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Abstract— This paper presents clutter detection and mitigation
for polarimetric phased array weather radar measurements using
machine learning. The following three approaches are analyzed
for clutter detection in the cylindrical polarimetric phased array
radar measurements, including naive Bayes classifier (NBC),
multilayer perceptron (MLP), and convolutional neural network
(CNN). Results show that CNN achieves the best performance in
clutter detection, followed by MLP and NBC. This is because CNN
utilizes spatial information of the input images, which has different
features for clutter from that for weather. It is also shown that the
combination of physics-based discriminants of power ratio and
raw radar measurements is more effective in clutter detection than
the direct use of raw radar measurements. In addition, CNN is
employed for clutter mitigation and its performance is compared
with the traditional speckle filter technique. It is demonstrated
that CNN outperforms the speckle filter and incorporation of
power ratio in the training process could further improve CNN’s
performance in clutter mitigation.

Index Terms— Clutter detection and mitigation, machine
learning, multilayer perceptron, convolutional neural network,
polarimetric phased array radar.

I. INTRODUCTION

N weather radar observations, ground clutter is a major

source of measurement error that degrades radar data quality.
Generally, ground clutter refers to the non-weather echoes from
stationary objects on the ground, characterized by a nearly zero
Doppler velocity and a narrow spectrum width. Therefore, it is
desirable to identify clutter and minimize its impact on weather
measurements. Over the past several decades, a range of clutter
detection and mitigation techniques have been suggested and
implemented.

Previously, a static clutter map derived from clear-air
conditions was utilized to identify the range gates contaminated
by ground clutter [1]. However, this method does not work well
in case of variable clutter and anomalous propagation,
highlighting the need for a more flexible clutter detection
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algorithm. To adjust to variable clutter, the clutter mitigation
decision (CMD) was introduced by Hubbert et al. [2-3]. CMD
is a fuzzy logic algorithm for automatic clutter detection based
on clutter phase alignment (CPA) and local texture information.
Realizing the different polarimetric and statistical properties of
ground clutter and weather returns, Li et al. [4] suggested a
simple Bayesian classifier with new discriminants for clutter
detection. Recently, phased array radar (PAR) technology has
attracted considerable attention in the weather radar community
due to its rapid data updates and multi-mission capabilities
through electronic scans. Li and Zhang [5] explored the
similarities and differences in clutter detection using electronic
scans and mechanical scans with a cylindrical polarimetric
phased array radar (CPPAR) [6-7]. Also, Warde and Torres [8-
9] presented the Clutter Environment Analysis using Adaptive
Processing (CLEAN-AP) filter, which integrated ground clutter
detection and mitigation using autocorrelation spectral density,
and it is presently being evaluated on the Weather Surveillance
Radar-1988 Doppler (WSR-88D). Despite being effective in
clutter detection and mitigation, these existing methods employ
either single gate radar measurements or empirically derived
local texture information, which have limitations of not using
all pertinent information in weather radar signals.

Lately, alongside conventional signal processing techniques,
machine learning approaches have been investigated in the
radar community due to their computational efficiency and
adaptability. For example, Vicen-Bueno et al. [10] proposed a
neural network-based clutter reduction system, which could
achieve a good performance under different environmental
conditions. Jatau et al. [11] introduced a machine learning
classifier capable of detecting various patterns of bird and insect
echoes based on dual-polarization variables at each range gate
of WSR-88D. More recently, Kim and Cheong [12] proposed a
convolutional neural network-based algorithm to deal with the
velocity dealiasing issue in weather radar, which achieved
similar performance in regions mostly filled with precipitation
and better performance in regions sparsely filled with
precipitation compared to the traditional region-based method.
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Veillette et al. [13] presented a deep neural network that is used
to emulate the 2-dimensional WSR-88D Open Radar Product
Generator (ORPG) dealiasing algorithm, which is shown to be
effective in building accurate, fast, and portable velocity
dealiasing algorithms.

This work is motivated by the requirement for clutter
detection and mitigation in PAR measurements and successful
implementation of machine learning approaches in radar
applications mentioned above. It presents clutter detection and
mitigation results using machine learning with the CPPAR as
shown in Fig.1. The remainder of this paper is organized as
follows. Section II introduces datasets utilized in this study and
defined input variables. Section III presents three machine
learning techniques for clutter detection, including naive Bayes
classifier (NBC), multilayer perceptron (MLP), and
convolutional neural network (CNN), whose performance are
evaluated using actual CPPAR measurements in electronic
scans. Section IV provides clutter mitigation results based on
CNN with and without using power ratio, which are compared
with the traditional speckle filter technique. Section V
summarizes the results and conclusion.

Fig. 1. The CPPAR installed at the rooftop of the Radar Innvations Laboratory
at the University of Oklahoma.

II. DATASETS AND INPUT VARIABLES

A. Datasets

The data used for this study were collected by the CPPAR.
The CPPAR measurements consist of three spectral moments
including reflectivity (Zy), radial velocity (v,), spectrum width
(0,), and three polarimetric variables including differential
reflectivity (Zpgr), copolar correlation coefficient (py, ), and
differential phase (¢pp). Each of these radar variables is
affected differently by ground clutter and by weather. Ground
clutter has abrupt changes in Zy, close to zero v,, and very
small o, while weather tends to have smooth features in Z
and can have large v, and o,. The three polarimetric variables
(Zpr> Pnv, and ¢pp) contain further information about the
difference between clutter and weather. Zpg is a measure of the
reflectivity difference between horizontally and vertically
polarized waves, which has a larger spatial variation for clutter
than that for weather. py,, represents the similarity between
horizontal and vertical polarization signals, which is reduced
when there is random differential backscattering phase in the
signals, which is usually caused by non-Rayleigh scattering and
non-spherical scatterers with random motion and orientation in
the resolution volume. ¢pp is the difference in phase shift

between horizontally and vertically polarized waves, which has
a larger variation for clutter than that for weather.

The CPPAR data were collected via electronic scans during
the period from August 2019 to May 2020, which included a
variety of weather and clutter measurements. To evaluate the
performance of clutter detection and mitigation, 20 training
datasets and 2 independent test datasets are employed, and each
dataset refers to radar measurements (images) from one sector
scan collected at a different time. The training data serves to
train the machine learning models, while the test data aims to
evaluate the efficacy of the trained models. Each training
dataset consists of both pure clutter data and pure weather data.
On one hand, pure clutter data was collected under clear air
conditions using a 1 ps simple rectangular pulse, without
applying a clutter filter to the received time series. To reduce
the impact of noise, a clutter-to-noise ratio threshold of 5 dB
was applied to the pure clutter data. Furthermore, only range
gates with v, and o, below 1 m/s were chosen to guarantee that
the collected clutter measurements remained uncontaminated
by moving objects like birds or aircrafts. On the other hand,
pure weather data was acquired during precipitation events
using a 34 ps nonlinear frequency modulation (NLFM) pulse
compression waveform [7]. To minimize contamination from
clutter and noise, weather measurements exceeding 20 km were
selected, and a signal-to-noise ratio threshold of 5 dB was
applied to the pure weather data.

As an example, one of the 20 training datasets is shown in
Fig.2 to Fig.4, where Fig.2 is the image for pure weather
measurements collected on 30 March 2020, Fig.3 is the image
for pure clutter measurements collected on 9 May 2020, and
Fig.4 is the image for composed measurements. Two test
datasets include both convective and stratiform rain events. The
first test dataset is composed of a convective rain collected on
15 May 2020 and clutter measurements on 30 May 2020. The
second test dataset is compiled from a stratiform rain collected
on 25 May 2020 and clutter measurements on 30 May 2020.
The composed radar measurements of Zy, vy, 0y, Zpgr, Phy»> and
¢pp for the two test cases are shown in Fig.5 and Fig.6,
respectively.

To evaluate the clutter detection performance, ground truth
clutter map is needed, which is generated by finding those gates
where clutter significantly biases weather radar estimates. In
this study, to be consistent with WSR-88D specifications for
data quality, a resolution volume is considered to have weather
signals contaminated by clutter only if ground clutter biases the
weather signal’s reflectivity estimates by more than 1 dB, or its
radial velocity estimates by more than 1 m/s, or its spectrum
width estimates by more than 1 m/s. Otherwise, even if ground
clutter from a range bin is mixed with weather signal, the
combined signal is still considered as weather signal because
the clutter’s effect on radar estimates can be neglected [4].
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2. The pure weather measurements of an example training dataset.
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4. The composed measurements of an example training dataset.
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Fig. 5. The composed measurements of test case 1.
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Fig. 6. The composed measurements of test case 2.

B. Input Variables and Discriminants

In this work, two sets of input variables are employed to
evaluate the clutter detection and mitigation performance of
machine learning techniques. The first set of input variables is
comprised of 6 raw radar measurements of Zy, Uy, 0y, Zpr> Phvs
and ¢pp. The second set of input variables is made up of 8 radar
estimates, which include not only the above 6 raw radar
measurements, but also two power ratios (PRy and PRy) that
have distinct property/value between clutter and weather as
shown in section II-C of [5]. The power ratio (PR) is the ratio
in decibels between coherent power and incoherent power as
defined in section 5.4.2 of [14]. While radar signals from
stationary ground clutter tend to be coherent, the signals from
randomly distributed weather scatterers are incoherent.
Therefore, the power ratio has a small value for weather that
produces incoherent power, compared to a large value for
ground clutter which is close to stationary and yields more
coherent power. PR is estimated from polarimetric radar
signals as follows:

1M 2
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PPH,V = 10log;, (D

where V;, , represents complex voltage samples for each range
gate in horizontal or vertical polarization, M is the number of
samples in the dwell time. As PR, and PR,, provide additional
information, their combination with raw radar measurements
yields a set of 8 input variables which are PRy, PRy, Zy, Uy, 0y,
ZpRrs Pryv, and ¢pp, allowing a further separation between
weather and ground clutter.

III. CLUTTER DETECTION

A. Naive Bayes Classifier

With a naive Bayes classifier (NBC), radar returns can be
divided into two categories: ground clutter (¢) and weather
signal (w). Taking 8 input variables for example, in each range
gate, x = x° = (PR3, PRY, Z3,v2,02, Z8, p2,, $39p) , where
x represents the discriminant vector, and the superscript “O”
means the observation. The NBC assigns x = x to ¢ only if
p(clx = x%) > p(w|x = x9), where p refers to the posterior



probability. According to the Bayes’ theorem [4], p(i|x = x©)
is proportional to p(x = x°|i) (i = ¢ or w), so the NBC
assigns the observation x = x° to ¢ only if p(x = x°|c) >
p(x = x°|w). Different from the Bayes classifier utilized in [4-
5] which includes the partial dependence, the NBC makes a
naive assumption of class-conditional independence, which
enables fast and efficient calculation of the probabilities.

p(x = x°|i) = p(PRy = PRY|i) X p(PRy = PRY|i)
X p(Zy = Z§|)) X p(v, = vPi) x p(o, = 62[0)
X p(Zpr = Z]gR|i) X p(th = P}?v|i) X p(¢pp = ¢8P|i)
)

B. Multilayer Perceptron

The multilayer perceptron (MLP) is a fully connected multi-
layer neural network that maps a set of input variables to the
output [15], as shown in Fig.7. The MLP’s output y is
determined by the weighted sum of the input variables y =
@(wx +b), where x is the input variables (discriminant
vector), w is the weights, b is the bias term, and ¢ is the
activation function. In this study, softmax function is employed
as the activation function of the output node, y; = ¢(v;) =
ev1/(e¥t +e¥2), y, = p(v,) = e"2/(e"r + e"2), where v; is
the weighted sum of the i-th output node (i = 1, 2). In practice,
softmax function is the most widely used activation function for
classification neural networks. Taking 8 input variables for
example, PRy, PRy, and 6 raw radar measurements are utilized
as input variables to the MLP. Two hidden layers with a size of
16 are adopted. The model generates output labels that classify
the return at each range gate as being from clutter or weather.
The scaled conjugate gradient algorithm is employed to train
the MLP model iteratively updating network weight and bias
values until a satisfactory solution or local optimum is reached.
In contrast to NBC, which simply assumes independence
among input variables, MLP accounts for the correlations and
joint probability of the input variables. However, it should be
noted that both NBC and MLP deal with the measurements at a
single range gate without including the spatial correlation
information.

C. Convolutional Neural Network

The convolutional neural network (CNN) is a type of deep
neural network specifically designed for image recognition
[15]. Different from MLP, CNN employs the convolution layer
containing a set of filters (kernels) to convert input images into
feature maps that accentuate the unique features of the input
images. Each filter of the convolution layer is a two-
dimensional matrix with values determined through the training
process. The feature maps generated by the convolution layer
are further processed through the activation function which
usually employs the rectified linear unit (ReLU) y =
max (0, x). In this work, the CNN network is designed using
MATLAB Deep Learning Toolbox [16]. Also taking 8 input

variables for example, the input layer contains 8 channels, each
with a size of 25 x 800, where 25 is the number of azimuths and
800 is the number of range gates in each image. Additionally, a
batch normalization layer is inserted between the convolutional
layer and ReLU layer. This layer normalizes the activations
from the previous layer by computing the mean and variance of
each feature within the mini-batch data, followed by scaling and
shifting the normalized values using learned parameters. This
process helps to accelerate training, increases the model’s
robustness to network initialization, and reduces internal
covariate shift. Out of the 20 training datasets, 16 datasets are
used for training and the remaining 4 serve as validation data
for fine-tuning the CNN model parameters. The Adam
algorithm is used to train the CNN model, which utilizes the
moving averages to update the network weights. The CNN
network architecture is shown in Fig.8, with a description of
each layer in Table I.

TABLEI
CNN NETWORK ARCHITECTURE FOR CLUTTER DETECTION
Layer Layer Name Description
Number
1 Input Layer Input size: 25 x 800 x 8
2 Convolution Layer 8 filters each with a size of 3 x 3
3 Batch Normalization Layer Batch normalization
4 ReLU Layer ReLU activation function
5 Convolution Layer 4 filters each with a size 0of 3x 3
6 Batch Normalization Layer Batch normalization
7 ReLU Layer ReLU activation function
8 Convolution Layer 2 filters each with a size of 3 x 3
9 Batch Normalization Layer Batch normalization
10 ReLU Layer ReLU activation function
11 Convolution Layer 2 filters each with a size 0of 3 x 3
12 Softmax Layer Softmax activation function
13 Classification Layer Output size: 25 x 800

D. Results and Evaluation

For a quantitative evaluation of the clutter detection
performance, the probability of detection (POD), probability of
false alarm (PFA), and critical success index (CSI) are
calculated, which are defined as POD =TP/(TP + FN),
PFA=FP/(FP+TN), and CSI =TP/(TP+ FN + FP) ,
where TP refers to “True Positive” (clutter detected as clutter),
FN stands for “False Negative” (clutter detected as weather),
FP refers to “False Positive” (weather detected as clutter), and
TN stands for “True Negative” (weather detected as weather).
The number of TP, FN, FP, TN, POD, PFA, and CSI for the two
test cases based on the two sets of input variables using NBC,
MLP, and CNN approaches are listed in Table II and Table III,
respectively. Accordingly, the POD and CSI as a function of
clutter-to-signal ratio (CSR) for the two test cases are plotted in
Fig.9. In addition, the ground truth and detected clutter maps
based on 8 input variables for the two test cases are plotted in
Fig.10 and Fig.11, respectively.
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Fig. 7. The block diagram of MLP for clutter detection.
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Fig. 8. CNN structure diagram for clutter detection.

TABLEII
CLUTTER DETECTION RESULTS OF TEST CASE 1
NBC MLP CNN
NBC-6 (6 inputs) NBC-8 (8 inputs) MLP-6 (6 inputs) MLP-8 (8 inputs) CNN-6 (6 inputs) CNN-8 (8 inputs)

TP 1062 1258 1164 1285 1241 1325

FN 338 142 236 115 159 75

FP 317 218 109 36 59 72

N 17157 17256 17365 17438 17415 17402
POD 0.7586 0.8986 0.8314 0.9179 0.8864 0.9464
PFA 0.0181 0.0125 0.0062 0.0021 0.0034 0.0041
CSI 0.6185 0.7775 0.7714 0.8948 0.8506 0.9001

TABLE III
CLUTTER DETECTION RESULTS OF TEST CASE 2
NBC MLP CNN
NBC-6 (6 inputs) NBC-8 (8 inputs) MLP-6 (6 inputs) MLP-8 (8 inputs) CNN-6 (6 inputs) CNN-8 (8 inputs)

TP 1138 1382 1267 1379 1405 1432
FN 361 117 232 120 94 67

FP 65 127 49 68 31 40
N 18127 18065 18143 18124 18161 18152
POD 0.7592 0.9219 0.8452 0.9199 0.9373 0.9553
PFA 0.0036 0.0070 0.0027 0.0037 0.0017 0.0022
CSI 0.7276 0.8499 0.8185 0.8800 0.9183 0.9305
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As shown in Table II to Table III and Fig.9 to Fig.11, when
8 radar variables are employed as inputs, for both test cases,
CNN achieves the best clutter detection performance among all
the three machine learning approaches, especially in the lower
CSR region. Specifically, CNN method has the highest POD
and CSI as well as low PFA. A physical explanation is that
CNN method utilizes spatial information of the input images,
that is, weather returns have gate-to-gate continuity while
clutter has gate-to-gate abrupt variations, which is helpful for
detecting clutter from weather. In contrast, neither NBC nor
MLP method uses any spatial information of the input
variables. In addition, the test result shows MLP performs better
than NBC. While they have similar POD, MLP achieves a
lower PFA than NBC and thus a higher CSI. The reason is that
NBC makes a naive assumption of class-conditional
independence, which may not be valid in actual measurements
with the CPPAR. As a comparison, MLP doesn’t make such an
assumption but instead generates a deep feedforward neural
network to approximate the nonlinear function mapping the 8
input variables that can be correlated to the output category
(clutter or weather). To some extent, MLP includes the
correlation and joint probability of input variables and is more
robust than NBC. Also, it is found that the POD of test case 2
is generally higher than that of test case 1 for all the three
machine learning approaches, because test case 2 has a larger
CSR.

Similarly, when only the 6 raw radar measurements are
directly used as input variables without including PRy and PRy,
CNN achieves the best clutter detection performance, followed
by MLP which performs better than NBC. By comparison, it is
shown that the clutter detection based on 8 input variables
performs better than that based on 6 input variables. The reason
is that PRy and PRy characterize the ratio of coherent power
and incoherent power which yields better separation between
clutter and weather. Therefore, their combination with the 6 raw
radar measurements allows for improved clutter detection,
which demonstrates that an optimal selection of physics-based
discriminants is desirable.

IV. CLUTTER MITIGATION

As CNN has shown an excellent performance in clutter
detection, it is also employed for clutter mitigation in this study.
Again, two sets of input variables are utilized to compare the
clutter mitigation performance. For the first set of inputs,
CNN’s input layer contains six channels (Zy, Uy, 0y, Zpr> Phvs
and ¢pp), while the output is one of the six radar variables.
Each CNN is trained to learn an effective nonlinear relationship
between the six input radar variables and a corresponding
output radar variable. As clutter mitigation is inherently a
regression problem, a regression layer is adopted as the output
layer. As before, the Adam algorithm is used to train each CNN
model. On the other hand, for the second set of inputs, PRy and
PRy along with six raw radar measurements are incorporated
into the training process of each CNN to help improve the
clutter mitigation performance, that is, each CNN network
architecture efficiently maps all eight input radar variables to a
single output radar variable. This approach leverages multiple
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Fig. 12. CNN structure diagram for clutter mitigation, illustrated using Zp variable prediction as an example.

types of input information for the collaborative prediction of a
specific radar variable, thereby enhancing overall performance.
Fig. 12 illustrates the CNN structure diagram for clutter
mitigation based on 8 input variables, using the prediction of
Zpr as an example. As shown in Fig.12, a skip connection is
introduced, concatenating the original input of the target
variable (Zpg) with the features extracted from multiple CNN
layers near the output. This method enables the output to retain
focus on the target variable while efficiently utilizing
supplementary information.

The CNN input images of the two test cases are the same as
Fig.5 and Fig.6, respectively. The expected truth images of the
two test cases only contain pure weather data, as shown in
Fig.13 and Fig.14, respectively. The actual CNN output images
based on 6 input variables for the two test cases are shown in
Fig.15 and Fig.16, respectively. As a comparison, CNN output
images based on 8 input variables for the two test cases are
shown in Fig.17 and Fig.18, respectively. As observed in Fig.15
to Fig.18, for both test cases, most of the clutter is removed, and
the output images from CNN based on 8 input variables are
visually closer to the expected truth images. Furthermore, for a
quantitative evaluation of clutter mitigation performance, the
root mean square error (RMSE) is calculated between CNN’s
output images and truth images for the two test cases, as
presented in Table IV and Table V. It is shown that for each
radar variable, the RMSE based on 8 input variables is lower
than that based on 6 input variables. A possible explanation for
this improvement is that PRy and PRy provide additional
information about the clutter map, enabling the CNN to learn
more effectively and enhancing clutter mitigation performance.
Additionally, the local standard deviation (LSTD) of CNN’s
output based on 6 and 8 input variables is estimated and
presented in Table VI and Table VII. As a baseline, estimated
LSTD of the truth images (pure weather measurements) is also
included. As documented in [7], the LSTD can be obtained
from the median value of the corresponding histogram of each
radar estimate. As shown in Table VI and Table VII, the LSTD
of CNN’s output based on 8 input variables is generally closer
to the estimated LSTD of the truth images, which indicates the
details of weather returns are better preserved.

Moreover, to compare the clutter mitigation performance of
the CNN with the traditional radar image processing technique,
speckle filter is utilized as a baseline [17-18]. As shown in Fig.5

and Fig.6, most of the weather returns are located between 10
km and 20 km. As the CPPAR has a wide beamwidth of around
6 degrees, due to the beam broadening effect, at the middle
range of 15 km, the cross-range resolution is about 1.5 km. To
make the radial range resolution comparable to the cross-range
resolution, given the CPPAR has a range gate of 30 m, a moving
average of 51 gates is used for speckle filtering along each
azimuth (beam direction) of the input images. The output
images from the speckle filter for the two test cases are shown
in Fig.19 and Fig.20, respectively. As can be seen, although
most of the clutter are removed by speckle filter, the spatial
resolution of the output images is significantly degraded as a
tradeoff, which indicates some finer details of weather returns
are lost. As a quantitative assessment, the RMSE between
speckle filter output and truth images for the two test cases is
also included in Table IV and Table V, which shows that the
RMSE of speckle filter is larger than that of CNN for each radar
variable. Additionally, the LSTD of speckle filter’s output for
the two test cases is also presented in Table VI and Table VII,
respectively. For a fair comparison, the LSTD is also obtained
from radar estimates over 51 gates in each beam direction. As
can be seen, due to the smoothing effect, the LSTD of speckle
filter’s output is much lower than the estimated LSTD of the
truth images for each radar variable, indicating undesirable
image distortion introduced by speckle filtering.

Meridonal Distance (km)
Meridonal Distance (k)

N

Fig. 13. Expected truth images of test case 1.
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Fig. 14. Expected truth images of test case 2. Fig. 18. Actual output images from CNN using 8 input variables of test case 2.
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Fig. 15. Actual output images from CNN using 6 input variables of test case 1. Fig. 19. Actual output images from speckle filter of test case 1.
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Fig. 16. Actual output images from CNN using 6 input variables of test case 2. Fig. 20. Actual output images from speckle filter of test case 2.

TABLE IV

' | Q x : “ RMSE OF CNN AND SPECKLE FILTER FOR TEST CASE 1
£ @ E ° o E Radar Variables CNN-6 CNN-8 Speckle filter
¥ Y v E Zy (dBZ) 1.61 1.48 451
i vl i v, (m/s) 1.04 1.01 2.17
= ° o, (m/s) 0.51 0.35 1.25
T e’ Zpg (dB) 0.49 0.42 1.20
. . ‘ Dhy 0.036 0.023 0.132
$pp (deg) 5.34 3.27 18.59
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Fig. 17. Actual output images from CNN using 8 input variables of test case 1.



TABLE V
RMSE OF CNN AND SPECKLE FILTER FOR TEST CASE 2
Radar Variables CNN-6 CNN-8 Speckle filter
7y (dBZ) 1.61 135 4.42
v, (m/s) 0.59 0.50 1.00
o, (m/s) 0.30 0.18 0.82
Zpr (dB) 0.42 0.30 1.11
Phy 0.034 0.026 0.057
Ppp (deg) 4.71 3.28 12.16
TABLE VI
LSTD OF CNN AND SPECKLE FILTER FOR TEST CASE 1
Radar LSTD of LSTD of LSTD of LSTD of
Variables CNN-6 CNN-8 speckle ground
filter truth
Zy (dBZ) 1.75 1.80 0.98 1.86
v, (m/s) 1.14 1.11 0.41 1.16
g, (m/s) 0.88 0.93 0.24 0.93
Zpgr (dB) 0.58 0.57 0.15 0.54
Phy 0.029 0.023 0.005 0.017
Ppp(deg) 3.79 3.70 1.35 3.38
TABLE VII
LSTD OF CNN AND SPECKLE FILTER FOR TEST CASE 2
Radar LSTD of LSTD of LSTD of LSTD of
Variables CNN-6 CNN-8 speckle ground
filter truth
Zy (dBZ) 1.53 1.55 0.40 1.62
v, (m/s) 0.82 0.77 0.18 0.82
g, (m/s) 0.66 0.61 0.14 0.62
Zpgr (dB) 0.88 0.86 0.16 0.86
Dhy 0.041 0.036 0.007 0.038
Ppp(deg) 5.48 5.94 1.20 5.84

V. SUMMARY AND CONCLUSION

In this paper, clutter detection and mitigation using machine
learning approaches and physics-based discriminants are
presented and evaluated. Actual measurements with the
CPPAR show that CNN achieves the best clutter detection
performance, followed by MLP and NBC. Additionally, the
defined combination of power ratios and raw radar
measurements is demonstrated to be more effective in clutter
detection than the direct combination of raw radar
measurements, and the physical explanations are provided.
Furthermore, CNN is used for clutter mitigation and is shown
to outperform the traditional speckle filter both qualitatively
and quantitatively. Moreover, it is demonstrated that
incorporation of power ratios in the training of CNN further
improves its performance in clutter mitigation.

As in all other machine learning approaches, the performance
of the three approaches examined here for clutter detection and
mitigation depends on the representativeness and generalization
of training datasets for testing cases. It is noted that there are
still a few limitations and potential challenges of the discussed
approaches. First, the training of the CNN is site specific and
radar specific, that is, a different radar at another site may have
a different nonlinear mapping relationship between the input
variables and the output category, e.g., the learned weights of
the CNN are probably different. In addition, compared to
traditional clutter detection and mitigation methods, the
computational cost of CNN-based approach during the training
stage is higher, which usually demands powerful hardware

devices such as Graphics Processing Units (GPUs). Also, the
data quality used for training and testing is very important. The
sampling and estimation error as well as noise in radar
measurements will negatively affect the accuracy of the learned
model. All these factors pose potential challenges for the
application of the CNN-based clutter detection and mitigation
methods in real-world scenarios, which require further study
and efforts to be addressed for a specific usage.

It has been shown that clutter detection and mitigation in
polarimetric phased array radar measurements can be improved
using CNN. This approach is also applicable to a mechanically
scanned weather radar such as WSR-88D when the CNN is
trained with the corresponding data that are representative for
the weather scenarios, which is worthy of further study to
improve the operational radar data quality.
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