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Abstract. Circular RNA (circRNA) is a class of RNA molecules that forms a closed loop with its6

5’ and 3’ ends covalently bonded. CircRNAs are known to be more stable than linear RNAs, admit7

distinct properties and functions, and have been proven to be promising biomarkers. Existing methods8

for assembling circRNAs heavily rely on the annotated transcriptomes, hence exhibiting unsatisfactory9

accuracy without a high-quality transcriptome. We present TERRACE, a new algorithm for full-length10

assembly of circRNAs from paired-end total RNA-seq data. TERRACE uses the splice graph as the11

underlying data structure that organizes the splicing and coverage information. We transform the12

problem of assembling circRNAs into finding paths that “bridge” the three fragments in the splice13

graph induced by back-spliced reads. We adopt a definition for optimal bridging paths and a dynamic14

programming algorithm to calculate such optimal paths. TERRACE features an e�cient algorithm to15

detect back-spliced reads missed by RNA-seq aligners, contributing to its much improved sensitivity.16

It also incorporates a new machine-learning approach trained to assign a confidence score to each17

assembled circRNA, which is shown superior to using abundance for scoring. On both simulations18

and biological datasets TERRACE consistently outperforms existing methods by a large margin in19

sensitivity while maintaining better or comparable precision. In particular, when the annotations are20

not provided, TERRACE assembles 123%-413% more correct circRNAs than state-of-the-art methods.21

TERRACE presents a major leap on assembling full-length circRNAs from RNA-seq data, and we22

expect it to be widely used in the downstream research on circRNAs.23

Keywords: Circular RNA · Assembly · RNA-seq.24

Introduction25

Splicing is a ubiquitous and essential post-transcriptional modification of precursor mRNAs. In this process,26

introns are excised and the two flanking exons are stitched together. Canonical splicing covalently connects27
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the 3’ end of an upstream exon to the 5’ end of the immediate downstream exon. A class of noncanonical28

splicing, known as back-splicing, stitches the 3’ end of a downstream exon to the 5’ end of an upstream29

exon via a back-splicing junction (BSJ), forming a closed circular structure called circular RNA (circRNA).30

Both canonical and back-splicing junctions may experience alternative splicing; consequently, a gene can31

express multiple circRNAs Ji et al. (2019); Li et al. (2018b). CircRNAs are more prevalent and conserved32

than previously thought. More than 60% of human genes express at least one circRNAs Ji et al. (2019).33

Notably, BIRC6, a gene that has only 12 linear transcripts, was found to express 243 circRNAs Ji et al.34

(2019). CircRNAs usually have a lower expression level than their linear forms, but certain circRNAs are35

significantly more abundant and constitute the major isoform of their genes Vromman et al. (2023); Ji et al.36

(2019); Szabo and Salzman (2016); Kristensen et al. (2022). Expression of circRNAs is also often tissue37

and developmental stage-specific in a spatiotemporal pattern Venø et al. (2015); Rybak-Wolf et al. (2015);38

Memczak et al. (2013).39

An increasing volume of research has been evidencing the regulatory functionality of circRNAs and their use40

in disease diagnosis Kristensen et al. (2022); Memczak et al. (2013). To name a few, circBIRC6 has been41

found to play a role in cell pluripotency Yu et al. (2017), similarly, circHIPK3 in cell growth Zheng et al.42

(2016) and circular Foxo3 in suppression of cancer cell proliferation and survival Yang et al. (2016). Due43

to its circular structure, circRNAs are resistant to most RNA degradation mechanisms Li et al. (2018b). In44

particular, its lack of free 5’ and 3’ ends protects the molecule itself from exonucleases Suzuki and Tsukahara45

(2014), making them more stable and have a longer half-life than their linear counterparts Jeck et al. (2013);46

Jeck and Sharpless (2014). CircRNAs have been reported to serve as novel biomarkers in carcinogenesis and47

pathogenesis Rybak-Wolf et al. (2015); Kristensen et al. (2022); Wang et al. (2016) and have found their48

potential use in non-invasive diagnosis Vo et al. (2019).49

It is therefore of great interest to detect expressed circRNAs in cells. The RNA sequencing (RNA-seq)50

protocols that target on linear RNAs or mRNAs with poly(A) tails will neglect circRNAs Kristensen et al.51

(2022). Tailored RNA-seq experiments have been designed for circRNAs, for example, using RNase R to52

digest linear RNAs and therefore to enrich circRNAs followed by sequencing Ji et al. (2019); Vo et al. (2019).53

These approaches are e�cient in raising the sensitivity of circRNA detection, but often low-throughput and54

costly. The total RNA-seq technology, on the other hand, can capture and sequence the entire population55

of RNA molecules, including circRNAs, in a biological sample. Total RNA-seq is high-throughput, and has56

been widely used in many studies about RNAs. Large-scale total RNA-seq datasets are available in public57

repositories such as GEO Clough and Barrett (2016), SRA Leinonen et al. (2010), and ENCODE Consortium58

et al. (2012), providing a rich resource to further study circRNAs.59
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Numerous computational methods to detect circRNAs from total RNA-seq were published lately (see Vrom-60

man et al. (2023) for a recent review). However, many of them require a fully annotated transcriptome,61

including CYCLeR Stefanov and Meyer (2023), psirc Yu et al. (2021), CircAST Wu et al. (2019), CIRC-62

explorer2 Zhang et al. (2016), and CIRCexplorer3 Ma et al. (2019). Those methods’ dependency on an63

existing annotation significantly limits their capability to detect novel circRNAs and their applicability to64

non-model species without a well-annotated transcriptome. Other tools, including CIRI-full Zheng et al.65

(2019), Circall Nguyen et al. (2021), CircMiner Asghari et al. (2020), CIRI2 Gao et al. (2018), CIRI-AS Gao66

et al. (2016), and CircMarker Li et al. (2018a), can be operated annotation-free, are constrained to iden-67

tifying BSJ only, in a deficiency of assembling full-length circRNAs. Additionally, some methods have to68

be combined with experimental enrichment of circRNA Stefanov and Meyer (2023). Due to the complexity69

of alternative splicing and low circRNA abundance, current computational methods unfortunately fail to70

accurately detect BSJs while also producing exceedingly unsatisfying full-length assemblies. Therefore, the71

problem of in silico assembly of circRNAs, from highly sensitive BSJ identification to full-length circRNA72

reconstruction, remains largely unresolved.73

Here we present TERRACE (accuraTe assEmbly of circRNAs using bRidging and mAChine lEarning), a74

new tool for assembling full-length circRNAs from paired-end total RNA-seq data. TERRACE stands out75

by assembling circRNAs accurately without relying on annotations, a feature absent in most existing tools.76

TERRACE starts with a fast, light-weight algorithm to identify back-spliced reads (i.e., reads containing77

BSJs). We realize that the key to assembling circRNAs is to correctly “bridge” the three fragments in a78

back-spliced read. We formulate this task as seeking paths in a weighted splice graph that can connect the79

three fragments and that its “bottleneck” weight is maximized, and solve this formulation using an e�cient80

dynamic programming algorithm. TERRACE also features a new machine-learning model that is trained to81

assign confidence scores to assembled circRNAs which we show outperforms abundance-based ranking.82

Results83

Experimental setup84

TERRACE. We implemented the algorithm explained in Methods as a new circRNA assembler named85

TERRACE. TERRACE takes the alignment (in BAM format; can be produced by any RNA-seq aligner86

such as STAR Dobin et al. (2013) or HISAT Kim et al. (2015)) of total RNA-seq reads as input and87

produces a list of full-length, annotated circRNAs in the GTF format. TERRACE is designed to assemble88

reliable circRNAs without the need for an annotation but comes with the flexibility of an optional reference89

annotation file.90
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Methods for Comparison. Although there are an abundance of methods that predict BSJs, very few91

of them produce the full-length annotation (please refer to CYCLeR paper Stefanov and Meyer (2023)92

for a classification). Full-length circRNA assemblers that do not require a reference annotation are even93

rarer. We only identify CIRI-full as such a tool and it serves as the state-of-the-art in the field. We include94

CIRCexplorer2, CIRI-full and CircAST for comparison when the reference annotation is provided. CircAST95

needs to be provided with a list of BSJs from CIRI2 or CIRCexplorer2; we choose to use CIRI2 as the results96

are worse when CIRCexplorer2 is used. CYCLeR is not suitable for comparison since it necessitates both97

control total RNA-seq samples and circRNA-enriched samples, whereas our study exclusively focuses on98

total RNA libraries. Sailfish-cir and CIRCexplorer3 are tools that primarily target circRNA quantification99

and hence are not included.100

Datasets. We use both real dataset and simulated dataset for evaluation. The real dataset is chosen from101

the isoCirc Xin et al. (2021) paper (BIGD accession number: PRJCA000751) which consists of 8 human102

tissue samples (lung, brain, skeletal muscle, heart, testis, liver, kidney, and prostate). Full-length circRNAs103

for these samples are cataloged by isoCirc using a combination of a reference gene annotation and long reads,104

which we use as ground-truth. The simulated dataset is generated using CIRI-simulator Gao et al. (2015),105

previously used by several methods Gao et al. (2016); Zhang et al. (2020); Jia et al. (2019); Nguyen et al.106

(2021). The expressed circRNAs are available in the simulation which we use as ground-truth. We simulate107

10 samples and report the average performance.108

Evaluation. We define an assembled circRNA to be correct if the coordinates of its BSJ and its intron-109

chain all exactly match a circRNA in the ground-truth. We then calculate recall, defined as the proportion of110

circRNAs in the ground truth that are correctly assembled, and precision which is the percentage of assembled111

circRNAs that are correct. It is common that a method exhibits high precision but low sensitivity, or vice112

versa. To still conclude in this case, we report Fscore, calculated as (2⇥recall⇥precision)/(recall+precision).113

We also draw the precision-recall curve for TERRACE. With the curve we can calculate an adjusted precision114

w.r.t. another method, defined as the precision of TERRACE at a point on the curve when its recall matches115

the recall of the compared method. We draw and compare two precision-recall curves for TERRACE, by116

using either the “abundance” or the “score” inferred by the random forest.117

Comparison of assembly accuracy118

Fig. 1(A-H) shows the accuracy of TERRACE and CIRI-full on the real dataset when the reference annotation119

is not provided. TERRACE yields a significantly higher number of correct circRNAs than CIRI-full across120

all samples (228% more on average) at a comparable precision (43% vs 40% on average). The Fscore of121
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TERRACE is consistently higher than that of CIRI-full (22% vs 10% on average). Both the precision-recall122

curves of TERRACE are above CIRI-full, proving TERRACE’s much enhanced accuracy. Specifically, the123

A: brain B: lung C: skeletal muscle

D: heart E: testis F: liver

G: kidney H: prostate

Fig. 1: Comparison of assembly accuracy without annotation. Fscores (%) are indicated on top of data points.
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average adjusted precision of TERRACE is 75% (using the random-forest curve; it is 72% using the coverage124

curve) comparing with CIRI-full at 40%.125

A: brain B: lung C: skeletal muscle

D: heart E: testis F: liver

G: kidney H: prostate

Fig. 2: Comparison of assembly accuracy with annotation. Fscores (%) are indicated on top of data points.
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The confidence scores produced by random forest result in a superior curve than that using abundance as126

the varying parameter. This improvement can be attributed to the machine learning model’s ability to learn127

a more e↵ective and accurate scoring function from a broad class of features (including abundance). Of note,128

when the abundance is high, simply using it can identify correct circRNAs accurately in a performance similar129

to random forest (the low-recall regions in the figures). However, when the abundance becomes low, correct130

and incorrect circRNAs become indistinguishable by just using abundance. The trained scoring function131

e↵ectively tackles this problem, ensuring a bigger improvement in precision in the high-recall regions.132

Fig. 2(A-H) compares the accuracy of di↵erent methods running with an annotation. TERRACE reconstructs133

17% more correct circRNAs than CIRCexplorer2 while obtaining higher precision on all samples. TERRACE134

assembles 271% more correct ones than CIRI-full at a comparable precision (42% vs 40% on average).135

CircAST exhibits higher precision, but at a cost of much reduced recall. Again, TERRACE obtains a higher136

Fscore than all other methods on all samples. Also, the precision-recall curves of TERRACE consistently137

lie well above the all other data points, demonstrating its improved accuracy. In particular, the average138

adjusted precision of TERRACE (using the random-forest curve) is 76% compared to CIRI-full at 40%, 50%139

compared to CIRCexplorer2 at 40%, and 86% compared to CircAST at 59%.140

We also compare the precision recall curves of TERRACE with the curves generated by varying the abun-141

dance thresholds of other methods. Supplemental Figs. S4 and S5 confirm the superiority of TERRACE over142

the curves of other methods. To better quantify the improvement, we measure the area under the precision-143

recall curve. Since the precision or recall ranges of di↵erent methods may vary substantially, we compare144

TERRACE with each alternative method by locating a shared range (constrained by recall or by precision),145

and calculate the partial area under the precision-recall curve (pAUC). See Supplementary Tables S3, S4,146

and S5 for details.147

Fig. 3(A-B) shows the accuracy of TERRACE compared to other tools on simulated data. When annotation148

is not provided, TERRACE identifies an average of 37% more correct circular transcripts and achieves bet-149

ter precision than CIRI-full. In the presence of annotations, TERRACE consistently outperforms CIRI-full150

and CIRCexplorer2 on all measures. TERRACE exhibits an average precision comparable to CircAST while151

maintaining much better recall, resulting in a much higher overall Fscore. We conducted additional experi-152

ments to evaluate TERRACE’s performance across a range of simulation parameters, including read length,153

circular transcript coverage, and linear transcript coverage. Across all variations, TERRACE demonstrated154

improved overall performance compared to other methods (see Supplementary Tables S6 and S7). We observe155

that recall rates for TERRACE is below 80% when the circular coverage is reduced to x5. This because we156

require the BSJ of a back spliced read to match a splice junction inferred from read alignments. When the157
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sequencing coverage is low, there exist sparse regions where the aligner is unable to infer a splice junction.158

Due to the absence of these junctions, many correct back-spliced reads get discarded resulting in low recall.159

One possible approach to address this would be to adjust the splice junction requirement based on coverage160

depths.161

A: without annotation B: with annotation

Fig. 3: Average accuracy of di↵erent tools on simulated data. The error bars show the standard deviation
over 10 simulated samples.

We realize that the recall rates of various methods including TERRACE are quite low on real data (Figs. 1162

and 2), particularly in lung and muscle tissues. This trend is also evident in the precision values. One plausible163

explanation for this discrepancy could be linked to the use of annotated circRNAs from long reads data as164

the ground truth for evaluation. Upon analyzing the count of annotated circRNAs across the samples and165

comparing them to the limited number detected by various methods (refer to Supplementary Table S8),166

we hypothesize that long reads and short-reads total RNA-seq data (which is used here) capture divergent167

sets of expressed circRNAs. This may result in accurate predictions from short-reads being misclassified168

as incorrect, leading to an underestimation of both precision and sensitivity. As an evidence, we notice169

that the read coverage across the gene loci in muscle and lung samples is highly non-uniform: many reads170

cluster densely within a few number of gene loci, leaving other genes with sparse coverage. This causes all171

methods, including TERRACE, to construct much less number of correct circRNAs compared to the ground172

truth. The number of circRNAs annotated using long reads is in the similar range with other samples, so173



Accurate assembly of circular RNAs with TERRACE 9

the coverage non-uniformity seems not to exist in the long reads dataset. Nevertheless, we emphasize that174

although the ground truth used for this study may not fully capture the absolute accuracy, it still serves as175

a fair benchmark for comparing the relative accuracy of di↵erent methods. Given the underestimated recall176

rates of TERRACE on the biological samples, we resort to simulations to illustrate that achieving high recall177

is possible in an unbiased setting. The performance of TERRACE on simulated samples strongly reinforces178

this assertion.179

Comparison with long reads assembler180

We also conducted experiments to compare the results of TERRACE with a long read assembler, CIRI-181

long Zhang et al. (2021). CIRI-long analyses various sequencing protocols to measure their e↵ect on circRNA182

detection and concludes that the optimal procedure for circRNA detection using nanopore technology should183

include RNaseR, A-tailing, reverse transcription with SMARTer RT under RNase H- conditions and 1kb184

(long) fragment size selection. We use nanopore sequencing reads from the optimal protocol to run CIRI-185

long, and illumina short reads (RNaseR and Total) from the same study to run TERRACE. The datasets186

from two biological replicates of mouse brains are available at BIGD (accession number : CRA003317). Since187

an established ground truth is not available, we resort to finding number of overlapping circRNAs between188

CIRI-long and TERRACE as illustrated in Supplementary Figs. S7 and S8. The low number of overlapping189

circRNAs compared to the number detected uniquely by each tool reconfirms the hypothesis that long-read190

and short-reads express divergent sets of circRNAs. Additionally, the large number of unique detection by191

TERRACE is an indication of many de novo circRNAs that are likely to be true given the relatively higher192

precision of TERRACE on the benchmarking datasets.193

Discussion194

The substantial growth in research dedicated to circRNAs in recent years underscores their significance in195

biology and medicine. Despite the abundance of experimental and computational techniques designed for196

circRNA detection, inherent limitations persist within these methods. Current experimental protocols often197

require special enrichment of libraries for accurate detection while computational methods are hindered198

by their dependence on annotation and inability to reconstruct full-length molecules. TERRACE made a199

significant advancement towards closing this critical gap. TERRACE utilized a fast algorithm that e↵ectively200

detects previously overlooked back-splicing junctions. A bridging system, which we originally proposed for201

improving (linear) transcript assembly, was re-designed to reconstruct the full-length circRNAs. Instead of202

using abundance for ranking, TERRACE learned a better score function with a broader class of informative203
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features. TERRACE outperforms existing tools drastically, especially in scenarios where annotations are204

unavailable. We anticipate widespread adoption of TERRACE, particularly in studies involving species205

lacking well-annotated transcriptomes.206

Further improvements can be made for TERRACE. The precision-recall curves (in Figs. 1 and 2) are not207

satisfactory. We would investigate the extraction of more features and advanced learning approaches. For208

instance, we can incorporate the count of splicing positions or partial exons supporting a BSJ as extra209

features. Additionally, we could explore training a model with complete sequences of bona fide circRNAs,210

possibly sourced from established circular RNA databases, to better di↵erentiate between accurate and211

erroneous ones. An LSTM model may be used for such sequence-based training. We also consider extending212

TERRACE to incorporate additional types of data. Leveraging long reads and/or circRNA-enriched libraries213

for detection may reveal less obvious circRNAs, enhancing the assembly accuracy.214

Methods215

TERRACE takes the alignment of paired-end total RNA-seq reads and, optionally, a reference annotation as216

input. TERRACE first identifies back-spliced reads, each of which will be assembled into a set of candidate,217

full-length circular paths in the underlying splice graph. The candidate paths, optionally augmented by the218

annotated transcripts, are subjected to a selection process followed by a merging procedure to produce the219

resultant circRNAs (refer to Supplemental Figures S1-S3 for illustration). A score function is learned that220

can assign a confidence score to each assembled circRNA (refer to Supplemental Note for a list of features221

utilized to learn the score function). TERRACE is outlined in Fig. 4. An extended version of the Methods222

with full descriptions of all the steps is provided as a Supplemental Methods section. Analysis and comparison223

of runtime and memory usage is available in Supplemental Note and Tables S1-S2 respectively.224

reads 
alignment
(bam file)

annotation 
(optional)

identify 
back-spliced 

reads

build 
splice 
graph

back-spliced 
reads

splice 
graph bridging

infer 
annotated 

paths
candidate 

paths

path
filter &

selection

assembled
circRNAs scoring circRNAs

with score

Fig. 4: Outline of TERRACE. Rounded boxes represent data and data structures. Rectangles represent
procedures. Dashed boxes indicate optional.
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Software Availability225

The source code of TERRACE is freely available at https://github.com/Shao-Group/TERRACE and also226

uploaded as Supplemental Code. TERRACE is also available as a conda package at https://anaconda.227

org/bioconda/terrace. The scripts, evaluation pipelines, and instructions that can be followed to reproduce228

the experimental results of this work is available at https://github.com/Shao-Group/TERRACE-test. The229

alignment files (by STAR) of these samples and the raw sequences and alignment files of the simulated data230

have been hosted at Penn State Data Commons (DOI: https://doi.org/10.26208/AZ99-RQ38). Please231

refer to Supplemental Material for additional information.232
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