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Moiré materials have enabled the realization of flat electron bands and quantum 
phases that are driven by strong correlations associated with flat bands1-5. 
Superconductivity has been observed, but solely, in graphene moiré materials6-11. 
The absence of robust superconductivity in moiré materials beyond graphene, such 
as semiconductor moiré materials5, has remained a mystery and challenged our 
current understanding of superconductivity in flat bands. Here, we report the 
observation of robust superconductivity in both 3.5- and 3.65-degree twisted bilayer 
WSe2 which hosts a hexagonal moiré lattice12,13. Superconductivity emerges at half-
band filling and under small sublattice potential differences. The optimal 
superconducting transition temperature is about 200 mK in both cases, and 
constitutes about 1-2% of the effective Fermi temperature; the latter is comparable 
to the value in high-temperature cuprate superconductors14,15 and suggests strong 
pairing. The superconductor borders on two distinct metals below and above half-
band filling; it undergoes a continuous transition to a correlated insulator by tuning 
the sublattice potential difference. The observed superconductivity on the verge of 
Coulomb-induced charge localization suggests roots in strong electron 
correlations14,16.  
 
Main 
The discovery of superconductivity in twisted bilayer graphene6 has initiated intense 
research on moiré superlattices of van der Waals materials1,2,4,5. In particular, transition 
metal dichalcogenide (TMD) semiconductors, MX2 (M = Mo, W; X = S, Se, Te), in the 
monolayer limit can be viewed as gapped graphene with strong Ising spin-orbit 
coupling17; TMD moiré materials have emerged as a simple yet extremely rich model 
system for studies of correlated and topological phases of matter5. The tunable moiré flat 
bands in these materials, which strongly enhance the correlation effects, have stabilized 
the Mott insulators18-20, generalized Wigner crystals18,21 and heavy fermions22. The 
combined correlation and non-trivial band topology have further induced the integer and 
fractional Chern insulators23-28 and the fractional quantum spin Hall insulator29, the latter 
of which has not been observed in any other materials. However, superconductivity—a 
hallmark of graphene flat band systems both with and without the moiré effects6-11,30-34—
has remained elusive in TMD moiré materials. An earlier study reported the observation 



of a potential superconducting state in twisted bilayer WSe2 (tWSe2) by doping a 
correlated insulator20, but the state appears unstable to repeated thermal cycles.  
 
In this work, we report an electrical transport study of AA-stacked 3.5°- and 3.65°-
tWSe2. Results from the 3.65°- and 3.5°-device will be presented in the main text and in 
Extended Data Fig. 8, respectively. In both devices, we observe robust superconductivity 
on the verge of Coulomb-induced charge localization around half-band filling when the 
interlayer potential difference is tuned close to zero. The state borders on two distinct 
metals, below and above half-band filling, respectively. The superconducting transition 
temperature constitutes about 1-2% of the effective Fermi temperature, which is 
comparable to the value in cuprate high-temperature superconductors14,15 and suggests 
strong pairing. The observed superconducting state does not stem from doping a 
correlated insulator and cannot be readily explained by the existing theories35-49. Future 
experiments and theories are required to fully understand the nature of the state.  
 
Figure 1a illustrates a schematic of the dual-gated tWSe2 device employed in this study. 
Twisted bilayer WSe2 has a hexagonal moiré lattice with two sublattice sites residing at 
the MX and XM stacking regions12,13 (Fig. 1b). The moiré density [𝑛!   = (4.25 ±
0.03) × 10#$ cm%$], or equivalently, the twist angle (3.65° ± 0.01°) is calibrated through 
quantum oscillations under a high magnetic field (Extended Data Fig. 2). The top and 
bottom gates are made of multilayer hexagonal boron nitride (hBN) and graphite. They 
independently tune the hole moiré filling factor 𝜈 and the electric field 𝐸 perpendicular to 
tWSe2 (or equivalently, the interlayer/sublattice potential difference). The narrower top 
gate defines the device channel and additional Pd split gates are patterned to turn off any 
parallel conduction channels. To achieve ohmic contacts to tWSe2 down to mK 
temperatures, we use Pt contact electrodes and Pd contact gates. The contact gates induce 
heavy hole doping in the tWSe2 regions immediately adjacent to the Pt electrodes. 
Contact resistance between 10-40 kΩ has been achieved (Extended Data Fig. 1). See 
Methods for details on the device fabrication, twist angle and disorder calibration and 
electrical measurements. 
 
Figure 1c illustrates the electronic band structure for the first two moiré valence bands of 
3.65°-tWSe2 at 𝐸 = 0, calculated using a reported continuum model13 (Methods). The 
bands are composed of the spin-valley locked electronic state from the K or K’ valley of 
monolayer WSe2. Only the K-valley state is shown in Fig. 1c. Both moiré bands carry 
Chern number +1 (-1 for the K’-valley state), and are expected to transition to non-
topological bands under a sufficiently high electric field that overcomes the interlayer 
hopping12,13. Figure 1d displays the corresponding electronic density of states (DOS) at 
the Fermi level as a function of E and 𝜈 . For 𝐸 = 0 , the DOS shows a van Hove 
singularity (vHS) near 𝜈 = 0.75 which arises from a saddle point located at the m-point 
of the moiré Brillouin zone20. Across the vHS, the hole Fermi surface changes abruptly 
from disconnected κ/κ’ hole pockets to a single γ electron pocket (insets). As E increases, 
the vHS shifts continuously towards higher 𝜈 (Extended Data Fig. 4) and exhibits a wing-
like feature in the DOS. 
 



Figure 1e shows the longitudinal resistance 𝑅 measured as a function of 𝐸 and 𝜈 (< 2) at 
10 K. The map is dominated by a large resistance region that is centered around E = 0 
and expands with increasing 𝜈. Multiple correlated insulating states (𝜈 = 1/4, 1/3 and 1) 
can be identified. In line with earlier studies12,13,24-27, this is the layer-hybridized region. 
The region at higher electric fields is characterized by a metallic state and is the layer-
polarized region. Upon further cooling of the sample down to 50 mK (Fig. 1f), all the 
features become sharper, allowing us to draw the dashed lines to guide the eye for the 
phase boundary. The resistance maps in general show good agreement with the DOS map 
in Fig. 1d except at commensurate fillings (𝜈 = 1/4, 1/3 and 1), where the correlation 
effects dominate21. The enhanced resistance near 𝜈 = 0.75 and 𝐸 = 0 and at the wing-
like features for 𝜈 > 1  near the phase boundary follows closely the location of the 
calculated vHS (the enhanced resistance is presumably from the large DOS and/or 
enhanced scattering rate near the vHS). The assignment is further supported by a sign 
change of the Hall resistance (Extended Data Fig. 5). However, the most striking feature 
of Fig. 1f is the opening of a short strip with nearly vanishing resistance in the middle of 
the correlated insulator state at half-band filling (𝜈 = 1). 
 
Superconductivity at half-band filling 
We zoom in on the phase space near 𝜈 = 1 and E = 0 in Fig. 2. The dashed lines are 
provided to guide the eye for the regions with zero resistance at 50 mK. Zero resistance is 
observed near the two ends of the 𝜈 = 1 insulator (Fig. 2a). The zero-resistance state is 
independent of the measurement configuration for a homogenous moiré area of 1.5 µm × 
8 µm (Extended Data Fig. 1 and 3). It is robust against repeated thermal cycles; over 10 
thermal cycles were involved in collecting the data presented in the main text. On the 
other hand, the zero-resistance state is susceptible to both thermal excitations and 
magnetic field threaded through the sample. For instance, the state is quenched when the 
sample is warmed up to 300 mK (Fig. 2b) and when an out-of-plane magnetic field of 50 
mT is applied at 50 mK (Fig. 2c). Figure 2 also shows that the zero-resistance state is not 
connected to the vHS near 𝜈 = 0.75 and 𝐸 = 0. It borders on two distinct metallic states, 
more discussions on which will follow in the next section.  
 
For now, we focus on the zero-resistance state at the upper end of the insulator (𝜈 ≈ 1 
and 𝐸 ≈ 8  mV/nm) and examine its response to bias current I, temperature T and 
magnetic field B. Figure 3a displays the differential resistance, &'

&(
, as a function of T and 

𝐼 in the absence of magnetic field. Linecuts at representative temperatures are illustrated 
in Fig. 3b. Below about 180 mK (dashed line in Fig. 3b), bias current above a critical 
value is required to destroy the zero-resistance state. The critical current is about 5 nA at 
50 mK, and the value decreases monotonically with increasing temperature. Above about 
250 mK, the differential resistance increases slightly with bias. Between the two 
temperatures, a resistance dip at zero bias is still observed although zero resistance is no 
longer reached. Figure 3c shows the temperature dependence of the differential resistance 
at zero bias, 𝑅. As temperature decreases, 𝑅 first drops rapidly near 250 mK and then 
transitions to a zero-resistance state near 180 mK.  
 



A similar study on the magnetic-field response is shown in Fig. 3d-f. Figure 3d displays 
the differential resistance, &'

&(
, as a function of B and 𝐼 at 50 mK (linecuts at representative 

magnetic fields are included in Extended Data Fig. 6d). Similar to Fig. 3a,b, the critical 
current required to destroy the zero-resistance state vanishes continuously with increasing 
magnetic field. The zero-resistance critical field, 𝐵)#, is about 6 mT. Above this field, a 
resistance dip at zero bias is still observed and disappears in the normal state above the 
second critical field 𝐵)$. Figure 3e shows the zero-bias resistance, 𝑅, as a function of T 
and B. Linecuts at representative magnetic fields are shown in Fig. 3f. At 50 mK, the 
normal state is reached at about 80 mT, above which 𝑅 has a weak field dependence. 
Between the two critical fields, 𝑅 increases linearly with field, and 𝐵)$ is defined as the 
field at which the linear fits to the field dependence of 𝑅 in two different phases intersect 
(Extended Data Fig. 6c). The critical fields are evaluated for all temperatures (filled 
symbols, Fig. 3e). They vanish continuously at the corresponding transition temperatures. 
 
The results above are fully consistent with superconductivity in two dimensions (2D). 
Because of the enhanced thermal fluctuations, the superconducting transition in 2D is 
expected to occur over a temperature range50, characterized by the onset of Cooper 
pairing at the pairing temperature, 𝑇*, and the onset of quasi-long-range phase coherence 
at the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, 𝑇+,-. We define 𝑇* 
(≈ 250 mK) as the temperature at which the zero-bias resistance reaches 80% of the 
normal-state resistance (Extended Data Fig. 6a). We determine 𝑇+,-  (≈ 180 mK) by 
performing the BKT analysis (inset of Fig. 3c), that is, the nonlinear 𝐼 − 𝑉 dependence 
takes the form 𝑉 ∝ 𝐼. (dashed line) at 𝑇+,- (Ref. 50,51).  
 
The observed broad superconducting transition induced by magnetic fields is also 
expected for weakly pinned vortices. Here 𝐵)# and 𝐵)$ correspond to the critical fields, 
at which the zero-resistance state and Cooper pairing with finite resistance are destroyed, 
respectively. The observed 𝑅 ∝ +

+!"
 (Extended Data Fig. 6c) between the two critical 

fields is consistent with nearly unpinned vortices in the superconductor50. Such mobile 
vortices have been reported in 2D crystalline superconductors with shallow pinning 
sites51. Our high-quality tWSe2 device with low disorder density (about 2.5% of the 
moiré density 𝑛!, Extended Data Fig. 1) is compatible with this picture. We can estimate 
the superconducting coherence length 𝜉  by fitting the Ginzburg-Landau result 𝐵)$ ≈
/#
$01"

?1 − -
-$
@ to the experimental temperature dependence of 𝐵)$ near 𝑇* (dashed line in 

Fig. 3e, Ref. 50). Here Φ2 = ℎ 2𝑒⁄  is the flux quantum with h and e denoting the Planck 
constant and fundamental charge, respectively. The superconducting coherence length 
(𝜉 ≈ 52 nm) is about 10 times the moiré period (𝑎! ≈ 5 nm).  
 
Doping dependence of the superconductor  
We examine the doping dependence of the superconducting state, focusing on the upper 
end of the insulator (Fig. 2a, 𝐸 ≈ 8  mV/nm) as above. Figure 4a shows zero-bias 
resistance, 𝑅, as a function of T and 𝜈 in the absence of magnetic fields. Linecuts at 
representative temperatures are shown in Fig. 4b. Superconductivity is observed only in 
the immediate vicinity of 𝜈 = 1. The pairing and BKT transition temperatures are shown 



as blue and orange symbols in Fig. 4a, respectively. The optimal 𝑇+,- is slightly below 
200 mK at 𝜈 ≈ 1.  
 
The state on both sides of the superconductor is metallic. Figure 4c illustrates the 
temperature dependence of 𝑅 at three representative filling factors, 𝜈 = 0.9, 1 and 1.1. 
Figure 4d displays 𝑅 as a function of 𝑇$. The metallic state above filling one shows a 
Fermi liquid behavior with 𝑅 = 𝑅2 + 𝐴𝑇$  (dashed line, Fig. 4d) over an extended 
temperature range in the low-temperature limit. Here 𝑅2 is the residual resistance and A is 
the Kadowaki-Woods coefficient that reflects the quasiparticle effective mass52. We 
define coherence temperature, 𝑇345 , as the crossover temperature at which 𝑅  deviates 
from the Fermi liquid behavior by 10% (Extended Data Fig. 11 shows a similar trend 
using 20% threshold). As filling factor approaches one from above, 𝑇345  rapidly 
decreases (Fig. 4a), and correspondingly, A or the quasiparticle effective mass rapidly 
increases (inset of Fig. 4d).  
 
On the other hand, the metallic state below filling one and the normal state of the 
superconductor are not compatible with a Fermi liquid for nearly the entire temperature 
window and 𝑇345 cannot be reliably extracted. The normal state of the superconductor at 
𝜈  = 1 also exhibits a resistance peak at elevated temperature 𝑇∗  (Fig. 4b,c). This 
temperature scale separates the coherent and incoherent transport regimes (below and 
above 𝑇∗, respectively) and can be used as a measure of the Fermi temperature, 𝑇7 (Ref. 
53). We illustrate 𝑇∗  as yellow symbols in Fig. 4a for all filling factors that can be 
identified within the measurement window of 25 K. It reaches a minimum of about 10 K 
at 𝜈 = 1, which is substantially suppressed compared to the single-particle 𝑇7 ≳ 100 K 
from the band structure calculation in Fig. 1c (see Methods for additional estimates). The 
result shows that the normal state of the superconductor is developed from a poor metal 
with the lowest 𝑇7, one that is on the verge of charge localization induced by the strong 
electronic correlation at 𝜈 = 1 . (Note that the Fermi liquid behavior for 𝜈 > 1  is 
developed only for 𝑇 < 𝑇345 < 𝑇∗.) 
 
Superconductor-insulator transition 
The proximity to charge localization of the normal state of the superconductor is further 
supported by the superconductor-insulator transition induced by out-of-plane electric 
field E at 𝜈 = 1. Figure 5a shows zero-bias resistance, 𝑅, as a function of T and 𝐸 with 
linecuts at representative electric fields shown in Fig. 5b. All resistance curves merge into 
the same temperature dependence above about 4 K (see Fig. 1e for a wider E-field range 
at 10 K). A sharp superconductor-insulator transition is observed near the critical electric 
field 𝐸) ≈ 11.7 mV/nm. The corresponding resistance 𝑅)  (dashed line in Fig. 5b) has the 
weakest temperature dependence.  
 
Figure 5c demonstrates the collapse of the resistance curves in the vicinity of 𝐸) . In this 
process, we first extract the thermal activation gap 𝑇2 of the insulating state at each E 
(Extended Data Fig. 7). The activation gap (black symbols, Fig. 5a) vanishes 
continuously as 𝐸  approaches 𝐸)  from above. The normalized resistance 𝑅/𝑅)  for all 
fields collapses into two groups of curves if we scale the temperature axis by 𝑇2. For the 
superconducting side, the same 𝑇2  as its insulating counterpart that lies with equal 



distance to 𝐸)  gives the best scaling. One group of the collapsed curves decreases, and 
the other group diverges, with decreasing 𝑇/𝑇2. In Fig. 5a, we also show the electric-field 
dependence of 𝑇+,- and 𝑇* on the superconducting side. Both temperature scales vanish 
continuously as 𝐸  approaches 𝐸)  from below. The continuously vanishing 
temperature/energy scales and the collapse of the resistance curves in the vicinity of 𝐸)  
suggest that the superconductor-insulator transition is a continuous electric-field-induced 
quantum phase transition.  
 
Concluding remarks  
We have observed robust superconductivity in both 3.5°- and 3.65°-twisted bilayer WSe2. 
The observed superconducting state has several unusual properties that deserve future 
studies. First, superconductivity is observed only in the layer-hybridized region of the 
twisted bilayer12,13,24-27 (Fig. 1f). The TMD moiré system with tunable bands in this 
regime is an excellent platform to investigate the role of quantum geometry in 
superconductivity54. Second, superconductivity is strongly confined near 𝜈 = 1 and is 
away from the vHS (at 𝜈 ≈ 0.75 near 𝐸 = 0). The superconductor evolves continuously 
to a correlated insulator by tuning the interlayer potential difference (Fig 2 and 5). The 
phenomenology is different from that in graphene moiré systems, where 
superconductivity emerges often by doping a correlated insulator6-11. Third, the normal 
state of the superconductor is a strongly correlated metal with minimal 𝑇7 ≈ 𝑇∗ on the 
verge of localization (Fig. 4). The superconducting state borders on two distinct metallic 
states: a well-behaved Fermi liquid above filling one and one that largely deviates from 
the Fermi-liquid behavior below filling one. These metallic states are not spontaneously 
spin/valley-polarized (Extended Data Fig. 5), also distinct from the phenomenology of 
superconductivity in bilayer and trilayer graphene31,33,34,55. Finally, the observed 
superconductor is in the strong pairing limit with 𝑇)  (superconducting transition 
temperature) about 1-2% of 𝑇7 and 𝜉 about 10 times 𝑎! or the inter-particle distance at 
𝜈 = 1 (see Methods for additional estimates). These values are comparable to the ratios 
-!
-%
 and 1

8
 in high-𝑇)  cuprates14,56 (𝑎  is the lattice constant). Transport experiments on 

samples with other twist angles and different TMDs, as well as magnetic circular 
dichroism measurements, could help to address questions such as the nature of the 
correlated insulator57,58 and the normal metallic states surrounding the superconductor. 
Direct demonstration of the Josephson effect is also desired. Our experiment opens the 
door to explore unconventional superconductivity driven by strong electronic correlations 
in semiconductors moiré materials. 
 
 
Methods 
Device fabrication. 
Extended Data Fig. 1a shows a schematic representation of dual-gated tWSe2 devices. 
They were fabricated using the ‘tear-and stack’ and layer-by-layer dry transfer method, as 
described in previous studies6,59. In short, flakes of few-layer graphite, multilayer 
hexagonal Boron Nitride (hBN) and monolayer WSe2 were first exfoliated from bulk 
crystals onto Si/SiO2 substrates and identified based on their optical reflection contrast. 
The WSe2 flake was cut into two halves using an AFM (atomic force microscope) tip. 
The flakes were then picked up sequentially by a polycarbonate thin film on a PDMS 



(polydimethylsiloxane) stamp in the following order: hBN, top-gate graphite, hBN, one 
half of the WSe2 flake, second half of the WSe2 flake with a twist, hBN and bottom-gate 
graphite. The top and bottom gate hBN thickness is 2.9 nm and 6.1 nm, respectively, for 
the 3.65° device and 3.6 nm and 5.6 nm, respectively, for the 3.5° device. Since the hBN 
thickness is comparable to the moiré period (about 5 nm), we expect the extended-range 
(on-site) Coulomb repulsion is substantially (weakly) screened. The complete stack was 
subsequently released onto a Si/SiO2 substrate with pre-patterned Pt electrodes in the Hall 
bar geometry at 200°C. Finally, the contact gates and the split gates were added using 
standard electron-beam lithography and evaporation of Ti/Pd (5 nm/40 nm in thickness). 
The top gate is smaller than the bottom gate in area and defines the device channel. The 
contact gates serve to heavily hole-dope the tWSe2 regions between the channel and the 
Pt electrodes to reduce the contact resistance (even when the doping density in the 
channel is low). The split gates are used to deplete the parallel tWSe2 regions that are 
gated only by the bottom gate. An optical micrograph of the 3.65° device is shown in 
Extended Data Fig. 1b. 
 
Compared to earlier tWSe2 devices20,60, we have achieved 1) better contacts for transport 
measurements down to mK temperatures, 2) an improved design of the dual-gated device 
allowing mapping of the entire electrostatics phase diagram and 3) reduced moiré 
inhomogeneity to about 2-3% of the moiré density over a large channel area. These 
advancements enable the observation of robust superconductivity in this study.  
 
Electrical measurements.  
The electrical transport measurements were performed in a dilution refrigerator (Bluefors 
LD250) equipped with a 12 T superconducting magnet. Low-temperature RC and RF 
filters (QDevil) were installed on the mixing chamber plate to filter out the electrical 
noise from about 65 kHz to tens of GHz. A 1 MΩ resistor was added in series to limit the 
excitation current. Voltage pre-amplifiers with large input impedance (100 MΩ) were 
used to measure sample resistances up to about 10 MΩ. Low-frequency (5.777 Hz) lock-
in techniques were adapted to measure the sample resistance with a small excitation 
current (< 10 nA) to avoid sample heating. Specifically, the excitation current was fixed 
below 1 nA to probe the superconducting state. Both the voltage drop at the probe 
electrodes and the source-drain current were recorded. All data were taken at the base 
temperature (~ 50 mK) unless specified otherwise.  
 
Twist angle calibration.  
The twist angle of WSe2 was calibrated through the quantum oscillations observed under 
a perpendicular magnetic field. We first acquired a resistance map under zero magnetic 
field as a function of the top gate and bottom gate voltages (Vtg and Vbg, respectively). We 

converted the gate voltages to a perpendicular electrical field, 𝐸 = #
$
J'&'
&&'

− '('
&('
K, and 

filling factor, 𝜈 ∝ ')*
&)*

+ '+*
&+*
, using the hBN thickness in the top and bottom gates (dtg and 

dbg, respectively). The hBN thicknesses were independently calibrated by AFM, and their 
ratio was fine-tuned to align the resistance peaks parallel to the electric-field axis 
(Extended Data Fig. 2a). The two most prominent resistance peaks are insulating states at 
𝜈 = 1 and 𝜈 = 2. Using the same thickness values, we also obtained the resistance map 



at 12 T as a function of E and 𝜈 (Extended Data Fig. 2b). Landau levels are observed. We 
focus on the layer-polarized region under large electric fields, where the Landau levels 
are spin- and valley-polarized akin to that in hole-doped monolayer WSe2 under large 
magnetic fields61. Landau levels with index 𝜈99 = 2 – 8 are denoted by vertical dashed 
lines, and their filling dependence is shown in Extended Data Fig. 2c. We determined the 
moiré density, 𝑛!   = (4.25 ± 0.03) × 10#$ cm%$ , from the slope (:#

+
𝑛!   with 𝜙2 =

5
;
 

denoting the magnetic flux quantum) of the best linear fit to the experimental data. We 

obtained the twist angle, θ = 𝑎M√.
$
𝑛! = 3.65° ± 0.01° from the moiré density, where a ≈ 

3.317 Å (Ref. 62) is the lattice constant of monolayer WSe2. The twist angle can also be 
determined from the Landau fans emerging from the moiré band edges (Extended Data 
Fig. 2d). Here clear Landau levels emerging from 𝜈 = 0 and 2 can be identified, from 
which a nearly identical twist angle can be obtained.  
 
We can further determine the twist angle using the Hofstadter’s oscillations. Extended 
Data Fig. 2e shows the density derivative of the sample conductance versus 1/𝐵 and 𝜈. 
Periodic crossings of the Landau levels at a period 0.0058±0.0001 T-1 are observed under 
high magnetic fields when the magnetic length becomes comparable to the moiré period. 
According to the Hofstadter’s butterfly model, this period is #

+
= =

:#>, 
 (𝑞 is an integer), 

which is plotted in Extended Data Fig. 2f. We then obtain a moiré density 𝑛!  ≈
(4.22 ± 0.06) × 10#$ cm%$  and a twist angle θ = 3.63° ± 0.03° . The result is fully 
consistent with the above value and is consistent with the targeted twist angle in the 
fabrication process (within 0.2°).  
 
Band structure calculation. 
To capture the low-energy electronic band structure of tWSe2 of small twist angle, we 
study the continuum model based on the effective mass description first introduced by 
Wu et al. (Ref. 12). In monolayer TMDs, the topmost valence bands are spin split by 
100’s meV and the spin and valley are locked due to inversion symmetry breaking and 
strong spin-orbit coupling (Ref. 17). This property is inherited by tWSe2. For each valley, 
the low-energy physics of tWSe2 can be described by a two-band 𝑘 ∙ 𝑝 model with a 
periodic pseudomagnetic field, ∆(𝒓) = (Re𝛥-

? , Im𝛥-
? , @)%@+

$
), where 𝛥-  is the interlayer 

tunneling amplitude and 𝛥A,C  are the bottom and top layer dependent energies. The 
effective moiré Hamiltonian for the +𝐾 valley state (with spin-↑) is given by 
 

𝐻↑ = Y
− ℏ"(G%H.)"

$J∗ + 𝛥A(𝒓) 𝛥-(𝒓)

𝛥-
? 	(𝒓) − ℏ"(G%H0)"

$J∗ + 𝛥C(𝒓)
[ ,  (1) 

 
where 𝑚∗ is the valence band effective mass (= 0.45𝑚2 for monolayer WSe2 [Ref. 63]) 
and 𝜅± are the corners of the moiré Brillouin zone (mBZ). The effective Hamiltonian for 
the −𝐾 valley state (with spin-↓) is the complex conjugate of 𝐻↑.  
 



The pseudomagnetic field with the lattice symmetry constraints can be described in the 
lowest harmonic approximation as  
 

∆A,C(𝒓) = ± '1
$
+ 2𝑉 ∑ cos (g𝒋 ∙ 𝒓 ± 𝜓)MN#,.,O ,   (2) 

 
𝛥-(𝒓) = 𝑤(1 + 𝑒%Pg𝟐∙𝒓 + 𝑒%Pg𝟑∙𝒓).    (3) 

 
Here 𝑉S denotes the sublattice potential difference and g𝒋 is the reciprocal lattice vector 

obtained by counterclockwise rotations of g𝟏 = (
U0

√.8,
, 0)  by angle (𝑗 − 1)𝜋/3 . The 

parameters (𝑉, 		𝜓, 		𝑤) = (9.0	meV, 	128°, 18 meV)  are taken from the DFT (density 
functional theory) calculations for tWSe2 (Ref. 13). 
 
We obtain the band structure and density of states (DOS) by diagonalizing the 
Hamiltonian given in Eq. (1). The result for 3.65°-twisted WSe2 (as studied in the 
experiment) is shown in Fig. 1c,d. To compare with experiment, we convert the sublattice 
potential difference to vertical electric field using 𝐸 = 𝑉S/(

V456
V7,8

𝑒𝑡) . Here the dipole 

moment V456
V7,8

𝑒𝑡 ≈ 0.26	𝑒 ∙ 𝑛𝑚  is independently determined from the anti-crossing 
feature of the layer-hybridized moiré excitons64,65 (𝜀5+W	 ≈ 	3 and 	𝜀-!X	 ≈  8 are the out-
of-plane dielectric constants of hBN and TMD, respectively, and 𝑡	 ≈ 	0.7	𝑛𝑚	 is the 
interlayer separation between the WSe2 monolayers).  
 
Estimate of superconductor properties.  
We estimate the ratio -!

-%
  for superconducting tWSe2 at 𝜈 > 1,  where 𝑇)  and 𝑇7 are the 

superconducting transition temperature and the Fermi temperature, respectively. We use 
the mean of the pairing and BKT transition temperatures to represent 𝑇) ≈

-597Y-$
$

≈

220 mK and use 𝑇∗ ≈ 10 K to approximate 𝑇7. The estimated value 
-!
-%
≈ 0.02 suggests 

strong pairing and is comparable to that in high-𝑇)  cuprates14. The strong pairing is 
further evidenced by the ratio 1

8,
≈ 10, where 𝑎! ≈ 5 nm is the moiré period and 𝜉 ≈ 52 

nm is the superconducting coherence length extracted from the critical magnetic-field 
measurement (Fig. 3e). The equivalent value for cuprates is about 5 (Ref. 56).  
 
We can also estimate Fermi velocity 𝑣7 ≈

1G5-!
ℏ

≈ 1,500 m/s and effective quasiparticle 

mass 𝑚 ≈ ℏ"0>,
G5-%

≈ 10	𝑚2 at the Fermi level, where 𝑘+, ℏ and 𝑚2 denote the Boltzmann 
constant, reduced Planck’s constant and the free electron mass, respectively. The 
obtained values are self-consistent with the relation 𝑚𝑣7 = ℏo2𝜋𝑛!. Both 𝑚 and 𝑣7 are 
strongly renormalized from their single-particle values based on the continuum model12,13 
(Fig. 1c).  
 



Lastly, we can estimate an effective 𝑇7~
ℏZ%G%
G5

= MU0
√.

1
8,
𝑇) ≈ 6 K using 𝜉 = ℏZ%

G5-!
≈ 52 

nm, 𝑇) ≈ 220 mK and the Fermi momentum 𝑘7 = MU0
√.

#
8,
. The estimated value is in 

good agreement with the measured 𝑇∗ ≈ 10 K.  
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Figures 

	
Figure 1 | Electronic structure of tWSe2. a, Schematic of a dual-gated tWSe2 device. 
Both gates are made of hBN and few-layer graphite (Gr) with the narrower top gate 
defining the tWSe2 channel. The top and bottom gate voltages (𝑉[\ and 𝑉]\, respectively) 
control the vertical electric field E and hole filling factor 𝜈 in tWSe2. Platinum (Pt) is the 
contact electrodes to tWSe2. Additional palladium (Pd) contact gate and split gate 
voltages turn on the Pt contacts and turn off the parallel channels, respectively (only one 
gate is shown). b, Hexagonal moiré lattice of tWSe2 with sublattice sites centered at the 
MX (red) and XM (blue) stacking sites; black and grey dots denote the M (= W) and X (= 
Se) atoms, respectively. c, Topmost moiré valence bands for the K-valley state of 3.65°-
tWSe2 from the continuum model. Both bands carry Chern number +1. The 
corresponding bands of the K’-valley state carry Chern number -1. The valence band 
maximum at 14.2 meV corresponds to 𝜈 = 0. The dashed lines mark the Fermi levels 
corresponding to the dots of the same color in d. d, Electronic density of states (DOS) 
versus 𝐸 and 𝜈. The vHS (𝜈 ≈ 0.75 at E = 0) disperses towards higher 𝜈 with increasing 
𝐸. Insets: Fermi surface at E = 0 evolves from disconnected hole pockets centered at κ/κ’ 
of the moiré Brillouin zone (yellow) to a single electron pocket centered at γ (black) as 𝜈 
passes the vHS. e,f, Longitudinal resistance 𝑅 as a function of 𝐸 and 𝜈 at 10 K (e) and 50 
mK (f). The dashed lines in f (a guide to the eye) separate the layer-hybridized and layer-
polarized regions. 



 

	
Figure 2 | Zero-resistance region around half-band filling. a-c, Longitudinal 
resistance 𝑅 as a function of 𝐸 and 𝜈 near 𝐸 = 0 and 𝜈 = 1 at different temperatures and 
externally applied magnetic fields. The dotted lines are a guide to the eye of the zero-
resistance region observed at 50 mK (a). The zero-resistance state is quenched by 
increasing the sample temperature to 300 mK (b) or by applying an out-of-plane 
magnetic field of 50 mT (c). The metallic states immediately below and above half-band 
filling are insensitive to the magnetic field in c. 
 
 
 
 
 
 
 
 
 
 
 
 



	
Figure 3 | Superconductivity at half-band filling. a, Differential resistance, &'

&(
, as a 

function of temperature T and bias 𝐼 under zero applied magnetic field. b, Linecuts of a at 
representative temperatures. The critical current vanishes continuously with increasing 
temperature. Dashed line: differential resistance at the BKT transition (𝑇+,- ≈180 mK). 
c, Temperature dependence of zero-bias resistance 𝑅 with two temperature scales, 𝑇+,- 
and 𝑇*. Inset: at 𝑇+,-, the V-I dependence follows 𝑉 ∝ 𝐼. (dashed line); the line color is 
defined in b. At 𝑇*(≈ 250 mK), 𝑅 reaches about 80% of the normal-state resistance. d, 
Differential resistance as a function of B and 𝐼 at 50 mK. The critical current vanishes 
continuously with increasing magnetic field. e, Zero-bias resistance 𝑅 as a function of B 
and 𝑇 with critical field 𝐵)# and 𝐵)$. The dashed line is a fit of 𝐵)$ ≈

+
$01"

?1 − -
-$
@ to 

data, from which the superconducting coherence length 𝜉 ≈ 52  nm is determined. f, 
Linecuts of e at representative magnetic fields. All data in Fig. 3 are obtained for 𝜈 ≈ 1 
and 𝐸 ≈ 8 mV/nm. 
 
 

 
 
 
 
 
 
 



	
Figure 4 | Doping dependence of the superconducting state. a, Zero-bias resistance 𝑅 
as a function of T and 𝜈 at 𝐸 ≈ 8 mV/nm and 𝐵 = 0. Superconductivity is observed only 
near 𝜈 = 1. The corresponding normal state shows a resistance peak around 10 K. b,c, 
Linecuts of a at representative temperatures (b) and filling factors (0.9, 1.0 and 1.1) (c). 
In c, 𝑇∗ denotes the temperature corresponding to the resistance maximum. d, Same as c 
up to 4 K displayed as a function of 𝑇$. The dependence for 𝜈 > 1 is described by 𝑅 =
𝑅2 + 𝐴𝑇$  (dashed line), where residual resistance 𝑅2  and coefficient A are free 
parameters. At 𝑇345 , 𝑅  deviates from the 𝑇$ -dependence by 10%. Inset: filling 
dependence of 𝐴.  
 
  



	
Figure 5 | Superconductor-to-insulator transition. a, Zero-bias resistance 𝑅  as a 
function of T and 𝐸 at 𝜈 ≈ 1 under zero magnetic field. b, Linecuts of a at representative 
electric fields. A superconductor-insulator transition is observed near critical field 𝐸) ≈
11.7 mV/nm, at which resistance 𝑅)  has the weakest temperature dependence (dashed 
line). c, Collapse of normalized resistance R/𝑅)  into two groups after scaling 𝑇 by 𝑇2. 
Here 𝑇2 is the thermal activation temperature extracted from experiment for each 𝐸 > 𝐸);  
the same value of 𝑇2 is used for scaling for 𝐸 < 𝐸)  with the same distance to 𝐸) . The 
colors denote different electric fields measured from 𝐸)  with a step size of 0.1 mV/nm; 
the filled and empty symbols denote E above and below 𝐸) , respectively. 
 
 
  



Extended Data Figures 

 
Extended Data Figure 1 | Sample and device characterization. a, Three-dimensional 
schematic of a tWSe2 dual-gated device. Both the top gate (TG) and bottom gate (BG) are 
made of hBN and few-layer graphite (Gr). The tWSe2 sample is contacted by Pt 
electrodes. The Pd contact gates (CG) and split gates (SG) turn on the Pt contacts and 
turn off the parallel channels, respectively. b, Optical micrograph of the 3.65° device. 
Specific features of interest are BG (enclosed by the black dashed line), TG (black solid 
line), uniform moiré region (red dashed line) and Pt contact electrode 1-6. The scale bar 
is 4 µm. c,d, Filling factor dependence of two-terminal resistance 𝑅$C  for different 
contact pairs at T = 1 K and B = 0 T. The sample is an insulator at 𝜈 ≈ 1 for E = 55 
mV/nm (c). The variation in filling factor for the resistance peak is about 0.025, which 
corresponds to a disorder density of 1 × 10## cm%$	. The sample is a metal at 𝜈 ≈ 1 for E 
= 100 mV/nm (d) and the four-terminal resistance is below 350 Ω. The contact resistance 
is determined from 𝑅$C to be 10-40 kΩ.  



	
Extended Data Figure 2 | Calibration of the moiré density. a,b, Longitudinal 
resistance 𝑅 as a function of E and	𝜈 at 50 mK under 𝐵 = 0 T (a) and 12 T (b). Large 



bias current is used in the measurement and superconductivity is not observed in a. 
Landau levels are clearly observed in b. Landau levels with index 𝜈99 = 2 − 8 (denoted 
by dotted lines) in the layer-polarized region are spin- and valley-polarized (i.e. 
nondegenerate). In addition, the Zeeman-split vHS features under 𝐵 = 12 T are marked 
by dashed lines; these features interrupt the quantum oscillations (the vertical stripes in 
b). The midpoint of the Zeeman-split features is in good agreement with the location of 
the single vHS feature under 𝐵 = 0 T (dashed line in a). c, Landau level index 𝜈99 as a 
function of moiré lattice filling 𝜈  follows a linear dependence (blue line). The moiré 
density is determined from the slope to be 𝑛! ≈ (4.25 ± 0.03) × 10#$ cm-2. d, R as a 
function of B and 𝜈 at 50 mK and E = 100mV/nm. Two sets of Landau fan emerging 
from the moiré band edges (i.e. 𝜈 = 0 and 𝜈 = 2) are marked by the dashed lines. The 
results give the same moiré density as above. e, The derivative of the sample conductance 
with respect to 𝜈 (𝑑𝐺/𝑑𝜈) as a function of 𝜈 and 1/B at 50 mK and E = 100mV/nm. 
Hofstadter’s oscillations are observed as periodic crossings of Landau levels in 1/B, as 
denoted by the horizontal dashed lines. f, 1/B at the dashed lines in e as a function of the 
periodic index 𝑞. A linear fit to the data gives a 1/B period 0.0058 ± 0.0001𝑇%#, which 
corresponds to 𝑛! ≈ (4.22 ± 0.06) × 10#$ cm-2. The value is in good agreement with 
that obtained from a-c. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
Extended Data Figure 3 | Superconductivity in different measurement 
configurations. a,b, Measurement configuration for four-terminal resistances: 𝑅U^,$. (a) 
and 𝑅#O,$U (b). A bias current is applied on the first two electrodes and the voltage drop is 
measured using the second two electrodes. The electrodes are labelled as in Extended 
Data Fig. 1b. Results in the main text are obtained using configuration a. c, Longitudinal 
resistance 𝑅  as a function of E and 𝜈  at 50 mK and zero magnetic field using 
configuration b. d, Filling dependence of longitudinal resistance 𝑅  for measurement 
configuration a and b at 𝐸 ≈ 8 mV/nm and 𝑇 = 50 mK. Independent of the measurement 
configuration, superconductivity is observed in tWSe2 near 𝜈 = 1.  
 
 
 
 
 
 
 
 
 
 
 
 



	
Extended Data Figure 4 | Electronic band structure of 3.65 ° -tWSe2 from the 
continuum model. a-c, Topmost moiré valence bands of the K-valley state for E = 0 
mV/nm (a), 100 mV/nm (b) and 200 mV/nm (c). d-f, The corresponding electronic DOS 
as a function of filling 𝜈 for the first moiré band. The vHS moves from 𝜈 < 1 at 𝐸 = 0 
mV/nm to 𝜈 > 1 at E = 200 mV/nm. The non-monotonic electric field dependence of 
DOS at the vHS is dependent on the lifetime broadening we include in the calculations.  
 
 
 
  



	
Extended Data Figure 5 | Hall resistance. a,b, Longitudinal resistance 𝑅 (a) and Hall 
resistance 𝑅_` (b) as a function of B and 𝜈 at T = 50 mK and 𝐸 = 0 mV/nm. Large bias 
(above the critical current) is applied, and superconductivity is not observed. The strong 
𝑅_` response below filling 0.9 under small magnetic fields is an artifact because of the 
large magneto resistance and the coarse field step. The vHS manifests a peak in 𝑅 (a) and 
a sign change in 𝑅_` (b). The dashed lines are a guide to the eye of the location of the 
vHS for negative magnetic fields. The vHS is located at 𝜈 < 1 for 𝐵 = 0 and rapidly 
disperses with 𝐵 likely due to the combined Zeeman and orbital effects. c,d, Linecut of 
a,b at 𝜈 = 0.8 (c) and 𝜈 = 1.1 (d) with fine field scans. The measurement configuration is 
shown in the inset. We symmetrize and anti-symmetrize the response under positive and 
negative fields to obtain 𝑅 and 𝑅_`, respectively. Both forward and backward field scans 
are displayed. Magnetic hysteresis is not observed. Anomalous Hall effect is also not 
observed (𝑅_` = 0). The artifact in b is removed under fine field scans. 
  



 
Extended Data Figure 6 | Determination of 𝑻𝑷	and 𝑩𝒄𝟐. a, Temperature dependence of 
the zero-bias resistance 𝑅  at 𝜈 ≈ 1  ( 𝐸 ≈ 8  mV/nm and B = 0 ). The pairing 
temperature	𝑇* (≈ 250 mK, vertical dashed line) is defined as the temperature, at which 
the measured resistance (blue line) deviates from the projected normal-state resistance 
(orange line) by 20%. Blue line: polynomial fit to the data (symbols); orange line: linear 
fit to the normal-state resistance ranging from 300-400 mK. b, Magnetic-field 
dependence of the longitudinal resistance 𝑅 at differing temperatures (𝜈 ≈ 1	and 𝐸 ≈ 8 
mV/nm). c, Magnetic-field dependence of 𝑅 at 50 mK. The critical field 𝐵3$ (≈ 80 mT) 
is defined as the magnetic field, at which the orange and black dashed lines cross. Here 
the orange line is a linear fit to the normal-state resistance, and the black line is a fit of 
the unpinned vortex model, 𝑅 ∝ +

+!"
, to experiment for 𝐵 < 𝐵)$. d, Bias dependence of 

the differential resistance &'
&(
 at varying magnetic fields (𝜈 = 1, 𝐸 ≈ 8 mV/nm and T = 50 

mK). The dashed line corresponds to 𝐵3$.  
  



 
Extended Data Figure 7 | Thermal activation analysis. a, Arrhenius plot of the 
longitudinal resistance 𝑅 at varying 𝐸 (for 𝜈 = 1 and 𝐵 = 0). The dashed lines show the 
thermal activation fit and the range of data where the fit is good. b, Extracted gap size 𝑇2 
from a as a function of 𝐸 near 𝐸) ≈ 11.7 mV/nm. The gap vanishes continuously as 𝐸 
approaches 𝐸)  from above.  
 
 
  



	
Extended Data Figure 8 | Superconductivity in a 3.5 °  device. a,b, Longitudinal 
resistance 𝑅 as a function of 𝐸 and 𝜈 at 50 mK; b shows a zoom-in view of the boxed 
region in a. The dashed lines in a (a guide to the eye) separate the layer-hybridized and 
layer-polarized regions. The dotted lines in b are a guide to the eye of the zero-resistance 
region observed at 50 mK. c, Temperature dependence of zero-bias resistance 𝑅 with two 
temperature scales, 𝑇+,- ≈160 mK and 𝑇* ≈ 210 mK. In contrast to the 3.65° device, 
the state at 𝐸 = 0 mV/nm is now a superconductor. d, Differential resistance, &'

&(
, as a 

function of bias 𝐼at different temperatures under zero applied magnetic field. The critical 
current vanishes continuously with increasing temperature. e, Differential resistance as a 
function of 𝐼  under different magnetic fields at 50 mK. The critical current vanishes 
continuously with increasing magnetic field. f, Temperature dependence of zero-bias 
resistance 𝑅 over a broad temperature range showing the temperature scale 𝑇∗. 
 
 
  



	
Extended Data Figure 9 | Van Hove singularity in a 4.6-degree device. a,b, 
Longitudinal resistance 𝑅 (a) and weak-field Hall resistance 𝑅_` (b) as a function of E 
and	𝜈 at 1.5 K under 𝐵 = 0.5 T. No correlated insulating state is observed at 𝜈 = 1 in this 
twist angle. The dotted line traces the vHS, where 𝑅 shows a peak and 𝑅_` changes sign. 
The dashed lines separate the layer-hybridized and layer-polarized regions. c, Electronic 
DOS versus 𝐸  and 𝜈 . The vHS (𝜈 ≈ 0.84 at E = 0) disperses towards higher 𝜈  with 
increasing 𝐸. The result is in good agreement with experiment.  
 
 
  



	
Extended Data Figure 10 | Absence of superconductivity at 𝑬 = 𝟎 mV/nm for the 
3.65° device. a, Filling factor dependence of 𝑅 at varying electric fields at 50 mK. A 
suppressed but finite resistance is observed at 𝜈 ≈ 1 and 𝐸 = 0 mV/nm. b, Temperature 
dependence of 𝑅  at 𝜈 ≈ 1 and varying electric fields. 𝑅  at 𝐸 = 0 mV/nm continuously 
decreases with decreasing temperature. c, Differential resistance, &'

&(
, as a function of bias 

𝐼 at varying temperatures (𝜈 ≈ 1 and 𝐸 = 0 mV/nm). A zero-bias &'
&(
 dip is observed at 

temperatures below about 250 mK but zero-resistance is not achieved. d, Magnetic-field 
dependence of 𝑅 at 50 mK (𝜈 ≈ 1 and 𝐸 = 0 mV/nm). The critical field 𝐵3$ (≈ 37 mT) 
is defined as the magnetic field, at which the orange and black dashed lines cross. The 
results suggest that the 𝐸 = 0 mV/nm state is either a superconductor with lower 𝑇)  than 
the base electronic temperature of our dilution fridge or a failed superconductor. 
 
 
  



	
Extended Data Figure 11 | Determination of 𝑻𝒄𝒐𝒉. a, 𝑅 as a function of 𝑇$ at varying 
filling factors for 𝜈 > 1. The dependence at low temperatures is described by 𝑅 = 𝑅2 +
𝐴𝑇$ (dashed line). At 𝑇345 , 𝑅 deviates from the 𝑇$-dependence by 10% (arrows). The 
solids lines are polynomial fits to the data points. b, Filling factor dependence of 𝑇345 
using 10% and 20% thresholds. The general trend is the same for the two thresholds.  
 


