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Abstract
We introduce the notions of static regular of type (I) and type (II) and show that
they are sufficient conditions for local well-posedness of solving asymptotically flat,
static vacuum metrics with prescribed Bartnik boundary data. We then show that
hypersurfaces in a very general open and dense family of hypersurfaces are static
regular of type (II). As applications, we confirm Bartnik’s static vacuum extension
conjecture for a large class of Bartnik boundary data, including those that can be far
from Euclidean and have large ADM masses, and give many new examples of static
vacuum metrics with intriguing geometry.
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1 Introduction

Let n ≥ 3 and M be a smooth n-dimensional manifold. For a Riemannian metric g
and a scalar-valued function u on M , n ≥ 3, we define the static vacuum operator

S(g, u) :=
(
− uRicg + ∇2

gu,!gu
)
. (1.1)

If S(g, u) = 0, (g, u) is called a static vacuum pair, and (M, g, u) is called a static
vacuum triple. We also refer to g as a static vacuum metric. When u > 0, (M, g, u)
defines a Ricci flat “spacetime” metric g = ±u2dt2 + g (with either a positive or
negative sign in the dt2 factor) on R × M that carries a global Killing vector ∂t . The
most well-known examples of asymptotically flat, static vacuum metrics include the
Euclidean metric and the family of (Riemannian) Schwarzschild metrics.

When M has nonempty boundary ∂M , the induced boundary data (gᵀ, Hg) in
(1.2) is called the Bartnik boundary data of g, where gᵀ is the restriction of g (or
the induced metric) on the tangent bundle of ∂M and the mean curvature Hg is the
tangential divergence of the unit normal vector ν. When M is asymptotically flat, We
choose ν to point towards infinity of M .

The main content of this paper is to solve for asymptotically flat (g, u) to S(g, u) =
0with prescribedBartnik boundarydata (gᵀ, Hg) and confirm the following conjecture
of R. Bartnik [11, Conjecture 7] for a wider class of boundary data.

Conjecture 1 (Bartnik’s static extension conjecture) Let ($0, g0) be a compact, con-
nected, n-dimensional Riemannian manifold with scalar curvature Rg0 ≥ 0 and with
nonempty boundary%. Suppose Hg0 is strictly positive somewhere. Then there exists a
geometrically unique asymptotically flat, static vacuum manifold (M, g) with bound-
ary ∂M diffeomorphic to % such that (gᵀ, Hg) = (gᵀ

0 , Hg0).

Note that the mean curvature Hg0 of % ⊂ ($0, g0) is calculated with respect to the
outward unit normal, specifically, the one consistent with ∂M ⊂ (M, g).

The conjecture originated from the Bartnik’s program on quasi-local mass [10, 11,
13, 14] that goes back to 1989 and has drawn great interest in mathematical relativity
and differential geometry in the past two decades; see, for example, the recent survey
by M. Anderson [6].

It has been speculated that the conjecture may not hold in general. As observed by
Anderson-M. Khuri and by Anderson-J. Jauregui [7, 8], if% is an immersed hypersur-
face in an asymptotically flat, static vacuum triple (M, ḡ, ū) that is notouter embedded,
i.e. % touches itself from the exterior region M \ $, then the induced data (ḡᵀ, Hḡ)
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Static Vacuum Extensions With Prescribed Bartnik... Page 3 of 57 6

is valid Bartnik boundary data on %, but (ḡ, ū) in M \ $ is not a valid extension
because M \$ is not a manifold-with-boundary. Those hypersurfaces are conjectured
to be counter-examples to Conjecture 1 [7, Conjecture 5.2]. A very recent work of
Anderson [3] provides counter-examples to the conjecture. Nevertheless, Conjecture 1
is of fundamental importance toward the structure theory of static vacuum manifolds,
so it is highly desirable to prove it even under additional natural assumptions.

Conjecture 1 can be formulated as solving a geometric boundary value problem
T (g, u) = (0, 0, τ,φ) for given boundary data (τ,φ) where

T (g, u) :=

{−uRicg + ∇2
gu

!gu
in M

{
gᵀ
Hg

on ∂M .

(1.2)

Since the static vacuum operator is highly nonlinear, as the first fundamental step
toward Conjecture 1, it is natural to make the following conjecture.

Conjecture 2 (Local well-posedness) The geometric boundary value problem (1.2) is
locally well-posed at every background solution in the sense that if (M, ḡ, ū) is an
asymptotically flat, static vacuum triple, then for (τ,φ) sufficiently close to (ḡᵀ, Hḡ)

on ∂M, there exists a solution (g, u) to T (g, u) = (0, 0, τ,φ) that is geometrically
unique near (ḡ, ū) and can depend continuously on the boundary data (τ,φ).

In particular, positive results toward Conjecture 2 confirms Conjecture 1 for large
classes of boundary data.

There are partial results towardConjecture 2when the background solution (ḡ, ū) =
(gE, 1), the Euclidean pair. For boundary data (τ,φ) sufficiently close to (gS2 , 2), the
Bartnik boundary data of gE on the unit round sphere inR3, P.Miao [30] confirmed the
local well-posedness under a reflectional symmetric condition. Anderson [5] removed
the symmetry assumption, based on his work with Khuri [8].1 There is a proposed
flow approach to axial-symmetric solutions with numerical results by C. Cederbaum,
O. Rinne, and M. Strehlau [19]. In our recent work [9], we confirmed Conjecture 2
for (τ,φ) sufficiently close to the Bartnik data of gE on wide classes of connected,
embedded hypersurfaces % in Euclidean Rn for any n ≥ 3, including

(1) Hypersurfaces in an open dense subfamily of any foliation of hypersurfaces.
(2) Any star-shaped hypersurfaces.

We also show that the solution (g, u) is geometrically unique in an open neighborhood
of (gE, 1) in the weighted Hölder space. Note that we recently extended Item (1) to
more general families of hypersurfaces in Euclidean space [2].

1 Our work is inspired by interesting ideas in [5, 8]. On the other hand, we are unable to fully verify
Theorem 1.1 in [5]; specifically, the claim on p. 3094 asserts that if a kernel element k = LZ g in M with
Z = 0 on ∂M , then Ker(D() = 0. Note that Z need not be asymptotic to zero, as it can be asymptotic to
any Euclidean Killing vector field. Thus, even when k satisfies an elliptic gauge, implying that Z satisfies an
elliptic equation, Z need not be zero, which leads to a nontrivial finite-dimensional kernel. This phenomenon
arises from the structure at infinity of asymptotically flat manifolds. In [9] and this paper, we handle that
extra finite-dimensional kernel. In addition, we provide a rigorous description of the diffeomorphism group
acting on asymptotically flat metrics, involving an additional orthogonal gauge (see Lemma 3.7), a feature
absent in [8, Theorem 1.1].
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Those results can be viewed as confirming Conjecture 2 for the Euclidean back-
ground. In particular, those static metrics obtained have small ADM masses. In this
paper, we implement several new arguments and extend our prior results to a general
background metric (including any Schwarzschild metrics). Consequently, the new
static vacuum metrics obtained can have large ADMmasses. To our knowledge, prior
to this work, the only known examples of asymptotically flat, static vacuum metrics
of large ADM masses are either Schwarzschild metrics (rotationally symmetric) or
some Weyl’s solutions (axial-symmetric). In addition, this paper presents first results
toward Conjecture 1 for “large” boundary data, i.e. those can be far from Euclidean.

Before discussing the main results, we introduce some notations and definitions.
Notation. Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0,
possiblywith a compact boundary ∂M .Wewill use$ to denote a non-empty, bounded,
open subset in M such that M \ $ is connected and ∂M ⊂ $ if ∂M ̸= ∅. We use
% := ∂

(
M \$

)
to denote the boundary, and we always assume that % is a connected,

embedded, smooth hypersurface in M . We say that (g, u) is an asymptotically flat pair
if the metric g is asymptotically flat and the scalar function u → 1 at infinity.

Let L denote the linearized operator of T at an asymptotically flat, static vacuum
pair (ḡ, ū) on M \ $. That is, for any smooth family of asymptotically flat pairs
(g(s), u(s)) on M \ $ with

(
g(0), u(0)

)
= (ḡ, ū) and

(
g′(0), u′(0)

)
= (h, v), we

define

L(h, v) := d
ds

∣∣
s=0 T (g(s), u(s)).

By diffeomorphism invariance of T , we trivially have T (ψ∗
s ḡ,ψ

∗
s ū) = T (ḡ, ū) onM\

$ for any family of diffeomorphismsψs that fix the structure at infinity and boundary,
i.e. ψs ∈ D(M \$). See Definition 2.1 for the precise definitions ofD(M \$) and its
tangent space X (M \$) at the identity map. Therefore, by differentiating in s, Ker L
contains all the “trivial” deformations (LX ḡ, X(ū))with vector fields X ∈ X (M \$).

Our first main result says that Conjecture 2 holds, provided that Ker L is “trivial”.

Theorem 3 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0,
and let $ be as defined in the notation above. Suppose that

Ker L =
{
(LX ḡ, X(ū)) : X ∈ X (M \ $)

}
. (1.3)

Then there exist positive constants ϵ0,C such that for each ϵ ∈ (0, ϵ0), if (τ,φ)
satisfies ∥(τ,φ) − (ḡᵀ, Hḡ)∥C2,α(%)×C1,α(%) < ϵ, then there exists an asymptotically
flat, static vacuum pair (g, u) with ∥(g, u) − (ḡ, ū)∥C2,α

−q (M\$)
< Cϵ solving the

boundary condition (gᵀ, Hg) = (τ,φ) on %. The solution (g, u) is geometrically
unique in a neighborhood of (ḡ, ū) in C2,α−q (M \ $) and can depend smoothly on
(τ,φ).

Werefer the precisemeanings of “geometric uniqueness” and “smooth dependence”
to Theorem 5.1 and the dependence of the constants ϵ0,C to Remark 5.5.

We formulate two static regular conditions that imply (1.3). Along the bound-
ary %, we denote the second fundamental form Ag := (∇ν)ᵀ and the ℓ-th ν-covariant
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derivative of the Ricci tensor, Ricg , by

(
∇ℓ

ν Ricg
)
(Y , Z) := (∇ℓRic)(Y , Z; ν, . . . , ν︸ ︷︷ ︸

ℓ times

) for any vectors Y , Z .

We linearize ν, Ag , Hg Ricg ,∇ℓ
ν Ricg and denote their linearizations at a static vacuum

pair (ḡ, ū) by ν′(h), A′(h), H ′(h), Ric′(h),
(
∇ℓ

νRic
)′
(h) respectively. See the formulas

in Appendix A.

Definition 4 (Static regular)

• The boundary % is said to be static regular of type (I) in (M \ $, ḡ, ū) if for any
(h, v) ∈ C2,α−q (M \ $) solving L(h, v) = 0, there exists a nonempty, connected,
open subset %̂ ⊂ % with π1(M \ $, %̂) = 0 such that (h, v) satisfies

v = 0,
(
ν′(h)

)
(ū)+ ν(v) = 0, A′(h) = 0 on %̂. (1.4)

• The boundary % is said to be static regular of type (II) in (M \$, ḡ, ū) if for any
(h, v) ∈ C2,α−q (M \ $) solving L(h, v) = 0, there exists a nonempty, connected,
open subset %̂ ⊂ % with π1(M \ $, %̂) = 0 satisfying that

%̂ is an analytic hypersurface, and (1.5a)

A′(h) = 0,
(
Ric′(h)

)ᵀ = 0,
(
(∇k

ν Ric)
′(h)
)ᵀ = 0 on %̂ (1.5b)

for all positive integers k.

We may refer to the boundary conditions in type (I) as the Cauchy boundary condi-
tion and the boundary conditions in type (II) as the infinite-order boundary condition
(noting it involves only conditions on h).

Theorem 5 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0,
and let $ be as defined in the notation above. Let %̂ be a nonempty, connected, open
subset of % with π1(M \ $, %̂) = 0. Let (h, v) ∈ C2,α−q (M \ $) satisfy L(h, v) = 0
in M \ $ such that either (1.4) holds or both (1.5a), (1.5b) hold on %̂. Then (h, v) =(
LX ḡ, X(ū)

)
for X ∈ X (M \ $).

As a consequence, if the boundary % is static regular in (M \ $, ḡ, ū) of either
type (I) or type (II), then (1.3) holds. Conversely, if (1.3) holds, then both (1.4) and
(1.5b) hold for %̂ = %.

We make some general remarks on the conditions appearing above.

Remark 1.1 (1) For any subset U ⊂ M , the condition on the relative fundamental
group π1(M,U ) = 0 says that U is connected and the inclusion map U ↪→ M
induces a surjection π1(U ) → π1(M). Thus, in the special case that M \ $ is
simply connected, the condition π1(M \ $, %̂) = 0 always holds.
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(2) The condition
(
ν′(h)

)
(ū)+ν(v) = 0 on %̂ in (1.4) can be dropped in the following

two general situations: (i) %̂ = %, or (ii) the mean curvature of %̂ in (M, ḡ) is not
identically zero. See Sect. 4.1.1.

(3) Both conditions v = 0, ((ν′)(h))(ū) + ν(v) = 0 in (1.4) can be dropped when
(ḡ, ū) = (gE, 1) and %̂ = %. Thus, the definition of static regular of type (I) here
recovers the definition of static regular in [9, Definition 2] (see [9, Lemma 4.8]).

(4) The analyticity of %̂ in (1.5a) will be used together with a fundamental fact that a
static vacuum pair (ḡ, ū) is analytic in Int M under a suitable choice of coordinate
charts by the result of Müller zum Hagen [32]. See Appendix B.2.

We verify that a large, open and dense subfamily of analytic hypersurfaces in a
general background (M, ḡ, ū) are static regular of type (II).

Definition 6 Let δ be a positive number and {%t }, t ∈ [−δ, δ], be a parametrized
family of hypersurfaces in M so that %t = ∂(M \ $t ) and %t ,$t satisfy the same
requirements for %,$ as specified in Notation above. We say that {%t } is a smooth
one-sided family of hypersurfaces (generated by Y ) foliating along %̂t ⊂ %t with
M \ $t simply connected relative to %̂t if

(1) %̂t is an open subset of %t satisfying π1(M \ $t , %̂t ) = 0.
(2) The smooth deformation vector field Y = ∂

∂t %t satisfies ḡ(Y , ν) = ζ ≥ 0 on each
%t , and ζ > 0 in %̂t .

Theorem 7 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0.
Let {%t } be a smooth one-sided family of hypersurfaces foliating along %̂t with M \$t
simply connected relative to %̂t . Furthermore, suppose %̂t is an analytic hypersurface
for every t . Then there is an open dense subset J ⊂ [−δ, δ] such that %t is static
regular of type (II) in (M \ $t , ḡ, ū) for all t ∈ J .

Together with Theorem 3 and Theorem 5, the above theorem confirms Conjecture 2
on local well-posedness at an open and dense subfamily of background solutions (M \
$t , ḡ, ū) whose boundaries are analytic. We expect the local well-posedness to hold
without the assumption that %̂t is analytic, which is indeed the case if the background
static vacuum pair is Euclidean, see [2, Theorem 7]. For a general background static
vacuum pair considered here, the main difficulty is that the system L(h, v) is highly
coupled (see the explicit formula in (3.7) below) and we cannot derive v is trivial
without the analyticity assumption.

We also note that if π1(M \$) = 0 (for example, $ is a large ball), one can choose
to foliate along any open subset %̂t of an analytic hypersurface %t in Theorem 7. The
above theorems also lead to other applications as we shall discuss below.

The well-known Uniqueness Theorem of Static Black Holes says that an asymp-
totically flat, static vacuum triple (M, ḡ, ū) with ū = 0 on the boundary ∂M must
belong to the Schwarzschild family [18, 26, 34]. Note that a Schwarzschild manifold
has the following special properties:

(1) ū = 0 on the boundary ∂M , which implies that ∂M has zero mean curvature.
(2) (M, ḡ) is foliated by stable, constant mean curvature (n−1)-dimensional spheres.
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It is tempting to ask whether the Schwarzschild metrics can be characterized by
replacing Item (1) with other geometric conditions. For example, it is natural to ask
whether one may replace the minimal surface in Item (1) with a nearby CMC surface:
(1′) ū > 0 is very small on ∂M , and ∂M has constant mean curvature H∂M > 0 that

is very small.
We make a general remark regarding Item (1′). Any asymptotically flat metric (under
mild asymptotic assumptions) has a foliation of stable CMC surfaces in an asymp-
totically flat end with the mean curvature going to zero at infinity by [24] (also, for
example, [22, 28]), but when the metric is static ḡ, the static potential ū is very close
to 1 there and hence cannot be arbitrarily small.

Our next corollary says that under both the assumptions Item (1′) and Item (2), the
static uniqueness fails, as there are many, geometrically distinct static vacuummetrics
satisfying both assumptions.

Corollary 8 Let B ⊂ Rn be an open unit ball and M := Rn \ B. Given any constant
c > 0, there exists many, asymptotically flat, static vacuum triple (M, g, u) such that

(1) 0 < u < c on the boundary ∂M, and the mean curvature ∂M is equal to a positive
constant H ∈ (0, c).

(2) (M, g) is foliated by stable, constant mean curvature (n−1)-dimensional spheres.
(3) (M, g) is not isometric to a Schwarzschild manifold.

We include a fundamental result used in Theorem 5 that is of independent interest.
Let h be a symmetric (0, 2)-tensor on a Riemannian manifold (M, g). We say a vector
field X is h-Killing if LXg = h. The next theorem shows that if h is analytic, then a
local h-Killing vector can globally extend on an analytic manifold. It generalizes the
classic result of Nomizu for local Killing vector fields when h = 0.

Theorem 9 (Cf. [4, Lemma 2.6]) Let (U , g) be a connected, analytic Riemannian
manifold. Let h be an analytic, symmetric (0, 2)-tensor on U. Let $ ⊂ U be a
connected open subset satisfying π1(U ,$) = 0. Then an h-Killing vector field X
in $ can be extended to a unique h-Killing vector field on the whole manifold U.

We remark that a similar statement already appeared in the work of Anderson [4,
Lemma 2.6] with an outline of proof. We give an alternative proof similar to Nomizu’s
proof. The proof is included in Sect. 7.
Structure of the paper: In Sect. 2, we provide preliminary results that will be used
in later sections. In Sect. 3, we introduce the gauge conditions essential to study the
boundary value problem and discuss the kernel of the linearized problem. In Sect. 4,
we prove Theorem 5 and, along the way, discuss the assumptions of static regular
assumptions. Then we complete the proof of Theorem 3 in Sect. 5. Theorem 7 and
Corollary 8 are proven in Sect. 6. We prove Theorem 9 in Sect. 7, which can be read
independently of all other sections.

2 Preliminaries

In this section, we collect basic definitions, notations, facts, and some fundamental
results that will be used in the later sections.
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2.1 The Structure at Infinity

Let n ≥ 3 and M denote an n-dimensional smooth complete manifold (possibly with
nonempty compact boundary) such that there are compact subsets B ⊂ M , B1 ⊂ Rn ,
and a diffeomorphism1 : M \ B −→ Rn \ B1. We use the chart {x} on M \ B from1

and a fixed atlas of B to define the weighted Hölder space Ck,α−q (M) for k = 0, 1, . . . ,
α ∈ (0, 1), and n−2

2 < q < n − 2. See the definition in, for example, [9, Section 2.1].
For f ∈ Ck,α−q (M), we may also write f = Ok,α(|x |−q) to emphasize its fall-off rate.

Let g be a Riemannianmetric onM .We say that (M, g) is asymptotically flat (at the
rate q andwith the structure at infinity (1, x)) if g−gE ∈ C2,α−q (M)where (gE)i j = δi j
in the chart {x} of M via 1 from a Cartesian chart of Rn and gE is smoothly extended
to the entire M . The ADM mass of g is defined by

mADM (g) = 1
2(n − 1)ωn−1

lim
r→∞

∫

|x |=r

n∑

i, j=1

(
∂gi j
∂xi

− ∂gi j
∂x j

)
x j
|x | dσ. (2.1)

where dσ is the (n − 1)-volume form on |x | = r induced from the Euclidean metric
and ωn−1 is the volume of the standard unit sphere Sn−1.

It is well-known that two structures of infinity of an asymptotically flat manifold
(M, g) differ by a rigidmotion of {x}, see [12, Corollary 3.2]. In particular, translations
and rotations are continuous symmetries, generated by the vector fields

Z (i) = ∂i and Z (i, j) = xi∂ j − x j∂i for i, j = 1, . . . , n.

We can smoothly extend Z (i), Z (i, j) to the entire M and denote the vector space of
“Euclidean Killing vectors” by

Z = span{Z (i) and Z (i, j) for i, j = 1, . . . , n}. (2.2)

Definition 2.1 Let (M, g) be asymptotically flat.

(1) Define the subgroup of C3,αloc diffeomorphisms of M \ $ that fix the boundary %

and the structure at infinity as

D(M \ $) =
{

ψ ∈ C3,αloc (M) : ψ |% = Id% and ψ(x)−(Ox + a)=O3,α(|x |1−q)

for some constant matrix O ∈ SO(n) and constant vector a ∈ Rn
}
.
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(2) Let X (M \ $) be the tangent space of D(M \ $) at the identity map. In other
words, X (M \ $) consists of vector fields so that2

X (M \ $) =
{
X ∈ C3,αloc (M \ $) : X = 0 on % and

X − Z = O3,α(|x |1−q) for some Z ∈ Z
}
.

2.2 Regge-Teitelboim Functional and Integral Identities

Recall the static vacuum operator3

S(g, u) = (−uRicg + ∇2
gu,!gu).

Let (ḡ, ū) be a static vacuum pair; namely S(ḡ, ū) = 0. The linearization of S at (ḡ, ū)
is given by

S′(h, v) =
(

− ūRic′(h)+ (∇2)′(h)ū − vRic+ ∇2v,!v + (!′(h))ū
)
.

We say that (h, v) is a static vacuum deformation (at (ḡ, ū)) if S′(h, v) = 0.
Throughout the paper, we use S′|(g,u) to denote the linearization of S at (g, u) and

similar for other differential operators; and we often omit the subscript |(ḡ,ū) when
linearizing at a static vacuum pair (ḡ, ū), as well as the subscript |ḡ in linearizations of
geometric operators such as Ricg , when the context is clear. We refer to Appendix A
for explicit formulas of those linearized operators.

Let M(M \ $) denote the set of asymptotically flat pairs in M \ $, consisting of
pairs (g, u) of Riemannian metrics and scalar functions on M \ $ satisfying

M(M \ $) =
{
(g, u) : (g − gE, u − 1) ∈ C2,α−q (M \ $)

}
. (2.3)

The Regge-Teitelboim functional for (g, u) ∈ M(M \ $) is defined as

F(g, u) = −2(n − 1)ωn−1mADM (g)+
∫

M\$
uRg dvolg .

Although two terms in the definition ofF are not individuallywell-defined for arbitrary
(g, u) ∈ M(M \$) (because Rg is not assumed integrable), it is well-known that the
functional described above extends to all (g, u) ∈ M(M \$) in a natural way (see e.g.
[15, Theorem 4.1] and [7, p. 1660]) which we also explain below: Use the following
alternative expression by rewriting theADMmass surface integral as a volume integral

2 When n = 3, the fall-off rate of X is 1−q > 0, and henceX (M \$) can be equivalently defined without
including Z = Z (i) the translation vectors.
3 In [9] the notation S(g, u) was used to denote a different (but related) operator, which is (R′|g)∗(u)
below.
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via divergence theorem and rearranging terms:

F(g, u) =
∫

M\$

(
Rg − divg(divgE g − d(trgE g))

)
u dvolg

−
∫

M\$
(divgE g − d(trgE g))(∇gu) dvolg

+
∫

%
(divgE g − d(trgE g))(νg)u dσg

where recall that gE is a backgroundmetric equal to theEuclideanmetric on the exterior
coordinate chart and νg is the unit normal on % pointing to infinity. For integrability
of the first volume integral, it is a standard fact that divg(divgE g− d(trgE g))matches
the top-order part of Rg and the other terms decay fast enough. The second volume
integral is finite because of the assumed decay rates.

We recall the first variation formula.

Lemma 2.2 ([8, Proposition 3.7] [29, Lemma3.1] [7, Proposition 2.2])Let (g(s), u(s))
be a one-parameter differentiable family of asymptotically flat pairs such that
(g(0), u(0)) = (g, u) and (h, v) = (g′(0), u′(0)) ∈ C2,α−q (M \ $). Then,

d
ds

∣∣
s=0 F(g(s), u(s))

=
∫

M\$

〈(
− uRicg + ∇2

gu − (!gu)g + 1
2uRgg, Rg

)
,
(
h, v
)〉

g
dvolg

+
∫

%

〈(
uAg − νg(u)gᵀ, 2u

)
,
(
hᵀ, H ′|g(h)

)〉

g
dσ g .

The first variation formula holds for any asymptotically flat pair (g, u). A static
vacuum pair (ḡ, ū) is a critical point of the functional F among deformations (h, v)
where h satisfies (hᵀ, H ′(h)) = 0. In the next lemma, we show that if R′(h) = 0 in
M \ $, then the deformation h “preserves the mass” in the sense that (ḡ, ū) is also a
critical point of the ADM mass functional among such h.

Lemma 2.3 Let (ḡ, ū) be a static vacuum pair in M \ $. Suppose h ∈ C2,α−q (M \ $)

satisfies R′(h) = 0 in M \ $ and (hᵀ, H ′(h)) = 0 on %. Then

lim
r→∞

∫

|x |=r

n∑

i, j=1

(
∂hi j
∂xi

− ∂hi j
∂x j

)
x j
|x | dσḡ = 0.

Proof For any function v ∈ C2,α−q (M \ $), define (g(s), u(s)) = (ḡ, ū) + s(h, v).
Notice that ∂

∂s

∣∣
s=0 Rg(s) = R′(h) = 0. Thus,

−2(n − 1)ωn−1
d
ds

∣∣
s=0 mADM (g(s)) = d

ds

∣∣
s=0 F(g(s), u(s)) = 0.

In the last equality, we use the first variation formula, Lemma 2.2, and the assumptions
on h. The integral identity follows (2.1). ⊓⊔
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Suppose in addition (h, v) is a static vacuum deformation, i.e. S′(h, v) = 0,
which implies R′(h) = 0. The Laplace equation for v in S′(h, v) = 0 gives
!v = O0,α(|x |−2−2q) and thus by harmonic asymptotics v(x) = c|x |2−n +
O2,α(|x |max{−2q,1−n}) for some real number c. We will show that v also “preserves
the mass” in that c = 0 in Lemma 4.4 below.

In [9, Section 3], we used the first and second variations of the functionalF to derive
several fundamental properties for the static vacuum operators. We list the properties
that will be used later in this paper whose proofs in directly extend to our current
setting. First, we recall the Green-type identity [9, Proposition 3.3].

Proposition 2.4 (Green-type identity)Let (g, u)beanasymptotically flat pair in M\$.
For any (h, v), (k, w) ∈ C2−q(M \ $), we have

∫

M\$

〈
P(h, v), (k, w)

〉

g
dvolg −

∫

M\$

〈
P(k, w), (h, v)

〉

g
dvolg

= −
∫

%

〈
Q(h, v),

(
kᵀ, H ′|g(k)

)〉

g
dσ g +

∫

%

〈
Q(k, w),

(
hᵀ, H ′|g(h)

)〉

g
dσ g .

(2.4)

The linear differential operators P, Q at (g, u) are defined by4

P(h, v) =
((
(R′|g)∗(u)+ 1

2uRgg
)′
, R′|g(h)

)
−
(
2
(
(R′|g)∗(u)+ 1

2uRgg
)
◦ h, 0

)

+ 1
2 (trg h)

(
(R′|g)∗(u)+ 1

2uRgg, Rg

)
in M \ $

Q(h, v) =
((
uAg − νg(u)gᵀ)′, 2v

)
−
(
2
(
uAg − νg(u)gᵀ) ◦ hᵀ, 0

)

+ 1
2 (trg h

ᵀ)
(
uAg − νg(u)gᵀ, 2u

)
on %,

where the prime denotes the linearization at (g, u) and recall the formal L2-adjoint
operator (R′|g)∗(u) := −uRicg + ∇2

gu − (!gu)g.

In the special case that (g, u) is a static vacuum pair (ḡ, ū), it is direct to verify
that P(h, v) = 0 if and only if S′(h, v) = 0. Thus the Green-type identity leads to the
following direct consequence.

Corollary 2.5 ([9, Corollary 3.5]) Let (ḡ, ū) be an asymptotically flat, static vacuum
pair in M \$. Suppose that (h, v), (k, w) ∈ C2−q(M \$) are static vacuum deforma-
tions and that (h, v) satisfies hᵀ = 0, H ′(h) = 0 on %. Then

∫

%

〈
Q(h, v),

(
kᵀ, H ′(k)

)〉

ḡ
dσ ḡ = 0

where Q(h, v) =
(
vAḡ + ū A′(h) −

( (
ν′(h)

)
ū + ν(v)

)
gᵀ, 2v

)
.

4 Technically speaking, the notations P(h, v), Q(h, v) should have the subscript (g, u) to specify their
dependence on (g, u), but for the rest of the paper we will only consider the case that (g, u) is an arbitrary
but fixed static vacuum pair (ḡ, ū), and thus we omit the subscript.
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Let ψs be a smooth family of diffeomorphisms in D(M \ $) from Definition 2.1
(also recall its tangent space X (M \ $) defined there). Computing the first variation
of the functional F along the family of pull-back pairs (g(s), u(s)) = ψ∗

s (g, u) as in
[9, Proposition 3.2] gives the following identities.

Proposition 2.6 (Orthogonality) Let (M, g, u) be an asymptotically flat triple with
u > 0. For any X ∈ X (M \ $) and any (h, v) ∈ C2−q(M \ $), we have

∫

M\$

〈
S(g, u), κ0(g, u, X)

〉

g
dvolg = 0, (2.5)

where

κ0(g, u, X) :=
(
LXg −

(
divg X + u−1X(u)

)
g, − divg X + u−1X(u)

)
. (2.6)

Linearizing the identity at a static vacuum pair (g, u) = (ḡ, ū) yields

∫

M\$

〈
S′(h, v), κ0(ḡ, ū, X)

〉

ḡ
dvolḡ = 0. (2.7)

The identities above are important because they will be used to find “spaces” com-
plementing to the ranges of the nonlinear operator S and its linearization S′.

2.3 h-Killing Vectors and the Geodesic Gauge

In this section we study the situation when a symmetric (0, 2)-tensor h takes the form
LXg. The results here hold in a general Riemannianmanifold (U , g), andCorollary 2.9
below is used to prove Theorem 5.

Given a symmetric (0, 2)-tensor h, we define the (1, 2)-tensor Th by, in local coor-
dinates,

(Th)ijk = 1
2 (h

i
j;k + hik; j − h i

jk; )

where the upper indices are all raised by g, e.g. hij = giℓhℓ j . Note that (Th)ijk is
symmetric in ( j, k), and thus we may use Th(V , ·) to unambiguously denote its con-
traction with a vector V in the index either j or k. We say X is an h-Killing vector if
LXg = h.

Lemma 2.7 Let X be an h-Killing vector field. Then for any vector V ,

∇V (∇X) = −R(X , V )+ Th(V , ·)

where the curvature tensor R(X , V ) := ∇X∇V − ∇V∇X − ∇[X ,V ].
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Proof We prove the identity with respect to a local orthonormal frame {e1, . . . , en}
and shall not distinguish upper or lower indices in the following computations. Write
V = Vkek and

(∇V (∇X))ij = Vk g(∇ek∇e j X − ∇∇ek e j
X , ei ) := Vk Xi; jk .

The desired identity follows from the following identity multiplied by Vk :

Xi; jk = −Rℓk ji Xℓ + 1
2 (hi j;k + hik; j − h jk;i ). (2.8)

The previous identity is a well-known fact, we include the proof for completeness. By
commuting the derivatives, we get

Xi; jk − Xi;k j = Rkjℓi Xℓ

X j;ki − X j;ik = Rikℓ j Xℓ

Xk;i j − Xk; j i = R jiℓk Xℓ.

Adding the first two identities and then subtracting the third one, we get

Xi; jk − Xi;k j + X j;ki − X j;ik − Xk;i j + Xk; j i

= (Rkjℓi + Rikℓ j − R jiℓk)Xℓ

= 2Ri jℓk Xℓ = −2Rℓk ji Xℓ

where we use the Bianchi identity to the curvature terms. Rearranging the terms in the
left hand side above gives

2Xi; jk − (Xi; jk + X j;ik) − (Xi;k j + Xk;i j )+ (X j;ki + Xk; j i )
= 2Xi; jk − hi j;k − hik; j + h jk;i .

This gives (2.8). ⊓⊔
For a given h, in general there does not necessarily exist a corresponding h-Killing

vector field. (For example, when h = 0, an h-Killing vector field is just a Killing
vector field, and a generic Riemannian manifold does not admit any Killing vector
field.) Nevertheless, the next lemma says that it is still possible to find an X such that
h and LX ḡ are equal when they are both contracted with a parallel vector V . It uses
an ODE argument motivated by the work of Nomizu [33].

Lemma 2.8 Let (U , g) be aRiemannianmanifold whose boundary ∂U is an embedded
hypersurface. Let 3 ≤ k ≤ ∞, % be an open subset of ∂U, and h be a symmetric
(0, 2)-tensor in U. Suppose g,% ∈ Ck, h ∈ Ck−1 (or analytic) in coordinate charts
containing %. Let V ∈ Ck (or analytic) be a complete vector field transverse to %

satisfying ∇V V = 0 in U. Then there is a vector field X ∈ Ck−2 (or analytic) in a
collar neighborhood of % such that X = 0 on % and

LXg(V , ·) = h(V , ·) in the collar neighborhood of %. (2.9)
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Proof Since V is complete, given p ∈ % we let γ (t) be the integral curve of V emitting
from p, i.e. γ (0) = p and γ ′(t) = V . Let {e1, . . . , en} be a local orthonormal frame
such that en is a unit normal to %.

Consider the first-order linear ODE system for the pair (X ,ω) consisting of a vector
field X and a (1, 1)-tensor ω along γ (t):

∇V X = ω(V )

∇Vω = −R(X , V )+ Th(V , ·).

(We remark that Lemma 2.7 implies an h-Killing vector X satisfies the ODE system
with ω(ei ) = ∇ei X .) We rewrite the above ODE system in the local orthonormal
frame:

Xi; j V j = ωi j V j

ωi j;ℓVℓ = −Rkℓ j i XkVℓ + 1
2

(
hi j,ℓ + hiℓ, j − h jℓ,i

)
Vℓ

(2.10)

where ωi j = ωi
j (the first index is lowered by g).

We choose the initial conditions for Xi and ωi j at p ∈ %:

Xi = 0, ωi j Vi Vj = 1
2hi j Vi Vj , ωiaVi = ωai Vi = hai Vi , ωab = 0 (2.11)

where the indices i, j = 1, . . . , n, a, b = 1, . . . , n − 1. Since the coefficients of the
ODE are Ck−2 (or analytic) in p, the vector field X and ω are defined everywhere
in the collar neighborhood of % by varying p and is Ck−2 (or analytic) by smooth
dependence of the ODE (or Cauchy-Kovalevskaya Theorem).

We first show that in a collar neighborhood of %:

ωi j Vi Vj = 1
2hi j Vi Vj . (2.12)

Note that ωi j + ω j i − hi j is constant along γ (t) because (ωi j + ω j i − hi j );ℓV ℓ = 0
by (2.10) and symmetry of the curvature tensor. Since (ωi j + ω j i − hi j )ViVj =
(2ωi j − hi j )ViVj = 0 at p by the initial conditions at p, it proves (2.12).

To prove (2.9), observe that (Xi; j + X j;i −hi j )Vj satisfies a first-order linear ODE
along γ (t), motivated by the result of [25, Lemma 2.6]:

(
(Xi; j + X j;i − hi j )Vj

)
;ℓVℓ

= (ωi j;ℓ + X j;iℓ − hi j;ℓ)VjVℓ

=
(
− Rkℓ j i Xk + hi j;ℓ − 1

2h jℓ;i
)
VjVℓ + X j;ℓi V j Vℓ + Rℓik j XkVj Vℓ − hi j;ℓVjVℓ

= − 1
2h jℓ;i V j Vℓ + X j;ℓi V j Vℓ

= − 1
2h jℓ;i V j Vℓ + (X j;ℓVjVℓ);i − X j;ℓ(Vj;i Vℓ + VjVℓ;i )

= − 1
2h jℓ;i V j Vℓ + (ω jℓVjVℓ);i − (X j;ℓ + Xℓ; j )Vj;i Vℓ

= − 1
2h jℓ;i V j Vℓ + 1

2 (h jℓVjVℓ);i − (X j;ℓ + Xℓ; j )Vj;i Vℓ

= −(X j;ℓ + Xℓ; j − h jℓ)VℓVj;i
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where in the third equality we use the Bianchi identity

(−Rkℓ j i + Rℓik j )VjVℓ = (Rkℓi j + Rℓik j )VjVℓ = −Rikℓ j V j Vℓ = 0

and in the second-to-the-last equality we use (2.12). Thus, we have shown that (Xi; j +
X j;i − hi j )Vj satisfies the first-order linear ODE. Our initial conditions (2.11) imply
that at p:

(Xi; j + X j;i − hi j )ViVj = (2ωi j − hi j )ViVj = 0

(Xa; j + X j;a − haj )Vj = (ωaj − haj )Vj = 0 for a = 1, . . . , n − 1

where we use that X j;a = 0 at p because X is identically zero on %. Since (Xi; j +
X j;i − hi j )Vj = 0 at p, it is identically zero along the curve γ (t), and thus it is
identically zero in a collar neighborhood of %. ⊓⊔

Let ν be a unit normal vector field to %. We can extend ν parallelly in a collar
neighborhood of%. We say that a symmetric (0, 2)-tensor h inU satisfies the geodesic
gauge in a collar neighborhood of % if, in the collar neighborhood, h(ν, ·) = 0.

By Lemma 2.8 and letting V = ν there, we can give an alternative proof to the
existence of geodesic gauge in [9, Lemma 2.5], and in particular, we obtain an analytic
vector field X if the metric is analytic.

Corollary 2.9 (Geodesic gauge) Let (U , g) be a Riemannian manifold whose ∂U is
an embedded hypersurface. Let % be an open subset of ∂U and h be a symmetric
(0, 2)-tensor in U.

(1) Let 3 ≤ k ≤ ∞. Suppose g,% ∈ Ck, h ∈ Ck−1 in some coordinate charts
containing %. Then there is a vector field X ∈ Ck−2 in a collar neighborhood of
% such that X = 0 on % and

LXg(ν, ·) = h(ν, ·) in the collar neighborhood of %.

(2) Suppose % is an analytic hypersurface and g, h are analytic in some coordinate
charts containing %. Then there is an analytic vector field X in a collar neighbor-
hood of % such that X = 0 on % and

LXg(ν, ·) = h(ν, ·) in the collar neighborhood of %.

3 Static-Harmonic Gauge and Orthogonal Gauge

Recall the operator T defined in (1.2). As already mentioned in Sect. 1, if (g, u)
solves T (g, u) = (0, 0, τ,φ), then any ψ in the diffeomorphism group D(M \ $)

defined in Definition 2.1 gives rise to another solution (ψ∗g,ψ∗u). To overcome the
infinite-dimensional “kernel” of T , one would like to introduce suitable “gauges”.
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3.1 The Gauges

Fix a static vacuum pair (ḡ, ū)with ū > 0. For any pair (g, u) of a Riemannian metric
and a scalar function, we use the Bianchi operator βḡ (see (A.1)) to define the covector

G(g, u) = βḡg + ū−2udu − ū−1g(∇ḡ ū, ·).

Note that of courseG(ḡ, ū) = 0.We useG′(h, v) to denote the linearization ofG(g, u)
at (ḡ, ū) and thus

G′(h, v) = βh + ū−1dv + ū−2vdū − ū−1h(∇ū, ·)

where the Bianchi operator and covariant derivatives are with respect to ḡ.
For the rest of this section, we omit the subscript ḡ when computing differential

operators with respect to ḡ, as well as the subscript (ḡ, ū) when linearizing at (ḡ, ū).

Lemma 3.1 Let (ḡ, ū) be a static vacuum pair with ū > 0. Then for any vector field
X,

G′(LX ḡ, X(ū)) = −!X − ū−1∇X(∇ū, ·)+ ū−2X(ū)dū =: 7(X). (3.1)

(Here and the in rest of the paper, we slightly abuse the notation and blur the distinction
of a vector and its dual covector with respect to ḡ when the context is clear).

Proof By the linearization formula,

G′(LX ḡ, X(ū))

= β(LX ḡ)+ ū−1d(X(ū)) − ū−1LX ḡ(∇ū, ·)+ ū−2X(ū)dū

= −!X − ū−1∇X(∇ū, ·)+ ū−2X(ū)dū + (−Ric+ ū−1∇2ū)(X , ·)
(3.2)

where we use (A.4) for β(LX ḡ) = −!X − Ric(X , ·) and

d(X(ū)) − LXg(∇ū, ·) = ∇2ū(X , ·) − ∇X(∇ū, ·). (3.3)

Since (ḡ, ū) is static vacuum, we can drop the term −Ric+ ū−1∇2ū = 0. ⊓⊔
Using the operator7 defined in (3.1), we define the “gauged” subspace ofX (M\$)

from Definition 2.1.

Definition 3.2 (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0.
Define XG(M \ $) to be the subspace of X (M \ $) as

XG(M \ $) =
{
X ∈ X (M \ $) : 7(X) = 0 in M \ $

}
.

We show below that XG(M \ $) is finite-dimensional with the dimension

N = n + n(n − 1)
2

,
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which is the same as the dimension of the space of Euclidean Killing vectors Z
defined in (2.2). We begin with a fundamental PDE lemma on the special structure of
the operator 7. For a given asymptotically flat pair (g, u) with u > 0, we define the
operator on vectors by

7(g,u)(X) = −!g X − u−1∇g X(∇gu, ·)+ u−2X(u)du. (3.4)

When (g, u) is a static vacuum pair (ḡ, ū), 7(ḡ,ū)(X) is exactly 7(X) as defined
in (3.1).

Recall (2.3) that M(M \ $) consists of asymptotically flat pairs of fall-off rate q.

Lemma 3.3 Let (g, u)be apair of aRiemannianmetric anda scalar function satisfying
(g − gE, u − 1) ∈ Ck,α−q (M \ $) with u > 0 and δ be a real number and k ≥ 1 be an
integer. Consider

7(g,u) :
{
X ∈ Ck,αδ (M \ $) : X = 0 on %

}
−→ Ck−2,α

δ−2 (M \ $).

Then the following holds:

(1) For 2− n < δ < 0, the map is an isomorphism. Therefore, for any fixed boundary
value Z ∈ Ck,α(%), the following map is bijective

7(g,u) :
{
X ∈ Ck,αδ (M \ $) : X = Z on %

}
−→ Ck−2,α

δ−2 (M \ $).

(2) For 0 < δ < 1, the map is surjective and the kernel space is n-dimensional,
spanned by {V (1), . . . , V (n)} where V (i) = ∂i + Ok,α(|x |−q).

Proof Note that 7(g,u) has the same Fredholm index as the Laplace-Beltrami operator
!g . It is a standard fact that the Fredholm index for X 2→ !g X is 0 in the first case
that 2−n < δ < 0 and n in the second case that 0 < δ < 1, at least for asymptotically
flat manifolds without boundary (see e.g., [20, p. 16], [12, p. 673]). For the boundary
value problem, one can find general results in [27], and we also include a proof below
for our setting. In the following proof, the covariant derivative, inner product, volume
form are taken with with respect to g, and we often omit the subscripts.

We discuss the case 2−n < δ < 0, and the other case of decay rate follows a similar
argument. Suppose !X = 0. By harmonic expansion X = Ok,α(|x |2−n) (see, e.g.
[12, Theorem 1.17]). Then 0 = −

∫
M\$ X!X dvol =

∫
M\$ |∇X |2 dvol because the

boundary term on% vanishes from the Dirichlet boundary condition and the boundary
term at infinity vanishes from the decay rate. It implies that ! has trivial kernel. We
show that ! is surjective: Using5 that Ck−2,α

δ−2 (M \ $) ⊂ L2
δ′−2(M \ $) for any δ′

5 Let ξ(x) be a positive smooth weight function such that ξ(x) = |x |2−δ′− n
2 outside a compact subset of

M . The L2
δ′−2(M \ $)-norm is defined as the sum of the usual L2-norm on a compact subset of B ⊂ M

and the weighted norm in the asymptotically flat end M \ B:

∥u∥L2
δ′−2

(M\$)
=
(∫

M\$

(
|u(x)|ξ(x)

)2 dvol
) 1

2
.
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slightly larger than δ, we write Ck−2,α
δ−2 = Range! ⊕ K where K is L2

δ′−2-orthogonal

to Range!. That is, Z ∈ K if for all X ∈ Ck,αδ with X = 0 on %,

0 =
∫

M\$
ξ2Z!X dvol . (3.5)

Considering compactly supported X yields that ξ2Z weakly solves !(ξ2Z) = 0 and
thus ξ2Z = Ok,α(|x |2−n) by elliptic regularity. Integrating (3.5) by part, invoking
X = 0 on %, and letting ∇νX be arbitrary on % implies that ξ2Z = 0 on %. Then we
can as above conclude that Z ≡ 0 in M \ $, and thus ! is surjective.

For Item (1), 7(g,u) has Fredholm index 0. It suffices to show that the kernel is
trivial. Observe the g-inner product:

〈
X ,7(g,u)(X)

〉
= − 1

2!|X |2 − 1
2u

−1∇u · ∇|X |2g + |∇X |2 + u−2(X(u))2.

Thus, if 7(g,u)(X) = 0, then

1
2!|X |2 + 1

2u
−1∇u · ∇|X |2 ≥ 0.

By strong maximum principal and using X = 0 on % and X → 0 at infinity, X is
identically zero. The statement about the general boundary value Z is standard.

For Item (2), 7(g,u) has the Fredholm index n. By harmonic expansion (e.g. [12,
Theorem 1.17]), if 7(g,u)(X) = 0, then

X = ci∂i + O(|x |−q)

for some constants ci . It implies that the kernel is at most n-dimensional because by
Item (1) if c1 = · · · = cn = 0, then X is identically zero. Since the Fredholm index is
n, the dimension of the kernel must be exactly n. ⊓⊔
Corollary 3.4 dimXG(M \ $) = N.

Proof Recall the basis Z (i), Z (i, j) of the space Z defined in (2.2), and, outside a
compact set of M ,

Z (i) = ∂i or Z (i, j) = xi∂ j − x j∂i for i, j = 1, . . . , n.

We compute 7(Z (i)) = O1,α(|x |−2−q). By Item (1) of Lemma 3.3, there is a unique
Y = O3,α(|x |−q) such that

7(Y ) = −7(Z (i)) in M \ $

Y = −Z (i) on %.

Then W (i) := Y + Z (i) ∈ XG(M \ $). Similarly, we compute 7(Z (i, j)) =
O1,α(|x |−q−1) and can solve W (i, j) ∈ XG(M \ $) such that W (i, j) − Z (i, j) ∈
O3,α(|x |1−q).
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It is clear that W (i) and W (i, j) are linearly independent. It remains to show that
they span XG(M \ $), and thus dimXG(M \ $) = N . Let X ∈ XG(M \ $). Then
X − W ∈ O3,α(|x |1−q) where W is a linear combination of W (i) and W (i, j). We
separate the discussions into the case 1−q < 0 and the case 0 < 1−q < 1 (the latter
case occurs only when n = 3).

• If 1−q < 0, using 7(X −W ) = 0 and Item (1) of Lemma 3.3, we obtain X = W .
• If 0 < 1 − q < 1 (when n = 3), by Item (2) of Lemma 3.3, we have

X − W = ciW (i) + O3,α(|x |−q).

Because 7(X − W − ciW (i)) = 0, as in the first case we conclude that X =
W + ciW (i).

⊓⊔

After introducing G and the gauged space of vectors XG, we now define the gauge
conditions in solving the boundary value problem for T .

Definition 3.5 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triplewith ū > 0.

(1) We say that (g, u) satisfies the static-harmonic gauge (with respect to (ḡ, ū)) in
M \ $ if G(g, u) = 0 in M \ $.

(2) Fix a positive scalar function ρ in M with ρ = |x |−2 on the end M \ K . We say
that (g, u) satisfies an orthogonal gauge (with respect to (ḡ, ū) and ρ) in M \ $

if, for all X ∈ XG(M \ $),

∫

M\$

〈(
(g, u) − (ḡ, ū)

)
,
(
LX ḡ, X(ū)

)〉
ρ dvol = 0,

where the inner product and volume form are of ḡ.

Remark 3.6 (1) When (ḡ, ū) = (gE, 1) is the Euclidean pair, G(g, u) = βgEg+ udu.
While the above definition of static-harmonic gauge does not recover our prior
definition βgEg + du = 0 in [9, Definition 4.2], both conditions give the same
linearized condition which is sufficient. See also [9, Remark 4.3].

(2) If ū > 0, we can define the warped product metrics ḡ = ±ū2dt2 + ḡ and g =
±u2dt2 + g on R× M . The condition G(g, u) = 0 is equivalent to requiring that
g satisfies the harmonic gauge βḡg = 0. See Proposition B.1.

Wewill soon see in Sect. 3.2 below the static-harmonic gauge will be used to obtain
ellipticity for the boundary value problem. The following lemma gives a justification
why an orthogonal gauge is needed.

Lemma 3.7 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0.
There is an open neighborhood U ⊂ M(M \$) of (ḡ, ū) and an open neighborhood
D0 ⊂ D(M \ $) of IdM\$ such that for any (g, u) ∈ U , there is a unique ψ ∈ D0
such that (ψ∗g,ψ∗u) satisfies both the static-harmonic and orthogonal gauge.
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Proof Denote the weighted L2-inner product:

〈
(h, v), (k, w)

〉
L2

ρ
=
∫

M\$
(h, v) · (k, w)ρ dvol

where the inner product and volume form are with respect to ḡ and ρ is the weight
function in Definition 3.5. By Corollary 3.4, let {X (1), . . . , X (N )} be an orthonormal
basis of XG(M \ $) with respect to the L2

ρ-inner product in the sense that

〈(
LX (i) ḡ, X (i)(ū)

)
,
(
LX ( j) ḡ, X ( j)(ū)

)〉

L2
ρ

= δi j .

RecallD(M \$) andM(M \$) defined in Definition 2.1 and (2.3), respectively.
Consider the differentiable map

F : D(M \ $) × M(M \ $) −→ C1,α−q−1(M \ $) × RN

F(ψ, (g, u)) =
(
G(ψ∗g,ψ∗u), (b1, . . . , bN )

)

where each number bi =
〈(

ψ∗g − ḡ,ψ∗u − ū
)
,
(
LX (i) ḡ, X (i)(ū)

)〉

L2
ρ

. Linearizing F

in the first argument at (IdM\$, (ḡ, ū)) gives

D1F : X (M \ $) −→ C1,α−q−1(M \ $) × RN

D1F(X) =
(
G′(LX ḡ, X(ū)),

(
c1(X), . . . , cN (X)

))

with ci (X) =
〈(
LX ḡ, X(ū)

)
,
(
LX (i) ḡ, X (i)(ū)

)〉

L2
ρ

.

Note that F
(
IdM\$, (ḡ, ū)

)
= (0, 0). Once we show that D1F is an isomorphism,

the lemma follows from implicit function theorem for Banach manifolds (see e.g.,
[1, 3.3.13 Proposition]). If D1F(X) = 0, then 7(X) = G′(LX ḡ, X(ū)) = 0 and
ci (X) = 0 for all i . It implies that X ∈ XG(M \ $), and thus X ≡ 0 in M \ $.
To see that D1F is surjective, for any covector Z ∈ C1,α−q−1(M \ $) and constants
a1, . . . , aN , there exists Y ∈ X (M \ $) solving G′(LY ḡ, Y (ū)) = 7(Y ) = Z by
Lemma 3.3. Let X = Y +

(
a1 − c1(Y )

)
X (1) + · · · +

(
aN − cN (Y )

)
X (N ). Then we

have D1F(X) =
(
Z , (a1, . . . , aN )

)
. ⊓⊔
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3.2 The Gauged Operator

Consider the operator T defined in (1.2) on the manifold M \ $:

T : M(M \ $) −→ C0,α−q−2(M \ $) × B(%)

T (g, u) :=

{−uRicg + ∇2
gu

!gu
in M \ $

{
gᵀ
Hg

on %.

where B(%) denotes the space of pairs (τ,φ) where τ ∈ C2,α(%) is a symmetric
(0, 2)-tensor on % and φ ∈ C1,α(%) is a scalar-valued function on %.

Define the gauged operator

T G : M(M \ $) −→ C0,α−q−2(M \ $) × C1,α(%) × B(%)

and

T G(g, u) =

{−uRicg + ∇2
gu − uDgG(g, u)

!gu − G(g, u)(∇gu)
in M \ $

⎧
⎨

⎩

G(g, u)
gᵀ
Hg

on %

. (3.6)

Recall the notation Dg X = 1
2 LXg from (A.3).

Obviously the gauged operator T G becomes the operator T when the “gauge” term
G(g, u) vanishes inM\$, i.e. (g, u) satisfies the static-harmonic gauge. The following
lemma relates our desired boundary value problem for T to solving T G(g, u).

Lemma 3.8 Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0.
There is an open neighborhood U of (ḡ, ū) inM(M \$) such that if (g, u) ∈ U and
T G(g, u) = (0, 0, 0, τ,φ), thenG(g, u) = 0 in M \$ and thus T (g, u) = (0, 0, τ,φ).

Proof In the following computations, the volume measure, geometric operators, as
well as βg,Dg , are all computed with respect to g, and we omit the subscripts g for
better readability. Recall the integral identity (2.5) says the following two terms are
L2-orthogonal, for any X ∈ X (M \ $),

S(g, u) = (−uRic+ ∇2u,!u)

κ0(g, u, X) =
(
2β∗X − u−1X(u)g, − div X + u−1X(u)

)

where we re-expressed κ0(g, u, X) from (2.6) using the operator β∗ = β∗
g , defined in

(A.2).
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Belowwe write the covector G = G(g, u) for short. Since (g, u) solves T G(g, u) =
0, we can substitute S(g, u) =

(
uDG,G(∇u)

)
to get

0 =
∫

M\$

〈
S(g, u), κ0(g, u, X)

〉
dvol

=
∫

M\$

〈(
uDG,G(∇u)

)
,
(
2β∗X − u−1X(u)g, − div X + u−1X(u)

)〉
dvol .

Applying integration by parts and varying among compactly supported X , we obtain
that G weakly solves

0 = 2β
(
uDG) − (divG)du + d(G(∇u))+ u−1G(∇u)du

= 2uβDG − LGg(∇u, ·)+ d(G(∇u))+ u−1G(∇u)du

= −u!G − u Ric(G, ·)+ ∇2u(G, ·) − ∇G(∇u, ·)+ u−1G(∇u) du

= u7(g,u)(G) − uRic(G, ·)+ ∇2u(G, ·) =: 7̂(G),

where we use 2β
(
uDG) = 2uβ(DG)−LGg(∇u, ·)+(divG)du by (A.5) in the second

line, 2uβDG = −u!G− u Ric(G) by (A.4) and a similar computation as (3.3) in the
third line, and the definition of the operator 7(g,u) in (3.4) in the last line.

Recall that 7(g,u) is an isomorphism by Item (1) in Lemma 3.3. For (g, u) suffi-
ciently close to the static vacuum pair (ḡ, ū), we have u > 0 and −uRicg + ∇2

gu

small, so we conclude that the operator 7̂ is also an isomorphism. Together with the
boundary condition G = 0 on %, we conclude that G is identically zero in M \ $. ⊓⊔

In Sect. 5 below, we shall solve the gauged boundary value problem (3.6) near a
static vacuum pair via Inverse Function Theorem. As preparation, let us state some
basic properties of the linearized operator.

Denote by L and LG the linearizations of T and T G at a static vacuum pair (ḡ, ū),
respectively. Explicitly,

L(h, v) =

{
−ūRic′(h)+ (∇2)′(h)ū − vRic+ ∇2v

!v +
(
!′(h)

)
ū

in M \ $
{
hᵀ
H ′(h) on %

(3.7)

LG(h, v) =

{
−ūRic′(h)+ (∇2)′(h)ū − vRic+ ∇2v − ūDG′(h, v)
!v +

(
!′(h)

)
ū − G′(h, v)(∇ū)

in M \ $
⎧
⎨

⎩

G′(h, v)
hᵀ
H ′(h)

on %

(3.8)
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where

L : C2,α−q (M \ $) −→ C0,α−q−2(M \ $) × B(%)

LG : C2,α−q (M \ $) −→ C0,α−q−2(M \ $) × C1,α(%) × B(%).

Here and for the rest of this section, the geometric operators are all computed with
respect to ḡ and the linearizations are all taken at (ḡ, ū).

From the formulas in Section A, it is direct to check that the first two equations of
LG(h, v) can be expressed as

−ūRic′(h)+ (∇2)′(h)ū − vRic+ ∇2v − ūDG′(h, v) = 1
2 ū!h + E1

!v +
(
!′(h)

)
ū − G′(h, v)(∇ū) = !v + E2

(3.9)

where lower order terms E1, E2 are linear functions in h, v,∇h,∇v and of the order
O0,α(|x |−2−2q) at infinity.

The linear operators L and LG also share similar relations as Lemmas 3.7 and 3.8
for the nonlinear operators T and T G, which we summarize in the next lemma.

Lemma 3.9 Let (M, ḡ, ū) be a static vacuum triple with ū > 0. Then the following
holds:

(1) Let (h, v) ∈ C2,α−q (M \ $) solve LG(h, v) = (0, 0, 0, τ,φ). Then G′(h, v) = 0 in
M \ $ and thus L(h, v) = (0, 0, τ,φ).

(2) For any (h, v) ∈ C2,α−q (M \$), there is a vector field X ∈ X (M \$)∩C3,α1−q(M \$)

such that G′(h + LX ḡ, v + X(ū)
)
= 0.

Proof The proof of Item (1) proceeds similarly as the proof of Lemma 3.8 by lineariz-
ing those identities at (ḡ, ū).

For Item (2), given (h, v), note G′(h, v) = O1,α(|x |−q−1). By Item (2) in Lemma
3.3, we let X ∈ C3,α1−q(M \ $) solving 7(X) = −G′(h, v) in M \ $ and X = 0 on %.
Recall (3.1) that 7(X) = G′(LX ḡ, X(ū)), and thus we get the desired X . ⊓⊔

One can proceed as in [9, Lemma 4.6] (see also [8, Proposition 3.1]) to show that
the operator LG is elliptic and Fredholm of index zero. In fact, the operator LG here
has exactly the same leading order terms as the special case considered in [9], and
thus the same proof applies verbatim. Also, recall that

Ker L ⊇
{(

LX ḡ, X(ū)
)
: X ∈ X (M \ $)

}

where (LX ḡ, X(ū)) arises from diffeomorphisms. Therefore, Ker LG always contains
an N -dimensional subspace arising from the “gauged” space XG(M \ $). We sum-
marize those properties in the following lemma.

Lemma 3.10 The operator

LG : C2,α−q (M \ $) −→ C0,α−q−2(M \ $) × C1,α(%) × B(%)
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is elliptic of Fredholm index zero whose kernel Ker LG contains an N-dimensional
subspace:

Ker LG ⊇
{(

LX ḡ, X(ū)
)
: X ∈ XG(M \ $)

}
. (3.10)

To close this section,we include a basic fact about analyticity of the kernel elements.
It will be used in the proof of Theorem 5 below.

Corollary 3.11 Let (M, ḡ, ū) be a static vacuum triple with ū > 0. Let (h, v) solve
L(h, v) = 0 in M \ $. Then the following holds:

(1) There exists X ∈ X (M\$)∩C3,α1−q(M\$) such that (ĥ, v̂) = (h, v)+(LX ḡ, X(ū))

satisfies LG(ĥ, v̂) = 0 in M \ $ and (ĥ, v̂) is analytic in Int(M \ $).
(2) Furthermore, if an open subset %̂ ⊂ % is an analytic hypersurface, then (ĥ, v̂) is

analytic up to %̂.

Proof The existence of X is by Item (2) in Lemma 3.9. It remains to argue that (ĥ, v̂)
is analytic. By [32] (or Theorem B.3 below), there is an analytic atlas of Int M such
that (ḡ, ū) is analytic. Since LG(h, v) is elliptic by Lemma 3.10, by elliptic regularity
[31, Theorem 6.6.1], we see that (h, v) is analytic in Int(M \ $). If the portion %̂ of
the boundary is analytic, then (h, v) is analytic up to %̂ by [31, Theorem 6.7.6′]. ⊓⊔

4 Static Regular and “Trivial” Kernel

Throughout this section, we fix a background asymptotically flat, static vacuum triple
(M, ḡ, ū) with ū > 0. Recall the assumptions on $,% in Notation in Sect. 1. In
particular, M \ $ = M \$ is a proper subset of Int M . All geometric quantities (e.g.,
covariant derivatives, curvatures) are computed with respect to ḡ and linearization are
taken at (ḡ, ū). We often skip labelling the subscripts in ḡ or (ḡ, ū) when the context
is clear.

We recall the linearized operator L defined by (3.7). The goal of this section is to
prove Theorem 5. It follows directly from Theorem 5′ and Corollary 4.1 below.

Theorem 5′ Let (M, ḡ, ū) be an asymptotically flat, static vacuum triple with ū > 0.
Let %̂ be a nonempty, connected, open subset of % with π1(M \ $, %̂) = 0. Let
(h, v) ∈ C2,α−q (M \$) satisfy L(h, v) = 0 with either one of the following conditions:

(1)

v = 0,
(
ν′(h)

)
(ū)+ ν(v) = 0, A′(h) = 0 on %̂. (4.1)

(2) %̂ is an analytic hypersurface and

A′(h) = 0,
(
Ric′(h)

)ᵀ = 0,
(
(∇k

ν Ric)
′(h)
)ᵀ = 0 on %̂

for all positive integers k.
(4.2)
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Then (h, v) =
(
LX ḡ, X(ū)

)
for some X ∈ X (M \ $).

Recall Definition 4 for static regular of type (I) and type (II). We get the following
consequence from the above theorem, which completes the proof of Theorem 5.

Corollary 4.1 Let (M \ $, ḡ, ū) be static vacuum with ū > 0.

(1) If % is static regular in (M \ $, ḡ, ū) of either type (I) or type (II), then

Ker L =
{(

LX ḡ, X(ū)
)
: X ∈ X (M \ $)

}
. (4.3)

(2) If (4.3) holds, then

Ker LG =
{(

LX ḡ, X(ū)
)
: X ∈ XG(M \ $)

}
,

and thus dimKer LG = N.
(3) If (h, v) =

(
LX ḡ, X(ū)

)
for some vector X in M \$ with X = 0 on %̂, then both

(4.1) and (4.2) hold everywhere on %̂, i.e. those boundary conditions (4.1) and
(4.2) are “gauge invariant”.

Proof We prove Item (2). By Item (1) in Lemma 3.9, we have Ker LG ⊆ Ker L and
thus together with (4.3)

Ker LG ⊆
{(

LX ḡ, X(ū)
)
: X ∈ XG(M \ $)

}
.

The opposite inclusion follows (3.10).
We verify in Item (3). Clearly, X(ū) = 0 on %̂. We then verify

(
(∇k

ν Ric)
′(LX ḡ)

)ᵀ

= 0, and the rest equalities can be verified similarly. For ea, eb tangential to %̂,

(
(∇k

ν Ric)
′(LX ḡ)

)
(ea, eb)

=
(
LX (∇k

ν Ric)
)
(ea, eb)

=
(
∇X (∇k

ν Ric)
)
(ea, eb)+

(
∇k

ν Ric
)
(∇ea X , eb)+

(
∇k

ν Ric
)
(ea,∇eb X)

= 0.

⊓⊔

We shall refer to Condition (1) in Theorem 5′ as the Cauchy boundary condition
and to Condition (2) as the infinite-order boundary condition. We prove Theo-
rem 5′ for the Cauchy boundary condition and the infinite-order boundary condition
respectively in Sects. 4.1 and 4.2 below. In both sections, we observe that to show
(h, v) = (LX ḡ, X(ū)), it suffices to show h by itself is LX ḡ.

Lemma 4.2 Let (M \$, ḡ, ū) be static vacuum with ū > 0 and (h, v) ∈ C2,α−q (M \$).
Suppose h = LX ḡ for some locally C3 vector field X in M \ $. Then the following
holds.
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(1) X − Z ∈ C3,α1−q(M \ $) where Z ∈ Z .
(2) If hᵀ = 0, H ′(h) = 0 on % and X = 0 in an open subset of %, then X ≡ 0 on %

and thus X ∈ X (M \ $).
(3) If S′(h, v) = 0 in M \ $, then v = X(ū) in M \ $.

Consequently, if L(h, v) = 0 and h = LX ḡ for some vector field X ∈ C3,αloc (M \ $)

with X = 0 in an open subset of %, then X ∈ X (M \ $) and (h, v) = (LX ḡ, X(ū)).

Remark 4.3 It is clear in the following proof that the assumption X = 0 in an open
subset of % in Item (2) can be replaced by a weaker assumption that X along %

vanishes at infinite order at some point p ∈ %.

Proof To prove Item (1), we first recall (2.8) that

Xi; jk = −Rℓk ji Xℓ + 1
2 (hi j;k + hik; j − h jk;i ).

In an asymptoticallyflat end, letγ (t), t ∈ [1,∞), be a radial geodesic ray, parametrized
by arc length, that goes to infinity. Note that by asymptotical flatness, the parameter t
and |x | are comparable, i.e. C−1|x | ≤ t ≤ C |x | for some positive constant C . Then
the previous identity implies that, along γ (t),

d2

dt2
X(γ (t)) = B(t)X(γ (t))+ D(t)

where the coefficientmatrix B(t) is the restriction of the curvature tensorRm(γ (t)) and
D(t) is the restriction∇h(γ (t)). Consequently, B(t) = O(t−q−2), D(t) = O(t−q−1).
By elementary ODE estimates, we have |X | + t |X ′| ≤ Ct for some constant C . (See,
for example, [23, Lemma B.3], where the homogeneous case B = 0 was proved, but
a similar argument extends to our inhomogeneous case here.) By varying geodesic
rays, we obtain X = O3,α(|x |). Together with the elliptic equation!X +Ric(X , ·) =
−βh ∈ C1,α−q−1(M \ $) and harmonic expansion, it implies that

Xi − ci j x j ∈ C3,α1−q(M \ $)

for some constants ci j . Using that LX ḡ = h = O(|x |−q), the leading term of X must
correspond to a rotation vector (or zero). This gives the desired asymptotics.

To prove Item (2), we decompose X = ην + Xᵀ on % where Xᵀ is tangent to %.
Recall

(LX ḡ)ᵀ = 2ηA + LXᵀ ḡᵀ

H ′(LX ḡ) = −!%η − (|A|2 + Ric(ν, ν))η + Xᵀ(H).
(4.4)

The assumptions (LXg)ᵀ = 0 and H ′(LX ḡ) = 0 imply that η, Xᵀ satisfy a linear
2nd-order elliptic system on %:

!%Xᵀ + Ric%(Xᵀ, ·)+ 2β%(ηA) = 0

!%η +
(
|A|2 + Ric(ν, ν)

)
η − Xᵀ(H) = 0.
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The first equation is exactly β%(LXᵀ ḡᵀ + 2ηA) = 0, which follows the assumption
(LXg)ᵀ = 0 and the first equation in (4.4), where β% denotes the tangential Bianchi
operator, i.e., β%τ = − div% τ + 1

2d%(tr% τ ). By unique continuation, both η, Xᵀ are
identically zero on %.

To prove Item (3), using h = LX ḡ and noting S′(LX ḡ, X(ū)
)
= 0, we obtain

0 = S′(h, v) − S′(LX ḡ, X(ū)
)
= S′(0, v − X(ū)) = 0 in M \ $.

Let f := v−X(ū). The previous identity implies− f Ric+∇2 f = 0 inM \$. Noting
f (x) → 0 at infinity because both v, X(ū) → 0 (by Item (1)), we can conclude f ≡ 0
(see, for example, [23, Proposition B.4]). ⊓⊔

4.1 Cauchy Boundary Condition

In this section, we assume (h, v) ∈ C2,α−q (M \ $) satisfies L(h, v) = 0 and

v = 0,
(
ν′(h)

)
(ū)+ ν(v) = 0, A′(h) = 0 on %̂, (4.5)

where %̂ is a connectedopen subset of% satisfyingπ1(M\$, %̂) = 0. Since L(h, v) =
0 implies hᵀ = 0, H ′(h) = 0 on%, all those boundary conditions together are referred
to as the Cauchy boundary condition. The reason is that if h satisfies the geodesic
gauge, then hᵀ = 0, A′(h) = 0 imply

h = 0, ∇h = 0 on %̂ (4.6)

while v = 0,
(
ν′(h)

)
(ū)+ ν(v) = 0 imply

v = 0, ν(v) = 0 on %̂. (4.7)

Since (h, v) satisfies a system of 2nd-order partial differential equations, the condi-
tions (4.6) and (4.7) are precisely the classical Cauchy boundary condition. However,
Theorem 5′ does not follow from the classical theorem on uniqueness because the
system L(h, v) is not elliptic under the geodesic gauge.

We outline the proof below. We first show that h is “locally trivial” in the sense
that h = LX ḡ in some open subset of M , achieved by suitably extending (h, v) across
%̂. Then we would like to show that h must be globally trivial. In general, a locally
trivial h need not be globally trivial, but here we know h is analytic (after changing to
the static-harmonic gauge), so we can use Theorem 9. To carry out the argument, it is
important to work with the appropriate gauge at each step of the proof.

Proof of Theorem 5’ (under Cauchy boundary condition) We without loss of generality
assume that (h, v) satisfies the geodesic gauge, and thus we have

h = 0, ∇h = 0, v = 0, ν(v) = 0 on %̂ (4.8)
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as discussed earlier. We then extend (h, v) by (0, 0) across %̂ into some small open
subset U ⊂ $ ∩ Int M and U ∩ (M \ $) is exactly the closure of %̂. Denote the C1
extension pair by (ĥ, v̂):

(ĥ, v̂) =
{
(h, v) in M \ $

(0, 0) in U
. (4.9)

Here, the open subsetU is chosen sufficiently small such that the “extended”manifold

M̂ = (M \ $) ∪U

has a smooth embedded hypersurface boundary ∂ M̂ and π1(M̂,U ) = 0 based on the
assumption π1(M \ $, %̂) = 0. Note that M̂ is a closed, proper subset of Int M .

Using the Green-type identity (2.4), we verify that (ĥ, v̂) solves S′(ĥ, v̂) = 0 in
M̂ weakly, which is equivalent to showing that P(ĥ, v̂) = 0 weakly: For (k, w) ∈
C∞
c (M̂), we have

∫

M̂
(ĥ, v̂) · P(k, w) dvol =

∫

M\$
(ĥ, v̂) · P(k, w) dvol

=
∫

M\$
P(ĥ, v̂) · (k, w) dvol

+
∫

%̂
Q(h, v) ·

(
kᵀ, H ′(k)

)
dσ

−
∫

%̂
Q(k, w) ·

(
hᵀ, H ′(h)

)
dσ

=
∫

M\$
P(ĥ, v̂) · (k, w) dvol

where the boundary terms vanish because (4.8) (also note that (k, w) on% is supported
in %̂). Then we solve for Y ∈ C1,α1−q(M̂) with Y = 0 on ∂ M̂ such that

(h̃, ṽ) := (ĥ, v̂)+
(
LY ḡ,Y (ū)

)
(4.10)

weakly solves the static-harmonic gauge G(h̃, ṽ) = 0 in M̂ . Then (h̃, ṽ) is a solution
to the elliptic system LG(h̃, ṽ) = 0, and hence (h̃, ṽ) ∈ C2,α−q (M̂) by elliptic regularity.
By Corollary 3.11, (h̃, ṽ) is analytic in Int M̂ , and note (h̃, ṽ) = (LY ḡ, Y (ū)) in U .
Applying Theorem 9 to the analytic manifold (M̂, ḡ) and analytic h̃, the vector field
Y |U restricted inU extends to a vector field Ỹ in M̂ that is h̃-Killing in M̂ with Ỹ = Y
in U .

Denote X = Ỹ −Y in M̂ . Then X is ĥ-Killing in M̂ by (4.10). Thus, X is h-Killing
in M \ $ by (4.9) with X = 0 on an open subset of %̂ ⊂ %. By Lemma 4.2, we
conclude that X ∈ X (M \ $) and (h, v) = (LX ḡ, X(ū)). ⊓⊔
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4.1.1 Relaxed Cauchy Boundary Condition

In this subsection, we note that the condition
(
ν′(h)

)
(ū) + ν(v) = 0 in (4.5) can be

replaced or removed under mild assumptions as noted in Item (2) in Remark 1.1. For
the rest of this section, we denote

(ν(u))′ =
(
ν′(h)

)
(ū)+ ν(v)

since the right hand side is exactly the linearization of ν(u) on %.
We begin with general properties. It is well-known that a static vacuummetric ḡ has

a Schwarzschild expansion in the harmonic coordinates [18]. We show that a similar
expansion holds for the static vacuum deformation.

Lemma 4.4 Let (M, ḡ, ū) be a static vacuum triple with ū > 0. Let (h, v) ∈ C2,α−q (M \
$) be a static vacuum deformation.

(1) Suppose G′(h, v) = 0. Then (h, v) has the following expansions near infinity:

hi j (x) = 2
n−2cδi j |x |2−n + O2,α(|x |max{−2q,1−n})

v(x) = −c|x |2−n + O2,α(|x |max{−2q,1−n})

for some real number c.
(2) Suppose hᵀ = 0 and H ′(h) = 0 on %. Then v(x) = O2,α(|x |max{−2q,1−n}). (Note

that G′(h, v) = 0 is not assumed here.)

Proof We prove Item (1). By (3.9), the assumption S′(h, v) = 0 and G′(h, v) = 0
imply that (h, v) satisfies!h,!v ∈ O2,α(|x |−2−2q). Thus, h and v have the harmonic
expansions (see [12, Theorem 1.17]) for some real numbers ci j and c:

hi j = 2
n−2ci j |x |2−n + O2,α(|x |max{−2q,1−n})

v = −c|x |2−n + O2,α(|x |max{−2q,1−n}).

To see that ci j = cδi j , we compute

0 = (G′(h, v)) j =
∑

i

(
−hi j,i + 1

2hii, j
)
+ v, j + o(|x |1−n)

=
(
2
∑

i

ci j xi −
∑

i

cii x j + (n − 2)cx j
)
|x |−n + o(|x |1−n).

A direct computation gives the desired identity.
For Item (2), we use Lemma 3.9 to find X ∈ X (M \ $) ∩ C3,α1−q(M \ $) such that

G′(h + LX ḡ, v + X(ū)
)
= 0 and apply Item (1) to obtain

(h + LX ḡ)i j = 2
n−2cδi j |x |2−n + O2,α(|x |max{−2q,1−n})

v + X(ū) = −c|x |2−n + O2,α(|x |max{−2q,1−n})
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for some real number c. Use the boundary condition and apply Lemma 2.3 to
(
h +

LX ḡ, v+ X(ū)
)
, we compute c = 0. Since X(ū) is of the order O(|x |−2q), the result

follows. ⊓⊔

In the next lemma, we derive the “hidden” boundary conditions for (h, v) satisfying
L(h, v) = 0.

Lemma 4.5 (Hidden boundary conditions) Let %̂ be an open subset of %. Suppose
(h, v) ∈ C2,α−q (M \ $) satisfy

S′(h, v) = 0 in a collar neighborhood U of %̂ in M \ $
{
hᵀ = 0
H ′(h) = 0

on %̂.

Then the following equations hold on %̂:

!%v + (ν(u))′H + vRic(ν, ν) − ū A′(h) · A = 0 (4.11)

A(∇%v, ·)+ A′(h)(∇% ū, ·)+ ū div% A′(h) − d%

(
(ν(u))′

)
+ vRic(ν, ·) = 0.

(4.12)

Consequently,

(1) Suppose v = 0 and A′(h) = 0 on %̂. Then (ν(u))′H ≡ 0 on %̂.
(2) Suppose %̂ = %, v = 0, A′(h) = 0 on %, and S′(h, v) = 0 everywhere in M \$.

Then (ν(u))′ ≡ 0 on %.

Proof Let X be a vector field with support inU and with support in %̂ when restricted
on %. Let (k, w) = (LX ḡ, X(ū)) in (2.4). Since both (h, v) and (k, w) are static
vacuum deformations in U and h satisfies (hᵀ, H ′(h)) = 0 on %̂, we get

∫

%

〈
Q(h, v),

(
(LX ḡ)ᵀ, H ′(LX ḡ)

)〉
dσ = 0.

Using again the boundary condition of h, we get

Q(h, v) =
(
vA + ū A′(h) − (ν(u))′ḡᵀ, 2v

)
on %̂.

Write X = ην + Xᵀ for a scalar function η and Xᵀ tangent to % and recall (4.4):

(LX ḡ)ᵀ = 2ηA + LXᵀ ḡᵀ

H ′(LX ḡ) = −!%η −
(
|A|2 + Ric(ν, ν)

)
η + Xᵀ(H).
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By choosing Xᵀ ≡ 0, we get

0 =
∫

%

〈(
vA+ū A′(h)−(ν(u))′ḡᵀ, 2v

)
,
(
2ηA,−!%η−

(
|A|2+Ric(ν, ν)

)
η
)〉

dσ

=
∫

%
2η
(
v|A|2 + ū A′(h) · A − (ν(u))′H − !%v − (|A|2 + Ric(ν, ν))v

)
dσ .

Simplifying the integrand and choosing arbitrary η supported in %̂, we prove (4.11).
For (4.12), we let η ≡ 0

0 =
∫

%

〈(
vA + ū A′(h) − (ν(u))′gᵀ, 2v

)
,
(
LXᵀ ḡᵀ, Xᵀ(H)

)〉
dσ .

Applying integration by part and letting Xᵀ vary, we get, on %̂,

0 = A(∇%v, ·)+ v div% A + A′(h)(∇% ū, ·)+ ū div% A′(h) − d%(ν(u))′ − vdH

= A(∇%v, ·)+ A′(h)(∇% ū, ·)+ ū div% A′(h) − d%(ν(u))′ + vRic(ν, ·)

where we use the Codazzi equation.
Item (1) follows directly from (4.11) by letting v = 0 and A′(h) = 0.
For Item (2), we have d%(ν(u))′ = 0 and hence (ν(u))′ = c on % for some real

number c from (4.12). The assumption S′(h, v) = 0 in M \ $ says that

!v +
(
!′(h)

)
ū = 0 in M \ $.

We integrate and apply divergence theorem (recall ν on % points to infinity) and
Lemma 4.6 below to get

0 =
∫

M\$

(
!v +

(
!′(h)

)
ū
)
dvol

= −
∫

%

(
ν(v)+

(
ν′(h)

)
ū
)
dσ = −

∫

%
(ν(u))′ dσ ,

which implies (ν(u))′ = 0 on%, wherewe use
∫
S∞ ν(v) = 0 by Item (2) in Lemma 4.4

and the integral formula (4.13)

∫

M\$
(!′(h))ū dvol = −

∫

%

(
ν′(h)

)
ū dσ

proven in the next lemma. ⊓⊔
Recall the formulas (A.8) and (A.9): for a scalar function f ,

(
!′(h)

)
f = −hi j f;i j + ḡi j

(
−(div h)i + 1

2 (tr h);i
)
f, j

ν′(h) = − 1
2h(ν, ν)ν − ḡabω(ea)eb
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where ω(·) = h(ν, ·) and the indices are raised by ḡ.

Lemma 4.6 Let h ∈ C2,α−q (M \$) be a symmetric (0, 2)-tensor. Given a scalar function
f , define the covector W f = −h(∇ f , ·)+ 1

2 (d f ) tr h. Then

(
!′(h)

)
f + 1

2 (! f ) tr h = divW f in M \ $,

and if we further assume that tr% h = 0 on %, then

(
ν′(h)

)
f = W f (ν) on %.

Consequently, if f is harmonic and is of the order O1(|x |−q), then

∫

M\$

(
!′(h)

)
f dvol = −

∫

%

(
ν′(h)

)
f dσ. (4.13)

Proof Compute at a point with respect to normal coordinates of ḡ:

divW f = (W f )i;i = − f; j i hi j − f j hi j;i + 1
2 (! f ) tr h + 1

2 f;i (tr h);i .

It gives the first identity. For the second identity,

W f (ν) = −h(∇ f , ν)+ 1
2ν( f ) tr h

= −h(ν, ν)ν( f ) − h(∇% f , ν)+ 1
2ν( f ) h(ν, ν)

= − 1
2h(ν, ν)ν( f ) − h(∇% f , ν).

If f is harmonic, we have

∫

M\$

(
!′(h)

)
f dvol =

∫

M\$
divW f dvol

= −
∫

%
W f (ν) dσ

= −
∫

%

(
ν′(h)

)
f dσ

where the boundary term at infinity vanishes because ∇ f = O(|x |−q−1) and thus
W f ∈ O(|x |−2q−1). ⊓⊔

4.2 Infinite-Order Boundary Condition

In this section, we assume (h, v) ∈ C2,α−q (M \ $) and (h, v) satisfies

A′(h) = 0,
(
Ric′(h)

)ᵀ = 0,
(
(∇k

ν Ric)
′(h)
)ᵀ = 0 on %̂
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for all positive integers k, where %̂ satisfies π1(M \ $, %̂) = 0 and %̂ is an analytic
hypersurface. It is worth noting that above boundary conditions are imposed only on
h (not on v at all).

The following lemma justifies the term “infinite-order” boundary condition. Recall
that a symmetric (0, 2)-tensor h is said to satisfy the geodesic gauge in a collar neigh-
borhoodof %̂ if h(ν, ·) = 0 in the collar neighborhood,where ν is the parallel extension
of the unit normal to %̂.

Proposition 4.7 Fix an integer ℓ ≥ 0. Suppose h ∈ Cℓ+2,α(M \ $) satisfies the
geodesic gauge in a collar neighborhood of %̂. Then the following two boundary
conditions are equivalent

(1) For all k = 0, 1, . . . , ℓ,

hᵀ = 0, A′(h) = 0,
(
(∇k

ν Ric)
′(h)
)ᵀ = 0 on %̂.

Here, we interpret the 0-th covariant derivative as (∇0
ν Ric)

′(h) = Ric′(h).
(2) For all k = 0, 1, . . . , ℓ,

h = 0, ∇h = 0, ∇k+2h = 0 on %̂.

Proof It is clear that Item (2) implies Item (1) by the formulas of A′(h) and Ric′(h) in
(A.10) and (A.6). The rest of proof is devoted to prove that Item (1) implies Item (2).

We compute with respect to an orthonormal frame {e0, e1, . . . , en−1}where e0 = ν

parallel along itself. In the following computations, we let i, j, k1, . . . , kℓ, kℓ+1 ∈
{0, 1, . . . , n − 1} denote all directions and let a, b, c ∈ {1, . . . , n − 1} denote only the
tangential directions. Since h satisfies the geodesic gauge in a collar neighborhood of
%, h0i and any covariant derivatives of h0i vanish in the neighborhood.

Already noted in (4.6), from hᵀ = 0, A′(h) = 0 and geodesic gauge, we have
h = 0,∇h = 0 on %. We will prove inductively in ℓ.

First, for ℓ = 0, we have h = 0, ∇h = 0,
(
(Ric′)(h)

)ᵀ = 0 on %̂. We would like to
show that ∇2h = 0 on %̂. By geodesic gauge, we automatically have ∇2h(ν, ei ) = 0.
Since ∇h = 0, we have ∇ea∇h = 0 and ∇ν∇ea h = ∇ea∇νh + Rm ◦ h = 0. To
summarize, when expressed in the local frame, we already have

h0 j;k1k2 = 0, hi j;k1a = 0, hi j;ak1 = 0 on %̂.

Therefore, it remains to show that (∇ν∇νh)ᵀ = 0; namely hab;00 = 0. Recall the
formula of Ric′(h) from (A.6), restricted on the tangential vectors ea, eb:

Ric′(h)ab = − 1
2hab;i i + 1

2 (hai;ib + hbi;ia) − 1
2hii;ab

+ 1
2 (Rai h jb + Rbi h ja) − Rai jbhi j .

(4.14)

Since 0 = Ric′(h)ab = − 1
2hab;00, we obtain ∇2h = 0 on %̂.

We proceed inductively in ℓ > 0. Suppose that Item (1) holds for k = 0, 1, . . . , ℓ
and that we already have h = 0,∇h = 0,∇k+2h = 0 on %̂ for k = 0, 1, . . . , ℓ − 1.

123



6 Page 34 of 57 Z. An, L-H. Huang

We would like to derive ∇ℓ+2h = 0 on %̂. We compute ∇ℓ+2h in the following three
cases according to the location of ν:

(∇ℓ+2
arbitraryh)(ν, ei ) = h0i;k1···kℓ+1 = 0 (by geodesic gauge)

(∇tangential∇ℓ+1
arbitraryh)(ea, eb) = hab;k1k2···kℓc

=
(
hab;k1k2···kℓ

)
,c + (Christoffel symbols) ◦ ∇ℓ+1h

= 0 (by the inductive assumption ∇ℓ+1h = 0 on %̂),

It remains to compute (∇ν∇ℓ+1
arbitraryh)(ea, eb) = 0. If any of those ‘arbitrary’ covariant

derivatives is tangential, we can as before commute the derivatives to express it in the
form (∇tangential∇ℓ+1

arbitraryh)(ea, eb) plus the contraction between curvature tensors of ḡ and
derivatives of h in the order ℓ + 1 or less. Therefore, it suffices to show

(∇ℓ+2
ν h)(ea, eb) = 0, or in the local frame hab; 0 · · · 0︸ ︷︷ ︸

ℓ+2−times

= 0. (4.15)

To prove (4.15), note that from (4.14), we exactly have

(∇ℓ
ν (Ric

′(h))
)
(ea, eb) = − 1

2hab; 0 · · · 0︸ ︷︷ ︸
ℓ+2−times

on %̂

because all other terms vanish there. We claim that6 for each i = 0, 1, . . . , ℓ:

(∇ℓ
νRic)

′(h) = ∇ℓ−i
ν

(
(∇ i

νRic)
′(h)
)

on %̂ (4.16)

provided h = 0,∇h = 0, . . . ,∇ℓ−i h = 0 on %̂.
Once the claim is proven, together with the assumption

(
(∇ℓ

νRic)
′(h)
)ᵀ = 0 on %̂

and the above computations, we conclude ∇ℓ+2h = 0 on %̂ and complete the proof.

Proof of Claim Let g(s)be a differentiable family ofmetricswith g(0) = ḡ and g′(0) =
h. By definition,

(∇ℓ
νRic)

′(h) = d
ds

∣∣
s=0

(
∇ℓ

νg(s)
Ricg(s)

)

where ∇νg(s) is the g(s)-covariant derivative in the unit normal νg(s). When the s-
derivative falls on ∇ i

νRicg(s), we get the desired term ∇ℓ−i
ν

(
∇ i

νRic)
′(h)
)
. It suffices

to see that those terms involving the s-derivative on one of the covariant derivative
∇νg(s) must vanish. It follows that d

ds

∣∣
s=0 ∇νg(s) is a linear function in only h and ∇h.

So d
ds

∣∣
s=0 ∇ℓ−i

νg(s)
is a linear function in h and the derivatives of h up to the (ℓ − i)th

order, and thus it vanishes on %̂. We prove the claim. ⊓⊔

6 The notations unfortunately become overloaded. Recall that (∇ℓ
νRic)

′(h) denotes the linearized ∇ℓ
νRic,

and note ∇ℓ
ν (Ric

′(h)) represents the ℓth covariant derivative in ν of Ric′(h). The claimed identity says that
“taking the ν-covariant derivative” and “linearizing” are commutative under the assumption of h.
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Remark 4.8 Wewill not use the following fact, but nevertheless it is interesting to note
that, using similar computations, both items in Proposition 4.7 are equivalent to the
condition: for k = 1, . . . , ℓ,

hᵀ = 0, A′(h) = 0, (∇k
ν A)

′(h) = 0 on %̂

where the second fundamental form A is defined in the neighborhood as the second
fundamental form of equidistant hypersurfaces to %̂.

Proof of Theorem 5′ (under infinite-order boundary condition) Without loss of general-
ity, we may assume (h, v) satisfies the static-harmonic gauge.

Note that %̂ is analytic and (ḡ, ū) is analytic in some local coordinate chart
{x1, . . . , xn} near %̂ by Theorem B.3. By Corollary 3.11, (h, v) is analytic up to
%̂ in {x1, . . . , xn}. Then by Corollary 2.9, there is an analytic vector field Y in a collar
neighborhoodU of %̂ with Y = 0 on %̂ such that ĥ := h − LY ḡ satisfies the geodesic
gauge in U . In particular, ĥ is analytic.

Recall that h satisfies the infinite-order boundary condition. Item (3) inCorollary 4.1
says that subtracting the “gauge” term LY ḡ does not affect the infinite-order boundary
condition, so ĥ obtained above also satisfies the infinite-order boundary condition.
Applying Proposition 4.7 to ĥ, we see that ĥ vanishes at infinite order toward %̂, and
thus ĥ ≡ 0 by analyticity. We then conclude h ≡ LY ḡ in U . Applying Theorem 9,
there is a global vector field X so that X = Y in U , X = 0 on %̂, and LX ḡ = h in
M \ $. By Lemma 4.2, X ∈ X (M \ $) and v = X(ū). It completes the proof. ⊓⊔

5 Existence and Local Uniqueness

In this section, we prove Theorem 3. We restate the theorem and also spell out the
precise meaning of “geometric uniqueness” and “smooth dependence” of the theorem.
Recall the diffeomorphism group D(M \ $) in Definition 2.1.

Theorem 5.1 Let (M, ḡ, ū) be an asymptotically flat, static vacuum with ū > 0. Sup-
pose for L defined on M \ $

Ker L =
{
(LX ḡ, X(ū)) : X ∈ X (M \ $)

}
. (5.1)

Then there exist positive constants ϵ0,C such that for each ϵ ∈ (0, ϵ0), if (τ,φ)
satisfies ∥(τ,φ) − (gᵀ, H)∥C2,α(%)×C1,α(%) < ϵ, there exists an asymptotically flat,
static vacuumpair (g, u) that satisfies both the static-harmonic and orthogonal gauges
with ∥(g, u) − (ḡ, ū)∥C2,α

−q (M\$)
< Cϵ solving the boundary condition (gᵀ, Hg) =

(τ,φ) on %, and the solution (g, u) depends smoothly on the Bartnik boundary data
(τ,φ).

Furthermore, the solution (g, u) is locally, geometrically unique. Namely, there is
a neighborhood U ⊂ M(M \ $) of (ḡ, ū) and D0 ⊂ D(M \ $) of the identity map
IdM\$ such that if (g1, u1) ∈ U is another static vacuum pair with the same boundary
condition, there is a unique diffeomorphismψ ∈ D0 such that (ψ∗g1,ψ∗u1) = (g, u)
in M \ $.
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Recall the operators T , T G, L, LG defined in (1.2), (3.6), (3.7), and (3.8) respec-
tively. The proof of Theorem 5.1 is along a similar line as the special case for Euclidean
(ḡ, ū) = (gE, 1) considered in [9]. We outline the proof: Under the “trivial” kernel
assumption (5.1) and by Corollary 4.1, Ker LG is the N -dimensional space

Ker LG =
{(
LX ḡ, X(ū)

)
: X ∈ XG(M \ $)

}
.

Since the operator LG is Fredholm of index zero by Lemma 3.10, the cokernel of LG

must be also N -dimensional. In Lemma 5.2 below, we explicitly identify the cokernel
by (2.7) in Proposition 2.6. From there, we construct a modified operator T G whose
linearization LG is an isomorphism in Proposition 5.4.

Lemma 5.2 Under the same assumptions as in Theorem 5.1, we have

(Range LG)⊥ = Q

whereQ consists of elements κ(X) ∈
(
C0,α−q−2(M \$)× C1,α(%)×B(%)

)∗ (the dual
space) where

κ(X) =
(
2β∗X− ū−1X(ū)ḡ,− div X + ū−1X(ū),

(
− 2ūβ∗X + X(ū)ḡ

)
(ν, ·), 0, 0

)

for X ∈ XG(M \ $). Recall β∗ = β∗
ḡ defined by (A.2).

Furthermore, the codomain of LG can be decomposed as

Range LG ⊕ ηQ (5.2)

where ηQ =
{
ηκ(X) : κ(X) ∈ Q

}
and η is a positive smooth function on M \ $

satisfying η = 1 near % and η(x) = |x |−2 outside a compact set.

Remark 5.3 Recall the definition of κ0(g, u, X) in (2.6). The first two components of
κ(X) above are exactly κ0(ḡ, ū, X).

Proof All the geometric operators are with respect to ḡ in the proof. By Corollary 4.1,
dim Ker LG = N . Since LG has Fredholm index zero by Lemma 3.10 and dimQ = N ,
we just need to showQ ⊆ (Range LG)⊥. Namely, we will show

〈
LG(h, v), κ(X)

〉
L2 =

0 for any (h, v) and X ∈ XG(M \ $), where ⟨·, ·⟩L2 denotes the component-wise
(standard) L2-inner product.
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Since S′(h, v) is L2-orthogonal to κ0(ḡ, ū, X) by (2.7) in Proposition 2.6, we can
reduce the computation as follows, where we denote by Z = G′(h, v):

〈
LG(h, v), κ(X)

〉
L2

=
∫

M\$

〈(
− ūDZ ,−Z(∇ū)

)
,
(
2β∗X − ū−1X(ū)ḡ, − div X + ū−1X(ū)

)〉
dvol

+
∫

%

(
− 2ūβ∗X + X(ū)ḡ

)(
ν, Z

)
dσ

=
∫

M\$
Z
(
div
(
2ūβ∗X − X(ū)ḡ

)
−
(
− div X + ū−1X(ū)

)
dū
)
dvol

where we apply integration by parts in the last identity and note that the boundary
terms on % cancel. The last integral is zero because

div
(
2ūβ∗X − X(ū)ḡ

)
−
(
− div X + ū−1X(ū)

)
dū

= 2ū div β∗X − d
(
X(ū)

)
+ 2β∗X(∇ū, ·) −

(
− div X + ū−1X(ū)

)
dū

= 2ū div β∗X − d
(
X(ū)

)
+ LX ḡ(∇ū, ·) − ū−1X(ū)dū

= ū
(
2 div β∗X − ū−1d

(
X(ū)

)
+ ū−1LX ḡ(∇ū, ·) − ū−2X(ū)dū

)

= −ū 7(X) = 0

where in the second equality we use 2β∗X(∇ū, ·) = LX ḡ(∇ū, ·) − div Xdū by
definition, and in the last line we use 2 div β∗X = −βLX ḡ and the definition of 7

(see either (3.1) or (3.2)).
The previous identity also implies that Range LG∩ηQ = 0. To see that, let ηκ(X) ∈

Range LG ∩ ηQ. Then we have ⟨ηκ(X), κ(X)⟩L2 = 0, and thus κ(X) ≡ 0.
We verify (5.2). With respect to the weighted inner product L2

η, we denote by
κ1, . . . , κN an orthonormal basis ofQ. For any element f in the codomain of LG, one
can verify that

f − η

N∑

ℓ=1

aℓκℓ ∈ Q⊥ = Range LG

where the numbers aℓ = ⟨ f , κℓ⟩L2 . We also use that Range LG is a closed subspace,
and hence Q⊥ = ((Range LG)⊥)⊥ = Range LG. We get the desired decomposition.

⊓⊔

Let ρ be the weight function in Definition 3.5. Define a complement to Ker LG in
C2,α−q (M) by

E =
{
(h, v) :

∫

M\$

〈
(h, v),

(
LX ḡ, X(ū)

)〉
ρ dvol = 0 for all X ∈ XG(M \ $)

}
.
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In other words, (h, v) ∈ E if and only if (ḡ+ h, ū + v) satisfies the orthogonal gauge
(recall Definition 3.5).

To summarize, we have decomposed the domain and codomain of LG by

LG : E ⊕ Ker LG −→ Range LG ⊕ ηQ.

Similarly as in [9, Section 4.3], we define the modified operator T G as

T G(g, u,W ) =
⎧
⎨

⎩

−uRicg + ∇2
gu − uDgG(g, u) − η

(
2β∗

gW − u−1W (u)g
)

!gu − G(g, u)(∇gu)+ η
(
divg W − u−1W (u)

)

7(g,u)(W )+
(
− Ricg + u−1∇2

gu
)
(W , ·)

in M \ $

⎧
⎨

⎩

G(g, u)+
(
2uβ∗

gW − W (u)g
)
(νg, ·)

gᵀ
Hg

on %

where 7(g,u)(W ) is as in (3.4). The operator T G is defined on the function space of
(g, u) ∈ U andW ∈ X̂ . Here,U =

(
(ḡ, ū)+E

)
∩M(M\$) consists of asymptotically

flat pairs satisfying the orthogonal gauge. The linear space X̂ is defined similarly as
X (M \ $), with the only difference in regularity.7 Explicitly,

X̂ =
{
X ∈ C2,αloc (M \ $) : X = 0 on % and X − Z = O2,α(|x |1−q) for some Z ∈ Z

}
.

In other words, X (M \ $) can be view as a subspace of X̂ with C3,α regularity. With
the above choices of function spaces, we get

T G : U × X̂ −→ C0,α−q−2(M \ $) × C0,α−q−1(M \ $) × C1,α(%) × B(%).

(Note that we slightly abuse the notation and blur the distinction ofW and its covector
with respect g.)

Proposition 5.4 Under the same assumptions as in Theorem 5.1, we have

(1) T G is a smooth local diffeomorphism at (ḡ, ū, 0).
(2) If T G(g, u,W ) = (0, 0, 0, 0, τ,φ), then W = 0 and T G(g, u) = (0, 0, 0, τ,φ).

Proof We prove Item (1). Since in local coordinates T G(g, u,W ) can be expressed as
locally bounded, polynomials in ∂ i g, ∂ j u, ∂kW for i, j, k = 0, 1, 2, T G is a smooth
map. We show that the linearization of T G at (ḡ, ū, 0), denoted by LG, is an isomor-
phism, where

LG : E × X̂ −→ C0,α−q−2(M \ $) × C0,α−q−1(M \ $) × C1,α(%) × B(%).

7 The slight technicality arises to avoid a potential “loss of derivatives” issue. Some coefficients in the third
equation of TG are only C0,α , e.g. Ricg . If we use the space X (M \ $) (of C3,α-regularity) instead of X̂ ,

the codomain of the map may still be only in C0,α−q , and the map cannot be surjective.)
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For (h, v) ∈ E and X ∈ X̂ , LG(h, v, X) is given by

⎧
⎪⎪⎨

⎪⎪⎩

−ūRic′(h)+ (∇2)′(h)ū − vRic+ ∇2v − ūDG′(h, v) − η
(
2β∗X − ū−1X(ū)ḡ

)

!v + !′(h)ū − G′(h, v)(∇ū)+ η
(
div X − ū−1X(ū)

)
in M \ $

7(X)⎧
⎨

⎩

G′(h, v)+ (2ūβ∗X − X(ū)ḡ)(ν)
hᵀ
H ′(h)

on %.

Note that we use X to denote both the vector field and the dual covector, and in the
third component recall 7(X) defined (3.1). Observe that when dropping the third
component, we can understand LG(h, v, X) as the sum LG(h, v)+ ηκ(X).

We show that LG is an isomorphism. To see that LG is surjective: Since the third
component7(X) is surjective by Lemma 3.3, we just need to show that LG is surjective
onto other components for those X satisfying 7(X) = 0, i.e. X ∈ XG(M \ $). It is
equivalent to showing that LG(h, v) + ηκ(X) is surjective for (h, v) ∈ E and for
X ∈ XG(M \ $), which follows from Lemma 5.2. To see that LG is injective: If
(h, v) ∈ E and X ∈ X̂ solves LG(h, v, X) = 0, then LG(h, v) + ηκ(X) = 0 and
κ(X) ∈ Q, which implies LG(h, v) = 0 and κ(X) = 0 by the decomposition (5.2) in
Lemma 5.2. From there we can conclude (h, v) = 0 and X = 0.

For Item (2), suppose T G(g, u,W ) = (0, 0, 0, 0, τ,φ). Then

−uRicg + ∇2
gu − uDgG(g, u) = η

(
2β∗

gW − u−1W (u)g
)

!gu − G(g, u)(∇gu) = −η
(
divg W − u−1W (u)

)
.

We denote G = G(g, u) in the following computations. Pair the first equation with
2β∗

gW − u−1W (u)g and the second equation with −
(
divg W − u−1W (u)

)
:

∫

M\$
η
∣∣∣2β∗

gW − u−1W (u)g
∣∣2 + η

∣∣∣ divg W − u−1W (u)
∣∣2 dvolg

=
∫

M\$

〈(
− uRicg + ∇2

gu − uDgG,!gu − G(∇gu)
)
,

(
2β∗

gW − u−1W (u)g ,− divg W + u−1W (u)
)〉
dvolg

=
∫

M\$

〈(
− uDgG,−G(∇gu)

)
,
(
2β∗

gW − u−1W (u)g ,− divg W + u−1W (u)
)〉
dvolg

=
∫

%

〈
G,
(
2uβ∗

gW − W (u)g
)
(νg)

〉
dσg

=
∫

%
−|G|2 dσg

(
use − G =

(
2uβ∗

gW − W (u)g
)
(νg) from the equation for TG

)
.

In the above identities, we use that in the second equality the L2-pairing involving
(−uRicg+∇2

gu,!gu) is zero by (2.5). Then in the third equality we apply integration
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by parts and note that the integral over M \ $ is zero because

divg
(
u 2β∗

gW − W (u)g
)
−
(
− divg W + u−1W (u)

)
du

= 2u divg β∗
gW − d(W (u))+ LW g(∇gu, ·) − u−1W (u)du

= −u
(
βgLW g + u−1d(W (u)) − u−1LW g(∇gu, ·)+ u−2W (u)du

)

= −u
(

− !gW − u−1∇gW (∇gu, ·)+ u−2W (u)du +
(
− Ricg + u−1∇2

gu
)
(W )

)

= −u
(
7(g,u)(W )+

(
− Ricg + u−1∇2

gu
)
(W )

)

= 0

where we compute similarly as in (3.2) in the third equality and use T G(g, u,W ) =
(0, 0, 0, 0, τ,φ) in the last equality.

The previous integral identity implies 2β∗
gW − u−1W (u)g = 0 and divW −

u−1W (u) = 0, so we conclude W ≡ 0. ⊓⊔

Proof of Theorem 5.1 From Item (1) in Proposition 5.4, T G is a local diffeomorphism at(
(ḡ, ū), 0

)
. That is, there are positive constants ϵ0,C such that for every 0 < ϵ < ϵ0,

there is an open neighborhood U × V of
(
(ḡ, ū), 0

)
in
(
(ḡ, ū) + E

)
× X̂ with the

diameter less than Cϵ such that T G is a diffeomorphism from U ×V onto an open ball
of radius ϵ in the codomain of T G.

Therefore, given any (τ,φ) satisfying ∥(τ,φ)−(ḡᵀ, Hḡ)∥C2,α(%)×C1,α(%) < ϵ, there
exists a unique (g, u,W )with ∥(g, u)−(ḡ, ū)∥C2,α

−q (M\$)
< Cϵ and ∥W∥C2,α

1−q (M\$)
<

Cϵ satisfying

T G(g, u,W ) = (0, 0, 0, 0, τ,φ)

and depending smoothly on (τ,φ).
By Item (2) in Proposition 5.4, we have T G(g, u) = (0, 0, 0, τ,φ). By Lemma 3.8,

(g, u) satisfies the static-harmonic gauge and T (g, u) = (0, 0, 0, τ,φ). By the def-
inition of the complement space E and (g, u) ∈ (ḡ, ū) + E , (g, u) also satisfies the
orthogonal gauge. ⊓⊔
Remark 5.5 The constants ϵ0,C in the above proof depend on the global geometry %

in M \$. More precisely, by Inverse Function Theorem, the constants depend on the

operator norms of LG, LG
−1

, as well as the second Frechét derivative D2T G|(g,u) for
(g, u) in a neighborhood of (ḡ, ū), between those function spaces as specified above.

6 Perturbed Hypersurfaces

Through out this section, we let (M, ḡ, ū) be an asymptotically flat, static vacuum
triple with ū > 0. In this section, we prove Theorem 7, which follows directly from
Theorem 6.3 below, and then Corollary 8.

123



Static Vacuum Extensions With Prescribed Bartnik... Page 41 of 57 6

Let {%t } be a smooth one-sided family of hypersurfaces generated by Y foliating
along %̂t ⊂ %t withM \$t simply connected relative to %̂t , as defined in Definition 6.
We extendY to entireM\$ that is supported in a bounded open subset containing {%t }.
Let ψt : M \ $ −→ M \ $ be the flow of Y . If we denote by $ = $0 and % = %0,
then $t = ψt ($) and %t = ψt (%). Denote the pull-back static pair defined on M \$

by

(gt , ut ) = ψ∗
t
( (

ḡ, ū
)∣∣

M\$t

)
.

In that notation (g0, u0) = (ḡ, ū).
Recall the operator L defined in (3.7), which is the linearization of T at (ḡ, ū)

in M \ $. We shall consider the corresponding family of operators Lt raised by
linearization of T at (gt , ut ) in M \ $:

Lt (h, v) =

{
−utRic′|gt (h)+ (∇2)′

∣∣
gt
(h)ut − vRicgt + ∇2

gt v

!gt v + !′∣∣
gt
(h)ut

in M \ $

{
hᵀ
H ′|gt (h)

on %.

As is for L , we need to add gauge terms to modify Lt for the sake of ellipticity.
To that end, we generalize the static-harmonic gauge G(g, u) with respect to (ḡ, ū)
defined in Section 3.1 to a gauge term Gt (g, u) with respect to (gt , ut ) and consider
its linearization G′

t at (gt , ut ):

Gt (g, u) := βgt g + u−2
t udu − u−1

t g(∇gt ut , ·)
G′
t (h, v) := βgt h + u−1

t dv + vu−2
t dut − u−1

t h(∇gt ut , ·).

Then we define the family of operators LG
t that have the same domain and co-domain

as LG in (3.8), where

LG
t (h, v) =

⎧
⎪⎨

⎪⎩

−utRic′|gt (h)+ (∇2)′
∣∣
gt
(h)ut − vRicgt

+∇2
gt v − utDgtG

′
t (h, v)

!gt v + !′∣∣
gt
(h)ut − G′

t (h, v)(∇gt ut )
in M \ $

⎧
⎨

⎩

G′
t (g, u)

hᵀ
H ′|gt (h)

on %.

Note that in our notations LG
0 = LG and L0 = L . It is direct to verify that the results

in Lemma 3.9, Lemma 3.10 and Corollary 3.11 are also true for Lt and LG
t with (ḡ, ū)

replaced by (gt , ut ).
Motivation for theproof ofTheorem7:Most part of this section, except Theorem6.3,
follows closely the approach in [9, Section 6].

To provide motivation, we begin by explaining our approach in a simplified case.
Consider a region $ with a smooth boundary % in the Euclidean space (Rn, ḡ). For a
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real numberC , we define the elliptic operator Su = !ḡu+Cu. Consider the boundary
value problem:

Lu =
{
Su in $

u on %
.

Now, let $t ⊂ $, t ∈ [−δ, 0] be smoothly inward deformed subsets of $ with
$0 = $, and we assume the diffeomorphisms ψt : $ → $t generated by a vector
field Y satisfying Y |% = ζν for some ζ > 0 where ν is the inward unit normal.

We shall show that the operator L , when restricted to $t , has a trivial kernel for
generic values of t . This is equivalent to showing that, for pull-back operators Stu :=
!ψ∗

t ḡu + Cu, the following map:

Ltu =
{
Stu in $

u on %

has a trivial kernel for generic values of t .
Assume that for t = a, the kernel of La is not trivial. Consider a nontrivial solution u

such that Lau = 0.Without loss of generality,we can seta = 0 and thuswemaydenote
L0 = L . Now, let’s assume that there exists nontrivial u(t) to the equation Ltu(t) = 0
as t → 0with u(0) = u and differentiable in t .While technicallywemay only have the
convergence as a sequence t j → 0 (as described in Proposition 6.1), but the argument
below can still be extended. By the invariance of St under diffeomorphisms, we deduce
that ψ∗

t u also satisfies the equation St (ψ∗
t u) = 0. (Here, ψ∗

t u denotes the pull-back
of u|$t .) When we differentiate the equation St (u(t) − ψ∗

t u) = 0 in t , we obtain
S(u′(0) − Y (u)) = 0. This can also be understood as follows: computing the Taylor
expansion of St (u(t)−ψ∗

t u) = t S(u′(0)−Y (u))+O(t2), the coefficient of t must be
zero. Calculating the boundary value, we find that u′(0)− Y (u) = −Y (u) = −ζν(u)
on %. Using the classical Green identity, we obtain

0 =
∫

%
(u′(0) − Y (u))ν(u) dσ =

∫

%
ζν(u)2 dσ .

This leads ν(u) ≡ 0 on %. Consequently, since u = 0 on %, by unique continuation,
we can infer that u ≡ 0 in $, which contradicts our initial assumption.

In our current context, the geometric PDE that we are dealing with are significantly
more challenging due to several factors. Some challenges arise from gauge issues and
the coupled system involving (h, v). Another challenge arises during the application
of the Green-type identity. We can only obtain the boundary condition for h and not
for v. Specifically, the first application of the approach allows us to show A′(h) = 0
only. This step significantly complicates the “unique continuation” argument when
compared to the corresponding result in [9]. The novel argument presented in The-
orem 6.3 shows that, by applying the above argument inductively, not only does h
vanish, but the higher-order derivatives of h also vanish on the boundary. Then we
invoke analyticity to establish that h is trivial. ⊓⊔
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Just as the operator LG, each LG
t is elliptic and thus Fredholm as in Lemma 3.10.

We can use elliptic estimates to show that Ker LG
t varies “continuously” for t in an

open dense subset J ⊂ [−δ, δ]. The arguments follow verbatim as in [9, Section 6.1],
so we omit the proof. (Note the notation discrepancy: Lt and LG

t here correspond
respectively to St and Lt in [9]).

Proposition 6.1 (Cf. [9, Proposition 6.6]) There is an open dense subset J ⊂ (−δ, δ)

such that for every a ∈ J and every (h, v) ∈ Ker LG
a , there is a sequence {t j } in J

with t j ↘ a,
(
h(t j ), v(t j )

)
∈ Ker LG

t j , and (p, z) ∈ C2,α−q (M \$) such that, as t j ↘ a,

(
h(t j ), v(t j )

)
−→ (h, v)

(
h(t j ), v(t j )

)
− (h, v)

t j − a
−→ (p, z)

where the both convergences are taken in the C2,α−q (M \ $)-norm.

It is more convenient to consider the above convergence for the “un-gauged” oper-
ators as in the next corollary.

Corollary 6.2 Let J ⊂ (−δ, δ) be the open dense subset in Proposition 6.1. Then for
every a ∈ J and every (h, v) ∈ Ker La, there is a sequence {t j } in J with t j ↘ a,(
h(t j ), v(t j )

)
∈ Ker Lt j , and (p, z) ∈ C2,α−q (M \ $) such that, as t j ↘ a,

(
h(t j ), v(t j )

)
−→ (h, v)

(
h(t j ), v(t j )

)
− (h, v)

t j − a
−→ (p, z)

where the both convergences are taken in the C2,α−q (M \ $)-norm.

Proof Let (h, v) ∈ Ker La . By Item (2) in Lemma 3.9, there is a vector field V ∈
X (M \ $) such that

(ĥ, v̂) :=
(
h + LV ḡ, v + V (ū)

)

satisfies G′
a(ĥ, v̂) = 0, and thus (ĥ, v̂) ∈ Ker LG

a . By Proposition 6.1, there exists a
sequence t j ∈ J with t j ↘ a and (ĥ(t j ), v̂(t j )) ∈ Ker LG

t j , ( p̂, ẑ) ∈ C2,α−q (M \$) such
that as t j ↘ a,

(
ĥ(t j ), v̂(t j )

)
−→ (ĥ, v̂)

(
ĥ(t j ), v̂(t j )

)
− (ĥ, v̂)

t j − a
−→ ( p̂, ẑ).
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We now define

(
h(t j ), v(t j )

)
=
(
ĥ(t j ), v̂(t j )

)
−
(
LV gt j , V (ut j )

)

(p, z) = ( p̂, ẑ) −
(
LV LY ga, V

(
Y (ua)

))

where recall that Y denotes the deformation vector of {%t }. It is direct to verify the
desired convergences. ⊓⊔

For each t , we let %+
t ⊂ % be the subset ψ−1

t
(
{p ∈ %t : ζ(p) > 0}

)
, and write

%+ = %+
0 . Note that %

+
t contains ψ−1

t (%̂t ).

Theorem 6.3 Let J ⊂ (−δ, δ) be the open dense subset in Proposition 6.1. Then for
every a ∈ J and every (h, v) ∈ Ker La, we have

A′|ga (h) = 0,
(
Ric′|ga (h)

)ᵀ = 0,
((

∇k
ν Ric

ᵀ)′∣∣
ga
(h)
)ᵀ

= 0 on %+
a

for all positive integers k.

Proof Let (h, v) ∈ C2,α−q (M \ $) solve La(h, v) = 0. We first prove A′|ga (h) = 0 on
% for all a ∈ J .

We may without loss of generality assume a = 0 and that (h, v) satisfies the
geodesic gauge h(ν, ·) = 0 on %. (See [9, Lemma 2.5].) Let

(
h(t j ), v(t j )

)
∈ Ker Lt j

and (p, z) be fromCorollary 6.2.We claim that
(
p−LY h, z−Y (v)

)
is a static vacuum

deformation, i.e. S′(p − LY h, z − Y (v)
)
= 0 in M \ $, with the Bartnik boundary

data:

(p − LY h)ᵀ = −2ζ A′(h)
H ′(p − LY h) = ζ A · A′(h).

(6.1)

We recall that ζ = ḡ(Y , ν) on % in Definition 6.
We compare

(
h(t j ), v(t j )

)
and the pull-back pair ψ∗

t j (h, v). Since they are equal at
t j = 0 and both satisfy

S′|gt j
(
h(t j ), v(t j )

)
= 0 and S′|gt j

(
ψ∗
t j (h, v)

)
= 0 in M \ $.

We subtract the previous two identities and take the difference quotient:

0 = lim
t j→0

1
t j
S′|gt j

(
(h(t j ), v(t j )) − ψ∗

t j (h, v)
)

=
(
lim
t j→0

1
t j
(S′|gt j − S′|ḡ)

) (
(h(0), v(0)) − ψ∗

0 (h, v)
)

+ S′|ḡ
(
lim
t j→0

1
t j

(
(h(t j ), v(t j )) − ψ∗

t j (h, v)
))

= S′|ḡ
(
p − LY h, z − Y (v)

)
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where we use that (h(0), v(0)) = ψ∗
0 (h, v) = (h, v). For the boundary data, since

(hᵀ, H ′(h)) = 0 and
(
h(t j )ᵀ, H ′|gt j (h(t j ))

)
= 0 for all t j on %, we have

pᵀ = lim
t j→0

(
h(t j ) − h

)ᵀ

t j
= 0

H ′(p − LY h) = lim
t j→0

1
t j
H ′|gt j

(
h(t j ) − ψ∗

t (h)
)

= − lim
t j→0

1
t j

ψ∗
t
(
H ′|g(h)

)
= −Y (H ′(h)),

wherewe recall H ′|gt j (h(t j )) = 0. By (A.10) and (A.11), we have (LY h)ᵀ = 2ζ A′(h)
and Y

(
H ′(h)

)
= −ζ A · A′(h), and it completes the proof of the claim.

We apply the Green-type identity, Corollary 2.5, for (h, v) and (k, w) :=
(
p −

LY h, z − Y (v)
)
and get

0 =
∫

%

〈
Q(h, v),

(
kᵀ, H ′(k)

)〉
dσ

=
∫

%

〈(
vA + ū A′(h) − ν(v)gᵀ, 2v

)
,
(
− 2ζ A′(h), ζ A · A′(h)

)〉
dσ

= −
∫

%
2ūζ |A′(h)|2 dσ

where in the second equality we use the definition of Q(h, v) (noting ν′(h) = 0 in
geodesic gauge) and in the last equality gᵀ · A′(h) = 0. This shows that A′(h) = 0
on %+.

It follows that for all (h, v) ∈ Ker La (a ∈ J ), we have A′|ga (h) = 0 on %+
a ,

because A′(h) is gauge invariant by Corollary 4.1 Item (3). So far, the argument
follows closely Theorem 7′ in [9].

We further observe that for (k, w) = (p − LY h, z − Y (v)) as defined above, its
Bartnik boundary data is zero from (6.1), and thus (k, w) ∈ Ker L . Therefore, we
must have A′(k) = 0 on %+:

0 = A′(p − LY h)

= lim
t j→0

1
t j
A′|gt j

(
h(t j ) − ψ∗

t j (h)
)
= lim

t j→0

1
t j
A′|ψ∗

t j
g(−ψ∗

t j (h))

= − lim
t j→0

1
t j

ψ∗
t j

(
A′(h)

)
= −LY

(
A′(h)

)
= −ζ∇ν

(
A′(h)

)
.

(6.2)

In the second line above, we use that A′|gt j (h(t j )) = 0 on %+
t j for all t j ; and since the

deformation vector field Y is smooth,%+
t j → %+ as t j → 0. In the last equality we use

that A′(h) = 0 on %+. Thus we obtain ∇ν

(
A′(h)

)
= 0 on %+. By the formula (A.10)

for A′(h) and noticing h = 0,∇h = 0 on % (because of hᵀ = 0, A′(h) = 0 and
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geodesic gauge), we obtain

(∇2
νh)

ᵀ = 0 on %+.

It implies
(
Ric′(h)

)ᵀ = 0 by (A.6). Again, since
(
Ric′(h)

)ᵀ is gauge invariant, this
holds for all (h, v) ∈ Ker La (a ∈ J ).

We proceed to prove inductively in k that for all a ∈ J and for all (h, v) ∈ Ker La
we have

(
(∇k

νRic)
′∣∣
ga
(h)
)ᵀ = 0 on %+

a . In the previous paragraph, we prove the

statement for k = 0, i.e.
(
Ric′|ga (h)

)ᵀ = 0 on %+
a for all (h, v) ∈ Ker La . Suppose

the inductive assumption holds for k ≤ ℓ, i.e. for all a ∈ J and all (h, v) ∈ Ker La ,(
(∇k

νRic)
′(h)
)ᵀ = 0 on %+

a for k = 0, 1, . . . , ℓ. We prove the statement holds for
k = ℓ+ 1. Let (h, v) ∈ Ker La . We may without loss of generality assume a = 0 and
that h satisfies the geodesic gauge. Let (p, z) be defined as above. Because of (6.1)
and A′(h) = 0, we see that

(
p − LY h, z − Y (v)

)
∈ Ker L . Therefore, we can apply

the inductive assumption for
(
p − LY h, z − Y (v)

)
and get

(
(∇ℓ

νRic)
′(p − LY h)

)ᵀ = 0 on %+.

Similar computations as in (6.2) yield

0 =
(
(∇ℓ

νRic)
′(p − LY h)

)ᵀ = lim
t j→0

1
t j

(
(∇ℓ

νRic)
′|gt j
(
h(t j ) − ψ∗

t j (h)
))ᵀ

= − lim
t j→0

1
t j

(
(∇ℓ

νRic
)′|gt j (ψ

∗
t j (h))

)ᵀ
= − lim

t j→0

1
t j

(
ψ∗
t j

(
(∇ℓ

νRic)
′(h)
))ᵀ

= −
(
LY
(
(∇ℓ

νRic
ᵀ)′(h)

))ᵀ
= −ζ

(
∇ν

(
(∇ℓ

νRic
)′
(h)
))ᵀ

.

It implies that
(
∇ν

(
(∇ℓ

νRic
)′
(h)
))ᵀ

= 0 on %+, and thus
(
(∇ℓ+1

ν Ric)′(h)
)ᵀ = 0 on

%+ by (4.16). ⊓⊔

Proof of Theorem 7 So far we have not used the assumption that π1(M \ $t , %̂t ) = 0
nor that %̂t is analytic. Using those assumptions and Theorem 6.3, we see that for
t ∈ J , %t is static regular of type (II) in (M \ $t , ḡ, ū). ⊓⊔

For the rest of this section, we discuss how Corollary 8 follows directly from
Theorem 3 and Theorem 7.

Proof of Corollary 8 Fix the background metric as a Schwarzschild manifold (Rn \
Brm , gm, um), where m > 0 and

rm = (2m)
1

n−2 , gm =
(
1 − 2m

rn−2

)−1
dr2 + r2gSn−1 , um =

√
1 − 2m

rn−2 .

Denote the (n − 1)-dimensional spheres Sr = {x ∈ Rn : |x | = r}. Then the manifold
is foliated by strictly stable CMC hypersurfaces {Sr } and note Hgm = 0 on Srm . Also
note that the family Sr obviously gives a one-sided family of hypersurfaces as in
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Definition 6. We also note that each Sr is an analytic hypersurface in the spherical
coordinates {r , θ1, . . . , θn−1} in which gm is analytic.

Given any c > 0, we can find some δ > 0 such that Sr has mean curvature less
than c, for r ∈ (rm + δ, rm + 2δ) and um < c

2 . We apply Theorem 7 and obtain
that for r in an open dense subset J ⊂ (rm + δ, rm + 2δ), Sr is static regular of
type (II) in (Rn \ Br , ḡm, ūm). Fix r ∈ J and we denote the boundary Sr by %. By
Theorem 3, there exists positive constants ϵ0,C such that for any ϵ ∈ (0, ϵ0) and for
any (τ,φ) satisfying ∥(τ,φ)−(gᵀ

m, Hgm )∥C2,α(%)×C1,α(%) < ϵ, there is a static vacuum
pair (g, u) such that ∥(g, u) − (gm, um)∥C2,α

−q (Rn\Br ) ≤ Cϵ. By choosing ϵ small, we

have |u − um | < c
4 and thus u < c.

In particular, we pick the prescribed mean curvature φ = Hgm < c on % and the
prescribedmetric τ not isometric to the standardmetric of a round (n−1)-dimensional
sphere for any radius. Since the background Schwarzschild manifold has a foliation
of strictly stable CMC, for ϵ sufficiently small, the metric g is also foliated by strictly
stable CMC (n − 1)-dimensional spheres. However, such g cannot be rotationally
symmetric. To see that, we suppose on the contrary that g is rotationally symmetric,
then by uniqueness of CMC hypersurfaces of [17], the boundary % must be a round
sphere of some radius. It contradicts to our choice of τ .

We can vary τ to get many, asymptotically flat, static vacuum metrics that are not
isometric to one another. ⊓⊔

7 Extension of Local h-Killing Vector Fields

Let h be a symmetric (0, 2)-tensor on a Riemannian manifold (M, g). We say a vector
field X is h-Killing if

LXg = h.

The following result extends the classical result of Nomizu [33] for h ≡ 0.

Theorem 9 Let (M, g) be a connected, analytic Riemannian manifold. Let h be an
analytic, symmetric (0, 2)-tensor on M. Let U ⊂ M be a connected open subset
satisfying π1(M,U ) = 0. Then every h-Killing vector field X in U can be extended
to a unique h-Killing vector field on the whole manifold M.

Given a symmetric (0, 2)-tensor h, recall in Sect. 2.3 we define the (1, 2)-tensor Th
by, in local coordinates,

(Th)ijk = 1
2 (h

i
j;k + hik; j − h i

jk; )

where the upper index hij is raised by g, and note that (Th)
i
jk is symmetric in ( j, k). The

formula from Lemma 2.7 is the main motivation for defining the ODE system (7.1)
below.
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Lemma 2.7 Let X be an h-Killing vector field. Then for any vector field V , we have

∇V (∇X) = −R(X , V )+ Th(V )

where R(X , V ) := ∇X∇V − ∇V∇X − ∇[X ,V ].

Let p ∈ U and let $ ⊂ M be a neighborhood of p covered by the geodesic normal
coordinate chart. We shall extend X to a unique h-Killing vector field in $. For any
point q ∈ $, let γ (t) be the geodesic connecting p and q. We denote V = γ ′(t).

Consider the following inhomogeneous, linear ODE system for a vector field X̂
and a (1, 1)-tensor ω along γ (t):

∇V X̂ = ω(V )

∇Vω = −R(X̂ , V )+ Th(V ).
(7.1)

Let X̂ ,ω be the unique solution to (7.1) with the initial conditions at γ (0) = p:

X̂(p) = X(p) and ω(p) = (∇X)(p).

On the other hand, by Lemma 2.7 X ,∇X also solve (7.1) with the same initial condi-
tions. By uniqueness of ODEwe have X̂ = X and ω = ∇X on the connected segment
of γ (t) ∩U containing the initial point γ (0).

By varying the point q, the vector field X̂ is defined everywhere in$ and is smooth
by smooth dependence of ODE. Moreover, since (M, g) is analytic, its geodesics
are analytic curves, and hence X is analytic along γ (t). We summarize the above
construction as the following lemma.

Lemma 7.1 Let (M, g) be a smooth manifold such that Int M is analytic. Let h be an
analytic symmetric (0, 2)-tensor in Int M and smooth in M, and X be an h-Killing
vector field in an open subset U ⊂ Int M. For p ∈ U, let$ ⊂ M be a geodesic normal
neighborhood of p. Then there is a smooth vector field X̂ and a smooth (1, 1)-tensor
ω in $ such that X̂ = X ,ω = ∇X in a neighborhood of p in U, and (X̂ ,ω) solves
(7.1) along each γ (t) and is analytic in t .

After extending X to X̂ in $ as above, we show that X̂ is h-Killing in $. As in
Lemma 2.8, one may use Cauchy-Kovalevskaya Theorem to say that X̂ also depends
analytically on angular variables (not only on t) in $ and hence L X̂ g = h in $ by
analyticity. Alternatively, we give another proof that is similar to Nomizu’s original
argument in the next proposition.

Proposition 7.2 Let X̂ ,ω be from Lemma 7.1. Then X̂ is h-Killing in $ and X̂ = X
everywhere in U.

Proof We first show that

g(ω(Y ), Z)+ g(ω(Z),Y ) = h(Y , Z) (7.2)
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for any vectors Y , Z at an arbitrary point q ∈ $. We can extend Y , Z analytically in
t along the geodesic γ (t) from p to q. Thus, the left hand side of (7.2) along γ (t)
is analytic. We also know that (7.2) holds on γ (t) for t sufficiently small because
ω = ∇X in a neighborhood of p and X is h-Killing. Thus, (7.2) holds along the whole
path γ (t) by analyticity, and in particular at γ (t0).

Next, we claim that given an arbitrary vector Y at a point in $, say γ (t0) for
some geodesic γ starting at p, if we extend Y such that [V , Y ] = 0 along γ , then
∇Y X̂ − ω(Y ) along γ (t) is analytic in t . (We remark that clearly ∇V X̂ is already
analytic along γ , so the main point in the following proof is to show that it holds for
general Y .) Once the claim is proven, we get

∇ X̂ = ω in $. (7.3)

Proof of Claim Note that along γ (t), [V , Y ] = ∇V Y −∇Y V = 0 becomes a first-order
linear ODE for Y with analytic coefficients along γ (t), and thus Y is analytic along
γ (t). We show that∇Y X̂ −ω(Y ), together with∇Yω− R(Y , X̂), solves the following
ODE system:

∇V
(
∇Y X̂ − ω(Y )

)
=
(
∇Yω − R(Y , X̂)

)
V − Th(V , Y )

∇V

(
∇Yω − R(Y , X̂)

)
= −R

(
∇Y X̂ − ω(Y ), V

)

− R(ω(Y ), V )+ ∇Y (Th(V ))+ R(V ,Y )ω

+ (∇X̂ R)(V ,Y ) − R(Y ,ω(V )).

(7.4)

Note that the inhomogeneous term Th(V , Y ) and those inhomogeneous terms in in the
3rd and 4th lines above are all analytic along γ (t). Since any solutions to above the
linear ODE system (7.4) with analytic coefficients and analytic inhomogeneous terms
are analytic along γ (t), in particular, ∇Y X̂ − ω(Y ) is analytic along γ (t).

The computations are similar to [33, Proof of Theorem 4]. We include the proof
for completeness. For the first identity,

∇V

(
∇Y X̂ − ω(Y )

)

= ∇Y∇V X̂ + R(V , Y )X̂ − (∇Vω)(Y ) − ω(∇V Y )

= ∇Y (ω(V ))+ R(V , Y )X̂ + R(X̂ , V )Y − Th(V ,Y ) − ω(∇V Y ) (by (7.1))

= (∇Yω)(V ) − R(Y , X̂)V − Th(V , Y ) (by Bianchi identity)

where we also use [V ,Y ] = 0.
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To prove the second identity, we compute each term below:

∇V∇Yω = ∇Y∇Vω + R(V , Y )ω

= ∇Y
(
− R(X̂ , V )+ Th(V )

)
+ R(V ,Y )ω

= −(∇Y R)(X̂ , V )

− R(∇Y X̂ , V ) − R(X̂ ,∇Y V )+ ∇Y (Th(V ))+ R(V ,Y )ω

∇V (R(Y , X̂)) = (∇V R)(Y , X̂)

+ R(∇V Y , X̂)+ R(Y ,∇V X̂)

= (∇V R)(Y , X̂) − R(X̂ ,∇V Y )+ R(Y ,ω(V )).

Subtracting the previous two identities and noting that the terms −R(X̂ ,∇Y V ) and
R(X̂ ,∇V Y ) cancel out by [V , Y ] = 0, we derive

∇V∇Yω − ∇V
(
R(Y , X̂)

)

= −(∇Y R)(X̂ , V ) − R(∇Y X̂ , V )+ ∇Y (Th(V ))+ R(V , Y )ω

− (∇V R)(Y , X̂) − R(Y ,ω(V ))

= −R(∇Y X̂ − ω(Y ), V ) − R(ω(Y ), V )+ ∇Y (Th(V ))+ R(V , Y )ω

+ (∇X̂ R)(V , Y ) − R(Y ,ω(V )) (by Bianchi identity).

Rearranging the terms gives the second identity in (7.4). ⊓⊔

Lastly, (7.2) and (7.3) together imply that X̂ is h-Killing in$. SinceU is connected
and X − X̂ is Killing inU which is identically zero in an open subset, we have X = X̂
in U . ⊓⊔

We have shown how to extend the h-Killing vector field X in a geodesic normal
neighborhood. Using the assumption that π1(X ,U ) = 0, we show how to extend X
globally and complete the proof of Theorem 9.

Proof of Theorem 9 For any point q in M , we let γ be a path from p ∈ U to q. The path
γ (t) is covered by finitely many geodesic normal neighborhoods. We extend X at q
along the path by Proposition 7.2. For any other path γ̃ fromU to q that is sufficiently
close to γ , γ̃ is also covered by the same collection of neighborhoods, and thus the
extension along γ̃ gives the same definition of X at q.

To show that the definition of X at q doesn’t depend on the paths fromU to q, we use
the assumption that π1(M,U ) = 0. Since any path γ̃ from U to q is homotopic to γ

relative toU , there are finitely many paths fromU to q, say γ1 = γ , γ2, γ3, . . . , γk =
γ̃ , such that each pair of consecutive paths, γi and γi+1, can be covered by the same
collections of neighborhoods. Thus the extension of X at q is the same on each pair
and thus on all those paths. That completes the proof. ⊓⊔

Data Availability Statement All data generated or analysed during this study are included in this published
article.
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Appendix A. Formulas of (Linearized) Geometric Operators

Given a Riemannianmanifold (U , g), theBianchi operator βg and its adjoint operator
β∗
g are defined by, for a symmetric (0, 2)-tensor h and a vector field X ,

βgh = − divg h + 1
2dtrgh (A.1)

β∗
g X = 1

2

(
LXg − (divg X)g

)
. (A.2)

We write the Lie derivative of the Riemannian metric g along a vector field X by

Dg X = 1
2 LXg. (A.3)

We record the following basic identities:

βgDg X = − 1
2!g X − 1

2Ric(X , ·) (A.4)

βg( f h) = f βgh − h(∇ f , ·)+ 1
2 (trg h)d f for a scalar function f . (A.5)

We frequently use the linearization of geometric quantities or operators. In a smooth
manifold U , let g(s) be a smooth family of Riemannian metrics with g(0) = g and
g′(0) = h. We define the linearization of the Ricci tensor at g by Ric′|g(h) :=
d
dt

∣∣
s=0 Ricg(s). The other linearized quantities are denoted in the similar fashion. For

example,

(∇2)′|g(h) := d
dt

∣∣
t=0 ∇2

g(t) and !′|g(h) := d
dt

∣∣
t=0 !g(t).

We often omit the subscripts |g when the context is clear.
Let% ⊂ U be a hypersurface and ν be the unit normal to%. Consider a local frame

{e0, e1, . . . , en−1} such that e0 is the parallel extension of ν along itself near%. We list
those linearized quantities in the local frame (where f is an arbitrary scalar function),
see [9, Section 2.1]:

(Ric′|g(h))i j = − 1
2g

kℓhi j;kℓ + 1
2g

kℓ(hik;ℓ j + h jk;ℓi ) − 1
2 (tr h);i j

+ 1
2 (Riℓhℓ

j + R jℓhℓ
i ) − Rikℓ j hkℓ (A.6)

R′|g(h) = −!(tr h)+ div div h − h · Ricg
(
(∇2)′|g(h) f

)
i j = 1

2g
kℓ f,ℓ

(
hi j;k − h jk;i − hik; j

)
(A.7)

(
!′|g(h)

)
f = −gikg jℓ f;i j hkℓ + gi j

(
−(divg h)i + 1

2 (trg h);i
)
f, j . (A.8)

We write ν = νg for short. We let ω(ea) = h(ν, ea) be the one-form on the
tangent bundle of % and {%t } be the foliation by g-equidistant hypersurfaces to %.
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For tangential directions a, b, c ∈ {1, . . . , n − 1} on %, we have

ν′|g(h) = − 1
2h(ν, ν)ν − gabω(ea)eb (A.9)

A′|g(h) = 1
2 (Lνh)ᵀ − 1

2 Lωgᵀ − 1
2h(ν, ν)Ag

= 1
2 (∇νh)ᵀ + Ag ◦ h − 1

2 Lωgᵀ − 1
2h(ν, ν)Ag

H ′|g(h) = 1
2ν(tr h

ᵀ) − div% ω − 1
2h(ν, ν)Hg (A.10)

where (A ◦ h)ab = 1
2 (Aachcb + Abchca). In the special case that h = LXg along %

where the vector field X = ην + Xᵀ for some tangential vector Xᵀ to %, we get

H ′|g(LXg) = −!%η − (|A|2 + Ric(ν, ν))η + Xᵀ(H).

We also have the following “linearized” Ricatti equation:

ν(H ′|g(h)) = − 1
2 R

′(h)+ 1
2 R

′% |gᵀ(hᵀ)+ Ag · (Ag ◦ h)

− Ag · A′(h) − HgH ′(h)

+ 1
4

(
− Rg + R%

g − |Ag|2 − H2
g
)
h(ν, ν)

− 1
2!%h(ν, ν)+ gabω(ea)eb(Hg).

(A.11)

In the third equation, tr hᵀ denotes the tangential trace of h on %t , defined in a collar
neighborhood of %. For the last equation, the dot · means the g-inner product, (Ag ◦
h)ab = 1

2 (Aachcb + Abchca), and R%
g ,!% are respectively the scalar curvature and the

Laplace operator of (%, gᵀ).

Appendix B. Spacetime harmonic gauge and analyticity

Let (M, g) be a Riemannian manifold and let u > 0 be a scalar function on M . We
define the spacetime metric g on N := R× M by (in either Riemannian or Lorentzian
signature)

g = ±u2dt2 + g. (B.1)

Recall that we say the pair (g, u) is static vacuum if S(g, u) = 0 as defined in (1.1).
When u > 0, the condition is equivalent to that the spacetimemetric satisfiesRicg = 0.
Thus, we may also refer such g as a static vacuum (spacetime) metric.

B.1 Harmonic Gauge

Fix a general background triple (M, ḡ, ū) and thus the background spacetime metric
ḡ = ±ū2dt2 + ḡ on N. Recall the Bianchi operator βḡ sends any symmetric (0, 2)-
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tensor k on N to the covector βḡk, defined by

βḡk = − divḡ k + 1
2 d(trḡ k).

The following proposition explains themotivation behind the definition of the static-
harmonic gauge in Definition 3.5. Note that this fact is not used anywhere else in the
paper.

Proposition B.1 For g taking the form (B.1),

βḡg = βḡg + ū−2udu − ū−1g(∇ḡ ū, ·).

That is, in the coordinate t of R and a local coordinate chart {x1, . . . , xn} of M

βḡg(∂t ) = 0

βḡg(∂a) = βḡg(∂a)+ ū−2u∂au − ū−1g(∇ḡ ū, ∂a) for a = 1, . . . , n.

Proof Let ∇,∇ be the covariant derivatives of ḡ, ḡ, respectively. We have

∇∂t∂t = ∓ū∇ū

∇∂a∂t = ∇∂t∂a = ū−1∂aū ∂t

∇∂a∂b = ∇∂a∂b.

Then we compute divḡ g:

(divḡ g)(∂t ) = 0

(divḡ g)(∂a) = ū−1g(∇ū, ∂a) − ū−3u2∂aū + (divḡ g)(∂a).

Next we compute the trace term:

trḡ g = ū−2u2 + trḡ g

d(trḡ g) = −2ū−3u2dū + 2ū−2udu + d(trḡ g).

Combining the above identities give

βḡg = − divḡ g + 1
2 d(trḡ g)

= βḡg − ū−1g(∇ū, ·)+ ū−3u2dū − ū−3u2dū + ū−2udu

= βḡg − ū−1g(∇ū, ·)+ ū−2udu.

⊓⊔

IfM has nonempty boundary ∂M , then on the boundary ∂N := R×∂M , theCauchy
boundary data (g|∂N, Ag) of ∂N ⊂ (N, g) can be expressed in terms of u, ν(u) and
(gᵀ, Ag) of ∂M ⊂ (M, g).
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Proposition B.2 On the boundary ∂N, we have

g|∂N = ±u2dt2 + gᵀ

Ag = ±uν(u)dt2 + Ag.

Consequently, the corresponding linearizations at ḡ along the deformation h, which
is generated by an infinitesimal deformation (h, v) at (ḡ, ū), are given by

h|∂N = ±2ūvdt2 + hᵀ

A′|ḡ(h) = ±
(
vν(ū)+ ū(ν(u))′

)
dt2 + A′|g(h).

Proof The identity for the induced metric g is obvious. For Ag, we compute in local
frame {∂t , ν, e1, . . . , en−1} where ν is the unit normal to ∂N (which coincides with
the unit normal for ∂M and e1, . . . , en−1 are tangential to ∂M . Then

Ag(∂t , ∂t ) = −g(ν,∇∂t ∂t ) = ±uν(u)

Ag(ea, eb) = −g(ν,∇ea eb) = Ag(ea, eb) for a, b = 1, . . . , n − 1

and all other components of Ag are zero. ⊓⊔

B.2 Analyticity

We say a scalar function f is (real) analytic in the coordinate chart {x1, . . . , xn} on a
manifold M if for each p ∈ M , there is a neighborhood U of p such that

f (x) =
∑

|I |=0,1,...,

1
|I |!∂

I f (p)(x − p)I for all x ∈ U

where I is a multi-index.
A tensor h is said to be analytic in the coordinate chart {x1, . . . , xn} if all of its

components are analytic. A Riemannian manifold (M, g) is called analytic if it can
be covered by coordinate charts {Ui } where g is analytic in each chart; and similarly,
a hypersurface embedded in (M, g) is called analytic if it is analytic in each Ui .

A classical result of Müller zum Hagen [32] says that if the spacetime (N, ḡ) is
static vacuum, then ḡ is analytic in harmonic coordinates. Below, we state and prove
a version of the corresponding result for the time-slice (M, ḡ, ū).

Let (M, ḡ) be a Riemannian manifold with a scalar function ū > 0 on M . A
coordinate chart (x1, . . . , xn) on (M, ḡ, ū) is called static-harmonic if

!xk + ū−1∇ū · ∇xk = 0 for all k = 1, . . . , n.

Here and below, the covariant derivatives and curvatures are all with respect to ḡ.
In coordinates {x1, . . . , xn} we denote the Christoffel symbols 7k := ḡi j7k

i j and
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compute

!xk + ū−1∇ū · ∇xk = −7k + ū−1ḡik
∂ ū
∂xi

.

Therefore, a local coordinate chart {x1, . . . , xn} is static-harmonic if and only if

−7k + ū−1ḡik
∂ ū
∂xi

= 0.

Theorem B.3 Let (M, ḡ, ū) be a static vacuum triple with ū > 0. Then ḡ and ū are
analytic in static-harmonic coordinates in Int M.

Remark B.4 As a direct consequence of [21, Theorem 2.1], ḡ and ū are analytic in
harmonic coordinates and in geodesic normal coordinates in Int M .

Proof Let {y1, . . . , yn}be an arbitrary local coordinate chart about the point p ∈ Int M .
By standard elliptic theory [16, p. 228], in a neighborhood of p there are solutions
x1, . . . , xn of

!x j − ū−1∇ū · ∇x j = 0

x j (p) = 0 and
∂x j
∂ yi

(p) = δi j .

Those functions {x1, . . . , xn} are the desired static-harmonic coordinates.
The static vacuum pair satisfies

−Ric+ ū−1∇2ū = 0

!ū = 0.
(B.2)

Recall the well-known formula:

Rici j = −1
2
ḡrs

∂2 ḡi j
∂xr∂xs

+ 1
2

(
ḡri

∂7r

∂x j
+ ḡr j

∂7r

∂xi

)
+O(ḡ, ∂ ḡ).

whereO(ḡ, ∂ ḡ) denotes the terms involving at most one derivative of the metric ḡ. In
particular, in the static-harmonic coordinates:

− Rici j + ū−1ū;i j

= 1
2
ḡrs

∂2 ḡi j
∂xi∂x j

− 1
2

(
ḡri

∂

∂x j

(
ū−1ḡℓr ∂ ū

∂xℓ

)
+ ḡr j

∂

∂xi

(
ū−1ḡℓr ∂ ū

∂xℓ

))

+ ū−1ū;i j +O(ḡ, ∂ ḡ)

= 1
2
ḡrs

∂2 ḡi j
∂xi∂x j

+O(ḡ, ∂ ḡ, ū, ∂ ū).
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Thus, (B.2) is a quasi-linear elliptic system in static-harmonic coordinates, so the
solutions ḡi j , ū are analytic in static-harmonic coordinates. ⊓⊔
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