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Vorticity, ameasure of the local rate of rotation of a fluid element, is the
driver ofincompressible flow. In viscous fluids, powering bulk flows requires

the continuous injection of vorticity from boundaries to counteract the
diffusive effects of viscosity. Here we power a flow from within by suspending
approximately cylindrical particles and magnetically driving them to

rotate at Reynolds numbersin the intermediate range. We find that a single
particle generates alocalized three-dimensional region of vorticity around
it—which we call a vortlet—that drives a number of remarkable behaviours.
Slight asymmetries in the particle shape can deform the vortlet and cause
the particle to self-propel. Interactions between vortlets are similarly

rich, generating bound dynamical states. When a large number of vortlets
interact, they spontaneously form collectively moving flocks. These

flocks remain coherent while propelling, splitting and merging. If enough
particles areadded so as to saturate the flow chamber, ahomogeneous
three-dimensional active chiral fluid of vortletsis formed, which canbe
manipulated with gravity or flow chamber boundaries, leading to lively
collective dynamics. Our findings demonstrate aninertial regime for
synthetic active matter, provide a controlled physical system for the
quantitative study of three-dimensional flocking in non-sentient systems and
establish a platform for the study of three-dimensional active chiral fluids.

Pushing on a body of water produces a myriad of mesmerizing flow
structures. A vortex ring is a classic example: impulsively forcing
water through an orifice generates a ring of concentrated vorticity
thatadvectsitself over long distances, carrying theinertia of the initial
impulse'”. This capacity for self-sustained liveliness of a flow is lost
whenviscosity, rather thaninertia, dominates. Indeed, the fluid inside
microscopic living cells shows little tendency to flow unless continu-
ously forced by active elements**. These differences are reflected in
the equations of fluid motion; viscous Stokes flows are linear, famously

timereversible, with the space of responses to actuation strongly lim-
ited compared with that of nonlinear and often unruly near-inviscid
flows>.

Arealm of possibilities lies in the middle where viscosity and iner-
tia compete”’. Here, the symmetries of Stokes flow are broken by
inertia, lifting substantial constraints on the flow, while viscous effects
promote dynamical regularity. The result is a rich space of allowed
dynamics involving spontaneous locomotion'®"? and hydrodynamic
synchronization ", Because of the presence of viscous dissipation,
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Fig.1|Suspensions of spinning particles and their vortlets self-organize into
flocks. a, Our experiment utilizes suspended, magnetically polarized PDMS
cylindrical particles with a permanent dipole moment m, which are forced to
rotate about their symmetry axis under a rotating magnetic field B. This
generates a three-dimensional ‘vortlet’ flow, distinct from that of the rotlet of
Stokes flow. b, The particles are suspended within a vial in a density-matched
Na,WO,~-water solution. ¢, Numerical computation of the flow field around a
single particleat Re, = 30, visualized through streamlines, shows the
characteristic bound vortlet flow, which consists of a large rotational component
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accompanied by inflow along the axis of rotation and outflow along the sides.

d,e, The vortlet flow field is visualized using time-lapsed images of tracer
particlesin the plane perpendicular to the plane of rotation (d) and in the plane of
rotation (e). The grey area on the right of the particle corresponds to its shadow.
f, By removing the background and integrating the image intensity across the
flow chamber, we generate vertically averaged kymographs that capture the
three-dimensional collective dynamics of 30 vortlets as vortlet flocks propagate,
merge, exchange and split. Panel f corresponds to Supplementary Movie 1.

just like their counterparts at low Reynolds number'®?, these flows
require continuous activation.

Vorticity, which is naturally created by fluid flowing past walls,
plays a unique role in incompressible flow, acting as a source of
its dynamics. When generated through internal boundaries in
viscous flows, for example, by rotating microscopic particles,
dynamical states emerge that include collective motion®**, hydro-
dynamic cystallization®%, macroscopic chiral stresses?*¢ and
non-reciprocity’”*°. Much less is known, however, about these flows
atnon-zero Reynolds numbers where the fluid itself carries advective
nonlinearities. In this case, the inertia of the background fluid can
break fundamental assumptions such as pairwise additivity of forces
between particulates and can substantially modify the bulk rheology
of asuspension*,

We set out to leverage vorticity as asource of dynamicsininertial
flow by driving suspended particles to rotate atintermediate Reynolds
numbers. Our experimental platform, illustrated in Fig. 1a,b, consists
of a collection of approximately cylindrical particles, produced by
laser-cutting disks of diameter ~1 mm from a ~0.6-mm-thick film of
magnetically doped polydimethylsiloxane (PDMS)*. The particles are
magnetized by passage between a pair of rare-earth magnets, endowing
them with a permanent magnetic dipole moment m perpendicular to
their axis of symmetry as shownin Fig. 1b.

The particles are suspended in a density-matched Na,WO,-water
solution and placed in a flow chamber thatin turnis placed in a set of
three mutually orthogonal Helmholtz coil pairs. The coils are pro-
grammed to produce a steerable magnetic field rotating in planes
orthogonal to an axis Q. The particles experience a torque and spin
about Q at the drive frequency f, up to a frequency beyond which the
maximum magnetic torque is insufficient to balance the viscous
response torque (Supplementary Information). With this method of
actuation, we access rotational Reynolds number Re, = QR?/v=5-200,
where Q =2mf, vis the kinematic viscosity and R is the radius of the
cylindrical spinner.

Each spinner creates a localized flow, whose streamlines are rep-
resented in Fig. 1d, consisting of apredominantly rotational flow about
the axis of rotation, together with inflows along the axis of rotation,
similar to the secondary flow induced by a rotating sphere*>**. These
inflows are accompanied by aligned, oppositely rotating vortex rings
that sit above and below the spinner as shown in Fig. 1d,e (see Sup-
plementary Information for details). This ‘vortlet’ structure differs
fundamentally from a Stokesian rotlet whose flow is only rotational with
no intrinsic lengthscale. Like the rotlet, the vortlet requires continu-
ous actuation to be sustained, but unlike the rotlet, it has a non-zero
relaxation time. We will refer to this flow-particle pair interchange-
ably as spinner, to focus on the particle, or vortlet to emphasize the
bound flow.

Remarkably, when many suspended spinners are simultaneously
driventorotate about an axis parallel to the cylindrical flow chamber,
they self-organize into cohesive groups that propagate along the flow
chamber, their dynamics punctuated by isolated splitting and merg-
ing events, reminiscent of those seen in natural flocks. The vertically
averaged kymograph in Fig. 1f, constructed by averaging the image
intensity orthogonal to the plane of spin (the vertical direction in the
image), provides anillustrative visualization. Initially, the spinners form
two coherent flocks that propagate towards one another. After ashort
time (which increases downwards in the kymograph), a smaller flock
separates from the flock on the left, after which the two larger flocks
merge. After-10 s, this merged flock splitsin turn. Following each merg-
ing or splitting event, the flocks change speed as seen in the slope of
the trajectory on the kymograph. These striking collective dynamics
raise fundamental questions: What determines a flock’s speed? What
determines whether a flock stays together?

To gain insight into how these complex collective dynamics
emerge, we first examine the dynamics of single spinners driven to
rotate in isolation within a tube of 12.7 mm diameter. Figure 2a(left)
shows a typical vertically averaged kymograph. While in some cases
the spinner simply rotates in place, in most cases, such as this one, it
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Fig.2| A spinner’s shape harvests the active pressure to drive self-propulsion.
a, Verically averaged kymographs of the same single spinner show self-
propulsion under clockwise and counterclockwise rotation, with no evident
change in either speed or direction. b, A collection of moulded particles of
varying size, side angle and aspect ratio. ¢, The propulsive Reynolds number
Re, = UR/vof spinners as a function of their driving rotational Reynolds number
Re, = 2R?/vfor spinners of different sizes Rand Hand side angles B, in carrier
fluids of different viscosities v. The size of each marker is proportional to the
radius R of the spinner (0.2 mm; -1 mm). Within our experimental range, Re;,
increases monotonically as a function of Re . d, Experimental PIV (exp, left
column) of aspinner particle withR=1.02 mm, a=1.24, =10"at Re, = 30
(toprow) and Re, = 100 (bottom row) compared with the simulation
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(sim, right column). e, From simulation, azoomed-in view of the boundary layer
of the spinner, showing the local fluid dimensionless pressure field p’ = p/p£22R?
and vertical velocity profile. The inset displays the relationship between the
dimensionless wall pressure pg atthe mid-plane of the particleand Re, in
simulation, in agreement with the boundary layer theory prediction of aRe™
power law. f, Dimensionless speed U’ = Rey/Re, versus Re , for spinners of
different radii but with same angle = 10" and similar aspect ratios in fluids of
different viscosities, compared with simulations of a spinner with the same angle
and aspect ratio. The error bar represents one standard deviation of speeds
extracted from four independent trajectories. Panel a corresponds to
Supplementary Movie 2.
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propels at aconstant velocity along its axis of rotation, with aspeed U
that changes with the rotationrate Q. In addition, whenthe rotation of
the magnetic field is reversed, the direction and magnitude at which
the spinner propels is unaffected, as shown in Fig. 2a(right). This isin
striking contrast to Stokesian dynamics where time reversibility would
imply areversal of Uinresponse to the reversal of the driving rotation
0.Hence, the origin of propulsion must be inertial.

Under symmetry considerations, we would not expect arotating
cylinder to propel, which leads to the question of how symmetry is
broken. High-magpnificationimages of our particles, examples of which
areshowninSupplementaryFig. 2, reveal that many of the particles are
infactnot perfect cylinders. Their geometries present varying degrees
of asymmetry but are generally reminiscent of a truncated cone or a
conical frustum. These shapes are axisymmetric and therefore lack
chirality, but break head-tail symmetry. We find that rotating particles
ofthis form propel in the direction of the narrower end.

As in all cases of propulsion at finite Reynolds number, the
propulsive Reynolds number Re, = UR/v, which characterizes the
speed of propulsion U, is a function of the ‘active’ Reynolds number
Re, and of the particle geometry. To quantify this relationship, we
constructed moulds to produce particles in the shape of a conical
frustum, controlling the bottom radius R, aspect ratio a = H/R and
side angle 8, which we characterized using a custom imaging setup
(Supplementary Information). Figure 2b displays a selection from
our spinner collection.

Figure 2c shows the propulsive Reynolds number Re, as a func-
tion of Re,, for several values of 8. For the particles presented here, we
find that self-propulsionis insensitive to « asshown in Supplementary
Fig.23.The propulsive Reynolds number Re,increases monotonically
intherange f=0-15°.

Curiously, the dimensionless velocity U = Rey/Re(, = U/RS$2,
showninFig. 2f, indicates two regimes of self-propulsion: for low rota-
tional Reynolds numbers, U’ strongly depends on Re,, but is approxi-
mately constant for Re,values larger than -80. This suggests the drag
becomesnonlinear in the velocity, which may be due toacombination
ofbothinertial effects and drag enhancement by rotation, which occurs
even at low Reynolds numbers***,

Toinvestigate the mechanics of propulsion, we performed simula-
tions of the Navier-Stokes equations coupled to the free motion of a
frustum-shaped body rotating under an external torque (Supplemen-
tary Information). The numerical method uses a volume-penalization
scheme to account for fluid-structure interactions***, Figure 2d shows
simulated velocity fields around a single spinner, for Re, =30 and
Re, =100, next to the corresponding experimental flow fields deter-
mined by particle imaging velocimetry (PIV). As Re, increases from
30t0 100, the oppositely oriented vortex rings identified in Fig. 1d
becomeincreasingly distorted and swept back towards the wider end
of the particle, gradually giving rise to a circular jet.

Closerinspection of the simulated flow, in particular the pressure
distribution, reveals a novel underlying propulsive mechanism.

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-024-02651-5

a [+ e
a - 0.8 ‘X
|U;+ Usl/2 ‘\;\\
Co-rotating Co-rotating 06 | |U;-U3l/2 N
anti-aligned pair aligned pair : Aligned pair
N ¢ Anti-aligned pair
L8 04
\ > Z=
\ 02 1 =
m 5 mm o % ‘/5 }
£ - ‘
Aligned pair
- 25 Anti-aligned pair
0.003
T ~
[‘! U~0 U~U, |50 % | %
4? 0 =~ X 0.002 + | *
s o 1 E
S 0.001 A
Re,=7.5 Re,=7.5 00
0
9 Aligned pair
b d 51 Anti-aligned pair
3 3 al
E e | |
o 34
E = |
S 5 e =3 04
-3 -3 24 ‘
3
‘I -
-3 N -3 0 Q
&
0 . @@ 0 *\@ o ‘ ‘
*mm, 3 N *mm) 3 8 0 10 20 30

Fig.3| Two spinners orbit while self-propelling, with their dynamics dictated
by their configuration. a,c, Configuration diagrams, experimental snapshots
and vertically averaged kymographs of an anti-aligned (a) and an aligned (c) pair.
From the kymograph we can extract the pair speed U, orbital period 7and orbital
width 6.b,d, Therelative three-dimensional trajectory of the anti-aligned (b) and
the aligned (d) pairsinaand c. e, Dimensionless self-propulsion of the pair

U' = U/ 2R versus rotational Reynolds number Re , of a single spinner,
compared with prediction from single particle speeds U, and U,. The error bar

Re,

represents one standard deviation of four independent measurements. f,g, The
dimensionless orbital frequency 1/7" = 1/021 (f) and dimensionless orbital width
&' = 6/R (g) versus rotational Reynolds number Re (,. Each data point is derived
by combining cycles from four independent trajectories, totalling approximately
100 cycles. The box shows data in the interquartile range, and the line indicates
the median. The whiskers extend to the farthest data points within 1.5 times the
interquartile range from the box. Panels a and ¢ correspond to Supplementary
Movie 3.

Figure 2e shows the pressure field p around the spinner, and the vertical
velocity field at its mid-plane z= 0. Both show aboundary layer struc-
ture, with asharp low-pressure region cladding the spinner sides. This
active pressure bubble arises from the rotational drive, and its sign is
independent of the direction of rotation. The nature of propulsion can
then be discerned by considering the pressure force acting on the
spinner, givenby F, = [ (—ph) dS, where Sis the spinner surface and
A is its outward normal. From Fig. 2e we see that the pressure on the
spinner top and bottom is close to the zero far-field pressure, making
little contribution to the pressure force. The side walls tell a different
story. If the side walls are straight, that is, = 0°, then the up-down
symmetry of pyieldsF, = 0 and azero mid-plane vertical velocity. But,
for this frustrumshape, the side wall tilt gives fian upwards component
sothatfi - Z > Owithinthe bubble of negative pressure. Consequently
2 -F, > 0,whichdrives the spinner upwards, towards its narrower end.
Inessence, tilt allows the spinner to harvest some of the energy stored
inits active pressure bubble, with its speed U arising from the active
pressure force being balanced by the viscous fluid drag on spinner
motion. The velocity boundary layer also arises from the active force,
where fluid is pushed downwards as the body moves upwards, thus
exchanging momentum between the body and the fluid.

While the active pressure drop is reminiscent of the pressure lows
realized withinintense fluid vortices that scale with Q% forRe, > 40we
find the relationship between the pressure drop and rotation, as com-
puted numerically onastationary particle, scalesasp - 2*”(Fig. 2e, inset).

This scaling is a hallmark of boundary layers on rotating bodies at high
Reynolds numbers**%, The transition to this scaling isaccompanied by
the formation of localized jets that can be seenin Fig. 2d.

Having investigated the dynamics of a single spinner, we next
consider interactions between pairs of spinners in the same tube. At
sufficiently low rotational drive, the hydrodynamic forces are weak by
comparison withmagneticinteractions (Supplementary Information).
Inthisregime, magnetic particles rotating at low Reynolds numbers are
known to cluster in planes under the influence of their time-averaged
magnetic interactions*>*°, We find that, at higher drives, where mag-
neticinteractions are weak compared with hydrodynamic forces, add-
ing a second spinner with a closely matched geometry and density to
the chamber generally resultsin dynamics of the type shownin Fig.3.In
particular, we observe bound quasi-periodic three-dimensional orbits.
Asseeninthe vertically averaged kymograph of Fig. 3a, though the two
spinners have opposing propulsive directions, they remain bound to
each other with theirjoint centre of mass nearly stationary. In contrast,
when the two bound spinners movein the same direction, asshownin
Fig.3c, theytravel together at the speed of asingle spinner while orbit-
ingeach other withaslightly longer period compared with that of their
anti-aligned counterpart. The relative three-dimensional trajectory of
the pairsinFig.3a,careshowninFig.3b,d, respectively. These show the
orbitsare closedinthree dimensions and notonly in their projections.

To gain insight into these pair interactions, we perform numeri-
cal simulations of idealized configurations consisting of two spinners
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Fig.4|Binding and propulsion mechanics of pairs of co- and counter-rotating
spinners. a, Hydrodynamic forces between co-rotating and counter-rotating pairs
from simulation. The direction of the measured force isindicated in the legend.
Both pairs attract when stacked vertically. A co-rotating pair repelsin the rotation
plane, while a counter-rotating pair, generated by driving the spinners with a
uniaxial oscillating magnetic field, attracts in the rotation plane. The magnitude
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of magneticinteractions is also shown, which has a substantially lower magnitude
than the hydrodynamic force. b,c, Simulated flow field and pressure fields
around co-rotating (b) and counter-rotating (c) pairs. d,e, A time-lapsed image

of experiments of co-rotating (d) and counter-rotating (e) pairs. Transparency
indicates time. Panels d and e correspond to Supplementary Movie 4.

held in place and separated by one particle radius. A calculation of
the hydrodynamic force between the co-rotating spinners (Fig. 4a-c)
reveals that they are attractive when vertically aligned and repulsive
when horizontally aligned. These signed interactions are manifest in
the experiment shown in Fig. 4d in which two co-rotating spinners
were activated in the centre of alarge container. The spinners attract
vertically and then spiral away from each other radially. Interestingly,
we find that if one of the spinners is rotated in the opposite direction,
thetwobindintheradial directionand propel asapair (Fig.4e). Thisis
reflected in the numerical calculation that shows that counter-spinners
are attractive in both the radial and vertical directions. We note that
these dynamics are forbidden at low Reynolds numbers, since time
reversal symmetry of the Stokes equations guarantees that the spinners
must remain at a constant distance; otherwise, any motion towards
each other would have to be reversed when the spinis reversed.

The central role of self-propulsionin determining the pair dynam-
ics is made clear by quantifying the relationship between individual
spinner speeds and the bound pair speed and orbital period. We meas-
ure the speed of the pair of spinners by linearly fitting the mean of the
kymograph, and measure the extent of the pair by averaging twice the
standard deviation of the kymograph over time. Interestingly, the
average of the independently measured speeds U, and U, provides an
excellent predictor of the speed of the bound pair. This is shown in
Fig. 3e, where we see that the anti-aligned pair moves approximately
at a speed of |U; — U,|/2 while an aligned pair moves at a speed of
|U; + U,|/2. Similarly, we find the orbital period T = Q27 is shorter for
anti-aligned spinners than for aligned spinners when the pairis regular
(Re, <15) (Fig. 3f), while the average distance between them &’ = 6/R
is comparable (Fig. 3g). See Supplementary Section Vc for further
discussion of the effect of vial diameter on pair dynamics. As the Reyn-
olds number is increased, the orbits no longer appear to be periodic,
though they remain bounded, and the pair’s speed is less than the
average of the individual signed speeds.

As more spinners are added to the flow chamber, these elegant
dynamicsrapidly lose coherence and transition to the chaotic collective
dynamics visible in Fig. 5. Despite the loss of coherence, the spinners
nonetheless bind and exhibit flocking behaviour. It is natural to ask to
what extent the collective dynamics inherit that of single spinners. For
apair of spinners, we found that the relative orientation of individual
spinners was predictive of the pair’s velocity and controls the orbital
period. A naive generalization of the pair dynamics would suggest that

the velocity of aflockis given by the average velocity of theindividuals,
Ugock = /N) Z?/:I U;, where U,, U,, ..., Uy are the signed speeds of the
individual spinners. For flocks of spinners of similar speeds |U| = U,
we then have

Nr_N]
NV+M>Um )

Uﬂock ~ (
where N, and N, denote the number of particles oriented to the right
and left, respectively. The coefficient (N, — N))/(N, + N)) is the polariza-
tion of the flock, which takes values +1 when all particles point in the
same direction and O when an equal number pointin either direction.

We assess this prediction by visually determining the polarization
of flocks of N=2, 3 and 20 spinners at rotational Reynolds numbers
Re,=5-20. Furthermore, we simulated flocks of N= 5 spinners in the
same range of Re ,. Figure 5c shows the resulting aggregate plot of the
flock speed against the polarization, revealing alinear relationin agree-
mentwithequation (1). Thus, even within the chaos of aflock, individual
propulsion plays akey rolein determining the dynamics of the whole.

This relationship between flock speed and polarization lends a
natural interpretation to the changes of speed observed in Fig. 1f. As
the flocks merge and split, their polarization and, thus, their collective
speed change accordingly. Duringthis process, visualinspection shows
that changes of particle orientation are rare (Supplementary Informa-
tion). Givenacollectionof flocksm =1, ..., M, eachwith N, particles and
mean velocity Upoe ., We define P, = N,,Upou.m/Up @s the ‘thrust’ of the
flock. Merging or splitting events then obey

M- m+
D Pn= P, ()
m=1 m=1

where minus and plus superscripts denote before and after the event,
respectively. Examples of both splitting and merging events of two
flocks are shown in Fig. 5a,b. From a collection of such events, we
extracted the before and after thrusts and compared them in Fig. 5d.
The linear relation with unit slope confirms the empirical validity of
equation (2).

A defining feature of a flock is its ability to stay cohesive. Strik-
ingly, as shown in Fig. Se, the lifetime of our flocks increases with the
number of particles and can exceed several minutes. For example, at
25Hz (Re,=20), a flock of 50 particles typically splits within 100's,
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Fig. 5| Flock speed depends on its polarization; total thrustis conserved
during merges and splits; lifetime and volume fraction vary with particle
number. a,b, Vertically averaged kymographs showing splitting (a) and merging
(b) events. Each flock s assigned a dimensionless thrust P,, = N, Upoci i/ Uo, Where
N, is the number of particlesin the flock, Uyoq  is the flock speed and U, is the
average speed of the particles. ¢, The dimensionless flock speed Uﬁock = Upock/ Vo
is determined by the polarization of the flock (N, - M))/(N, + N)).d, When flocks
merge or split, their total thrust stays constant. e, At 25 Hz (Re , = 20), the flock

lifetime increases with the number of particles in the flock. The flock’s lifetime is
measured when 20% of the particles separate from the flock. The box shows data
intheinterquartile range, and the line indicates the median. The whiskers extend
to the farthest data points within 1.5 times the interquartile range from the box.
The data points outside the whiskers are shown as the fliers. The box plot
contains five or more independent measurements. f, The volume fraction of a
flock increases with its particle number at Re, = 15.Panelsaand b correspond to
Supplementary Movie 5.

but a flock with more than 150 particles persists for more than 200 s.
Moreover, the flock density also increases with the number of particles
asshowninFig. 5f, abehaviour analogous to the increasing density of
aschool of fish with the number of its constituents®. This remarkable
tendency to become more cohesive the more members are added to
the flock is contrasted by a tendency to become less cohesive when
the rotational drive is increased and mixed-polarization flocks split
into purely polarized ones.

Theformationofflocksinourtubularchambersarises fromtheinter-
play of spinner-spinnerinteractions, confinement and self-propulsion.
Confinement keeps the spinners from drifting apart sideways and makes
themre-circulate, whichinturnlines them up alongthe tube’s axis. Axially
aligned spinners then attract as shown in Supplementary Fig. 26. This
attraction decays as the particles move off axis, evenbecoming repulsion
when sufficiently askew, creating the possibility for configurations in
which self-propulsion beats attraction. How to generalize these pairwise
interactionstotheflock splitting phenomenonremains an open question
notleast because of theinherent non-additivity of pairwise forces at finite
Reynolds numbers. Indeed, experiments often show flocks splitting into
two subflocks each with dozens of particles, suggesting further that flock
splitting must be collective in nature.

Asmorespinners are added, the flock size grows until it becomes
comparable tothelength of the flow chamber, at which point the spin-
nersareattracted toand gradually absorbed by the end caps, an effect
thatisknownto occur for particles rotating near a flat wall at non-zero
Reynolds numbers’. This raises the question of whether, if at all, the
chaotic three-dimensional dynamics of a collection of spinners and

their vortlets can generalize to a steady-state phase of uniform density
spanning the flow chamber.

Figure 6a,f shows the designs of vertically oriented, large-radius
(~20 mm) cylindrical flow chambers with three-dimensionally (3D)
printed flat (Fig. 6a) and conical (Fig. 6f) end caps, in which we placed
N=3,150 or 9,500 spinners. The containers each have volumes of
approximately 90 ml. When density matched (Fig. 6b,c,g,h) the spin-
ners partition between a cloud in the vicinity of eachend cap and a
homogeneousbulk steady state of uniformdensity: athree-dimensional
chiral fluid of active vortlets at intermediate Reynolds numbers.

The steady-state density of spinners is strongly influenced by
the end-cap geometry. For flat end caps, the attractive interaction
between spinners and a flat plate leads to the absorption of a carpet
of spinners visiblein the bottom of Fig. 6b,c. Once a sufficient density
of spinners is absorbed, a dynamical equilibrium is reached in which
spinners can re-suspend by sling-shotting each other into the bulk.
In the case of conical end caps, the spinners roll along the surface as
illustrated inthe conical regionin Fig. 6g and are ejected back into the
bulk more efficiently, leading to a smaller number being sacrificed to
theboundaries. Theresult of these differing offsetsis clearly visible in
Fig. 6b,c,g,h in which the same number of spinners are suspended in
the same volume of fluid but the resulting density in the central region
is dramatically different.

The different response to the boundary geometry is even more
evidentwhen gravity is used to compress the three-dimensional active
chiralfluid against aboundary. For the flat plate (Fig. 6d), theresultisa
chiral fluid with varying density in the vertical direction and relatively
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Fig. 6 | Three-dimensional chiral active fluid in different geometries and
under external force. a, A diagram of a custom-made container consisting of flat
3D-printed top and bottom caps. b, With -3,150 spinners at 30 Hz, most spinners
are absorbed by the boundary. ¢, With -9,500 spinners at 30 Hz, a dynamic steady
state of a chiral active fluid emerges. d, By lowering the carrier fluid density, the
chiral fluid is compressed down by gravity and exhibits a fluctuating surface. e, A
vertically averaged kymograph of d shows no discernible dynamics. f, A diagram
of acustom-made container consisting of conical 3D-printed top and bottom
caps. g, With-~3,150 spinners at 30 Hz, more spinners are present in the bulk

t(s)

t(s)

x (mm)

compared with b. The diagram at the bottom of the panelillustrates the rolling
direction of a spinner pushed against a tilted surface. h, Approximately 9,500
spinners at 30 Hz in the conical cap cylinder shows a higher number density than
thatin c. From Supplementary Movie 6 we can observe there is a global rotation
inthe same direction of spin. i, With lower carrier fluid density, a twister state
emerges where a group of spinners flocks along the edges. The arrow shows the
direction of motion of the twister, which is opposite to the direction of spin.

Jj, Avertically averaged kymograph showing the twister state ini. Panelsh andi
correspond to Supplementary Movie 6.

uniform distribution in the horizontal cross sections as verified by
the vertically averaged kymograph in Fig. 6e. When the chiral fluid
is instead compressed against a conical end cap (Fig. 6i), the result
is a self-organized localized region of spinners (a twister) that orbits
the flow chamber resulting in the spiralling kymograph shown in
Fig. 6j. We note that the orbiting direction of the twister is opposite
to the direction of spin, which we attribute to roll-like interactions
between the spinners and the tilted boundary. This is in contrast to
the density-matched case, in which a global rotational flow is estab-
lished in the same direction of spin (Supplementary Movie 6). These
experiments demonstrate that athree-dimensional chiral fluid can be
built out of active vortlets. Both gravity and boundaries can be used
tomanipulate the fluid, and lively collective behaviour spontaneously
andreadily emerges.

The addition of inertia heralds a new regime for active matter in
controlled settings, one in which the background flow plays an active
role. Inertial flows are important for ordered formations of birds,
where flock organizationreflects theinteraction of individuals with the
vortical wakes of their neighbours®. However, itis difficult to separate
therole of mechanics and sensing in living systems***°, The synthetic
system introduced here exhibits three-dimensional flocking due to
hydrodynamic interactions, and this behaviour inherently relies on
fluid inertia. Moreover, these nonlinear hydrodynamic interactions
distinguish this system from classical active matter systems that exhibit
flocking due to explicit alignment between neighbours®.

The deceptively simple configuration we build upon—an axisym-
metric particle rotatingin an otherwise quiescent fluid—leverages flow
inertia to give rise to novel hydrodynamic behaviours. A single spin-
ner, which shares features with the two-sphere swimmer theorized in
refs. 58,59, swims by mechanisms forbidden at low Reynolds numbers,
yet differs substantially from both flapping swimmers, which rely on
flow separation and vortex shedding'®", and oscillating swimmers in
whichacompetition ofinertial streaming flows and viscous drag leads
to directed motion™.

Collections of spinners withbound vortlets readily exhibit rich col-
lective dynamics. Activated by internal rotations, these dynamics differ
considerably fromthose of systems undergoing global rotation that are
driveninto two-dimensionality per the Taylor-Proudman theorem®.
Finally, at high densities, spinner suspensions formathree-dimensional
active chiral fluid, a new phase of matter in which particles generate
and couple to nonlinear background flows.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41567-024-02651-5.
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