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Abstract. In atomistic modeling, machine learning interatomic potential (MLIP) has
emerged as a powerful technique for studying alloy materials. However, given that MLIPs
are often trained on a limited set of materials, a concern remains regarding the MLIP’s
capability to make accurate predictions for a wide variety of phases, compositions, lattice
structures, and elemental orderings across alloy systems. This paper presents a detailed
analysis of MLIP’s performance in the Li-Al alloy system. Even trained only on a very
limited number of phases, the MLIPs exhibit good accuracies in predicting a vast array of
known and generated intermediate phases and their elemental orderings across the alloy
system. We propose and demonstrate several evaluation metrics to assess and quantify
the relative stabilities of complex elemental orderings, which is critical for studying the
thermodynamics of alloys. Our testing process combined with the evaluation metrics is
valuable for quantifying the performance and the transferability of MLIPs and for future

improvements of MLIPs.
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1. Introduction

As a powerful technique to study the materials phenomena and properties,
atomistic modeling and simulations of materials are conducted based on the interactions
among atoms, known as potential energy surfaces. While density functional theory (DFT)
calculations have been widely used, their high computation cost limits their applications
to atomistic models with a small number of atoms (on the level of up to a few hundred)
and small system sizes (on the level of ~10" A). The atomistic modeling and simulations
of many materials phenomena and properties require the sampling of a large number of
atomistic configurations in models with much larger length scale. Thus, alternative
techniques to evaluate the potential energy surfaces of atomistic systems with lower
computational costs are required. The interatomic potentials, such as modified embedded
atom method (MEAM) potentials, are also commonly adopted to calculate and simulate
a wide range of materials phenomena and properties in metal and alloy systems using
molecular dynamics (MD) simulations.[1-3] Monte Carlo (MC) simulations based on
cluster expansion method have been widely employed to evaluate the thermodynamic
properties and compute the phase diagrams of alloy systems.[4,5] Machine-learning
interatomic potential (MLIP) utilizes ML techniques to reproduce the potential energy
surfaces of atomistic systems by training on a variety of configurations and their DFT
calculated energies. MLIPs boast multiple advantages, including low computation cost,
linear scalability to system sizes, and claimed DFT-level accuracy.[6] MLIPs have been
adopted to study many materials phenomena, e.g., fast ionic conduction in ceramic
materials,[7—10] phase transitions in amorphous materials,[11] and the phase stabilities

and orderings of alloys.[12—-16]



A challenge of developing MLIP for alloys is the existence of many phases in
different lattice structures over a range of compositions, and each phase can exhibit a
wide variety of elemental orderings (or atomistic configurations). To correctly predict the
thermodynamics of an alloy system, it is essential for the MLIPs to accurately reproduce
the energies and relative stabilities of all these element orderings for stable and unstable
phases over a wide range of compositions in different lattice structures. For example, the
prediction of the lowest energy configurations for all relevant phases with different
structures and compositions is essential for constructing the convex hull and the phase
diagrams.[13,14,16—19] Systematic studies based on the cluster expansion method have
been conducted by Nguyen et al.[20] to address such challenges for modeling alloys. In
addition, MD/MC simulations of many physical phenomena, including anti-site defects,
diffusion, element dissolution, solid solution, and disordering, also rely on the accurate
predictions of the energies and relative stabilities of different elemental orderings.
Therefore, comprehensive examinations are still needed on the MLIPs' capability to
accurately predict alloy systems with a large number of complex orderings over many
compositions and lattice structures.

In addition, given that training data of the MLIPs are often limited to a few pre-
selected phases, compositions, and lattice structures, a common question is whether
MLIPs can make accurate predictions on a wide variety of atomistic configurations and
elemental orderings from other compositions and lattice structures that are outside of the
training data but may occur during the actual MLIPs applications for MD/MC simulations.
The capability of interatomic potentials to predict the atomistic configurations outside the

training process is known as transferability.[6,11,21-23] Besides choosing a variety of



structures and compositions in the training dataset, an alternative approach is using
active learning, as demonstrated by Gubaev et al.,[16] to iteratively add new structures
into the training dataset and re-train MLIPs, which may greatly mitigate the issue caused
by having a limited number of structures in pre-selected training data. Nevertheless,
previous studies revealed a number of discrepancies in MLIPs predicting atomic
dynamics and materials properties.[6,21,23] Thus, it is critical to test how MLIPs would
perform on many possible atomistic configurations that may be encountered in their
atomistic simulations of alloys, given that the training dataset cannot cover all of them.

In this study, we perform a systematic test of MLIP performances on complex
elemental orderings of different phases over the alloy system. We conduct the MLIP tests
on the Li-Al alloy system, which includes a variety of phases with body-centered cubic,
face-centered cubic, hexagonal close-packed, and other lattices. We systematically
examine the MLIP performance on a large number of elemental orderings in many phases
and lattice structures in and out of the training data. We find that MLIPs trained on only a
small number of phases may achieve good accuracy and transferability to the orderings
in many different phases with low energy errors (section 2.1). In addition, we develop new
quantitative metrics for the evaluation of the accuracy of energy rankings of elemental
orderings and show that the MLIPs reproduce the energy ranking for other phases not
included in the training data (section 2.2). Moreover, we also study the effect of training
data, and find that increasing the diversity of training data without significantly increasing
its size may lead to worse performance (section 2.3). Finally (section 2.4), the MLIPs are
tested in MC and MD simulation for their common application cases. We find

discrepancies caused by large supercell sizes and good performance on the energies of



intermediate phases and forces of migrating diffusion atoms. The implications of our

results for future improvements of MLIPs are discussed.



2. Results
2.1 Evaluating the MLIP across the alloy phase diagram
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Figure 1. The training and testing of the MLIP in Li-Al alloy system. (a) Among 10
known LixAly phases, BCC Li (Im3m), BCC LiAl (Fd3m), and FCC Al (Fm3m) are used in
the training dataset D" and the other seven intermediate phases are used in the
testing dataset D**st. (b) Comparison of the energies E and atomic forces F predicted by
MTP versus the DFT K4 benchmark on training and validation datasets, D" and
pvalidation The RMSEs of energies for training and validation data, op "™ and gy 2lidation,
and the RMSEs of forces for training and validation data, o7 " and oy 2!idation are given
above each plot. (c, d) The RMSEs of predicted energies of up to 30 elemental orderings
for phases in given lattice structures (x-axis) generated with different compositions (y-
axis).



Our study is performed using the Moment Tensor Potential (MTP) model on the Li-
Al alloy system. This binary alloy system includes body-centered cubic (BCC) Li (/m3m),
face-centered cubic (FCC) Al (Fm3m), and eight known intermediate LixAly phases
(Figure 1a), such as BCC structures LigAls (C2/m:b1), LisAla (C2/m:b3), LisAlz (Cmcm),
LisAl2 (R3m), and LiAl (Fd3m), FCC structure LiAlz (Pm3m), hexagonal close packed
(HCP) structure LiAl (P6s/mmc), and other structure LiAl (Cmce). To train the MTP model
for the Li-Al binary alloy system, the training dataset includes the end phases BCC Li
(Im3m) and FCC Al (Fm3m) (Methods), and only one intermediate phase BCC LiAl
(Fd3m). The training dataset D" js generated from these three phases, including a
variety of atomic configurations from crystalline bulk structures, strained and distorted
bulk structures, liquid structures, defected structures with multiple vacancies or
interstitials, interfaces between each pair of the three phases with the {001}, {011} and
{111} surfaces, and the snapshots obtained from AIMD simulations (Methods) of bulk
crystalline phases, bulk phases with point defects, and interface supercells. The trained
MTP model, referred as MTPrrain, accurately predicts atomic forces and energies on Dain
and the validation dataset pvalidation (consisting of 66 snapshots from AIMD simulations,
Methods) (Figure 1b). Compared with DFT calculations using a k-point mesh of 4x4x4
(DFT K4), the root-mean-squared errors (RMSESs) of energies are as low as 3 meV atom-
! for D" gand 2 meV atom™" for pvalidation gnd the RMSEs of atomic forces are as low
as 0.03 eV A for ptrain gnd pvalidation (Figyre 1b).

Here, we test whether the MTPrin trained on only three phases (i.e., two end
phases and one intermediate phase) can properly predict other intermediate phases,

including different orderings in different lattice structures over the composition range in



the Li-Al alloy system. The testing dataset, D*s', was constructed based on all
intermediate phases, including other known intermediate phases, i.e., four BCCs LigsAl4
(C2/m:b1), LisAla (C2/m:b3), LisAlz (Cmcm), and LisAl2 (R3m), FCC LiAls (Pm3m), HCP
LiAl (P6s/mmc), and the LiAl (Cmce) (Figure 1c), and also the hypothetical phases
generated in a wide range of Li-Al compositions in the lattice structures of known
intermediate phases (Methods). These hypothetical phases cover many compositions,
either the same as known intermediate phases (blue lines, Figure 1a, and lattice
structures, Figure 1c) or those deviate significantly from known intermediate phases (red
lines, Figure 1a, and lattice structures, Figure 1d). For each phase, up to 30 configurations
are generated by swapping the positions of a number of randomly selected atoms in
known intermediate phases and by randomly sampling the elemental orderings through
the partially substituted sites in the hypothetical phases (Methods) (Supplementary Figure
S19). The D5t allows the test of MLIPs covering a wide range of lattice structures,
compositions, and orderings with highly different atomic environments, which are distinct
from the training data. It is important to test the MLIPs’ capabilities of correctly modeling
the relative stabilities of all these phases and orderings, which are crucial for reproducing
the most stable phases, the phase transitions, and the phase diagrams.

This MTPrrain trained on only three phases shows low energy RMSEs of 2 — 14
meV atom' for most (35 out of 47, Figure 1c and d) of the other intermediate Li-Al phases
and the hypothetical generated phases not in the training dataset. The HCP LiAl
(P63/mmc) and the LiAl (Cmce), which are neither BCC nor FCC covered in training, show
energy RMSEs greater than 20 meV atom™' (the 15t row, Figure 1c). The MTPrrain shows

a larger error of energy RMSEs higher than 30 meV atom-' for five hypothetical phases,



HCP LisAls (P63/mmc), HCP LiAls (P6s/mmc), HCP LisAl (P6s/mmc), BCC LisAls (C2/m:b3),
BCC LiAl (C2/m:b3), and BCC LiAls (C2/m:b3) (Figure 1c and d). The larger errors in HCP
structures may be caused by the identical nearest-neighbor atomic environments
between HCP and FCC, which may be more challenging to be distinguished by the
atomistic descriptor of the MLIP. Similarly, the larger errors on C2/m:b3 BCC may also be
explained by the confusion with another BCC C2/m:b1 (Figure 1c). Additionally, we test
the MTPrin in other types of structures, such as the structures with a single Li or Al
vacancy in the supercells, and the energy RMSEs are as low as 19 meV atom™! for most
intermediate phases (Supplementary Figure S1), which implies the performances of
MLIPs can be transferred to the structures and orderings with vacancy defects outside
the training data (Methods). However, we also find that the errors of MLIP predictions can
be large for the individual defects, such as the defect formation energies (see errors of
MLIPs on dataset with single vacancies in Supporting Information), which may be topic
for in future MLIPs studies. In summary, the tests in general show good MLIP performance
for predicted energies on many known and hypothetical alloy phases over a wide range
of compositions with different lattice structures and orderings. Given that the MTPrrain is
trained using only two end phases and one intermediate phase, this implies the good
performance and transferability of MLIPs for the energies of the lattice-based model for

alloy systems.



2.2 Energy rankings of different elemental orderings
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Figure 2. The energy rankings of elemental orderings. (a) The illustration of the energy
rankings of different orderings (solid lines) by DFT and MLIP. The dash lines connect the
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same ordering configurations, and the crossings of dashed lines indicate ranking errors.
52T is the energy error between the true DFT and the predicted MLIP energies of the
same configuration (blue gap). AE®FT is the DFT energy difference of the configuration
pair with an energy ranking mismatch (red gap). The lowest-energy lines correspond to
the lowest-energy configurations (LECs). (b) The distributions of AEPFT for all ranking
errors and (c) the box plot of the energy distributions (the maximum, minimum, and
median shown in dashed lines) of up to 30 orderings based on five lattice structures in
the LisAl composition (R3m is the true phase, and others are hypothetically generated)
from the D*st. (d, e) The differences of DFT energies, AEP"T, between the LECs
calculated by DFT and MTPrin, (M indicates the match of LEC predicted by DFT and
MTPrin), (f, g) the rate of ranking errors, (h, i) the mean AEPFT and (j, k) the maximum
AEPFT for all configuration pairs with ranking errors in Dtest,

Here we analyze the MLIP's predictions regarding the energies and relative
stabilities of different elemental orderings in known and hypothetical phases. The energy
ranking of different elemental orderings is relevant for many materials phenomena, such
as anti-site defects, diffusion, solid solutions, and phase transitions, and is essential for
conducting the random sampling of elemental orderings/configurations in MC simulations
for evaluating the thermodynamic properties and the construction of the phase diagrams.

We first test whether the MLIP can correctly predict the lowest-energy configuration
(LEC) of each phase, i.e., the most favorable elemental ordering among all orderings that
were sampled based on a given lattice structure in DSt (Methods). For all phases in Dtest,
the MTPrain correctly predicts the LECs of all eight known intermediate phases are by
(the 1%t row of Figure 2d), 50% of 24 hypothetical phases in Figure 2d, and four of 15
hypothetical phases in Figure 2e. Even for the LECs incorrectly predicted by the MTPrrain,
the energy differences, AEPFT, between the true and the predicted LECs are small, as low
as 2 meV atom™' for 13 out of 23 incorrectly predicted LECs, indicating good predictions

of the energies. Most errors in the predictions are caused by configurations with similar

energies, which were also observed in previous MLIP studies on different defect types or
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polymorphs of materials.[24—26] In general, the MTPrin correctly predicts the LECs of
most intermediate phases in the Li-Al alloy system.

We then test whether the MLIP can correctly predict the ground-state phase (GP)
of a given composition, which is the most favorable phase at the given composition among
all known and hypothetical phases generated based on different lattice structures (Figure
2c, and Supplementary Figure S2 and S3). For example, among all hypothetically
generated phases with the LiAl4 composition with the lattice structures of P6s/mmc, Fd3m,
Pm3m, R3m, and Cmce (Figure 2c), the MTP1rain correctly predicts the GP of LiAls to be
the one with the R3m lattice structure. The MTPain also correctly predicted the GPs for
LiAl (Fd3m), LiAls (Pm3m), and LiAls (Pm3m) (Supporting Information). The MTPrain
incorrectly predicted the GPs of LisAls and Li2Al3 to be Fd3m, which should be Cmem and
Pm3 m, respectively, by DFT. Generally, the MTPain shows good performance in
predicting LECs and GPs for a wide variety of phases in the alloy system.

To quantify how the MLIP can correctly predict the relative rankings of the energies
for many elemental orderings in a given phase, we develop several evaluation metrics
based on ranking errors. Ranking error is a pair of atomistic configurations or elemental
orderings that exhibit a different energy ranking, i.e., a ranking mismatch, predicted by
the MLIP comparing to DFT (indicated as the crossing red dashed lines in Figure 2a). To
quantify the error rates of MLIPs on predicting the relative energy ranking, we propose
and define the rate of ranking errors as the fraction of mismatched pairs of configurations
among all possible pairs, which corresponds to the frequency of how often mismatched

pairs occur among all possible pairs of configurations in comparison. This quantity is very
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similar to the concordance index, which is widely used in biomedical informatics and other
fields for quantifying the ranking errors of model predictions.[27]

In addition, we here propose and define the difference of DFT energies, AEPFT,
between two configurations with a ranking mismatch (red gap, Figure 2a) as another
measure of the energy ranking error. This AEPFT is different from the commonly used
energy error 62T between the MLIP predicted energies and the true DFT for a given
atomistic configuration (blue gap, Figure 2a). For the mismatched pairs with large AEPFT,
the MLIP-based simulations performed in the corresponding materials system are more
likely to produce elemental orderings that significantly deviate from the DFT. Thus, the
mean AEPFT and the maximum AEPFT of all mismatched configurations can serve as
evaluation metrics to quantify the errors in energy ranking for many elemental orderings
predicted by the MLIPs (Methods).

For the MTPrain, the rate of ranking errors for all known intermediate phases are
low (< 10% as shown in the 18t row of Figure 2f). In DSt a majority (24 out of 39) of
hypothetical phases have mismatch probabilities in the range of 11 - 33% (Figure 2f and
g), while only three are higher than 50%. As quantified by the mean AEPFT and maximum
AEPFT (Figure 2b), three of the eight intermediate phases have the mean AEPFT lower than
2 meV atom!, so as 20 of the total 39 hypothetical materials. The maximum AEPFT for
three out of eight known intermediate phases and 21 of 39 hypothetical phases are lower
than 6 meV atom™ (Figure 2h - k). Notably, the AEPFT distributions of phases with the HCP
P6s/mmc lattice structure have larger spreads than most other phases with other lattice
structures, indicating a larger ranking error of phases with HCP lattice structures (blue

line, Figure 2b and Supplementary Figure S4). The poorer prediction of the HCP lattice
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structures may be caused by the same nearest-neighbor environments as the FCC
configurations, which may be more difficult to differentiate by the atomic descriptors.
Overall, the MTPrain, which is only trained on three phases, shows decent performance
in predicting the relative energy rankings of the elemental orderings in most intermediate
phases. This implies decent transferability of the MLIPs to many different compositions
and lattice structures in the lattice models of alloys. With the aid of these evaluation
metrics, the alloy phases with larger errors of energy rankings are identified and are
indicated as the potential directions for further improvements.

The error evaluation metrics for the relative energy ranking are important to be
considered as independent testing metrics in addition to the widely used average errors
in energy and forces. For example, the hypothetical phases of Li2Als (P6s/mmc) and LiAls
(HCP P63/mmc, BCC Fd3m, BCC R3m, and FCC Pm3m) have small average errors with
energy RMSEs at 4 — 10 meV atom™', but large errors on ranking metrics with the rates
of ranking errors at 35 — 55% (Figure 1d, and Figure 2f). In addition, the hypothetical BCC
C2/m:b3 phases have energy RMSEs ranging from 37 to 65 meV atom™' for different
compositions, which are significantly larger than the other lattice structures (Figure 1c),
while their rates of ranking errors, mean AEPFT, and maximum AEPFT are small or at
comparable levels compared with other phases, ranging from 23% to 41%, 1 to 3 meV
atom™', and 4 to 8 meV atom™', respectively (Figure 2f, h, and j). Thus, low energy errors
may not always indicate good accuracies on energy rankings and vice versa (see
prediction of ground-state phases for different compositions in Supporting
Information). It’s critical to include the evaluation metrics on ranking errors in the testing

procedures of MLIPs in addition to the average errors in energy and forces.
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2.3  Effect of training data diversity
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distributions (the maximum, minimum, and median shown in dashed lines) of up to 30
orderings generated in five lattice structures with the Li2Alz composition from D5t (Pm3m
as the true phase, and others are hypothetically generated). (c, d) The RMSEs of
predicted energies of up to 30 orderings in a lattice structure of known intermediate
phases (x axis) with different compositions (y axis). (e, f) The differences of DFT energies,
AEPFT between the LECs calculated by DFT and MTPRre-train for DSt as Figure 2d and e.
(g, h) The rate of ranking errors.

In this section, we explore the effect of increasing the diversity in the training data
on the performance of MLIP, which is a common practice to improve ML models including
MLIPs.[11,21,28,29] The new training dataset, D'¢~2" includes one more material, HCP
LiAl (P63/mmc), in addition to the BCC Li (/m3m), FCC Al (Fm3m), and BCC LiAl (Fd3m)
in the original training dataset D2 for MTPrrain (Section 2.1 - 2.2). A total of 144 atomistic
configurations with the HCP LiAl (P63/mmc) were generated in the same manner as other
phases, including crystalline bulk with a range of orderings, liquid, point defects, and
AIMD snapshots of bulk and defect bulks, and were added into D¢~ py replacing 24%
of configurations in D" The Dre~train has increased data diversity with an additional
lattice structure and has a 16% increase in the data size. The MTPRe-train re-trained on
pre-train js optained following the same training and validation process (Methods).

Same as the test of MTPrrain in section 2.2, we perform the test of the MTPRe-train
on D*st For hypothetical phases outside the training data, MTPRe-train performs
significantly poorer than MTPrain, with only six hypothetical phases having energy RMSEs
lower than 15 meV atom', compared to 28 from MTPrin (Figure 3c and d). For example,
MTPRre-train gives a higher energy RMSE of 103 meV atom-' for the hypothetical LiAls in
the BCC R3m lattice structure, whereas MTP1rain gives only 4 meV atom'. The MTPre-

train @lSO gives poorer predictions in energy rankings, especially for hypothetical phases

with high rate of ranking errors. There are six materials exhibiting large rate of ranking
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errors (> 50%), with a rate of ranking error as high as 80% on LiAls Fd3m (Figure 3g and
h). The MTPRe-train also performs poorer than MTPrain on other metrics of energy rankings.
The mean AEPFT of ranking errors increases to 4 — 11 meV atom™! from 2 — 4 meV atom-
' for known intermediate phases LiAl P6s/mmc, LisAla C2/m:b1, and LiAl Cmce. There are
18 hypothetical phases from DSt with the mean AEPFT of ranking errors lower than 2 meV
atom™', down from 20 of MTPtrin (Supporting Information). The number of correctly
predicted LECs also decline to 13 (from 16 by MTPrain) (Figure 3e and f).

Three additional re-trained MTPs, MTPRe-train®1, MTPRe-train®2, and MTPRe-
wain®@-3, which are selected by different validation procedures (Methods), are examined.
All MTP models have low RMSE of energies as low as at 8 meV atom™ on D" (24 meV
atom™ on pre-tainy pyt have similarly poor performances in the above tests on Dtest
(Supplementary Figure S14, S16, and S18 in Supporting Information). Therefore, the
poorer performance of MTPre-train is caused by the new training dataset and not by the
selection of a particular model (Supplementary Figure S14, S16, and S18 in Supporting
Information). Given in this case the MTPs trained with more diverse data does without a
much larger training data size may not show improved performance, further studies are

needed to understand how to select the training data for further MLIP improvement.
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2.4  Errorsin the applications of MLIPs

In the previous sections, the MLIPs were tested on a diverse range of
orderings/configurations, most of which were hypothetically generated for testing and
were not fully covered in the training dataset. While the generation of these
orderings/configurations for testing aim to mimic those in atomistic simulations, this
section further tests MLIPs in three application cases commonly conducted for alloy

materials research.

2.4.1 Errors on elemental orderings from Monte Carlo simulations
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Figure 4. The energy RMSEs of the supercells with different sizes over a range of
LixAly compositions and different elemental orderings from Monte Carlo
Simulations. Dashed lines are the energy RMSEs of all known intermediate phases
(orange) and hypothetical phases from D5t (blue).

Given that a key advantage of MLIP is to conduct atomistic simulations in larger
length scales not accessible by DFT, we here test the MTPrain in MC simulations using
large supercells. The MC simulations are conducted in four large supercells with
dimensions 8.9x4.5x60.7 A3, 8.9x8.9x34.7 A3, 8.9x8.9x47.3 A3 and 13.4x8.9x28.4 A3
consisting of 152, 176, 216, and 240 atoms, respectively (Methods) (Figure 4). For each

supercell, we test multiple compositions ranging from LisAl to LisAls based on the same
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lattice structure, with the initial structures as an interface slab between BCC metal Li and
BCC LiAl (Fd3m) with different numbers of atomic layers for each phase. Monte Carlo
simulations were performed for this interface until an equilibrium was achieved (Methods).
The structures from these MC simulations are referred to as the dataset D512bs (Methods).
While the MTPtrain gives the energy RMSEs as low as 12 meV atom™ for all known
intermediate phases and 20 meV atom-' for all phases in D*st as shown in section 2.1 —
2.2, the MTPrain, as tested on these large supercells, exhibits significantly higher energy
RMSEs of > 30 meV atom™' at < 35% Al percentage (Figure 4) and as high as 50 — 60
meV atom™" at around 25% Al (i.e., LisAl) (Figure 4).

To further identify the causes of the discrepancies, a separate test was performed
on large supercells with elemental orderings generated in the same manner as the testing
dataset for the BCC LiAl (Fd3m) lattice at 25% Al percentage. The results show that the
energy RMSEs of these supercells are in the range of 24 to 26 meV atom-
(Supplementary Figure S25, see errors on large supercells in Supporting Information)
much lower than those (50 to 60 meV atom') encountered in the MC simulations in Figure
4. The PCA of SOAP descriptors on the atomic environments from the MC simulations
are confirmed to be different (Supplementary Figure S19, Supporting Information). These
results suggest that the errors may be caused by the different elemental orderings or
configurations encountered during the MC simulations with large cells rather than merely
having large cell sizes.

Given the low errors of MTPrrain as tested on the typical supercell sizes in DSt
(section 2.1 - 2.2), these discrepancies indicate a potential issue in applying MLIPs in

larger simulation cells, as the errors may emerge for those orderings/configurations
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encountered in the large supercells from actual atomistic simulations that were not

encountered in the testing process.

2.4.2 Convex hull and phase transition
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Figure 5. The convex hull of Li-Al alloys. (a) The formation energies Er and the convex
hulls of Li-Al alloy system by DFT (blue, circles) and MTPrin (orange, crosses). (b, c)
The phase transition between BCC LiAl (Fd3m) (cyan squares) and FCC LiAlz (Pm3m)
(purple triangles) predicted by (b) DFT and (c) MTPmain. Red dash arrow indicates the
transition point based on Es. The black dashed line at 60% Al indicates Li2Alz, which has
incorrectly predicted GP by MTPrain (Figure 2c) (Supporting Information).

Here, we compare the energy convex hulls of the Li-Al alloy system constructed
using MTPtain and DFT energies (Figure 5a). The convex hull is constructed using the
calculated formation energies Er (Methods) of all configurations from D" gand ptest

(Figure 1c and d), the relaxed structures of all eight intermediate phases from the ICSD

(Figure 1a), the structures with large supercells in D512P in section 2.4.1 (Figure 4a), and
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the structures with single vacancies in DV3caney  which includes complex elemental
orderings of known intermediate phases with either a Li or an Al vacancy (Supporting
Information). Compared with DFT, the MTPrin largely reproduces the overall shape of
the convex hull, with some discrepancies in equilibrium phases and corresponding
energies (Figure 5). The phase with minimum Ezin the convex hull is predicted to be LiAl
and LisAls by DFT and MTPmain, respectively. While there are only four stable
intermediated phases predicted by DFT, the MTP.in predicted four additional stable
intermediate phases in the 19% — 40% Al composition range.

We further examine the BCC-FCC phase transition by comparing the energies of
all configurations generated based on the BCC (Fd3m) and FCC (Pm3m) lattice
structures in the DPec/fc¢ dataset (Methods) over the 50% to 75% Al composition range
(Figure 5b and c). The BCC-FCC transition is predicted to be at 57% Al by the MTPrain in
good agreement with that at 62% Al by DFT. The deviations in the energies of these
phases over the composition range may cause the minor discrepancy. These small
energy errors also cause the incorrect prediction of the GP of Li2Als by MTPrain as shown
in section 2.2 (Figure 2c) and can be directly observed in Figure 5b and ¢ (Supplementary
Figure S2, Supporting Information). This indicates another case where minor energy

errors can lead to different physical outcomes of MLIP predictions.
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2.4.3 Errors of forces on migrating atoms in MD simulations
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Figure 6. Errors of forces predicted by MLIPs on migrating atoms in MD simulations.
The cumulative distribution functions (CDFs) of the force errors, including (a) the
directions, &g, and (b) the magnitudes, |5g|, of atomic forces predicted by DFT K1 (dashed
black lines), MTP1rain (blue), and MTPRe-train (Orange) on migrating atoms in snapshots
from AIMD simulations of LisAl2 (R3m). Red lines are visual guidance for 90%.

Here we test the MLIP in the study of atom diffusion in MD simulations, another
key application of MLIPs. Previous study reveals that atomic forces on migrating atoms
are a key error source of MLIPs.[25] Here, we quantify the errors of atomic forces on
migrating atoms from 200 snapshots extracted from AIMD simulations of LiAl (Fd3m),
LisAl2 (R3m), LisAlz (Cmecm), and LisAls (C2/m:b1) with a single Al vacancy in the supercell
model (Methods) (Supporting Information, Figure 6a, b, and Supplementary Figure S20).
MTPrain and MTPRre-train achieve good accuracy in predicting atomic forces on migrating
atoms for all four materials, even though the three intermediate materials LisAl2, LisAls,
and LioAls are not in the training data. As shown in the CDF curves of force errors §¢ and
|6g|, on migrating atoms obtained from LisAl2 AIMD diffusion snapshots (Figure 6), over
90% of migrating atoms predicted by MTP1rain has less than 22 degrees of errors in force
direction & and less than 0.16 eV A" of errors in force magnitude |z|. The forces errors

of the MTPs are compared to the DFT calculations with a single I'-centered k-point (DFT

K1) as in Ref. [25], which is commonly used in AIMD simulations for lower computation
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costs. The DFT K1 shows larger errors of 44 degrees in force direction §g and of 0.33 eV
A in force magnitude |8z|, to meet the same 90% cut-off (Figure 6a, b, and
Supplementary Figure S20). The force performance score P(Dy;,1,), Which is a metric
proposed by Ref.[25], is 0.69 and 0.73 for the MTPtrain and MTPRre-train, respectively,
compared to 0.50 from DFT K1, in the dataset Dy;,,,, of forces on migrating atoms for
AIMD snapshots in material LizAl2 (R3m). Even for LisAl2 (R3m) and LisAls (Cmcm) that
are not in the training datasets D" or Dre~tain the MTPTrain and MTPRe-tain Outperform
DFT K1 on force errors. It should be noted that DFT calculations for metals and alloys
often require a denser k-point mesh, and K1 is a relatively coarse k-point sampling for
the metal supercell models used. Overall, the MTP models show good performances in
predicting forces on migrating atoms, which are not covered in the training data. Since
force predictions on migrating atoms are critical for diffusional properties, this good
performance of MTP on the migrating atoms not included in the training data is very
encouraging. Nevertheless, careful testing is always needed before conducting the

atomistic simulations of the MLIPs.
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3. Discussion and Conclusions

In this study, we conducted a systematic test of the MLIPs using Li-Al alloy as a
model system to answer the question of whether the MLIPs can make accurate
predictions for many different configurations that may be encountered in atomistic
modeling of alloys. In the model alloy system, our results show that the MLIPs trained
using only a few phases can largely predict other intermediate phases (both known and
hypothetically generated) with a wide variety of compositions, elemental orderings, and
lattice structures. The MLIPs trained on only a few phases with carefully selected
configurations capture the key physics of interatomic bonds in lattice-based models to
accurately predict other alloy intermediate phases with deviated compositions and non-
equilibrium elemental orderings. These results along with many previous
studies[12,13,33,14-16,18,19,30-32] show great promises and potentials of applying
MLIPs to studying complex alloy systems.

Our process of testing MLIPs can be further developed into a general test,
including 1) generating the testing data based on hypothetical phases that mimic the
atomistic simulations, and 2) quantifying the error evaluation metrics for the relative
stabilities of elemental orderings. First, the MLIPs testing should be performed on the
testing data that are generated to mimic the key physical (or error-prone) scenarios in
atomistic simulations. For example, in this study, different hypothetical phases with many
elemental orderings were generated based on distinct lattice structures over a wide range
of compositions, mimicking the random sampling during MC simulations with canonical
(fixed composition) or grand canonical ensemble (varying compositions) commonly

employed for alloy modeling. Such tests allow a systematic examination of the MLIP
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performance on a diverse range of atomic configurations in many phases with a wide
range of compositions, lattice structures, and complex elemental orderings across the
alloy phase diagram.

To evaluate the MLIP’s performance on these complex elemental orderings that
are relevant to many materials properties/phenomena, multiple evaluation metrics are
developed and employed in the testing process. In addition to the commonly used
averaged errors, e.g., RMSEs of energies, we propose and demonstrate the rate of
ranking errors based on the occurrence frequency of mismatched energies between
MLIPs and DFT, the mean and the maximum of the energy differences on mismatched
pairs of MLIPs and DFT energies to quantify the predicted energy ranking of different
elemental orderings in different phases. The accuracy of MLIPs is also assessed by the
correct predictions of GPs and the LECs for a variety of phases. As revealed in our study,
even if the MLIPs may have small average errors predicting the energies of different
phases, relative stabilities of different elemental orderings and configurations, such as
energy ranking, LECs and GPs, may still be incorrectly predicted. Given the importance
of correctly predicting the relative stabilities of various configurations and phases for
studying many materials properties and phenomena, these evaluation metrics based on
energy rankings and relative stabilities should be considered as key components, in
addition to average errors, of the MLIP performances in the future testing process.

Our MLIP testing process can also be considered as a testing and quantification
of the ‘transferability’ of MLIPs in predicting other phases, elemental orderings,
compositions, and lattice structures, outside of the training data. The testing on the known

phases that are intentionally leave out of training is in principle similar to the leave-one-
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out cross-validation or bootstrapping strategies in general machine-learning. Employing
this strategy in the materials system space allows the error quantifications on the
materials outside of the training data, and also mimics the situation of encountering
unknown materials in the atomistic simulations using MLIPs. This strategy may be further
developed and generalized for testing MLIPs and different training processes.[16]

As shown in our study, the complex atomistic configurations and distinct elemental
orderings encountered in large supercell models in actual atomistic simulations may still
show notable discrepancies. Developing systematic testing processes that mimic the real
applications of MLIPs in larger models is needed to further test and improve the MLIPs in
those application scenarios.[34] The difficulty in addressing this issue is that these errors
may only be encountered in large supercells that would be computationally expensive to
calculate by DFT, thus impeding the direct test and correction of these errors. One future
research direction is to generate relevant configurations that can represent those in larger
length-scale simulations but in adequately small supercells to be verified by DFT
calculations.

Our results also provide insights about the complexity regarding the training
strategies of MLIPs. While good transferability of MLIPs to other intermediate alloy
phases can be achieved by using a small number of phases in the training data, it is
unexpected that the MLIPs trained with more data diversity (i.e., more phases) have
worse performances on most metrics for most phases, even for those included in the
training dataset. As shown in this studied case, increasing the data diversity alone without
substantially increasing the amount of training data may not always lead to improved

MLIPs. This observed phenomenon and previous studies[21] suggest that the effects of
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data size and data diversity on MLIP performance are complex. More research is needed
to fully understand strategies for balancing the training data size and diversity for
achieving improved performance of MLIPs. The testing process and aforementioned
metrics in quantifying the performance and transferability of MLIPs can be used to assess
different training strategies for improving MLIPs.

In summary, our study provides a comprehensive case study using a binary alloy
system on the performance, testing, transferability, and application errors of MLIPs.
These insights provide some guidance for future improvement of MLIPs. Our testing
process and evaluation metrics for quantifying the performance and transferability of

MLIPs should be considered in future studies of MLIPs.
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Methods

First-principles computation. Vienna ab initio simulation package[35] (VASP)
with  Perdew-Burke-Ernzerhof[36] (PBE) functionals by generalized-gradient
approximation (GGA) was used to perform all density functional theory calculations. The
projector augmented-wave approach was adopted in DFT calculations to relax crystal
structures and get energies and forces. All true values of energies and forces for training,
validating, and testing MTPs were calculated using 4x4x4 k-point mesh (K4). The
Gaussian smearing method was adopted to calculate partial occupancies for each orbital
(ISMEAR = 0) in combination with smearing width set to 0.05 eV (SIGMA = 0.05).
Furthermore, all DFT calculations were spin-polarized with an energy cutoff set to 520 eV,
electronic relaxation cutoff set to 107 eV, and other parameters set to be compatible with

the Materials Project.[37,38]

Ab initio molecular dynamics simulation. Ab initio molecular dynamics (AIMD)
simulations were performed as the same scheme described in Ref. [39]. The same GGA
for PBE functionals as described in First-Principles Computation section were used. The
AIMD simulations were non-spin-polarized, with the setting of electronic energy
convergence cutoff to 10# eV, a time step of 2 fs, and a I'-centered 1x1x1 k-point. All
simulations adopted the NVT ensemble with Nose-Hoover thermostat (SMASS = 0). The
initial structures were heated up from 100 K to the target temperatures with a constant
heating rate using velocity scaling during a period of 2 ps. All supercell models for AIMD

simulations have the lattice parameters at around 10 A or larger. The temperatures of 600
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K, 2000 K, and 400 K were used to generate the near-equilibrium configurations of
intermediate phases, liquid phases, and interfaces, respectively.

The AIMD simulations for the vacancy diffusion in LiAl (Fd3m), LisAls (C2/m:b1),
LisAlz (Cmem), and LizAl2 (R3m) intermediate phases in section 2.4.3 and in Supporting
Information (Supplementary Figure S20) were carried out following the established
process in Ref. [39]. To compute accurate distributions of force errors on migrating atoms
and the corresponding force performance metrics, such as normalized area under the
curve (NAC), an adequate number of events with atom migration need to be obtained
from AIMD simulations. The diffusion simulations of all four materials were performed at
the temperatures of 400, 450, 500, 550, 600, 650, and 700 K for 400 to 1000 ps. Migrating
atoms in each snapshot of all AIMD simulations were identified following the process in
Ref. [40] and the details were clarified in the section identifying migrating atoms and
evaluating force errors. 200 snapshots with the highest number of migrating atoms were
collected from AIMD simulations at all temperatures for each material. The migrating atom
in these 200 snapshots were then used to calculate the force errors of MTP models. The
supercells used in AIMD simulations of four materials were the same with the supercells
of original intermediate phases in section 2.1 of main text, removing an Al atom to create

a single vacancy.

Datasets for training, validation, and testing. A total of eight datasets were
generated for training, validating, and testing MTPs, such as two training datasets D2in
and Dre-tain two validation datasets Dvalidation gng pirregular  and four testing datasets

ptest pslabs pVacancy  gnq pbec/fec The energies and the forces of all configurations in
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these datasets were converged using K4 by single-step self-consistent DFT calculations

(except for Dirresular o indicated otherwise). The numbers of atoms for the supercells of

each intermediate phase in Dt are, 54 for Li (Im3m), 32 for LiAl (P6s/mmc), 144 for LiAl

(Fd3m), 104 for LisAls (C2/m:b1), 108 for LiAlz (Pm3m), 48 for LisAlz (Cmcm), 234 for

LisAls (C2/m:b3), 60 for LisAl2 (R3m), 96 for LiAl (Cmce), and 108 for Al (Fm3m).

The D2in dataset contains 356 configurations based on BCC Li metal (Im3m,

ICSD 77370), LiAl (Fd3m, ICSD 240122), and FCC Al metal (Fm3m, ICSD 606000). Al

supercells in D" have the lattice parameters around or larger than 10 A. For each of

these three phases, a variety of configurations were generated as follows:

(1) The ground-state configurations fully relaxed by DFT K4.

(2) Five near-equilibrium configurations of the ground-state generated by NVT AIMD
simulations at 600 K. Each of the near-equilibrium configurations was generated by a
separate AIMD simulation of 2 ps.

(3) Two liquids configurations generated by NVT AIMD simulations at 2000 K, following
the same process as 2).

(4) Strained supercells with a) -15% or +15% strain on each of the three lattice
parameters, and b) -15% or +15% strain on a pair of distinct lattice parameters with
four combinations (+15%, +15%), (-15%, -15%), (+15%, -15%), and (-15%, +15%)
strains.

(5) Distorted supercells generated by distorting each of the three lattice angles by -13.5°
or 13.5° for cubic lattices (-15% or +15% of corresponding lattice angles if lattice

angles are not 90°).
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(6) Supercells with vacancies. We removed 5%, 10%, or 15% of atoms in the supercell of
Li and Al. For LiAl (Fd3m), the defected supercells with either Li or Al vacancies were
generated, but not both Li and Al vacancies at the same time. All supercells with
vacancies were then fully relaxed by DFT K4.

(7) Five near-equilibrium configurations for each supercell with vacancies. All
configurations were generated by NVT AIMD simulations at 600 K, following the same
process in 2).

(8) Supercells with interstitials. We added one, two, or four atoms of either Li or Al in the
supercells of Li, Al, and LiAl. All bulk supercells were then fully relaxed by DFT K4.
(9) Five near-equilibrium configurations for each of the supercells with interstitials. All
configurations were generated by NVT AIMD simulations at 600 K, following the same

process in 2).

(10) Additionally, 20 interfaces with every pair of two phases in the dataset. All 20
interfaces were generated by directly joining the conventional unit cell of each material
by the algorithm by Zur and McGill [41] implemented in Pymatgen[37] Python package.
The maximum matching area of the algorithm was set to 400 A2 and the maximum
angle tolerance was set to 0.01. Slabs of both materials on either side of the interface
had four layers of unit cells. We generated interfaces using the Miller indices of {100},
{110}, and {111}. The gap distance and the vacuum space at the interface core were
both set to 2.5 A. Due to the high computational cost of evaluating energies and forces
for these large interface supercells, we excluded the supercells that had more than
250 atoms or had lattice parameters larger than 25 A. For each interface supercell,

four configurations were generated as follows,
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i. A supercell of the interface configuration without relaxing lattice or atom
positions.

ii. A supercell of the interface configuration relaxed by DFT K1. The energy and
atomic forces of the relaxed supercell were then calculated by DFT K4 self-
consistent run with fixed lattice and atom positions.

iii.  Two near-equilibrium configurations for the relaxed supercell generated by NVT

AIMD simulations at 400 K.

The Dre~tain dataset contains 414 configurations based on four phases: BCC Li
metal (Im3m, ICSD 77370), LiAl (Fd3m, ICSD 240122), LiAl (P6s/mmc, ICSD 262069),
and FCC Al metal (Fm3m, ICSD 606000). All configurations were generated following the
same process as DT except for near-equilibrium configurations generated in 2), 7),
and 9). In pre-train near-equilibrium configurations were generated by displacing each
atom to a random direction and the displacement of each atom was randomly selected
using a uniform distribution between 0 and 0.5 A, and only three near-equilibrium
configurations were generated for 2), 7), and 9) in Dr¢~ain A total of 42 interface
supercells were generated in the D=1 following the same process of D" Three
configurations of each interface supercell were generated, including a supercell
configuration without relaxation, a supercell configuration relaxed by DFT K1, and a near-
equilibrium configuration generated by the random displacement.

The pvalidation qataset contains 66 configurations generated from NVT AIMD
simulations of relaxed bulk, vacancy, and interstitial supercells at 600 K, following the

same process used in 2) for D" The bulk, vacancy, and interstitial supercells were the

32



same as 1), 6), and 8) in D" (a total of 33 supercells), and two near-equilibrium
configurations of each supercell were taken following the same as 2), 7), and 9) in D3in,

The D'st dataset contains 1391 configurations based on eight intermediate
phases from the ICSD and 39 hypothetical phases (Figure 1c and d). Hypothetical phases
were generated using the lattice structures of eight known intermediate phases and
changing the site occupancies to given compositions, consisting of 24 in three
compositions LiAls, LiAl, and LisAls in eight known intermediate phases (Figure 1c) and
15 phases with three handpicked compositions, LiAls, Li2Als, and LisAl (Figure 1d). The
hypothetical phases were generated by adjusting their compositions from the original
intermediate phases to the target compositions in the relaxed supercells. The
compositions were adjusted by correspondingly changing the occupancies of Li and Al
sites in the relaxed supercells of the original intermediate phases, and the partial
occupancies may be adjusted to include vacancies to guarantee the numbers of Li and
Al atoms are integers (such as LisAlz with lattice structures Pm3m, C2/m:b3, and R3m,
and LisAl with lattice structures P6s/mmc, Pm3m, and Cmce). Then, the structure with
modified site partial occupancies was ordered following the scheme in Ref.[42] The
configurations of different elemental orderings for all intermediate phases were generated
by swapping random numbers of Li and Al atoms in the supercell as follows. First, we
randomly picked n Li and n Al atoms (n is a random number between 1% and 10% of the
total number of atoms in the supercell) and swapped their positions. We generated up to
30 configurations for each intermediate phase. All configurations were symmetrically

distinct to each other, as checked by the scheme used previously in Ref.[39,42].
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The Ds!abs dataset contains 420 configurations of interface supercells with a range
of compositions with different orderings generated by MC methods. Interface supercells
in Ds12bs were between BCC metal Li and BCC LiAl (Fd3m) based on the relaxed
conventional unit cell, following the same process of generating interfaces in D", The
maximum matching area of the Zur and McGill algorithm was set to 100 A2 and the
maximum angle tolerance was set to 0.01. The Miller indices of both the substrate and
the film were set to {100}. four types of supercells were used, 8.9x4.5x60.7 A3,
8.9x8.9x34.7 A3, 8.9x8.9x47.3 A3, and 13.4x8.9x28.4 A3, corresponding to 2x2x5.5,
2x2x7.5, 2x1x9.5, and 3x2x4.5 of the conventional LiAl (Fd3m) unit cell (Figure 4). The
compositions of supercells were handpicked and rounded to the closest Al concentration
at 20%, 21%, 25%, 33%, 34%, 36%, 38%, 40%, and 45%. The compositions were
changed by adjusting the number of layers of unit cells for Li and LiAl. Atotal of 21 different
compositions in four supercells were generated by MC simulations using MTPain (Figure
4). The MC simulation was performed at 300 K (equivalent to ksT = 0.026 eV) to find the
lowest energy configurations by swapping atom positions of a random Li and a random
Al for each attempted random move and was terminated until the relative standard
deviations of the total energies of the last 1000 attempts were lower than 10-°. During the
MC simulations, the supercells were relaxed to relieve the strain caused by the difference
of bond lengths between BCC Li and BCC LiAl, with energy convergence set to 10-5.
Since the bonds in BCC LiAl are 8% less than Li-Li bonds in BCC Li, the volume change
between initial interfaces and the final mixed configurations cannot be neglected and the
additional relaxations are therefore necessary. The MC simulations were conducted using

LAMMPS by our house-customized scripts. The final 20 configurations that were
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accepted in each MC simulation were included in D3PS and their energies were
calculated by DFT K4 without relaxing lattices or atom positions.

The DVacancy dataset contains 350 configurations based on eight intermediate
phases with a single vacancy of either Li or Al (see errors of MLIPs on dataset with
single vacancies Supporting Information). In the relaxed supercells of intermediate
phases, a random Li or Al atom was chosen to swap with another random atom (either Li
or Al) and was then removed. By using this method, we generated up to 30 configurations
that were symmetrically distinct (including an anti-site in some cases) for each phase
containing one vacancy.

The Dbee/fec dataset, used to examine the BCC-FCC phase transition in section
2.4.2, contains 701 configurations based on the structures with BCC and FCC lattices
with 12 compositions with Al % of 52%, 54%, 56%, 57%, 60%, 62%, 64%, 66%, 68%,
70%, 72%, and 74% for each lattice. The structure lattice of metal Li (/m3m) and LiAl
(Fd3m) for BCC, and metal Al (Fm3m) and LiAlz (Pm3m) for FCC, were adopted to
generate configurations with different elemental orderings. A total of 48 hypothetical
phases were generated. The compositions of these phases were adjusted following the
same scheme as used for D*st. For each phase, following the same process of ordering
of hypothetical phases in D*st, up to 10 symmetrically distinct configurations were
generated for metal Li (/m3m) and Al (Fm3m), and up to 20 configurations were generated
for LiAl (Fd3m) and LiAl3 (Pm3m).

The Dirresvlar qataset was a validation dataset only used to select the optimized
MTPs as described in Optimizing MTPs and fine-tuning the hyperparameters. This

dataset contains 141 configurations, which were intentionally generated as far-from-

35



equilibrium configurations that give either exceptionally low energies predicted (< -10 eV
atom™', compared with -1.9 eV atom™ for bulk Li and -3.7 eV atom™ for bulk Al) or
exceptionally high predicted forces (> 15 eV A" on any atom) by MTPrin®*22 (see test
and compare multiple MTPs in Supporting Information). Since the configurations in this
dataset were far from equilibrium, predicted energies were expected to be high (> -4 eV
atom-’ for typical LixAly), but instead the exceptionally low energies were predicted by the
MLIPs contradicting to the physical nature of far-from-equilibrium configurations and
indicating errors of the MLIPs. This dataset was used in the validation step to exclude
those MTP models that have exceptionally low predicted energies, which can be viewed
as errors and failures in capturing the atomic interactions. These 141 configurations were
selected from the snapshots produced by MTP-MD simulations performed using grand
canonical ensemble (allowing the change of supercell size and the number of Li atoms)
at 600 K. The supercell of LiAl (Fd3m) has a size of 25.3 x 25.3 x 24.0 A® and contains
576 Al atoms with varying Li atoms (289 to 578). The supercell of the interface between
bulk Li and Al has a size of 27.9 x 19.7 x 22.6 A3 and 384 Al atoms with varying Li atoms
(157 to 260). A random amount of Li atoms was removed (between 1 to 287 Li atoms
removed for supercells with 576 Al atoms, and between 124 to 227 Li atoms removed for
supercells with 384 Al atoms) or inserted (< 2 Li atoms inserted for supercells with 576 Al
atoms) from the supercells in the dataset. During the MD simulations using NPT ensemble,
an attempt to either remove or insert (50% probability for either action) a Li atom is tried
every 0.1 ps. Then, by fixing the number of Al atoms, the acceptance of each
removal/insertion attempt follows the Metropolis algorithm and the probability is

determined by the final energies predicted by MTPs with a given constant chemical
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potential of Li, using the scheme developed in Ref. [43,44]. Many of these generated
configurations were intentionally generated to be less reasonable, far-from-equilibrium
configurations, as some atoms get as close as within 1 A, which were given by the
erroneous prediction (very low energies) of MTP1ain®'22. These configurations produced
by MTP1rin®"22 (see test and compare multiple MTPs, Supporting Information) during
MTP-MD simulations using grand canonical ensemble were re-used in the validation
process (see test and compare multiple MTPs, Supporting Information) to select MtPs
having the minimum amount of erroneously predicted energies (< -10 eV atom™). For
some configurations with atoms very close to each other, large forces were predicted by
the MTPain®!2 even on atoms that were far away (> 5 A) from the erroneous pairs.
Given The D'rregular qataset was a validation dataset only used to select the optimized
MTPs as described in the section Optimizing MTPs and fine-tuning the

hyperparameters, no DFT values are needed.

Training MTPs. The MTP models were trained using the scheme implemented in
MAML[45] Python package interfaced with MTP[46,47] as in previous studies (Zuo et
al.[48]). A grid search approach was employed to identify the combination of
hyperparameters, including the cutoff radius, the choice of the radial basis function sets,
and the maximum number of iterations, as in Zuo et al.[48] Two to ten values were tested
for each hyperparameter, giving a total of 2488 MTP models trained from D" and 1537

MTP models trained from pre—train_
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Optimizing MTPs and fine-tuning the hyperparameters. The processes of
evaluating the validation scores, fine-tuning the hyperparameters, and selecting the
optimal MTPs with the best scores were as follows. To calculate the validation scores, 10
criteria, consisting of the RMSE energies and forces and the NAC of force errors (see
Identifying migrating atoms and evaluating force errors), were used:

(1) The RMSE of energies for training data Dain/pre-train (with respect to the training
process of MTP1rain of MTPRe-train), o521,

(2) The RMSE of energies for validation data pvalidation - svalidation.

(3) The RMSE of forces for ptrain/pre=train s frain,

(4) The RMSE of forces for pvalidation - gvalidation.

(5) The normalized area of the cumulative distribution function curve (NAC) of errors on
force magnitudes for Dtrain/pre-train ANAC(|5g|, DT") = 1 - NAC(|Sg|, DT2In);

(6) The NAC of errors on force directions for ptrain/pre=train \ANAC(§,, DT2I") = 1 -
NAC(8g, DTain);

(7) The NAC of errors on force magnitudes for pvalidation ANAC(|§g|, pvalidation) = 4 .
NAC(|6¢|, D¥alidation).

(8) The NAC of errors on force directions for Dvalid ANAC(8,, Dvalidationy = 1 - NAC(S,,
pvalidation).

(9) The number of large forces predicted for all atoms in Dirresular N

(10) The number of configurations that the energies predicted were < -10 eV atom™ in
pirregular -

The NACs were the normalized area of the cumulative distribution function (CDF)

curves as proposed in Ref [25] and were calculated following the same steps as in Ref
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[25]. The CDF curves of force errors were generated to show the distributions of errors
over a specific error range, and the NAC was then calculated as dividing the area under
the CDF curve by the total area (between 0 to 100% on y-axis and the specified error
range on x-axis). Here, the NAC of errors on force magnitudes, NAC(|8g|, D), was
calculated by using the CDF curves over an error range of 0 to 1.5 eV A1, and the NAC
of errors on force directions, NAC(6g, D), was calculated by using the CDF curves over
an error range of 0 to 180 degrees.
The value of each criterion, ¢, was then standardized by subtracting its minimum

value min(c) and dividing by its standard deviation std(c),

v = [c — min(c)]/std(c). Eq. (1)
The total validation score was calculated as

V=3,(w,)?, Eq. (2)
where the weights w,, of NF and Ne were set to 1.5 and w,, of all the other criteria were set
to 1. The MTPs with the lowest total validation score V were selected as MTPrin and

MTPRe-train.

Principal component analysis of atomic environments. We adopted the
Smooth Overlap of Atomic Positions (SOAP) descriptors to quantify the atomic
environments in all datasets. The SOAP descriptors were calculated using the QUIP[49]
package and the parameters set as follows (or default values if not specified),

(1) The band limit of spherical harmonics basis function (/_max) was set to 12.
(2) The number of radial basis function (n_max) was set to 6.

(3) The covariance function type was set to ‘dot_product’ and its zeta was set to 4.
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(4) The cutoff radius was set to 6 A.
(5) The number of sparse points was set to 4000.

We visualized the quantified atomic environments by performing the principal
component analysis (PCA) function implemented in sci-kit learn package. We first
standardized all elements of the SOAP descriptors by subtracting the means and dividing
by the standard deviations. Then, we conducted PCA and plotted the 15t and the 2"

principal component (Figure 3 and Supplementary Figure S19).

Identifying migrating atoms and evaluating force errors. The process of
identifying migrating atoms to evaluate the force errors of MTPs (section 2.4.3) on
migrating atoms follows the same approach in Ref [25]. Since most of the diffusion events
are by Li atoms in Li-Al materials systems, Li migrating atoms were selected following a
similar approach as identifying migrating atoms in Ref [25]. If the distances of the atom
between their 15t and 2" nearest static sites have a difference below 0.9 A (approximately
33% of distances between two static sites), the atom is identified as a migrating atom.
The errors of force magnitudes and force directions between the MTP predicted atomic
forces and the true values given by DFT K4 were then calculated for these migrating
atoms, and the error distribution were plotted as the CDF curves in section 2.4.3 (Figure
6). In addition, forces using I'-centered 1x1x1 k-point (K1) were also calculated on
migrating atoms as benchmarks for the comparison with MTPs. The NACs of force errors
were evaluated based on these CDF curves and were then quantified and used for
selecting the MTP models (see Optimizing MTPs and fine-tuning the

hyperparameters). The force performance metrics P(D) is then calculated as the product
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of the NAC of force errors on magnitudes, ||, and the NAC of force errors on directions,

8, P(D) = NAC(|85|, D) x NAC(6¢, D) as proposed by Ref [25].

Convex hull and formation energies. The formation energies, Er, of intermediate
phases in section 2.4.2 were calculated as the energy differences between the target
intermediate phase LixAly and the reference phases. Specifically, the Esin Figure 5a is,

E¢(Li,Al,) = E(Li Aly) — xf—y E(Li) — % E(AD), Eq. (3)

where E(LixAly), E(Li), and E(Al) are the energies per atom of bulk-phase LixAly, Li (Im3m),
and Al (Fm3m).
In Figure 5b, the formation energy of interphase intermediate phase LixAly is evaluated

using LiAl and LiAls as references,

E t(LiyAl,) = E(Li,Al) — 3x+‘yy E(LIAD — 2 % E(LiAlLy), Eq. (4)

X

where E(LiAl) and E(LiAl3) are the energies per atom of bulk-phase LiAl (Fd3m) and LiAls

(Pm3m).

Error evaluation metrics: rate of ranking error, mean AEPF", and maximum
AEPFT, For a list of configurations (elemental orderings), their energies, EPF™ and EM-P,
were calculated by DFT and by MLIPs, and were then compared. To calculate the
evaluation metrics of energy ranking, all pairs of configurations were enumerated. For a
pair of A and B configurations was determined to have a ranking error (or mismatch) if
(EAPFT — EgPFT)(EaMUP — EgMUIPY<(Q. The rate of ranking error was calculated as the fraction

of mismatched configuration pairs among all pairs. The difference of DFT energies for this
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pair was evaluated as AEPFT = EAPFT — EgPFT. The mean and maximum AEPFT are the

mean and maximum for all mismatched pairs of configurations.

42



Acknowledgement. The authors acknowledge the funding support from National
Science Foundation Award #2004837 and the computational facilities from the University

of Maryland supercomputing resources.

Author contribution. Y.M. supervised the project. Both authors designed the

computation and analyses, and Y.L. performed them. Y.L. and Y. M. wrote the manuscript.

Competing interests. The authors declare no competing interests.

Code availability. The computation codes and programs to support the finding of this

study is available from the corresponding author on reasonable request.

Data availability. The structural (POSCAR files), energies, and forces data to support
the finding of this study including Dtrain Dre—train Dvalidation Dirregular ptest Dslabs
pVacancy  gnd pbec/fec gre available from:

https://github.com/mogroupumd/Li-Al MLIP datasets

43


https://github.com/mogroupumd/Li-Al_MLIP_datasets

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

G. Esteban-Manzanares, A. Ma, |. Papadimitriou, E. Martinez, J. LLorca, Basal
dislocation/precipitate interactions in Mg—Al alloys: an atomistic investigation,
Model. Simul. Mater. Sci. Eng. 27 (2019) 075003. https://doi.org/10.1088/1361-
651X/ab2de0.

Z.Huang, V. Turlo, X. Wang, F. Chen, Q. Shen, L. Zhang, |.J. Beyerlein, T.J. Rupert,
Dislocation-induced Y segregation at basal-prismatic interfaces in Mg, Comput.
Mater. Sci. 188 (2021) 110241. https://doi.org/10.1016/j.commatsci.2020.110241.
B.-J. Lee, B.D. Wirth, J.-H. Shim, J. Kwon, S.C. Kwon, J.-H. Hong, Modified
embedded-atom method interatomic potential for the Fe—Cu alloy system and
cascade simulations on pure Fe and Fe-Cu alloys, Phys. Rev. B. 71 (2005) 184205.
https://doi.org/10.1103/PhysRevB.71.184205.

W. Chen, G. Xu, |. Martin-Bragado, Y. Cui, Non-empirical phase equilibria in the
Cr—Mo system: A combination of first-principles calculations, cluster expansion and
Monte Carlo simulations, Solid State Sci. 41 (2015) 19-24.
https://doi.org/10.1016/j.solidstatesciences.2015.01.012.

A.F. Kohan, P.D. Tepesch, G. Ceder, C. Wolverton, Computation of alloy phase
diagrams at low temperatures, Comput. Mater. Sci. 9 (1998) 389-396.
https://doi.org/10.1016/S0927-0256(97)00168-7.

P. Rowe, V.L. Deringer, P. Gasparotto, G. Csanyi, A. Michaelides, An accurate and
transferable machine learning potential for carbon, J. Chem. Phys. 153 (2020)
034702. https://doi.org/10.1063/5.0005084.

S. Wang, Y. Liu, Y. Mo, Frustration in Super-lonic Conductors Unraveled by the

44



[8]

[9]

[10]

[11]

[12]

Density of Atomistic States, Angew. Chemie Int. Ed. 135 (2023) e202215544.
https://doi.org/10.1002/anie.202215544.

E.A. Wu, S. Banerjee, H. Tang, P.M. Richardson, J.-M. Doux, J. Qi, Z. Zhu, A.
Grenier, Y. Li, E. Zhao, G. Deysher, E. Sebti, H. Nguyen, R. Stephens, G. Verbist,
K.W. Chapman, R.J. Clément, A. Banerjee, Y.S. Meng, S.P. Ong, A stable cathode-
solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion
batteries, Nat. Commun. 12 (2021) 1256. https://doi.org/10.1038/s41467-021-
21488-7.

J. Qi, S. Banerjee, Y. Zuo, C. Chen, Z. Zhu, M.L. Holekevi Chandrappa, X. Li, S.P.
Ong, Bridging the gap between simulated and experimental ionic conductivities in
lithium superionic conductors, Mater. Today Phys. 21 (2021) 100463.
https://doi.org/10.1016/j.mtphys.2021.100463.

A. Marcolongo, T. Binninger, F. Zipoli, T. Laino, Simulating Diffusion Properties of
Solid-State Electrolytes via a Neural Network Potential: Performance and Training
Scheme, ChemSystemsChem. 2 (2020) €1900031.
https://doi.org/10.1002/syst.201900031.

V.L. Deringer, N. Bernstein, G. Csanyi, C. Ben Mahmoud, M. Ceriotti, M. Wilson,
D.A. Drabold, S.R. Elliott, Origins of structural and electronic transitions in
disordered silicon, Nature. 589 (2021) 59-64. https://doi.org/10.1038/s41586-020-
03072-z.

L. Tang, Z.J. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, C.Z. Wang, Development of
interatomic potential for Al-Tb alloys using a deep neural network learning method,

Phys.  Chem.  Chem. Phys. 22  (2020) 18467-184709.

45



[13]

[14]

[15]

[16]

[17]

[18]

https://doi.org/10.1039/DOCP01689F.

L. Tang, ZJ. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, C.Z. Wang, Short- and
medium-range orders in AI90Tb10 glass and their relation to the structures of
competing crystalline phases, Acta Mater. 204 (2021) 116513.
https://doi.org/10.1016/j.actamat.2020.116513.

S. Kharabadze, A. Thorn, E.A. Koulakova, A.N. Kolmogorov, Prediction of stable
Li-Sn compounds: boosting ab initio searches with neural network potentials, Npj
Comput. Mater. 8 (2022) 136. https://doi.org/10.1038/s41524-022-00825-4.
S.Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X.-G. Li, J. Ding, S.P. Ong, M. Asta, R.O.
Ritchie, Atomistic simulations of dislocation mobility in refractory high-entropy
alloys and the effect of chemical short-range order, Nat. Commun. 12 (2021) 4873.
https://doi.org/10.1038/s41467-021-25134-0.

K. Gubaev, E. V. Podryabinkin, G.L.W. Hart, A. V. Shapeev, Accelerating high-
throughput searches for new alloys with active learning of interatomic potentials,
Comput. Mater. Sci. 156 (2019) 148-156.
https://doi.org/10.1016/j.commatsci.2018.09.031.

T. Zubatiuk, O. Isayev, Development of Multimodal Machine Learning Potentials:
Toward a Physics-Aware Atrtificial Intelligence, Acc. Chem. Res. 54 (2021) 1575—
1585. https://doi.org/10.1021/acs.accounts.0c00868.

C.W. Rosenbrock, K. Gubaev, A. V. Shapeev, L.B. Partay, N. Bernstein, G. Csanyi,
G.L.W. Hart, Machine-learned interatomic potentials for alloys and alloy phase
diagrams, Npj Comput. Mater. 7 (2021) 24. https://doi.org/10.1038/s41524-020-

00477-2.

46



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys, Nat.
Rev. Mater. 6 (2021) 730-755. https://doi.org/10.1038/s41578-021-00340-w.

A.H. Nguyen, C.W. Rosenbrock, C.S. Reese, G.L.W. Hart, Robustness of the
cluster expansion: Assessing the roles of relaxation and numerical error, Phys. Rev.
B. 96 (2017) 014107. https://doi.org/10.1103/PhysRevB.96.014107.

D. Montes de Oca Zapiain, M.A. Wood, N. Lubbers, C.Z. Pereyra, A.P. Thompson,
D. Perez, Training data selection for accuracy and transferability of interatomic
potentials, Npj Comput. Mater. 8 (2022) 189. https://doi.org/10.1038/s41524-022-
00872-x.

R. Batra, S. Sankaranarayanan, Machine learning for multi-fidelity scale bridging
and dynamical simulations of materials, J. Phys. Mater. 3 (2020) 031002.
https://doi.org/10.1088/2515-7639/ab8c2d.

L. Zhang, D.-Y. Lin, H. Wang, R. Car, W. E, Active learning of uniformly accurate
interatomic potentials for materials simulation, Phys. Rev. Mater. 3 (2019) 023804.
https://doi.org/10.1103/PhysRevMaterials.3.023804.

A. Koneru, H. Chan, S. Manna, T.D. Loeffler, D. Dhabal, A.A. Bertolazzo, V.
Molinero, S.K.R.S. Sankaranarayanan, Multi-reward reinforcement learning based
development of inter-atomic potential models for silica, Npj Comput. Mater. 9 (2023)
125. https://doi.org/10.1038/s41524-023-01074-9.

Y. Liu, X. He, Y. Mo, Discrepancies and error evaluation metrics for machine
learning interatomic potentials, Npj Comput. Mater. 9 (2023) 174.
https://doi.org/10.1038/s41524-023-01123-3.

Y. Luo, J.A. Meziere, G.D. Samolyuk, G.L.W. Hart, M.R. Daymond, L.K. Béland, A

47



[27]

[28]

[29]

[30]

[31]

[32]

Set of Moment Tensor Potentials for Zirconium with Increasing Complexity, J.
Chem. Theory Comput. 19 (2023) 6848-6856.
https://doi.org/10.1021/acs.jctc.3c00488.

E. Longato, M. Vettoretti, B. Di Camillo, A practical perspective on the concordance
index for the evaluation and selection of prognostic time-to-event models, J.
Biomed. Inform. 108 (2020) 103496. https://doi.org/10.1016/}.jbi.2020.103496.
V.L. Deringer, A.P. Bartok, N. Bernstein, D.M. Wilkins, M. Ceriotti, G. Csanyi,
Gaussian Process Regression for Materials and Molecules, Chem. Rev. 121 (2021)
10073-10141. https://doi.org/10.1021/acs.chemrev.1c00022.

N. Bernstein, G. Csanyi, V.L. Deringer, De novo exploration and self-guided
learning of potential-energy surfaces, Npj Comput. Mater. 5 (2019) 1-11.
https://doi.org/10.1038/s41524-019-0236-6.

A. Seko, Machine learning potentials for multicomponent systems: The Ti-Al binary
system, Phys. Rev. B. 102 (2020) 174104.
https://doi.org/10.1103/PhysRevB.102.174104.

P.A. Santos-Florez, S.-C. Dai, Y. Yao, H. Yanxon, L. Li, Y.-J. Wang, Q. Zhu, X.-X.
Yu, Short-range order and its impacts on the BCC MoNbTaW multi-principal
element alloy by the machine-learning potential, Acta Mater. 255 (2023) 119041.
https://doi.org/10.1016/j.actamat.2023.119041.

R.E. Ryltsev, N.M. Chtchelkatchev, Deep machine learning potentials for
multicomponent metallic melts: Development, predictability and compositional
transferability, J. Mol. Liq. 349 (2022) 118181.

https://doi.org/10.1016/j.molliq.2021.118181.

48



[33]

J. Qi, Z.H. Aitken, Q. Pei, AM.Z. Tan, Y. Zuo, M.H. Jhon, S.S. Quek, T. Wen, Z.
Wu, S.P. Ong, Machine Learning Moment Tensor Potential for Modelling
Dislocation and Fracture in L1$ _0$-TiAl and DO0$_{19}$-Ti$ 33Al Alloys,

Http://Arxiv.Org/Abs/2305.11825. (2023) 1-24. http://arxiv.org/abs/2305.11825.

[34] S.Divilov, H. Eckert, D. Hicks, C. Oses, C. Toher, R. Friedrich, M. Esters, M.J. Mehl,

[35]

[36]

[37]

A.C. Zettel, Y. Lederer, E. Zurek, J. Maria, D.W. Brenner, X. Campilongo, S.
Filipovi¢, W.G. Fahrenholtz, C.J. Ryan, C.M. DeSalle, R.J. Crealese, D.E. Wolfe, A.
Calzolari, S. Curtarolo, Disordered enthalpy—entropy descriptor for high-entropy
ceramics discovery, Nature. 625 (2024) 66—73. https://doi.org/10.1038/s41586-
023-06786-y.

G. Kresse, J. Furthmdller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, Phys. Rev. B - Condens. Matter Mater.
Phys. 54 (1996) 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169.

J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with
density functional approximations, J. Chem. Phys. 105 (1996) 9982-9985.
https://doi.org/10.1063/1.472933.

S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L.
Chevrier, K.A. Persson, G. Ceder, Python Materials Genomics (pymatgen): A
robust, open-source python library for materials analysis, Comput. Mater. Sci. 68

(2013) 314-319. https://doi.org/10.1016/j.commatsci.2012.10.028.

[38] A.Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson,

G. Ceder, A high-throughput infrastructure for density functional theory calculations,

Comput. Mater. Sci. 50 (2011) 2295-2310.

49



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

https://doi.org/10.1016/j.commatsci.2011.02.023.

Y.Liu, S. Wang, A.M. Nolan, C. Ling, Y. Mo, Tailoring the Cation Lattice for Chloride
Lithium-lon Conductors, Adv. Energy Mater. 10 (2020) 2002356.
https://doi.org/10.1002/aenm.202002356.

Y. Liu, X. He, Y. Mo, Discrepancies and the Error Evaluation Metrics for Machine
Learning Interatomic Potentials, (2023).
https://doi.org/https://doi.org/10.48550/arXiv.2306.11639.

A. Zur, T.C. McGill, Lattice match: An application to heteroepitaxy, J. Appl. Phys.
55 (1984) 378-386. https://doi.org/10.1063/1.333084.

X. He, Q. Bai, Y. Liu, A.M. Nolan, C. Ling, Y. Mo, Crystal Structural Framework of
Lithium Super-lonic Conductors, Adv. Energy Mater. 9 (2019) 1-12.
https://doi.org/10.1002/aenm.201902078.

T.P. Senftle, M.J. Janik, A.C.T. van Duin, A ReaxFF Investigation of Hydride
Formation in Palladium Nanoclusters via Monte Carlo and Molecular Dynamics
Simulations, J. Phys. Chem. C. 118 (2014)  4967-4981.
https://doi.org/10.1021/jp411015a.

T.P. Senftle, R.J. Meyer, M.J. Janik, A.C.T. van Duin, Development of a ReaxFF
potential for Pd/O and application to palladium oxide formation, J. Chem. Phys. 139
(2013) 044109. https://doi.org/10.1063/1.4815820.

C. Chen, Y. Zuo, W. Ye, Q. Ji, S.P. Ong, Maml - materials machine learning
package, GitHub Repos. (2020). https://github.com/materialsvirtuallab/maml.

A. V Shapeev, Moment Tensor Potentials: A Class of Systematically Improvable

Interatomic Potentials, Multiscale Model. Simul. 14 (2016) 1153-1173.

50



[47]

[48]

https://doi.org/10.1137/15M1054183.

E. V. Podryabinkin, A. V. Shapeev, Active learning of linearly parametrized
interatomic  potentials, Comput. Mater. Sci. 140 (2017) 171-180.
https://doi.org/10.1016/j.commatsci.2017.08.031.

Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csanyi, A. V. Shapeev, A.P.
Thompson, M.A. Wood, S.P. Ong, Performance and Cost Assessment of Machine
Learning Interatomic Potentials, J. Phys. Chem. A. 124 (2020) 731-745.

https://doi.org/10.1021/acs.jpca.9b08723.

[49] A.P.Bartdk, M.C. Payne, R. Kondor, G. Csanyi, Gaussian Approximation Potentials:

The Accuracy of Quantum Mechanics, without the Electrons, Phys. Rev. Lett. 104

(2010) 136403. https://doi.org/10.1103/PhysRevLett.104.136403.

51



