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Abstract— This paper presents clutter detection and mitigation 

for polarimetric phased array weather radar measurements using 
machine learning. The following three approaches are analyzed 
for clutter detection in the cylindrical polarimetric phased array 
radar measurements, including naive Bayes classifier (NBC), 
multilayer perceptron (MLP), and convolutional neural network 
(CNN). Results show that CNN achieves the best performance in 
clutter detection, followed by MLP and NBC. This is because CNN 
utilizes spatial information of the input images, which has different 
features for clutter from that for weather. It is also shown that the 
combination of physics-based discriminants of power ratio and 
raw radar measurements is more effective in clutter detection than 
the direct use of raw radar measurements. In addition, CNN is 
employed for clutter mitigation and its performance is compared 
with the traditional speckle filter technique. It is demonstrated 
that CNN outperforms the speckle filter and incorporation of 
power ratio in the training process could further improve CNN’s 
performance in clutter mitigation. 
 
Index Terms— Clutter detection and mitigation, machine 

learning, multilayer perceptron, convolutional neural network, 
polarimetric phased array radar. 
 

I. INTRODUCTION 
N weather radar observations, ground clutter is a major 
source of measurement error that degrades radar data quality. 

Generally, ground clutter refers to the non-weather echoes from 
stationary objects on the ground, characterized by a nearly zero 
Doppler velocity and a narrow spectrum width. Therefore, it is 
desirable to identify clutter and minimize its impact on weather 
measurements. Over the past several decades, a range of clutter 
detection and mitigation techniques have been suggested and 
implemented. 
Previously, a static clutter map derived from clear-air 

conditions was utilized to identify the range gates contaminated 
by ground clutter [1]. However, this method does not work well 
in case of variable clutter and anomalous propagation, 
highlighting the need for a more flexible clutter detection 
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algorithm. To adjust to variable clutter, the clutter mitigation 
decision (CMD) was introduced by Hubbert et al. [2-3]. CMD 
is a fuzzy logic algorithm for automatic clutter detection based 
on clutter phase alignment (CPA) and local texture information. 
Realizing the different polarimetric and statistical properties of 
ground clutter and weather returns, Li et al. [4] suggested a 
simple Bayesian classifier with new discriminants for clutter 
detection. Recently, phased array radar (PAR) technology has 
attracted considerable attention in the weather radar community 
due to its rapid data updates and multi-mission capabilities 
through electronic scans. Li and Zhang [5] explored the 
similarities and differences in clutter detection using electronic 
scans and mechanical scans with a cylindrical polarimetric 
phased array radar (CPPAR) [6-7]. Also, Warde and Torres [8-
9] presented the Clutter Environment Analysis using Adaptive 
Processing (CLEAN-AP) filter, which integrated ground clutter 
detection and mitigation using autocorrelation spectral density, 
and it is presently being evaluated on the Weather Surveillance 
Radar-1988 Doppler (WSR-88D). Despite being effective in 
clutter detection and mitigation, these existing methods employ 
either single gate radar measurements or empirically derived 
local texture information, which have limitations of not using 
all pertinent information in weather radar signals. 
Lately, alongside conventional signal processing techniques, 

machine learning approaches have been investigated in the 
radar community due to their computational efficiency and 
adaptability. For example, Vicen-Bueno et al. [10] proposed a 
neural network-based clutter reduction system, which could 
achieve a good performance under different environmental 
conditions. Jatau et al. [11] introduced a machine learning 
classifier capable of detecting various patterns of bird and insect 
echoes based on dual-polarization variables at each range gate 
of WSR-88D. More recently, Kim and Cheong [12] proposed a 
convolutional neural network-based algorithm to deal with the 
velocity dealiasing issue in weather radar, which achieved 
similar performance in regions mostly filled with precipitation 
and better performance in regions sparsely filled with 
precipitation compared to the traditional region-based method. 
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Veillette et al. [13] presented a deep neural network that is used 
to emulate the 2-dimensional WSR-88D Open Radar Product 
Generator (ORPG) dealiasing algorithm, which is shown to be 
effective in building accurate, fast, and portable velocity 
dealiasing algorithms. 
This work is motivated by the requirement for clutter 

detection and mitigation in PAR measurements and successful 
implementation of machine learning approaches in radar 
applications mentioned above. It presents clutter detection and 
mitigation results using machine learning with the CPPAR as 
shown in Fig.1. The remainder of this paper is organized as 
follows. Section II introduces datasets utilized in this study and 
defined input variables. Section III presents three machine 
learning techniques for clutter detection, including naive Bayes 
classifier (NBC), multilayer perceptron (MLP), and 
convolutional neural network (CNN), whose performance are 
evaluated using actual CPPAR measurements in electronic 
scans. Section IV provides clutter mitigation results based on 
CNN with and without using power ratio, which are compared 
with the traditional speckle filter technique. Section V 
summarizes the results and conclusion.  
 

 
Fig. 1. The CPPAR installed at the rooftop of the Radar Innovations Laboratory 
at the University of Oklahoma. 

II. DATASETS AND INPUT VARIABLES  

A. Datasets 
The data used for this study were collected by the CPPAR. 

The CPPAR measurements consist of three spectral moments 
including reflectivity (𝑍!), radial velocity (𝜐"), spectrum width 
(𝜎# ), and three polarimetric variables including differential 
reflectivity (𝑍$% ), copolar correlation coefficient (𝜌&# ), and 
differential phase (𝜙$' ). Each of these radar variables is 
affected differently by ground clutter and by weather. Ground 
clutter has abrupt changes in 𝑍! , close to zero 𝜐" , and very 
small 𝜎#, while weather tends to have smooth features in 𝑍! 
and can have large 𝜐" and 𝜎#. The three polarimetric variables 
(𝑍$% , 𝜌&# , and 𝜙$' ) contain further information about the 
difference between clutter and weather. 𝑍$% is a measure of the 
reflectivity difference between horizontally and vertically 
polarized waves, which has a larger spatial variation for clutter 
than that for weather. 𝜌&#  represents the similarity between 
horizontal and vertical polarization signals, which is reduced 
when there is random differential backscattering phase in the 
signals, which is usually caused by non-Rayleigh scattering and 
non-spherical scatterers with random motion and orientation in 
the resolution volume. 𝜙$'  is the difference in phase shift 

between horizontally and vertically polarized waves, which has 
a larger variation for clutter than that for weather.  
The CPPAR data were collected via electronic scans during 

the period from August 2019 to May 2020, which included a 
variety of weather and clutter measurements. To evaluate the 
performance of clutter detection and mitigation, 20 training 
datasets and 2 independent test datasets are employed, and each 
dataset refers to radar measurements (images) from one sector 
scan collected at a different time. The training data serves to 
train the machine learning models, while the test data aims to 
evaluate the efficacy of the trained models. Each training 
dataset consists of both pure clutter data and pure weather data. 
On one hand, pure clutter data was collected under clear air 
conditions using a 1 μs simple rectangular pulse, without 
applying a clutter filter to the received time series. To reduce 
the impact of noise, a clutter-to-noise ratio threshold of 5 dB 
was applied to the pure clutter data. Furthermore, only range 
gates with 𝜐" and 𝜎# below 1 m/s were chosen to guarantee that 
the collected clutter measurements remained uncontaminated 
by moving objects like birds or aircrafts. On the other hand, 
pure weather data was acquired during precipitation events 
using a 34 μs nonlinear frequency modulation (NLFM) pulse 
compression waveform [7]. To minimize contamination from 
clutter and noise, weather measurements exceeding 20 km were 
selected, and a signal-to-noise ratio threshold of 5 dB was 
applied to the pure weather data.  
As an example, one of the 20 training datasets is shown in 

Fig.2 to Fig.4, where Fig.2 is the image for pure weather 
measurements collected on 30 March 2020, Fig.3 is the image 
for pure clutter measurements collected on 9 May 2020, and 
Fig.4 is the image for composed measurements. Two test 
datasets include both convective and stratiform rain events. The 
first test dataset is composed of a convective rain collected on 
15 May 2020 and clutter measurements on 30 May 2020. The 
second test dataset is compiled from a stratiform rain collected 
on 25 May 2020 and clutter measurements on 30 May 2020. 
The composed radar measurements of 𝑍!, 𝜐", 𝜎#, 𝑍$%, 𝜌&#, and 
𝜙$'  for the two test cases are shown in Fig.5 and Fig.6, 
respectively. 
To evaluate the clutter detection performance, ground truth 

clutter map is needed, which is generated by finding those gates 
where clutter significantly biases weather radar estimates. In 
this study, to be consistent with WSR-88D specifications for 
data quality, a resolution volume is considered to have weather 
signals contaminated by clutter only if ground clutter biases the 
weather signal’s reflectivity estimates by more than 1 dB, or its 
radial velocity estimates by more than 1 m/s, or its spectrum 
width estimates by more than 1 m/s. Otherwise, even if ground 
clutter from a range bin is mixed with weather signal, the 
combined signal is still considered as weather signal because 
the clutter’s effect on radar estimates can be neglected [4]. 
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Fig. 2. The pure weather measurements of an example training dataset. 
 

Fig. 3. The pure clutter measurements of an example training dataset. 
 

Fig. 4. The composed measurements of an example training dataset. 
 

Fig. 5. The composed measurements of test case 1.  
 

Fig. 6. The composed measurements of test case 2. 
 

B. Input Variables and Discriminants 
In this work, two sets of input variables are employed to 

evaluate the clutter detection and mitigation performance of 
machine learning techniques. The first set of input variables is 
comprised of 6 raw radar measurements of 𝑍!, 𝜐", 𝜎#, 𝑍$%, 𝜌&#, 
and 𝜙$'. The second set of input variables is made up of 8 radar 
estimates, which include not only the above 6 raw radar 
measurements, but also two power ratios (𝑃𝑅! and 𝑃𝑅() that 
have distinct property/value between clutter and weather as 
shown in section II-C of [5]. The power ratio (𝑃𝑅) is the ratio 
in decibels between coherent power and incoherent power as 
defined in section 5.4.2 of [14]. While radar signals from  
stationary ground clutter tend to be coherent, the signals from 
randomly distributed weather scatterers are incoherent. 
Therefore, the power ratio has a small value for weather that 
produces incoherent power, compared to a large value for 
ground clutter which is close to stationary and yields more 
coherent power. 𝑃𝑅  is estimated from polarimetric radar 
signals as follows:  
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where 𝑉&,# represents complex voltage samples for each range 
gate in horizontal or vertical polarization,  𝑀 is the number of 
samples in the dwell time. As 𝑃𝑅)4 and 𝑃𝑅) . provide additional 
information, their combination with raw radar measurements 
yields a set of 8 input variables which are 𝑃𝑅!, 𝑃𝑅(, 𝑍!, 𝜐", 𝜎#, 
𝑍$% , 𝜌&# , and 𝜙$' , allowing a further separation between 
weather and ground clutter.  
 

III. CLUTTER DETECTION 

A. Naive Bayes Classifier 
With a naive Bayes classifier (NBC), radar returns can be 

divided into two categories: ground clutter (𝑐 ) and weather 
signal (𝑤). Taking 8 input variables for example, in each range 
gate, 𝑥 = 𝑥5 = (𝑃𝑅!5, 𝑃𝑅(5, 𝑍!5, 𝑣"5, 𝜎#5, 𝑍$%5 , 𝜌&#5 , 𝜙$'5 ) , where 
𝑥 represents the discriminant vector, and the superscript “O” 
means the observation. The NBC assigns 𝑥 = 𝑥5  to 𝑐 only if 
𝑝(𝑐|𝑥 = 𝑥5) > 𝑝(𝑤|𝑥 = 𝑥5), where 𝑝 refers to the posterior 
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probability. According to the Bayes’ theorem [4], 𝑝(𝑖|𝑥 = 𝑥5) 
is proportional to 𝑝(𝑥 = 𝑥5|𝑖)  ( 𝑖  = 𝑐  or 𝑤 ),  so the NBC 
assigns the observation 𝑥 = 𝑥5  to 𝑐  only if 𝑝(𝑥 = 𝑥5|𝑐) >
𝑝(𝑥 = 𝑥5|𝑤). Different from the Bayes classifier utilized in [4-
5] which includes the partial dependence, the NBC makes a 
naive assumption of class-conditional independence, which 
enables fast and efficient calculation of the probabilities. 
 

𝑝(𝑥 = 𝑥5|𝑖) = 𝑝(𝑃𝑅! = 𝑃𝑅!5>𝑖) × 𝑝(𝑃𝑅( = 𝑃𝑅(5>𝑖) 
× 𝑝(𝑍! = 𝑍!5>𝑖) × 𝑝(𝜐" = 𝑣"5|𝑖) × 𝑝(𝜎# = 𝜎#5|𝑖) 

× 𝑝(𝑍$% = 𝑍$%5 >𝑖) × 𝑝@𝜌&# = 𝜌&#5 >𝑖A × 𝑝(𝜙$' = 𝜙$'5 >𝑖) 
               (2) 

 

B. Multilayer Perceptron 
The multilayer perceptron (MLP) is a fully connected multi-

layer neural network that maps a set of input variables to the 
output [15], as shown in Fig.7. The MLP’s output 𝑦  is 
determined by the weighted sum of the input variables 𝑦 =
𝜑(𝑤𝑥 + 𝑏) , where 𝑥  is the input variables (discriminant 
vector), 𝑤  is the weights, 𝑏  is the bias term, and 𝜑  is the 
activation function. In this study, softmax function is employed 
as the activation function of the output node, 𝑦* = 𝜑(𝑣*) =
𝑒6!/(𝑒6! + 𝑒6(), 𝑦7 = 𝜑(𝑣7) = 𝑒6(/(𝑒6! + 𝑒6(), where 𝑣8  is 
the weighted sum of the 𝑖-th output node (𝑖 = 1, 2). In practice, 
softmax function is the most widely used activation function for 
classification neural networks. Taking 8 input variables for 
example, 𝑃𝑅!, 𝑃𝑅(, and 6 raw radar measurements are utilized 
as input variables to the MLP. Two hidden layers with a size of 
16 are adopted. The model generates output labels that classify 
the return at each range gate as being from clutter or weather. 
The scaled conjugate gradient algorithm is employed to train 
the MLP model iteratively updating network weight and bias 
values until a satisfactory solution or local optimum is reached. 
In contrast to NBC, which simply assumes independence 
among input variables, MLP accounts for the correlations and 
joint probability of the input variables. However, it should be 
noted that both NBC and MLP deal with the measurements at a 
single range gate without including the spatial correlation 
information.  
 

C. Convolutional Neural Network 
The convolutional neural network (CNN) is a type of deep 

neural network specifically designed for image recognition 
[15]. Different from MLP, CNN employs the convolution layer 
containing a set of filters (kernels) to convert input images into 
feature maps that accentuate the unique features of the input 
images. Each filter of the convolution layer is a two-
dimensional matrix with values determined through the training 
process. The feature maps generated by the convolution layer 
are further processed through the activation function which 
usually employs the rectified linear unit (ReLU) 𝑦 =
𝑚𝑎𝑥(0, 𝑥). In this work, the CNN network is designed using 
MATLAB Deep Learning Toolbox [16]. Also taking 8 input 

variables for example, the input layer contains 8 channels, each 
with a size of 25 x 800, where 25 is the number of azimuths and 
800 is the number of range gates in each image. Additionally, a 
batch normalization layer is inserted between the convolutional 
layer and ReLU layer. This layer normalizes the activations 
from the previous layer by computing the mean and variance of 
each feature within the mini-batch data, followed by scaling and 
shifting the normalized values using learned parameters. This 
process helps to accelerate training, increases the model’s 
robustness to network initialization, and reduces internal 
covariate shift. Out of the 20 training datasets, 16 datasets are 
used for training and the remaining 4 serve as validation data 
for fine-tuning the CNN model parameters. The Adam 
algorithm is used to train the CNN model, which utilizes the 
moving averages to update the network weights. The CNN 
network architecture is shown in Fig.8, with a description of 
each layer in Table I.  

 
TABLE I 

CNN NETWORK ARCHITECTURE FOR CLUTTER DETECTION 
Layer 
Number 

 

Layer Name Description 

1 Input Layer Input size: 25 x 800 x 8  
2 Convolution Layer 8 filters each with a size of 3 x 3 
3 Batch Normalization Layer Batch normalization 
4 ReLU Layer ReLU activation function 
5 Convolution Layer 4 filters each with a size of 3 x 3 
6 Batch Normalization Layer Batch normalization 
7 ReLU Layer ReLU activation function 
8 Convolution Layer 2 filters each with a size of 3 x 3 
9 Batch Normalization Layer Batch normalization 
10 ReLU Layer ReLU activation function 
11 Convolution Layer 2 filters each with a size of 3 x 3 
12 Softmax Layer Softmax activation function 
13 Classification Layer Output size: 25 x 800 

 

D. Results and Evaluation 
For a quantitative evaluation of the clutter detection 

performance, the probability of detection (POD), probability of 
false alarm (PFA), and critical success index (CSI) are 
calculated, which are defined as 𝑃𝑂𝐷 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) , 
𝑃𝐹𝐴 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) , and 𝐶𝑆𝐼 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) ,                        
where TP refers to “True Positive” (clutter detected as clutter), 
FN stands for “False Negative” (clutter detected as weather), 
FP refers to “False Positive” (weather detected as clutter), and 
TN stands for “True Negative” (weather detected as weather). 
The number of TP, FN, FP, TN, POD, PFA, and CSI for the two 
test cases based on the two sets of input variables using NBC, 
MLP, and CNN approaches are listed in Table II and Table III, 
respectively. Accordingly, the POD and CSI as a function of 
clutter-to-signal ratio (CSR) for the two test cases are plotted in 
Fig.9. In addition, the ground truth and detected clutter maps 
based on 8 input variables for the two test cases are plotted in 
Fig.10 and Fig.11, respectively.  
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TABLE II 
CLUTTER DETECTION RESULTS OF TEST CASE 1 

 NBC MLP CNN 
NBC-6 (6 inputs) NBC-8 (8 inputs) MLP-6 (6 inputs) MLP-8 (8 inputs) CNN-6 (6 inputs) CNN-8 (8 inputs) 

TP 1062 1258 1164 1285 1241 1325 
FN 338 142 236 115 159 75 
FP 317 218 109 36 59 72 
TN 17157 17256 17365 17438 17415 17402 
POD 0.7586 0.8986 0.8314 0.9179 0.8864 0.9464 
PFA 0.0181 0.0125 0.0062 0.0021 0.0034 0.0041 
CSI 0.6185 0.7775 0.7714 0.8948 0.8506 0.9001 

 
TABLE III 

CLUTTER DETECTION RESULTS OF TEST CASE 2
 NBC MLP CNN 

NBC-6 (6 inputs) NBC-8 (8 inputs) MLP-6 (6 inputs) MLP-8 (8 inputs) CNN-6 (6 inputs) CNN-8 (8 inputs) 
TP 1138 1382 1267 1379 1405 1432 
FN 361 117 232 120 94 67 
FP 65 127 49 68 31 40 
TN 18127 18065 18143 18124 18161 18152 
POD 0.7592 0.9219 0.8452 0.9199 0.9373 0.9553 
PFA 0.0036 0.0070 0.0027 0.0037 0.0017 0.0022 
CSI 0.7276 0.8499 0.8185 0.8800 0.9183 0.9305 

 

Fig. 7. The block diagram of MLP for clutter detection. 

Fig. 8. CNN structure diagram for clutter detection. 
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Fig. 9. The POD and CSI as a function of CSR based on 6 and 8 input variables 
using NBC, MLP, and CNN method, respectively. Top row: test case 1; bottom 
row: test case 2. 
 

 

 
Fig. 10. The ground truth and detected clutter maps of test case 1 based on 8 
discriminants using NBC, MLP, and CNN method, respectively. 
 

  

  
Fig. 11. The ground truth and detected clutter maps of test case 2 based on 8 
discriminants using NBC, MLP, and CNN method, respectively. 

As shown in Table II to Table III and Fig.9 to Fig.11, when 
8 radar variables are employed as inputs, for both test cases, 
CNN achieves the best clutter detection performance among all 
the three machine learning approaches, especially in the lower 
CSR region. Specifically, CNN method has the highest POD 
and CSI as well as low PFA. A physical explanation is that 
CNN method utilizes spatial information of the input images, 
that is, weather returns have gate-to-gate continuity while 
clutter has gate-to-gate abrupt variations, which is helpful for 
detecting clutter from weather. In contrast, neither NBC nor 
MLP method uses any spatial information of the input 
variables. In addition, the test result shows MLP performs better 
than NBC. While they have similar POD, MLP achieves a 
lower PFA than NBC and thus a higher CSI. The reason is that 
NBC makes a naive assumption of class-conditional 
independence, which may not be valid in actual measurements 
with the CPPAR. As a comparison, MLP doesn’t make such an 
assumption but instead generates a deep feedforward neural 
network to approximate the nonlinear function mapping the 8 
input variables that can be correlated to the output category 
(clutter or weather). To some extent, MLP includes the 
correlation and joint probability of input variables and is more 
robust than NBC.	Also, it is found that the POD of test case 2 
is generally higher than that of test case 1 for all the three 
machine learning approaches, because test case 2 has a larger 
CSR.  
Similarly, when only the 6 raw radar measurements are 

directly used as input variables without including 𝑃𝑅! and 𝑃𝑅(, 
CNN achieves the best clutter detection performance, followed 
by MLP which performs better than NBC. By comparison, it is 
shown that the clutter detection based on 8 input variables 
performs better than that based on 6 input variables. The reason 
is that 𝑃𝑅! and 𝑃𝑅( characterize the ratio of coherent power 
and incoherent power which yields better separation between 
clutter and weather. Therefore, their combination with the 6 raw 
radar measurements allows for improved clutter detection, 
which demonstrates that an optimal selection of physics-based 
discriminants is desirable. 

IV. CLUTTER MITIGATION 
As CNN has shown an excellent performance in clutter 

detection, it is also employed for clutter mitigation in this study. 
Again, two sets of input variables are utilized to compare the 
clutter mitigation performance. For the first set of inputs, 
CNN’s input layer contains six channels (𝑍!, 𝜐", 𝜎#, 𝑍$%, 𝜌&#, 
and 𝜙$'), while the output is one of the six radar variables. 
Each CNN is trained to learn an effective nonlinear relationship 
between the six input radar variables and a corresponding 
output radar variable. As clutter mitigation is inherently a 
regression problem, a regression layer is adopted as the output 
layer. As before, the Adam algorithm is used to train each CNN 
model. On the other hand, for the second set of inputs, 𝑃𝑅! and 
𝑃𝑅( along with six raw radar measurements are incorporated 
into the training process of each CNN to help improve the 
clutter mitigation performance, that is, each CNN network 
architecture efficiently maps all eight input radar variables to a 
single output radar variable. This approach leverages multiple 
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types of input information for the collaborative prediction of a 
specific radar variable, thereby enhancing overall performance. 
Fig. 12 illustrates the CNN structure diagram for clutter 
mitigation based on 8 input variables, using the prediction of 
𝑍$% as an example. As shown in Fig.12, a skip connection is 
introduced, concatenating the original input of the target 
variable (𝑍$%) with the features extracted from multiple CNN 
layers near the output. This method enables the output to retain 
focus on the target variable while efficiently utilizing 
supplementary information. 
The CNN input images of the two test cases are the same as 

Fig.5 and Fig.6, respectively. The expected truth images of the 
two test cases only contain pure weather data, as shown in 
Fig.13 and Fig.14, respectively. The actual CNN output images 
based on 6 input variables for the two test cases are shown in 
Fig.15 and Fig.16, respectively. As a comparison, CNN output 
images based on 8 input variables for the two test cases are 
shown in Fig.17 and Fig.18, respectively. As observed in Fig.15 
to Fig.18, for both test cases, most of the clutter is removed, and 
the output images from CNN based on 8 input variables are 
visually closer to the expected truth images. Furthermore, for a 
quantitative evaluation of clutter mitigation performance, the 
root mean square error (RMSE) is calculated between CNN’s 
output images and truth images for the two test cases, as 
presented in Table IV and Table V. It is shown that for each 
radar variable, the RMSE based on 8 input variables is lower 
than that based on 6 input variables. A possible explanation for 
this improvement is that 𝑃𝑅!  and 𝑃𝑅(  provide additional 
information about the clutter map, enabling the CNN to learn 
more effectively and enhancing clutter mitigation performance. 
Additionally, the local standard deviation (LSTD) of CNN’s 
output based on 6 and 8 input variables is estimated and 
presented in Table VI and Table VII. As a baseline, estimated 
LSTD of the truth images (pure weather measurements) is also 
included. As documented in [7], the LSTD can be obtained 
from the median value of the corresponding histogram of each 
radar estimate. As shown in Table VI and Table VII, the LSTD 
of CNN’s output based on 8 input variables is generally closer 
to the estimated LSTD of the truth images, which indicates the 
details of weather returns are better preserved. 
Moreover, to compare the clutter mitigation performance of 

the CNN with the traditional radar image processing technique, 
speckle filter is utilized as a baseline [17-18]. As shown in Fig.5 

and Fig.6, most of the weather returns are located between 10 
km and 20 km. As the CPPAR has a wide beamwidth of around 
6 degrees, due to the beam broadening effect, at the middle 
range of 15 km, the cross-range resolution is about 1.5 km. To 
make the radial range resolution comparable to the cross-range 
resolution, given the CPPAR has a range gate of 30 m, a moving 
average of 51 gates is used for speckle filtering along each 
azimuth (beam direction) of the input images. The output 
images from the speckle filter for the two test cases are shown 
in Fig.19 and Fig.20, respectively. As can be seen, although 
most of the clutter are removed by speckle filter, the spatial 
resolution of the output images is significantly degraded as a 
tradeoff, which indicates some finer details of weather returns 
are lost. As a quantitative assessment, the RMSE between 
speckle filter output and truth images for the two test cases is 
also included in Table IV and Table V, which shows that the 
RMSE of speckle filter is larger than that of CNN for each radar 
variable. Additionally, the LSTD of speckle filter’s output for 
the two test cases is also presented in Table VI and Table VII, 
respectively. For a fair comparison, the LSTD is also obtained 
from radar estimates over 51 gates in each beam direction. As 
can be seen, due to the smoothing effect, the LSTD of speckle 
filter’s output is much lower than the estimated LSTD of the 
truth images for each radar variable, indicating undesirable 
image distortion introduced by speckle filtering. 
 

 
Fig. 13. Expected truth images of test case 1. 
 
 

Fig. 12. CNN structure diagram for clutter mitigation, illustrated using 𝑍!" variable prediction as an example. 
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Fig. 14. Expected truth images of test case 2. 
 

 
Fig. 15. Actual output images from CNN using 6 input variables of test case 1. 
 

 
Fig. 16. Actual output images from CNN using 6 input variables of test case 2. 
 

 
Fig. 17. Actual output images from CNN using 8 input variables of test case 1. 
 
 

Fig. 18. Actual output images from CNN using 8 input variables of test case 2. 
 

 
Fig. 19. Actual output images from speckle filter of test case 1. 
 

 
Fig. 20. Actual output images from speckle filter of test case 2. 
 

TABLE IV 
RMSE OF CNN AND SPECKLE FILTER FOR TEST CASE 1 

Radar Variables CNN-6 CNN-8 Speckle filter  
𝑍# (dBZ) 1.61 1.48 4.51 
𝜐$ (m/s) 1.04 1.01 2.17 
𝜎% (m/s) 0.51 0.35 1.25 
𝑍!" (dB) 0.49 0.42 1.20 
𝜌&% 0.036 0.023 0.132 

𝜙!' (deg) 5.34 3.27 18.59 
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TABLE V 
RMSE OF CNN AND SPECKLE FILTER FOR TEST CASE 2 

Radar Variables CNN-6 CNN-8 Speckle filter  
𝑍# (dBZ) 1.61 1.35 4.42 
𝜐$ (m/s) 0.59 0.50 1.00 
𝜎% (m/s) 0.30 0.18 0.82 
𝑍!" (dB) 0.42 0.30 1.11 
𝜌&% 0.034 0.026 0.057 

𝜙!' (deg) 4.71 3.28 12.16 
 

TABLE VI 
LSTD OF CNN AND SPECKLE FILTER FOR TEST CASE 1 

Radar 
Variables 

LSTD of 
CNN-6 

LSTD of 
CNN-8 

LSTD of 
speckle 
filter 

LSTD of 
ground 
truth 

𝑍# (dBZ) 1.75 1.80 0.98 1.86 
𝜐$ (m/s) 1.14 1.11 0.41 1.16 
𝜎% (m/s) 0.88 0.93 0.24 0.93 
𝑍!" (dB) 0.58 0.57 0.15 0.54 
𝜌&% 0.029 0.023 0.005 0.017 

𝜙!'(deg) 3.79 3.70 1.35 3.38 
 

TABLE VII 
LSTD OF CNN AND SPECKLE FILTER FOR TEST CASE 2 

Radar 
Variables 

LSTD of 
CNN-6 

LSTD of 
CNN-8 

LSTD of 
speckle 
filter 

LSTD of 
ground 
truth 

𝑍# (dBZ) 1.53 1.55 0.40 1.62 
𝜐$ (m/s) 0.82 0.77 0.18 0.82 
𝜎% (m/s) 0.66 0.61 0.14 0.62 
𝑍!" (dB) 0.88 0.86 0.16 0.86 
𝜌&% 0.041 0.036 0.007 0.038 

𝜙!'(deg) 5.48 5.94 1.20 5.84 
 

V. SUMMARY AND CONCLUSION 
In this paper, clutter detection and mitigation using machine 

learning approaches and physics-based discriminants are 
presented and evaluated. Actual measurements with the 
CPPAR show that CNN achieves the best clutter detection 
performance, followed by MLP and NBC. Additionally, the 
defined combination of power ratios and raw radar 
measurements is demonstrated to be more effective in clutter 
detection than the direct combination of raw radar 
measurements, and the physical explanations are provided. 
Furthermore, CNN is used for clutter mitigation and is shown 
to outperform the traditional speckle filter both qualitatively 
and quantitatively. Moreover, it is demonstrated that 
incorporation of power ratios in the training of CNN further 
improves its performance in clutter mitigation. 
As in all other machine learning approaches, the performance 

of the three approaches examined here for clutter detection and 
mitigation depends on the representativeness and generalization 
of training datasets for testing cases. It is noted that there are 
still a few limitations and potential challenges of the discussed 
approaches. First, the training of the CNN is site specific and 
radar specific, that is, a different radar at another site may have 
a different nonlinear mapping relationship between the input 
variables and the output category, e.g., the learned weights of 
the CNN are probably different. In addition, compared to 
traditional clutter detection and mitigation methods, the 
computational cost of CNN-based approach during the training 
stage is higher, which usually demands powerful hardware 

devices such as Graphics Processing Units (GPUs). Also, the 
data quality used for training and testing is very important. The 
sampling and estimation error as well as noise in radar 
measurements will negatively affect the accuracy of the learned 
model. All these factors pose potential challenges for the 
application of the CNN-based clutter detection and mitigation 
methods in real-world scenarios, which require further study 
and efforts to be addressed for a specific usage. 
It has been shown that clutter detection and mitigation in 

polarimetric phased array radar measurements can be improved 
using CNN. This approach is also applicable to a mechanically 
scanned weather radar such as WSR-88D when the CNN is 
trained with the corresponding data that are representative for 
the weather scenarios, which is worthy of further study to 
improve the operational radar data quality. 
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