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Abstract

Fish often swim in crystallized group formations (schooling) and orient themselves against the incoming flow

(rheotaxis). At the intersection of these two phenomena, we investigate the emergence of unique schooling patterns

through passive hydrodynamic mechanisms in a fish pair, the simplest subsystem of a school. First, we develop a

fluid dynamics-based mathematical model for the positions and orientations of two fish swimming against a flow

in an infinite channel, modeling the effect of the self-propelling motion of each fish as a point-dipole. The resulting

system of equations is studied to gain an understanding of the properties of the dynamical system, its equilibria,

and their stability. The system is found to have five types of equilibria, out of which only upstream swimming in

in-line and staggered formations can be stable. A stable near-wall configuration is observed only in limiting cases.

It is shown that the stability of these equilibria depends on the flow curvature and streamwise inter-fish distance,

below critical values of which, the system may not have a stable equilibrium. The study reveals that simply through

passive fluid dynamics, in the absence of any other feedback/sensing, we can justify rheotaxis and the existence of

stable in-line and staggered schooling configurations.

Impact Statement Researchers across fields have long pondered over the question of how and why fish school

in specific crystallized formations in a flow. We attempt to answer this question from a purely hydrodynamic

standpoint in a two-fish subsystem of a school, swimming against a channel flow. Through an elegant

mathematical model, derived based on fundamental fluid dynamics principles, we demonstrate the emergence

of unique schooling patterns that are stable to disturbances. Interestingly, we find that two fish, swimming in

close proximity but not precisely side-by-side, always orient opposite to the flow direction through passive

hydrodynamics, without any active feedback/sensory mechanism. Our findings provide theoretical evidence of

stable configurations of schooling and their dependence on flow conditions and streamwise inter-fish distance.

The proposed model and developed insights not only advance our understanding of a fundamental form of

collective behavior but will also guide future experimental design and investigation of live/robotic fish schools.

1. Introduction

Rheotaxis is the ability of a fish to orient and swim against an oncoming flow. At first, visual cues were

considered to be the dominant contributor toward rheotaxis (Arnold, 1974). Later, experiments revealed

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in

any medium, provided the original work is properly cited.
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E1-2

that fish exhibit this behavior even in the absence of vision (Champalbert & Marchand, 1994; Suli et

al., 2012), which has led researchers to investigate additional sensory systems that fish may employ to

appraise the flow environment. Suli et al. (2012) and Oteiza et al. (2017) showed that fish use their

lateral lines (Montgomery et al., 1997), a mechanosensory organ, to detect gradients of the surrounding

flow velocity and adjust their orientation accordingly. This lateral line-mediated rheotaxis was markedly

evident in the presence of non-uniform flows (Kulpa et al., 2015; Oteiza et al., 2017), while much

reduced in zero-gradient uniform flows (Bak-Coleman et al., 2013; Bak-Coleman & Coombs, 2014).

Aside from gradients, the rheotactic behavior of fish is also affected by the speed of the flow (Bak-

Coleman et al., 2013), whereby the ability to orient against a flow is limited at low flow speeds. While

visual and lateral line sensing play a key role in the occurrence of rheotaxis, recent work suggests that

the basis of rheotaxis should be sought in the integration of multiple senses, including tactile senses and

vestibular system (Coombs et al., 2020).

Another potentially significant contributor in the phenomenon of rheotaxis is the passive hydrody-

namic mechanisms affecting the fish swimming. As the recent comprehensive review of rheotaxis by

Coombs et al. (2020) states, one of the questions that remains unanswered is “what role, if any, do passive

(e.g. wind vane) mechanisms play in rheotaxis and how are these influenced by fish factors (e.g. body

shape) and flow dynamics?" In this vein, Porfiri et al. (2022) recently developed a hydrodynamic model

for a fish swimming in a channel flow, providing the first analytical justification of rheotaxis by purely

hydrodynamic mechanisms in the absence of any sensory feedback. Their model is the first to analyze

rheotaxis as a bidirectional fluid-structure interaction problem, in which the fish modifies the surround-

ing flow field and the flow field, in turn, affects fish swimming. These bidirectional interactions are

pervasive in fluid mechanics, from fluid-structure interactions in vortex-induced vibrations (Williamson

& Govardhan, 2004) to laminar boundary layer response to environmental disturbances (Saric et al.,

2002), yet mathematical modeling of rheotaxis and swimming in general have largely discounted them.

This work seeks to understand the implications of the passive hydrodynamic pathway discovered in

Porfiri et al. (2022) on fish schooling. Schooling refers to the coordinated swimming of fish in close

proximity in crystallized spatial formations, as exhibited by most fish species (Shaw, 1978; Kalueff et

al., 2013; Filella et al., 2018). Different patterns of fish schooling that are often shown to emerge include

side-by-side (phalanx), in-line, and staggered (diamond) formations (Weihs, 1973; Park & Sung, 2018;

Oza et al., 2019; Thandiackal & Lauder, 2022). One approach to explain schooling is based on the

premise of collective energy savings so that fish arrange their positions with respect to their neighbors

in an attempt to reduce their swimming costs (Liao et al., 2003; Marras et al., 2015; Ashraf et al., 2017).

Another approach to understand schooling patterns is based on the Lighthill conjecture (Lighthill, 1975;

Dai et al., 2018; Peng et al., 2018; Lin et al., 2019; Cong et al., 2020; Kurt et al., 2021), which postulates

that orderly patterns in a school emerge due to flow-mediated passive forces. The focus of this study is

on investigating the role of the latter in the context of fish schooling and rheotaxis, which leads to the

formation of stable schooling patterns in fish swimming against a flow.

Toward this aim, we focus on a fish pair as a minimalistic instance of a school. Experimental studies

involving pairs of live fish have shown evidence for specific schooling configurations, such as side-

by-side (Chicoli et al., 2014; Ashraf et al., 2016) as well as in-line (Thandiackal & Lauder, 2022)

configurations, when swimming against a flow. Recent work by De Bie et al. (2020) has further shown

that pairs of fish tend to swim in-line in placid water, side-by-side in a high speed flow, and without

any identifiable pattern in a low speed flow. Examining the combined effect of flow (hydrodynamic

interaction) and illumination (visual interaction) on fish collective behavior, Lombana & Porfiri (2022)

provided evidence that the relative time spent by a pair in a side-by-side configuration increases in the

presence of flow as well as in the presence of light. However, in these studies the different forms of

interactions (visual, hydrodynamic, and tactile) are intermingled, and the specific role of hydrodynamics

is difficult to tease out. Detailing the role of hydrodynamics through sensory-deprivation may not be

completely reliable due to the possible pitfalls of such methodologies, such as disabling certain senses,

even if perfectly executed, may affect the overall behavior of the fish and deprivation of one sense may

cause the other senses to over-compensate (Coombs et al., 2020).
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Flow E1-3

To isolate the role of hydrodynamics, researchers have also proposed the study of a pair of pitching

airfoils as a proxy subsystem of a fish school against an oncoming flow. For example, Boschitsch et

al. (2014), Kurt & Moored (2018), and Saadat et al. (2021) have shown evidence in support of in-line

swimming, while Dewey et al. (2014) and Gungor & Hemmati (2021) have shown increased efficiency

in side-by-side swimming. Experiments and numerical simulations of self-propelled flapping wings

and plates (Becker et al., 2015; Ramananarivo et al. , 2016; Newbolt et al., 2019) indicate that orderly

formations in schools may emerge simply through flow interactions, and that hydrodynamic mechanisms

maybe enough to support a group’s collective motion. These, along with other studies (Lin et al., 2019;

Baddoo et al., 2021; Kurt et al., 2021), have investigated the stability of spatial configurations of such

schooling systems via experimental measurements and/or numerical predictions of hydrodynamic forces.

Kurt et al. (2021) and Peng et al. (2018) have shown propensity for a stable side-by-side configuration

in pitching airfoils and plates, while Newbolt et al. (2019) and Lin et al. (2019) provide evidence of

stable configurations in two hydrofoils swimming in-tandem. These studies suggest the existence of

multistable formations of schooling, and that transitions between such stable states may be induced by

applying external perturbations to the swimmers (Newbolt et al., 2022).

To gain a fundamental understanding of the hydrodynamic foundations of such schooling formations,

we propose to investigate the problem from a theoretical perspective that complements the experimental

and computational findings in the literature. We consider a fish pair swimming in an infinite channel.

First, we develop a mathematical model of the positions and orientations of both the fish by considering

all the passive hydrodynamic interactions in the system. The behavior of each fish is modeled as a

vortex dipole in a two-dimensional flow under the finite-dipole paradigm of Tchieu et al. (2012), which

has been extensively used in the past to study the hydrodynamics of swimming animals (Gazzola et al.,

2016; Filella et al., 2018; Kanso & Tsang, 2014; Porfiri et al., 2021, 2022). Instead of considering a fish

to be a passive body that does not affect the flow, we model their effect on the background flow in the

presence of the channel walls (Porfiri et al., 2022). This results in a five-dimensional dynamical system

for the fish pair in the channel flow, characterized by bidirectional couplings between the two fish and

the fluid flow.

We use the proposed model to elucidate the hydrodynamic mechanisms driving the formation of

schooling patterns in the presence of a flow. We study the properties and equilibria of the dynamical

system, and their significance in schooling and rheotactic behavior of the fish. Linear stability analysis

is performed to demonstrate the existence of specific stable configurations of the fish pair, both in terms

of their positions and orientations. The system’s equilibria are shown to depend on the flow curvature

and the streamwise distance between the fish. Finally, the study evaluates the role played by lateral line

sensing and the effect of varying channel widths on the stability of schooling configurations. The rest

of the paper is organized as follows. In section 2, we present the mathematical model; in section 3, we

present the results of all the analysis; and finally, conclusions from the analysis are discussed in section

4 along with limitations of the research.

2. Mathematical model

First, we derive a mathematical model of passive hydrodynamic interaction between two fish swimming

in an infinite channel of width ℎ with an imposed flow. A schematic diagram of the setup is illustrated

in Fig. 1. At any time Ī, the two-dimensional positions of the two fish (labeled 1 and 2) in a Cartesian

coordinate system (Į; į) are given by Ĩ1 (Ī) = Į1 (Ī) ğ̂ + į1 (Ī) Ġ̂ and Ĩ2 (Ī) = Į2 (Ī) ğ̂ + į2 (Ī) Ġ̂ , respectively,

and their heading directions are specified by the angles, ĉ1 (Ī) and ĉ2 (Ī), with respect to the positive Į

direction. Here, ğ̂ is the unit vector of the streamwise coordinate Į, and Ġ̂ is the unit vector of the cross-

stream coordinate į. We consider that the two fish are identical in size and have the same swimming

capacity, that is, they propel themselves by tail-beating at the same amplitude and frequency. Therefore,

their self-propulsion velocities at a time Ī are given by

Ĭġ (ĉġ) = Ĭ0 (cos ĉġ ğ̂ + sin ĉġ Ġ̂), where ġ = 1, 2. (1)
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E1-4

Figure 1: Schematic of two interacting fish swimming against a flow inside a channel of width ℎ, with Į

and į being streamwise and cross-stream coordinates, respectively. Note that the flow is in the (positive)

Į direction.

Here, Ĭ0 is the constant self-propelling speed of the fish and the direction of the fish’s self-propulsion is

given by the unit vector Ĭ̂ġ (ĉġ (Ī)) = cos ĉġ (Ī) ğ̂ + sin ĉġ (Ī) Ġ̂.

2.1. Modeling the fluid flow

Each fish is modeled as a vortex dipole (Tchieu et al., 2012), a representation that has previously

been used in several studies of fish schooling (Gazzola et al., 2016; Filella et al., 2018), and has been

validated with experimental observations (Porfiri et al., 2021) as well as numerical simulations (Porfiri

et al., 2022; Zhang et al., 2023). The mean flow field generated by the swimming fish is modeled using

potential flow, wherein the potential field due to the self-propelling motion of each fish is given by

č Ĝġ (Ĩ, Ĩġ , ĉġ) = −Ĩ2
0

(Ĩ − Ĩġ) · Ĭġ

∥Ĩ − Ĩġ ∥2
, for ġ = 1, 2, (2)

where Ĩ = Į ğ̂ + į Ġ̂ . These are the far-field representation of the dipoles (Filella et al., 2018) under

the assumption that the dipole length scale (Ĩ0) is much smaller than the flow length scale, that is,

Ĩ0 j ℎ, where ℎ is the channel width. The flow velocity induced by the point dipoles are then given by

ī Ĝ ġ
= ∇č Ĝġ , for ġ = 1, 2 (see Supplementary Information S1 for complete expressions). Fig. 2a shows

the flow streamlines generated by the dipoles (ī Ĝ 1
+ ī Ĝ 2

) in a quiescent fluid in an unbounded domain.

These streamlines approximately replicate the inviscid flow due to the self-propelling body of a fish,

emanating from the head and circulating toward the tail of the fish (Tchieu et al., 2012; Zhang et al.,

2023). It is further evident from the figure that if the two fish are in close proximity, their individually

generated streamline patterns are influenced by each other.

The dipole-generated streamlines are further affected by the walls, which are represented by stream-

lines generated via the method of images (Newton, 2001) by using fictitious fish (dipoles) mirrored with

respect to the wall plane 1. In the presence of two parallel walls at į = 0 and į = ℎ, this results in an

infinite number of such image dipoles on either side of the channel, as shown by Porfiri et al. (2022).

The infinite sum of the potential fields generated by such image dipoles of both fish yields the following

potential field (Porfiri et al., 2022):

1Note that in reality the fluid is viscous, in which case a no-slip boundary condition must also be satisfied at the walls. But as a simplification,

we assume the flow to be inviscid and only account for the zero wall-normal velocity at the walls.
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Flow E1-5

(a) (b) (c)

Figure 2: Predicted flow streamlines around two fish swimming (a) in a quiescent fluid within an

unbounded domain, (b) in a quiescent fluid bounded by channel walls, and (c) against a flow (đ0 =

2, Ċ = 0.1) bounded by channel walls.

čĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2) =

∑

ġ=1,2

Ĭ0Ĩ
2
0

4

[

4
(Į − Įġ) cos ĉġ + (į − įġ) sin ĉġ

(Į − Įġ)2 + (į − įġ)2

−
ÿ

ℎ

(

ěiĉġ (coth ÿý + coth ÿþ∗) + ě−iĉġ (coth ÿý∗ + coth ÿþ)

)]

, (3)

where ý = ((Į − Įġ) + i(į − įġ))/(2ℎ), þ = ((Į − Įġ) + i(į + įġ))/(2ℎ), i is the imaginary unit, and

superscript ∗ represents complex conjugation. Thus, the velocity field can be obtained by īĭ = ∇čĭ
(see Supplementary Information S1 for complete expression). The resultant flow streamlines due to the

fish swimming between the walls of a channel (ī Ĝ 1
+ī Ĝ 2

+īĭ) are illustrated in Fig. 2b. Near the walls,

the streamlines reorient to become parallel to the wall, creating large-circulatory motions about the fish.

To mimic a background flow inside a channel, we add a weakly rotational velocity profile across the

channel:

īĘ (Ĩ) = đ0

(

1 − 4Ċ

(

į

ℎ
−

1

2

)2
)

ğ̂, (4)

wheređ0 is the maximum flow velocity at the channel centerline and Ċ is a positive parameter controlling

the curvature of the velocity profile, and thus the vorticity in the flow. For Ċ → 0, we approach a nearly

uniform irrotational background flow, while Ċ = 1 yields the parabolic profile of laminar flow in a

channel (plane Poiseuille flow). If 0 < Ċ j 1, the background flow closely resembles the mean velocity

profile of a realistic turbulent channel flow with a small curvature near centerline but does not satisfy the

no-slip condition at the walls. Superposing the background flow velocity on the velocity field generated

by the fish in the presence of the walls yields the following total flow velocity at any location Ĩ of the

flow domain:

ī(Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2) = ī Ĝ 1
(Ĩ, Ĩ1, ĉ1) + ī Ĝ 2

(Ĩ, Ĩ2, ĉ2) + īĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2) + īĘ (Ĩ). (5)

The resultant flow streamlines are illustrated in Fig. 2c.
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E1-6

2.2. Modeling fish dynamics

The translational motion of a fish can be obtained by the addition of the advection experienced by the

fish due to the flow and its self-propulsion due to its own tail beating motion in the fluid. First, we

determine the advection velocities (đ1 andđ2) experienced by the two fish by de-singularizing the total

velocity field (Eq. (5)), that is, without considering the contribution of the dipole at its own location and

obtaining the value at the location of the dipole in the limit form,

đ1 (Ĩ1, Ĩ2, ĉ1, ĉ2) = lim
Ĩ→Ĩ1

[

ī Ĝ 2
(Ĩ, Ĩ2, ĉ2) + īĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2) + īĘ (Ĩ)

]

, (6a)

đ2 (Ĩ1, Ĩ2, ĉ1, ĉ2) = lim
Ĩ→Ĩ2

[

ī Ĝ 1
(Ĩ, Ĩ1, ĉ1) + īĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2) + īĘ (Ĩ)

]

. (6b)

The complete expressions of the advection velocities experienced by the fish are presented in

Supplementary Information S2. The velocity of each fish is therefore given by

¤Ĩ1 (Ī) = đ1 (Ĩ1 (Ī), Ĩ2 (Ī), ĉ1 (Ī), ĉ2 (Ī)) + Ĭ1 (ĉ1 (Ī)), (7a)

¤Ĩ2 (Ī) = đ2 (Ĩ1 (Ī), Ĩ2 (Ī), ĉ1 (Ī), ĉ2 (Ī)) + Ĭ2 (ĉ2 (Ī)), (7b)

where the self-propulsion velocities of the fish, Ĭ1 and Ĭ2, are given by Eq. (1).

The rotational motion of each fish (dipole) is attributed to the angular velocity induced by the flow

field and the active sensing mechanism of the fish that helps them navigate the flow. The flow-induced

turn-rate is due to the two vortices comprising the dipole experiencing different velocities. In the far-

field limit for a transverse dipole, referred to as a T-dipole (Tchieu et al., 2012; Kanso & Tsang, 2014;

Porfiri et al., 2021, 2022), this angular velocity can be approximated from the gradient of flow velocity

orthogonal to the dipole’s velocity (Ĭġ for ġ = 1, 2) as follows 2:

¬1 (Ĩ1, Ĩ2, ĉ1, ĉ2) = −Ĭ̂1 (ĉ1).

[

lim
Ĩ→Ĩ1

{

∇(ī Ĝ 2
(Ĩ, Ĩ2, ĉ2) + īĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2)

+ īĘ (Ĩ))

}

Ĭ̂§
1
(ĉ1)

]

, (8a)

¬2 (Ĩ1, Ĩ2, ĉ1, ĉ2) = −Ĭ̂2 (ĉ2).

[

lim
Ĩ→Ĩ2

{

∇(ī Ĝ 1
(Ĩ, Ĩ1, ĉ1) + īĭ (Ĩ, Ĩ1, Ĩ2, ĉ1, ĉ2)

+ īĘ (Ĩ))

}

Ĭ̂§
2
(ĉ2)

]

, (8b)

where Ĭ̂§
ġ
= − sin ĉġ ğ̂ + cos ĉġ ğ̂, for ġ = 1, 2, is the unit vector orthogonal to the fish’s self-propelling

direction. Complete expressions of the angular velocities are presented in Supplementary Information

S2.

In addition to the passive hydrodynamic turning mechanism, a fish may undergo active rotation in

response to local flow sensing through its lateral line (Montgomery et al., 1997). Studies have shown

that this hydrodynamic feedback via lateral line is related to the circulation of the flow surrounding the

fish (Oteiza et al., 2017) and can be approximated by considering a linear feedback term (Porfiri et al.,

2022) of the form Č(Ĩġ , ĉġ) = ć�(Ĩġ , ĉġ), where ć is the feedback gain and � is the circulation in a

rectangular region (R) about the location of the fish, of width Ĩ0 and length equal to the fish body length

Ģ. The circulation � =

∫

R
ā · dý can be determined by integrating the vorticity of the flow, ā, which is

given by

ā(Ĩ) = (∇ × īĘ) =
8đ0Ċ

ℎ

(

į

ℎ
−

1

2

)

, (9)

2Note that an alternative is the aligned dipole (A-dipole) treatment that mimics the response of a slender body to flow gradients (Kanso & Tsang,

2014; Filella et al., 2018).
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Flow E1-7

since all other contributions to the velocity field are irrotational. As shown by Porfiri et al. (2022), the

feedback angular velocity of each fish due to their lateral line sensing is given by

Čġ (Ĩġ , ĉġ) = ċ
8đ0Ċ

ℎ

(

įġ

ℎ
−

1

2

)

, for ġ = 1, 2, (10)

where ċ = ćĨ0Ģ is the non-dimensional lateral line feedback gain. Therefore, the total turn-rates of the

two fish are obtained by adding the passive and active hydrodynamic effects discussed above, yielding

the following two coupled ordinary differential equations:

¤ĉ1 (Ī) = ¬1 (Ĩ1 (Ī), Ĩ2 (Ī), ĉ1 (Ī), ĉ2 (Ī)) + Č1 (Ĩ1 (Ī), ĉ1 (Ī)), (11a)

¤ĉ2 (Ī) = ¬2 (Ĩ1 (Ī), Ĩ2 (Ī), ĉ1 (Ī), ĉ2 (Ī)) + Č2 (Ĩ2 (Ī), ĉ2 (Ī)), (11b)

where the flow-induced turn-rates are given in Eqs. (8a) and (8b), and the feedback due to the lateral

line is given by Eq. (10).

2.3. Dynamical system

Translational and rotational motion of the two fish in the channel is given by the system of six equations

for Į1, į1, Į2, į2, ĉ1, and ĉ2 (Eqs. (7) and (11)). In order to study the dynamical system properties, we

first non-dimensionalize these equations using the following non-dimensional quantities:

ď1 =
į1

ℎ
−

1

2
, ď2 =

į2

ℎ
−

1

2
, Λ =

(Į1 − Į2)

ℎ
, Ī′ = Ī

Ĭ0

ℎ
. (12)

Here, ď1 and ď2 are the non-dimensional cross-stream coordinates and Ī′ is the non-dimensional time

coordinate. To study the spatial configurations of the fish pair, their exact streamwise locations (Į1, Į2)

in the infinite channel are inconsequential. Instead, the important variable is the streamwise distance

between the two fish (Į1 − Į2), for which we introduce the non-dimensional streamwise distance Λ.

The equations for location coordinates, Eqs. (7a) and (7b), are non-dimensionalized by dividing both

sides by Ĭ0 (the self-propulsion speed of the fish), while the rate of change of orientation, Eq. (11a) and

(11b), are non-dimensionalized by multiplying both sides by ℎ/Ĭ0. Upon non-dimensionalization, the

following two additional non-dimensional parameters emerge:

Ă =
đ0Ċ

Ĭ0

and Ā =
Ĩ0

ℎ
, (13)

where Ă is a measure of the curvature (Ċ) and speed (đ0) of the background flow with respect to the fish

self-propulsion speed (Ĭ0), and Ā represents the inverse of the channel width for a given fish size. The

third parameter of the system is the non-dimensional lateral line feedback gain ċ.

The final system of non-dimensional equations governing the dynamics of the two-fish configuration

in the channel is given by

¤ď1 = sin ĉ1 + Ā
2 Ĝď (ď1, ď2, ĉ1, ĉ2,Λ) (14a)

¤ď2 = sin ĉ2 + Ā
2 Ĝď (ď2, ď1, ĉ2, ĉ1,−Λ) (14b)

¤ĉ1 = Ăď1 (8ċ + ĝĉ (ď1, ĉ1)) + Ā
2 Ĝĉ (ď1, ď2, ĉ1, ĉ2,Λ) (14c)

¤ĉ2 = Ăď2 (8ċ + ĝĉ (ď2, ĉ2)) + Ā
2 Ĝĉ (ď2, ď1, ĉ2, ĉ1,−Λ) (14d)

¤Λ = (cos ĉ2 − cos ĉ1) + 4Ă
(

ď2
1
− ď2

2

)

+ Ā2 ĜΛ (ď1, ď2, ĉ1, ĉ2,Λ) (14e)

where Ĝď , Ĝĉ , ĝĉ , and ĜΛ are complicated trigonometric functions of (ď1, ď2, ĉ1, ĉ2,Λ) and their

expressions are presented in Supplementary Information (S3). Here and in what follows, we omit the
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E1-8

dependence on the non-dimensional time variable Ī′. There is a symmetry evident in the equations,

which is expected as the two fish are assumed to be identical and their influences on each other through

an inviscid hydrodynamic field are similar in form. Note that the equations for cross-stream coordinates

(ď1, ď2) do not directly depend on the flow properties (Ă), but since the system is nonlinearly coupled,

the cross-stream equilibria depend on the parameter Ă.

We should note that our mathematical model based on potential flow theory has the inherent limitation

of neglecting viscous effects and vortex shedding from the trailing edge. These effects can be considered

small in high Reynolds number flows with small curvature Ă, but they can be significant when the

channel flow is laminar at low Reynolds numbers, that is, as Ă → 1. Thus, we warn prudence regarding

the validity of the model at very high Ă values.

3. Analysis of the dynamical system

3.1. Method

The five-dimensional dynamical system in Eq. (14) can be represented in vector form as

¤Ĕ = Ă(Ĕ) , Ĕ = [ď1, ď2, ĉ1, ĉ2,Λ] . (15)

Here, Ĕ is the state vector and Ă(Ĕ) is the vector-valued nonlinear function of the state variables. The

system’s equilibria (Ĕ = Ĕ̄) can be determined by solving the system of nonlinear equations

Ă(Ĕ) = 0. (16)

We find numerically that our system has infinitely many solutions. At every tested value of Λ, the system

has at least one equilibrium. Therefore, we parameterize Λ to generate the equilibria manifolds of the

system.

To determine the local stability of an equilibrium point, Ĕ̄, we first linearize the governing differential

equations as

¤Ĕ = 0 +
ĉĂ

ĉĔ

�

�

�

�

Ĕ̄

(Ĕ − Ĕ̄) + · · · (17)

where ĉĂ
ĉĔ

�

�

Ĕ̄
is the Jacobian matrix evaluated at Ĕ̄. The properties and eigen-decomposition of the

Jacobian matrix determines the local stability of the equilibrium to small perturbations of the system.

Since Ă is constituted by nonlinear, complicated trigonometric functions, deriving analytical solu-

tions of the system of equations, Eq. (16), is not possible. Rather, we solve the system of equations

numerically by first setting a value for Λ and then using a nonlinear optimization method based

on Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), to obtain the solutions for

(ď1, ď2, ĉ1, ĉ2). All the equilibria are recovered by performing a systematic grid search of different pos-

sible initial conditions as inputs for the nonlinear optimization. Finally, the Jacobian matrix is evaluated

at the equilibria and its eigen-decomposition is performed to ascertain the linear stability of the equi-

librium points. An equilibrium is considered unstable if any of the eigenvalues (Čğ , ğ = 1, ..., 5) of the

Jacobian matrix has a positive real part (Re(Čğ) > 0 for at least one ğ) or if there are repeated purely imag-

inary eigenvalues, asymptotically stable if all the eigenvalues have negative real parts (Re(Čğ) < 0 for

any ğ), and (marginally or neutrally) stable if one or more eigenvalues have zero real parts (purely imag-

inary) but are distinct and the remaining eigenvalues have negative real parts (Re(Čğ) f 0 for any ğ, and

all Č Ġ such that Ďě(Č Ġ ) = 0 are distinct). To avoid repetition, from this point forward the term “stable”

should be construed as marginally stable equilibrium unless specified as “asymptotically stable”.

The system is studied for relevant ranges of parameter values which are determined based on previous

literature. The parameter Ă = đ0Ċ/Ĭ0 specifies the features of the background flow in this mathematical

model. The entire range of channel flow profiles, from the blunt mean flow profile of high Reynolds

number turbulent flows to the parabolic profile of low Reynolds number laminar flows, is represented by
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Flow E1-9

Ă Ċ Ā ℎ ċ

(0, 1) (0, 1) (0, 0.1) (2Ģ,∞) (0, 2)

Table 1: Ranges of model parameters Ă, Ā, and ċ and other important parameters considered in this

work based on literature (Oteiza et al., 2017; Coombs et al., 2020; Liao et al., 2003; Burbano-L et al.,

2021; Porfiri et al., 2022; Lombana & Porfiri, 2022).

Ċ ∈ (0, 1) (Oteiza et al., 2017; Porfiri et al., 2022). The flow velocity at the channel centerline is generally

of the order of the fish’s self-propulsion speed in most experiments (Coombs et al., 2020). Therefore,

we consider Ă ∈ (0, 1), which covers the full range of commonly observed scenarios. According to the

study by Gazzola et al. (2014), most fish species maintain a constant tail-beating amplitude to body

length ratio of approximately 0.2 while swimming. Thus, the dipole length scale is given by Ĩ0 ≈ 0.2Ģ.

Therefore, for a given value of Ā, the corresponding channel width measured in terms of fish body

length is ℎ =
0.2
Ā
Ģ. In this study, we vary Ā such that the corresponding channel width is two to four

times the body length, as commonly used in experiments (Liao et al., 2003; Lombana & Porfiri, 2022),

as well as the case of no channel walls (ℎ → ∞ or Ā → 0). The literature in modeling the lateral-line

sensing mechanism to support rheotaxis is relatively scarce and only a few recent works (Burbano-L et

al., 2021; Porfiri et al., 2022) use non-dimensional lateral-line feedback. Based on the suggested ranges,

we test different degrees of lateral line sensing, ċ ∈ (0, 2). The parameter ranges considered in this work

are listed in Table 1.

Covering the parameter ranges discussed above, through extensive numerical simulations we deter-

mine that the linearized form of the present system is redundant. Specifically, the Jacobian matrix is

singular at all the equilibria, with one zero eigenvalue. This implies that if the system is perturbed from

any of the equilibria along the eigendirection of its zero eigenvalue, it will recover another equilibrium,

thus creating equilibria manifolds. We conjecture this observation to carry over to any parameter choice.

Further details on such properties of the system are discussed in section 3.3.

3.2. Equilibrium configurations and stability

Five types of equilibria are found for the system under consideration in the entire parameter space tested

in this work, as illustrated in Fig. 3a, namely,

1. Fish pair swimming in-line in the upstream direction: ď1 = ď2 = ď and ĉ1 = −ĉ2 = ĉ ≈ ÿ.

2. Fish pair swimming in-line in the downstream direction: ď1 = ď2 = ď and ĉ1 = ĉ2 = 0.

3. Fish pair swimming staggered symmetric about centerline in the upstream direction: ď1 = −ď2 = ď

and ĉ1 = ĉ2 = ĉ ≈ ÿ.

4. Fish pair swimming staggered symmetric about centerline in the downstream direction:

ď1 = −ď2 = ď and ĉ1 = ĉ2 = ĉ ≈ 0.

5. Fish pair swimming perpendicular to the walls: ď1 = ±ď2 = ď ≈ 1/2 and ĉ1 = ±ĉ2 = ĉ ≈ ÿ/2.

The cross-stream equilibrium configurations are plotted as a function of Ă for different streamwise

distances (Λ = 0.2, 0.5 and 1) in Fig. 3b-d for the case of Ā = 0.1 (ℎ ≈ 2Ģ) and ċ = 0 (the effect of

varying Ā and ċ is examined in section 3.3). The configurations of swimming downstream in-line at the

centerline and perpendicular to the walls (rows 2 and 5 in Fig. 3) both constitute unstable equilibria at all

three Λ values, that is, if perturbed from this point, the solution will diverge away from the equilibrium.

Only upstream swimming is stable (rows 1 and 3 in Fig. 3), in support of the phenomenon of rheotaxis.

When the fish are at a close streamwise distance of Λ = 0.2 (Fig. 3b), swimming in-line at the centerline

as well as at a cross-stream location between centerline and wall are both unstable. Only the configuration

of swimming staggered at a small cross-stream gap is stable at any Ă above a critical value (≈ 0.07),

while that with a wider gap is unstable and marks the domain of attraction of the stable equilibrium

on either side. At a medium streamwise distance of Λ = 0.5 (Fig. 3c), the staggered configuration is

stable at smaller flow curvature (Ă < 0.28) and the in-line upstream configuration at the centerline is

stable at higher flow curvature (Ă > 0.28). When the fish are apart by a large streamwise distance at
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E1-10

Figure 3: Equilibrium configurations at different streamwise distances (Λ) with no lateral line sensing.

(a) Schematic diagram of the five types of equilibria of the system (from top to bottom in order: in-line

upstream, in-line downstream, staggered upstream, staggered downstream, and perpendicular to walls).

Variation of equilibrium cross-stream coordinate ď with Ă in different configurations for Ā = 0.1, ċ = 0,

and (b) Λ = 0.2, (c) Λ = 0.5, and (d) Λ = 1. Red lines represent unstable and green lines represent

marginally stable equilibria.

Λ = 1 (Fig. 3c), swimming in-line at the centerline is the only stable configuration for all Ă above a

small critical value. The cross-stream equilibria of this case appears to be similar in nature to that of a

single fish (Porfiri et al., 2022), indicating minimal interaction between the fish at such distances from

each other. The staggered downstream swimming configuration (row 4 in Fig. 3) does not appear as an

equilibrium in the range of streamwise distance presented in Fig. 3. In fact, only the nearly side-by-side

case (very small Λ) of swimming downstream is an equilibrium configuration, as discussed below.

It is important to note that in these equilibrium configurations of swimming upstream, the two fish

may not be oriented exactly parallel to the walls. The equilibrium orientation of a single fish swimming

in a channel (Porfiri et al., 2022) has to be exactly parallel to the walls (upstream or downstream) for

it to experience zero advection in the cross-stream direction and therefore maintain equilibrium. But in

the case of two fish, each experiences non-zero advection in cross-stream direction due to the flow field

generated by the other. Therefore, if the two fish are close enough (Λ is small enough) such that their

generated flow fields are influencing each other, the equilibrium configuration is maintained at a slight

angle with respect to the upstream or downstream direction instead of being exactly parallel to the walls.

In the limiting case ofΛ = 0 (Fig. 4b), side-by-side swimming upstream and downstream are unstable

while the wall-perpendicular configuration of the two fish at the opposite walls is asymptotically stable.

In the extreme case of very large Λ (Λ = 2.9), where the two fish are far away from each other’s

hydrodynamic influence, upstream in-line swimming is marginally stable above a critical Ă, nearly

identical to that of an individual fish swimming in a channel flow (Porfiri et al., 2022). Both the staggered

configurations are unstable at all values of Ă while wall-perpendicular configuration with both fish at

the same wall is asymptotically stable at all Ă. These stable wall-perpendicular configurations arise due

to the nature of the T-dipole, which causes the bluff-body like dipoles to turn toward the wall. This

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52



Flow E1-11

Figure 4: Equilibrium configurations at extreme cases of streamwise distances (Λ) with no lateral line

sensing. (a) Schematic diagram of the five types of equilibria of the system (from top to bottom in order:

in-line upstream, in-line downstream, staggered upstream, staggered downstream, and perpendicular

to walls). Variation of equilibrium cross-stream coordinate ď with Ă in different configurations for

Ā = 0.1, ċ = 0 and: (b) side-by-side swimming with Λ = 0 and (c) negligible hydrodynamic interaction

with Λ = 2.9. Red lines represent unstable equilibria and green lines represent stable equilibria (green

solid line: marginally stable, dark green dashed line: asymptotically stable).

equilibrium is not stable when the two fish are within reasonable distance of each other (except precisely

side-by-side) such that their flow fields influence each other’s motion in the cross-stream direction.

To demonstrate the variation of the equilibrium configurations with the inter-fish streamwise distance,

we plot the cross-stream equilibria as a function of Λ at given flow conditions (Ă) in Fig. 5. It is

evident that the cross-stream equilibria depend on the streamwise distance, particularly in the staggered

configurations. In the absence of a gradient flow (Ă = 0, Fig. 5a), the fish pair lack a stable configuration

with the exception of the wall-perpendicular configuration, which is asymptotically stable only when

the fish are far apart in the streamwise direction (Λ g 2.8) with negligible hydrodynamic influence on

each other. In the presence of a flow for a given Ă > 0 (Fig. 5b,c), there are three regimes separated by

the transitional inter-fish streamwise distances, Λ1 and Λ2, such that no configuration is stable at a very

close streamwise distance (Λ f Λ1), the staggered upstream configuration is marginally stable below

a certain streamwise distance (Λ1 < Λ f Λ2), and the in-line upstream configuration is marginally

stable above that streamwise distance (Λ > Λ2). The Λ2 threshold varies with the flow conditions

and this is examined in further detail in section 3.3. Downstream configurations are always unstable:

in-line is an unstable equilibrium in all conditions, while staggered is an unstable equilibrium only at

very close streamwise distances (Λ f 0.2). In addition to the asymptotically stable wall-perpendicular

configuration on the same wall at large Λ values, the wall-configuration on opposite walls is also stable

when Λ is precisely zero. The wall-configurations are unstable at all other Λ’s.

Overall, we identified five types of equilibrium configurations of a pair of fish swimming against a

channel flow. The results suggest that these configurations and their stability depend on the curvature of
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E1-12

Figure 5: Equilibrium configurations as a function ofΛ at differentĂ values. (a) Schematic diagram of the

five types of equilibria of the system (from top to bottom in order: in-line upstream, in-line downstream,

staggered upstream, staggered downstream, and perpendicular to walls). Variation of equilibrium cross-

stream coordinate ď with Λ for different flow conditions: (b) Ă = 0, (c) Ă = 0.2, and (d) Ă = 0.5 for

Ā = 0.1, ċ = 0. Red lines represent unstable equilibria and green lines represent stable equilibria (green

solid line: marginally stable, dark green dashed line: asymptotically stable). The dashed lines Λ1 and

Λ2 mark the transition between the three regimes of stability.

the background flow (Ă). This dependence further varies with the streamwise separation distance between

the fish. Both in-line and staggered configurations of swimming upstream are found to be stable in

different flow regimes and streamwise distances. Sample time trajectories of the two fish perturbed from

these configurations (Fig. 6) are shown to oscillate about these equilibria, displaying their marginally

stable character. These time trajectories, obtained by integrating the complete set of nonlinear equations

(Eq. (14)), further validate the stability of the equilibria inferred from the linearized equations. Time

traces for other equilibrium configurations are included in the Supplementary Information (section S4).

However, the precisely side-by-side swimming of the two fish is deemed unstable by the present model.

In addition, a near wall, perpendicular to wall configuration is shown to be stable in the limiting cases

of zero and very large streamwise distances.

3.3. Parametric analysis

The results of the previous section demonstrate that the equilibria of the system under consideration not

only vary with the flow curvature (Ă) but also with the streamwise distance (Λ). Therefore, for a complete

picture, we plot the stability diagram of the system in the Λ − Ă plane (Fig. 7). In this diagram, each

region is colored according to its corresponding stable configuration and black in the absence of any

stable equilibrium. It is evident that in the absence of flow curvature (Ă = 0), a system of two fish has no

stable equilibrium (except when Λ is zero or very high. In fact, the system is stable only above a critical

value of flow curvature, ĂęĨ , that varies with Λ, and only above a critical inter-fish streamwise distance,

Λ1, which seems to be independent of the background flow. The system has three stability boundary
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Flow E1-13

(a)

(b)

Figure 6: Sample trajectories in cross-stream coordinate (ďġ) and orientation angle (ĉġ) of the two fish

(ġ = 1, 2) beginning from an initial configuration close to (a) in-line upstream atΛ = 1, and (b) staggered

upstream at Λ = 0.2. In the leftmost column, red lines represent unstable equilibria and green lines

represent stable equilibria (green solid line: marginally stable, dark green dashed line: asymptotically

stable). In the second and third columns, the equilibrium ď and ĉ values are marked by dashed lines.

Figure 7: Stability diagram in Λ − Ă plane for Ā = 0.1 and ċ = 0. Contour plot displaying the stable

configuration of fish-pair swimming against a channel flow at a given value of (Λ, Ă), out of the three

types of stable configurations - Inline upstream (IL), staggered upstream (ST), and wall perpendicular

(W). Parameter regimes with no stable equilibria are marked as “None". The three stability boundary

curves are marked by dashed lines as Λğ (Ă) where ğ = 1, 2, 3.

curves (Λğ , where ğ = 1, 2, 3), such that for Ă > ĂęĨ , only the upstream staggered configuration is stable

if the fish are close in streamwise direction (Λ1 < Λ < Λ2), the in-line swimming is stable if they are

somewhat apart (Λ2 < Λ < Λ3), and both in-line and wall-perpendicular configurations are stable if

they are farther apart (Λ > Λ3). The wall-perpendicular configuration is the only stable configuration at

Λ = 0 and Ă < ĂęĨ (for Λ > Λ3).

So far, we have only considered the passive hydrodynamic model of the system of two fish without

taking into account the active rotation of the fish by lateral line sensing. The importance of lateral line

sensing on the stability of fish-pair configurations can be deduced by comparing the stability diagrams

in Figs. 7 and 8a, and further illustrating the variation of the critical flow curvature ĂęĨ (Λ) and the

stability boundary curves Λğ (Ă) with lateral line sensing parameter ċ for a given channel (fixed Ā), in

Fig. 9. It is evident that including the lateral line feedback helps stabilize all the configurations in general

as the critical flow curvature ĂęĨ recedes to substantially smaller values with increase in ċ (Fig. 9a).

An important observation from Fig. 9b is that the lateral line further stabilizes the in-line configuration

over the staggered one, as it lowers the boundary of transition, Λ2, thus limiting the Λ range for stable
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(a) (b) (c)

Figure 8: Stability diagrams in Λ − Ă plane (similar to Fig. 7) for different lateral line feedback and

channel widths. Contour plot of stable configuration (Inline upstream (IL), staggered upstream (ST),

and wall perpendicular (W)) of fish-pair system with (a) Ā = 0.1 and ċ = 1, (b) Ā = 0.05 and ċ = 0, and

(c) Ā = 0 and ċ = 0.

(a) (b)

Figure 9: Effect of increasing lateral line feedback parameter ċ on (a) critical flow curvature required

for stability ĂęĨ (Λ) and (b) stability boundary curves Λğ (Ă), for fixed Ā = 0.1.

(a) (b)

Figure 10: Effect of decreasing channel width (increasing Ā) on (a) critical flow curvature required for

stability ĂęĨ (Λ) and (b) stability boundary curves Λğ (Ă), for fixed ċ = 1.

staggered configuration while enhancing that of swimming in-line. However, ċ has no visible effect on

the critical streamwise distance Λ1 or the stability threshold for wall-perpendicular configuration Λ3.

The width of the channel also has an effect on the stability of the configurations. Comparison between

the stability diagrams for Ā = 0.1 (ℎ ≈ 2Ģ; Fig. 7) and Ā = 0.05 (ℎ ≈ 4Ģ; Fig. 8b) indicates that as

the channel becomes wider (Ā decreases), the fish-pair swimming configurations become stable at a

broader range of Ă and Λ. In other words, more restrictive channel walls hinder the stability of the fish-

pair formations (Fig. 10a). Similar to the effect of the lateral line, widening the channel also enhances

the stability of in-line over staggered configuration, as is evident from the downward shift of Λ2 curve

with decreasing Ā in Fig. 10b. However, unlike lateral line, increasing the channel width (decreasing Ā)

also lowers the critical streamwise distance threshold Λ1 as well as the stability boundary threshold for

wall-perpendicular configuration Λ3. In the limiting case of ℎ → ∞ (Ā → 0; Fig. 8c), in-line upstream

is the only stable configuration in the entire Λ−Ă plane (except at Λ = 0). This is in agreement with the
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(a) (b) (c)

Figure 11: Zero eigenvector and natural frequencies in stable configurations in the Λ − Ă plane for

Ā = 0.1 and ċ = 0. Contour plot of (a) the Λ component of the zero-eigenvector (unit magnitude)

of the system’s Jacobian matrix, and the (b) lower (Ĉ1) and (c) higher (Ĉ2) non-dimensional natural

frequencies (imaginary parts of complex eigenvalues of Jacobian) in the stable configuration – staggered

upstream below and inline upstream above the Λ2 line. Blank regions represent parameter regimes with

no stable equilibria.

findings of Porfiri et al. (2021) that demonstrated the stability of in-line swimming in zebrafish pairs in

an unbounded domain of quiescent fluid.

As demonstrated above, the equilibria of in-line and staggered configurations are stable in certain

parameter regimes. Here, we discuss further details about the dynamic behavior of the system at these

equilibrium configurations, by studying its Jacobian matrix. In both in-line and staggered configurations,

the Jacobian matrix consists of one zero eigenvalue and two pairs of complex conjugate purely imaginary

eigenvalues. The zero eigenvalue implies that the system has equilibria manifolds along the direction of

its zero eigenvector and the two pairs of purely imaginary eigenvalues represent center-like oscillatory

behavior at two natural frequencies (Fig. 11).

Fig. 11a shows that for the stable in-line configuration (Λ > Λ2, Ă > ĂęĨ ), the zero-eigenvector is

always along Λ. Therefore, the system has a line of stable equilibria along Λ, that is, every Λ value is an

equilibrium configuration of the system. This implies that in a marginally stable schooling configuration

of two fish swimming inline, if one of the fish is perturbed in the streamwise direction with respect

to the other by an external forcing, the two fish will continue to swim at the new streamwise distance,

while maintaining the same oscillatory dynamics in the cross-stream position and heading angles as

before. On the other hand, for the staggered configuration (Λ < Λ2, Ă > ĂęĨ ), the zero-eigenvector is

generally not aligned with Λ. This implies that in a system of two fish swimming in a stable staggered

configuration, only if the fish are perturbed by specific amounts in the streamwise and cross-stream

directions as well as the heading angles, the perturbed state will also be an equilibrium, since the line

of stable equilibria is not necessarily along Λ.

The natural frequencies of oscillation of the system in the vicinity of the marginally stable equilibrium

points are plotted in the Λ − Ă parameter space in Fig. 11b,c. It is evident that in both in-line and

staggered schooling configurations, the lower frequency increases with the flow curvature (Ă) and is

nearly invariant with the changing streamwise distance (Λ). Similarly, the higher frequency in the in-

line configuration increases with the flow curvature. However, the higher frequency in the staggered

configuration increases with decreasing Λ, showing weak dependence on flow curvature. This suggests

that the oscillatory nature of a subsystem of a fish school depends strongly on the flow curvature and

weakly on the inter-fish distance.

4. Summary and conclusions

To gain a deeper understanding of the role of passive hydrodynamics in the phenomenon of fish schooling

against a flow, we study a subsystem of a fish school using a simple mathematical model derived based

on the two-dimensional fluid dynamics of fish-like self-propelling bodies in a confined flow. The system
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of two fish swimming in a channel is modeled as two vortex-dipoles, each with a constant self-induced

speed, advected by the flow field, influenced by the other dipole, and aligned with respect to the local

flow gradient. This yields a five-dimensional dynamical system for the cross-stream coordinates and

orientations of both the fish, and the streamwise distance between the fish. Since the system has infinitely

many solutions with respect to the streamwise direction, we consider the streamwise inter-fish distance

as a parameter to study the equilibria of the system.

Our study shows that a system of two fish swimming in proximity has five types of equilibrium

configurations – in-line upstream, in-line downstream, staggered upstream, staggered downstream,

and wall-perpendicular. The downstream and wall-perpendicular configurations constitute unstable

equilibria under all flow conditions in the general case of two fish swimming at a moderate streamwise

distance. In other words, if the system is perturbed from these states, it will diverge away from these

configurations. On the contrary, swimming upstream can be stable under specific flow conditions, so

that if the system is perturbed from these equilibria, it will maintain constant oscillations about the

state instead of diverging away from it. We find that the system properties and the equilibria depend on

the streamwise inter-fish distance and a non-dimensional parameter Ă that is proportional to the flow

curvature and the ratio of the flow speed to the fish propulsion speed. Below a critical value of Ă, the

system has no stable configuration (other than the near wall configuration), suggesting that in a confined

channel, two fish may not maintain a stable equilibrium away from the wall at very low flow speeds or

minimal flow curvatures (nearly uniform flow).

We uncover the existence of only two stable configurations for two fish swimming in close proximity

but not precisely side-by-side – i) upstream in-line at the channel centerline, and ii) upstream staggered

symmetrically at a particular cross-stream distance with respect to the channel centerline. The in-line

configuration is stable if the two fish are sufficiently far apart in the streamwise direction, while the

staggered configuration is stable only if the two fish are sufficiently close in the streamwise direction

(approximately side-by-side). There is a critical inter-fish distance at which the pair transition from a

stable staggered to a stable in-line state; this critical distance decreases with flow curvature. These two

configurations (in-line and side-by-side) have also been found in experiments with live fish (Ashraf et al.,

2017; De Bie et al., 2020; Lombana & Porfiri, 2022). In particular, experiments in the dark conducted

by Lombana & Porfiri (2022) have demonstrated that fish can swim in either of these two configurations,

without the need to appraise their relative position in the pair through vision. Our analysis further shows

that the system has no stable configuration (except wall-perpendicular) if the fish are extremely close in

streamwise direction, thus rendering a precisely side-by-side upstream swimming formation unstable.

This agrees with the experimental findings of Ashraf et al. (2016) that the typical swimming pattern of

a pair of fish is slightly staggered rather than exactly side-by-side at all investigated flow speeds.

In addition, our study confirms that both the fish exhibit rheotaxis through passive hydrodynamic

mechanisms in the absence of any lateral-line sensing, similar to that predicted for a single fish swimming

in a channel (Porfiri et al., 2022) and on the basis of several experiments in which fish were deprived

of both vision and lateral line sensing (Suli et al., 2012; Bak-Coleman et al., 2013; Bak-Coleman

& Coombs, 2014; Elder & Coombs, 2015). In our system, all stable equilibria are characterized by

swimming upstream, except for the near walls case. On the other hand, swimming downstream with the

flow is found to be unstable under all conditions, thus supporting the rheotactic characteristics of each

fish despite the presence of another interacting fish in proximity. Addition of the lateral line sensing and

feedback mechanism of each fish to the passive hydrodynamics of the system, reduces the critical flow

curvature required for stability, thus, stabilizing the upstream configurations (both in-line and staggered)

at a smaller flow curvature. This suggests that lateral line sensing enhances the scope of rheotactic

behavior in agreement with the experimental results of Kulpa et al. (2015) and Oteiza et al. (2017) as

well as the range of schooling in fish.

Our model also shows that widening the channel has a stabilizing influence on the system equilibria

as both the critical flow curvature as well as the critical streamwise distance required for stability are

reduced as the channel becomes wider. Widening the channel also increases the parameter range of

stability of the in-line configuration while reducing that of staggered, ultimately leading to in-line being
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the only stable state for all inter-fish distances in the limiting case of no channel walls, in agreement

with the findings of Porfiri et al. (2021). Our results further suggest that the all-pervasive stability of the

in-line swimming pattern in a placid fluid can be attributed to the hydrodynamic interaction between

the fish, rather than their social/visual interaction.

Our study characterizes the fluid dynamics of a fish pair swimming against a flow and the resulting

stable schooling formations. However, it is not free of limitations. First, our model relies on an inviscid

potential flow model of a fish and further incorporates a rotational background flow to test the rheotactic

response of a system of self-propelling bodies. The inertia of the fish is also neglected, that is, the fish

responds to the fluid flow instantaneously. While these simplifications can not capture important flow

phenomena such as vortex shedding during fish tail beating (Li et al., 2020), they lead to a closed system

of governing equations that describe the complete behavior (location and orientation) of each fish in the

system, and can be analyzed to study the system properties. Second, this work focuses on characterizing

the properties of school formation through inter-fish interactions mediated by passive fluid dynamics.

In addition to this, fish negotiate with the flow and/or interact with neighboring fish through their

vestibular system, as well as their tactile and visual senses. To fully understand the collective behavior

of fish schooling, one should study each of these phenomena and their relative contributions, a fairly

difficult undertaking that is left for the future. Third, experimental studies (De Bie et al., 2020; Lombana

& Porfiri, 2022) have shown that fish pairs have a propensity to swim in a side-by-side (or staggered)

configuration over in-line configuration in a high speed flow. Such a trend with increasing Ă is not

explicitly observed in our analysis where either in-line or staggered configuration can be stable at high Ă

values depending on the streamwise inter-fish distance. This discrepancy could potentially be due to the

presence of additional non-hydrodynamic pathways of interaction between the fish in the experiments

or other hydrodynamic phenomena, such as vortex shedding, not accounted for in this model.

Overall, this work provides a detailed examination of the role of passive hydrodynamic mechanisms

on the formation of stable configurations of a fish pair swimming against a flow. We demonstrate that in

a flow with very low curvature/speed, no spatial configuration of the fish pair is stable. Above a certain

flow curvature/speed, when the fish are far apart in the streamwise direction, swimming in-line is

stable, whereas when the fish are closer in the streamwise direction, a particular staggered configuration

constitutes the stable formation. Our results further justify rheotactic behavior in both the fish simply

through passive fluid dynamics. The novel insights developed in this work not only provides a new

understanding of fish schooling from a purely passive hydrodynamics perspective, but will also inform

the design of experimental setups in water channels to investigate the staggered versus in-line swimming

patterns with live fish and/or their robotic representations.
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