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Abstract. In atomistic modeling, machine learning interatomic potential (MLIP) has 

emerged as a powerful technique for studying alloy materials. However, given that MLIPs 

are often trained on a limited set of materials, a concern remains regarding the MLIP’s 

capability to make accurate predictions for a wide variety of phases, compositions, lattice 

structures, and elemental orderings across alloy systems. This paper presents a detailed 

analysis of MLIP’s performance in the Li-Al alloy system. Even trained only on a very 

limited number of phases, the MLIPs exhibit good accuracies in predicting a vast array of 

known and generated intermediate phases and their elemental orderings across the alloy 

system. We propose and demonstrate several evaluation metrics to assess and quantify 

the relative stabilities of complex elemental orderings, which is critical for studying the 

thermodynamics of alloys. Our testing process combined with the evaluation metrics is 

valuable for quantifying the performance and the transferability of MLIPs and for future 

improvements of MLIPs.  
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1. Introduction 

As a powerful technique to study the materials phenomena and properties, 

atomistic modeling and simulations of materials are conducted based on the interactions 

among atoms, known as potential energy surfaces. While density functional theory (DFT) 

calculations have been widely used, their high computation cost limits their applications 

to atomistic models with a small number of atoms (on the level of up to a few hundred) 

and small system sizes (on the level of ~101 Å). The atomistic modeling and simulations 

of many materials phenomena and properties require the sampling of a large number of 

atomistic configurations in models with much larger length scale. Thus, alternative 

techniques to evaluate the potential energy surfaces of atomistic systems with lower 

computational costs are required. The interatomic potentials, such as modified embedded 

atom method (MEAM) potentials, are also commonly adopted to calculate and simulate 

a wide range of materials phenomena and properties in metal and alloy systems using 

molecular dynamics (MD) simulations.[1–3] Monte Carlo (MC) simulations based on 

cluster expansion method have been widely employed to evaluate the thermodynamic 

properties and compute the phase diagrams of alloy systems.[4,5] Machine-learning 

interatomic potential (MLIP) utilizes ML techniques to reproduce the potential energy 

surfaces of atomistic systems by training on a variety of configurations and their DFT 

calculated energies. MLIPs boast multiple advantages, including low computation cost, 

linear scalability to system sizes, and claimed DFT-level accuracy.[6] MLIPs have been 

adopted to study many materials phenomena, e.g., fast ionic conduction in ceramic 

materials,[7–10] phase transitions in amorphous materials,[11] and the phase stabilities 

and orderings of alloys.[12–16]  
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A challenge of developing MLIP for alloys is the existence of many phases in 

different lattice structures over a range of compositions, and each phase can exhibit a 

wide variety of elemental orderings (or atomistic configurations). To correctly predict the 

thermodynamics of an alloy system, it is essential for the MLIPs to accurately reproduce 

the energies and relative stabilities of all these element orderings for stable and unstable 

phases over a wide range of compositions in different lattice structures. For example, the 

prediction of the lowest energy configurations for all relevant phases with different 

structures and compositions is essential for constructing the convex hull and the phase 

diagrams.[13,14,16–19] Systematic studies based on the cluster expansion method have 

been conducted by Nguyen et al.[20] to address such challenges for modeling alloys. In 

addition, MD/MC simulations of many physical phenomena, including anti-site defects, 

diffusion, element dissolution, solid solution, and disordering, also rely on the accurate 

predictions of the energies and relative stabilities of different elemental orderings. 

Therefore, comprehensive examinations are still needed on the MLIPs' capability to 

accurately predict alloy systems with a large number of complex orderings over many 

compositions and lattice structures.  

In addition, given that training data of the MLIPs are often limited to a few pre-

selected phases, compositions, and lattice structures, a common question is whether 

MLIPs can make accurate predictions on a wide variety of atomistic configurations and 

elemental orderings from other compositions and lattice structures that are outside of the 

training data but may occur during the actual MLIPs applications for MD/MC simulations. 

The capability of interatomic potentials to predict the atomistic configurations outside the 

training process is known as transferability.[6,11,21–23] Besides choosing a variety of 
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structures and compositions in the training dataset, an alternative approach is using 

active learning, as demonstrated by Gubaev et al.,[16] to iteratively add new structures 

into the training dataset and re-train MLIPs, which may greatly mitigate the issue caused 

by having a limited number of structures in pre-selected training data. Nevertheless, 

previous studies revealed a number of discrepancies in MLIPs predicting atomic 

dynamics and materials properties.[6,21,23] Thus, it is critical to test how MLIPs would 

perform on many possible atomistic configurations that may be encountered in their 

atomistic simulations of alloys, given that the training dataset cannot cover all of them.  

In this study, we perform a systematic test of MLIP performances on complex 

elemental orderings of different phases over the alloy system. We conduct the MLIP tests 

on the Li-Al alloy system, which includes a variety of phases with body-centered cubic, 

face-centered cubic, hexagonal close-packed, and other lattices. We systematically 

examine the MLIP performance on a large number of elemental orderings in many phases 

and lattice structures in and out of the training data. We find that MLIPs trained on only a 

small number of phases may achieve good accuracy and transferability to the orderings 

in many different phases with low energy errors (section 2.1). In addition, we develop new 

quantitative metrics for the evaluation of the accuracy of energy rankings of elemental 

orderings and show that the MLIPs reproduce the energy ranking for other phases not 

included in the training data (section 2.2). Moreover, we also study the effect of training 

data, and find that increasing the diversity of training data without significantly increasing 

its size may lead to worse performance (section 2.3). Finally (section 2.4), the MLIPs are 

tested in MC and MD simulation for their common application cases. We find 

discrepancies caused by large supercell sizes and good performance on the energies of 
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intermediate phases and forces of migrating diffusion atoms. The implications of our 

results for future improvements of MLIPs are discussed.  
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2. Results 

2.1 Evaluating the MLIP across the alloy phase diagram 

 
Figure 1. The training and testing of the MLIP in Li-Al alloy system. (a) Among 10 
known LixAly phases, BCC Li (Im3തm), BCC LiAl (Fd3തm), and FCC Al (Fm3തm) are used in 
the training dataset 𝒟୲୰ୟ୧୬ , and the other seven intermediate phases are used in the 
testing dataset 𝒟୲ୣୱ୲. (b) Comparison of the energies E and atomic forces F predicted by 
MTP versus the DFT K4 benchmark on training and validation datasets, 𝒟୲୰ୟ୧୬  and 
𝒟୴ୟ୪୧ୢୟ୲୧୭୬. The RMSEs of energies for training and validation data, 𝜎୉

୘୰ୟ୧୬ and 𝜎୉
୚ୟ୪୧ୢୟ୲୧୭୬, 

and the RMSEs of forces for training and validation data, 𝜎୊
୘୰ୟ୧୬ and 𝜎୊

୚ୟ୪୧ୢୟ୲୧୭୬, are given 
above each plot. (c, d) The RMSEs of predicted energies of up to 30 elemental orderings 
for phases in given lattice structures (x-axis) generated with different compositions (y-
axis). 
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Our study is performed using the Moment Tensor Potential (MTP) model on the Li-

Al alloy system. This binary alloy system includes body-centered cubic (BCC) Li (Im3തm), 

face-centered cubic (FCC) Al (Fm3ത m), and eight known intermediate LixAly phases 

(Figure 1a), such as BCC structures Li9Al4 (C2/m:b1), Li9Al4 (C2/m:b3), Li5Al3 (Cmcm), 

Li3Al2 (R3ത m), and LiAl (Fd3ത m), FCC structure LiAl3 (Pm3ത m), hexagonal close packed 

(HCP) structure LiAl (P63/mmc), and other structure LiAl (Cmce). To train the MTP model 

for the Li-Al binary alloy system, the training dataset includes the end phases BCC Li 

(Im3ത m) and FCC Al (Fm3ത m) (Methods), and only one intermediate phase BCC LiAl 

(Fd3ത m). The training dataset 𝒟୲୰ୟ୧୬  is generated from these three phases, including a 

variety of atomic configurations from crystalline bulk structures, strained and distorted 

bulk structures, liquid structures, defected structures with multiple vacancies or 

interstitials, interfaces between each pair of the three phases with the {001}, {011} and 

{111} surfaces, and the snapshots obtained from AIMD simulations (Methods) of bulk 

crystalline phases, bulk phases with point defects, and interface supercells. The trained 

MTP model, referred as MTPTrain, accurately predicts atomic forces and energies on 𝒟୲୰ୟ୧୬ 

and the validation dataset 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ (consisting of 66 snapshots from AIMD simulations, 

Methods) (Figure 1b). Compared with DFT calculations using a k-point mesh of 4×4×4 

(DFT K4), the root-mean-squared errors (RMSEs) of energies are as low as 3 meV atom-

1 for 𝒟୲୰ୟ୧୬ and 2 meV atom-1 for 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ and the RMSEs of atomic forces are as low 

as 0.03 eV Å-1 for 𝒟୲୰ୟ୧୬ and 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ (Figure 1b).  

Here, we test whether the MTPTrain trained on only three phases (i.e., two end 

phases and one intermediate phase) can properly predict other intermediate phases, 

including different orderings in different lattice structures over the composition range in 
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the Li-Al alloy system. The testing dataset, 𝒟୲ୣୱ୲ , was constructed based on all 

intermediate phases, including other known intermediate phases, i.e., four BCCs Li9Al4 

(C2/m:b1), Li9Al4 (C2/m:b3), Li5Al3 (Cmcm), and Li3Al2 (R3തm), FCC LiAl3 (Pm3തm), HCP 

LiAl (P63/mmc), and the LiAl (Cmce) (Figure 1c), and also the hypothetical phases 

generated in a wide range of Li-Al compositions in the lattice structures of known 

intermediate phases (Methods). These hypothetical phases cover many compositions, 

either the same as known intermediate phases (blue lines, Figure 1a, and lattice 

structures, Figure 1c) or those deviate significantly from known intermediate phases (red 

lines, Figure 1a, and lattice structures, Figure 1d). For each phase, up to 30 configurations 

are generated by swapping the positions of a number of randomly selected atoms in 

known intermediate phases and by randomly sampling the elemental orderings through 

the partially substituted sites in the hypothetical phases (Methods) (Supplementary Figure 

S19). The 𝒟୲ୣୱ୲  allows the test of MLIPs covering a wide range of lattice structures, 

compositions, and orderings with highly different atomic environments, which are distinct 

from the training data. It is important to test the MLIPs’ capabilities of correctly modeling 

the relative stabilities of all these phases and orderings, which are crucial for reproducing 

the most stable phases, the phase transitions, and the phase diagrams.  

This MTPTrain trained on only three phases shows low energy RMSEs of 2 – 14 

meV atom-1 for most (35 out of 47, Figure 1c and d) of the other intermediate Li-Al phases 

and the hypothetical generated phases not in the training dataset. The HCP LiAl 

(P63/mmc) and the LiAl (Cmce), which are neither BCC nor FCC covered in training, show 

energy RMSEs greater than 20 meV atom-1 (the 1st row, Figure 1c). The MTPTrain shows 

a larger error of energy RMSEs higher than 30 meV atom-1 for five hypothetical phases, 
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HCP Li5Al3 (P63/mmc), HCP LiAl3 (P63/mmc), HCP Li4Al (P63/mmc), BCC Li5Al3 (C2/m:b3), 

BCC LiAl (C2/m:b3), and BCC LiAl3 (C2/m:b3) (Figure 1c and d). The larger errors in HCP 

structures may be caused by the identical nearest-neighbor atomic environments 

between HCP and FCC, which may be more challenging to be distinguished by the 

atomistic descriptor of the MLIP. Similarly, the larger errors on C2/m:b3 BCC may also be 

explained by the confusion with another BCC C2/m:b1 (Figure 1c). Additionally, we test 

the MTPTrain in other types of structures, such as the structures with a single Li or Al 

vacancy in the supercells, and the energy RMSEs are as low as 19 meV atom-1 for most 

intermediate phases (Supplementary Figure S1), which implies the performances of 

MLIPs can be transferred to the structures and orderings with vacancy defects outside 

the training data (Methods). However, we also find that the errors of MLIP predictions can 

be large for the individual defects, such as the defect formation energies (see errors of 

MLIPs on dataset with single vacancies in Supporting Information), which may be topic 

for in future MLIPs studies. In summary, the tests in general show good MLIP performance 

for predicted energies on many known and hypothetical alloy phases over a wide range 

of compositions with different lattice structures and orderings. Given that the MTPTrain is 

trained using only two end phases and one intermediate phase, this implies the good 

performance and transferability of MLIPs for the energies of the lattice-based model for 

alloy systems. 
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2.2 Energy rankings of different elemental orderings 

 
Figure 2. The energy rankings of elemental orderings. (a) The illustration of the energy 
rankings of different orderings (solid lines) by DFT and MLIP. The dash lines connect the 
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same ordering configurations, and the crossings of dashed lines indicate ranking errors. 
𝛿ா

ୈ୊୘ is the energy error between the true DFT and the predicted MLIP energies of the 
same configuration (blue gap). EDFT is the DFT energy difference of the configuration 
pair with an energy ranking mismatch (red gap). The lowest-energy lines correspond to 
the lowest-energy configurations (LECs). (b) The distributions of EDFT for all ranking 
errors and (c) the box plot of the energy distributions (the maximum, minimum, and 
median shown in dashed lines) of up to 30 orderings based on five lattice structures in 
the Li4Al composition (R3തm is the true phase, and others are hypothetically generated) 
from the 𝒟୲ୣୱ୲ . (d, e) The differences of DFT energies, EDFT, between the LECs 
calculated by DFT and MTPTrain, (M indicates the match of LEC predicted by DFT and 
MTPTrain), (f, g) the rate of ranking errors, (h, i) the mean EDFT and (j, k) the maximum 
EDFT for all configuration pairs with ranking errors in 𝒟୲ୣୱ୲. 
 

Here we analyze the MLIP's predictions regarding the energies and relative 

stabilities of different elemental orderings in known and hypothetical phases. The energy 

ranking of different elemental orderings is relevant for many materials phenomena, such 

as anti-site defects, diffusion, solid solutions, and phase transitions, and is essential for 

conducting the random sampling of elemental orderings/configurations in MC simulations 

for evaluating the thermodynamic properties and the construction of the phase diagrams.

 We first test whether the MLIP can correctly predict the lowest-energy configuration 

(LEC) of each phase, i.e., the most favorable elemental ordering among all orderings that 

were sampled based on a given lattice structure in 𝒟୲ୣୱ୲ (Methods). For all phases in 𝒟୲ୣୱ୲, 

the MTPTrain correctly predicts the LECs of all eight known intermediate phases are by 

(the 1st row of Figure 2d), 50% of 24 hypothetical phases in Figure 2d, and four of 15 

hypothetical phases in Figure 2e. Even for the LECs incorrectly predicted by the MTPTrain, 

the energy differences, EDFT, between the true and the predicted LECs are small, as low 

as 2 meV atom-1 for 13 out of 23 incorrectly predicted LECs, indicating good predictions 

of the energies. Most errors in the predictions are caused by configurations with similar 

energies, which were also observed in previous MLIP studies on different defect types or 
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polymorphs of materials.[24–26] In general, the MTPTrain correctly predicts the LECs of 

most intermediate phases in the Li-Al alloy system.  

We then test whether the MLIP can correctly predict the ground-state phase (GP) 

of a given composition, which is the most favorable phase at the given composition among 

all known and hypothetical phases generated based on different lattice structures (Figure 

2c, and Supplementary Figure S2 and S3). For example, among all hypothetically 

generated phases with the LiAl4 composition with the lattice structures of P63/mmc, Fd3തm, 

Pm3തm, R3തm, and Cmce (Figure 2c), the MTPTrain correctly predicts the GP of LiAl4 to be 

the one with the R3തm lattice structure. The MTPTrain also correctly predicted the GPs for 

LiAl (Fd3ത m), LiAl3 (Pm3ത m), and LiAl5 (Pm3ത m) (Supporting Information). The MTPTrain 

incorrectly predicted the GPs of Li5Al3 and Li2Al3 to be Fd3തm, which should be Cmcm and 

Pm 3ത m, respectively, by DFT. Generally, the MTPTrain shows good performance in 

predicting LECs and GPs for a wide variety of phases in the alloy system.  

To quantify how the MLIP can correctly predict the relative rankings of the energies 

for many elemental orderings in a given phase, we develop several evaluation metrics 

based on ranking errors. Ranking error is a pair of atomistic configurations or elemental 

orderings that exhibit a different energy ranking, i.e., a ranking mismatch, predicted by 

the MLIP comparing to DFT (indicated as the crossing red dashed lines in Figure 2a). To 

quantify the error rates of MLIPs on predicting the relative energy ranking, we propose 

and define the rate of ranking errors as the fraction of mismatched pairs of configurations 

among all possible pairs, which corresponds to the frequency of how often mismatched 

pairs occur among all possible pairs of configurations in comparison. This quantity is very 
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similar to the concordance index, which is widely used in biomedical informatics and other 

fields for quantifying the ranking errors of model predictions.[27]  

In addition, we here propose and define the difference of DFT energies, ∆𝐸ୈ୊୘, 

between two configurations with a ranking mismatch (red gap, Figure 2a) as another 

measure of the energy ranking error. This ∆𝐸ୈ୊୘  is different from the commonly used 

energy error 𝛿୉
ୈ୊୘ between the MLIP predicted energies and the true DFT for a given 

atomistic configuration (blue gap, Figure 2a). For the mismatched pairs with large ∆𝐸ୈ୊୘, 

the MLIP-based simulations performed in the corresponding materials system are more 

likely to produce elemental orderings that significantly deviate from the DFT. Thus, the 

mean EDFT and the maximum EDFT of all mismatched configurations can serve as 

evaluation metrics to quantify the errors in energy ranking for many elemental orderings 

predicted by the MLIPs (Methods).  

For the MTPTrain, the rate of ranking errors for all known intermediate phases are 

low (< 10% as shown in the 1st row of Figure 2f). In 𝒟୲ୣୱ୲, a majority (24 out of 39) of 

hypothetical phases have mismatch probabilities in the range of 11 - 33% (Figure 2f and 

g), while only three are higher than 50%. As quantified by the mean EDFT and maximum 

EDFT (Figure 2b), three of the eight intermediate phases have the mean EDFT lower than 

2 meV atom-1, so as 20 of the total 39 hypothetical materials. The maximum EDFT for 

three out of eight known intermediate phases and 21 of 39 hypothetical phases are lower 

than 6 meV atom-1 (Figure 2h - k). Notably, the EDFT distributions of phases with the HCP 

P63/mmc lattice structure have larger spreads than most other phases with other lattice 

structures, indicating a larger ranking error of phases with HCP lattice structures (blue 

line, Figure 2b and Supplementary Figure S4). The poorer prediction of the HCP lattice 
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structures may be caused by the same nearest-neighbor environments as the FCC 

configurations, which may be more difficult to differentiate by the atomic descriptors. 

Overall, the MTPTrain, which is only trained on three phases, shows decent performance 

in predicting the relative energy rankings of the elemental orderings in most intermediate 

phases. This implies decent transferability of the MLIPs to many different compositions 

and lattice structures in the lattice models of alloys. With the aid of these evaluation 

metrics, the alloy phases with larger errors of energy rankings are identified and are 

indicated as the potential directions for further improvements. 

The error evaluation metrics for the relative energy ranking are important to be 

considered as independent testing metrics in addition to the widely used average errors 

in energy and forces. For example, the hypothetical phases of Li2Al3 (P63/mmc) and LiAl5 

(HCP P63/mmc, BCC Fd3തm, BCC R3തm, and FCC Pm3തm) have small average errors with 

energy RMSEs at 4 – 10 meV atom-1, but large errors on ranking metrics with the rates 

of ranking errors at 35 – 55% (Figure 1d, and Figure 2f). In addition, the hypothetical BCC 

C2/m:b3 phases have energy RMSEs ranging from 37 to 65 meV atom-1 for different 

compositions, which are significantly larger than the other lattice structures (Figure 1c), 

while their rates of ranking errors, mean EDFT, and maximum EDFT are small or at 

comparable levels compared with other phases, ranging from 23% to 41%, 1 to 3 meV 

atom-1, and 4 to 8 meV atom-1, respectively (Figure 2f, h, and j). Thus, low energy errors 

may not always indicate good accuracies on energy rankings and vice versa (see 

prediction of ground-state phases for different compositions in Supporting 

Information). It’s critical to include the evaluation metrics on ranking errors in the testing 

procedures of MLIPs in addition to the average errors in energy and forces.  
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2.3 Effect of training data diversity 

 
Figure 3. Performances of MTPRe-train trained with more data diversity. The atomic 
environments of (a) Li and Al atoms in 𝒟୲୰ୟ୧୬ (blue) and 𝒟୰ୣି୲୰ୟ୧୬ (orange), plotted by 1st 
and 2nd principal components from the principal component analysis (PCA) of the Smooth 
Overlap of Atomic Positions (SOAP) descriptors (Methods). (b) The box plot of the energy 
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distributions (the maximum, minimum, and median shown in dashed lines) of up to 30 
orderings generated in five lattice structures with the Li2Al3 composition from 𝒟୲ୣୱ୲ (Pm3തm 
as the true phase, and others are hypothetically generated). (c, d) The RMSEs of 
predicted energies of up to 30 orderings in a lattice structure of known intermediate 
phases (x axis) with different compositions (y axis). (e, f) The differences of DFT energies, 
EDFT between the LECs calculated by DFT and MTPRe-train for 𝒟୲ୣୱ୲ as Figure 2d and e. 
(g, h) The rate of ranking errors. 
 

In this section, we explore the effect of increasing the diversity in the training data 

on the performance of MLIP, which is a common practice to improve ML models including 

MLIPs.[11,21,28,29] The new training dataset, 𝒟୰ୣି୲୰ୟ୧୬, includes one more material, HCP 

LiAl (P63/mmc), in addition to the BCC Li (Im3തm), FCC Al (Fm3തm), and BCC LiAl (Fd3തm) 

in the original training dataset 𝒟୲୰ୟ୧୬ for MTPTrain (section 2.1 - 2.2). A total of 144 atomistic 

configurations with the HCP LiAl (P63/mmc) were generated in the same manner as other 

phases, including crystalline bulk with a range of orderings, liquid, point defects, and 

AIMD snapshots of bulk and defect bulks, and were added into 𝒟୰ୣି୲୰ୟ୧୬ by replacing 24% 

of configurations in 𝒟୲୰ୟ୧୬. The 𝒟୰ୣି୲୰ୟ୧୬ has increased data diversity with an additional 

lattice structure and has a 16% increase in the data size. The MTPRe-train re-trained on 

𝒟୰ୣି୲୰ୟ୧୬ is obtained following the same training and validation process (Methods).  

Same as the test of MTPTrain in section 2.2, we perform the test of the MTPRe-train 

on 𝒟୲ୣୱ୲ . For hypothetical phases outside the training data, MTPRe-train performs 

significantly poorer than MTPTrain, with only six hypothetical phases having energy RMSEs 

lower than 15 meV atom-1, compared to 28 from MTPTrain (Figure 3c and d). For example, 

MTPRe-train gives a higher energy RMSE of 103 meV atom-1 for the hypothetical LiAl3 in 

the BCC R3തm lattice structure, whereas MTPTrain gives only 4 meV atom-1. The MTPRe-

train also gives poorer predictions in energy rankings, especially for hypothetical phases 

with high rate of ranking errors. There are six materials exhibiting large rate of ranking 
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errors (> 50%), with a rate of ranking error as high as 80% on LiAl5 Fd3തm (Figure 3g and 

h). The MTPRe-train also performs poorer than MTPTrain on other metrics of energy rankings. 

The mean EDFT of ranking errors increases to 4 – 11 meV atom-1 from 2 – 4 meV atom-

1 for known intermediate phases LiAl P63/mmc, Li9Al4 C2/m:b1, and LiAl Cmce. There are 

18 hypothetical phases from 𝒟୲ୣୱ୲ with the mean EDFT of ranking errors lower than 2 meV 

atom-1, down from 20 of MTPTrain (Supporting Information). The number of correctly 

predicted LECs also decline to 13 (from 16 by MTPTrain) (Figure 3e and f).  

Three additional re-trained MTPs, MTPRe-trainextra-1, MTPRe-trainextra-2, and MTPRe-

trainextra-3, which are selected by different validation procedures (Methods), are examined. 

All MTP models have low RMSE of energies as low as at 8 meV atom-1 on 𝒟୲୰ୟ୧୬ (24 meV 

atom-1 on 𝒟୰ୣି୲୰ୟ୧୬ ) but have similarly poor performances in the above tests on 𝒟୲ୣୱ୲ 

(Supplementary Figure S14, S16, and S18 in Supporting Information). Therefore, the 

poorer performance of MTPRe-train is caused by the new training dataset and not by the 

selection of a particular model (Supplementary Figure S14, S16, and S18 in Supporting 

Information). Given in this case the MTPs trained with more diverse data does without a 

much larger training data size may not show improved performance, further studies are 

needed to understand how to select the training data for further MLIP improvement.  
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2.4 Errors in the applications of MLIPs 

In the previous sections, the MLIPs were tested on a diverse range of 

orderings/configurations, most of which were hypothetically generated for testing and 

were not fully covered in the training dataset. While the generation of these 

orderings/configurations for testing aim to mimic those in atomistic simulations, this 

section further tests MLIPs in three application cases commonly conducted for alloy 

materials research.  

 
2.4.1 Errors on elemental orderings from Monte Carlo simulations  

 
Figure 4. The energy RMSEs of the supercells with different sizes over a range of 
LixAly compositions and different elemental orderings from Monte Carlo 
Simulations. Dashed lines are the energy RMSEs of all known intermediate phases 
(orange) and hypothetical phases from 𝒟୲ୣୱ୲ (blue). 
 

Given that a key advantage of MLIP is to conduct atomistic simulations in larger 

length scales not accessible by DFT, we here test the MTPTrain in MC simulations using 

large supercells. The MC simulations are conducted in four large supercells with 

dimensions 8.9×4.5×60.7 Å3, 8.9×8.9×34.7 Å3, 8.9×8.9×47.3 Å3, and 13.4×8.9×28.4 Å3 

consisting of 152, 176, 216, and 240 atoms, respectively (Methods) (Figure 4). For each 

supercell, we test multiple compositions ranging from Li4Al to Li5Al4 based on the same 
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lattice structure, with the initial structures as an interface slab between BCC metal Li and 

BCC LiAl (Fd3തm) with different numbers of atomic layers for each phase. Monte Carlo 

simulations were performed for this interface until an equilibrium was achieved (Methods). 

The structures from these MC simulations are referred to as the dataset 𝒟ୱ୪ୟୠୱ (Methods). 

While the MTPTrain gives the energy RMSEs as low as 12 meV atom-1 for all known 

intermediate phases and 20 meV atom-1 for all phases in 𝒟୲ୣୱ୲ as shown in section 2.1 – 

2.2, the MTPTrain, as tested on these large supercells, exhibits significantly higher energy 

RMSEs of > 30 meV atom-1 at < 35% Al percentage (Figure 4) and as high as 50 – 60 

meV atom-1 at around 25% Al (i.e., Li3Al) (Figure 4).  

To further identify the causes of the discrepancies, a separate test was performed 

on large supercells with elemental orderings generated in the same manner as the testing 

dataset for the BCC LiAl (Fd3തm) lattice at 25% Al percentage. The results show that the 

energy RMSEs of these supercells are in the range of 24 to 26 meV atom-1 

(Supplementary Figure S25, see errors on large supercells in Supporting Information) 

much lower than those (50 to 60 meV atom-1) encountered in the MC simulations in Figure 

4. The PCA of SOAP descriptors on the atomic environments from the MC simulations 

are confirmed to be different (Supplementary Figure S19, Supporting Information). These 

results suggest that the errors may be caused by the different elemental orderings or 

configurations encountered during the MC simulations with large cells rather than merely 

having large cell sizes.  

Given the low errors of MTPTrain as tested on the typical supercell sizes in 𝒟୲ୣୱ୲ 

(section 2.1 - 2.2), these discrepancies indicate a potential issue in applying MLIPs in 

larger simulation cells, as the errors may emerge for those orderings/configurations 
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encountered in the large supercells from actual atomistic simulations that were not 

encountered in the testing process. 

 
 
2.4.2 Convex hull and phase transition  

 
Figure 5. The convex hull of Li-Al alloys. (a) The formation energies Ef and the convex 
hulls of Li-Al alloy system by DFT (blue, circles) and MTPTrain (orange, crosses). (b, c) 
The phase transition between BCC LiAl (Fd3തm) (cyan squares) and FCC LiAl3 (Pm3തm) 
(purple triangles) predicted by (b) DFT and (c) MTPTrain. Red dash arrow indicates the 
transition point based on Ef. The black dashed line at 60% Al indicates Li2Al3, which has 
incorrectly predicted GP by MTPTrain (Figure 2c) (Supporting Information). 
 

Here, we compare the energy convex hulls of the Li-Al alloy system constructed 

using MTPTrain and DFT energies (Figure 5a). The convex hull is constructed using the 

calculated formation energies Ef (Methods) of all configurations from 𝒟୲୰ୟ୧୬  and 𝒟୲ୣୱ୲ 

(Figure 1c and d), the relaxed structures of all eight intermediate phases from the ICSD 

(Figure 1a), the structures with large supercells in 𝒟ୱ୪ୟୠୱ in section 2.4.1 (Figure 4a), and 
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the structures with single vacancies in 𝒟୚ୟୡୟ୬ୡ୷  , which includes complex elemental 

orderings of known intermediate phases with either a Li or an Al vacancy (Supporting 

Information). Compared with DFT, the MTPTrain largely reproduces the overall shape of 

the convex hull, with some discrepancies in equilibrium phases and corresponding 

energies (Figure 5). The phase with minimum Ef in the convex hull is predicted to be LiAl 

and Li5Al3 by DFT and MTPTrain, respectively. While there are only four stable 

intermediated phases predicted by DFT, the MTPTrain predicted four additional stable 

intermediate phases in the 19% – 40% Al composition range.  

We further examine the BCC-FCC phase transition by comparing the energies of 

all configurations generated based on the BCC (Fd 3ത m) and FCC (Pm 3ത m) lattice 

structures in the 𝒟ୠୡୡ/୤ୡୡ dataset (Methods) over the 50% to 75% Al composition range 

(Figure 5b and c). The BCC-FCC transition is predicted to be at 57% Al by the MTPTrain in 

good agreement with that at 62% Al by DFT. The deviations in the energies of these 

phases over the composition range may cause the minor discrepancy. These small 

energy errors also cause the incorrect prediction of the GP of Li2Al3 by MTPTrain as shown 

in section 2.2 (Figure 2c) and can be directly observed in Figure 5b and c (Supplementary 

Figure S2, Supporting Information). This indicates another case where minor energy 

errors can lead to different physical outcomes of MLIP predictions.  
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2.4.3 Errors of forces on migrating atoms in MD simulations 

 
Figure 6. Errors of forces predicted by MLIPs on migrating atoms in MD simulations. 
The cumulative distribution functions (CDFs) of the force errors, including (a) the 
directions, 𝛿஘, and (b) the magnitudes, |𝛿୊|, of atomic forces predicted by DFT K1 (dashed 
black lines), MTPTrain (blue), and MTPRe-train (orange) on migrating atoms in snapshots 
from AIMD simulations of Li3Al2 (R3തm). Red lines are visual guidance for 90%. 
 

Here we test the MLIP in the study of atom diffusion in MD simulations, another 

key application of MLIPs. Previous study reveals that atomic forces on migrating atoms 

are a key error source of MLIPs.[25] Here, we quantify the errors of atomic forces on 

migrating atoms from 200 snapshots extracted from AIMD simulations of LiAl (Fd3തm), 

Li3Al2 (R3തm), Li5Al3 (Cmcm), and Li9Al4 (C2/m:b1) with a single Al vacancy in the supercell 

model (Methods) (Supporting Information, Figure 6a, b, and Supplementary Figure S20). 

MTPTrain and MTPRe-train achieve good accuracy in predicting atomic forces on migrating 

atoms for all four materials, even though the three intermediate materials Li3Al2, Li5Al3, 

and Li9Al4 are not in the training data. As shown in the CDF curves of force errors 𝛿஘ and 

|𝛿୊|, on migrating atoms obtained from Li3Al2 AIMD diffusion snapshots (Figure 6), over 

90% of migrating atoms predicted by MTPTrain has less than 22 degrees of errors in force 

direction 𝛿஘ and less than 0.16 eV Å-1 of errors in force magnitude |𝛿୊|. The forces errors 

of the MTPs are compared to the DFT calculations with a single -centered k-point (DFT 

K1) as in Ref. [25], which is commonly used in AIMD simulations for lower computation 
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costs. The DFT K1 shows larger errors of 44 degrees in force direction 𝛿஘ and of 0.33 eV 

Å-1 in force magnitude | 𝛿୊ |, to meet the same 90% cut-off (Figure 6a, b, and 

Supplementary Figure S20). The force performance score P(𝒟୐୧య୅୪మ), which is a metric 

proposed by Ref.[25], is 0.69 and 0.73 for the MTPTrain and MTPRe-train, respectively, 

compared to 0.50 from DFT K1, in the dataset 𝒟୐୧య୅୪మ of forces on migrating atoms for 

AIMD snapshots in material Li3Al2 (R3തm). Even for Li3Al2 (R3തm) and Li5Al3 (Cmcm) that 

are not in the training datasets 𝒟୲୰ୟ୧୬ or 𝒟୰ୣି୲୰ୟ୧୬, the MTPTrain and MTPRe-tain outperform 

DFT K1 on force errors. It should be noted that DFT calculations for metals and alloys 

often require a denser k-point mesh, and K1 is a relatively coarse k-point sampling for 

the metal supercell models used. Overall, the MTP models show good performances in 

predicting forces on migrating atoms, which are not covered in the training data. Since 

force predictions on migrating atoms are critical for diffusional properties, this good 

performance of MTP on the migrating atoms not included in the training data is very 

encouraging. Nevertheless, careful testing is always needed before conducting the 

atomistic simulations of the MLIPs. 

  



 24 

3. Discussion and Conclusions  

In this study, we conducted a systematic test of the MLIPs using Li-Al alloy as a 

model system to answer the question of whether the MLIPs can make accurate 

predictions for many different configurations that may be encountered in atomistic 

modeling of alloys. In the model alloy system, our results show that the MLIPs trained 

using only a few phases can largely predict other intermediate phases (both known and 

hypothetically generated) with a wide variety of compositions, elemental orderings, and 

lattice structures. The MLIPs trained on only a few phases with carefully selected 

configurations capture the key physics of interatomic bonds in lattice-based models to 

accurately predict other alloy intermediate phases with deviated compositions and non-

equilibrium elemental orderings. These results along with many previous 

studies[12,13,33,14–16,18,19,30–32] show great promises and potentials of applying 

MLIPs to studying complex alloy systems.  

Our process of testing MLIPs can be further developed into a general test, 

including 1) generating the testing data based on hypothetical phases that mimic the 

atomistic simulations, and 2) quantifying the error evaluation metrics for the relative 

stabilities of elemental orderings. First, the MLIPs testing should be performed on the 

testing data that are generated to mimic the key physical (or error-prone) scenarios in 

atomistic simulations. For example, in this study, different hypothetical phases with many 

elemental orderings were generated based on distinct lattice structures over a wide range 

of compositions, mimicking the random sampling during MC simulations with canonical 

(fixed composition) or grand canonical ensemble (varying compositions) commonly 

employed for alloy modeling. Such tests allow a systematic examination of the MLIP 
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performance on a diverse range of atomic configurations in many phases with a wide 

range of compositions, lattice structures, and complex elemental orderings across the 

alloy phase diagram.  

To evaluate the MLIP’s performance on these complex elemental orderings that 

are relevant to many materials properties/phenomena, multiple evaluation metrics are 

developed and employed in the testing process. In addition to the commonly used 

averaged errors, e.g., RMSEs of energies, we propose and demonstrate the rate of 

ranking errors based on the occurrence frequency of mismatched energies between 

MLIPs and DFT, the mean and the maximum of the energy differences on mismatched 

pairs of MLIPs and DFT energies to quantify the predicted energy ranking of different 

elemental orderings in different phases. The accuracy of MLIPs is also assessed by the 

correct predictions of GPs and the LECs for a variety of phases. As revealed in our study, 

even if the MLIPs may have small average errors predicting the energies of different 

phases, relative stabilities of different elemental orderings and configurations, such as 

energy ranking, LECs and GPs, may still be incorrectly predicted. Given the importance 

of correctly predicting the relative stabilities of various configurations and phases for 

studying many materials properties and phenomena, these evaluation metrics based on 

energy rankings and relative stabilities should be considered as key components, in 

addition to average errors, of the MLIP performances in the future testing process.  

Our MLIP testing process can also be considered as a testing and quantification 

of the ‘transferability’ of MLIPs in predicting other phases, elemental orderings, 

compositions, and lattice structures, outside of the training data. The testing on the known 

phases that are intentionally leave out of training is in principle similar to the leave-one-
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out cross-validation or bootstrapping strategies in general machine-learning. Employing 

this strategy in the materials system space allows the error quantifications on the 

materials outside of the training data, and also mimics the situation of encountering 

unknown materials in the atomistic simulations using MLIPs. This strategy may be further 

developed and generalized for testing MLIPs and different training processes.[16] 

As shown in our study, the complex atomistic configurations and distinct elemental 

orderings encountered in large supercell models in actual atomistic simulations may still 

show notable discrepancies. Developing systematic testing processes that mimic the real 

applications of MLIPs in larger models is needed to further test and improve the MLIPs in 

those application scenarios.[34] The difficulty in addressing this issue is that these errors 

may only be encountered in large supercells that would be computationally expensive to 

calculate by DFT, thus impeding the direct test and correction of these errors. One future 

research direction is to generate relevant configurations that can represent those in larger 

length-scale simulations but in adequately small supercells to be verified by DFT 

calculations.  

Our results also provide insights about the complexity regarding the training 

strategies of MLIPs. While good transferability of MLIPs to other intermediate alloy 

phases can be achieved by using a small number of phases in the training data, it is 

unexpected that the MLIPs trained with more data diversity (i.e., more phases) have 

worse performances on most metrics for most phases, even for those included in the 

training dataset. As shown in this studied case, increasing the data diversity alone without 

substantially increasing the amount of training data may not always lead to improved 

MLIPs. This observed phenomenon and previous studies[21] suggest that the effects of 
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data size and data diversity on MLIP performance are complex. More research is needed 

to fully understand strategies for balancing the training data size and diversity for 

achieving improved performance of MLIPs. The testing process and aforementioned 

metrics in quantifying the performance and transferability of MLIPs can be used to assess 

different training strategies for improving MLIPs.  

In summary, our study provides a comprehensive case study using a binary alloy 

system on the performance, testing, transferability, and application errors of MLIPs. 

These insights provide some guidance for future improvement of MLIPs. Our testing 

process and evaluation metrics for quantifying the performance and transferability of 

MLIPs should be considered in future studies of MLIPs. 
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Methods 

First-principles computation. Vienna ab initio simulation package[35] (VASP) 

with Perdew-Burke-Ernzerhof[36] (PBE) functionals by generalized-gradient 

approximation (GGA) was used to perform all density functional theory calculations. The 

projector augmented-wave approach was adopted in DFT calculations to relax crystal 

structures and get energies and forces. All true values of energies and forces for training, 

validating, and testing MTPs were calculated using 444 k-point mesh (K4). The 

Gaussian smearing method was adopted to calculate partial occupancies for each orbital 

(ISMEAR = 0) in combination with smearing width set to 0.05 eV (SIGMA = 0.05). 

Furthermore, all DFT calculations were spin-polarized with an energy cutoff set to 520 eV, 

electronic relaxation cutoff set to 10-7 eV, and other parameters set to be compatible with 

the Materials Project.[37,38] 

 

Ab initio molecular dynamics simulation. Ab initio molecular dynamics (AIMD) 

simulations were performed as the same scheme described in Ref. [39]. The same GGA 

for PBE functionals as described in First-Principles Computation section were used. The 

AIMD simulations were non-spin-polarized, with the setting of electronic energy 

convergence cutoff to 10-4 eV, a time step of 2 fs, and a -centered 111 k-point. All 

simulations adopted the NVT ensemble with Nose-Hoover thermostat (SMASS = 0). The 

initial structures were heated up from 100 K to the target temperatures with a constant 

heating rate using velocity scaling during a period of 2 ps. All supercell models for AIMD 

simulations have the lattice parameters at around 10 Å or larger. The temperatures of 600 
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K, 2000 K, and 400 K were used to generate the near-equilibrium configurations of 

intermediate phases, liquid phases, and interfaces, respectively. 

The AIMD simulations for the vacancy diffusion in LiAl (Fd3തm), Li9Al4 (C2/m:b1), 

Li5Al3 (Cmcm), and Li3Al2 (R3തm) intermediate phases in section 2.4.3 and in Supporting 

Information (Supplementary Figure S20) were carried out following the established 

process in Ref. [39]. To compute accurate distributions of force errors on migrating atoms 

and the corresponding force performance metrics, such as normalized area under the 

curve (NAC), an adequate number of events with atom migration need to be obtained 

from AIMD simulations. The diffusion simulations of all four materials were performed at 

the temperatures of 400, 450, 500, 550, 600, 650, and 700 K for 400 to 1000 ps. Migrating 

atoms in each snapshot of all AIMD simulations were identified following the process in 

Ref. [40] and the details were clarified in the section identifying migrating atoms and 

evaluating force errors. 200 snapshots with the highest number of migrating atoms were 

collected from AIMD simulations at all temperatures for each material. The migrating atom 

in these 200 snapshots were then used to calculate the force errors of MTP models. The 

supercells used in AIMD simulations of four materials were the same with the supercells 

of original intermediate phases in section 2.1 of main text, removing an Al atom to create 

a single vacancy. 

 

Datasets for training, validation, and testing. A total of eight datasets were 

generated for training, validating, and testing MTPs, such as two training datasets 𝒟୲୰ୟ୧୬ 

and 𝒟୰ୣି୲୰ୟ୧୬, two validation datasets 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ and 𝒟୧୰୰ୣ୥୳୪ୟ୰, and four testing datasets 

𝒟୲ୣୱ୲, 𝒟ୱ୪ୟୠୱ, 𝒟୚ୟୡୟ୬ୡ୷, and 𝒟ୠୡୡ/୤ୡୡ. The energies and the forces of all configurations in 
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these datasets were converged using K4 by single-step self-consistent DFT calculations 

(except for 𝒟୧୰୰ୣ୥୳୪ୟ୰, or indicated otherwise). The numbers of atoms for the supercells of 

each intermediate phase in 𝒟୲ୣୱ୲ are, 54 for Li (Im3തm), 32 for LiAl (P63/mmc), 144 for LiAl 

(Fd3തm), 104 for Li9Al4 (C2/m:b1), 108 for LiAl3 (Pm3തm), 48 for Li5Al3 (Cmcm), 234 for 

Li9Al4 (C2/m:b3), 60 for Li3Al2 (R3തm), 96 for LiAl (Cmce), and 108 for Al (Fm3തm).  

The 𝒟୲୰ୟ୧୬  dataset contains 356 configurations based on BCC Li metal (Im3ത m, 

ICSD 77370), LiAl (Fd3തm, ICSD 240122), and FCC Al metal (Fm3തm, ICSD 606000). All 

supercells in 𝒟୲୰ୟ୧୬ have the lattice parameters around or larger than 10 Å. For each of 

these three phases, a variety of configurations were generated as follows: 

(1) The ground-state configurations fully relaxed by DFT K4. 

(2) Five near-equilibrium configurations of the ground-state generated by NVT AIMD 

simulations at 600 K. Each of the near-equilibrium configurations was generated by a 

separate AIMD simulation of 2 ps. 

(3) Two liquids configurations generated by NVT AIMD simulations at 2000 K, following 

the same process as 2). 

(4) Strained supercells with a) -15% or +15% strain on each of the three lattice 

parameters, and b) -15% or +15% strain on a pair of distinct lattice parameters with 

four combinations (+15%, +15%), (-15%, -15%), (+15%, -15%), and (-15%, +15%) 

strains. 

(5) Distorted supercells generated by distorting each of the three lattice angles by -13.5° 

or 13.5° for cubic lattices (-15% or +15% of corresponding lattice angles if lattice 

angles are not 90°). 
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(6) Supercells with vacancies. We removed 5%, 10%, or 15% of atoms in the supercell of 

Li and Al. For LiAl (Fd3തm), the defected supercells with either Li or Al vacancies were 

generated, but not both Li and Al vacancies at the same time. All supercells with 

vacancies were then fully relaxed by DFT K4. 

(7) Five near-equilibrium configurations for each supercell with vacancies. All 

configurations were generated by NVT AIMD simulations at 600 K, following the same 

process in 2). 

(8) Supercells with interstitials. We added one, two, or four atoms of either Li or Al in the 

supercells of Li, Al, and LiAl. All bulk supercells were then fully relaxed by DFT K4. 

(9) Five near-equilibrium configurations for each of the supercells with interstitials. All 

configurations were generated by NVT AIMD simulations at 600 K, following the same 

process in 2).  

(10) Additionally, 20 interfaces with every pair of two phases in the dataset. All 20 

interfaces were generated by directly joining the conventional unit cell of each material 

by the algorithm by Zur and McGill [41] implemented in Pymatgen[37] Python package. 

The maximum matching area of the algorithm was set to 400 Å2 and the maximum 

angle tolerance was set to 0.01. Slabs of both materials on either side of the interface 

had four layers of unit cells. We generated interfaces using the Miller indices of {100}, 

{110}, and {111}. The gap distance and the vacuum space at the interface core were 

both set to 2.5 Å. Due to the high computational cost of evaluating energies and forces 

for these large interface supercells, we excluded the supercells that had more than 

250 atoms or had lattice parameters larger than 25 Å. For each interface supercell, 

four configurations were generated as follows,  
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i. A supercell of the interface configuration without relaxing lattice or atom 

positions. 

ii. A supercell of the interface configuration relaxed by DFT K1. The energy and 

atomic forces of the relaxed supercell were then calculated by DFT K4 self-

consistent run with fixed lattice and atom positions. 

iii. Two near-equilibrium configurations for the relaxed supercell generated by NVT 

AIMD simulations at 400 K. 

 

The 𝒟୰ୣି୲୰ୟ୧୬ dataset contains 414 configurations based on four phases: BCC Li 

metal (Im3തm, ICSD 77370), LiAl (Fd3തm, ICSD 240122), LiAl (P63/mmc, ICSD 262069), 

and FCC Al metal (Fm3തm, ICSD 606000). All configurations were generated following the 

same process as 𝒟୲୰ୟ୧୬, except for near-equilibrium configurations generated in 2), 7), 

and 9). In 𝒟୰ୣି୲୰ୟ୧୬, near-equilibrium configurations were generated by displacing each 

atom to a random direction and the displacement of each atom was randomly selected 

using a uniform distribution between 0 and 0.5 Å, and only three near-equilibrium 

configurations were generated for 2), 7), and 9) in 𝒟୰ୣି୲୰ୟ୧୬ . A total of 42 interface 

supercells were generated in the 𝒟୰ୣି୲୰ୟ୧୬ following the same process of 𝒟୲୰ୟ୧୬. Three 

configurations of each interface supercell were generated, including a supercell 

configuration without relaxation, a supercell configuration relaxed by DFT K1, and a near-

equilibrium configuration generated by the random displacement.  

The 𝒟୴ୟ୪୧ୢୟ୲୧୭୬  dataset contains 66 configurations generated from NVT AIMD 

simulations of relaxed bulk, vacancy, and interstitial supercells at 600 K, following the 

same process used in 2) for 𝒟୲୰ୟ୧୬. The bulk, vacancy, and interstitial supercells were the 
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same as 1), 6), and 8) in 𝒟୲୰ୟ୧୬  (a total of 33 supercells), and two near-equilibrium 

configurations of each supercell were taken following the same as 2), 7), and 9) in 𝒟୲୰ୟ୧୬.  

The 𝒟୲ୣୱ୲  dataset contains 1391 configurations based on eight intermediate 

phases from the ICSD and 39 hypothetical phases (Figure 1c and d). Hypothetical phases 

were generated using the lattice structures of eight known intermediate phases and 

changing the site occupancies to given compositions, consisting of 24 in three 

compositions LiAl3, LiAl, and Li5Al3 in eight known intermediate phases (Figure 1c) and 

15 phases with three handpicked compositions, LiAl5, Li2Al3, and Li4Al (Figure 1d). The 

hypothetical phases were generated by adjusting their compositions from the original 

intermediate phases to the target compositions in the relaxed supercells. The 

compositions were adjusted by correspondingly changing the occupancies of Li and Al 

sites in the relaxed supercells of the original intermediate phases, and the partial 

occupancies may be adjusted to include vacancies to guarantee the numbers of Li and 

Al atoms are integers (such as Li5Al3 with lattice structures Pm3തm, C2/m:b3, and R3തm, 

and Li4Al with lattice structures P63/mmc, Pm3തm, and Cmce). Then, the structure with 

modified site partial occupancies was ordered following the scheme in Ref.[42] The 

configurations of different elemental orderings for all intermediate phases were generated 

by swapping random numbers of Li and Al atoms in the supercell as follows. First, we 

randomly picked n Li and n Al atoms (n is a random number between 1% and 10% of the 

total number of atoms in the supercell) and swapped their positions. We generated up to 

30 configurations for each intermediate phase. All configurations were symmetrically 

distinct to each other, as checked by the scheme used previously in Ref.[39,42].  



 34 

The 𝒟ୱ୪ୟୠୱ dataset contains 420 configurations of interface supercells with a range 

of compositions with different orderings generated by MC methods. Interface supercells 

in 𝒟ୱ୪ୟୠୱ  were between BCC metal Li and BCC LiAl (Fd 3ത m) based on the relaxed 

conventional unit cell, following the same process of generating interfaces in 𝒟୲୰ୟ୧୬. The 

maximum matching area of the Zur and McGill algorithm was set to 100 Å2 and the 

maximum angle tolerance was set to 0.01. The Miller indices of both the substrate and 

the film were set to {100}. four types of supercells were used, 8.9×4.5×60.7 Å3, 

8.9×8.9×34.7 Å3, 8.9×8.9×47.3 Å3, and 13.4×8.9×28.4 Å3, corresponding to 225.5, 

227.5, 219.5, and 324.5 of the conventional LiAl (Fd3തm) unit cell (Figure 4). The 

compositions of supercells were handpicked and rounded to the closest Al concentration 

at 20%, 21%, 25%, 33%, 34%, 36%, 38%, 40%, and 45%. The compositions were 

changed by adjusting the number of layers of unit cells for Li and LiAl. A total of 21 different 

compositions in four supercells were generated by MC simulations using MTPTrain (Figure 

4). The MC simulation was performed at 300 K (equivalent to kBT = 0.026 eV) to find the 

lowest energy configurations by swapping atom positions of a random Li and a random 

Al for each attempted random move and was terminated until the relative standard 

deviations of the total energies of the last 1000 attempts were lower than 10-5. During the 

MC simulations, the supercells were relaxed to relieve the strain caused by the difference 

of bond lengths between BCC Li and BCC LiAl, with energy convergence set to 10-5. 

Since the bonds in BCC LiAl are 8% less than Li-Li bonds in BCC Li, the volume change 

between initial interfaces and the final mixed configurations cannot be neglected and the 

additional relaxations are therefore necessary. The MC simulations were conducted using 

LAMMPS by our house-customized scripts. The final 20 configurations that were 
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accepted in each MC simulation were included in 𝒟ୱ୪ୟୠୱ , and their energies were 

calculated by DFT K4 without relaxing lattices or atom positions. 

The 𝒟୚ୟୡୟ୬ୡ୷  dataset contains 350 configurations based on eight intermediate 

phases with a single vacancy of either Li or Al (see errors of MLIPs on dataset with 

single vacancies Supporting Information). In the relaxed supercells of intermediate 

phases, a random Li or Al atom was chosen to swap with another random atom (either Li 

or Al) and was then removed. By using this method, we generated up to 30 configurations 

that were symmetrically distinct (including an anti-site in some cases) for each phase 

containing one vacancy.  

The 𝒟ୠୡୡ/୤ୡୡ dataset, used to examine the BCC-FCC phase transition in section 

2.4.2, contains 701 configurations based on the structures with BCC and FCC lattices 

with 12 compositions with Al % of 52%, 54%, 56%, 57%, 60%, 62%, 64%, 66%, 68%, 

70%, 72%, and 74% for each lattice. The structure lattice of metal Li (Im3തm) and LiAl 

(Fd3ത m) for BCC, and metal Al (Fm3ത m) and LiAl3 (Pm3ത m) for FCC, were adopted to 

generate configurations with different elemental orderings. A total of 48 hypothetical 

phases were generated. The compositions of these phases were adjusted following the 

same scheme as used for 𝒟୲ୣୱ୲. For each phase, following the same process of ordering 

of hypothetical phases in 𝒟୲ୣୱ୲ , up to 10 symmetrically distinct configurations were 

generated for metal Li (Im3തm) and Al (Fm3തm), and up to 20 configurations were generated 

for LiAl (Fd3തm) and LiAl3 (Pm3തm).  

The 𝒟୧୰୰ୣ୥୳୪ୟ୰ dataset was a validation dataset only used to select the optimized 

MTPs as described in Optimizing MTPs and fine-tuning the hyperparameters. This 

dataset contains 141 configurations, which were intentionally generated as far-from-
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equilibrium configurations that give either exceptionally low energies predicted (< -10 eV 

atom-1, compared with -1.9 eV atom-1 for bulk Li and -3.7 eV atom-1 for bulk Al) or 

exceptionally high predicted forces (> 15 eV Å-1 on any atom) by MTPTrainextra-2 (see test 

and compare multiple MTPs in Supporting Information). Since the configurations in this 

dataset were far from equilibrium, predicted energies were expected to be high (> -4 eV 

atom-1 for typical LixAly), but instead the exceptionally low energies were predicted by the 

MLIPs contradicting to the physical nature of far-from-equilibrium configurations and 

indicating errors of the MLIPs. This dataset was used in the validation step to exclude 

those MTP models that have exceptionally low predicted energies, which can be viewed 

as errors and failures in capturing the atomic interactions. These 141 configurations were 

selected from the snapshots produced by MTP-MD simulations performed using grand 

canonical ensemble (allowing the change of supercell size and the number of Li atoms) 

at 600 K. The supercell of LiAl (Fd3തm) has a size of 25.3  25.3  24.0 Å3 and contains 

576 Al atoms with varying Li atoms (289 to 578). The supercell of the interface between 

bulk Li and Al has a size of 27.9  19.7  22.6 Å3 and 384 Al atoms with varying Li atoms 

(157 to 260). A random amount of Li atoms was removed (between 1 to 287 Li atoms 

removed for supercells with 576 Al atoms, and between 124 to 227 Li atoms removed for 

supercells with 384 Al atoms) or inserted (< 2 Li atoms inserted for supercells with 576 Al 

atoms) from the supercells in the dataset. During the MD simulations using NPT ensemble, 

an attempt to either remove or insert (50% probability for either action) a Li atom is tried 

every 0.1 ps. Then, by fixing the number of Al atoms, the acceptance of each 

removal/insertion attempt follows the Metropolis algorithm and the probability is 

determined by the final energies predicted by MTPs with a given constant chemical 
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potential of Li, using the scheme developed in Ref. [43,44]. Many of these generated 

configurations were intentionally generated to be less reasonable, far-from-equilibrium 

configurations, as some atoms get as close as within 1 Å, which were given by the 

erroneous prediction (very low energies) of MTPTrainextra-2. These configurations produced 

by MTPTrainextra-2 (see test and compare multiple MTPs, Supporting Information) during 

MTP-MD simulations using grand canonical ensemble were re-used in the validation 

process (see test and compare multiple MTPs, Supporting Information) to select MtPs 

having the minimum amount of erroneously predicted energies (< -10 eV atom-1). For 

some configurations with atoms very close to each other, large forces were predicted by 

the MTPTrainextra-2 even on atoms that were far away (> 5 Å) from the erroneous pairs. 

Given The 𝒟୧୰୰ୣ୥୳୪ୟ୰ dataset was a validation dataset only used to select the optimized 

MTPs as described in the section Optimizing MTPs and fine-tuning the 

hyperparameters, no DFT values are needed.  

 

Training MTPs. The MTP models were trained using the scheme implemented in 

MAML[45] Python package interfaced with MTP[46,47] as in previous studies (Zuo et 

al.[48]). A grid search approach was employed to identify the combination of 

hyperparameters, including the cutoff radius, the choice of the radial basis function sets, 

and the maximum number of iterations, as in Zuo et al.[48] Two to ten values were tested 

for each hyperparameter, giving a total of 2488 MTP models trained from 𝒟୲୰ୟ୧୬ and 1537 

MTP models trained from 𝒟୰ୣି୲୰ୟ୧୬. 
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Optimizing MTPs and fine-tuning the hyperparameters. The processes of 

evaluating the validation scores, fine-tuning the hyperparameters, and selecting the 

optimal MTPs with the best scores were as follows. To calculate the validation scores, 10 

criteria, consisting of the RMSE energies and forces and the NAC of force errors (see 

Identifying migrating atoms and evaluating force errors), were used: 

(1) The RMSE of energies for training data 𝒟୲୰ୟ୧୬/𝒟୰ୣି୲୰ୟ୧୬ (with respect to the training 

process of MTPTrain or MTPRe-train), 𝜎୉
୲୰ୟ୧୬; 

(2) The RMSE of energies for validation data 𝒟୴ୟ୪୧ୢୟ୲୧୭୬, 𝜎୉
୴ୟ୪୧ୢୟ୲୧୭୬; 

(3) The RMSE of forces for 𝒟୲୰ୟ୧୬/𝒟୰ୣି୲୰ୟ୧୬, 𝜎୊
୲୰ୟ୧୬; 

(4) The RMSE of forces for 𝒟୴ୟ୪୧ୢୟ୲୧୭୬, 𝜎୊
୴ୟ୪୧ୢୟ୲୧୭୬; 

(5) The normalized area of the cumulative distribution function curve (NAC) of errors on 

force magnitudes for 𝒟୲୰ୟ୧୬/𝒟୰ୣି୲୰ୟ୧୬, ∆NAC(|𝛿୊|, 𝒟୲୰ୟ୧୬) = 1 - NAC(|𝛿୊|, 𝒟୲୰ୟ୧୬); 

(6) The NAC of errors on force directions for 𝒟୲୰ୟ୧୬ /𝒟୰ୣି୲୰ୟ୧୬ , ∆ NAC(𝛿஘ , 𝒟୲୰ୟ୧୬ ) = 1 - 

NAC(𝛿஘, 𝒟୲୰ୟ୧୬); 

(7) The NAC of errors on force magnitudes for 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ , ∆ NAC(|𝛿୊ |, 𝒟୴ୟ୪୧ୢୟ୲୧୭୬ ) = 1 - 

NAC(|𝛿୊|, 𝒟୴ୟ୪୧ୢୟ୲୧୭୬); 

(8) The NAC of errors on force directions for 𝒟୴ୟ୪୧ୢ, ∆NAC(𝛿஘, 𝒟୴ୟ୪୧ୢୟ୲୧୭୬) = 1 - NAC(𝛿஘, 

𝒟୴ୟ୪୧ୢୟ୲୧୭୬); 

(9) The number of large forces predicted for all atoms in 𝒟୧୰୰ୣ୥୳୪ୟ୰, NF; 

(10) The number of configurations that the energies predicted were < -10 eV atom-1 in 

𝒟୧୰୰ୣ୥୳୪ୟ୰, NE; 

The NACs were the normalized area of the cumulative distribution function (CDF) 

curves as proposed in Ref [25] and were calculated following the same steps as in Ref 
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[25]. The CDF curves of force errors were generated to show the distributions of errors 

over a specific error range, and the NAC was then calculated as dividing the area under 

the CDF curve by the total area (between 0 to 100% on y-axis and the specified error 

range on x-axis). Here, the NAC of errors on force magnitudes, NAC(|𝛿୊ |, 𝒟 ), was 

calculated by using the CDF curves over an error range of 0 to 1.5 eV Å-1, and the NAC 

of errors on force directions, NAC(𝛿஘, 𝒟), was calculated by using the CDF curves over 

an error range of 0 to 180 degrees. 

The value of each criterion, c, was then standardized by subtracting its minimum 

value min(c) and dividing by its standard deviation std(c),  

v = [c – min(c)]/std(c).        Eq. (1) 

The total validation score was calculated as 

V = ∑ (𝑤௩𝑣)ଶ
௩ ,         Eq. (2) 

where the weights 𝑤௩ of NF and NE were set to 1.5 and 𝑤௩ of all the other criteria were set 

to 1. The MTPs with the lowest total validation score V were selected as MTPTrain and 

MTPRe-train.  

 

Principal component analysis of atomic environments. We adopted the 

Smooth Overlap of Atomic Positions (SOAP) descriptors to quantify the atomic 

environments in all datasets. The SOAP descriptors were calculated using the QUIP[49] 

package and the parameters set as follows (or default values if not specified), 

(1) The band limit of spherical harmonics basis function (l_max) was set to 12.  

(2) The number of radial basis function (n_max) was set to 6.  

(3) The covariance function type was set to ‘dot_product’ and its zeta was set to 4. 
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(4) The cutoff radius was set to 6 Å.  

(5) The number of sparse points was set to 4000.  

We visualized the quantified atomic environments by performing the principal 

component analysis (PCA) function implemented in sci-kit learn package. We first 

standardized all elements of the SOAP descriptors by subtracting the means and dividing 

by the standard deviations. Then, we conducted PCA and plotted the 1st and the 2nd 

principal component (Figure 3 and Supplementary Figure S19). 

 

Identifying migrating atoms and evaluating force errors. The process of 

identifying migrating atoms to evaluate the force errors of MTPs (section 2.4.3) on 

migrating atoms follows the same approach in Ref [25]. Since most of the diffusion events 

are by Li atoms in Li-Al materials systems, Li migrating atoms were selected following a 

similar approach as identifying migrating atoms in Ref [25]. If the distances of the atom 

between their 1st and 2nd nearest static sites have a difference below 0.9 Å (approximately 

33% of distances between two static sites), the atom is identified as a migrating atom. 

The errors of force magnitudes and force directions between the MTP predicted atomic 

forces and the true values given by DFT K4 were then calculated for these migrating 

atoms, and the error distribution were plotted as the CDF curves in section 2.4.3 (Figure 

6). In addition, forces using -centered 111 k-point (K1) were also calculated on 

migrating atoms as benchmarks for the comparison with MTPs. The NACs of force errors 

were evaluated based on these CDF curves and were then quantified and used for 

selecting the MTP models (see Optimizing MTPs and fine-tuning the 

hyperparameters). The force performance metrics P(𝒟) is then calculated as the product 
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of the NAC of force errors on magnitudes, |𝛿୊|, and the NAC of force errors on directions, 

𝛿஘, P(𝒟) = NAC(|𝛿ி|, 𝒟) × NAC(𝛿஘, 𝒟) as proposed by Ref [25]. 

 

Convex hull and formation energies. The formation energies, Ef, of intermediate 

phases in section 2.4.2 were calculated as the energy differences between the target 

intermediate phase LixAly and the reference phases. Specifically, the Ef in Figure 5a is,  

𝐸୤൫Li୶Al୷൯ = 𝐸(Li୶Al୷) − ௫
௫ା௬

𝐸(Li) − ௬
௫ା௬

𝐸(Al),    Eq. (3) 

where E(LixAly), E(Li), and E(Al) are the energies per atom of bulk-phase LixAly, Li (Im3തm), 

and Al (Fm3തm).  

In Figure 5b, the formation energy of interphase intermediate phase LixAly is evaluated 

using LiAl and LiAl3 as references, 

𝐸′୤൫Li୶Al୷൯ = 𝐸(Li୶Al୷) − ଷ௫ି௬
௫ା௬

𝐸(LiAl) − 2 ௬ି௫
௫ା௬

𝐸(LiAlଷ),   Eq. (4) 

where E(LiAl) and E(LiAl3) are the energies per atom of bulk-phase LiAl (Fd3തm) and LiAl3 

(Pm3തm). 

 

Error evaluation metrics: rate of ranking error, mean EDFT, and maximum 

EDFT. For a list of configurations (elemental orderings), their energies, EDFT and EMLIP, 

were calculated by DFT and by MLIPs, and were then compared. To calculate the 

evaluation metrics of energy ranking, all pairs of configurations were enumerated. For a 

pair of A and B configurations was determined to have a ranking error (or mismatch) if 

(EADFT – EBDFT)(EAMLIP – EBMLIP)≤0. The rate of ranking error was calculated as the fraction 

of mismatched configuration pairs among all pairs. The difference of DFT energies for this 
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pair was evaluated as EDFT = EADFT – EBDFT. The mean and maximum EDFT are the 

mean and maximum for all mismatched pairs of configurations. 
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