ur) < Cysr-1 = 2Cyex,
which, combined with the lower bound (9.40), further yields
(T PR A (SCDa)+2CU)8k =Aer = g, < CZlAsk.
This is the requisite estimate. In fact, recalling Corollary 9.23, we see that
N (i) < CC Nk, — ikle,7i; < CL'Cot! ugyo = e, 77 < CL' Cilrera.

Since GALERKIN-DG stops when T]T,k’k(ujk’k) < &g, we finally conclude as in the
proof of Proposition 5.27 that Ji is independent of k. U

The proof of convergence of AFEM-DG-TS is identical to the proof of Proposi-
tion 5.29 upon replacing the semi-norm |.| L@ by the appropriate dG norm. It is

therefore not repeated here.

Proposition 9.26 (convergence of AFEM-DG-TS) For any k > Kcony and k > 0,
the (k + 1)-th iteration of AFEM-DG-TS ferminates and requires a finite number
of inner iterations of GALERKIN-DG independent of k. Moreover, if u € H(l)(Q)
denotes the solution to (2.7), tliere’\exists a constant C, such that the output of
[Tk+1, urx+1] = GALERKIN-DG (Tx, Dk, ) satisfies

lu = ursille, 77, < Cigk, Vk > 0.

log %
log2

Therefore, AFEM-DG-TS stops after K < 2 + iterations and delivers

lu —uk+1le,7% < Citol.

9.6 Rate-optimality of AFEM-DG-TS

To derive rates of convergence for the discontinuous Galerkin method, we proceed
similarly to Section 6 for the conforming case . Recall that in the kth-step of
Algorithm 9.1 (AFEM-DG-TS), the output of [7x, Dx] = DATA (7%, D, wey) is
fed to [Tx+1, ur+1] = GALERKIN-DG (‘7', f)k, £r), which in turn iterates Jy times.
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Lemma 9.25 shows that J is uniformly bounded in k, and we assume that J; > 1
for otherwise the module GALERKIN-DG is skipped altogether. We denote by
(Tk.j» Mk, j» ug; ;) the triplets of grids, marked sets and discrete solutions computed

within GALERKIN-DG (7, Dx, i) for 0 < j < Ji. Note that
Ek,j = nﬁ,j(uﬁ,j,ﬁk)>8k, 0<j<Ji
so that together with the lower a posteriori error estimate (9.40), we infer that
lux —ug lx.7,; = CLEK,j > CLék,

where uy = u(ﬁk) € Hé (Q) is the exact solution with approximate data [)k.

The module DATA guarantees (9.57), and the parameter w modulates the dis-
crepancy between u and iy, relative to &x. The error due to data approximation can
be made small relative to the finite element approximation by choosing w much
smaller than 1. In addition, we have established Lemma 9.24 (Dorfler marking) for
6o < 1 which implies a Dorfler property for any 0 < 8 < 8. The restrictions on
the parameters «, w, and 6 are gathered in the following assumption.

Assumption 9.27 (restrictions on x, w and §) Assume that k > max(xp, Kcony)>
that 0 < w < ;{C{,IIOCLCBI and that 0 < 8 < 6y(«), where kp and 6 are defined in
Lemma 9.24 (Dorfler marking).

Note that if Assumption 9.27 is valid then
—~ I

The next results rely on Assumption 6.3 (approximability of u) and Assump-
tion 6.10 (approximability of data). They are stated and proved for conforming
meshes and continuous approximations of u. However, Proposition 9.4 (equival-
ence of classes for u) and Remark 9.5 (equivalence of classes for 9) show that
these classes coincide with the conforming case.

Proposition 9.28 (cardinality of marked sets) Let Assumptions 6.3 (approxim-
ability of u), 6.17 (cardinality of M), and 9.27 (restrictions on k, w and 0) hold.
If €x.0 > &k, then GALERKIN-DG at iteration k of AFEM-DG-TS is called and the
cardinality Ny ;(u) of the marked set My satisfies

-1/s

1
Nij @) < lulg™ lu = ugg 17

VO <j<Jk. (9.59)
Proof. Fix 0 < j < Ji and set
I 1
0= ECMOCL n«;;’j(uf;;’j) > ECMOCLgk’

because nq; ;(ug ;) > &k for j < Ji. Thanks to (9.58), iy is an (%CI:,[LCLgk)—
approximation of order s to u# according to Lemma 6.13 (g-approximation of order
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5). Therefore, there exists a conforming mesh 75 € T" and ugs € Vg5 such that

ik~ 7y = T~ |y < 6. #75 5 lul} 575,
To compare 75 with 7y ; we consider the overlay 7. = 7 ; ® 75, which satisfies
#T. < #Tj +#T 5 — #90;
see Proposition 8.15 (mesh overlay is A-admissible). Letuqg- € V‘Tj be the Galerkin
solution on the subspace V‘Tj and invoke Corollary 9.13 (Cea’s lemma) to write
n7-(ur) < Cp ik = ugle.7: < Cf' Cutolitk = g, e, 7: = CF' Cvtolttk — |11

whence n7;(ug;) < CEICM(,(S and

1
ny.(ug) < Eim,j(uﬁ,,)-

Applying Lemma 9.24 (Dérfler marking) to 7, and 7y ; we infer that the enlarged
refined set w(7x,; \ %) satisfies the Dorfler marking property

7, (U . 0T\ 7)) 2 097 (uT)
since 0 < 6 < 6y by Assumption 9.27. The Dorfler marking involves a minimal set
M j according to Assumption 6.17, which thus implies
L1 i+ -!
Ni () < #x(Te i\ T2) < #(Tej \ To) < #75 — 475 < [ul) 675 < |ul) e,
because #(7x ; \ 7) < #7. — #7;. This concludes the proof. O

Corollary 9.29 (quasi-optimality of GALERKIN-DG) Let Assumptions 6.3 (ap-
proximability of u), 6.17 (cardinality of M), and 9.27 (restrictions on k, w and
6) hold. Assume k > max(Kcony, Kp). Then, the total number of marked elements
Ny (u) within a call to GALERKIN-DG satisfies

o1
Ni(u) < JColuly &,
where J > Ji is a uniform upper bound for the number of iterations of GALERKIN-
DG according to Lemma 9.25 (computational cost of GALERKIN-DG).
Proof. Use that Ni(u) = ZJJ.E(_)I Ny, j(u) and combine Propositions 9.28 (cardin-
ality of marked sets) and 9.25 (computational cost of GALERKIN-DG). Ll

We finally address the rate-optimality of the two-step algorithm AFEM-DG-TS.

Theorem 9.30 (rate-optimality of AFEM-DG-TS) Let Assumptions 6.3 (approx-
imability of u), 6.10 (approximability of data), 6.11 (quasi-optimality of DATA),
6.17 (cardinality of M), 6.19 (initial labeling), and 9.27 (restrictions on k, w and
6) hold. Then, AFEM-DG-TS gives rise to a sequence (72, V}i, uﬁ)f:ol such that

lu —ug e < Cu, DY#TR)™ 1<k <K+1,
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where 0 < s = min{s,, sp} = min{s,, 54, ¢, 55} < % and

1 1

1 1 €L s
Su s sc Sf
Cu,D) = C.(ulj, +IALZ +1el +171 )
with constant C, > 0 independent of u and D.

Proof. Assumptions 6.3, 6.17, and 9.27 combined with Corollary 9.29 for u, and
Assumptions 6.10 and 6.11 for D, imply the existence of a constant Cy such that
the total number of marked elements within one loop of AFEM-DG-TS is

L Ly 1
N+ Ne(D) < Gl +1D12 )&,

with s, sp < 5. Moreover, upon termination DATA and GALERKIN-DG give

_ 1
|I/l - Mleol(Q) < ZCMOCLgk’

Ik = ugis .7 < Cung (ugg,,) < Cus s
because of (9.58) and (9.44). This implies by triangle inequality

1 -1
lu —ug, N, 72, < <ZCM0CL + CU) Ek-

We finally conclude as in Theorem 6.24 (rate-optimality of AFEM-TS). U

Remark 6.25 about the role of w, 8* and Remark 6.26 about the optimality of
the result, written after Theorem 6.24 for the conforming case, remain valid for the
non-conforming case and are not repeated here.

9.7 Operator Py and routine DATA on A-admissible partitions

In this section we have used extensively the notion of A-admissible meshes for the
design and study of dG methods, including forcing f € H~'(Q). To this end, as
well as for the design of the two-step AFEM for dG, namely AFEM-DG-TS, the
construction of the local projection P f € Fqis critical. We discuss this now.

Recall that for a conforming partition 7~ € T, P4 f is defined as a projection to
Fq; see Definition 4.24 (projection onto discrete functionals). The definition and
subsequent properties of P4 hinge on extensions Ef for F € ¥, studied in Lemma
4.20 (extending from faces), as well as on bubble functions ¢, T € 7, and ¢F,
F e ¥ satisfying Assumption 4.21 (abstract cut-off).

The definition of the element bubble functions ¢ in (4.14) is local to 7 and
is thus unchanged on non-conforming subdivisions. The situation is different for
faces. If F is a conforming face, we have the conforming definitions of Er and ¢ .
Instead, if F is a non-conforming face, i.e. F =T NT, with g(T,.) > g(T), and use a
virtual conforming refinement of wg to define Er and ¢F as in (4.17). Recall that
g(T)is the generationof 7 € 7,and 7 € T is a uniform refinement of 7y if and only
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if g is constant on 7. Let fbe_the uniform refinement of 7y containing 7., whence
g(T) = g(T) for all T € 7, 7 is conforming thanks to Assumption 6.19 (initial
labeling) on 7p. Let T € T be the element sharing F" with 7, (and thus contained
in T) and let wp := T, U T be the virtual conforming patch around F. We now
proceed by defining Er via (4.4) with wr replaced by wr and ¢ asin (4.17) using
the basis functions ¢, z € V N F, associated with [[7 .5, P.(T) N Hcl) (wF). Note
that because 7 is A-admissible, Proposition 3.27 guarantees that the diameters of
T, T, T., wr and @F are all comparable with constants depending on the initial
mesh 75 and A.

Assumption 4.21 is an important ingredient in the analysis of P4 and it holds
true with wr replaced by wr when F is a non-conforming face. Therefore, Re-
mark 4.26 (local computation) and Corollary 4.31 (local near-best approximation)
are valid for A—admissible partitions as well. Consequently, all the algorithms and
results presented in Section 7 (data approximation) readily extend to A-admissible
subdivisions as well. We do not dwell on this matter any longer.

10 AFEMs for Inf-Sup Stable Problems

We go back to the functional framework introduced in Section 2.4. Precisely, let
the bilinear form B : V x W — R be continuous and inf-sup stable (i.e., it satisfies
one of the equivalent conditions stated in Theorem 2.8 (Necas)). Given f € W*,
let u € V be the unique solution of the variational problem

ueV: Blu,w] ={f, w) Yw e W. (10.1)

Let V; C V, W; C W be finite dimensional subspaces depending on an integer
parameter j > 0, such that

dimVj:dimWJ-:nj, Vj CV]'+1, Wj CW]'.H.

(Note that the notation has changed with respect to Section 3.1, where V was a
subspace of dimension N. Here V; may stand for V-, where 7; is the j-th mesh
generated by an adaptive algorithm.)

We assume 8 to satisfy a uniform discrete inf-sup condition on any product of
subspaces V; x W, i.e., there exists a constant 5 > 0 such that for all j

B
inf sup Blv.wl = p. (10.2)
veViwew; [IVIvliwllw

Let u; € V; be the solution of the (Petrov-)Galerkin problem
uj EV]' . B[uj,w] =<f, W> VWEWJ'. (10.3)

The first part of this section, which is mostly based on the recent work by M.
Feischl [Feischl 2022], is devoted to studying the convergence of this approxima-
tion. Convergence and rate-optimality of different AFEMs will be discussed next in
Section 10.3. Applications will be given to the Stokes problem (see Section 10.4)
and the mixed formulation of a scalar diffusion problem (see Section 10.5).
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10.1 Linear convergence of inf-sup stable methods

We make the following key assumptions that guarantee the convergence of the
sequence u; to u in the V-norm, and comment about them afterwards. The first
assumption is a relaxed form of the general quasi-orthogonality property introduced
in [Carstensen et al. 2014] as part of an abstract set of axioms of adaptivity.

Assumption 10.1 (relaxed quasi-orthogonality) For each N € N there exists a
nondecreasing constant C = C(N) such that

J+N
D e —uly < Cllu—ujly 20, (10.4)
k=j

and

C(N) = o(N), as N — oo.

Assumption 10.2 (equivalence of error and estimator) There exist constants Cy;
Cr > 0 and, for each j > 0, an error estimator n7; = 17;(u;), such that

Crnj < lu—ujllv <Cynj  j=0. (10.5)

Assumption 10.3 (estimator reduction) There exist constants 0 < p; < 1 and
C1 > 0 such that

Mo < o1 + Cillujer —ujly,  j20. (10.6)

Remark 10.4 Assumptions 10.2 and 10.3 are abstract and allow for a general
convergence theory. In the context of our model problems of Section 2.3, they are
valid for discrete data, i.e., if the coefficients of the linear operator corresponding
to the bilinear form B are piecewise polynomials on the adopted meshes, and if
f € Fq (see Section 4.3). We make this concrete in Sections 10.4 and 10.5 below.

Remark 10.5 We comment on the significance of Assumption 10.1 upon consid-
ering two extreme cases.

1. Assumption 10.1 with C(N) = O(1) is precisely the general quasi-orthogonality
property of [Carstensen et al. 2014]. It is valid with C(N) = 1 for V = W and 8B
symmetric and coercive. Indeed,

Blugsr —ug,u —uge1] =0 (Galerkin orthogonality),

whence
2 2 2
Nesr — urclla + loe = upsrllg = Nl — urllg,

where ||-||q is the energy norm induced by 8. Adding upon k and using telescopic

v
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cancellation yields

J+N J+N

2 2 2
D M = il = > M= el = e = i Iy
k=j k=j

=l = wjllg = N = wjenallgy, < Nl = ujllg-
Finally, the equivalence (2.30) of the norms ||.||v and ||-||q yields the result.

2. Assumption 10.1 trivially holds with C(N) = O(N) for B continuous and inf-
sup stable. Indeed, choosing in Corollary 3.3 (quasi-monotonicity) Vy = Vj or
Vi1 and Vy, =V for j < k, and using the triangle inequality gives

lurer = urllfy < Nugsr = ully + llug = wlly < Ml = ugll5.
Adding, we get

J+N J+N

D Nuker = ully < € " lu—ujlfy = CN = 3.

k=j k=j

However, the relation C(N) = O(N) is not enough for the subsequent analysis.
In fact, we need C(N) = o(N).

We now prove that the stated assumptions guarantee the linear convergence of
the sequence of Petrov-Galerkin solutions (10.3). This result is similar to the
convergence result for the estimators given in [Feischl 2022], and exploits the
equivalence (10.5) between errors and estimators.

Theorem 10.6 (linear convergence) Under Assumptions 10.1, 10.2 and 10.3, the
discretization (10.3) is convergent; precisely, there exist constants 0 < p < 1 and
¢ > 0 such that

ejvi <cplej Vi, jeEN, (10.7)
where e = ||lu — ujl|v.
Proof. The proof is divided into several steps. Firstly, we set
Er = lug — ug-1|lv.
[1] We start by iterating (10.6) 1 < n < k times to obtain
M < ping_y + CLE;
< p1 (oo + CLEL ) + CiE} < pimg_o + C1 (Ej + Ef_y)

k
< pfr]i_n + C| Z E?
{=k—n+1
We now invoke Assumption 10.2 to state the upper bound

2 2
e 2 cimy
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and the lower bound
7 <
(with ¢y = CZZJ and ¢y = sz). This yields
k

2 2 2 2
e < cimy < ciexple;_, +c1Cy Z E;.
{=k-n+1

Let n € N be sufficiently large such that
p2=cieopt <1,
and let us relabel ¢ C; as C; to get

2 2 2
ep < prey_, +C Z E;.
t=k-n+1

(10.8)

(10.9)

This shows that the reduction property (10.6) of the estimator is valid for the error
after n iterations. We cannot expect (10.9) to hold for ex with n = 1, not even in the
coercive case: see Example 5.7 (lack of strict monotonicity) for A = I and f = 1.

It is thus convenient to rewrite (10.9) as follows:

kn
2 2 2
€rn S P2€3_1)n +C Z E;.
£=(k—-Dn+1
(2] Sum up (10.10) from k = j+ 1 to k = j + N to get
J+N J+N (j+N)n
2 2 2
Z €rn < P2 Z €lh—tyn T Ci Z E;.
k=j+1 k=j+1 {=jn+l
Using (10.4) we see that
(j+N)n (j+N)n—-1
> Ei= ) E; <CNn-l)el, <C(Nmé,
{=jn+1 {=jn
whence
J+N J+N
Z ein <p2 Z e(2k—l)n + C1C(Nn) e?n
k=j+1 k=j+1
J+N
<pr| D) e+l | +acwnél,.
k=j+1
This implies

J+N
(1-p2) Y ety < (p2+CiC(Nm) €3,
k=j+1

(10.10)
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or equivalently

1 p2 J+N

10.11
p2+CiC(Nn) kzlle""‘ " (1o4D

2 . .
Let us add the quantity Z ke 1 e, to both sides to arrive at

1_p2 J+N J+N
2 2
<1 + p—2 " ClC(Nn)> Z €rn S Z €rn

k=j+1 k=j

We can rewrite this inequality as follows:

J+N J+N
>, <o) et (10.12)
k=j+1 k=j
where
1 +C,C(Nn)
pN) =~ TN p12+ CllC(Nn)
+ p2+C1C(Nn)
_ 1-p2 _ 1 1
B 14+ C,C(Nn) D(N)
with
PNy = LFOCNY | N S,
1-po

whenever C(N) diverges. Therefore, (10.12) is a contraction for the quantity
> 1,<+1]V+1 ein with a constant p(N) uniform in j that may degenerate to 1 as N — oo.

[3] We iterate (10.12) and exploit that the left-hand side has one fewer term than the
right-hand side. Take

j—oJj+1 N—->N-1

to get
J+N J+N
Z ein <pN-1) Z ekn’
k=j+2 k=j+1
whence
J+N J+N
D€, <p(N=Dp(N) ) e},
k=j+2 k=j
Iterating, we get
J+N J+N

= Z &2 < p(l)...p(N —1)p(N) Z e

k=j+N k=j
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We now need to bound the sum on the right-hand side by a single term. To this
end, we resort to (10.11)

i+N
Ji ., p2+CiC(Nn) ,
€in < 17 €
- 1-p J
k=j+1
and add e? ,, on both sides
J+N
2 P2+ Cl C(N”l) 2 2
Z €rn < (1 + 1——p2 ejn = D(N)e]n
k=j
Altogether, we arrive at

N 1
e(2j+N)n < p(D)...p(N)D(N) €%, = D(N) B (1 - %) I

We estimate the factor on the right-hand side. For Ny > 0 to be chosen later, set

No 1
po = D(No) <1 - —)
D D(k)

and compute the logarithm of pg
No 1 Ny 1
1 =log(D(Ny) + > log (1 - —— ) <log(D(Ny) — > ——,
0g(po) = log(D(No)) ; og< D(k)> < log(D(N)) ;D(k)

because the log is concave and log(1 + x) < x. Since we assume in (10.4) that
D(k) ~ C(kNy) = o(k), the series diverges and we see that

log(po) < 0

for Ny sufficiently large. Summarizing, there exist No > 0 and 0 < pg < 1 such
that

iingn SP0EG,  VjeN. (10.13)
For any j,i € N, we now find ¢ > 0 and 0 < p < 1 such that the inequality
€j+i < cpiej
holds. We decompose j and j + i in terms of integers k, m
j=k-Dn+j, k=1, 0<j<n,
j+i=(k+mn+i, m>-1, 0<i<n,

and examine first the case m > 0. We further decompose

m=aNyo+b, a,beN, 0<b<Ny = a=—-—.
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Note that

. . i i—j i 2+N0
kn=j—j+n>j, m=——< +1), a>—-— .
n n niNoy No

Therefore, invoking Corollary 3.3 (quasi-monotonicity)

I3l

ej, < B ej, = Ciej, J2=j1 20,

in conjunction with (10.13), yields
a a 2N o1
ej+i < Cil(kraNgn < C*pgekn < Cfpgej < Cfpo o ( ;nNo)lej
_2+N0 1
This is the desired estimate with ¢ = Cfpo M and p = pg"NO form > 0. We
finally consider m = —1 and use again the error quasi-monotonicity to write

C. ; C. ;
ejri < Ciej = Fp’ej < Ep’ej.

2+Ng
2Ny
b

This concludes the proof with ¢ = max {Cfpo

C.
<. O

Remark 10.7 (improving on Assumption 10.1) Itis worth underlining that, while
linear convergence (10.7) is established in Theorem 10.6 using Assumption 10.1,
the same property combined with uniform inf-sup stability tell us a posteriori that
the constant C(N) in (10.4) can be made independent of N, i.e. C(N) = O(1). To
see this, we apply the linear convergence bound
llu = uelly < cp* 7 flu—uzlly
in conjunction with the triangle inequality
lursr = ully < Nl = g llv + i = wiellv < 2ep* 7 lu = ujlv:

summation of a geometric series gives

J+N

D ltkr = ugly < Cllu = uyll

k=j
with C = 4¢2 352, p?¢ < +oo. This suggests that Assumption 10.1 might be too
pessimistic.
10.2  Inf-sup stability implies quasi-orthogonality
We aim at proving the following key result in this section.

Theorem 10.8 (sufficient condition for Assumption 10.1) The Assumption 10.1
(relaxed quasi-orthogonality) is valid if the bilinear form 8 : V XW — R is con-
tinuous and uniformly inf-sup stable on the sequence of subspaces V; XW ;, j > 0.
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To accomplish this task, we proceed in two steps. Using variational techniques,
we first establish an intermediate result formally similar to (10.4) (see Corollary
10.14), but involving the norm of a matrix U related to the form $B. Next, we rely
on algebraic techniques to estimate such norm (see Theorem 10.15) and close the
proof of the desired result.

In order to perform the first step, we introduce orthonormal bases of the finite
element spaces V;, W;, 0 < j < N, and next we biorthogonalize them. This
procedure turns out to be crucial.

We start with some notation. Let

n; = dlmVJ = dlmWJ
Let V]l._l and W]L._l denote the orthogonal complements of V;_ and W;_; within
V; and W, respectively. Let
dj = nj - I’lj_l = dlmVj'_l = dlij'_l
be the dimension of the Galerkin update to augment the space V;_; into the next

space V;, and likewise with the space W;_; and W ;.
We consider orthonormal bases

=} C VN, w={w@}Y, C Wy (10.14)
partitioned into blocks for 1 < j < N
V(D =00, C VR, WO =, CWEL (1015

and v(0) C Vo, w(0) € Wy. In other words, (v(j), w(j)) represent the d; new
directions added by Galerkin to the current spaces (V -1, W j—l) forl <j<N.

We recall that the bilinear form B : Vy X Wy — R satisfies the following
uniform properties forall0 < j < N
(P1) continuity:

Bl wl| < IBHIVIv Il Vv eV, we W (10.16)

(P2) inf-sup condition:
Blv,w]

Blvlly < sup
wew, Twlw

Vv eV;. (10.17)
The block bases v and w given in (10.14) induce a block matrix
B = (BG, )], € R"™™
defined by
B(i, j) = B[v()), w(®)]. (10.18)

Note that the actual size of B is ny = dimVy >> N, and that the following
analysis entails expressing important quantities in terms of the number of blocks
N rather than the dimension ny,.
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We will use this block decomposition for a generic matrix
M = (M, j))f.j’jzo € R'WXnN

and we denote by M [k] = (M(i, j))f."jzo the principal k-th block of M. Fig. 10.1
shows schematically what this means.

Mo | M(0.0) M(0,1) M(0,N) |d,
MK | M[1] ‘ —t— "o
‘ ‘ M(1,0) M(1,1) M(1,N) |d,
—— N
— Nk
——"nNN-1
M(N,0)  M(N,1) M(N,N) |dy

| | | | _|L_ n

Figure 10.1. Block partition of a matrix M € R"N*"N with (N + 1) X (N + 1) blocks
M(i, j) € R%*4j and principal k-th block M [k] € R™*" with 0 < i, j,k < N.

We stress that (P2) implies that B[k] is uniformly invertible with
1
IBk]7 |2 < i VO<k<N. (10.19)

In fact, (P2) with j replaced by k can be rephrased as follows in terms of the
coordinates v € R"* relative to the orthonormal basis {v(j )}§=0 of Vi of a generic
vector in Vi

Bllvilz < IB[k]vl.  ¥veR™,
i.e., setting z = B[k]v,
BIBIK) 'zl < ||zl Vz e R™,
which is precisely (10.19).
A fundamental linear algebra theorem of Gaussian elimination guarantees the

existence of a unique normalized block LU decomposition of B without pivoting
due to (10.19):

B=LU, (10.20)
with block partitioning
L(i, j) € R%>4j, LG, j)=0 for j>i, L@,i)=1G,10);  (10.21)
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UG, j) € R%>4i, UG, j)=0 for i > j. (10.22)
10.2.1 Matrix representation
The k-th Galerkin solution uy satisfies:
ug € Vi : Blug,w] = {f, w), Yw € Wy.

Equivalently, if {y(j )}f.:0 € R" are the coordinates of u; with respect to the
orthonormal basis {v(j )}j‘.zo

k
ue = 7 v(j),

j=0
then
k
D) BV w@] = (f, wi),  YO<i<Kk
j=0

or using matrix notation

k
ZB(i, NyG) =0 ={f, w@)), VO<i<k. (10.23)
=0

If we further write
Y=g eR™, fr=(fO)E, € R™,
then (10.23) reduces to
Blklyy = fr- (10.24)

In view of the definition of f, we realize that the k-th section f 5 [k] € R of f
coincides with f:

N\ k
InIKl = (f@)g = fr-
However, this statement is not true for the solution y, of (10.24), namely

Ykl # 7.

10.2.2  Block biorthogonal bases
We define biorthogonal bases v € Vy and w € Wy as follows:

J
vi=UTy = ()= ) UT(,mypm) 0<j<N, (10.25)
m=0
wi=L'w = w(-= Z L~ 'G,mw(m) 0<i<N. (10.26)

m=0
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We will see below that these bases are convenient to represent the Galerkin solution
ur € Vi. We start with a list of properties.

Lemma 10.9 (span of new bases) The vectors v and w are bases of Vy and Wy,
respectively, and satisfy

span{v(N}i_y = span{v ()},

span{W(i)}f:O = span{w(i)}fzo.

Proof. This relies on the fact that U~7 and L~! are lower triangular and the
diagonal blocks are non-singular (i.e., both L and U are invertible). Ul

Consider now the matrix B induced by (¥, #), namely

B = B[V, W] € R'"WW (10.27)

Lemma 10.10 (biorthogonality) The block matrix B is equal to the identity,
namely

BG,j)=1G,j) VYO0<ij<N.

Proof.  We simply combine the definition (10.27) with (10.25) and (10.26) to
deduce, forall 0 < i, j < N, that

B(, j) = B[v()), w()]

= B[ i U T, mv(m), 2 L', kyw(k)
m=0 k=0

D LG OBYm), wIUT (jom)
k=0

LG, k)B(k,m)U ™ (m, j)

M- v
MN.

m=0 k=0
=(L7'BUT) (i, ))
= (L7'@oU') G, j)
=1, j),
as asserted. ]

Generic functions v € YV and w € Wy can be represented as follows in terms
of the old and new bases:

N N
v= > v v() = D T 0), (10.28)
Jj=0

J=0
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N N
W= Z(; a(i) - w(i) = Z(; a(i) - wii). (10.29)

The following lemma relates the coordinates in the two systems.

Lemma 10.11 (change of basis) The coordinatesy = (y(j)) =0 anda = (oz(i))l].\i 0

satisfy
y=U'%  a=L"a. (10.30)

Proof. Write (10.28) in vector form and use (10.25) to obtain
v=F"7 =7 (UTy) = (U'F) v=oT,
whence
y=U"%.
Similarly, combining (10.29) and (10.26) yields
w=a' w=a (L_lw) = (L_T§)T w=alw
and
e=L"Ta.

This concludes the proof. U]

10.2.3  An intermediate inequality
We intend to prove the following crucial estimate. This result is in [Feischl 2022],
but we give a different proof based on variational arguments.

Proposition 10.12 (quasi-orthogonality - I) Ifu; € Vi denotes the k-th Galerkin
solution of (10.3), then there holds

N-1

2
> ltkeer — el <
k=0

Proof. We proceed in several steps.
[] Estimate of |lux—1 — ux||v. Galerkin orthogonality yields

B[uk+1 - uk,w] =0 VweW;. (10.32)

(L4l
5 lun = w5 (10.31)

The uniform discrete inf-sup property (P2) implies the existence of w € Wy, with
[[W]lw = 1 such that

Bllugsr — ur|lv < Blugsr — ug, wl. (10.33)
We decompose w orthogonally as follows:

W=wi+wp, Wk € Wi, Wy € Wy,
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Wi = span{w(k + 1)}

span{w(k + 1)}

Wi = span{w()}E

Figure 10.2. Oblique decomposition of the space Wy, into the subspaces Wy =
span{W(j)};?:O and span{w(k + 1)}.

with ||Wi||w < 1. In view of (10.32), (10.33) also reads
—1

_ k
Bllugsr — ukllv < Bluksr — ug, Wil < Blugsr — ug, ——1.
Wi llw

—1

We now let Wi, = € Wi C Wy and decompose it along the oblique

Wi
subspaces Wj = spalllgvﬁkgy)}fzo and span{w(k + 1)}, as illustrated in Fig. 10.2.
Since Wy = span{w(k + 1)} and w(k + 1) = (wj)?i:llkJr1 is an orthonormal basis,
the function Wy, € Wi can be written uniquely as

Wi =alk+1)-wk+1)
with a(k + 1) € R4+ satisfying

latk + Dll2 = 1 = [[Weat |lw-
Invoking (10.26), we can express w(k + 1) in terms of {W(j)};?zo as follows:

k+1

wk+1)= > Lk+1,/)W()
=0

:W(k+l)+zle(k+l,j)W(j)
j=0
because L(k + 1,k + 1) = I(k + 1, k + 1) € R%+1Xdk+1 _ Consequently
Blursr =k, Wis1] = Blugsr — ug, a(k +1) - w(k +1)]
because (10.32) implies
Blugsr —ur,w()] =0 VO<j<k.
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In addition, the biorthogonality of w(k + 1) with respect to v(j) for 0 < j < k
translates into

Blug, w(k +1)] =0 = Blug, w(k + 1)].
Moreover, Galerkin orthogonality yields
Blugs1, Wit] = (f> Wis1) = Blun, wisl,

and collecting the preceding expressions we obtain
1 —
g1 — urll < E(I(k +1)- Bluy —ug, w(k +1)]. (10.34)

Estimate of Bluny — ug, w(k + 1)]. We exploit the biorthogonality between
{?(j)}j.vzo and {W(j)};vzo. In fact, we write

N
un — o = ) 7)) V()

J=0

and substitute into the right-hand side of (10.34) to arrive at

N
Blun —ug, wk +1)] = Z?(]) “B((),wlk + D] =y(k+1).
=0

Therefore, (10.34) gives
1 —
lurer — urllv < Ea’(k +1)-yk+1),

whence

|
ltgs1 — urllv < ’EH)’(/C + D2

because ||a(k + 1)|]2 = 1.
Final estimate. Compute

2
U113

N-1 1 N-1 1
2 ey =uallly < 25 ) PG+ DI < 51713 < =213
k=0 k=0

according to (10.30). Since {v(j )}11.\’: o are orthonormal, we get

N
uy —uo= Y y(N)v(y) = lun —uollv = ll7ll
Jj=0

and

2

-1 2
» U3 )
Nurer — urelly < FHMN — uoll

~
I

0
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as asserted. This concludes the proof. O

In order to get the quasi-orthogonality estimate, we still need to compare the
errors ||uy — upl||v and ||u — ugl|v. The following is a variant of (3.3).

Lemma 10.13 (stability) There holds
B
lun = uolls < ”7”||u —uolly.

Proof. We use (10.17) and (10.16), in this order, together with Galerkin ortho-
gonality to deduce

Bluny — ug, w
Bllun —uolly < sup LN ol

weWy llwlw
Blu — up, w]
= sup ————— < ||B][|lu - uollv.
wewy  lwllw
This completes the proof. U

Corollary 10.14 (quasi-orthogonality - II) Let u; € Vi be the k-th Galerkin
solution of (10.3). Then, for all 0 < j < N, we have

el NN 1 —- 2
D N — el < g Ul = w15
k=j

Proof. Combining Proposition 10.12 with Lemma 10.13 yields

= 1812

2 2 2
> Muker = el < = U131l = woll3
k=0

ﬁ4
Finally, replacing uo € V¢ by the j-th Galerkin solution u; € V;, we obtain the
desired estimate. O

This corollary says that in order to prove Theorem 10.8, i.e., to check the validity
of Assumption 10.1, it is enough to investigate the growth of the block triangular
factor U introduced in (10.20), and precisely to prove that

U2 = o(N'/?).

This is the second step of our analysis. Actually, we prove something more, which
is expressed by the following result.

Theorem 10.15 (bound of block matrices L and U) There exist constants Cry >
0 and p > 2 such that the block LU factors of B satisfy

WUl + Ll + IU ]2 + IL7"]l2 < Cry NY/P. (10.35)

The proof of this theorem is lenghty and very technical; it involves subtle linear
algebra arguments, which may not be familiar to many readers. For such reasons,
we prefer to postpone it to the end of this section (see Section 10.6).
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10.3  Convergence rates of AFEMs for inf-sup stable methods

In this section, we discuss AFEMs to solve a boundary-value problem admitting a
variational formulation of the form

ueV: Bluwl={(f,w) VYweW, (10.36)

in which the bilinear form B on V X W is continuous and inf-sup stable, with
inf-sup constant 8 > 0, and f € W*. We will consider the one-step AFEM given
by Algorithm 5.4 (GALERKIN) when all data are discrete, the one-step AFEM with
switch given by Algorithm 5.16 (AFEM-SW) when the operator coefficients are
discrete but the forcing term is not (as in the Stokes problem), and the general
two-step AFEM given by Algorithm 5.1 (AFEM-TS).

10.3.1 Algorithm 5.4 (GALERKIN )
For j > 0,letusdenote by (7;,V;,u;)withu; € V; = V7;, the sequence of meshes,
subspaces and Galerkin approximations to (10.36) generated by GALERKIN. Let

1/2
=050, )= (3 w0, 1?) (10.37)

T €7

be the PDE error estimators used in the loop. If such estimators fulfil Assumptions
10.2 (equivalence of error and estimator) and 10.3 (estimator reduction), then
Theorem 10.6 (linear convergence) applies and the following result holds.

Proposition 10.16 (convergence and termination of GALERKIN) The module
GALERKIN produces a sequence {u;} converging linearly tou € V

||M—Ltj+i||VSCpi”u—Mj“V Vj,i >0, 0<p<l,

thereby reaching any prescribed accuracy ||u — ujllv < & in a finite number of
iterations.

10.3.2  Algorithm 5.16 (AFEM-SW).
This algorithm applies to the situation in which the operator coefficients are discrete,
whereas the forcing f € W* is not. Then, the PDE estimator (v, f) depends
on f via a projection P+ f upon a finite dimensional subspace of W*. Inspired by
Lemma 4.5 (localization of H~'-norm) we denote by W7~ a suitable decomposition
of W* subordinate to 7~ with norm || f ”Wf}_. In this part of the discussion, we prefer
to make the dependence of 4 upon P+ f explicit to avoid confusion, so we will
write ng-(v, P4 f) rather than n4(v, f) as usual.

Let us begin by stating two assumptions on the estimator (10.37) to be used in
the sequel.

Assumption 10.17 (Lipschitz continuity of estimator) There exists a constant
CLip > O such that for any 7 € T, any v,w € Vg and any f, g € W*, we have

Inr(v, Prf) = nr(w, Prg)l < Crip(llv = wllv + |P7f — P'rg||w;.)-
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Assumption 10.18 (monotonicity of estimator) If 7 € T and 7. is a refinement
of 77, then the projection operator satisfies P7; P = P4 and

N7, Pof,T) < n7(v, Prf,T) VT €T and Vv e Vg, Vf e W*

It is useful for the subsequent applications to have explicit criteria which guaran-
tee the fulfilment of Assumption 10.3. This is the purpose of the following result.

Proposition 10.19 (estimator reduction under Dorfler marking) Let the estim-
ator ny(v, Psf) in (10.37) be used in GALERKIN. Let Assumptions 10.17 and
10.18 be valid. Let T, be a refinement of T, with estimator ng-(v, Pz f), obtained
by bisecting the elements T € M marked in MARK, using a Dérfler condition on
the estimator nq-(ug, P7f) for the Galerkin solution uq € V4. Suppose that there
exists A € (0, 1) such that

ng:(ug, Prf, TV < Ang(ug, Prf, T VT e M. (10.38)
Then, there exists 0 < p < 1 and C > 0 such that for all v € V-
1707, Prf < prgtur, Prfy?+C (v = url + 1Pz f = PrfIR, ).

Proof. By Assumption 10.17 applied to 7, we have

1707, P f) < oz Prf)+ Cuip (v = wrlly + 1Pz f = Prfllws, ) -

Using Assumption 10.18 while extending Proposition 4.56 to the current abstract
setting, we have for any ¢ > 0

n7.(v7, P ) < (1 +6)(nr(ug, Prf)* = (1 = D nrug, Prf, M)?)
+20467 Ry (Ivr: = urld + 1Prf - ProIRy, ).

We conclude using Dérfler condition ng-(uq-, M) > 0n5-(us) and choosing ¢ small
enough. O

Before proceeding further, let us introduce the quantity

oscr(f) = If = Prfllws.

which is a measure of the oscillation of the data f. If us € V4 is the solution of
AFEM-SW, we let E4(uq, f) indicate the full estimator defined by

Eq(ug, [ = nylug, Prf) +oscr(f). (10.39)
We formulate the following assumption on the data oscillation.

Assumption 10.20 (quasi-monotonicity of oscillation) There exists a constant Copgc >
0 such that for any 7 € T and any admissible refinement 7. > 7, we have
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OSC'E(f) < Cose OSCT(f)~

A consequence of this assumption is the bound
1Py f = Prfllw, < If = Prfllws. +11f = Prfllw;. < (1+ Coo) oscr(f).

which, inserted into the reduction estimate of Proposition 10.19, gives the existence
of 0 < pg < 1 and Cy > 0 independent of 7 such that

N7 (ug, P f) < pong(us, Prf) +Co (lug, — urlly +oser(f)?) . (10.40)

We aim at establishing a linear convergence result similar to Theorem 10.6 for
the sequence {u; }3'10 generated by AFEM-SW. To this end, we introduce as usual
the short-hand notation ej = ||u — I/thV, Ej+1 = ||uj+1 - l/tjllv, nj= 177;(uj, P7;f),

osc; = oscy;(f), &; = E7;(uy, f), and we also introduce the scaled estimator
2._ 2 2
{7 =1 +y0sc, (10.41)

where the parameter v > 0 is to be found. Note that at this point we have three
parametes, w € (0,1), £ € (0,1), and y > 0 to play with, and the idea is to find
conditions on them such that an inequality similar to (10.9) in the proof of Theorem
10.6 holds true. The following result is an intermediate step.

Lemma 10.21 (linear estimator reduction) Ler Assumptions 10.3 (estimator re-
duction), 10.17 (Lipschitz continuity of estimator), 10.18 (monotonicity of estim-
ator) and 10.20 (quasi-monotonicity of oscillation) be valid. There exists wg > 0
such that, for any choice of parameters 0 < w < wy and 0 < & < 1/V2 in

AFEM-SW, there exist constants 0 < p <1, A >0, v > 1 for which

k
G<p v Z E:  k>j>0. (10.42)
{=j+1

Proof. We discuss separately the two alternatives in Algorithm 5.16 (AFEM-SW).
Case osc; < w8E;. We use (10.40) to get

77_3+1 < porﬁ + COEJZ.Jrl +Co osc?
and Assumption 10.20 to write

osc2,, < C?

2
il osc 08C7 -

From

osc% < w28§ = wz(nf + osc%) < wz(ni + yosc?) = a)z{f-
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provided y > 1, we deduce

§J2.+1 = '7§+1 +vy oscz.+l < pmﬁ + COEJZ.+1 +(Co + nggC) osc§
< POU] +C0EJJrl + (Co +vC, bc)wz(n] +yoscz) (10.43)
= [po + (Co +yCo)w’ 15 + [(Co + yCo)w’ |y 0s¢; +CoE,
< [po + (Co +yCo w14} + CoEj,,.
Below we will impose
p1 = po+(Co+yC2ow? < 1, (10.44)
which will yield the desired bound

oy <1+ CoEL,,. (10.45)

2

Case oscj > w&Ej. We use 8? = 773 +0sc; > 775 to get

1
2 2
< — 0sC*
j w2 I
Proceeding as in the proofs of Proposition 10.19 (now with M = 0) and of (10.40),
we obtain for any 6 > 0
2 2 2 2 26 2

Mivl < (1 +5)le + Cs(E 41 1 0SC ) <- 6)77] +C,5E]+1 + e +Cs 0sC;
with Cs = Cg(l +671). On the other hand, since osc j+1 1s computed after a call to
DATA, it satisfies

1+&2 1 — &2
osciJr1 < 620']2 = §2w28§ < &? 050? & osc] - 2§ ;
Combining the two last equations, we obtain
1+¢2
§12.+1 = 175+1 +)/osc§+1 <(l- 6)773 +vy 5 oscﬁ + C(sEJZ.Jr1
26 - &2
+(—2+C(5—y )oscj
Below we will enforce
26 1-¢£2
I'=—+Cs-vy ¢ <0, (10.46)
w? 2
which will guarantee
§j+1 < pg{ +C5EJ+1, (10.47)

with p; := max(1 — ¢, 1+2§2) < 1.
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Choice of parameters: Summarizing, in both cases [1]and [2] we have obtained

{3 < pLj+AET, (10.48)

with p := max(py, p2) < 1 and A := max(Cy, Cs), which holds under the conditions

(10.44) and (10.46). Iterating (10.48), we obtain the desired bound (10.42).
To fulfil (10.44), we write w? in the form w? = %, which gives

0o Co
p1 = po+(Co+ «ycgsc)7 = po + (7 +C3 )00 < po + (Co + C )

since y > 1, and we pick a oy > 0 small enough to make pg + (Cp + Cgsc)(fo < 1.
To fulfil (10.46), we use & < 1/V2 and again w? = % to write

26 1-¢2 26 1
=Cs+(—- ¢ y<Cs+|——-=]v
fon)) 2 oyp 4

Choosing § = §g = 09/ 16, yields
1
I'<Cs, — §7 <0 provided 1y > 8Cs,.

In conclusion, setting yo = max(1, 8Cs,) and wo = +/00/yo, we fulfil both condi-
tions (10.44) and (10.46) for any 0 < w < wy, by choosing the scaling parameter
¥ = 0p/w? > yo. This completes the proof. U]

Before establishing the linear convergence result for Algorithm 5.16 (one-step
AFEM with switch), we need to extend Assumption 10.2 (equivalence of error and
estimator) to the present situation, in which the estimator 74 is replaced by the full
estimator &4 defined in (10.39); see Theorem 4.45 (modified residual estimator).

Assumption 10.22 (equivalence of error and full estimator) There are constants
Cy > Cr, > 0 such that

CLE; <lu-ujllv <Cy&; j=>0, (10.49)
where &; = Eg; (ug;, f).

Theorem 10.23 (linear convergence for AFEM-SW) Let Assumptions 10.22
(equivalence of error and full estimator), 10.3 (estimator reduction), 10.17 (Lipschitz
continuity of estimator) and 10.20 (quasi-monotonicity of oscillation) be valid.
There exists wq € (0, 1] such that, for any choice of parameters 0 < w < wqy and
0 < &,0 < 1in AFEM-SW, constants 0 < p < 1 and ¢ > 0 exist for which

ejv1 <cplej Vi, jeEN, (10.50)
where e = |lu — uj||v.

Proof. By Assumption 10.22 and y > 1 in (10.41), we get the equivalence of
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error and scaled estimator

c: o
7{ = —(nj +7y 08¢} 2y < CLSZ < e <C 82 < C%,(n? +70sc§) = C%,gjz..
Invoking (10.42) yields

k
e} < CLa < CLp* g + AN Y EL

l=j+1
(jZ k
2 2
<vy 2p e]+CUAZE
Cj {=j+1

This inequality is similar to the expression (10.8) obtained in Step [1]in the proof
of Theorem 10.6. Therefore, we can finally proceed as in that proof and obtain the
desired result. Ul

10.3.3 Algorithm 5.28 (AFEM-TS)

As usual, DATA produces discrete data @k on a mesh ‘72 > Tx, whereas GALERKIN
produces an approximation uy,; on amesh 7x,1 > 7% to the exact solution i of the

boundary-value problem of interest with data 5k. Its kernel is given in Algorithm
5.4 (GALERKIN).

In order to proceed, we need some notation and some assumptions. Let us denote
by D(Q) the space of admissible data D for the boundary-value problem at hand;
let ||D|| p) be a (quasi-)norm on D(Q). If D collects all data of problem (10.36),
we write B = B(D)and F = F(D) = (f(D), -) to highlight the dependence of the
bilinear and linear forms on the chosen data; similarly, we write u = u(D) for the
corresponding solution. A perturbation D of D generates perturbed bilinear and
linear forms B = B(Zs) and F = T(ZA)) = (f(@), -}, and a perturbation & = u(@)
of u, which satisfies

HeV: Blu,w] = F[w] forallw e W. (10.51)

We assume, as in Section 5.4.2, that a call [T Z)] DATA(T D, T) generates
an admissible refinement 7~ of 7~ and discrete data D over 7, such that

1D - Dllp@) < CaataT (10.52)

where Cyaa > 0 depends on data (see Section 7.2). Finally, we associate to any
admissible refinement 7 of 7y, two finite dimensional spaces Vo C Vand Wg- ¢ W
of equal dimension, made of piecewise polynomial functions on 7 (typically, this is
accomplished by choosing a type of finite element compatible with the pair (V, W)
and adopting itin any 7 € T).

We are ready to state the assumptions which will rule our forthcoming analysis
of AFEM-TS.
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[’T Z)] DATA(T D,e) and let u = u(Z)) be the solution of (10.51). There
exists a constant Cp > 0, independent of 7~ and &, such that

Assumptlon 10.24 (perturbatlon estlmate) For any 7 € Tand & < go, let

lu—allv < CpllD - Dlpe. (10.53)

Note that, concatenating this inequality with (10.52) for T = &, we can quantify the
effect of a call to DATA on the perturbation of the exact solution; we have indeed

lu — ullv < CpCaatas. (10.54)

Assumption 10.25 (uniform continuity constant) For any T eTande < £o, let
[7", D] = DATA(T, D, &) and let B = B(D) be the associated bilinear form. There
exists a constant Cg > ||8]|, independent of 7~ and &, such that

1Bl < Cs. (10.55)

Assumptlon 10.26 (uniform 1nf-sup constant) For any 7 e Tand & < &, let
[‘T Z)] DATA(T D, e), let B = B(D) be the associated bilinear form, let 7~ be
either 7 or an admissible refinement of T and finally let Vo~ ¢ V, Wq € W be
the subspaces built on 7~ as above. There exists a constant 0 < B < B, independent
of 7, &, and 7, such that

) Blv,w]
inf sup

— = >3 (10.56)
weWqs veVy [VIlvlwllw

The last assumption guarantees the well-posedness of all the discrete variational
problems

ureVy: Blur,wy]=F[wes] Ywese Wy, (10.57)

associated with the successive refinements of the initial mesh 7y performed by
AFEM-TS.

We want to prove, as in the coercive case (see Proposition 5.27), that the number
of iterations performed in any call to GALERKIN inside AFEM-TS (which is finite
by Proposition 10.16) is indeed uniformly bounded.

Proposition 10.27 (computational cost of GALERKIN)  Ler Assumptions 10.2,
10.3, 10.24, 10.25, and 10.26 be valid. For any k € N, the number of subiterations
Ji inside a call to GALERKIN at iteration k of AFEM-TS is bounded by a constant
J independent of k.

Proof. Denote by 7 ; the successive refinements of ’77( defined in GALERKIN at
iteration k, and let ux ; € Vi, ; = Vg . be the corresponding Galerkin solutions,
which are approx1mat10ns of the solutlon Uy € V of the perturbed problem (10.51)
with forms 8 = Bk = B(Dk) and f fk =f (Dk) Note as well that we use a
posteriori estimators 77x ; = 17x, j(v) defined on Vi _;, which depend on Dk via the
coefficients of the equation. However, in reference to Assumptions 10.2 and 10.3,
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we always suppose the constants in the bounds (10.5) and (10.6) to be independent
of k and j.

Let us pick j := Jx — 1. By definition of stopping criterion in GALERKIN, and
by (10.5) and (10.7), we get

1, c i
ek < Mie,j(ur,j) < —lux —ur jllv < =—p’ lux — ur ollv. (10.58)
CL CL

The norm on the right-hand side can be bounded via Corollary 3.3 (quasi-monotoni-
city), applied to B := 8k, u:=ur € Vyun :==uro € Vy := V,r, and v := uy €
Vm =Vqg CVa (the output of GALERKIN at iteration k—1). Usmg Assumptions
10.25 (uniform contlnulty constant) and 10.26 (uniform inf-sup constant), we thus
have

lux — urollv < Alux — urllv, (10.59)

with 4 = 2.
At last, we use again the triangle inequality to get

ok — urllv < ik — tp—1llv + |@r-1 — wrllv
< |lu — wrllv + llu — wg—1llv + [lt—1 — wie|lv;

then, Assumption 10.24 (perturbation estimate) yields ||u — uk||v £ CpCqata WEL
and ||u — ux_1||v £ CpCaata wEK_1, Whereas the termination test for GALERKIN at
iteration k — 1 yields ||ux—; — ux||v < Cy €x—1. Hence, recalling ex_; = 2&; and
w <1, we get

lux —urllv < o ek (10.60)

with 0 = 3Cp Cyyra + 2Cy . Finally, concatenating (10.58), (10.59) and (10.60), we
obtain

CL
J > —
P clo’

which implies Jix < 1 + (log SL-)(log p)~! =: J. O

The remaining of this section is devoted to investigate the rate-optimality of
AFEMs for inf-sup stable problems. Precisely, we aim at establishing the analogue
of bound (6.1) for such problems, i.e.,

lu —ugllv < Clu, D) (#7) . (10.61)

To this end, we have to introduce approximation classes for the solution and the data,
and to study the quasi-optimality properties of mesh refinement and GALERKIN.

10.3.4  Nonlinear approximation classes
The definition of the approximation class A; = A (V; 7y) for functions in V is
identical to that given in Section 6.1.1 for functions in Hé (Q) (see Definition 6.1),
provided the norm |v| 4 L@ is replaced by the norm ||v||y at all occurrences.

In the rest of the section we will make the following regularity assumption.
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Assumption 10.28 (approximability of #) The exact solution u € V of problem
(10.36) belongs to the approximation class As(V; 7p) for some s = s, € (0, 5].

The approximation classes of a data D € D(Q) are defined via discrete ap-
proximations Dg € D¢ subordinate to a partition 7 € T, which produce the
oscillation

oscr(D) = inf [[D - Dylpe)-
Dby

Definition 10.29 (approximation classes of D) Let D, := D, (D(Q); 75) be the
set of data D € D(Q) satisfying

|D|p, = sup (NS inf oscf;—(D)) <o = inf oscy (D) < |DIp,N~°.
N >#75 TeTn TeTn ’
(10.62)

The following assumptions on the data of our boundary-value problem will be
valid in the rest of the section.

Assumption 10.30 (approximability of ) Thedata D € D(Q) of problem (10.36)
belongs to the approximation class Dy (D(Q); 76) for some s = s € (0, %].

Assumption 10.31 (quasi-optimality of DATA) A call [‘7', 13] = DATA(T, D, ¢)
marks a set of elements My whose cardinality N(D) = #M g obeys

1

N(D) 5 |D|? £ (10.63)

The concept of e-approximation of order s of u € Ay(V; ) is identical to the
one given in Definition 6.12, and so is the proof of the following result.

Lemma 10.32 (s-approximation of u of order s) Let u € Ay(V; 7)) and v € V
satisfy ||lu — v||lv < & for some 0 < & < gy. Then v is a 2e-approximation of order
s to u.

10.3.5 Rate-optimality of GALERKIN

To estimate the growth of the cardinality of the meshes produced inside a call to
GALERKIN, which always deals with discrete data, and to relate it to the approx-
imation class of the exact solution u#, we need an additional assumption of the
estimators 1o In the sequel, for any subset R c 7, we define n5(v, S) by

N7, 82 = > nr(v, 7).
TeS

Assumption 10.33 (discrete reliability of the estimator) There exists a constant
¢y > O such that for any 7 € T and any refinement 7; > 7, if R = Ry = T\ 7
is the set of refined elements of 7, it holds

lug: —ugllv < congr(us, R),

where ug and uq; (resp.) are the Galerkin solutions in V4 and V4 (resp.).
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We recall that the module MARK in GALERKIN implements Dorfler’s strategy,
i.e., for a fixed 6 € (0, 1], it identifies a subset M C 7 of elements undergoing
bisection by the condition

nr(us, M) > 6 ng(us). (10.64)

The following property is the analogue of the one stated in Lemma 6.16 for
coercive problems. Since the proof is similar, we omit it.

Lemma 10.34 (Dorfler marking) Let Assumptions 10.17 and 10.33 be valid. For
all0 < u < % there exists 0 < 6y < 1 such that, if T € T and 7. is a refinement of
T with refined set R = T\ T, and if the Galerkin solutions ug € Vqanduq. € Vq-

satisfy
nr(ur) < pnguy),
then
Oo nr(ur) < no(ur, R).

We are ready to investigate the rate-optimality of the k-th call to GALERKIN in
the two-step AFEM (see Definition 5.1). We denote by My ; C 7%, ; the marked
set at the j-th iteration inside GALERKIN (hereafter, we refer to the notation in the
proof of Proposition 10.27). To achieve quasi-optimality, the following assumption
is fundamental.

Assumption 10.35 (minimality of marked sets) The module MARK selects a set
M j with minimal cardinality among those satisfying Dorfler’s condition
Mk, jWr j M) 2 Ong j(ur, ;) Yk, j.

Proposition 10.36 (cardinality of marked sets) Let Assumptions 10.2, 10.24, 10.25,
10.26, 10.28, 10.17, 10.33 and 10.35 hold true. There exists a constant Cy > 0
independent of k and j such that the cardinality Ny ;j(u) of My ; satisfies
Ny j(u) < Co|u|1/s “l/s (10.65)

and

N jw) < Co luly) [l = ue ;157" (10.66)
Proof. The proof can be easily obtained by slightly adapting to the current abstract
setting the proof of Corollary 6.22, keeping also into account Proposition 6.18. []

Let M. denote the set of marked elements in GALERKIN at iteration £ of AFEM.
Since the cardinality Ng(u) = #M; of M, satisfies Ng(u) = Z]J" lNk ,j(u), we
can estimate its cardinality by combining Propositions 10.27 and 10.36.

Corollary 10.37 (rate-optimality of GALERKIN) Under the assumptions of Pro-
positions 10.27 and 10.36, the total number of marked elements M, in GALERKIN
at iteration k of AFEM satisfies

Nie(u) < J Colul*e ',
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10.3.6 Rate-optimality of AFEM-TS

At last, we focus on the two-step AFEM in Definition 5.1 (AFEM-TS), and prove its
rate-optimality, in relation to the nonlinear approximation classes of the solution u
and the problem data O.

Theorem 10.38 (rate-optimality of AFEM-TS) Under the same assumptions of
Proposition 10.36, plus Assumptions 10.30 and 10.31, there exists a constant C,
independent of u and D such that the sequence (T, V., ug ), k > 0, produced by
AFEM-TS satisfies

1/5u 1 § -
= wgelly < . (lal)> +1DIE)” (#75)
with 0 < s = min(s,,sp) < 7.

Proof.  Let us denote by M (M2, resp.) the set of elements marked by GALER-
KIN (by DATA, resp.) at iteration £ of AFEM. By Corollary 10.37 and Assumption
10.31, there exist constants D1, D, independent of u, D and k such that

N¢(u) < Dy Iuli@‘s;l”“, Ny(D) < D, |D|11D)/$ 821/5.’1).

Then, we conclude as in the proof of Theorem 6.24. UJ

10.4  The Stokes problem
Here we consider the Stokes problem

divu =0 in Q, (10.67)
u=90 on 0Q,

already introduced in Section 2.3. Assuming f € HY(Q;RY) = V¥, its weak
formulation is given in (2.15) or, equivalently, in (2.16), where the bilinear form
$ is continuous and inf-sup stable, as a consequence of Brezzi’s Theorem 2.11
(Brezzi); see Section 2.4.

A Galerkin discretization of this problem, based on finite dimensional subspaces
Vo € V = H(Q;RY) and Q7 C Q = L%(Q), reads as follows: find (ur, ps) €
V4 X Qg such that

a[urr,v]+b[p7~,v]:<f, V> VVGVT7

(10.68)
blg,us] =0 Vg € Qr,

or equivalently,

(wr,pr) €VerxQr: Blur,pr),v,9] =(f,v) V@, q € VrxQs.

We assume that the pair (V, Q) is uniformly inf-sup stable for the form b, i.e.,
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there exists a constant 8 > 0, independent of the refinement 7, such that

, blg,v]
inf sup

L (10.69)
qcarvevy [VIlvliwllw

This condition is equivalent to the uniform inf-sup stability of the bilinear form 8
on the product space Xq := V4 X Q4. Then, applying a discrete form of Brezzi’s
Theorem, we obtain the existence and uniqueness of the solution of (10.68), which
satisfies the stability bound

lerllv +llprile < Cllfllv (10.70)

where C only depends on the continuity constant ||a|| and the coercivity constant
a of the form a, and the inf-sup constant 8. Furthermore, we have the quasi-best
approximation bounds ([Boffi er al. 2013, Proposition 8.2.1])

lu-ugllv < Ci min|lu-v|v + Ci2 min [[p—gqllg (10.71)
vevy q€Qr

IA

lp - prillv Cy1 min |lu —v|lv + Cx» min [lp —¢gllg  (10.72)
veVy q€Qr

where the constants C;;, 1 < i, j < 2, only depend on the quantities ||a||, [|b]],
and S.

There are many families of finite element spaces that are uniformly inf-sup
stable for the Stokes problem; see [Boffi ef al. 2013, Chapter 8]. Among them, we
consider here the Taylor-Hood element [ Taylor and Hood 1973] and its higher-order
versions. They all use continuous discrete pressures, so they fit in the general form

Vy = {ve Hy( R vlr eV, TeT}
Qr = {qgeLl2@nC’Q): qlr € Or, T € T),

where V; and Qr are spaces of polynomials on the element 7. Considering
simplicial elements, we have for n > 2

Vr =@M,  Qr =P,_(I). (10.73)

The convergence and optimality of an adaptive algorithm for the Stokes problem
based on Taylor-Hood elements was first established by Feischl [Feischl 2019] (see
also [Feischl 2022, Section 6]). We aim at deriving a similar result using the
abstract framework presented in this section.

We start by developing the a posteriori error analysis, and for this we introduce
the weak residual

(R, (v,q)) =(f,v) = Bl(ur,p7r), (v,q)] V(v,q) € VXQ,

which we represent as Ry = (R, R) according to the momentum and continuity
equations; note that R = divus. The continuity and inf-sup stability properties
of the exact Stokes form B yield the equivalence

lu —urllv+llp - pril = IR7llvexg = IRF v + I divaspag).  (10.74)
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We now apply Corollary 4.6 (star localization of residual norm) to each component
of the momentum residual R to get

”R ”V* ~ Z ”R (H l(w ))d’
zeV

whereas Lemma 4.35 (splitting of local residual norm) yields the equivalence
”R ”(H Hw2)) ~ ||PTf+Au7—_ VPTH(ZH—I((UZ))d + ”f - PTf”(ZH—l(wZ))d'

In view of mesh refinement, we recall Lemma 4.8 (localization re-indexing) and
we express the error indicator in terms of elements 7' € 7 rather than stars w,, in
analogy with the scalar case (4.52). To this end, define

77?]1'(”73 P> T)z = h%‘ ”PTf + AuT - VP’]’ll(sz(T))d

thr Y MuDrel] = Prf gy (1075)
F coT\oQ

oscr(f, T)%1 =f- P’ff“(zH-'(wT))"'

Note that the jump term [[(Vus)rp]] does not contain the pressure contribution,
since discrete pressures in Q4 are globally continuous. We thus have

IR ~ 3 (nipur, pr. T + oser(£.12,). (10.76)
TeT

Recalling (10.74), the full local PDE residual indicator could be defined as
T]‘T(”T’ pPT, T)2 = T];n“(uTy P, T)2 + “ div u‘T“%}(T)

However, such a quantity is not guaranteed to strictly reduce under mesh refinement,
due to the presence of the divergence term, which is not scaled by a positive power
of the meshsize. The following result provides an equivalent expression of the last
term, which does reduce. We recall the definition (9.1) of jumps across faces.

Lemma 10.39 (norm equivalence for divergence) It holds

. 2
ldivarliag ~ D, >, helldivas] [y
T eT FcoT\oQ

Proof. The result follows from applying to ¢ = div u 4 the equivalence

le -Trellag > > > hellllel 2y, Veesy"
T eT FcoT\oQ

(where TIg is the L?-orthogonal projection upon S;‘fl’o), after observing that
II+¢ = 0 since uq4 is discretely divergence-free, i.e., it satisfies the second set
of equations in (10.68)). To prove the equivalence for arbitrary ¢ € S’;._ L1 we

use the quasi-interpolation operator 7, 7‘1G introduced in Section 9.1.2, which leaves
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ST 1.0 invariant. Then, it is easily seen that
2l 4G 2
”(p_H'TSDHLZ(Q) ~ ”SD I‘T 90||L2(Q),

S0, it is enough to prove the equivalence with Il4 replaced by I,/QG. But this
calculation can be done on patches wr since ]'7(16 is quasi-local:

d -1,-1
lo = Z912 0y 5 D b @D 122, S lle = L2, Ve e sy

F cwr

The first inequality follows from (9.10) (see also [Binsch, Morin and Nochetto
2002, Proposition 5.4]). The second inequality results from the fact that if the
rightmost term vanishes on wr, then ¢ = Iﬁth, whence ¢ is continuous in wr.

This yields [[¢]] | = O for all internal faces F of w7 and the middle term vanishes.
O

Applying Lemma 10.39, we are led to define the elemental residual indicator

777'(" T>s DT> T)2 = n’;l”(u T>s DT> T)2 + hT Z ” [[le u'T]] ”12(}:) (1077)
F coT\oQ

Concatenating (10.74), (10.76) and Lemma 10.39, we fulfill Assumption 10.22
(equivalence of error and full estimator). The precise result is as follows.

Proposition 10.40 (a posteriori error analysis for Stokes) There exists constants
Cy > CL > 0 such that

CLErug,pr. ) < llu—uglv+lp - prlle < Cu&r(ur, pr, ),
where the full estimator is defined by

Erur, pr, f)* = Z Erur, pr, f.T)
TeT
with Eq(ur, pr, . T)* = ny(us, pr, T)* + oscy(f, T)? | introduced in (10.77)
and (10.75) and osc-(f,T)-1 = |l.f — Pofllz1- -

wr)

Since the Stokes problem has constant coefficients but variable forcing, it is
natural to resort to Algorithm 5.16 (AFEM-SW), the one-step AFEM with switch, for
its adaptive discretization. With respect to the functional setting of Section 10.3.2,
the ambient space W is V x Q and the data projection operator Py is

Py = ((PPY G W — Ep? xs"
where Fq is the scalar discrete space introduced in Definition 4.17, P4 is here
the scalar projection operator introduced in Definition 4.24, and 117~ is the L?-
orthogonal projection upon S"~!>~!. Furthermore, the norm used to measure data
PR 2 _ 2 2
perturbatlons 18 ”(f’ g)”wfr - ZTGT (”‘fH(H‘l(wT))d + ||g||L2(T))

It is easily seen that ny(u, ps, T) satisfies Assumptions 10.17 (Lipschitz con-
tinuity of estimator) and 10.18 (monotonicity of estimator) as well as the hypotheses
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of Proposition 10.19 (estimator reduction under Dérfler marking): the estimator is
clearly Lipschitz continuous and monotone, and it satisfies condition (10.38) since
all its addends appear multiplied by a positive power of the meshsize. In addition,
the oscillation osc((f,g)) = ||(f,g) — P+(f, g)||w»«7 fulfills Assumption 10.20
(quasi-monotonicity of oscillation).

Theorem 10.23 (linear convergence for AFEM-SW) provides sufficient conditions
for the linear convergence of the algorithm, and these conditions have been verified
along the previous discussion. Therefore, we may summarize our findings in the
following theorem.

Theorem 10.41 (linear convergence for Stokes) Consider the Galerkin discret-
ization (10.68) of the Stokes problem which uses Taylor-Hood elements of order
n > 2, and let the a posteriori estimator be given in Proposition 10.40. Then,
Theorem 10.6 guarantees the linear convergence of Algorithm 5.16 (AFEM-SW)
applied to this problem, i.e., it holds for some ¢ > 0and 0 < p < 1

ejsi < cpiej Vi,j €N,
withe; := [V —uj)lla+llp - pjlle. U

In order to assess the optimality of the discretization, we specify the definition
of approximation classes for the solution of the Stokes problem. Precisely, given
(v,q) € VxQ we let on(v, g) be the smallest approximation error incurred on
(v, g) with elements in V4 X Q4 over meshes belonging to Ty :

on(v,q) = inf inf Vo —vpll3 +llg - grl15) > 10.78

voLg)= inf it (V0 vl +llg - arl)! (1078)

For 0 < s < n/d, the class Ag = A (V x Q; Tp), relative to the partition 7 is the
set of functions (v, g) € V X Q such that

v, la, = sup (N'on(v,q)) < oo (10.79)
N >#7,
By adapting the arguments used in the proof of Theorem 6.20 (rate optimality of
one-step AFEMs), we can prove the following result.

Theorem 10.42 (rate optimality of AFEM-SW for Stokes) Let the assumptions of
Theorem 10.41 be valid. If (u, p) € Ay, then the sequence {Ti, Vi, Uk, Pr) >0
generated by AFEM-SW are such that

IV —ull 2 + 1P = Prlliag) S 1w, p)la,#T) ™, k2 0. (10.80)

Remark 10.43 (limits of the analysis) Other inf-sup stable elements, such as the
Mini element or the Crouzeix-Raviart element (see e.g. [Boffi et al. 2013]), do
not fit in the present setting of analysis, since their velocities contain elementwise
bubble components (which are indeed responsible for the stability of the elements).
Unfortunately, a bubble on an element does not restricts to two bubbles when the
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element is bisected, preventing the nestedness condition V4 C V- to be satisfied
when 7 is a refinement of 7.

10.5 Mixed FEMs for scalar elliptic PDEs
The diffusion-reaction problem (2.5) can be formulated in mixed form as follows:
Alo=Vu inQ,
—divo+cu=f in Q, (10.81)
u=0 onodQ.

Introducing the porosity matrix K := A~', we assume hereafter that data
D = (K.c, f) € D(Q) := M(a1,a2) X R(c1, ¢2) X LAQ), (10.82)

where M (a1, @y) and R(cy, c») are defined in (5.48) and (5.49), respectively. Note
that the current parameters ap, a; are the reciprocals of aj, a; in (5.48), but to
avoid complicating the notation further, we relabel them hereafter.

Weak formulation. To write the weak formulation of these equations, we introduce
the Hilbert space

H(div; Q) := {r € L*(;R?) : divr € L*(Q)} (10.83)
2 .
H(div;Q) *
first equation in (10.81) by 7 € H(div; Q) and the second equation by v € L3(Q),
we integrate over € and apply partial integration to the term containing Vu, keeping
into account the Dirichlet boundary condition. In this way, we obtain the following
variational problem: find (o, u) € V := H(div; Q) X L*(€) such that

equipped with the norm ||7|| = ||‘z'||f.2 + || diVT”é. Then, we multiply the

/K0'-7'+/udiv7':0 V1 e H(div; Q),
Q Q (10.84)
/vdiva—/cuv :—/fv Vv e L2(Q).
Q Q Q
This can be written as: find (o, u) € V X Q such that
alo,t] +blu,t] =0 Yoev,
(10.85)

blv,o]l +m[u,v] = ={f,v) Vv eQ,

if we set V := H(div; Q), Q = L*(Q), and we introduce the continuous bilinear
formsa: VXV - R, b: OXV - Randm: O XQ — Rby

a[a’,‘r]:/Ka'-‘r, b[v,‘r]z/vdivr, m[u,v]z—/cuv,
Q Q Q

and the linear form (f, v) = fg fv. An equivalent formulation, similar to (2.16),
is as follows:

(o,u)eVxQ: Bl(o,u),(t,v)]==(f,v) VY(r,v)eVxQ, (10.86)
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with
Bl(o,u),(t,v)] :=alo,v] +blu, 7] + b[v, o] + m[u,v].

Formulation (10.85) is a generalization of the classical saddle point problem
considered in Section 2.4, given by the presence of the third bilinear form m.
According to [Boffi er al. 2013, Theorem 4.3.1], the well-posedness of such a
problem can be derived from the three following conditions:

(i) the form a is coerciveon Vo = {r € V : b[v, 7] =0forall v € Q},
(ii) the form b satisfies an inf-sup condition on V X Q,
(iii) the form m is non-positive on Q, i.e., m[v,v] < Oforall v € Q.

These conditions are easily checked for our mixed formulation of the Dirichlet
problem.

Discretization. To define a finite element discretization of this problem, we consider
partitions 7~ € T obtained by conforming bisection refinements of an initial parti-
tion 7y, and let Vo~ € V and Q4 C Q be finite dimensional subspaces made of piece-
wise polynomial functions on 7. Among the families of uniformly inf-sup stable
finite element spaces for this problem, we consider the Raviart-Thomas-Nédélec
family [Raviart and Thomas 1977, Nédélec 1980], and the Brezzi-Douglas-Marini
family [Brezzi, Douglas and Marini 1985] on simplicial elements. They fit into the
general definition

Vi = {teHWiv;Q): tlr €V, TeT},
Or = {qeLl’@: qlr €Qr, TeT}.
For the Raviart-Thomas-Nédélec (RTN) family we have

Vi = @uo M) +x Py (1), Or =P (D), n>1,
where x = (x1,...,xg) is the coordinate vector, whereas for the Brezzi-Douglas-
Marini (BDM) family we have
Vi =@u(M),  Qr =Pu(D), n>1.

Note that for any face F of the triangulation it holds 7| - np € P,_|(F) for the
RTN family, and 7| -np € P,(F) for the BDM family; furthermore, divVy = Q7.
We refer to [Boffi er al. 2013, Sects. 2.3.1 and 7.1.2] for more details.

Due to the presence of variable data, it is natural to perform the adaptive discret-
ization of the problem by adopting Algorithm 5.28 (AFEM-TS), the two-step AFEM.
The procedure [‘/7: , 23] = DATA(T, D, 7) generates an admissible refinement T of
7 and discrete data

- T~ A L —1,-17dxd -1,-1 -1,-1
D=(K,c f) €Dz = [S’% | xsﬁ/_i_ xs';
over 7, such that K € M(@y,@,), ¢ € R(C1, ) (see Sects. 7.2.2 and 7.2.3), and
1D - @”5(9) < CdataT,
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where the space B(Q) is defined in (5.55).
The Galerkin discretization with these discrete data reads: find (o, uq) €

Vg x Q¢ such that

alor, ] +blus,t] =0 V1 eVs,
R —~ (10.87)
b[V, O-T] +m[u¢, V] = _<f’ V> Vv e Q'Ta

with

a[G,T]=[zRU-T, fﬁ[u,v]z—/g?uv, (f,v):/gfv,

or equivalently,
(O ur) €Verx Qg :  Bl(osug), (@] =—(f,v) V(r,v)eVrxOr.

A posteriori error estimator. Let us denote by (o7, ) € V X Q the exact solution of
the perturbed problem

B@, D), (t,»)] =—(f,v) V(r,v) eV xQ;

note that the forcing f appears with a negative sign. Then, by continuity and
uniform inf-sup stability of the form B, we know that the error

o = o7 llH@ive) + |l - urll2)

is equivalent to the quantity

sup Bl -o7r,u—up),(T,v)] _ (f,v) +Bl(oT,ur), (7,v)]
@vevxe  ITlladv:e + V2@ @nevxo TG + V2 g)

By Galerkin orthogonality, the numerator is equal to

(Fov=vry+Bl(orup).(t —tr,v-vp]  V(Trrve) € Vrx Or,

that we now proceed to estimate. The term

Bl(o 7, ur), (t — 77, 0)]

can be analyzed as in Carstensen [Carstensen 1997] (see also [Verfiirth 2013,
Section 4.8]), by resorting to a stable decomposition of H(div; £2): precisely, given
T € H(div; Q), there exist ® € (H'(Q))? and u € (H'(Q))¢ such that

T=®+curl u (10.88)

with [|®| g1y + el (grye S ITllH@ive) (see [Xu, Chen and Nochetto 2009,
Section 5.1.3]). Note that if Q is convex, then (10.88) is the Helmholtz decompos-
ition of 7, with ® = VG for some G € (H*(Q))4. Using (10.88) and a suitable
choice of T4, one can show that

1Bl(o 7 ug), (1 = T 0| < 171 (07 ur) 1Tl H@ive (10.89)



296

with
nralorur) = ) nri(er,ur), )
TeT
and
N1 (@7 un), TV = hp | Koy = Vug|l}, ., + byl cud(Ro )17
F coT\oQ F coTnoQ
(10.90)

where ¢, = ¢ — (¢ - np)np denotes the tangential component of the vector field ¢
on F. On the other hand, the term

(Fov = ve) + Bl(@gur). O.v - vy)] = /Q (F+divor - up)v - ve)

can be bounded as follows. For any 7" € 7, let [Ir = H?‘l be the L?-orthogonal
projection upon Qr = P,_1(T), and let us choose (v4)|r = [Irv. Then, noticing
that f + divo 4 € Qr, we have

/ (f +divos — Cur)(v — ve) = Z / (f +divog — I Cug)(v — Hrv)
Q T

TeT

- Z T(Ewr— N7 (Cuq))(v —zv)
TeT

=- > T(EMT— My (Cur))v,
TeT
(10.91)

whence

(KFov =vr) + Blorup), 0.y —vpll £ Y 1Eur - Ty Cupll 2 IVl 2 -
TeT

Conversely, it is easily checked that (10.91) implies the bound
lcusr - HT(EMT)”LZ(T) < |[divo —div 0'T||L2(T) + el |l = M?’”LZ(T)-

The choice n = 1 yields cuq € Pyo(T), hence, cuq — Iy (cus)=0. Forn > 2,
we could define as a (squared) local error indicator the quantity

7107, ug), TV + |[Cug = Ty (Cug)ll 2, »

but the second addend is not guaranteed to reduce under refinement, since it is
not scaled by a positive power of the meshsize. However, there is an equivalent
quantity which does reduce, as stated in the following result.

Lemma 10.44 (equivalence of local error indicators) Assume ¢,uq € P,,_1(T),
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forn > 2. Let H% be the L*-orthogonal projection upon P i(T). Then,

n
~ ~ —1-j ~ )
ICus = Ty @ur)ll 2y  hr Y Nur =g gl 2 IVE = T 2VEl| Loer),
J=1
(10.92)
where the constants hidden in the symbol ~ are independent of ¢, ug, and T.

Proof. By the Bramble-Hilbert theorem,

lcus =Ny (cupll2ery S hylcug|anr)

and

n—1

lcuglunr) < Z |lywi oyl m=icr)-

J=1

Moreover,
2
iy = Vel = Ve =T Vel o

and

—1-i
luglgn-icry = lugr =T ug| gn-ir).

Applying inverse estimates for semi-norms, we obtain the < inequality in (10.92).
To get the opposite inequality, it is enough to check that the vanishing of the
left-hand side implies the vanishing of the right-hand side, since both quantities are
defined on finite-dimensional spaces and their scaling with respect to the element
size is the same. Now, cuq = Iy (cCug) implies cuq € P,_1(T). Let us assume
that uq € P,,_;_x(T) for some 0 < k < n — 1, and consequently ¢ € Pr(T), i.e.,
V¢ € Pr_1(T). Then, H;_I_J ug = uq for any j < k, hence, the corresponding
differences in the summation on the right-hand side of (10.92) vanish. Conversely,
for j > k we have j —2 > k — 1, which implies H’T_ZVE = Vg, that is the
corresponding differences in the summation on the right-hand side vanish. In
conclusion, all terms in the summation in (10.92) vanish, and the thesis is proven.
Ul

Summarizing, we have obtained the following result.

Proposition 10.45 (a posteriori error estimator for mixed methods) For every
T € T, the following local quantity

N7 (@7 ur), T = hpllKor = Vugll} o, + i |l cu (Kol 5,

+hr Y MEeD N oy +hr D Kool
F caT\oQ FcaTNoQ (10.93)

2 -1=j, 2 ~ ~2 g2
+hig ) ey =T ur o IVE = 1V ell o

J=1
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is a (squared) a posteriori error indicator for the mixed problem (10.87), which
gives rise to a global a posteriori error estimator nq(0 7, us) that satisfies As-
sumption 10.2. O

Finally, Assumption 10.3 follows from Proposition 10.19 (estimator reduction
under Dorfler marking), since the estimator is clearly Lipschitz continuous and
monotone, and it satisfies condition (10.38) since all its addends are scaled by
positive powers of the meshsize.

As a consequence, the GALERKIN step in AFEM-TS converges linearly by The-
orem 10.6, and the number of sub-iterations in the k-th call to GALERKIN is
bounded by a constant J independent of k (Proposition 10.27). Furthermore,
Theorem 10.38 guarantees the quasi-optimality of the two-step AFEM.

Theorem 10.46 (quasi-optimality of AFEM-TS for mixed methods) Let the ex-
act solution (o ,u) of the mixed problem (10.84) belong to the approximation
class A;,(V;T) and let the data (K,c, f) belong to the approximation class
Dy, (D(L2); 7). Let Assumptions 6.14 (marking parameter), 6.21 (size of w),
and 6.19 (initial labeling) be valid. Consider the Galerkin discretization (10.87)
based on one of the Raviart-Thomas-Nédélec or Brezzi-Douglas-Marini finite ele-
ment pairs. There exists a constant C, independent of the exact solution (o, u) and
the data D = (K, c, f) such that the sequence {(’7},\777c X Q. (o7, Mﬁ))}kzo
produced by AFEM-TS satisfies for k > 0

1/su 1 $ -
lo = @ v + = ull 2 < C. (1wl +1DIE)” (#7)™,
with 0 < s = min(s,,sp) < 7. L]

Remark 10.47 Another family of uniformly inf-sup stable spaces is the Brezzi-
Douglas-Fortin-Marini’s (see [Brezzi, Douglas, Fortin and Marini 1987]), where
Vr ={r e ®a(M)? : 7 -np € P,_i(F)VF € F N AT} and Q7 = P, (T), n > 1.
However, the imposed condition on the normal component of vector fields on each
face of 7 prevents the inclusion of V¢ into V4 to hold if 7; is a bisection refinement
of 7.

10.6  Proof of Theorem 10.15

This section is devoted to establishing Theorem 10.15, which in turn contributes
with Corollary 10.14 to the proof of Theorem 10.6.

It is important to notice that the growth of ||U||, is dictated by the number of
blocks N rather than the actual dimension ny > N of U. Therefore, we again use
the block notation from Section 10.2

B = (B(i, j))z\,]_]:() € RnNXnN’
with lower and upper triangular factors

L= (L(l, j))zl‘?]j:O S RannN’ U= (U(l’-]))f\,]J:O € RINXAN
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We also set
A = (AG D} =g = VaB

for a suitable parameter @ > 0 defined below.

10.6.1 Representation of block inverse matrices
We first show that it suffices to derive the estimates

U s NP p>2, (10.94)
10 < NP psa2, (10.95)
ID]]2 s 1, (10.96)

where BT = LU is the normalized block triangular decomposition of B”, and
D e R"™>*"N gstands for the block diagonal part of U,
In fact, in view of property (P1) (continuity of $), we see that

IBll2 = I1B" Il < IBI,

whence
L=BU "= |[L|l> < IBINU ]2 < IBINU |2

and, similarly,
Ll < 181D |1 -
On the other hand, from
B=LD(D''U) = B"=U"D")DL"

we infer that
(10.97)

which implies
=T
[Ull2 < ID]2f[L" |2,
- =T
IL7M 2 < DT 2.

Therefore, we can focus on proving (10.94) and (10.96), since the proof of
(10.95) is identical to that of (10.94). We proceed in several steps. The most
delicate estimate is (10.94).

[1] j-th column of U~'. To prove (10.94), it turns out to be convenient to get first
an explicit expression for the j-th column of U~!. We achieve this next.
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Lemma 10.48 (representation of the j-th column of U~!) We have
U'G,j))=B[j]"'G,j)) VYO0<i<j<N. (10.98)
Proof. 'We compute the (i, j) block of B[j]! =U[j]"'L[j]7!

J
B[j17'G, /) = ) U /16 L /1K, ) = ULTTG, j)
k=0

because L™ (k, j) = 0 for k < j and L™'(j, j) = I(j, j). Moreover, we claim that
UG ) =0T i<
because U~ is block upper triangular. To see this, let
x(, ) =U"(, j) e R™>*di
be the j-th block column of U~!, which satisfies
Ux(:, j)=1I(, j) e R"™>%

Since I(i, j) = 0 for i > j and U is block upper triangular, we have x(i, j) = 0 for
i > j. Therefore, the matrix

%G, j) = (G, ), € R
with the first j blocks of x(:, j) satisfies the reduced system
ULj1G. DxG. D =13, )
EU[j](i, KEk, =0 0<i<j.
k=i
We thus deduce that %(:, /) = U[7]7'(:, j), as asserted. O
This lemma justifies dealing with B[]~!.

Representation of B[ j]~'. We resort to the Neumann series expansion. We first
consider the uniform SPD matrix

B[j1B[j]" e R*
for which there exists @ > 0 such that
1111 = aB[j1B[1" Il < 1
uniformly in j. In fact, note that for x € R
Ilx = aB[j1B[j1" xI3 = IlxI3 - 2a(x, B[j1B[j]"x) +*|B[j1B[j]" xI;3

as well as
(x, B[j1B[j1"x) = IB[j]1" x5 > B*lIxII5
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in view of property (P2) (discrete inf-sup) and (3.2), and
IBLBLT x> < IBLIGIxN2 < IBI17 (1]l

Consequently

Ilx —aB[j1BLj1" x5 < (1 - 228> + 2 I1BI*) IIx]I3.

The quadratic polynomial in @ on the right-hand side is minimized by a = IIgZII =
and gives
T2 B 2
1] -aB[j1BLj1" I < 1 - T (10.99)

From now on, we fix this value of @ and assume the uniform bound (10.99). Let
= VaB[j] € RV
be the j-th principal section of the matrix A introduced previously, and let

G[j]:=1I[j]-A[jl1A[j]" eR"Y*". (10.100)

Lemma 10.49 (representation of B[j]™1) The following expression is valid
B[jl1"' = aB]j ZG VO<j<N. (10.101)

Proof. Since ||G[j]]l2 £ p < 1 according to (10.99), the Neumann series theorem
guarantees that

A[j1A[j1" =11j] - G[/]

is invertible and the inverse reads
AT AT = Z Glj]"

where G[j]° = I[j]. Multiplying on the left by A[j]7, we obtain

1
—B[j17' = VeBl[j] ) G[jI"
i )
which yields the assertion. U

Representation of U~'. In order to obtain a representation of U~', we now build
on (10.98), which gives a formula for the j-th column of U~! in terms of B[]},
and (10.101), which provides a series representation of B[j]~!. To this end, we
introduce the block upper triangular matrix G,,, € R"™>"N given by

Gl 1 i<
Gl ) = {0 LG 7y :j
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form > 1 and Gy = I. Hence,

B AT Gm . [ <
Ul ) = a( [/] r;) []]) @Gj) i<j

0 i>].
To write this expression in compact form, it is convenient to introduce the block
upper triangular truncation operator U : R"N>*"N — R'"NX"N defined by
M@G,j) i<j
0 L

UM, j) = { VM € R'™X'N

Lemma 10.50 (representation of U =1y There holds

U'l=alU (BT Z Gm> . (10.102)

m=0

Proof.  Since G, is block upper triangular for all m > 0, sois the series 3., _, G .
It thus suffices to check that

(BT >, Gm) (ij) = (B[j]T >, Gm[j]> @.j) i<
m=0

m=0
This shows the desired relation (10.102). 0

Recursion. In order to estimate G,,, it is useful to relate G, with G,,_;. We
start with a simple property of the operator U: for A,B e R and1 <i < j <n,
there holds

n J
(AUB),; =), A UBN; = ) A Bij = (AL/1BL1)G. ).
k=1 k=1

Lemma 10.51 (recursion) The following is valid for allm > 1
Gn=Gp1-UAUA"G)), (10.103)
with Go = 1. Therefore, the j-th column of G, reads
G.,0:j,)=G[jlGp_1(0:j,j) 0<j<N. (10.104)
Proof. Take first m = 1 and apply the proceeding relation for 0 < i < j < N to

obtain
(Go—U (A UM Gy))) G, /) = 1G, /) - (A UAD)) G, j)
=1G.)) - AIALTN G )
= G[j1G. j) = G\, ),
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in light of (10.100). Take next m > 1 and 0 < i < j to arrive at

(Gt = U (A UAT G ) G )
J
=G, )= > AGK)AT (kO G (L))
k,l=1

(1171 - ALFIAL]Y) G, O G i (L, )

D 2

G[j1G, O G[1™'(¢, )

i)
1l

1

=G[j1"G, j) = Gm(, J).
This is the asserted equality (10.103). The remaining relation (10.104) follows
from the last equality upon realizing that

Gm(0: j, ) = (G, D)o = GLIG 1™ O : . /) = G[]1Gma(0: f, ).
This completes the proof. U

Schatten norms. Inthe view Lemmas 10.51 (recursion) and 10.50 (representation
of U™!), we intend to estimate ||U~" ||, in terms of suitable norms of G, that depend
on the number N of blocks rather than the dimension n, because ny > N. These
special norms are called block Schatten norms.

However, for the sake of clarity, we start with the definition and properties of the
usual Schatten norms. They include the operator 2-norm, the Frobenius norm, and
satisfy a Holder inequality.

Definition 10.52 (Schatten norms) Given M € R™™" let
oM)zoM)=--->20,(M)>0

be the singular values of M. Given 1 < p < oo, let the p-Schatten norm be

n 1/p
M|, = (Z a’m(M)p> .
m=1

Remark 10.53 Note that if p = co the Schatten norm reduces to the 2-norm, i.e.
Mo = o1(M) = || M]||2,

and if p = 2 it is equivalent to the Frobenius norm,

N 12 N 12
M, = <Z am<M>2> : (Z M,%-) = M.
m=1 m=1

We now list a number of useful properties of these norms.
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Lemma 10.54 (properties of | - |,) The following properties hold for 1 < p < oo:
(i) f(M"M)= (M = |[M"M|,=|M|},
(i) oi(M)=cs(M") = M|, =|M"|,
(iii) Holder inequality: for % = % + é, withr,p,q € [1, o],
M| M>|, < M|, M|,

(iv) [UM)| < log(n) | Mo
) [UM)|y <2771 M|,

Remark 10.55 Properties (i) and (ii) are trivial. We refer to [Dunford and Schwartz
1988, Lemma XI1.9.20] for property (iii), to [Bhatia 2000, Eq (15)] for property
(iv), and to [Davies 1988] and [Feischl 2022, Lemma 17] for property (v).

To define the block Schatten norms, we consider the subspace Dj, of RV XN+
of matrices of the form

Xo
X
X = N , X;eRY 0<j<N,
Xn

or equivalently

XeD, <= X;=0 Vi#nji_1+1,...,n;.
We can represent X using block notation as follows:

X=X X)) eRY,

where

o X i=7
X(m:{f =/
0 i#].

Given a block matrix M = (M (i, j))f.\’/jzo € R"™*" we consider
MX = (M(l, J)X]) fvj:() e RI’LNX(N+1),
namely the j-th block column of M X is

(MG, )X,) Y, e R,

Definition 10.56 (block Schatten norms) For 1 < p < oo, let

M|p, = sup IMX|, VY M € R'WX'N
XeDy, |X|u<l
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Note the unusual norm |X|. instead of |X|, in this definition of operator norm
|M|p,,. This choice is deliberate and will be useful later; see Remark 10.58.
We now list important properties of the block Schatten norms; see [Feischl 2022,
Lemmas 15, 16, 17] for proofs.

Lemma 10.57 (properties of | - |5 ,) The following properties hold forall M, M, M, €
R"NXN gnd 1 < p < oo:

(i) |Mlp,, < (N+D'"P M| = (N +D'P||M|)2
(ii) | M iM>|p,p < |Mi|e|Ma2lp,p
(”1) |M|oo < |M|b,p; |M|b,oo = |M|oo
(iv) If My € R"™N>*"N s block triangular with j-th block column

Mi(0:j,j)=P;M0:j,j), P; e RV
for0 < j <N, then

IMi]p2 < max |Pjle |M2l|p2
0<j<N

(V) [UDM)|pox <2 M|y k=12
(vi) [UM)]w < (Mogy(N)] +1) [M]c.

Remark 10.58 To understand the significance of Definition 10.56, we examine the
growth of the usual and block p-Schatten norm relative to the co-Schatten norm for
1 < p < oo. Given M € R"™ "N 'we have for the usual p-norm

nn I/p
M|, = (Z m(M)P> < o1 (M) = ny | Ml = P | M),

i=1
whereas for the block p-norm we get
My < (N +D'P[Mw = (N + D7 M,

according to Lemma 10.57 (i). In fact, given X € Dp with |X|e = || X]|]2 = 1, we

first note that
1

p

N
MX|, = | Y o (MX)P | < oo(MX)N +1)7 = [MX|o(N +1)7,
Jj=0

and also that

MXx Xx
IMXxlly v 1l

IMX||, = ——
X €RN+ [lx {2 X €RN+ [l ]2

< [[M]]2

because ||M||» = |[M|e = 1. On the one hand, this explains why it is convenient to
have the norm | X|., rather than | X|,, in Definition 10.56. On the other hand, this
calculation reveals the key point that

M|y, < |M]p
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because the growth of [M|; , is dictated by the number of blocks N + 1 whereas
that of | M|, is proportional to the dimension ny of M and ny > N. This property
is essential in the estimate of ||[U~!||» below.

[s] Estimate of |\U~"||>. We are now in a position to prove the desired bound (10.94).

Proposition 10.59 (estimate of ||[U™!||2) Let B € R"™ "N be a block matrix such
that

1
-1 1
1Bl < I8l omax, IBLj17" ]2 < 3

Then there exist constants Cry and p > 2 such that the block upper triangular
factor U of B satisfies

U2 < CLuN'P. (10.105)
Proof. Werecall (10.102) of Lemma 10.50 (representation of U -1

U—lzafLI(BTiGm),

m=0

along with (10.103) of Lemma 10.51 (recursion)
Gn=Gu1-UAUAG,1)) m21
and (10.104) of Lemma 10.51
GO:j,))=G[jlGm-1(0:j,j) 0<j<N,

with Gy = I. We use these expressions in conjunction with Lemma 10.57 (proper-
ties of | - |5, ,,) to prove (10.105). We proceed in several steps.

(i) Bound for |G |p.». In light of (10.99) and (10.100)

4
G/l = G2 < p =41 - ”2”4 <1 0sj<N.

Applying Lemma 10.57 (iv) to G, yields

|Gmlp2 < omax, G [/l [Gm-1lp,2
<P lGm-1lp2 < p™ lpp.

Recalling Lemma 10.57 (i)
b2 < N+ DI = (N + D'V,

whence
1Gmlbo < p™ (N+ 12

We observe that this bound is not good enough for our purposes because it
scales like N'/? instead of N'/P for p > 2. We next improve upon this bound.
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(iv)
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Bound for |G,|p.4. We take k = 2 in Lemma 10.57 (v) and use the triangle
inequality to arrive at
1Gmlba <1Gm-tlpa+|U (A UATG 1)) |ba
<G m-1lpa+21A UAT G o))l a-
We further apply Lemma 10.57 (ii) and (v) to obtain
|A UAT G-Dlpa < 2|Alw |AT Gpustlba < 2|ALR |Gt lb 4

Therefore,
1Gmlpa < (1+4]A1%) G meilpa

but the prefactor on the right-hand side is greater than 1 and so not suitable
for iteration. We still have

G lpa < (1+41412)" 15 4.
Bound for |G,,|. We combine the estimates from steps 1 and 2 to exploit
their relative merits. Recall from Lemma 10.57 (iii) that
|Gl < |Gm|b,p V1l < p < o0,
Take p =2,4 and 0 < ¢ < 1 to be chosen later, and write
Gl < |Gl 31Gmll,
< l—tl 4A2lmll—tlt
Y ( +4 |oo) | |b,2| |b,4‘
Consequently, there exists 0 < 79 < 1 such that
g=p" (1+4]A2) <1 0<r<1
and
Gl < "1, 311, 4

We now estimate the two terms on the right-hand side relying on Lemma
10.57 (i), namely

lp2 < (N+ D22 = (N + D'V,
pa < (N+ DV = (N + D
We thus obtain
|G mloo < ¢™(N + 1DV/P

: 1 _ 1=t t 1
w1th§—T+Z<§f0r0<t<t0.
Estimate of |[U~"||». Recalling the expression

U‘lza(Ll<BTiGm>,

m=0
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and applying Lemma 10.57 (vi), (ii) and (iii), we see that

U™ 2 = 10 | < 10g(N) [Bleo Y 1Gonleo

m=0

< [Blo(N + D)7 log(N) > ™

m=0

< IBI(N + 1)'/7 log(N).
Finally, for any 2 < p < p, we can absorb the logarithm thereby getting
1012 < I1BIL(N + D'V,
which is the desired estimate (10.105).

This concludes the proof. U]

Estimate of block diagonal D. We recall that D = diag U € R"N*"'N g the block
diagonal of U. We consider the block partitioning of B[]

BL/] = [B[f} g_ 1] 2] J—
where
R =B[j](1:j~1.j) € R0,
R} =B[jl(.1:j~1) € R,
Rs = B[j](j.j) € R4,

Lemma 10.60 (bound of ||D||2) There holds

18]I
IDIl2 < 1Bl + 5 =Cp. (10.106)
Proof. Compute the LU factorization of B[]
B[/] = I[j - 1] of|B[j-1] R,
= |RTB[-1171 1 0 R; - RIB[j - 1]7'R,

and realize that
U(j,j)=D(j,j)=Rs—RyB[j - 1]"'R; € RY*%U,
Since

IRiloo = IRill2 < IB[jlIl2 < [IBl2 =Bl  i=1,2

R3]0 = [[R3l2 < [[B[/]ll2 < [IB]],
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and

1
IB[j - 1] = IB[j — ]2 < 5

according to properties (P1) and (P2) of the bilinear form 8, we deduce
18>
B

as asserted. ]

ID(j, Dl = IDG D2 < 1Bl +

Bound of LU factors. We are finally in the position to prove Theorem 10.15.
We combine Proposition 10.59 (estimate of ||[U~!||») and L = BU~! to obtain

LIl < IBINU 12 < [IBIICLuN"P.

Then, invoking (10.97) in conjunction with Proposition 10.59 and Lemma 10.60

(bound of ||G||») as well as the bounds of |[U~"||, and ||L||, yields
=T
1Ull2 < IDI2IL" ||2 < CplIBlICLuN'P (10.107)
IL™ 2 < ID LT 1l2 < CpCruN'/P

with Cp being the constant in (10.106). This completes the proof. U
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Algorithms
DATA: procedure to approximates the data D = (A, c, f), 123, 214
AFEM-SW: AFEM with switch, 139
AFEM-TS: two step AFEM successively approximating the data and the
Galerkin solution with approximate data, 123, 154
AFEM-DG-TS: interior penalty version of AFEM-TS, 233
CONSTRAINT-A : modify an approximation of A to satisfy the structural
constrains, 201
CONSTRAINT-c : modify an approximation of A to satisfy the structural
constrains, 204
ESTIMATE : compute the element error indicators and element data
oscillations, 128
GALERKIN: procedure that iterates SOLVE, ESTIMATE , MARK, REFINE, 123,
129
GALERKIN-DG: discontinuous Galerkin version of GALERKIN, 253
GREEDY : abstract greedy algorithm for DATA, 191
MARK: Dorfler marking, 128
REFINE : refine all marked elements b times and others necessary to produce a
conforming mesh, 129, 226
REFINE : refine marked elements and others necessary to produce a
A-admissible mesh, 230
SOLVE: construct FEM approximation, 127
Assumptions
Restrictions on «, w, and 8, 260
Abstract cut-off, 74
Admissible set of parameters for GREEDY , 192
Approximability of u, 164
Approximability of data, 167
Cardinality of the marked set, 171
Discrete coeflicients and discrete functionals, 88
Equivalence of error and estimator, 264
Equivalence of error and full estimator, 282
Estimator reduction, 264
Initial labeling, 173
Lipschitz continuity of estimator, 278
Marking parameter 6, 169
Monotonicity of estimator, 279
Monotonicity of local oscillations, 193
Properties of DATA, 148
Quasi-monotonicity of oscillation, 279
Quasi-optimality of DATA, 168
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Relaxed quasi-orthogonality, 264
Restriction on w, 170

Size of w, 174

Structural assumption for discrete data, 144
Structural assumption for exact data, 144
Structure of f, 214

Constants
(CL, Cy): a-posteriori lower and upper bounds constants, 89, 125, 169
(C}1, C;H): lower and upper estimators equivalence constant, 159
(a1, @z): lower and upper bounds of the diffusion coefficient spectrum, 14, 144
(@1, @2): lower and upper bounds of the approximate diffusion coefficient
spectrum, 144
(@1, @): lower and upper bounds on the spectrum of A, 203
(c1, c2): lower and upper bounds of the reaction coefficient, 144
(¢1,¢2): lower and upper bounds of the approximate reaction coefficient, 144
(cg, Cg): norm equivalence constants, 18, 124
(¢ 3, Cz): norm equivalence constants for the perturbed problem, 145
Cp: DATA constant, 148
Cp: Poincaré constant, 13
Cloc: localization constant, 57
Covi1: overlay constant, 57
Ccea: best approximation constant, 25
Cosc: oscillation quasi-monotonicity constant, 100
CLip: estimator Lipschitz property constant, 99, 127
L: threshold parameter for constrained approximation, 197
Cpa: best approximation constant of I1r, 149
Cpa: quasi-monotonicity constant of 1y, 149
D: complexity of REFINE constant, 43, 53, 216
D: modified complexity of REFINE constant, 173
C.: constrain upper bound amplification constant, 144
Caata: DATA approximation constant, 148, 152
CLip: estimator Lipschitz property constant, 98
A: A-admissibility constant, 49
Adata: DATA quasi-optimality constant, 148, 165
: inf sup constant, 17
: contraction constant, 140
: contraction constant, 130
: shape regularity constant of T, 26
6: Dorfler marking parameter, 128
Cy: localized upper bound constant, 93, 169

S R R R

Definitions
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g-approximation of order s, 168
9 -meshed subdomain, 69
faced-connected, 31

Global index of a node, 48
Interior vertex property, 96
Sobolev number sob(Wllj ), 11

Error Estimators
E7(v)4: generic total error, 191
Ry residual in H~'(Q), 55
85}?5(1): abstract total estimator, 83
Eq: total estimator, 89
Eq(T), Eq(uqg, f,T): local total estimator, 89
S;Ed(ur;—, f,T): standard local indicators, 68
8?1(147-, D): standard residual estimator, 61
S;Ed(urf, D, T): standard local indicators, 61

775‘7135(2): abstract PDE estimator, 83

ng(ug, T): PDE local estimator, 89

ng(us, f): PDE estimator, 91

n?}d(uT, T): standard local PDE indicators, 68

osca;.’s(RT, z): abstract oscillation, 83

oscq (A, T),: local surrogate for the diffusion coefficient approximation error,
150

oscq(D): surrogate for the data error, 147

oscq(c, T): super-convergent local surrogate for the reaction coefficient
approximation error, 150

oscq(c, T)w: super-convergent local surrogate for the reaction coefficient
approximation error, 150

oscy(c,T)y: local surrogate for the reaction coefficient approximation error,
150

oscq(f), oscq(f)-1: oscillation for the load function, 91

oscq(f,T), oscq(f,T)-1: local oscillation for the load function, 89, 91, 151
oscy(v,T)p: generic surrogate for data error, 150

oscsrﬁj(ufr, D): standard oscillation, 64

oscﬁi@(u(r, D, T): standard local oscillation, 64

oscq(D): total data error estimator, 151

oscq(A),: oscillation for the diffusion coefficient, 151

oscq(c)g: oscillation for the reaction coeflicient, 151

oscq(f), oscq(f)-1: oscillation for the load function, 151

Eq( f )El : generic surrogate estimator for the approximation of the load term,
207

Jj(ug): jump residual, 62
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rq(ug), r(ug): element residual, 62

Functional Spaces
Bf,’q(Q): Besov spaces, 182
D(Q): metric space for the data perturbation, 147
D(Q): temporary metric space for the data perturbation, 145
M(aq, ay): Admissible set for A, 144
R(c1, ¢3): Admissible set for ¢, 144
W:,f (€): Sobolev spaces, 11
W_*(Q): dual of W}, (Q) with ¢* = %, 145
XIS,(Q): abstract functional spaces, 180
Mj: approximation classes of A, 165
C,: approximation classes of ¢, 166
F,: approximation classes of f, 166
D: data, 122 R
sz discrete data subordinate to 7, 122
E(7,): local discrete functionals, 69
F4, B(7): discrete functionals, 69
VH(T), Vi test space for discrete functionals, 75
V*(7,): local test space for discrete functionals, 75
Vg conforming finite element space, 26
Ag: approximation class for u, 162
AZ!: approximation classes for v for the discontinuous Galerkin norm, 239
Es: broken H' space, 235
V}l: non-conforming finite element space, 234

Lip;“(Q): Lipschitz spaces, 180

S',;:_I: piecewise polynomials of degree < n, 26

S',;:O: globally continuous piecewise polynomials of degree < n, 26
Functions

¢,: Lagrange basis of S,IT’O, 26

W, Lagrange basis of 8’7’:0, 27

u: solution to the perturbed problem (5.5), 124

u: solution to weak formulation (2.7), 15

ug: Galerkin approximation, 54

Meshes
T,: reference element, 25
P: proper nodes, 48, 51
F, Fq interior faces, 55
Fo.: faces interior to w, 69
¥z, Few.: faces interior to w,, 69
v.: skeleton of w,, 26
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T < 7,: refinement relation, 124

71 & T;: mesh overlay, 43

T: triangulated submesh, 69

T2 Tw, - elements forming w,, 69

7,: star of elements sharing the vertex z, 57

T: set of all conforming refinements of 7y, 38

TA: set of all A-admissibility refinements of 75, 49

Ty : set of all conforming refinement of 75 with no more than N elements, 162
[[.T]: jump across faces, 234

[[g]] - nF: normal jump across F, 62

A(x): global index of a node x € N, 48

{{.}}: average on faces, 234

N': Lagrange nodes of order n, 27

wr: region of elements containing the face F', 59
wr, wg(T): region of elements intersecting 7', 28, 60
wt, wg(T): elements sharing a face with T, 28
wqg(P): domain of influence of a proper node P, 50
w;: region made of elements sharing the vertex z, 26, 57
nr: normal to the face F, 62

V: set of vertices, 26

g(T): generation of T, 40

Norms
[v]a,7: discontinuous Galerkin norm, 235
Il.llo: energy norm with exact coefficients, 124
ll.llo: energy norm with perturbed coefficients, 124

Operators
I quasi-interpolation operator, 29
Pr, Pr: polynomial densities of Py, 75
Py projection operator from H~!(Q) into Fo, 75
I7d_G: discontinuous Galerkin quasi-interpolant, 236
Ik, II: L? projection onto Py, (K), 64, 148
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