FINITE ELEMENT METHODS FOR THE STRETCHING AND
BENDING OF THIN STRUCTURES WITH FOLDING
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ABSTRACT. In [8], alocal discontinous Galerkin method was proposed for approximating
the large bending of prestrained plates, and in [9] the numerical properties of this method
were explored. These works considered deformations driven predominantly by bending.
Thus, a bending energy with a metric constraint was considered. We extend these results
to the case of an energy with both a bending component and a nonconvex stretching
component, and we also consider folding across a crease. The proposed discretization
of this energy features a continuous finite element space, as well as the discrete Hessian
used in [8, 9]. We establish the I'-convergence of the discrete to the continuous energy
and also present an energy-decreasing gradient flow for finding critical points of the
discrete energy. Finally, we provide numerical simulations illustrating the convergence
of minimizers and the capabilities of the model.

1. INTRODUCTION

The deformation of thin materials occurs widely in nature, from the snapping of the
venus flytrap [23, 36] to the growth of leaves and flowers [5, 31]. It may also occur in
man-made applications, such as the bending of hydrogel discs [28, 31] and the movement
of microswimmers through the body [34]. In all of these examples, the bending of the
material is the result of a prestrain; that is, internal stresses in the flat configuration cause
the plate to deform into some more complicated shape. This causes (potentially) large
deformations that result from relatively small actuations.

The deformation of prestrained materials has been studied in several works; see for
instance [5, 8, 9, 21]. Efrati, Sharon, and Kupferman [21] use Kirchhoff-Love assumptions
to derive a 2D energy for prestrained plates with a stretching and a bending component. In
8], the energy is a bending energy with stretching enforced by a nonlinear and nonconvex
constraint involving the prestrain metric. The reference [7] summarizes these and other
models for the bending of prestrained plates, including extensions to plates with a bilayer
and plates with folding. We refer to [14, 13] for some work where stretching is responsible
for the deformation of membranes.

The present work builds on that of [9], in which bending is the main mechanism for
the deformation of plates. In [9], the authors seek to solve the following constrained
minimization problem:

(1) min E7(y),
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where
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is the bending energy. Here, y = (y)3 _; : 2 > R? denotes a deformation of the midplane
Q of the plate, g : Q - R>? is symmetric, positive definite, and corresponds to the so-
called target metric, and y, A are the first and second Lamé coefficients of the material.
The admissible set A is given by

(3) A:= {y e [H* ()] | vy'Vy =g a.e. in Q}.

The bending energy was derived rigorously using I'-convergence in [25] for the case g = I,
(isometry constraint) and in [32] for a general metric g.

We extend the results of [9] to the case where both bending and stretching drive the
deformation of the plate. Moreover, as in [2, 3, 12, 7], we allow for folding of the plate
along a curve X c 2. In this case, the energy of the plate takes the form

(4) E(y) = ES(y) +0°E"(y),

where
1
(5)  E(y)=3 fQ (2ulg™2(vy" vy - g)g ™2 + Xex(g7(Vy T vy ~ g)g%)?)

is the stretching energy, EB(y) is given by (2) with Q replaced by Q X, and 6 > 0 is the
thickness of the plate. The admissible set in this case reads

(6) A= [H*(QNE)n HY(Q)

to account for the presence of the crease.

The derivation of (4) is similar to that of (2), but we do not take the limit as the
thickness 6 of the plate goes to zero. For this reason, (4) is referred to as the “preasymp-
totic” energy. Note that the scalings in (4) agree with the results of [26]; a scaling with
0 corresponds to stretching, while a scaling with #3 corresponds to bending. Both scal-
ings have been proven rigorously by I'-convergence (see see [20] for membrane theory and
6, 24, 25, 27, 32] for bending theory).

We discretize (4) using a continuous, piecewise polynomial space and assume that the
edges of the subdivision exactly capture creases when present. The Hessian D?y in the
bending energy is replaced with a discrete Hessian Hj,(y,). This discrete Hessian, defined
in Section 3.2, extends the jump of Vy}, over the (non-crease) edges of each mesh element
to all of 2 and is essential to proving I'-convergence.

Using the above discretization (see Section 3 for details and notation), we get the
following discrete energy:

(7) En(yn) = E; (yn) + *E (yn),

where

1
(8)  Ei(yn)=3 fﬂ (2ulg™ (VT vy - g)g P + Mx(g ™ (Vyh Vyn - g)g)?)
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and
1 2\
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Yina-1/2 2
+§||h / [VYh]||L2(rg\z)'

Here v > 0 is a stabilization parameter, I') is the skeleton of the underlying shape-regular
mesh 7, and h represents the mesh function defined in equation (22).

We note that a slight abuse of the definition of I'-convergence is made. In this work
[-convergence of the discrete energies Ej, towards the continuous energy F is a frame-
work consisting of the lim-inf and lim-sup properties provided in Theorems 4.2 and 4.3.
Together with the compactness guaranteed by Lemma 3.2, they guarantee (Theorem 4.1)
the convergence of discrete minimzers of {E}, }s0 towards a minimizer of E.

1.1. Contributions. This paper includes several novel contributions. First, it extends
the results of [9] to the case with a bending and stretching energy. Second, it introduces
folding along a crease, and proves in this setting the I'-convergence of the discrete energy,
along with the weak and strong convergence properties of the discrete Hessian. The case
of folding with a stretching energy is of interest because stretching may be required to
capture some physical effects when folding is present. For example, consider the flapping
device proposed by Bartels, Bonito, and Hornung [1] and depicted in Figure 1. The device
is constructed by folding a sheet of paper down the middle and then pushing one end of
the paper upward. When the two corners on the left are pushed together (see the arrows
in the figure), the opposite end flaps. The flapping device can be simulated using either
model described above with metric g = I, since the paper is assumed to have no prestrain.
However, we do not observe the flapping behavior using the model in [8], which does not
allow for stretching, but only with the preasymptotic model (See Figure 1 and Section 6.3
for more details).

P

1 1t
.3 3 13
F1GURE 1. Evolution of the flapping device as the ends are squeezed. The
top row shows the (physically correct) evolution using the preasymptotic

model. The bottom row is the evolution using the algorithm proposed in
[8] for the minimization of bending energies with isometry constraint.

Introducing the stretching energy also offers advantages because we may use a con-
tinuous finite element space to save degrees of freedom, and the minimization algorithm
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does not require preprocessing to find an initial iterate that satisfies a prescribed metric
constraint. Finally, we improve the gradient flow from [7] for minimizing (7) by treating
the stretching term explicitly, which significantly decreases the run-time of simulations.

1.2. Outline. The rest of this work is organized as follows. The derivation of the
preasymptotic energy is discussed in Section 2. In Section 3, we introduce a continu-
ous finite element space. We discuss the discrete Hessian in Section 3.2, along with weak
and strong convergence results that are essential for establishing I'-convergence of the
discrete energy. This discrete energy and its properties are introduced in Section 3.3.
Section 4 contains the main result of this paper, namely the I'-convergence of the discrete
preasymptotic energy to the continuous preasymptotic energy. In Section 5, we present
an energy-decreasing gradient flow for minimizing the discrete energy. Finally, Section 6
is devoted to numerical experiments demonstrating the convergence of the discrete mini-
mizers.

1.3. Notation. Bold uppercase letters and bold lowercase letters are used for matrix-
valued and vector-valued functions, respectively, and subindices will denote their com-
ponents. The components of the gradient and the Hessian of a vector-valued function
v :R™ — R" are (Vv);; = 0;v; and (D?v);p, := Ojpvi, @ = 1,..,n, j,k =1,...,m. The
Euclidean norm of a vector is denoted |- |, while for matrices A,B € R™™  we write
A:B:=tr(BTA) =YL, ¥, AijBy; and |[A| := VA : A Finally, to have a compact no-
tation, for higher-order tensors A = (Ay)r_; € Rv™m with Ay e R™™ 1<k <n, we
set

1

2

tr(A) = (tr(Ay)),, and |A]= (Z |Ak|2)
k=1
and we use the convention
(10) BAB = (BA;CB),?;=1 € R3*2x2

for B € R?*2. Finally, the notation a < b stands for a < Cb for a generic constant C' > 0
independent of the discretization parameters and the thickness 6 > 0.

2. THE PREASYMPTOTIC MODEL FOR PRESTRAINED PLATES

2.1. Problem Setting and Preliminaries. We consider a solid, undeformed plate oc-
cupying a region €y = Qx (-0/2,0/2), where 6 > 0 is the thickness of the plate and 2 c R?
is its midplane. Additionally, we introduce a curve X c €) representing a crease, where
Y. = @ if no folding is allowed. For simplicity, we put ourselves in the setting of [2] and
assume that 3 is a Lipschitz curve intersecting 0f) transversely and dividing €2 into two
(open) subdomains, denoted €2; and Qy. Moreover, we assume that the material has been
weakened around the crease so that folding requires no energy (see [2] for details). We
denote deformations of the plate by u: Qy - R3 and deformations of the midplane by
y : 0 - R3. In this work, thin structures are considered; that is, we assume that 6 is small.
As we shall see, this allows us to represent the deformed plate u(§2y) by the deformation
of its two dimensional midplane y(£2).
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2.2. Energy Derivation. The derivation of the preasymptotic model follows closely the
derivation of the prestrain model in [8], with the key difference that we do not take the
limit as the thickness of the plate goes to zero. Rather, we assume a small constant thick-
ness 6. As anticipated in the introduction, the plate energies are composed of competing
bending and stretching energies with different scalings in the thickness 6, see (4). In
particular, these plates can stretch and shear.

The reference, or prestrained, metric characterizes the intrinsic stress-free configuration
of the plate and is given by G : 0y — R3*3. We assume that G is a Riemannian metric and
is thus symmetric and uniformly positive definite. It is assumed to be uniform throughout
the thickness of the plate. We assume that stretching only occurs along the midplane of
the plate, and thus G has the following form:

!/
(11) G(x', 75) = lg((’f ) (1)] X' i= (21, 79) €, 75 € (_g g)
where g : Q - R?>*? is symmetric, uniformly positive definite, and assumed to be in
[Wl,oo(Q)]2><2'

In the case where G = I3, the stress-free configuration is flat. However, in some ma-
terials, such as leaves and flowers, different rates of growth of the various parts of the
material result in internal stresses so that G # I3 [5, 31]. In the case of hydrogel discs
28, 31], a non-identity metric is introduced by injecting a heat-sensitive gel. We also note
that for G # I3, a stress-free configuration of the material may not exist. In this case, the
plate may assume a more complex shape with positive energy.

The thin materials are assumed to be endowed with the St. Venant—Kirchhoff (isotropic)
energy in the internal stress-free configuration, i.e.

(12) Ep(w)= [, W(TuG™),
where
(13) W) = ple(P) + S tr(e(F))’

with e(F) := 1 (FTF-1;) for F € R**3, and where p > 0 and A > 0 are the Lamé coefficients.
The proposed dimensionally reduced model for the midplane hinges on the following
assumption relating the deformation u of the plate and the deformation y of its midplane:

(14) W 5) =y () + rap(x) 4 S (K),
where

(19 fie (g g ), we DY

B |aly x 82Y|’

20+ A

and II(y) is the second fundamental form of the surface y(£2). The first and second
fundamental forms of the surface y(€2), which describe its geometry, are given respectively
by

(16) I(y)=vy’vy and I(y):=-vv'vy,
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We consider deformations such that Fsp(u) < A6 to reflect the bending and stretching
regimes of interest.

The modified Kirchoff-Love assumption (14), inspired by [26, 24], restricts the fibers
orthogonal to the midplane to remain so during deformations, but allows these fibers to
be inhomogeneously stretched [8]. Such a structural assumption on the deformations is
consistent with the ['-limit of the rescaled energy 6-3 E3p(u) as # — 0*, namely this is the
ansantz yielding the correct limiting energy in the asymptotic analysis, see for instance
Section 7 in [25] (case G =1I3) and Section 2.2 in [8] for details.

Computing the energy density and neglecting O(63) terms, the 3D energy per unit
volume 071 E3p(u) =: E(y) reads [8, 7]:

(17) E(y) = E%(y) + *E(y),
where the stretching energy E° is given by

(18)  E%(y):= % fQ (2ulg72(1(y) - g)g ™2 + Xx(g 2 (1(y) - 8)g™12)?)

and the bending energy EPB reads

19 B gp [ (20 I)g P e S (e P )E ),

Compared to [8], the midplane deformations y are not restricted to strictly satisfy the
constraint I(y) = g. Rather, deviations from this relation are penalized by the stretching
energy.

To incorporate folding, we change the domain € in (18) and (19) to the domain Q\ X,
where X is the Lipschitz curve described in Section 2.1. Note that this modified energy
is currently without justification from 3D hyperelasticity; however, a rigorous derivation
in the case where G = I3 and 0 — 0* is done in [2].

In addition, proceeding as in [5] (see also [17]), we replace for convenience the second
fundamental form by the Hessian D?y in the bending energy. Such an assumption is not
geometrically justified, but it is not expected to significantly influence the equilibrium
deformations. We present in Section 6.1 below an experiment numerically justifying this
step. We also note that using the Hessian is justified by Proposition 1 in [12] when the
deformation satisfies the metric constraint. Our final bending and stretching energies thus
become

@0 PP g [ (2l DRy R (e Dy ),
and

) By = [ (2ue PAG) - ) PP+ (g ) - g)g ),

for y e [H2(Q\X)n HY(Q)]3.

We note that in the absence of boundary conditions, the energies (20) and (21) are
frame indifferent up to rigid motions. In the analysis that follows, we will consider only
the free boundary case. However, boundary conditions are required to model various
phenomena (e.g., the flapping device of Section 6.3). The results of Sections 3 and 4
extend to the case where Dirichlet conditions are imposed on some portion I'p of 9€2; we
refer the reader to Appendix C of [9] for the necessary modifications of the proofs.
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We also mention that standard results in calculus of variations guarantee the existence
of global minimizers to the energy (17) where E is given by (20) and E by (21). Rather
than embarking in this discussion, we point out that the I'-convergence theory developed
below (Theorem 4.2) guarantees the existence of such minimizers.

3. FINITE ELEMENT DISCRETIZATION

Let {7x}ns0 be a shape-regular and quasi-uniform sequence of conforming subdivisions
of €2, where every element 7" is given by the image of a reference triangle or quadrilateral
T under an isoparametric diffeomorphism ¢r : 7' - T of degree k. We assume that the
crease 3 is resolved by the mesh, and for ¢ = 1,2, we denote by 7’ the collection of the
elements that belongs to €2;, the two parts of {2 separated by 3. The set of interior edges is
denoted & and we write & for the set of edges along X. We also let I') := {x ee | e € £}

be the interior skeleton of 7. Finally, we introduce the mesh function h defined on 7}, UE,?
by

(22) hip:=hy, VYT eT,, and  hl.:=h, Veek.

where hr and h. denote the diameter of T € 7j, and e € £, respectively.
Our finite element space for each component of the deformation is

Sk = {v, e CUQ) | vp|r = Doz, b e Pi(T) (vesp.Qu(T)) VT € T},

where IP’k(T ) is the space of polynomials of total degree k and Qk(T) is the space of
polynomials of degree k in each direction on the reference element (note that to simplify
the presentation, we use an isoparametric method, i.e., the same polynomial degree is
used for ¢y and 9). An approximation of y is a deformation yj, € [SF]? where, from now
on, k> 2.

Since 7j, is shape-regular, we have || DYr|| ey S b and [|Dyz!||pe(ry S k' For higher
order derivatives, we recall the estimate [30]

(23) D™ ||y S BF,  2<m<k+1.

Since || D7y S [|DUr|| L7y, the following estimates on the inverse mapping hold
[22]:

(24) |1 D™ 7|7y S h7™, 2<m<k+1.

Although a function v, € S¥ is continuous over the domain Q, the gradient Vv, is
discontinuous on I'). Thus, Vv, has, in general, nonzero jump over each edge of £7. We
make these notions more precise now. For any function wj, defined on €, for e € & and
x € e we set wi(x) := limgo+ wy, (X £ s1.), where n, is a fixed unit normal to e. The jump
of wy, over e is then given by

(25) [wn]|. = wy —wj,

and the average is defined as

(26) {wn}, = 5+ wp)
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For a vector or matrix valued function, the jump and average are defined componentwise.
In paricular, for vy, € [SF]3, the jump and average of Vvy, are defined componentwise with
wy, = 0jvn,, 1=1,2,3, j=1,2.

Using the jump operator, we define the bilinear form (-, -) H2(0) O S¥ by

(27) (Uh, wh)H}%(Q) = (Divh, Diwh)Lz(Q) + (h_l [VU}L], [vwh])LQ(I‘?L\E)

for vy, wy, € SF, where D? is the broken (aka piecewise) Hessian, and the seminorm |-| H2(9)
is given by

(28) |Uh|fqg(g) = (Uhavh)Hﬁ(Q)

for vy, € S,’f. From this we define the scalar product
(29) (Uh,wh)Hg(Q) = (Uh,wh>Hg(Q) + (vp, wh)Lz(Q)

and the norm
(30) ||Uh||§{2(g) = (Uh>vh)H§(Q)-

For vy, wy, € [SF]? we define (Vh,wh)HfL(Q) = Z?:l(vh,i,wh,i), and similarly for the semi-
norm, scalar product, and norm.

3.1. Compactness. We next prove a compactness result that will be used in the proof
of I'-convergence. In order to establish this result, we need the following smoothing
interpolation operator I, inspired by [9], but applied on each domain €2;, i = 1,2, and
adapted to the isoparametric case:

(31) for ve B(75) = [[ HY(T), (IIyw)lg, =1I},(via,) € S5(Q), i=1,2,
TeTh
where SF(€;) is the restriction of S¥ to €; and II¢ is defined in two steps as follows. First,
we construct Piv e L2(,) given elementwise by (Piv)|, = P(voir) ozl with P the
L2(T) projection onto Pr(7") (Qx(T") for quadrilaterals). Then we apply a Clément (or
Scott-Zhang) interpolant I} : L2(£;) —» SF(€;) to Piv defined via local L? projections on
references patches.
The operator 11, satisfies for v € E(7,)

(32) ITTh] 20y S IVllz2(e)
and
(33) VAol 2 () + (07" (v = )| 2 () S 11Vavll2 () + W2 [0]]]2 o x),

where V; denotes the broken gradient. We omit the proofs of these relations since they
follow from the arguments provided in [9, 10, 11] applied to each subdomain €2; and adding
the resulting two inequalities.

We also need the following discrete Poincaré-Friedrichs inequalities. Such inequali-
ties are proven in [9], where the approximation space S,’j is fully discontinuous, but the
argument applies directly to the current context.
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Lemma 3.1 (Discrete Poincaré-Friedrichs inequality). For any v € E(T),

(34) o= £ vllzzey s IVavlzzor + W2 (0) ey,
where f,v denotes the average of v over Q. Also, for vy, € SF we have
(35) IVunllz20) + [Vallnvallr2(o) S vl m2e0)-
Now we can verify the following compactness result.
Lemma 3.2 (Compactness). Assume that {vy}ps0 € S¥ is a sequence such that
(36) [VurllLz@) + [vnlmz ) € 1.
Then there exists v € H2(Q2 N X)) n HY(Q) with mean value zero such that (up to a subse-
quence not indicated here)

ﬁhzzvh—]{zvh—m? in L*(Q) and Vv, —»vVi in [L*(Q)]* ash-0".

Proof. The proof follows those of Lemma 2.2 in [9] and Proposition 5.1 in [11], which
were written in the context of fully discontinuous approximation spaces. Let ¢y, := f, vp.
By the standard Poincaré-Friedrichs inequality and the boundedness assumption (36), we
have
llvn = cnllz2) + IVonllL2 @) S [[VUnllze) $ 1.

Thus, vp, — ¢, is uniformly bounded in H!(€2) and therefore converges strongly (up to a
subsequence) in L2(£2) to some v € H'((Q).

To show that Vv, — Vv, we make use of the smoothing interpolation operator defined
above. Let z, := I1,(Vvy,) with 1T, applied componentwise. The stability estimates (32)
and (33) together with the boundedness assumption (36) again yield

37)  llznllzc) + [1Vaznll2o) S IVonll2 ) + 1D7onllz2o) + W[ Von]llrao sy S 1.

This implies that z, is uniformly bounded in [H'(2\ X)]? and thus converges strongly
(up to a subsequence) in [L%(2)]? to some z € [H(Q\ X)]2.

We now establish the convergence of Vv, to z in [L2(€2)]?. Recalling the notation
h = maxyeq h(x) and using the stability estimate (33) along with the uniform boundedness
assumption (36), we get

1Von = 2Zallr2c) < BILT (Vo = 20l 2(0)

S h(IDFvnllzaey + [V 0n]ll2qr s
S h.
Therefore, we have
IVon = 2l| 20 < [[Von = znll22(@) + (|20 = 2l]12(0) = 0
as h - 0%, and thus Vv, - z in [L2(Q2)]? as h - 0*. This and the fact that v, - ¢, - v in
L2(Q2) imply that z = Vo, completing the proof.
0

We end this section with a discrete Sobolev inequality, which is instrumental for han-
dling the nonconvex stretching energy.
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Lemma 3.3 (Discrete Sobolev inequality). For vy € [SF]3, the following inequality holds

(38) IVVallza@) € IVallaz)-
Proof. We establish the following for all v € E(7,) = [1ger, H(T'):

(39) Ivllze) S IVaVllz2 ) + [[0llz2 ) + ||h_1/2[v]||L2(rg\2)-

The desired estimate (38) follows from (39) by applying the latter to each component of
Vv, € [E(7,)]>? and invoking the Poincaré-Friedrichs inequality (35) on each subdomain
0, i=1,2.
Thus, it remains to prove (39). We write

o]z < [Jv = Tvl[pay + [[Tav] Laqy,
where IIj, is the operator defined in (31). The inverse inequality [[v - II,v|| g1 (o) S |[h™! (v -
1)l 22¢0), together with the embedding H*(2) ¢ L1(Q) yields

[vllzscy € 1071 (v = Thv)llzece) + Tnvllm o)

Whence, the intermediate estimate (39) follows from the stability estimates (32) and
(33). O

3.2. Discrete Hessian. Now we are ready to define the discrete, or reconstructed, Hes-
sian which was originally developed for the bending of plates in [8] and [11] using ideas
from [18] and [19], see also [29, 35]. The key property of the discrete Hessian is that it
mimics D2, the restriction of the Hessian D2 to Q\ X.

The definition of the discrete Hessian is based on local lifting operators that extend the
jumps on I') \ X to all of Q. Let ¢ be a non-negative integer and recall that the average of
a function is defined in (26). On each interior and non-crease edge e € ) \ £, we define

the local lifting 7. : [L?(e)]? — [V/{]**? by the relation

(40) [ re@)emi= [(mine-o v e Vi

where w, is union of the two elements sharing e and V} is the broken finite element space
Vit == {up, € LH(Q) | wplr = 9097t 0 € P(T) (vesp. Qu(T)) VT € Tp}.

The corresponding global lifting operator Ry, : [L?(I'% \ £)]? > [Vf]>2 is defined as

(41) Ry= > e

eeEINET
The global lifting operator Ry, is stable in the sense that for any v, € SF and for any
>0,
(42) 1BA([Von DIz $ 072 [VoR]ll 2o xy-

The proof of (42) follows the proof of Lemma 4.34 in [19] up to minor modifications and
is therefore omitted.

The global lifting operator supplements the piecewise Hessian D3 to define the discrete
Hessian operator Hy, : SF — [L?(Q)]>%:

(43) Hh(’l)h) = D}2L'Uh - Rh([Vvh])
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This definition can also be extended to [SF]? by component-wise application. Note that
unlike D2y, which is a distribution, all the components of Hy,(vy,) are in L2(2). This
aspect is the key to deducing convergence properties of Hj towards D? as h — 0*, see
Lemmas 3.4 and 3.5 below. In addition, it is worth pointing out that each component
of Dflvh|T belongs to P,_o when T' is a triangle, but to Q. when T is a quadrilateral. In
practice we set ¢ = k, but the results presented below are valid for all choices ¢ > 0.

As already anticipated, one of the advantages of the discrete Hessian is that, unlike the
broken Hessian D2y, Hy(ys) converges weakly to D2y in [L2(Q)]>*22 if y,, converges to
y in [L2(Q2)]3. In addition, the discrete Hessian Hj(y) of the Lagrange interpolant yy,
of y e [H?(Q\X)n H'(Q)]? defined separately on each subdomain strongly converges to
52y. Both properties are essential for establishing I'-convergence of the discrete energy
(50) defined below to (17). Our aim in the rest of this subsection is to establish these
weak and strong convergence properties of the discrete Hessian. Note that both Lemma
3.4 and Lemma 3.5 below can be applied componentwise for v, € [SF]3.

Lemma 3.4 (Weak convergence of Hy). Let {vj,}ns0 € S¥ be such that [vnlg2(q) S 1 and
v > v in L2(Q) as h — 0* for some ve H2(Q\X)n HY(Q). Then for any € >0, we have

(44) Hy(vy) = D*v in [L*(Q)]*? as h— 0"
Proof. We prove the convergence on each subdomain €2;, 2 = 1,2. It is enough to consider

functions in [C§°(€2;)]*2 since this space is dense in [L?(€2;)]*2. Let ¢ € [C5°(€)]?*2.
Integrating by parts twice gives

/s;iHh(vh) T = —/Qz Divy : ¢ - /QZ Ru([Von]) : @
- [ ntaiv avg) - [ R (60 +

= ]1+Ig+[3,

> Vel (- dun.

ee€)nQ,; 7€

where ¢, = ZF'¢p € [SF]**? denotes the Lagrange interpolant of ¢. We now deal with Iy,
I5, and I3 in turn.
For Iy, it suffices to invoke the strong convergence v, — v in L?(2) to deduce that

fﬂvh(div divq’))—>‘/§;v(div divqb):fﬂ D2:¢  as h—0".

For I,, the boundedness assumption |vy| m2(o) S 1 and the stability of the global lifting
operator (42) imply that

12| S ||h_1/2[vvh]||L2(anQi) &~ dpll2 ) Sl = bnllr2,) = 0

as h - 0*.
For I3, the scaled trace inequality yields, for e € £ n €,

(45) 16 = Pullrze) S I072(d = D)2y + 02V (D = 1)1y
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Whence, the shape-regularity of {7y }ns0 and the boundedness assumption [vn[p2(q) 1
imply

1/2
s (Y I PVodiEag) (6= Gullizy + V(6 - @)l ) = 0

ec€In8Y;

as h — 0*.
The combined results for Iy, I, and I3 give the desired weak convergence. 0

Lemma 3.5 (Strong convergence of Hy,). Let v e H2(Q\X)n HY(Q) and vy, = Zfv be the
Lagrange interpolant of v defined separately on each subdomain. Then for any ¢ > 0, we
have

(46) Div, > D*v and Ry([Vun]) =0 in [L*(Q)]>? as h—0".
In particular, it holds that
(47) Hy(v,) = D> in [L*(Q)]>? as h—0".

Proof. We begin by noting that [Zfv] = [v] = 0 along ¥ because v € H(2). This implies
that v, = Zfv is globally continuous and thus in SF. The rest of the proof consists in
two steps. First we prove the convergence of the broken Hessian, then we prove the
convergence of the lifting terms. For this we need the following two estimates for curved
elements 1" € Tp,:

(48) | D*Ziw|| 2y S [w] g2y Yw e H*(T)
and for 1<k’ <kand 0<m <k +1,
(49) ||w —IfwaHm(T) S hlfp/”’m|w|ka+1(T) Vw e H*Y(T).

The proofs of these estimates are standard for triangles and somewhat complicated for
quadrilaterals. The proof for quadrilaterals can be found in [11] for the case k' = k, but
can be extended for 1 < k' < k.

For the convergence of the broken Hessian, as in the proof of Lemma 3.4 we argue on
each subdomain €2;, i = 1,2. Let vf € C*(€;) be a smooth approximation of v|o, € H2(;)
such that v — v]g, in H2(€;) as € > 0*. Also let v§, := Z}vf be the Lagrange interpolant
onto S¥|q,. Notice that the traces of v, for ¢ = 1,2 do not necessarily match on the crease
3, but this does not affect the local argument provided below. Then for each T" € 7},

| D*vn = D[ 27y < ||D*vn = D*05 4 ||12¢ry + D05, = D*05] |21y + || D*05 = D[ 121

S v =vilm2 ey + RV | sy

from (48) and (49) with m =2 and &’ = 2. Summing over all T € T,/ gives
1D3on = D020, < C(Io = w2,y + hlvSlioa )

where C' is a constant independent of ¢ and h. Now for any n > 0, we choose € small
enough so that Clv — vf|g2(q,) < 1/2, and then h small enough so that Chlv¢|gsq,) < 1/2.
With these choices we have

[1D3on = D*0l[12(0,) < -
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Adding the results for €; and Q, proves the strong convergence of D?vy to D2y in
[L2(Q)]22.

Now we show that R, ([Vvn]) = 0 in [L2(2)]>2. We use the stability estimate (42) for
Ry, together with the fact that [Vv]| = 0 for all e € E) N £ to write

IRR([Vor]) Iz S 1020V (vn = 0)]llz (g ).

Whence, the scaled trace estimate (45), the (local) projection property Zfuvp|r = vs|r and
interpolation estimate (49) with m =1 and &' =1 yield for any e € & \ &

||h_1/2[V(Uh - U)]”%?(e) < Z [h?“v(vh - U)||%2(T) + ||D/?L(Uh - U)”%z(T)]

Tewe

= 3 [B9 (= v =T (o = 0) By + 103 (0 = 0) oo
Tewe

S Z ”D2vh_D2UH%2(T)7
Tewe

where the hidden constant in the first inequality follows from the shape-regularity of the
mesh (};L—T < Z—; S1).

Summing over all the edges in e € ) N €7 and invoking the shape-regularity of {75 }xs0
gives the desired result:

1/2 -
||Rh([vvh])||L2(Q) S ( Z ||D2Uh - D2UH%2(T)) = ”DiQLUh - DQ’U”LQ(Q) -0 as h— 0+.
TeTh,

The convergences of D2v, and R, ([Vuy]) directly imply the strong convergence of the
discrete Hessian Hj,(vy,) = Divy, — Ry ([Vur]). O

3.3. Discrete Energy. Using the finite element space and the discrete Hessian from
above, we introduce the discrete energy

(50) En(yn) = E; (yn) + *Ef} (yn),

where

1 - - - —_
(51)  Ey(yn):= ng(QMg 2(vylvy, -g)g 2P + Mr(g A (Vyl vy, - g)g 1/2)2)

and

1 2UA
EB :=_f 2ule~ V2 H -1/2)2 tr(e V21 -1/2)2
s Oy o (2ule P (g P+ 5 E e P (v )g )

Yi.-1/2 2
T T AR [

with v > 0.

Compared to the exact energy (17) with the modification (20), the discrete energies
above are defined for continuous piecewise polynomial deformations y,. In particular, the
Hessian term in the bending energy (20) is replaced by the discrete Hessian introduced
above. This modification alone would not guarantee the uniform coercivity of the energy
on [SF]? with respect to the discrete seminorm |- | m2(a)- The purpose of the stabilization

term with stabilization parameter v > 0 in the discrete bending energy EP is to restore the
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desired coercivity property. To see this, recall the following equivalence property provided
by Lemma 2.6 of [9], together with the fact that [v,;] =0 for v, € S}

AT
(53) CONNvnliz 0y < IHR WA 20y + 51l LIz 0 sy S lnliz oy

where C'(y) is a positive constant only depending on «y and such that C'(y) - 0+ as v - 0*.
The coercivity of Ej, in |.[52(q) is established below.

Theorem 3.6 (Partial coercivity of Ey). For all y, € [SF]3, there holds

(54) 1Vyall72(y S 1A Il ) ER (v1) 72 + llgllz -

Moreover, for v >0, we have

(55) [Yulf2 o) S ll8lle=@ By (yn),

where the hidden constant tends to co as vy — 0*. In particular, we have for all yj, € [52]3,
(56) ||VYh||4L2(Q) + 92|Yh|§{§(9) S En(yn) +C,

where C'is a constant depending only on g and ).

Proof. We start with the estimate on the gradient. For any 1" € T, we compute

() < S( )< £ ( fow-am) | fosdon

which implies that

2Tyl < X [1vyEvwils 3 [ 1vvivyn-gl+ el
TeTy T TeTh T

2

)

Because g is positive definite we have |- | < |g||g‘% -g_%|. This together with a Cauchy-
Schwarz inequality yields the desired estimate (54).
To derive (55), we use again that ¢ is symmetric and positive definite to write

12 (yu)ll720) < 1l (o) fQ &7 2 Ha(yn)g

and thus, thanks to the equivalence relation (53),

Y-
Yalie ) S MRz 0) + 5lIh 1/2[vyh]|‘i2(r2\z) S By (ya)

as desired.
Estimate (56) follows upon combining (54) and (55). O

4. '-CONVERGENCE OF THE DISCRETE ENERGY

The goal of this section is to establish the convergence of discrete minimizers of Ej to
continuous minimizers of E. This is done by essentially proving the I'-convergence of E},
to E. The latter framework consists in establishing a lim-inf and lim-sup property, which
are the focus of this section. These properties were proven in [9] for the bending energy
with a metric constraint, and we will follow similar reasoning in the preasymptotic case.
First, however, we state the convergence of minimizers.
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Theorem 4.1. Let {y,}n0 € [SF]? be a sequence of functions such that En(ys) < A for
A independent of h. Assume furthermore that yy; is an almost global minimizer of Ey,
meaning that
Eh(yh) < inf Eh(Vh) + €,
VhE[SI;]S

where € > 0% as h - 0*. Then {n}tnso with ¥5, =y, — foyn is precompact in [L2(2)]3,
and every cluster point'y of yy, belongs to [H?>(Q~X)nHY(Q)]? and is a global minimizer
of £, i.e.,

E(y) = E(v).
Moreover, up to a subsequence, there holds

lim En(y1) = E(9).

The proof of Theorem 4.1 is standard (see [11]) and follows from the lim-inf (The-
orem 4.2) and lim-sup (Theorem 4.3) conditions below, together with the compactness
result of Lemma 3.2. We note that the above theorem incorporates the possibility of a
sequence of almost-minimizers rather than exact minimizers. This is to account for the
fact that the algorithm proposed below (see Section 5) uses a stopping criteria and thus
does not necessarily reach the targeted minimizers.

We now establish the lim-inf and lim-sup conditions in our context, as they differ from
the existing literature.

We begin with the lim-inf property.

inf
ve[H2(ONE)nH1(Q)]3

Theorem 4.2 (Lim-inf of E}). Let {ys}ns0 € [SF]? be a sequence of functions such that
En(yn) $1. Then there exists y € [H*(QNX) n HY(Q)]? with [,§ =0 such that (up to a
subsequence) the shifted sequence ¥y, =y — foyn € [SF]? satisfies y, -y in [H*(Q)]? as
h - 0%, and

(57) E(y) < liminf En(yn)-

Proof. First, we use the partial coercivity (56) of Ej provided by Theorem 3.6, along with
the boundedness assumption Ep,(yp) $ 1 to get

(58) ||VYh||%2(Q) + |Yh|12q2(Q) S max(1, 9_2)a

applying (56) individually to each of the terms on the left-hand side due to the difference
in scaling of the L2(§2) norms. We then apply the compactness result (Lemma 3.2)
componentwise with v, = y,,, to guarantee the existence of y € [H2(Q2\X)n H'(Q)]?
with mean value zero such that y, —y in [L2(Q2)]? and Vy, — Vy in [L2(Q)]3*2.

Next, we establish the lim-inf relation by showing the weak convergence of the inte-
grands. Since we only have weak convergence of the discrete Hessian on the subdomains
Q; and €25, we show the lim-inf relation on each subdomain, and then use the property

(59) lim inf £, (y4) + lim inf Ej(y5) < liminf(E,(74) + B (31)),

where E; denotes the energy computed on the subdomain €;, 7 = 1, 2.
Thanks to the weak convergence of the reconstructed Hessian (Lemma 3.4), we find that
on each subdomain, Hy,(y,) — D2y, which implies that g2 H,,(y;,)g /2 -~ g 12 D2yg-1/2
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as h - 0 on each subdomain. In view of the weak lower semi-continuity of the L2(2)
norm, we get

(60) '[Q |g‘1/2D2yg—1/2|2 < 1i}I£(j)£1f '/Q |g—1/2Hh(yh)g—1/2|2 i=1,2.
Similarly, the linearity of the trace term implies that tr(g='/2H,(y,)g /?) - tr(g /2 D?yg=1/?)

as h - 0* on each subdomain, which implies that

(61) f tr(g 2 D2yg 1) < li in (g P Hy(y)e )’ i=1,2.
Q; -0+ Q;

For the nonlinear stretching term, we let ¢ € [L2(£2;)]?*? and compute
[ 61 (95Ev5-95"99) = [ ¢:[(V5n-V9) (V31 - V9)]

v [ ¢:[(vyn-99)'V¥]+ [ &:[V¥"(T3n-VY)]
<@Lz

VY= VYZaga,) *+ 2l1@ll2 @0l VYn = VIl VY@,

where we used the identity

62) ATA-B'B=(A-B)"(A-B)+(A-B)B+BT(A-B), A,BecR>2
Note that the boundedness (58) implies that Vy, - Vy strongly in [L*(£2;)]>2. Thus,

IVYh = VYllri) =0  as h -0,

which proves that Vy! Vy, — VyTVy in [L?(€;)]**? as h - 0*. Thanks to the weak lower
semi-continuity of the L2(£2;) norm, we deduce that for i = 1,2

(63) /&; |g_1/2(VS’TVSf - g)g_1/2|2 < li}gri(i)I}fo |g‘1/2(vy£vyh _ g)g—1/2|2‘
Similarly, for the trace term,
(64) fQ tr(g 3 (vylvy - g)g ?)? < li;?i(i)gf /Q tr(g 2 (VyT vy, - g)g V?)2.

The desired lim-inf property (57) follows from relations (60), (61), (63), (64), (59), and
the positivity of the jump terms in Ej,(y3).
0

We now give a proof of the lim-sup property. Because of the strong convergence of the
discrete Hessian, we actually get strong convergence of the recovery sequence.

Theorem 4.3 (Lim-sup of E},). For anyy € [H2(Q\X)nHY(Q)]3, there exists {yn}ns0 C
[SF]3 such that y, —y in [HY(Q)]® as h > 0+ and E(y) =limy_o- Ey(yn).

Proof. We show that the sequence y; of piecewise Lagrange interpolants (as defined in
Lemma 3.5) satisfies the desired properties. First, the interpolation estimates (49) with
m =1 and k' =1 give directly that y, -y in [H'(Q2)]3.
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Next, we establish convergence of the bending and stretching parts separately. The
convergence of the bending term,

: _ - - - V-
;}L%i(ngg V2, (yh)g 1/2|2+thr(g V211, (y)g 1?)? + Sl PIoyulllzz o s)
:fﬂ|g—1/2l’§2yg—1/2|2thr(g—1/2z§2yg—1/2)27

follows from the strong convergence of the reconstructed Hessian and the property of the
jump term established in Lemma 3.5.

For the stretching term, we use again the identity (62), so that a Cauchy-Schwarz
inequality yields

(65)

VY% VY= VY VY20 <[IVYR = VY1) + 2IVYn = VY22 IVY|2e(0)-

The convergence Vy;, - Vy in [L4(2)]3*? as h — 0* follows from the already established
H'(2)-convergence of the same quantities along with the continuous embedding H'(Q2) c
LA(Q2). From this we infer that

lim (Vy, Vyn -g) = (Vy' Vy - 8)
and thus

Jim (8™ (vy; Vyn - g)g 1 + (g™ (VY Vi - g)g™%)?)

(66)
= fQ g A(vy' vy - g)g ) + tr(g A(Vy vy - g)g )%

Relations (65) and (66) yield the desired convergence of Ej(y) to E(y) and end the
proof. O

5. DISCRETE ENERGY MINIMIZATION

Having established the convergence of global minimizers in the previous section (The-
orem 4.1), we now present an energy-decreasing gradient flow for the discrete energy. As
we shall see, this gradient flow is guaranteed to locate critical points of the discrete energy.

Ideally, given an initial deformation y! € [SF]? and a pseudo-timestep 7 > 0, successive
approximations are found to minimize

1
k13 n||2
[Sa172 Vi o lve = Yilliz ) + En(va),

where the discrete norm [|[|2(q) is defined in (30). Because the stretching part is noncon-
vex, a semi-implicit algorithm is proposed in [8, Section 6] and proved to be (conditionally)
energy-decreasing. In this work, we propose a fully explicit algorithm in the stretching
part, which considerably simplifies the algorithm while retaining the energy decreasing
property.

Given y) € [SF]? and 7 > 0, we define y*! € [SF]? to satisfy

(67) YR = Y Vi) ) + ay (yy,vi) + ap (i, vi) =0, Vv, € [SF]2,
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where

M - _ _ _
af(y,“vh) = 6./;z<g 1/2Hh(Yh)g 1/2) : (g 1/2Hh(Vh)g 1/2)

2 -1/2 -1/2 -1/2 -1/2
+—6(2u+)\)/ntr<g Hy(yn)g )tr(g Hy(vn)g )

+y(h ! [Vya], [Vvh])m(rgxz)

and (with a slight abuse of notation) ay (ys, vs) = a3 (Ya; ¥, Vi) with
1% _ _ _ _
a (213 Yh, Vi) = §fQ(g V(vivy,+ vyl vvig ) s (g7 (V2] v - g)g )

A
’ 4 /g; tr(g‘l/Q(vvgvyh + VYZVVh)g_lm)tr(g—1/2(VZ£th _ g)g_l/Z).

In (67), the forms a?(yn,vs) and ay (y?,vy,) are the Gateau derivative of EZ and EY,
respectively, at y;, in the direction vy,.

It will be useful for us to rewrite (67) using the variation oy7*! := yp*! —y7 ie.,
(68) T OYR Vi) 2 (o) + 0%ay, (Syp*t,vi) = —ay (yi, vi) — 02ag (5. va)-

The existence and uniqueness of dy7*! satisfying the linear problem (68) directly follows
from the coercivity property

(69) T_1||Vh||?q}zl(g) +20°E7 (vy,) = T_l(Vth)Hg(Q) +0%ap (i, vi,) Vv € [SETP.

A stability estimate for one step of the gradient flow is provided in Lemma 5.1 while
Corollary 5.3 guarantees an energy decay property.

We emphasize again that the explicit treatment of the stretching term offers a com-
putational advantage since the system matrix (and its preconditioner) do not need to be
reconstructed at each iteration. In turn, this drastically reduces the running time of the
experiments provided in Section 6.

Lemma 5.1 (Stability of one step of the gradient flow). The unique solution dy7** € [SF]?
to (68) satisfies

- n n n n 92 n
(70) T 1”53’}1“”?{5(9) +20° B Oy S TE}‘?(Yh)”vth%‘l(Q) + gEf?(Yh)-

Proof. On the one hand, we have already noted that the bilinear form 7-1(:,-) Q) *

02aP(-,-) is coercive, see (69). On the other hand, given y} e [SF]3, the discrete and
continuous Cauchy-Schwarz inequalities imply that the mapping

Vi F(vi) = =ai(yi, va) = 0%a; (5, vi)
satisfies for all v, € [SF]3
F(vi) $ B (yi)PlIVyilleaay IV vallay + 0 B (i) V2 ER (va) 2
S By (v PIvyillae | Valluz @) + B (vi) P ER (vi) V2

S (FEEODIVE )+ SEPOD) (7 Vel + 22 B 0)
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where we invoked the discrete Sobolev inequality provided by Lemma 3.3 to justify the
second inequality.
Consequently, choosing v;, = 0y7*! in (68) yields (70). O

We now proceed to the main result of this section and prove that the gradient flow is
energy-decreasing. We do this in two steps. First we establish that the energy decreases
at each step of the gradient flow, provided that 7 satisfies a condition that depends on
the energy at the current step. Then, by induction, we establish a condition on 7 that is
actually uniform over all timesteps.

Proposition 5.2 (Energy decay for the gradient flow). Let y}' € [SF]? and define
(71)  dir(yp) = (L+ T En(yi) (hata (1 + En(yi)'/2)) + T En(yiy) + En(yi) %) > 0,

where hyiy = minger, hy. There exists a constant C' > 0 independent of h, n and 0 such
that if

1
(72) TE Cdn-(y})
then
(73) En(yptt) + —||5y2*1HH2(Q) En(yh).
Proof. We take vy, = dyp+! = yi*! —y% in (67) to get
(74) _1||5Yh+1||H2(Q) +ay (Y v Oynth) + 0ag (v, oyt = 0.

Now we proceed in three steps.
Step 1: Energy relation. Since a3 (y7;-,-) is bilinear and symmetric, we have

(th}’ha 5}’h+1) = _ah (th mla}’hﬂ) - _QS(yha YhYn) = (yha 5yh+1 53’”“)-

Furthermore, using the 1dentity (a-b)b=3a%-30*-(a- b)2 we get
ARy i) - sl iy = [ Wi (T (v - )

1
= BEOR™) = B 57 R ey
where
Wi = (Vyp ™) vyt = (vyp) vy
Therefore, we find that
ah(}’h,Yh+1 5}’2”1) ES(YZH) ES(}’h) (Yh75Yh+l 5Yh+l) ||Wi?||%2(ﬂ)

Similarly, for EP, we have
1
a0y ) = BV (i) = B () + ar (Oyi™ 0y 2 B (v ™) = B (vi)-

Plugging these last two equations into (74) gives
(75) En(yi™) = En(yh) + 7—71H5y2+1”H2(Q) < Ry,
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where
1 n
= §||Wh ||%2(Q) *ts ah(yh75Yh+l Sy ).
Step 2: Bound for R}'. Now we prove that

C n+
(76) |RZ| < th(yh)||5y 1||H2(Q)’

where d, -(y}) is defined by (71) and C' is a constant independent of h, n and 6.
Using the relation (62), we write W} as

Wi = (VoyR* ) vy + (Vy;) ' Vayy™t + (Voyr ) véy™,
and from the discrete Sobolev inequality (Lemma 3.3), we get
||Wh||L2(Q) (HvthL‘l(Q) +[|0yn +1H}L]?(Q))”(Sy +1HH2(Q)

The stability estimate from Lemma 5.1 implies

18y 1y S T(TESINIVYRIE oy + P EE ()

and so

(M) By $ (L4 P ESGEDIVYRIR 0y + O EE (V) I0YE
Q) ~ () (@)

To estimate ||Vy}||za(n) in the above expression, we recall that the gradient estimate
(54) provides a control on ||Vy}||r2¢0). Whence, together with an inverse inequality we
have

(78> ||VYZ||%4(Q) mln”vyh”L?(Q) hmlln (1 + E}f(Y}r;)l/z) :
Plugging (78) into (77), we get
Wy ||L2(Q) S {(1 + 2B (yi) (M (1 + B3 (y1)'72)) + 702 B ( Yh)} [l Hz(g)

To finish the estimate for R}, it remains to bound a; (yh, Sy, 0y7). To this end, we apply
the Cauchy-Schwarz inequality and the discrete Sobolev inequality (Lemma 3. 3) to obtain

lai (vis oy oy | S ES(Yh)l/ZH(SYZHHHz(Q)

Combining the last two estimates and recalling that E,(y}) = Ey (y) + 02EP(y?) gives
(76).

Step 3: Conditional energy decay. Inserting (76) in (75) and rearranging the terms, we
arrive at

+ 1 C n+ n
(79) B + (= G ) ) 1997 ey < B

and so the energy decay property (73) is proven as long as (72) holds. O

We now derive an uniform energy decay property by showing that the condition (72)
holds uniformly in n.
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Corollary 5.3 (Uniform energy decay). Let y) € [SF]?, and assume that
< 1
T —
< o
th,T(Yh)

where C' is the constant in Proposition 5.2. The sequence of successive iterates y**!, where

h
yi*t satisfies (67), is well-defined. Furthermore, we have

(80)

1 N
(81) Eh(yflz\”l) + B Z ||5yz+1||§{g(9) < Eh(yg) VN >0.
n=0

Proof. We show (81), along with the property dp,(y»N*') < dn,(y?), by induction on
N>0. For N=0, 7< W by assumption, so Proposition 5.2 guarantees that
ST R

1
En(yp) + 5”53’;11”3{2(9) < En(yp)-

This is (81) for N = 0. Furthermore, the above inequality also implies that Ej(y;) <
En(y?), and thus d - (y;) < dp-(y)) in view of the definition (71) of dj, ..
We now assume that (81) holds for N; that is, we assume that

1 N-1
(82) En(yi)+ 5= ZO 1035 7720y < En(yn),

and also that dj, , (y»') < dp,.-(y?), and we prove the relations for N+1. Because dj, ,(y5) <
dn.-(y"), we have 7 < a0 S Can 1(yN). Therefore, Proposition 5.2 guarantees that
5T h ,T h

1
En(yn ™) + 5= 10vh " 20y < En(yR)-

This, together with (82), yields (81) for N +1. The relation (81) implies that E,(yN*!) <
En(y?), and thus dp - (y» ') < dp,(y?). O

Remark 5.4 (Gradient flow timestep condition). The condition on the gradient flow
timestep (80) depends on the mesh size huyin but is rather mild. In fact, for 0 <71 <1, it
reads

T < Chmin,
where C'is a constant only depending on Ej(yY).

The final result of this section shows that the iterates obtained via (67) converge to a
critical point of E}. In order to prove it, we require the following conservation of averages
result, whose proof is identical to that of Proposition 5.3 in [9].

Lemma 5.5 (Conservation of averages). Let y9 € [SF]3. Then all the iterates y?, n>1,
of the gradient flow (67) satisfy
n _ 0
/(; Yn /Q Yh

Now we can show that the iterates of (67) converge.

Proposition 5.6 (Limit of the gradient flow). Fiz h>0 and let y? € [SF]3. Also assume
that E(yY) $ 1, and that fy) = 0. Let {y'}, be the sequence produced by the discrete
gradient flow (67). Then there exists y;° such that (up to a subsequence) yj — y3° as
n — oo and y;° is a critical point of Ej,.
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Proof. From Corollary 5.3, the sequence {E,(y})}n is bounded, and from Lemma 5.5,

Joy? = [oy? = 0. Combining the Poincaré-Friedrichs inequality (34) from Lemma 3.1

with Theorem 3.6, we conclude that [[y}||;2(q) is bounded. Thus, since [SF]? is finite-

dimensional, {y7'}, converges strongly (up to a subsequence not relabeled) in [L?(2)]?

to some y° € [SF]® as n > oo. The fact that [SF]? is of finite dimension implies that we

in fact have y} — y;° in any norm on [SF]3; in particular, y} —ys° in [HZ(Q)]°.
Provided that

(83) lim aj’(yy, vi) = a (v, Vi)
and
(84) lim @ (y7i;y7, va) = ai (Y253 ¥i, Vi)

for all vy, € [SF]3, taking the limit as n — oo of (67) gives

(85) 0=ay(y; v vi) +0%al (2, vi).
But
(86) ay (yi2s i, ve) + 0%al (v, vi) = SE(ys?) (vi) =0,

which implies that y;° is a critical point as desired.

Now we establish (83) and (84). The equation (83) can be readily shown using the
Cauchy-Schwarz inequality and the fact that ||y} — y;°|| m2) > 0 as n > oo. To prove
(84), we rewrite

@i, (Y7 Yhs va) = an (Y353 ¥i s va)l S
| [ (& Vi (i = vi) + T (7 -y TV ) (87 () T - 2)g )|

+| fg(g‘m(v"fvﬂi + (VYD vVE ) (g (V) Ty - (V) TV ) )

d fgtr(g_m(vva(yz i)+ V(i - ) T vvig (g A (Vy) vy - g)g )|
+ ‘ ,/g; tr(g_l/Q(VVZVyZ + (Vy?l)TVVh)g_l/Q)tr(g_l/z((VyZ)TvyZ _ (vyZO)TvyZo)g—l/Q)|
=: |T1| + |T2| + |T3| + |T4|

The leading constants are not included because they do not affect the computation.
We focus on the first two terms, 7T and T5, because the reasoning for the trace terms
is similar. For T}, Cauchy-Schwarz, the definition of E, and Lemma 3.3 give

T3] S [IVVallia@lIV(Vh = yi ) lza) Ex (yio)
SIvallzzollyr - YZOHH,?(Q)EE(YZO)I/Q-

But ||y} - yillmz2(@) ~ 0, and EZ(ys°) is finite by Corollary 5.3. So [T1]| = 0 as n — oo.
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Similarly, for T,

o] S Vil VYl (V) vy = (Vi) vyl
SIvallaz @ Iyillzz@ 1Y) vy = (V)T vyillz)-

Since {yj }» converges in [} (), ||yj| g2 is bounded, and using the relation (62) we obtain

1(Vy) vy = (Vyi) Vyillize) < IVE - y) Vs - yid)llez o)
V(s =) VYR llee) + (VYR V(i = v )llz@
<IV(yi =y + 2Vl IV (i = ¥ )|z
SIVR =Yl + 20yl @llyn = i lmze) = 0

as n — oo. Thus |T3| - 0 as n - oo. Applying similar reasoning to the trace terms, we
obtain (84) and complete the proof. O

6. NUMERICAL EXPERIMENTS

We illustrate the convergence results from the previous section, along with the capabil-
ities of the preasymptotic model, via numerical experiments. Unless otherwise specified,
all experiments are run with p =6, A =8, and pseudo-timestep 7 = 1072. The polynomial
degree for the deformation and the lifting is set to k = 2, and we take the stabilization
parameter v = 1. The gradient flow terminates when

T EL(yr™) - En(yh)] < tol,

where tol will be set in each of the experiments. Finally, although the analysis above deals
with the case 6 > 0, we will also consider the case § = 0 in the experiment of Section 6.2,
namely the minimization of the stretching energy only. Similar results as provided by
Lemma 5.1 and Proposition 5.2 can be derived for 6 = 0 following the arguments provided
in [9, Section 6] (treating the case oy = 0).

Note that, because our energy is nonconvex, we cannot guarantee that the deformations
found by our gradient flow are global or even local minimizers. However, in some cases,
such as the bubble experiment below, we have reason to believe that the deformation found
by the gradient flow is a minimizer. We use this case to demonstrate the convergence
results established in Section 4. In addition, it is difficult to design input data for which
we can find an exact minimizer of (17). Instead, we treat the solution of largest refinement
as the exact solution when computing errors.

6.1. Disc with “Bubble” metric. We first consider the unit disc with the following
metric, which corresponds to a bubble shape with positive Gaussian curvature:

1+a=cos(Z(1-1))°% o cos(Z(1-r))2me )

04%2 cos(3(1-r))?=2 1 +CY7FI2 cos(5(1 _7’))2%

(87) g(z1,72) = (

2

In the expression above, r = \/z} + 2% and a = 0.2. A compatible deformation for this
metric is given by

(88) y(xl,:vz)= <$1;$27\/aSin(g(1_T)))

T
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Note that this deformation is a minimizer of (17) in the case that # = 0. Thus, we
expect discrete minimizers to have similar shape when 6 is small. Indeed, we find this to
be true experimentally, and if 6 is large, our algorithm converges to the flat configuration,
which is also a local minimizer. No other deformations have been found by experiments.
Thus, we have some confidence that the configuration reached by this experiment is an
approximate minimizer.

We set tol = 107 for the stopping criterion and let #2 = 1075. The initial deformation

is the continuous Lagrange interpolant of the shallow paraboloid —%—f—g. This gives a
slight initial bending that allows the simulation to find a non-flat minimizer. (The flat
configuration is a local minimizer of the preasymptotic energy, so that a simulation that
starts flat stays flat.)

To demonstrate convergence of minimizers as h - 0*, we run the simulation on grids
of increasing refinement. The grid of maximum refinement has 61, 827 degrees of freedom
(5,120 quadrilaterals), and we take the reference solution y;ff to be the solution on this
mesh. In Table 1, we record the energy of the final deformation for the different mesh sizes.
The final energy decreases as the mesh is refined, with a value of (approximately) 3.9e-05
for the finest mesh, whereas the energy of the interpolant of the compatible deformation
(88), which is itself an almost-minimizer, on a grid of 246, 531 degrees of freedom (20,480
quadrilaterals) is 2.858e-05. Running more experiments with higher refinement should
give us energies closer to this minimum; however the time costs of such experiments are
currently prohibitive.

In Table 2, we show the convergence of the coarse solutions y#' to the reference solution
yfff. Errors are computed in the L2, H!, and L* norm. Note that to save memory in our
simulations, we only write solutions every thousand timesteps. Thus, the iterate at which
errors are computed is rounded up to the nearest thousand from the iterate at which the
tolerance is reached. For the large number of time steps required in this experiment, the
effect on our results is negligible.

We observe a decrease of errors to zero in all three norms as the number of degrees
of freedom increases. In particular, the convergence of minimizers in the L? norm agrees
with our result in Section 4. Note that the theory does not predict a rate of convergence;
it only ensures that the error converges to 0. By running more simulations with greater
refinement, we may be able to observe a convergence rate experimentally.

Number of DoF's | Final Energy
1011 5.082e-05
3939 4.294e-05
15555 4.089e-05
61827 3.936e-05

TABLE 1. Energy FEj, at the final timestep of the gradient flow for increasing
refinement levels of the mesh.
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Number of Dok's | [y, - yi'llr2c) |y, —¥itllme) | 1yy - yille=@
1011 1.111e-03 2.138e-02 1.570e-03
3939 2.856e-04 1.652e-02 3.867e-04
15555 1.193e-04 7.268e-03 2.044e-04
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TABLE 2. Errors between the final solution at each refinement level and
the final solution on the reference mesh.

To conclude this experiment, we comment on the effect of replacing the second fun-
damental form in the physically correct bending energy (19) by the Hessian to get (20).
This modification, also considered for instance in [17, 5], greatly simplifies the design of a
numerical scheme since the variational derivative of EP(y) is linear. It can be rigorously
justified in specific cases, e.g. when ES(y) =0 as shown in [9, Proposition A.1] (which is
not limited to small deformations), and we expect this simplification to remain valid for
deformation with small stretching energy. To illustrate the effect numerically, we give in
Figure 2 the element-wise bending energy of the final deformation in the case =6, A=0
and a mesh with 3 refinements. We observe that the distribution of the local bending
energies with the (discrete) second fundamental form and Hessian are similar. Note that
this is not surprising for low energy deformations for which the stretching energy is ex-
pected to be small due to the different scaling 1 versus 62 for the two parts of the energy
[15].

FI1GURE 2. Element-wise bending energy of the final deformation using the
second fundamental form (left) and the Hessian (right). The same color
map is used for both plot and the ranges of values are [2.53e-8,6.82¢-8] and
[3.69¢-8,6.84¢-8], respectively.

6.2. Disc with Oscillating Boundary. The next experiment is inspired by [28, 31],
in which a hydrogel disc of negative Gaussian curvature is observed to develop more
oscillations along the boundary as its thickness is reduced. It is included to demonstrate
the capabilities of the preasymptotic model. A similar experiment involving discontinuous
elements can be found in [7].
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The material is prestrained according to the metric
g=J"(g0¢)J,

where J is the Jacobian matrix for the change of variables (r, ) = (21, 22) from Cartesian
to polar coordinates, g(r, ¢) is the first fundamental form of ¥(2), where Q = {(£2), and

(89) ¥ (r,0) = (rcos(¢), rsin(¢),0.2r*sin(6¢)).

This deformation corresponds to a disk with six wrinkles.

For the discretization, our subdivision consists of 1,280 quadrilaterals and a total of
15,555 degrees of freedom. The initial deformation y) is taken to be the continuous
Lagrange interpolant of ¥ o ¢ with ¥ given by (89). We set tol = 107! for the stopping
criterion and run the experiment for #2 = 10-1, 10-2, 1073, and 0.

Because the gradient descent algorithm is slow to converge, we use a Nesterov-type
acceleration to speed up the computation. This algorithm is analogous to the FISTA (see
[4, 16]) for minimizing F' = f + g with f = ES (explicit) and g = EB (implicit), although
E? is not convex as assumed in the listed references. The algorithm proceeds as follows
(see [7] for the semi-implicit scheme): Given y) € [SF]3, set w . Then for n=0,1,...
do

(1) Find y7*! € [SF]? satisfying (67) with y? replaced by Wil
(2) Set witt =yt (Yt — y7), where 1,41 = t”“ Land {t,},s1 satisfies

1 1
(90) ty=1 and tn+1:\/t%+1+§ forn=0,1,....

Details about the FISTA can be found in [4, 7, 16]. See also [33] for the original
algorithm proposed by Nesterov.

The results are given in Figure 3 and match those in [7]. As observed in the experiments
of [28, 31], the number of oscillations increases as the thickness decreases.

FiGURE 3. Final configurations for the oscillating boundary experiment.
Left to right and top to bottom: 62 =10-1, 1072, 1073, and 0.
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We note that the 8 = 1073 case appears to be particularly sensitive to the minimization
algorithm and the data of the experiment. For instance, if we linearize at y} instead
of w} in the Nesterov-type algorithm, we obtain the result shown in Figure 4. Starting
from the almost-flat configuration from Section 6.1 instead of a disc with 6 oscillations
produces a similar result. This configuration has a lower energy than that in Figure 3,
and also matches more closely the results obtained in Figure 1 of [28]. Understanding the
effect of various parameters on the final configuration is a topic for future work.

FIGURE 4. Final configuration for the oscillating boundary experiment
with @ = 1073, where we use the linearization af(y%};-,-) instead of

6.3. Flapping Device. This experiment illustrates the advantages of the preasymptotic
model when folding is present. Its aim is to simulate the flapping device discussed in the
introduction.

Recall that in this experiment, the metric is g = I, namely the plate has no pre-
strain. Moreover, a time-dependent boundary condition is used to model the compres-
sion dynamic. More details are provided in [7], but the implementation is summarized
here. We introduce a physical timestep At and consider the time points t,, = mAt for
m=1,..., M, where M is a positive integer. We write T' = M At for the final time, and
we use y}(lm) = yn(t,n) to denote the output of the gradient flow (67) using boundary data
at time t,,. Finally, given ¢ € [0,T], let y;, be the LDG approximation of the solution y
to the following bi-Laplacian problem used to incorporate the boundary conditions in the

initial deformation:

A2y = f in Q
(91) Vy = ®() onTlP
y = () on'PulM

supplemented with the following natural boundary conditions

(92) (D%*g)n = 0 on QTP
V(AYn)-n = 0 ondQ~ (I'Pul'M)

for m =1, 2,3, where f is a fictitious force, I'? is the portion of the boundary on which we
enforce Dirichlet boundary conditions and I'M is the portion on which we enforce mixed
boundary conditions. By mixed boundary conditions, we mean that only the value of the
deformation (and not its gradient) is specified on T'™. We thus have the following time
dependent algorithm:

(1) Initialization (¢ = 0): Obtain yﬁf’) by solving (91)-(92) with the prescribed con-

ditions evaluated at ¢t = 0. Set y,(lo) = y,ﬁo);
(2) Dynamics (t € (0,7]): for m=1,2,..., M, do
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(a) Obtain (5}7,(;”) by solving (91)-(92) with the increment boundary conditions
Voyy" = ®(tm) = ®(tm-1), on TP
09 = @(tm) = p(tm-1), on TP UTM,

(b) Starting from y,ﬁm) = yém_l) + (53/,(:1), obtain y,(lm) using the gradient flow (67)

to minimize the discrete energy with the data evaluated at ¢t =t,,
Notice that the Dynamics step solves for the deformation increments in order to take
advantage of the previous time computation. Otherwise, at each timestep, the gradient
flow would restart from the solution to (91)-(92).

In the case of the flapping device, the domain is the rectangle (0,15) x (0,9.6) with a
crease along the center, namely ¥ = (0,15) x {xo = 4.8}. We let Iy = {z1 = 0} x (0,9.6)
and Tygny = {1 = 15} x (0,9.6). For the initialization step (¢ = 0), we set I'M = T and
I'P = Tignt. Moreover, the fictitious force is given by

~ 0 0 < T < 10
f(l'l, ZEQ) =
(0,0,0.002)T 10 < x; <15,

and the boundary functions ¢ and ® are defined as follows:

(21,22,0)T 21=0

90(371,332) = {(10,1’2,5)T Ty = 15’

T
0 0 1
O(zq,x9) = (0 1 0) , x1=15.

For the part (a) of the dynamics step, we set I'M = T U I'yigre and I'P = @, and we
define the increment function ¢, for which we compute ¢(t,,) — ¢(tn), on each side as
follows. On D', ¢ is given by

T
(21,96t (1~ 2), 2h(tn)) 0<as <48
(93) Plliese = T
(21,96tm (1= £2), (2= 2)h(tn))  48<m <96,
where

h(t) = \/£(9.6-1).

This boundary condition forces the deformation to take a tent shape on the left side of

the computational domain. The coefficients of the height function h(t) on the upper and

lower halfs range from 0 to 1 (0 on the ends, 1 in the center), ensuring that the sheet has

maximum height in the center and decreases linearly to 0 on the top and bottom corners.
On I'yighe we impose

T T r
Pt (s 1, 2) = (1,9.6(1 - E),h(tm)) o (@1,72) € T,
where h(t) represents the maximum height of the sheet at time ¢ and is given by

h(t) = /(9.6 - 1).
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The boundary condition imposed on the right side of the computational domain leads to a
deformation that has a larger third component than the deformation on the left side. The
resulting deformation is used as the initial deformation in part (b) of the dynamics step,
which does not impose a boundary condition on this side of the domain. Starting the
main gradient flow with a deformation which is higher on the right side leads to non-tent
shapes, and its necessity is confirmed in practical experiments.

For the gradient flow (part (b) of the dynamics step), I'™ = I'jos; with prescribed value
given by (93), while T'P = @.

The subdivision consists of 2,192 quadrilaterals and 30,267 degrees of freedom (Figure
5). The initial deformation is the identity. We prescribe physical time step At = 0.1,
pseudo-time step 7 = 0.01, and run the experiment for M=4 physical time steps. The
stopping criterion for the gradient flow (67) is tol = 1076, and 6? = 10~3. Figure 6 in the
introduction shows the equilibrium deformation at each of the four physical time steps,
colored by the local isometry defect

|vyTy - L2y, T €T,

where blue represents a lower isometry defect and red represents a higher isometry de-
fect. A high isometry defect is observed around the point where the two creases meet.
This helps explain why we do not observe the same results using a bending energy with
isometry constraint. Because the bending model (approximately) enforces the constraint
Yrer, Jr(VyTVy —g) = 0 (see [8]), the gradient flow eliminates the area of high defect by
“pushing” its location along the crease and outside the computational domain, thereby
leading to the tent shape in Figure 1.

FIGURE 5. Computational domain (left) and mesh (right) for the flapping
device experiment.
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