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Abstract

Fish often swim in crystallized group formations (schooling) and orient themselves against the incoming flow
(rheotaxis). At the intersection of these two phenomena, we investigate the emergence of unique schooling patterns
through passive hydrodynamic mechanisms in a fish pair, the simplest subsystem of a school. First, we develop a
fluid dynamics-based mathematical model for the positions and orientations of two fish swimming against a flow
in an infinite channel, modeling the effect of the self-propelling motion of each fish as a point-dipole. The resulting
system of equations is studied to gain an understanding of the properties of the dynamical system, its equilibria,
and their stability. The system is found to have five types of equilibria, out of which only upstream swimming in
in-line and staggered formations can be stable. A stable near-wall configuration is observed only in limiting cases.
It is shown that the stability of these equilibria depends on the flow curvature and streamwise inter-fish distance,
below critical values of which, the system may not have a stable equilibrium. The study reveals that simply through
passive fluid dynamics, in the absence of any other feedback/sensing, we can justify rheotaxis and the existence of
stable in-line and staggered schooling configurations.

Impact Statement Researchers across fields have long pondered over the question of how and why fish school
in specific crystallized formations in a flow. We attempt to answer this question from a purely hydrodynamic
standpoint in a two-fish subsystem of a school, swimming against a channel flow. Through an elegant
mathematical model, derived based on fundamental fluid dynamics principles, we demonstrate the emergence
of unique schooling patterns that are stable to disturbances. Interestingly, we find that two fish, swimming in
close proximity but not precisely side-by-side, always orient opposite to the flow direction through passive
hydrodynamics, without any active feedback/sensory mechanism. Our findings provide theoretical evidence of
stable configurations of schooling and their dependence on flow conditions and streamwise inter-fish distance.
The proposed model and developed insights not only advance our understanding of a fundamental form of
collective behavior but will also guide future experimental design and investigation of live/robotic fish schools.

1. Introduction

Rheotaxis is the ability of a fish to orient and swim against an oncoming flow. At first, visual cues were
considered to be the dominant contributor toward rheotaxis (Arnold, 1974). Later, experiments revealed
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that fish exhibit this behavior even in the absence of vision (Champalbert & Marchand, 1994; Suli et
al., 2012), which has led researchers to investigate additional sensory systems that fish may employ to
appraise the flow environment. Suli et al. (2012) and Oteiza et al. (2017) showed that fish use their
lateral lines (Montgomery et al., 1997), a mechanosensory organ, to detect gradients of the surrounding
flow velocity and adjust their orientation accordingly. This lateral line-mediated rheotaxis was markedly
evident in the presence of non-uniform flows (Kulpa et al., 2015; Oteiza et al., 2017), while much
reduced in zero-gradient uniform flows (Bak-Coleman et al., 2013; Bak-Coleman & Coombs, 2014).
Aside from gradients, the rheotactic behavior of fish is also affected by the speed of the flow (Bak-
Coleman et al., 2013), whereby the ability to orient against a flow is limited at low flow speeds. While
visual and lateral line sensing play a key role in the occurrence of rheotaxis, recent work suggests that
the basis of rheotaxis should be sought in the integration of multiple senses, including tactile senses and
vestibular system (Coombs et al., 2020).

Another potentially significant contributor in the phenomenon of rheotaxis is the passive hydrody-
namic mechanisms affecting the fish swimming. As the recent comprehensive review of rheotaxis by
Coombs et al. (2020) states, one of the questions that remains unanswered is “what role, if any, do passive
(e.g. wind vane) mechanisms play in rheotaxis and how are these influenced by fish factors (e.g. body
shape) and flow dynamics?" In this vein, Porfiri et al. (2022) recently developed a hydrodynamic model
for a fish swimming in a channel flow, providing the first analytical justification of rheotaxis by purely
hydrodynamic mechanisms in the absence of any sensory feedback. Their model is the first to analyze
rheotaxis as a bidirectional fluid-structure interaction problem, in which the fish modifies the surround-
ing flow field and the flow field, in turn, affects fish swimming. These bidirectional interactions are
pervasive in fluid mechanics, from fluid-structure interactions in vortex-induced vibrations (Williamson
& Govardhan, 2004) to laminar boundary layer response to environmental disturbances (Saric et al.,
2002), yet mathematical modeling of rheotaxis and swimming in general have largely discounted them.

This work seeks to understand the implications of the passive hydrodynamic pathway discovered in
Porfiri et al. (2022) on fish schooling. Schooling refers to the coordinated swimming of fish in close
proximity in crystallized spatial formations, as exhibited by most fish species (Shaw, 1978; Kalueff et
al., 2013; Filella et al., 2018). Different patterns of fish schooling that are often shown to emerge include
side-by-side (phalanx), in-line, and staggered (diamond) formations (Weihs, 1973; Park & Sung, 2018;
Oza et al., 2019; Thandiackal & Lauder, 2022). One approach to explain schooling is based on the
premise of collective energy savings so that fish arrange their positions with respect to their neighbors
in an attempt to reduce their swimming costs (Liao et al., 2003; Marras et al., 2015; Ashraf et al., 2017).
Another approach to understand schooling patterns is based on the Lighthill conjecture (Lighthill, 1975;
Daietal., 2018; Peng et al., 2018; Lin et al., 2019; Cong et al., 2020; Kurt et al., 2021), which postulates
that orderly patterns in a school emerge due to flow-mediated passive forces. The focus of this study is
on investigating the role of the latter in the context of fish schooling and rheotaxis, which leads to the
formation of stable schooling patterns in fish swimming against a flow.

Toward this aim, we focus on a fish pair as a minimalistic instance of a school. Experimental studies
involving pairs of live fish have shown evidence for specific schooling configurations, such as side-
by-side (Chicoli et al., 2014; Ashraf et al., 2016) as well as in-line (Thandiackal & Lauder, 2022)
configurations, when swimming against a flow. Recent work by De Bie et al. (2020) has further shown
that pairs of fish tend to swim in-line in placid water, side-by-side in a high speed flow, and without
any identifiable pattern in a low speed flow. Examining the combined effect of flow (hydrodynamic
interaction) and illumination (visual interaction) on fish collective behavior, Lombana & Porfiri (2022)
provided evidence that the relative time spent by a pair in a side-by-side configuration increases in the
presence of flow as well as in the presence of light. However, in these studies the different forms of
interactions (visual, hydrodynamic, and tactile) are intermingled, and the specific role of hydrodynamics
is difficult to tease out. Detailing the role of hydrodynamics through sensory-deprivation may not be
completely reliable due to the possible pitfalls of such methodologies, such as disabling certain senses,
even if perfectly executed, may affect the overall behavior of the fish and deprivation of one sense may
cause the other senses to over-compensate (Coombs et al., 2020).
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To isolate the role of hydrodynamics, researchers have also proposed the study of a pair of pitching
airfoils as a proxy subsystem of a fish school against an oncoming flow. For example, Boschitsch et
al. (2014), Kurt & Moored (2018), and Saadat et al. (2021) have shown evidence in support of in-line
swimming, while Dewey et al. (2014) and Gungor & Hemmati (2021) have shown increased efficiency
in side-by-side swimming. Experiments and numerical simulations of self-propelled flapping wings
and plates (Becker et al., 2015; Ramananarivo et al. , 2016; Newbolt et al., 2019) indicate that orderly
formations in schools may emerge simply through flow interactions, and that hydrodynamic mechanisms
maybe enough to support a group’s collective motion. These, along with other studies (Lin et al., 2019;
Baddoo et al., 2021; Kurt et al., 2021), have investigated the stability of spatial configurations of such
schooling systems via experimental measurements and/or numerical predictions of hydrodynamic forces.
Kurt et al. (2021) and Peng et al. (2018) have shown propensity for a stable side-by-side configuration
in pitching airfoils and plates, while Newbolt et al. (2019) and Lin et al. (2019) provide evidence of
stable configurations in two hydrofoils swimming in-tandem. These studies suggest the existence of
multistable formations of schooling, and that transitions between such stable states may be induced by
applying external perturbations to the swimmers (Newbolt et al., 2022).

To gain a fundamental understanding of the hydrodynamic foundations of such schooling formations,
we propose to investigate the problem from a theoretical perspective that complements the experimental
and computational findings in the literature. We consider a fish pair swimming in an infinite channel.
First, we develop a mathematical model of the positions and orientations of both the fish by considering
all the passive hydrodynamic interactions in the system. The behavior of each fish is modeled as a
vortex dipole in a two-dimensional flow under the finite-dipole paradigm of Tchieu et al. (2012), which
has been extensively used in the past to study the hydrodynamics of swimming animals (Gazzola et al.,
2016; Filella et al., 2018; Kanso & Tsang, 2014; Porfiri et al., 2021, 2022). Instead of considering a fish
to be a passive body that does not affect the flow, we model their effect on the background flow in the
presence of the channel walls (Porfiri et al., 2022). This results in a five-dimensional dynamical system
for the fish pair in the channel flow, characterized by bidirectional couplings between the two fish and
the fluid flow.

We use the proposed model to elucidate the hydrodynamic mechanisms driving the formation of
schooling patterns in the presence of a flow. We study the properties and equilibria of the dynamical
system, and their significance in schooling and rheotactic behavior of the fish. Linear stability analysis
is performed to demonstrate the existence of specific stable configurations of the fish pair, both in terms
of their positions and orientations. The system’s equilibria are shown to depend on the flow curvature
and the streamwise distance between the fish. Finally, the study evaluates the role played by lateral line
sensing and the effect of varying channel widths on the stability of schooling configurations. The rest
of the paper is organized as follows. In section 2, we present the mathematical model; in section 3, we
present the results of all the analysis; and finally, conclusions from the analysis are discussed in section
4 along with limitations of the research.

2. Mathematical model

First, we derive a mathematical model of passive hydrodynamic interaction between two fish swimming
in an infinite channel of width 4 with an imposed flow. A schematic diagram of the setup is illustrated
in Fig. 1. At any time ¢, the two-dimensional positions of the two fish (labeled 1 and 2) in a Cartesian
coordinate system (x; y) are given by r(f) = x| ()i + Y1 (t)f and ro (1) = x2(1)i + yz(t)f, respectively,
and their heading directions are specified by the angles, 6 (#) and 6,(z), with respect to the positive x
direction. Here, i is the unit vector of the streamwise coordinate x, and f is the unit vector of the cross-
stream coordinate y. We consider that the two fish are identical in size and have the same swimming
capacity, that is, they propel themselves by tail-beating at the same amplitude and frequency. Therefore,
their self-propulsion velocities at a time ¢ are given by

vi(01) = vo(cos Oxi +sin 0 j), where k =1,2. 1)
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Figure 1: Schematic of two interacting fish swimming against a flow inside a channel of width £, with x
and y being streamwise and cross-stream coordinates, respectively. Note that the flow is in the (positive)
x direction.

Here, v is the constant self-propelling speed of the fish and the direction of the fish’s self-propulsion is
given by the unit vector V¢ (0 (¢)) = cos 0y (¢)i + sin 0y (1) J.

2.1. Modeling the fluid flow

Each fish is modeled as a vortex dipole (Tchieu et al., 2012), a representation that has previously
been used in several studies of fish schooling (Gazzola et al., 2016; Filella et al., 2018), and has been
validated with experimental observations (Porfiri et al., 2021) as well as numerical simulations (Porfiri
et al., 2022; Zhang et al., 2023). The mean flow field generated by the swimming fish is modeled using
potential flow, wherein the potential field due to the self-propelling motion of each fish is given by

2("—rk)‘vk

, for k=1,2, 2
= @

¢fk(r7 rkaek) =T

where r = xi + y f . These are the far-field representation of the dipoles (Filella et al., 2018) under
the assumption that the dipole length scale (rg) is much smaller than the flow length scale, that is,
ro < h, where h is the channel width. The flow velocity induced by the point dipoles are then given by
up, =V, for k = 1,2 (see Supplementary Information S1 for complete expressions). Fig. 2a shows
the flow streamlines generated by the dipoles (u s, +u r,) in a quiescent fluid in an unbounded domain.
These streamlines approximately replicate the inviscid flow due to the self-propelling body of a fish,
emanating from the head and circulating toward the tail of the fish (Tchieu et al., 2012; Zhang et al.,
2023). It is further evident from the figure that if the two fish are in close proximity, their individually
generated streamline patterns are influenced by each other.

The dipole-generated streamlines are further affected by the walls, which are represented by stream-
lines generated via the method of images (Newton, 2001) by using fictitious fish (dipoles) mirrored with
respect to the wall plane !. In the presence of two parallel walls at y = 0 and y = A, this results in an
infinite number of such image dipoles on either side of the channel, as shown by Porfiri et al. (2022).
The infinite sum of the potential fields generated by such image dipoles of both fish yields the following
potential field (Porfiri et al., 2022):

Note that in reality the fluid is viscous, in which case a no-slip boundary condition must also be satisfied at the walls. But as a simplification,
we assume the flow to be inviscid and only account for the zero wall-normal velocity at the walls.
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Figure 2: Predicted flow streamlines around two fish swimming (a) in a quiescent fluid within an
unbounded domain, (b) in a quiescent fluid bounded by channel walls, and (c) against a flow (Uy =
2, e = 0.1) bounded by channel walls.

voré [4 (x —xg)cos O + (y — yg) sin Oy

dw(r,ri,r2,01,07) =
v 4 (x —x1)? + (y — yi)?

k=1,2

—% (eie" (coth A + coth 7B*) + ¢ 1% (coth mA* + coth ﬂB))] , 3)

where A = ((x —xx) +i(y — y))/(2h), B = ((x — xx) +1(y + yr))/(2h), i is the imaginary unit, and
superscript = represents complex conjugation. Thus, the velocity field can be obtained by u,, = V¢,,
(see Supplementary Information S1 for complete expression). The resultant flow streamlines due to the
fish swimming between the walls of a channel (u f, +u ¢, +u,,) are illustrated in Fig. 2b. Near the walls,
the streamlines reorient to become parallel to the wall, creating large-circulatory motions about the fish.

To mimic a background flow inside a channel, we add a weakly rotational velocity profile across the

channel:
2
y 1 2
1-4e|=-= 4
E(h 2))1, “4)

where Uy is the maximum flow velocity at the channel centerline and € is a positive parameter controlling
the curvature of the velocity profile, and thus the vorticity in the flow. For e — 0, we approach a nearly
uniform irrotational background flow, while € = 1 yields the parabolic profile of laminar flow in a
channel (plane Poiseuille flow). If 0 < € <« 1, the background flow closely resembles the mean velocity
profile of a realistic turbulent channel flow with a small curvature near centerline but does not satisfy the
no-slip condition at the walls. Superposing the background flow velocity on the velocity field generated
by the fish in the presence of the walls yields the following total flow velocity at any location r of the
flow domain:

up(r)=Up

u(r,ri,ro,01,602) =uyp (r,r,01) +up,(r,ra,02) +u,(r,ri,r2,01,02) +up(r). ()

The resultant flow streamlines are illustrated in Fig. 2c.



El1-6

2.2. Modeling fish dynamics

The translational motion of a fish can be obtained by the addition of the advection experienced by the
fish due to the flow and its self-propulsion due to its own tail beating motion in the fluid. First, we
determine the advection velocities (U; and U;) experienced by the two fish by de-singularizing the total
velocity field (Eq. (5)), that is, without considering the contribution of the dipole at its own location and
obtaining the value at the location of the dipole in the limit form,

Ui(ri,r2,01,62) :rlijjl [wr,(r,r2,02) + 1wy (r,r1,r2,01,602) +up(r)], (6a)
Us(r1,r2,01,6) =r1L11rlz [wp, (ror,00) +wy(r,ri,r2,01,602) +up(r)] . (6b)

The complete expressions of the advection velocities experienced by the fish are presented in
Supplementary Information S2. The velocity of each fish is therefore given by

Fi (1) =Ur(ri(2), (1), 01(1), 62(1)) +v1(61(1)), (7a)
Fo(t) = Up(r1(1),r2(1), 01(1), 02(1)) +v2(02(1)), (7b)

where the self-propulsion velocities of the fish, v| and v, are given by Eq. (1).

The rotational motion of each fish (dipole) is attributed to the angular velocity induced by the flow
field and the active sensing mechanism of the fish that helps them navigate the flow. The flow-induced
turn-rate is due to the two vortices comprising the dipole experiencing different velocities. In the far-
field limit for a transverse dipole, referred to as a T-dipole (Tchieu et al., 2012; Kanso & Tsang, 2014;
Porfiri et al., 2021, 2022), this angular velocity can be approximated from the gradient of flow velocity
orthogonal to the dipole’s velocity (v, for k = 1,2) as follows 2:

Q(ry,72,61,60,) = —171(91).[}1_{91 {V("fz(",rz,Gz) + Uy (r,r1,12,01,62)

+ ub("))} 9f‘(91)-, (8a)
Q(ry,72,61,0,) = —92(92)'[)1_{512 {V(ufl(r,rl,gl) + Uy (r,ri,r2,01,62)
+ ub(r))} 92*(92)-, (8b)
where i}‘t = —sin Ok + cos O, for k = 1,2, is the unit vector orthogonal to the fish’s self-propelling

direction. Complete expressions of the angular velocities are presented in Supplementary Information
S2.

In addition to the passive hydrodynamic turning mechanism, a fish may undergo active rotation in
response to local flow sensing through its lateral line (Montgomery et al., 1997). Studies have shown
that this hydrodynamic feedback via lateral line is related to the circulation of the flow surrounding the
fish (Oteiza et al., 2017) and can be approximated by considering a linear feedback term (Porfiri et al.,
2022) of the form A(rg, 0;) = KT'(rg, 6y), where K is the feedback gain and T is the circulation in a
rectangular region (R) about the location of the fish, of width r¢ and length equal to the fish body length
[. The circulation I" = fﬂ w - dA can be determined by integrating the vorticity of the flow, w, which is
given by

w(r) = (Vxup) = &)

5>

8Upe [y 1
h 2)

2Note that an alternative is the aligned dipole (A-dipole) treatment that mimics the response of a slender body to flow gradients (Kanso & Tsang,
2014; Filella et al., 2018).
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since all other contributions to the velocity field are irrotational. As shown by Porfiri et al. (2022), the
feedback angular velocity of each fish due to their lateral line sensing is given by

Ar(re, 0x) =k

8U()€ Yk 1
— ——, fi =1,2 1
A (h 2),ork )2, (10)

where k = Krgl is the non-dimensional lateral line feedback gain. Therefore, the total turn-rates of the
two fish are obtained by adding the passive and active hydrodynamic effects discussed above, yielding
the following two coupled ordinary differential equations:

01(2) = Qi (r1(1), r2(1), 01 (1), 02(1)) + A1 (r1 (1), 6, (1)), (11a)
02(1) = Qo (r1(1), r2(1), 01 (1), 02(1)) + A2 (r2(1), 02(1)), (11b)

where the flow-induced turn-rates are given in Eqgs. (8a) and (8b), and the feedback due to the lateral
line is given by Eq. (10).

2.3. Dynamical system

Translational and rotational motion of the two fish in the channel is given by the system of six equations
for x1, y1,x2,y2,01, and 6, (Egs. (7) and (11)). In order to study the dynamical system properties, we
first non-dimensionalize these equations using the following non-dimensional quantities:

a1 =2l A ZW (12)
Here, &) and &; are the non-dimensional cross-stream coordinates and ¢’ is the non-dimensional time
coordinate. To study the spatial configurations of the fish pair, their exact streamwise locations (xp, x)
in the infinite channel are inconsequential. Instead, the important variable is the streamwise distance
between the two fish (x| — x;), for which we introduce the non-dimensional streamwise distance A.
The equations for location coordinates, Egs. (7a) and (7b), are non-dimensionalized by dividing both
sides by v (the self-propulsion speed of the fish), while the rate of change of orientation, Eq. (11a) and
(11b), are non-dimensionalized by multiplying both sides by //vy. Upon non-dimensionalization, the

following two additional non-dimensional parameters emerge:
U
a="2 and p="2, (13)
Vo h
where « is a measure of the curvature (€) and speed (Uy) of the background flow with respect to the fish
self-propulsion speed (v¢), and p represents the inverse of the channel width for a given fish size. The
third parameter of the system is the non-dimensional lateral line feedback gain «.
The final system of non-dimensional equations governing the dynamics of the two-fish configuration
in the channel is given by

& = sinb + p* fe(£1,62.01,02,N) (14a)
& = sinby + p* fe (€2, €1, 02,01, - (14b)
01 = a& 8k +g9(£1.61)) + p* fo (1,62, 01,02, A) (14c)
b = & (8k +89(£2,62)) + p*fo (&2, €1, 62,601, —A) (14d)
A = (cos 6z — cos ) +4a (gf - gg) + P2 fa (€1, 62,601,602, ) (14¢)

where f¢, fo,80, and fp are complicated trigonometric functions of (&£1,&2,01,62,A) and their
expressions are presented in Supplementary Information (S3). Here and in what follows, we omit the
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dependence on the non-dimensional time variable #’. There is a symmetry evident in the equations,
which is expected as the two fish are assumed to be identical and their influences on each other through
an inviscid hydrodynamic field are similar in form. Note that the equations for cross-stream coordinates
(&1, &>) do not directly depend on the flow properties («), but since the system is nonlinearly coupled,
the cross-stream equilibria depend on the parameter «.

We should note that our mathematical model based on potential flow theory has the inherent limitation
of neglecting viscous effects and vortex shedding from the trailing edge. These effects can be considered
small in high Reynolds number flows with small curvature @, but they can be significant when the
channel flow is laminar at low Reynolds numbers, that is, as @ — 1. Thus, we warn prudence regarding
the validity of the model at very high « values.

3. Analysis of the dynamical system
3.1. Method

The five-dimensional dynamical system in Eq. (14) can be represented in vector form as
X=F(X), X-=I[&.6.601,62,A]. (15)

Here, X is the state vector and F (X) is the vector-valued nonlinear function of the state variables. The
system’s equilibria (X = X) can be determined by solving the system of nonlinear equations

F(X)=0. (16)

We find numerically that our system has infinitely many solutions. At every tested value of A, the system
has at least one equilibrium. Therefore, we parameterize A to generate the equilibria manifolds of the
system.

To determine the local stability of an equilibrium point, X, we first linearize the governing differential
equations as

. or _
X=0+—=| X-X)+ --- 17
X X( ) 7)
where g—; % 1s the Jacobian matrix evaluated at X. The properties and eigen-decomposition of the

Jacobian matrix determines the local stability of the equilibrium to small perturbations of the system.

Since F is constituted by nonlinear, complicated trigonometric functions, deriving analytical solu-
tions of the system of equations, Eq. (16), is not possible. Rather, we solve the system of equations
numerically by first setting a value for A and then using a nonlinear optimization method based
on Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), to obtain the solutions for
(&1, &2, 01, 03). All the equilibria are recovered by performing a systematic grid search of different pos-
sible initial conditions as inputs for the nonlinear optimization. Finally, the Jacobian matrix is evaluated
at the equilibria and its eigen-decomposition is performed to ascertain the linear stability of the equi-
librium points. An equilibrium is considered unstable if any of the eigenvalues (1;,i = 1, ...,5) of the
Jacobian matrix has a positive real part (Re(1;) > O for at least one i) or if there are repeated purely imag-
inary eigenvalues, asymptotically stable if all the eigenvalues have negative real parts (Re(1;) < O for
any i), and (marginally or neutrally) stable if one or more eigenvalues have zero real parts (purely imag-
inary) but are distinct and the remaining eigenvalues have negative real parts (Re(4;) < O for any 7, and
all A; such that Re(A;) = 0 are distinct). To avoid repetition, from this point forward the term “stable”
should be construed as marginally stable equilibrium unless specified as “asymptotically stable”.

The system is studied for relevant ranges of parameter values which are determined based on previous
literature. The parameter a = Uye/ v specifies the features of the background flow in this mathematical
model. The entire range of channel flow profiles, from the blunt mean flow profile of high Reynolds
number turbulent flows to the parabolic profile of low Reynolds number laminar flows, is represented by
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a € ol h K
(0,1) | (0,1) | (0,0.1) | (21,00) | (0,2)

Table 1: Ranges of model parameters «, p, and « and other important parameters considered in this
work based on literature (Oteiza et al., 2017; Coombs et al., 2020; Liao et al., 2003; Burbano-L et al.,
2021; Porfiri et al., 2022; Lombana & Porfiri, 2022).

€ € (0,1) (Oteizaetal.,2017; Porfiri et al., 2022). The flow velocity at the channel centerline is generally
of the order of the fish’s self-propulsion speed in most experiments (Coombs et al., 2020). Therefore,
we consider a € (0, 1), which covers the full range of commonly observed scenarios. According to the
study by Gazzola et al. (2014), most fish species maintain a constant tail-beating amplitude to body
length ratio of approximately 0.2 while swimming. Thus, the dipole length scale is given by ro = 0.21.
Therefore, for a given value of p, the corresponding channel width measured in terms of fish body
length is & = %2/, In this study, we vary p such that the corresponding channel width is two to four
times the body length, as commonly used in experiments (Liao et al., 2003; Lombana & Porfiri, 2022),
as well as the case of no channel walls (A — oo or p — 0). The literature in modeling the lateral-line
sensing mechanism to support rheotaxis is relatively scarce and only a few recent works (Burbano-L et
al., 2021; Porfiri et al., 2022) use non-dimensional lateral-line feedback. Based on the suggested ranges,
we test different degrees of lateral line sensing, « € (0, 2). The parameter ranges considered in this work
are listed in Table 1.

Covering the parameter ranges discussed above, through extensive numerical simulations we deter-
mine that the linearized form of the present system is redundant. Specifically, the Jacobian matrix is
singular at all the equilibria, with one zero eigenvalue. This implies that if the system is perturbed from
any of the equilibria along the eigendirection of its zero eigenvalue, it will recover another equilibrium,
thus creating equilibria manifolds. We conjecture this observation to carry over to any parameter choice.
Further details on such properties of the system are discussed in section 3.3.

3.2. Equilibrium configurations and stability

Five types of equilibria are found for the system under consideration in the entire parameter space tested
in this work, as illustrated in Fig. 3a, namely,

1. Fish pair swimming in-line in the upstream direction: ¢} =&, =& and 0 = -6, = 6 ~ 7.

2. Fish pair swimming in-line in the downstream direction: £ = &, = £ and 6; = 6, = 0.

3. Fish pair swimming staggered symmetric about centerline in the upstream direction: & = =&, = ¢
and61 :9229%71'.

4. Fish pair swimming staggered symmetric about centerline in the downstream direction:
f] =—§2 =§and91 2922920.

5. Fish pair swimming perpendicular to the walls: £} = +&, = ¢ ~ 1/2 and 6 = 6, = 0 ~ /2.

The cross-stream equilibrium configurations are plotted as a function of « for different streamwise
distances (A = 0.2,0.5 and 1) in Fig. 3b-d for the case of p = 0.1 (& =~ 2[) and x = 0 (the effect of
varying p and k is examined in section 3.3). The configurations of swimming downstream in-line at the
centerline and perpendicular to the walls (rows 2 and 5 in Fig. 3) both constitute unstable equilibria at all
three A values, that is, if perturbed from this point, the solution will diverge away from the equilibrium.
Only upstream swimming is stable (rows 1 and 3 in Fig. 3), in support of the phenomenon of rheotaxis.
When the fish are at a close streamwise distance of A = 0.2 (Fig. 3b), swimming in-line at the centerline
as well as at a cross-stream location between centerline and wall are both unstable. Only the configuration
of swimming staggered at a small cross-stream gap is stable at any a above a critical value (= 0.07),
while that with a wider gap is unstable and marks the domain of attraction of the stable equilibrium
on either side. At a medium streamwise distance of A = 0.5 (Fig. 3c), the staggered configuration is
stable at smaller flow curvature (¢ < 0.28) and the in-line upstream configuration at the centerline is
stable at higher flow curvature (@ > 0.28). When the fish are apart by a large streamwise distance at
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Figure 3: Equilibrium configurations at different streamwise distances (A) with no lateral line sensing.
(a) Schematic diagram of the five types of equilibria of the system (from top to bottom in order: in-line
upstream, in-line downstream, staggered upstream, staggered downstream, and perpendicular to walls).
Variation of equilibrium cross-stream coordinate £ with « in different configurations for p = 0.1,k =0,
and (b) A = 0.2, (c) A = 0.5, and (d) A = 1. Red lines represent unstable and green lines represent
marginally stable equilibria.

A =1 (Fig. 3c), swimming in-line at the centerline is the only stable configuration for all @ above a
small critical value. The cross-stream equilibria of this case appears to be similar in nature to that of a
single fish (Porfiri et al., 2022), indicating minimal interaction between the fish at such distances from
each other. The staggered downstream swimming configuration (row 4 in Fig. 3) does not appear as an
equilibrium in the range of streamwise distance presented in Fig. 3. In fact, only the nearly side-by-side
case (very small A) of swimming downstream is an equilibrium configuration, as discussed below.

It is important to note that in these equilibrium configurations of swimming upstream, the two fish
may not be oriented exactly parallel to the walls. The equilibrium orientation of a single fish swimming
in a channel (Porfiri et al., 2022) has to be exactly parallel to the walls (upstream or downstream) for
it to experience zero advection in the cross-stream direction and therefore maintain equilibrium. But in
the case of two fish, each experiences non-zero advection in cross-stream direction due to the flow field
generated by the other. Therefore, if the two fish are close enough (A is small enough) such that their
generated flow fields are influencing each other, the equilibrium configuration is maintained at a slight
angle with respect to the upstream or downstream direction instead of being exactly parallel to the walls.

In the limiting case of A = 0 (Fig. 4b), side-by-side swimming upstream and downstream are unstable
while the wall-perpendicular configuration of the two fish at the opposite walls is asymptotically stable.
In the extreme case of very large A (A = 2.9), where the two fish are far away from each other’s
hydrodynamic influence, upstream in-line swimming is marginally stable above a critical «, nearly
identical to that of an individual fish swimming in a channel flow (Porfiri et al., 2022). Both the staggered
configurations are unstable at all values of o while wall-perpendicular configuration with both fish at
the same wall is asymptotically stable at all &. These stable wall-perpendicular configurations arise due
to the nature of the T-dipole, which causes the bluff-body like dipoles to turn toward the wall. This
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Figure 4: Equilibrium configurations at extreme cases of streamwise distances (A) with no lateral line
sensing. (a) Schematic diagram of the five types of equilibria of the system (from top to bottom in order:
in-line upstream, in-line downstream, staggered upstream, staggered downstream, and perpendicular
to walls). Variation of equilibrium cross-stream coordinate ¢ with o in different configurations for
p = 0.1,k = 0 and: (b) side-by-side swimming with A = 0 and (c) negligible hydrodynamic interaction
with A = 2.9. Red lines represent unstable equilibria and green lines represent stable equilibria (green
solid line: marginally stable, dark green dashed line: asymptotically stable).

equilibrium is not stable when the two fish are within reasonable distance of each other (except precisely
side-by-side) such that their flow fields influence each other’s motion in the cross-stream direction.

To demonstrate the variation of the equilibrium configurations with the inter-fish streamwise distance,
we plot the cross-stream equilibria as a function of A at given flow conditions (a) in Fig. 5. It is
evident that the cross-stream equilibria depend on the streamwise distance, particularly in the staggered
configurations. In the absence of a gradient flow (@ = 0, Fig. 5a), the fish pair lack a stable configuration
with the exception of the wall-perpendicular configuration, which is asymptotically stable only when
the fish are far apart in the streamwise direction (A > 2.8) with negligible hydrodynamic influence on
each other. In the presence of a flow for a given @ > 0 (Fig. 5b,c), there are three regimes separated by
the transitional inter-fish streamwise distances, A; and A», such that no configuration is stable at a very
close streamwise distance (A < Aj), the staggered upstream configuration is marginally stable below
a certain streamwise distance (A; < A < Aj), and the in-line upstream configuration is marginally
stable above that streamwise distance (A > Aj). The A, threshold varies with the flow conditions
and this is examined in further detail in section 3.3. Downstream configurations are always unstable:
in-line is an unstable equilibrium in all conditions, while staggered is an unstable equilibrium only at
very close streamwise distances (A < 0.2). In addition to the asymptotically stable wall-perpendicular
configuration on the same wall at large A values, the wall-configuration on opposite walls is also stable
when A is precisely zero. The wall-configurations are unstable at all other A’s.

Overall, we identified five types of equilibrium configurations of a pair of fish swimming against a
channel flow. The results suggest that these configurations and their stability depend on the curvature of
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Figure 5: Equilibrium configurations as a function of A at different @ values. (a) Schematic diagram of the
five types of equilibria of the system (from top to bottom in order: in-line upstream, in-line downstream,
staggered upstream, staggered downstream, and perpendicular to walls). Variation of equilibrium cross-
stream coordinate & with A for different flow conditions: (b) @ = 0, (¢) @ = 0.2, and (d) @ = 0.5 for
p = 0.1, k = 0. Red lines represent unstable equilibria and green lines represent stable equilibria (green
solid line: marginally stable, dark green dashed line: asymptotically stable). The dashed lines A; and
A, mark the transition between the three regimes of stability.

the background flow («). This dependence further varies with the streamwise separation distance between
the fish. Both in-line and staggered configurations of swimming upstream are found to be stable in
different flow regimes and streamwise distances. Sample time trajectories of the two fish perturbed from
these configurations (Fig. 6) are shown to oscillate about these equilibria, displaying their marginally
stable character. These time trajectories, obtained by integrating the complete set of nonlinear equations
(Eq. (14)), further validate the stability of the equilibria inferred from the linearized equations. Time
traces for other equilibrium configurations are included in the Supplementary Information (section S4).
However, the precisely side-by-side swimming of the two fish is deemed unstable by the present model.
In addition, a near wall, perpendicular to wall configuration is shown to be stable in the limiting cases
of zero and very large streamwise distances.

3.3. Parametric analysis

The results of the previous section demonstrate that the equilibria of the system under consideration not
only vary with the flow curvature (@) but also with the streamwise distance (A). Therefore, for a complete
picture, we plot the stability diagram of the system in the A — « plane (Fig. 7). In this diagram, each
region is colored according to its corresponding stable configuration and black in the absence of any
stable equilibrium. It is evident that in the absence of flow curvature (¢ = 0), a system of two fish has no
stable equilibrium (except when A is zero or very high. In fact, the system is stable only above a critical
value of flow curvature, a.,, that varies with A, and only above a critical inter-fish streamwise distance,
A1, which seems to be independent of the background flow. The system has three stability boundary
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Figure 6: Sample trajectories in cross-stream coordinate (£) and orientation angle (6) of the two fish
(k = 1,2) beginning from an initial configuration close to (a) in-line upstream at A = 1, and (b) staggered
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Figure 7: Stability diagram in A — « plane for p = 0.1 and x = 0. Contour plot displaying the stable
configuration of fish-pair swimming against a channel flow at a given value of (A, @), out of the three
types of stable configurations - Inline upstream (IL), staggered upstream (ST), and wall perpendicular
(W). Parameter regimes with no stable equilibria are marked as “None". The three stability boundary
curves are marked by dashed lines as A; (a) where i = 1,2, 3.

curves (A;, where i = 1, 2, 3), such that for > a,,, only the upstream staggered configuration is stable
if the fish are close in streamwise direction (A; < A < Ay), the in-line swimming is stable if they are
somewhat apart (A, < A < Aj), and both in-line and wall-perpendicular configurations are stable if
they are farther apart (A > A3). The wall-perpendicular configuration is the only stable configuration at
A =0and a < a. (for A > A3).

So far, we have only considered the passive hydrodynamic model of the system of two fish without
taking into account the active rotation of the fish by lateral line sensing. The importance of lateral line
sensing on the stability of fish-pair configurations can be deduced by comparing the stability diagrams
in Figs. 7 and 8a, and further illustrating the variation of the critical flow curvature a.,(A) and the
stability boundary curves A;(«) with lateral line sensing parameter « for a given channel (fixed p), in
Fig. 9. Itis evident that including the lateral line feedback helps stabilize all the configurations in general
as the critical flow curvature @, recedes to substantially smaller values with increase in « (Fig. 9a).
An important observation from Fig. 9b is that the lateral line further stabilizes the in-line configuration
over the staggered one, as it lowers the boundary of transition, A;, thus limiting the A range for stable
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Figure 10: Effect of decreasing channel width (increasing p) on (a) critical flow curvature required for
stability @, (A) and (b) stability boundary curves A; (), for fixed x = 1.

staggered configuration while enhancing that of swimming in-line. However, « has no visible effect on
the critical streamwise distance A; or the stability threshold for wall-perpendicular configuration As.
The width of the channel also has an effect on the stability of the configurations. Comparison between
the stability diagrams for p = 0.1 (h = 2/; Fig. 7) and p = 0.05 (h =~ 4l; Fig. 8b) indicates that as
the channel becomes wider (p decreases), the fish-pair swimming configurations become stable at a
broader range of @ and A. In other words, more restrictive channel walls hinder the stability of the fish-
pair formations (Fig. 10a). Similar to the effect of the lateral line, widening the channel also enhances
the stability of in-line over staggered configuration, as is evident from the downward shift of A, curve
with decreasing p in Fig. 10b. However, unlike lateral line, increasing the channel width (decreasing p)
also lowers the critical streamwise distance threshold A; as well as the stability boundary threshold for
wall-perpendicular configuration Aj. In the limiting case of 7 — oo (p — 0; Fig. 8c), in-line upstream
is the only stable configuration in the entire A — a plane (except at A = 0). This is in agreement with the
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Figure 11: Zero eigenvector and natural frequencies in stable configurations in the A — @ plane for
p = 0.1 and « = 0. Contour plot of (a) the A component of the zero-eigenvector (unit magnitude)
of the system’s Jacobian matrix, and the (b) lower (w;) and (c) higher (w;) non-dimensional natural
frequencies (imaginary parts of complex eigenvalues of Jacobian) in the stable configuration — staggered
upstream below and inline upstream above the A; line. Blank regions represent parameter regimes with
no stable equilibria.

findings of Porfiri et al. (2021) that demonstrated the stability of in-line swimming in zebrafish pairs in
an unbounded domain of quiescent fluid.

As demonstrated above, the equilibria of in-line and staggered configurations are stable in certain
parameter regimes. Here, we discuss further details about the dynamic behavior of the system at these
equilibrium configurations, by studying its Jacobian matrix. In both in-line and staggered configurations,
the Jacobian matrix consists of one zero eigenvalue and two pairs of complex conjugate purely imaginary
eigenvalues. The zero eigenvalue implies that the system has equilibria manifolds along the direction of
its zero eigenvector and the two pairs of purely imaginary eigenvalues represent center-like oscillatory
behavior at two natural frequencies (Fig. 11).

Fig. 11a shows that for the stable in-line configuration (A > A, @ > a,,), the zero-eigenvector is
always along A. Therefore, the system has a line of stable equilibria along A, that is, every A value is an
equilibrium configuration of the system. This implies that in a marginally stable schooling configuration
of two fish swimming inline, if one of the fish is perturbed in the streamwise direction with respect
to the other by an external forcing, the two fish will continue to swim at the new streamwise distance,
while maintaining the same oscillatory dynamics in the cross-stream position and heading angles as
before. On the other hand, for the staggered configuration (A < A, @ > a,,), the zero-eigenvector is
generally not aligned with A. This implies that in a system of two fish swimming in a stable staggered
configuration, only if the fish are perturbed by specific amounts in the streamwise and cross-stream
directions as well as the heading angles, the perturbed state will also be an equilibrium, since the line
of stable equilibria is not necessarily along A.

The natural frequencies of oscillation of the system in the vicinity of the marginally stable equilibrium
points are plotted in the A — @ parameter space in Fig. 11b,c. It is evident that in both in-line and
staggered schooling configurations, the lower frequency increases with the flow curvature (@) and is
nearly invariant with the changing streamwise distance (A). Similarly, the higher frequency in the in-
line configuration increases with the flow curvature. However, the higher frequency in the staggered
configuration increases with decreasing A, showing weak dependence on flow curvature. This suggests
that the oscillatory nature of a subsystem of a fish school depends strongly on the flow curvature and
weakly on the inter-fish distance.

4. Summary and conclusions

To gain a deeper understanding of the role of passive hydrodynamics in the phenomenon of fish schooling
against a flow, we study a subsystem of a fish school using a simple mathematical model derived based
on the two-dimensional fluid dynamics of fish-like self-propelling bodies in a confined flow. The system
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of two fish swimming in a channel is modeled as two vortex-dipoles, each with a constant self-induced
speed, advected by the flow field, influenced by the other dipole, and aligned with respect to the local
flow gradient. This yields a five-dimensional dynamical system for the cross-stream coordinates and
orientations of both the fish, and the streamwise distance between the fish. Since the system has infinitely
many solutions with respect to the streamwise direction, we consider the streamwise inter-fish distance
as a parameter to study the equilibria of the system.

Our study shows that a system of two fish swimming in proximity has five types of equilibrium
configurations — in-line upstream, in-line downstream, staggered upstream, staggered downstream,
and wall-perpendicular. The downstream and wall-perpendicular configurations constitute unstable
equilibria under all flow conditions in the general case of two fish swimming at a moderate streamwise
distance. In other words, if the system is perturbed from these states, it will diverge away from these
configurations. On the contrary, swimming upstream can be stable under specific flow conditions, so
that if the system is perturbed from these equilibria, it will maintain constant oscillations about the
state instead of diverging away from it. We find that the system properties and the equilibria depend on
the streamwise inter-fish distance and a non-dimensional parameter « that is proportional to the flow
curvature and the ratio of the flow speed to the fish propulsion speed. Below a critical value of «, the
system has no stable configuration (other than the near wall configuration), suggesting that in a confined
channel, two fish may not maintain a stable equilibrium away from the wall at very low flow speeds or
minimal flow curvatures (nearly uniform flow).

We uncover the existence of only two stable configurations for two fish swimming in close proximity
but not precisely side-by-side — i) upstream in-line at the channel centerline, and ii) upstream staggered
symmetrically at a particular cross-stream distance with respect to the channel centerline. The in-line
configuration is stable if the two fish are sufficiently far apart in the streamwise direction, while the
staggered configuration is stable only if the two fish are sufficiently close in the streamwise direction
(approximately side-by-side). There is a critical inter-fish distance at which the pair transition from a
stable staggered to a stable in-line state; this critical distance decreases with flow curvature. These two
configurations (in-line and side-by-side) have also been found in experiments with live fish (Ashraf et al.,
2017; De Bie et al., 2020; Lombana & Porfiri, 2022). In particular, experiments in the dark conducted
by Lombana & Porfiri (2022) have demonstrated that fish can swim in either of these two configurations,
without the need to appraise their relative position in the pair through vision. Our analysis further shows
that the system has no stable configuration (except wall-perpendicular) if the fish are extremely close in
streamwise direction, thus rendering a precisely side-by-side upstream swimming formation unstable.
This agrees with the experimental findings of Ashraf et al. (2016) that the typical swimming pattern of
a pair of fish is slightly staggered rather than exactly side-by-side at all investigated flow speeds.

In addition, our study confirms that both the fish exhibit rheotaxis through passive hydrodynamic
mechanisms in the absence of any lateral-line sensing, similar to that predicted for a single fish swimming
in a channel (Porfiri et al., 2022) and on the basis of several experiments in which fish were deprived
of both vision and lateral line sensing (Suli et al., 2012; Bak-Coleman et al., 2013; Bak-Coleman
& Coombs, 2014; Elder & Coombs, 2015). In our system, all stable equilibria are characterized by
swimming upstream, except for the near walls case. On the other hand, swimming downstream with the
flow is found to be unstable under all conditions, thus supporting the rheotactic characteristics of each
fish despite the presence of another interacting fish in proximity. Addition of the lateral line sensing and
feedback mechanism of each fish to the passive hydrodynamics of the system, reduces the critical flow
curvature required for stability, thus, stabilizing the upstream configurations (both in-line and staggered)
at a smaller flow curvature. This suggests that lateral line sensing enhances the scope of rheotactic
behavior in agreement with the experimental results of Kulpa et al. (2015) and Oteiza et al. (2017) as
well as the range of schooling in fish.

Our model also shows that widening the channel has a stabilizing influence on the system equilibria
as both the critical flow curvature as well as the critical streamwise distance required for stability are
reduced as the channel becomes wider. Widening the channel also increases the parameter range of
stability of the in-line configuration while reducing that of staggered, ultimately leading to in-line being
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the only stable state for all inter-fish distances in the limiting case of no channel walls, in agreement
with the findings of Porfiri et al. (2021). Our results further suggest that the all-pervasive stability of the
in-line swimming pattern in a placid fluid can be attributed to the hydrodynamic interaction between
the fish, rather than their social/visual interaction.

Our study characterizes the fluid dynamics of a fish pair swimming against a flow and the resulting
stable schooling formations. However, it is not free of limitations. First, our model relies on an inviscid
potential flow model of a fish and further incorporates a rotational background flow to test the rheotactic
response of a system of self-propelling bodies. The inertia of the fish is also neglected, that is, the fish
responds to the fluid flow instantaneously. While these simplifications can not capture important flow
phenomena such as vortex shedding during fish tail beating (Li et al., 2020), they lead to a closed system
of governing equations that describe the complete behavior (location and orientation) of each fish in the
system, and can be analyzed to study the system properties. Second, this work focuses on characterizing
the properties of school formation through inter-fish interactions mediated by passive fluid dynamics.
In addition to this, fish negotiate with the flow and/or interact with neighboring fish through their
vestibular system, as well as their tactile and visual senses. To fully understand the collective behavior
of fish schooling, one should study each of these phenomena and their relative contributions, a fairly
difficult undertaking that is left for the future. Third, experimental studies (De Bie et al., 2020; Lombana
& Porfiri, 2022) have shown that fish pairs have a propensity to swim in a side-by-side (or staggered)
configuration over in-line configuration in a high speed flow. Such a trend with increasing « is not
explicitly observed in our analysis where either in-line or staggered configuration can be stable at high «
values depending on the streamwise inter-fish distance. This discrepancy could potentially be due to the
presence of additional non-hydrodynamic pathways of interaction between the fish in the experiments
or other hydrodynamic phenomena, such as vortex shedding, not accounted for in this model.

Overall, this work provides a detailed examination of the role of passive hydrodynamic mechanisms
on the formation of stable configurations of a fish pair swimming against a flow. We demonstrate that in
a flow with very low curvature/speed, no spatial configuration of the fish pair is stable. Above a certain
flow curvature/speed, when the fish are far apart in the streamwise direction, swimming in-line is
stable, whereas when the fish are closer in the streamwise direction, a particular staggered configuration
constitutes the stable formation. Our results further justify rheotactic behavior in both the fish simply
through passive fluid dynamics. The novel insights developed in this work not only provides a new
understanding of fish schooling from a purely passive hydrodynamics perspective, but will also inform
the design of experimental setups in water channels to investigate the staggered versus in-line swimming
patterns with live fish and/or their robotic representations.
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