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6 Abstract. Circular RNA (circRNA) is a class of RNA molecules that forms a closed loop with its
7 5" and 3’ ends covalently bonded. CircRNAs are known to be more stable than linear RNAs, admit
8 distinct properties and functions, and have been proven to be promising biomarkers. Existing methods
9 for assembling circRNAs heavily rely on the annotated transcriptomes, hence exhibiting unsatisfactory
10 accuracy without a high-quality transcriptome. We present TERRACE, a new algorithm for full-length
1 assembly of circRNAs from paired-end total RNA-seq data. TERRACE uses the splice graph as the
12 underlying data structure that organizes the splicing and coverage information. We transform the
13 problem of assembling circRNAs into finding paths that “bridge” the three fragments in the splice
14 graph induced by back-spliced reads. We adopt a definition for optimal bridging paths and a dynamic
15 programming algorithm to calculate such optimal paths. TERRACE features an efficient algorithm to
16 detect back-spliced reads missed by RNA-seq aligners, contributing to its much improved sensitivity.
17 It also incorporates a new machine-learning approach trained to assign a confidence score to each
18 assembled circRNA, which is shown superior to using abundance for scoring. On both simulations
19 and biological datasets TERRACE consistently outperforms existing methods by a large margin in
20 sensitivity while maintaining better or comparable precision. In particular, when the annotations are
21 not provided, TERRACE assembles 123%-413% more correct circRNAs than state-of-the-art methods.
2 TERRACE presents a major leap on assembling full-length circRNAs from RNA-seq data, and we
23 expect it to be widely used in the downstream research on circRNAs.

2 Keywords: Circular RNA - Assembly - RNA-seq.

»  Introduction

% Splicing is a ubiquitous and essential post-transcriptional modification of precursor mRNAs. In this process,

»7  introns are excised and the two flanking exons are stitched together. Canonical splicing covalently connects
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the 3’ end of an upstream exon to the 5" end of the immediate downstream exon. A class of noncanonical
splicing, known as back-splicing, stitches the 3’ end of a downstream exon to the 5’ end of an upstream
exon via a back-splicing junction (BSJ), forming a closed circular structure called circular RNA (circRNA).
Both canonical and back-splicing junctions may experience alternative splicing; consequently, a gene can
express multiple circRNAs Ji et al. (2019); Li et al. (2018b). CircRNAs are more prevalent and conserved
than previously thought. More than 60% of human genes express at least one circRNAs Ji et al. (2019).
Notably, BIRC6, a gene that has only 12 linear transcripts, was found to express 243 circRNAs Ji et al.
(2019). CircRNAs usually have a lower expression level than their linear forms, but certain circRNAs are
significantly more abundant and constitute the major isoform of their genes Vromman et al. (2023); Ji et al.
(2019); Szabo and Salzman (2016); Kristensen et al. (2022). Expression of circRNAs is also often tissue
and developmental stage-specific in a spatiotemporal pattern Veng et al. (2015); Rybak-Wolf et al. (2015);
Memczak et al. (2013).

An increasing volume of research has been evidencing the regulatory functionality of circRNAs and their use
in disease diagnosis Kristensen et al. (2022); Memczak et al. (2013). To name a few, circBIRC6 has been
found to play a role in cell pluripotency Yu et al. (2017), similarly, circHIPK3 in cell growth Zheng et al.
(2016) and circular Foro3 in suppression of cancer cell proliferation and survival Yang et al. (2016). Due
to its circular structure, circRNAs are resistant to most RNA degradation mechanisms Li et al. (2018b). In
particular, its lack of free 5’ and 3’ ends protects the molecule itself from exonucleases Suzuki and Tsukahara
(2014), making them more stable and have a longer half-life than their linear counterparts Jeck et al. (2013);
Jeck and Sharpless (2014). CircRNAs have been reported to serve as novel biomarkers in carcinogenesis and
pathogenesis Rybak-Wolf et al. (2015); Kristensen et al. (2022); Wang et al. (2016) and have found their

potential use in non-invasive diagnosis Vo et al. (2019).

It is therefore of great interest to detect expressed circRNAs in cells. The RNA sequencing (RNA-seq)
protocols that target on linear RNAs or mRNAs with poly(A) tails will neglect circRNAs Kristensen et al.
(2022). Tailored RNA-seq experiments have been designed for circRNAs, for example, using RNase R to
digest linear RNAs and therefore to enrich circRNAs followed by sequencing Ji et al. (2019); Vo et al. (2019).
These approaches are efficient in raising the sensitivity of circRNA detection, but often low-throughput and
costly. The total RNA-seq technology, on the other hand, can capture and sequence the entire population
of RNA molecules, including circRNAs, in a biological sample. Total RNA-seq is high-throughput, and has
been widely used in many studies about RNAs. Large-scale total RNA-seq datasets are available in public
repositories such as GEO Clough and Barrett (2016), SRA Leinonen et al. (2010), and ENCODE Consortium

et al. (2012), providing a rich resource to further study circRNAs.
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Accurate assembly of circular RNAs with TERRACE 3

Numerous computational methods to detect circRNAs from total RNA-seq were published lately (see Vrom-
man et al. (2023) for a recent review). However, many of them require a fully annotated transcriptome,
including CYCLeR Stefanov and Meyer (2023), psirc Yu et al. (2021), CircAST Wu et al. (2019), CIRC-
explorer2 Zhang et al. (2016), and CIRCexplorer3d Ma et al. (2019). Those methods’ dependency on an
existing annotation significantly limits their capability to detect novel circRNAs and their applicability to
non-model species without a well-annotated transcriptome. Other tools, including CIRI-full Zheng et al.
(2019), Circall Nguyen et al. (2021), CircMiner Asghari et al. (2020), CIRI2 Gao et al. (2018), CIRI-AS Gao
et al. (2016), and CircMarker Li et al. (2018a), can be operated annotation-free, are constrained to iden-
tifying BSJ only, in a deficiency of assembling full-length circRNAs. Additionally, some methods have to
be combined with experimental enrichment of circRNA Stefanov and Meyer (2023). Due to the complexity
of alternative splicing and low circRNA abundance, current computational methods unfortunately fail to
accurately detect BSJs while also producing exceedingly unsatisfying full-length assemblies. Therefore, the
problem of in silico assembly of circRNAs, from highly sensitive BSJ identification to full-length circRNA

reconstruction, remains largely unresolved.

Here we present TERRACE (accuraTe assEmbly of circRNAs using bRidging and mAChine 1Earning), a
new tool for assembling full-length circRNAs from paired-end total RNA-seq data. TERRACE stands out
by assembling circRNAs accurately without relying on annotations, a feature absent in most existing tools.
TERRACE starts with a fast, light-weight algorithm to identify back-spliced reads (i.e., reads containing
BSJs). We realize that the key to assembling circRNAs is to correctly “bridge” the three fragments in a
back-spliced read. We formulate this task as seeking paths in a weighted splice graph that can connect the
three fragments and that its “bottleneck” weight is maximized, and solve this formulation using an efficient
dynamic programming algorithm. TERRACE also features a new machine-learning model that is trained to

assign confidence scores to assembled circRNAs which we show outperforms abundance-based ranking.

Results

Experimental setup

TERRACE. We implemented the algorithm explained in Methods as a new circRNA assembler named
TERRACE. TERRACE takes the alignment (in BAM format; can be produced by any RNA-seq aligner
such as STAR Dobin et al. (2013) or HISAT Kim et al. (2015)) of total RNA-seq reads as input and
produces a list of full-length, annotated circRNAs in the GTF format. TERRACE is designed to assemble
reliable circRNAs without the need for an annotation but comes with the flexibility of an optional reference

annotation file.
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Methods for Comparison. Although there are an abundance of methods that predict BSJs, very few
of them produce the full-length annotation (please refer to CYCLeR paper Stefanov and Meyer (2023)
for a classification). Full-length circRNA assemblers that do not require a reference annotation are even
rarer. We only identify CIRI-full as such a tool and it serves as the state-of-the-art in the field. We include
CIRCexplorer2, CIRI-full and CircAST for comparison when the reference annotation is provided. CircAST
needs to be provided with a list of BSJs from CIRI2 or CIRCexplorer2; we choose to use CIRI2 as the results
are worse when CIRCexplorer2 is used. CYCLeR is not suitable for comparison since it necessitates both
control total RNA-seq samples and circRNA-enriched samples, whereas our study exclusively focuses on
total RNA libraries. Sailfish-cir and CIRCexplorer3 are tools that primarily target circRNA quantification

and hence are not included.

Datasets. We use both real dataset and simulated dataset for evaluation. The real dataset is chosen from
the isoCirc Xin et al. (2021) paper (BIGD accession number: PRJCA000751) which consists of 8 human
tissue samples (lung, brain, skeletal muscle, heart, testis, liver, kidney, and prostate). Full-length circRNAs
for these samples are cataloged by isoCirc using a combination of a reference gene annotation and long reads,
which we use as ground-truth. The simulated dataset is generated using CIRI-simulator Gao et al. (2015),
previously used by several methods Gao et al. (2016); Zhang et al. (2020); Jia et al. (2019); Nguyen et al.
(2021). The expressed circRNAs are available in the simulation which we use as ground-truth. We simulate

10 samples and report the average performance.

Evaluation. We define an assembled circRNA to be correct if the coordinates of its BSJ and its intron-
chain all exactly match a circRNA in the ground-truth. We then calculate recall, defined as the proportion of
circRNAs in the ground truth that are correctly assembled, and precision which is the percentage of assembled
circRNAs that are correct. It is common that a method exhibits high precision but low sensitivity, or vice
versa. To still conclude in this case, we report Fscore, calculated as (2xrecall X precision)/(recall+precision).
We also draw the precision-recall curve for TERRACE. With the curve we can calculate an adjusted precision
w.r.t. another method, defined as the precision of TERRACE at a point on the curve when its recall matches
the recall of the compared method. We draw and compare two precision-recall curves for TERRACE, by

using either the “abundance” or the “score” inferred by the random forest.

Comparison of assembly accuracy

Fig. 1(A-H) shows the accuracy of TERRACE and CIRI-full on the real dataset when the reference annotation
is not provided. TERRACE yields a significantly higher number of correct circRNAs than CIRI-full across

all samples (228% more on average) at a comparable precision (43% vs 40% on average). The Fscore of
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5

TERRACE is consistently higher than that of CIRI-full (22% vs 10% on average). Both the precision-recall

curves of TERRACE are above CIRI-full, proving TERRACE’s much enhanced accuracy. Specifically, the
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Fig. 1: Comparison of assembly accuracy without annotation. Fscores (%) are indicated on top of data points.
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average adjusted precision of TERRACE is 75% (using the random-forest curve; it is 72% using the coverage

curve) comparing with CIRI-full at 40%.
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Fig. 2: Comparison of assembly accuracy with annotation. Fscores (%) are indicated on top of data points.
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Accurate assembly of circular RNAs with TERRACE 7

The confidence scores produced by random forest result in a superior curve than that using abundance as
the varying parameter. This improvement can be attributed to the machine learning model’s ability to learn
a more effective and accurate scoring function from a broad class of features (including abundance). Of note,
when the abundance is high, simply using it can identify correct circRNAs accurately in a performance similar
to random forest (the low-recall regions in the figures). However, when the abundance becomes low, correct
and incorrect circRNAs become indistinguishable by just using abundance. The trained scoring function

effectively tackles this problem, ensuring a bigger improvement in precision in the high-recall regions.

Fig. 2(A-H) compares the accuracy of different methods running with an annotation. TERRACE reconstructs
17% more correct circRNAs than CIRCexplorer2 while obtaining higher precision on all samples. TERRACE
assembles 271% more correct ones than CIRI-full at a comparable precision (42% vs 40% on average).
CircAST exhibits higher precision, but at a cost of much reduced recall. Again, TERRACE obtains a higher
Fscore than all other methods on all samples. Also, the precision-recall curves of TERRACE consistently
lie well above the all other data points, demonstrating its improved accuracy. In particular, the average
adjusted precision of TERRACE (using the random-forest curve) is 76% compared to CIRI-full at 40%, 50%
compared to CIRCexplorer2 at 40%, and 86% compared to CircAST at 59%.

We also compare the precision recall curves of TERRACE with the curves generated by varying the abun-
dance thresholds of other methods. Supplemental Figs. S4 and S5 confirm the superiority of TERRACE over
the curves of other methods. To better quantify the improvement, we measure the area under the precision-
recall curve. Since the precision or recall ranges of different methods may vary substantially, we compare
TERRACE with each alternative method by locating a shared range (constrained by recall or by precision),
and calculate the partial area under the precision-recall curve (pAUC). See Supplementary Tables S3, S4,
and Sb for details.

Fig. 3(A-B) shows the accuracy of TERRACE compared to other tools on simulated data. When annotation
is not provided, TERRACE identifies an average of 37% more correct circular transcripts and achieves bet-
ter precision than CIRI-full. In the presence of annotations, TERRACE consistently outperforms CIRI-full
and CIRCexplorer2 on all measures. TERRACE exhibits an average precision comparable to CircAST while
maintaining much better recall, resulting in a much higher overall Fscore. We conducted additional experi-
ments to evaluate TERRACE’s performance across a range of simulation parameters, including read length,
circular transcript coverage, and linear transcript coverage. Across all variations, TERRACE demonstrated
improved overall performance compared to other methods (see Supplementary Tables S6 and S7). We observe
that recall rates for TERRACE is below 80% when the circular coverage is reduced to x5. This because we

require the BSJ of a back spliced read to match a splice junction inferred from read alignments. When the
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sequencing coverage is low, there exist sparse regions where the aligner is unable to infer a splice junction.
Due to the absence of these junctions, many correct back-spliced reads get discarded resulting in low recall.

One possible approach to address this would be to adjust the splice junction requirement based on coverage

depths.
A: without annotation B: with annotation
1001 = cIRrI-full 100{ =1 CircAST
1 TERRACE 3 CIRI-full —
[ CIRCexplorer2
[ TERRACE ]
80 80 ]
60 60
40 40
20 20
Recall(%) Pecision(%) Fscore(%) o Recall(%) Pecision(%) Fscore(%)

Fig. 3: Average accuracy of different tools on simulated data. The error bars show the standard deviation
over 10 simulated samples.

We realize that the recall rates of various methods including TERRACE are quite low on real data (Figs. 1
and 2), particularly in lung and muscle tissues. This trend is also evident in the precision values. One plausible
explanation for this discrepancy could be linked to the use of annotated circRNAs from long reads data as
the ground truth for evaluation. Upon analyzing the count of annotated circRNAs across the samples and
comparing them to the limited number detected by various methods (refer to Supplementary Table S8),
we hypothesize that long reads and short-reads total RNA-seq data (which is used here) capture divergent
sets of expressed circRNAs. This may result in accurate predictions from short-reads being misclassified
as incorrect, leading to an underestimation of both precision and sensitivity. As an evidence, we notice
that the read coverage across the gene loci in muscle and lung samples is highly non-uniform: many reads
cluster densely within a few number of gene loci, leaving other genes with sparse coverage. This causes all
methods, including TERRACE, to construct much less number of correct circRNAs compared to the ground

truth. The number of circRNAs annotated using long reads is in the similar range with other samples, so
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the coverage non-uniformity seems not to exist in the long reads dataset. Nevertheless, we emphasize that
although the ground truth used for this study may not fully capture the absolute accuracy, it still serves as
a fair benchmark for comparing the relative accuracy of different methods. Given the underestimated recall
rates of TERRACE on the biological samples, we resort to simulations to illustrate that achieving high recall
is possible in an unbiased setting. The performance of TERRACE on simulated samples strongly reinforces

this assertion.

Comparison with long reads assembler

We also conducted experiments to compare the results of TERRACE with a long read assembler, CIRI-
long Zhang et al. (2021). CIRI-long analyses various sequencing protocols to measure their effect on circRNA
detection and concludes that the optimal procedure for circRNA detection using nanopore technology should
include RNaseR, A-tailing, reverse transcription with SMARTer RT under RNase H- conditions and 1kb
(long) fragment size selection. We use nanopore sequencing reads from the optimal protocol to run CIRI-
long, and illumina short reads (RNaseR and Total) from the same study to run TERRACE. The datasets
from two biological replicates of mouse brains are available at BIGD (accession number : CRA003317). Since
an established ground truth is not available, we resort to finding number of overlapping circRNAs between
CIRI-long and TERRACE as illustrated in Supplementary Figs. S7 and S8. The low number of overlapping
circRNAs compared to the number detected uniquely by each tool reconfirms the hypothesis that long-read
and short-reads express divergent sets of circRNAs. Additionally, the large number of unique detection by
TERRACE is an indication of many de novo circRNAs that are likely to be true given the relatively higher

precision of TERRACE on the benchmarking datasets.

Discussion

The substantial growth in research dedicated to circRNAs in recent years underscores their significance in
biology and medicine. Despite the abundance of experimental and computational techniques designed for
circRNA detection, inherent limitations persist within these methods. Current experimental protocols often
require special enrichment of libraries for accurate detection while computational methods are hindered
by their dependence on annotation and inability to reconstruct full-length molecules. TERRACE made a
significant advancement towards closing this critical gap. TERRACE utilized a fast algorithm that effectively
detects previously overlooked back-splicing junctions. A bridging system, which we originally proposed for
improving (linear) transcript assembly, was re-designed to reconstruct the full-length circRNAs. Instead of

using abundance for ranking, TERRACE learned a better score function with a broader class of informative
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features. TERRACE outperforms existing tools drastically, especially in scenarios where annotations are
unavailable. We anticipate widespread adoption of TERRACE, particularly in studies involving species

lacking well-annotated transcriptomes.

Further improvements can be made for TERRACE. The precision-recall curves (in Figs. 1 and 2) are not
satisfactory. We would investigate the extraction of more features and advanced learning approaches. For
instance, we can incorporate the count of splicing positions or partial exons supporting a BSJ as extra
features. Additionally, we could explore training a model with complete sequences of bona fide circRNAs,
possibly sourced from established circular RNA databases, to better differentiate between accurate and
erroneous ones. An LSTM model may be used for such sequence-based training. We also consider extending
TERRACE to incorporate additional types of data. Leveraging long reads and/or circRNA-enriched libraries

for detection may reveal less obvious circRNAs, enhancing the assembly accuracy.

Methods

TERRACE takes the alignment of paired-end total RNA-seq reads and, optionally, a reference annotation as
input. TERRACE first identifies back-spliced reads, each of which will be assembled into a set of candidate,
full-length circular paths in the underlying splice graph. The candidate paths, optionally augmented by the
annotated transcripts, are subjected to a selection process followed by a merging procedure to produce the
resultant circRNAs (refer to Supplemental Figures S1-S3 for illustration). A score function is learned that
can assign a confidence score to each assembled circRNA (refer to Supplemental Note for a list of features
utilized to learn the score function). TERRACE is outlined in Fig. 4. An extended version of the Methods
with full descriptions of all the steps is provided as a Supplemental Methods section. Analysis and comparison

of runtime and memory usage is available in Supplemental Note and Tables S1-S2 respectively.

—_———

L N - - i
| annotation | |dent|fy back-spliced I infer |
} (optional) J back-spliced reads ! annotated ‘
R - reads I paths |
”””””” candidate f.:)tath& assembled scorin circRNAs
paths ! er. circRNAs g with score
reads selection
alignment bridging
(bam file) graph

Fig.4: Outline of TERRACE. Rounded boxes represent data and data structures. Rectangles represent
procedures. Dashed boxes indicate optional.
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Software Availability

The source code of TERRACE is freely available at https://github.com/Shao-Group/TERRACE and also
uploaded as Supplemental Code. TERRACE is also available as a conda package at https://anaconda.
org/bioconda/terrace. The scripts, evaluation pipelines, and instructions that can be followed to reproduce
the experimental results of this work is available at https://github.com/Shao-Group/TERRACE-test. The
alignment files (by STAR) of these samples and the raw sequences and alignment files of the simulated data
have been hosted at Penn State Data Commons (DOI: https://doi.org/10.26208/AZ99-RQ38). Please

refer to Supplemental Material for additional information.
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