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Self-propulsion, flocking and chiral 
active phases from particles spinning at 
intermediate Reynolds numbers

Panyu Chen    1,6, Scott Weady    2,6, Severine Atis1,5,6, Takumi Matsuzawa    1, 
Michael J. Shelley    2,3   & William T. M. Irvine    1,4 

Vorticity, a measure of the local rate of rotation of a fluid element, is the 
driver of incompressible flow. In viscous fluids, powering bulk flows requires 
the continuous injection of vorticity from boundaries to counteract the 
diffusive effects of viscosity. Here we power a flow from within by suspending 
approximately cylindrical particles and magnetically driving them to 
rotate at Reynolds numbers in the intermediate range. We find that a single 
particle generates a localized three-dimensional region of vorticity around 
it—which we call a vortlet—that drives a number of remarkable behaviours. 
Slight asymmetries in the particle shape can deform the vortlet and cause 
the particle to self-propel. Interactions between vortlets are similarly 
rich, generating bound dynamical states. When a large number of vortlets 
interact, they spontaneously form collectively moving flocks. These 
flocks remain coherent while propelling, splitting and merging. If enough 
particles are added so as to saturate the flow chamber, a homogeneous 
three-dimensional active chiral fluid of vortlets is formed, which can be 
manipulated with gravity or flow chamber boundaries, leading to lively 
collective dynamics. Our findings demonstrate an inertial regime for 
synthetic active matter, provide a controlled physical system for the 
quantitative study of three-dimensional flocking in non-sentient systems and 
establish a platform for the study of three-dimensional active chiral fluids.

Pushing on a body of water produces a myriad of mesmerizing flow 
structures. A vortex ring is a classic example: impulsively forcing 
water through an orifice generates a ring of concentrated vorticity 
that advects itself over long distances, carrying the inertia of the initial 
impulse1,2. This capacity for self-sustained liveliness of a flow is lost 
when viscosity, rather than inertia, dominates. Indeed, the fluid inside 
microscopic living cells shows little tendency to flow unless continu-
ously forced by active elements3,4. These differences are reflected in 
the equations of fluid motion; viscous Stokes flows are linear, famously 

time reversible, with the space of responses to actuation strongly lim-
ited compared with that of nonlinear and often unruly near-inviscid 
flows5,6.

A realm of possibilities lies in the middle where viscosity and iner-
tia compete7–9. Here, the symmetries of Stokes flow are broken by 
inertia, lifting substantial constraints on the flow, while viscous effects 
promote dynamical regularity. The result is a rich space of allowed 
dynamics involving spontaneous locomotion10–12 and hydrodynamic 
synchronization13–15. Because of the presence of viscous dissipation, 
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Each spinner creates a localized flow, whose streamlines are rep-
resented in Fig. 1d, consisting of a predominantly rotational flow about 
the axis of rotation, together with inflows along the axis of rotation, 
similar to the secondary flow induced by a rotating sphere42,43. These 
inflows are accompanied by aligned, oppositely rotating vortex rings 
that sit above and below the spinner as shown in Fig. 1d,e (see Sup-
plementary Information for details). This ‘vortlet’ structure differs 
fundamentally from a Stokesian rotlet whose flow is only rotational with 
no intrinsic lengthscale. Like the rotlet, the vortlet requires continu-
ous actuation to be sustained, but unlike the rotlet, it has a non-zero 
relaxation time. We will refer to this flow–particle pair interchange-
ably as spinner, to focus on the particle, or vortlet to emphasize the 
bound flow.

Remarkably, when many suspended spinners are simultaneously 
driven to rotate about an axis parallel to the cylindrical flow chamber, 
they self-organize into cohesive groups that propagate along the flow 
chamber, their dynamics punctuated by isolated splitting and merg-
ing events, reminiscent of those seen in natural flocks. The vertically 
averaged kymograph in Fig. 1f, constructed by averaging the image 
intensity orthogonal to the plane of spin (the vertical direction in the 
image), provides an illustrative visualization. Initially, the spinners form 
two coherent flocks that propagate towards one another. After a short 
time (which increases downwards in the kymograph), a smaller flock 
separates from the flock on the left, after which the two larger flocks 
merge. After ~10 s, this merged flock splits in turn. Following each merg-
ing or splitting event, the flocks change speed as seen in the slope of 
the trajectory on the kymograph. These striking collective dynamics 
raise fundamental questions: What determines a flock’s speed? What 
determines whether a flock stays together?

To gain insight into how these complex collective dynamics 
emerge, we first examine the dynamics of single spinners driven to 
rotate in isolation within a tube of 12.7 mm diameter. Figure 2a(left) 
shows a typical vertically averaged kymograph. While in some cases 
the spinner simply rotates in place, in most cases, such as this one, it 

just like their counterparts at low Reynolds number16–21, these flows 
require continuous activation.

Vorticity, which is naturally created by fluid flowing past walls, 
plays a unique role in incompressible flow, acting as a source of 
its dynamics. When generated through internal boundaries in 
viscous flows, for example, by rotating microscopic particles, 
dynamical states emerge that include collective motion22–24, hydro-
dynamic cystallization25–28, macroscopic chiral stresses29–36 and 
non-reciprocity37–39. Much less is known, however, about these flows 
at non-zero Reynolds numbers where the fluid itself carries advective 
nonlinearities. In this case, the inertia of the background fluid can 
break fundamental assumptions such as pairwise additivity of forces 
between particulates and can substantially modify the bulk rheology 
of a suspension40.

We set out to leverage vorticity as a source of dynamics in inertial 
flow by driving suspended particles to rotate at intermediate Reynolds 
numbers. Our experimental platform, illustrated in Fig. 1a,b, consists 
of a collection of approximately cylindrical particles, produced by 
laser-cutting disks of diameter ~1 mm from a ~0.6-mm-thick film of 
magnetically doped polydimethylsiloxane (PDMS)41. The particles are 
magnetized by passage between a pair of rare-earth magnets, endowing 
them with a permanent magnetic dipole moment m perpendicular to 
their axis of symmetry as shown in Fig. 1b.

The particles are suspended in a density-matched Na2WO4–water 
solution and placed in a flow chamber that in turn is placed in a set of 
three mutually orthogonal Helmholtz coil pairs. The coils are pro-
grammed to produce a steerable magnetic field rotating in planes 
orthogonal to an axis Ω̂ΩΩ. The particles experience a torque and spin 
about Ω̂ΩΩ at the drive frequency f, up to a frequency beyond which the 
maximum magnetic torque is insufficient to balance the viscous 
response torque (Supplementary Information). With this method of 
actuation, we access rotational Reynolds number ReΩ = ΩR2/ν ≈ 5 − 200, 
where Ω = 2πf, ν is the kinematic viscosity and R is the radius of the 
cylindrical spinner.
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Fig. 1 | Suspensions of spinning particles and their vortlets self-organize into 
flocks. a, Our experiment utilizes suspended, magnetically polarized PDMS 
cylindrical particles with a permanent dipole moment m, which are forced to 
rotate about their symmetry axis under a rotating magnetic field B. This 
generates a three-dimensional ‘vortlet’ flow, distinct from that of the rotlet of 
Stokes flow. b, The particles are suspended within a vial in a density-matched 
Na2WO4–water solution. c, Numerical computation of the flow field around a 
single particle at ReΩ = 30, visualized through streamlines, shows the 
characteristic bound vortlet flow, which consists of a large rotational component 

accompanied by inflow along the axis of rotation and outflow along the sides.  
d,e, The vortlet flow field is visualized using time-lapsed images of tracer 
particles in the plane perpendicular to the plane of rotation (d) and in the plane of 
rotation (e). The grey area on the right of the particle corresponds to its shadow. 
f, By removing the background and integrating the image intensity across the 
flow chamber, we generate vertically averaged kymographs that capture the 
three-dimensional collective dynamics of 30 vortlets as vortlet flocks propagate, 
merge, exchange and split. Panel f corresponds to Supplementary Movie 1.
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propels at a constant velocity along its axis of rotation, with a speed U 
that changes with the rotation rate Ω. In addition, when the rotation of 
the magnetic field is reversed, the direction and magnitude at which 
the spinner propels is unaffected, as shown in Fig. 2a(right). This is in 
striking contrast to Stokesian dynamics where time reversibility would 
imply a reversal of U in response to the reversal of the driving rotation 
Ω. Hence, the origin of propulsion must be inertial.

Under symmetry considerations, we would not expect a rotating 
cylinder to propel, which leads to the question of how symmetry is 
broken. High-magnification images of our particles, examples of which 
are shown in Supplementary Fig. 2, reveal that many of the particles are 
in fact not perfect cylinders. Their geometries present varying degrees 
of asymmetry but are generally reminiscent of a truncated cone or a 
conical frustum. These shapes are axisymmetric and therefore lack 
chirality, but break head-tail symmetry. We find that rotating particles 
of this form propel in the direction of the narrower end.

As in all cases of propulsion at finite Reynolds number, the 
propulsive Reynolds number ReU = UR/ν, which characterizes the 
speed of propulsion U, is a function of the ‘active’ Reynolds number 
ReΩ and of the particle geometry. To quantify this relationship, we 
constructed moulds to produce particles in the shape of a conical 
frustum, controlling the bottom radius R, aspect ratio α = H/R and 
side angle β, which we characterized using a custom imaging setup 
(Supplementary Information). Figure 2b displays a selection from 
our spinner collection.

Figure 2c shows the propulsive Reynolds number ReU as a func-
tion of ReΩ for several values of β. For the particles presented here, we 
find that self-propulsion is insensitive to α as shown in Supplementary 
Fig. 23. The propulsive Reynolds number ReU increases monotonically 
in the range β = 0–15°.

Curiously, the dimensionless velocity U′ = ReU/ReΩ = U/RΩ , 
shown in Fig. 2f, indicates two regimes of self-propulsion: for low rota-
tional Reynolds numbers, U′ strongly depends on ReΩ, but is approxi-
mately constant for ReΩvalues larger than ~80. This suggests the drag 
becomes nonlinear in the velocity, which may be due to a combination 
of both inertial effects and drag enhancement by rotation, which occurs 
even at low Reynolds numbers44,45.

To investigate the mechanics of propulsion, we performed simula-
tions of the Navier–Stokes equations coupled to the free motion of a 
frustum-shaped body rotating under an external torque (Supplemen-
tary Information). The numerical method uses a volume-penalization 
scheme to account for fluid–structure interactions46,47. Figure 2d shows 
simulated velocity fields around a single spinner, for ReΩ = 30 and 
ReΩ = 100, next to the corresponding experimental flow fields deter-
mined by particle imaging velocimetry (PIV). As ReΩ increases from 
30 to 100, the oppositely oriented vortex rings identified in Fig. 1d 
become increasingly distorted and swept back towards the wider end 
of the particle, gradually giving rise to a circular jet.

Closer inspection of the simulated flow, in particular the pressure 
distribution, reveals a novel underlying propulsive mechanism. 
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Fig. 2 | A spinner’s shape harvests the active pressure to drive self-propulsion. 
a, Verically averaged kymographs of the same single spinner show self-
propulsion under clockwise and counterclockwise rotation, with no evident 
change in either speed or direction. b, A collection of moulded particles of 
varying size, side angle and aspect ratio. c, The propulsive Reynolds number 
ReU = UR/ν of spinners as a function of their driving rotational Reynolds number 
ReΩ = ΩR2/ν for spinners of different sizes R and H and side angles β, in carrier 
fluids of different viscosities ν. The size of each marker is proportional to the 
radius R of the spinner (~0.2 mm; ~1 mm). Within our experimental range, ReU  
increases monotonically as a function of ReΩ. d, Experimental PIV (exp, left 
column) of a spinner particle with R = 1.02 mm, α = 1.24, β = 10∘ at ReΩ = 30  
(top row) and ReΩ = 100 (bottom row) compared with the simulation 

(sim, right column). e, From simulation, a zoomed-in view of the boundary layer 
of the spinner, showing the local fluid dimensionless pressure field p′ = p/ρΩ2R2 
and vertical velocity profile. The inset displays the relationship between the 
dimensionless wall pressure p′0 at the mid-plane of the particle and ReΩ in 
simulation, in agreement with the boundary layer theory prediction of a Re−1/2 
power law. f, Dimensionless speed U′ = ReU/ReΩ versus ReΩ for spinners of 
different radii but with same angle β = 10∘ and similar aspect ratios in fluids of 
different viscosities, compared with simulations of a spinner with the same angle 
and aspect ratio. The error bar represents one standard deviation of speeds 
extracted from four independent trajectories. Panel a corresponds to 
Supplementary Movie 2.
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Figure 2e shows the pressure field p around the spinner, and the vertical 
velocity field at its mid-plane z = 0. Both show a boundary layer struc-
ture, with a sharp low-pressure region cladding the spinner sides. This 
active pressure bubble arises from the rotational drive, and its sign is 
independent of the direction of rotation. The nature of propulsion can 
then be discerned by considering the pressure force acting on the 
spinner, given by Fp = ∫S(−pn̂)dS, where S is the spinner surface and 
n̂ is its outward normal. From Fig. 2e we see that the pressure on the 
spinner top and bottom is close to the zero far-field pressure, making 
little contribution to the pressure force. The side walls tell a different 
story. If the side walls are straight, that is, β = 0°, then the up–down 
symmetry of p yields Fp = 0 and a zero mid-plane vertical velocity. But, 
for this frustrum shape, the side wall tilt gives n̂ an upwards component 
so that n̂ ⋅ ẑ > 0 within the bubble of negative pressure. Consequently 
ẑ ⋅ Fp > 0, which drives the spinner upwards, towards its narrower end. 
In essence, tilt allows the spinner to harvest some of the energy stored 
in its active pressure bubble, with its speed U arising from the active 
pressure force being balanced by the viscous fluid drag on spinner 
motion. The velocity boundary layer also arises from the active force, 
where fluid is pushed downwards as the body moves upwards, thus 
exchanging momentum between the body and the fluid.

While the active pressure drop is reminiscent of the pressure lows 
realized within intense fluid vortices that scale with Ω2, for ReΩ ≳ 40 we 
find the relationship between the pressure drop and rotation, as com-
puted numerically on a stationary particle, scales as p ~ Ω3/2 (Fig. 2e, inset). 

This scaling is a hallmark of boundary layers on rotating bodies at high 
Reynolds numbers45,48. The transition to this scaling is accompanied by 
the formation of localized jets that can be seen in Fig. 2d.

Having investigated the dynamics of a single spinner, we next 
consider interactions between pairs of spinners in the same tube. At 
sufficiently low rotational drive, the hydrodynamic forces are weak by 
comparison with magnetic interactions (Supplementary Information). 
In this regime, magnetic particles rotating at low Reynolds numbers are 
known to cluster in planes under the influence of their time-averaged 
magnetic interactions49,50. We find that, at higher drives, where mag-
netic interactions are weak compared with hydrodynamic forces, add-
ing a second spinner with a closely matched geometry and density to 
the chamber generally results in dynamics of the type shown in Fig. 3. In 
particular, we observe bound quasi-periodic three-dimensional orbits. 
As seen in the vertically averaged kymograph of Fig. 3a, though the two 
spinners have opposing propulsive directions, they remain bound to 
each other with their joint centre of mass nearly stationary. In contrast, 
when the two bound spinners move in the same direction, as shown in 
Fig. 3c, they travel together at the speed of a single spinner while orbit-
ing each other with a slightly longer period compared with that of their 
anti-aligned counterpart. The relative three-dimensional trajectory of 
the pairs in Fig. 3a,c are shown in Fig. 3b,d, respectively. These show the 
orbits are closed in three dimensions and not only in their projections.

To gain insight into these pair interactions, we perform numeri-
cal simulations of idealized configurations consisting of two spinners 
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Fig. 3 | Two spinners orbit while self-propelling, with their dynamics dictated 
by their configuration. a,c, Configuration diagrams, experimental snapshots 
and vertically averaged kymographs of an anti-aligned (a) and an aligned (c) pair. 
From the kymograph we can extract the pair speed U, orbital period τ and orbital 
width δ. b,d, The relative three-dimensional trajectory of the anti-aligned (b) and 
the aligned (d) pairs in a and c. e, Dimensionless self-propulsion of the pair 
U′ = U/ΩR versus rotational Reynolds number ReΩ of a single spinner, 
compared with prediction from single particle speeds U1 and U2. The error bar 

represents one standard deviation of four independent measurements. f,g, The 
dimensionless orbital frequency 1/τ′ = 1/Ωτ  (f) and dimensionless orbital width 
δ′ = δ/R (g) versus rotational Reynolds number ReΩ. Each data point is derived 
by combining cycles from four independent trajectories, totalling approximately 
100 cycles. The box shows data in the interquartile range, and the line indicates 
the median. The whiskers extend to the farthest data points within 1.5 times the 
interquartile range from the box. Panels a and c correspond to Supplementary 
Movie 3.
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held in place and separated by one particle radius. A calculation of 
the hydrodynamic force between the co-rotating spinners (Fig. 4a–c) 
reveals that they are attractive when vertically aligned and repulsive 
when horizontally aligned. These signed interactions are manifest in 
the experiment shown in Fig. 4d in which two co-rotating spinners 
were activated in the centre of a large container. The spinners attract 
vertically and then spiral away from each other radially. Interestingly, 
we find that if one of the spinners is rotated in the opposite direction, 
the two bind in the radial direction and propel as a pair (Fig. 4e). This is 
reflected in the numerical calculation that shows that counter-spinners 
are attractive in both the radial and vertical directions. We note that 
these dynamics are forbidden at low Reynolds numbers, since time 
reversal symmetry of the Stokes equations guarantees that the spinners 
must remain at a constant distance; otherwise, any motion towards 
each other would have to be reversed when the spin is reversed.

The central role of self-propulsion in determining the pair dynam-
ics is made clear by quantifying the relationship between individual 
spinner speeds and the bound pair speed and orbital period. We meas-
ure the speed of the pair of spinners by linearly fitting the mean of the 
kymograph, and measure the extent of the pair by averaging twice the 
standard deviation of the kymograph over time. Interestingly, the 
average of the independently measured speeds U1 and U2 provides an 
excellent predictor of the speed of the bound pair. This is shown in 
Fig. 3e, where we see that the anti-aligned pair moves approximately 
at a speed of ∣U1 − U2∣/2 while an aligned pair moves at a speed of 
∣U1 + U2∣/2. Similarly, we find the orbital period τ′ = Ωτ  is shorter for 
anti-aligned spinners than for aligned spinners when the pair is regular 
(ReΩ ≤ 15) (Fig. 3f), while the average distance between them δ′ = δ/R 
is comparable (Fig. 3g). See Supplementary Section Vc for further 
discussion of the effect of vial diameter on pair dynamics. As the Reyn-
olds number is increased, the orbits no longer appear to be periodic, 
though they remain bounded, and the pair’s speed is less than the 
average of the individual signed speeds.

As more spinners are added to the flow chamber, these elegant 
dynamics rapidly lose coherence and transition to the chaotic collective 
dynamics visible in Fig. 5. Despite the loss of coherence, the spinners 
nonetheless bind and exhibit flocking behaviour. It is natural to ask to 
what extent the collective dynamics inherit that of single spinners. For 
a pair of spinners, we found that the relative orientation of individual 
spinners was predictive of the pair’s velocity and controls the orbital 
period. A naive generalization of the pair dynamics would suggest that 

the velocity of a flock is given by the average velocity of the individuals, 
Uflock = (1/N )∑N

i=1 Ui, where U1, U2, …, UN are the signed speeds of the 
individual spinners. For flocks of spinners of similar speeds ∣Ui∣ ≈ U0, 
we then have

U flock ≈ (Nr − Nl
Nr + Nl

)U0, (1)

where Nr and Nl denote the number of particles oriented to the right 
and left, respectively. The coefficient (Nr − Nl)/(Nr + Nl) is the polariza-
tion of the flock, which takes values ±1 when all particles point in the 
same direction and 0 when an equal number point in either direction.

We assess this prediction by visually determining the polarization 
of flocks of N = 2, 3 and 20 spinners at rotational Reynolds numbers 
ReΩ = 5–20. Furthermore, we simulated flocks of N = 5 spinners in the 
same range of ReΩ. Figure 5c shows the resulting aggregate plot of the 
flock speed against the polarization, revealing a linear relation in agree-
ment with equation (1). Thus, even within the chaos of a flock, individual 
propulsion plays a key role in determining the dynamics of the whole.

This relationship between flock speed and polarization lends a 
natural interpretation to the changes of speed observed in Fig. 1f. As 
the flocks merge and split, their polarization and, thus, their collective 
speed change accordingly. During this process, visual inspection shows 
that changes of particle orientation are rare (Supplementary Informa-
tion). Given a collection of flocks m = 1, …, M, each with Nm particles and 
mean velocity Uflock,m, we define Pm = NmUflock,m/U0 as the ‘thrust’ of the 
flock. Merging or splitting events then obey

M−

∑
m=1

P−m =
M+

∑
m=1

P+m, (2)

where minus and plus superscripts denote before and after the event, 
respectively. Examples of both splitting and merging events of two 
flocks are shown in Fig. 5a,b. From a collection of such events, we 
extracted the before and after thrusts and compared them in Fig. 5d. 
The linear relation with unit slope confirms the empirical validity of 
equation (2).

A defining feature of a flock is its ability to stay cohesive. Strik-
ingly, as shown in Fig. 5e, the lifetime of our flocks increases with the 
number of particles and can exceed several minutes. For example, at 
25 Hz (ReΩ ≈ 20), a flock of 50 particles typically splits within 100 s, 
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of experiments of co-rotating (d) and counter-rotating (e) pairs. Transparency 
indicates time. Panels d and e correspond to Supplementary Movie 4.
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but a flock with more than 150 particles persists for more than 200 s. 
Moreover, the flock density also increases with the number of particles 
as shown in Fig. 5f, a behaviour analogous to the increasing density of 
a school of fish with the number of its constituents51. This remarkable 
tendency to become more cohesive the more members are added to 
the flock is contrasted by a tendency to become less cohesive when 
the rotational drive is increased and mixed-polarization flocks split 
into purely polarized ones.

The formation of flocks in our tubular chambers arises from the inter-
play of spinner–spinner interactions, confinement and self-propulsion. 
Confinement keeps the spinners from drifting apart sideways and makes 
them re-circulate, which in turn lines them up along the tube’s axis. Axially 
aligned spinners then attract as shown in Supplementary Fig. 26. This 
attraction decays as the particles move off axis, even becoming repulsion 
when sufficiently askew, creating the possibility for configurations in 
which self-propulsion beats attraction. How to generalize these pairwise 
interactions to the flock splitting phenomenon remains an open question 
not least because of the inherent non-additivity of pairwise forces at finite 
Reynolds numbers. Indeed, experiments often show flocks splitting into 
two subflocks each with dozens of particles, suggesting further that flock 
splitting must be collective in nature.

As more spinners are added, the flock size grows until it becomes 
comparable to the length of the flow chamber, at which point the spin-
ners are attracted to and gradually absorbed by the end caps, an effect 
that is known to occur for particles rotating near a flat wall at non-zero 
Reynolds numbers52. This raises the question of whether, if at all, the 
chaotic three-dimensional dynamics of a collection of spinners and 

their vortlets can generalize to a steady-state phase of uniform density 
spanning the flow chamber.

Figure 6a,f shows the designs of vertically oriented, large-radius 
(~20 mm) cylindrical flow chambers with three-dimensionally (3D) 
printed flat (Fig. 6a) and conical (Fig. 6f) end caps, in which we placed 
N ≈ 3,150 or 9,500 spinners. The containers each have volumes of 
approximately 90 ml. When density matched (Fig. 6b,c,g,h) the spin-
ners partition between a cloud in the vicinity of each end cap and a 
homogeneous bulk steady state of uniform density: a three-dimensional 
chiral fluid of active vortlets at intermediate Reynolds numbers.

The steady-state density of spinners is strongly influenced by 
the end-cap geometry. For flat end caps, the attractive interaction 
between spinners and a flat plate leads to the absorption of a carpet 
of spinners visible in the bottom of Fig. 6b,c. Once a sufficient density 
of spinners is absorbed, a dynamical equilibrium is reached in which 
spinners can re-suspend by sling-shotting each other into the bulk. 
In the case of conical end caps, the spinners roll along the surface as 
illustrated in the conical region in Fig. 6g and are ejected back into the 
bulk more efficiently, leading to a smaller number being sacrificed to 
the boundaries. The result of these differing offsets is clearly visible in 
Fig. 6b,c,g,h in which the same number of spinners are suspended in 
the same volume of fluid but the resulting density in the central region 
is dramatically different.

The different response to the boundary geometry is even more 
evident when gravity is used to compress the three-dimensional active 
chiral fluid against a boundary. For the flat plate (Fig. 6d), the result is a 
chiral fluid with varying density in the vertical direction and relatively 
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merge or split, their total thrust stays constant. e, At 25 Hz (ReΩ = 20), the flock 

lifetime increases with the number of particles in the flock. The flock’s lifetime is 
measured when 20% of the particles separate from the flock. The box shows data 
in the interquartile range, and the line indicates the median. The whiskers extend 
to the farthest data points within 1.5 times the interquartile range from the box. 
The data points outside the whiskers are shown as the fliers. The box plot 
contains five or more independent measurements. f, The volume fraction of a 
flock increases with its particle number at ReΩ = 15. Panels a and b correspond to 
Supplementary Movie 5.
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uniform distribution in the horizontal cross sections as verified by 
the vertically averaged kymograph in Fig. 6e. When the chiral fluid 
is instead compressed against a conical end cap (Fig. 6i), the result 
is a self-organized localized region of spinners (a twister) that orbits 
the flow chamber resulting in the spiralling kymograph shown in 
Fig. 6j. We note that the orbiting direction of the twister is opposite 
to the direction of spin, which we attribute to roll-like interactions 
between the spinners and the tilted boundary. This is in contrast to 
the density-matched case, in which a global rotational flow is estab-
lished in the same direction of spin (Supplementary Movie 6). These 
experiments demonstrate that a three-dimensional chiral fluid can be 
built out of active vortlets. Both gravity and boundaries can be used 
to manipulate the fluid, and lively collective behaviour spontaneously 
and readily emerges.

The addition of inertia heralds a new regime for active matter in 
controlled settings, one in which the background flow plays an active 
role. Inertial flows are important for ordered formations of birds, 
where flock organization reflects the interaction of individuals with the 
vortical wakes of their neighbours53. However, it is difficult to separate 
the role of mechanics and sensing in living systems54–56. The synthetic 
system introduced here exhibits three-dimensional flocking due to 
hydrodynamic interactions, and this behaviour inherently relies on 
fluid inertia. Moreover, these nonlinear hydrodynamic interactions 
distinguish this system from classical active matter systems that exhibit 
flocking due to explicit alignment between neighbours57.

The deceptively simple configuration we build upon—an axisym-
metric particle rotating in an otherwise quiescent fluid—leverages flow 
inertia to give rise to novel hydrodynamic behaviours. A single spin-
ner, which shares features with the two-sphere swimmer theorized in 
refs. 58,59, swims by mechanisms forbidden at low Reynolds numbers, 
yet differs substantially from both flapping swimmers, which rely on 
flow separation and vortex shedding10,11, and oscillating swimmers in 
which a competition of inertial streaming flows and viscous drag leads 
to directed motion12.

Collections of spinners with bound vortlets readily exhibit rich col-
lective dynamics. Activated by internal rotations, these dynamics differ 
considerably from those of systems undergoing global rotation that are 
driven into two-dimensionality per the Taylor–Proudman theorem60. 
Finally, at high densities, spinner suspensions form a three-dimensional 
active chiral fluid, a new phase of matter in which particles generate 
and couple to nonlinear background flows.
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