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Abstract

Approximating differential operators defined on two-dimensional surfaces is an important problem
that arises in many areas of science and engineering. Over the past ten years, localized mesh-
free methods based on generalized moving least squares (GMLS) and radial basis function finite
differences (RBF-FD) have been shown to be effective for this task as they can give high orders
of accuracy at low computational cost, and they can be applied to surfaces defined only by point
clouds. However, there have yet to be any studies that perform a direct comparison of these methods
for approximating surface differential operators (SDOs). The first purpose of this work is to fill that
gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and
polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally,
we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane
method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD.
The second purpose of this work is to relate the tangent plane formulation of SDOs to the local
coordinate formulation used in GMLS and to show that they are equivalent when the tangent space
to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation
to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when
it is unknown. For the numerical comparisons of the methods, we examine their convergence rates
for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for
various parameter choices. We also compare their efficiency in terms of accuracy per computational
cost, both when including and excluding setup costs.
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1. Introduction

The problem of approximating differential operators defined on two dimensional surfaces em-
bedded in R3 arises in many multiphysics models. For example, simulating atmospheric flows with
Eulerian or Lagrangian numerical methods requires approximating the surface gradient, divergence,
and Laplacian on the two-sphere [1–4]. Similar surface differential operators (SDOs) on more geo-
metrically complex surfaces appear in models of ice sheet dynamics [5], biochemical signaling on cell
membranes [6], morphogenesis [7], texture synthesis [8], and sea-air hydrodynamics [9].

Localized meshfree methods based on generalized moving least squares (GMLS) and radial basis
function finite differences (RBF-FD) have become increasingly popular over the last ten years for
approximating SDOs and solving surface partial differential equations (PDEs); see, for example, [10–
14] for GMLS and [15–26] for RBF-FD. These methods can be applied to surfaces defined by point
clouds, without having to form a triangulation of the surface like surface finite element methods [27]
or a level-set representation of the surface like embedded finite element methods [28]. Additionally,
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for the special case of the sphere, RBF-FD has been shown to be highly competitive with element
based methods in terms of accuracy per degree of freedom [16, 17, 23]. While there is one study
dedicated to comparing GMLS and RBF-FD for approximating functions and derivatives in R2 and
R3 [29], there are no studies that compare them for approximating SDOs. The first purpose of the
present work is to fill this gap.

The RBF-FD methods referenced above use different approaches for approximating SDOs, while
the GMLS methods essentially use the same approach based on (weighted) polynomial least squares.
To keep the comparison to GMLS manageable, we will limit our focus to an RBF-FD method based
on polyharmonic spline (PHS) kernels augmented with polynomials (or PHS+Poly) since they are
most closely related to GMLS [29]. Additionally, these RBF-FD methods are becoming more and
more prevalent as they can give high orders of accuracy that are controlled by the augmented polyno-
mial degree [30] and they do not require choosing a shape parameter, which can be computationally
intensive to do in an automated way.

The techniques for formulating SDOs also vary significantly in the RBF-FD methods referenced
above, while the formulations used in GMLS are similar, being based on local coordinates to the
surface. In this work, we limit our focus to the so-called tangent plane formulation with RBF-FD,
as it provides a more straightforward technique for incorporating polynomials in RBF-FD methods
than [15, 16, 18–21, 24, 25] and is related to the local coordinate formulation used in GMLS (see
below). Additionally, the comparison in [22] of several RBF-FD methods for approximating the
surface Laplacian (Laplace-Beltrami operator) revealed the tangent plane approach to be the most
computationally efficient in terms of accuracy per computational cost. The tangent plane method
was first introduced by Demanet [31] for approximating the surface Laplacian using polynomial based
approximations. Suchde & Kuhnert [13] generalized this method to other SDOs using polynomial
weighted least squares. Shaw [22] (see also [26]) was the first to use this method for approximating
the surface Laplacian with RBF-FD and Gunderman et. al. [23] independently developed the method
for RBF-FD specialized to the surface gradient and divergence on the unit two-sphere. The second
purpose of the present work is to analytically compare the local coordinate formulation of SDOs
used in GMLS to the tangent plane formulation and to show that these formulations are in fact
identical when the tangent space for the surface is known exactly for the given point cloud.

When the tangent space is unknown, which is generally the case for surface represented by point
clouds, it must be approximated. There has been little attention given in the literature on RBF-
FD methods for how to do these approximations; commonly it is assumed that they are computed
by some separate techniques (e.g., [15, 18, 24]). However, for GMLS, these approximations are
incorporated directly in the methods (e.g., [11, 12, 14]). The third purpose of this work is use
the ideas from GMLS to develop a new RBF-FD technique for approximating the tangent space
directly using PHS+Poly. By combining this with the tangent plane method, we arrive at the first
comprehensive PHS+Poly RBF-FD framework for approximating SDOs on point cloud surfaces.

The GMLS and RBF-FD methods both use weighted combinations of function values over a local
stencil of points to approximate SDOs. They also feature a parameter ℓ for controlling the degree of
polynomial precision of the formulas. For the numerical comparisons of the methods, we investigate
how the size of the stencils and the polynomial degree effect the convergence rates of the methods
for approximating SDOs under refinement. We focus on approximations of the surface gradient,
divergence, and Laplacian operators on two topologically distinct surfaces, the unit two-sphere and
the torus, which are representative of a broad range of application domains. In the case of the sphere,
we also study the convergence rates of the methods for different point sets, including icosahedral
points that are popular in applications. Finally, we investigate the efficiency of the methods in terms
of their accuracy versus computational cost, both when including and excluding setup costs.

Our numerical results demonstrate that RBF-FD and GMLS give similar convergence rates for
the same choice of polynomial degree ℓ, but overall RBF-FD results in lower errors. We also show
that the often-reported super convergence of GMLS for the surface Laplacian only happens for
highly structured, quasi-uniform point sets, and when the point sets are more general (but still
possibly quasi-uniform), this convergence rate drops to the theoretical rate. Additionally, we find
that the errors for RBF-FD can be further reduced with increasing stencil sizes, but that this does
not generally hold for GMLS, and the errors can actually deteriorate. Finally, we find that when
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setup costs are included, GMLS has an advantage in terms of efficiency, but if these are neglected
then RBF-FD is more efficient.

The remainder of the paper is organized as follows. In Section 2, we provide some background and
notation on stencil-based approximations and on surface differential operators. We follow this with
a detailed overview of the GMLS and RBF methods in Section 3 and 4, respectively. In particular,
Section 4.1 shows the equivalence of the local coordinate and tangent plane formulations of some
SDOs, and Section 4.4 introduces an RBF-FD method for approximating the tangent space. A
comparison of some theoretical properties of the two methods is given in Section 5, while extensive
numerical comparisons are given in Section 6. We end with some concluding remarks in Section 7.

2. Background and notation

2.1. Stencils

The RBF-FD and GMLS methods both discretize SDOs by weighted combinations of function
values over a local stencil of points. This makes them similar to traditional finite-difference methods,
but the lack of a grid, a tuple indexing scheme, and inherent awareness of neighboring points requires
that some different notation and concepts be introduced. In this section we review the stencil
notation that will be used in the subsequent sections.

Let X = {xi}Ni=1 be a global set of points (point cloud) contained in some domain Ω. A stencil
of X is a subset of n ≤ N nodes of X that are close (see discussion below for what this means) to
some point xc ∈ Ω, which is called the stencil center. In this work, the stencil center is some point
from X, so that xc = xi, for some 1 ≤ i ≤ N , and this point is always included in the stencil. We
denote the subset of points making up the stencil with stencil center xi as X

i and allow the number
of points in the stencil to vary with xi. To keep track of which points in Xi belong to X, we use
index set notation and let σi denote the set of indices of the 1 < ni ≤ N points from X that belong
to Xi. Using this notation, we write the elements of the stencil as Xi = {xj}j∈σi . We also use the
convention that the indices are sorted by the distance the stencil points are from the stencil center
xi, so that the first element of σi is i.

With the above notation, we can define a general stencil-based approximation method to a given
(scalar) linear differential operator L. Let u be a scalar-valued function defined on Ω that is smooth
enough so that Lu is defined for all x ∈ Ω. The approximation to Lu at any xi ∈ X is given as

Lu|x=xi
≈

∑
j∈σi

ciju(xj). (1)

The weights cij are determined by the method of approximation, which in this study will be either
GMLS or RBF-FD. These weights can be assembled into a sparse N ×N “stiffness” matrix, similar
to mesh-based methods. Vector linear differential operators (e.g., the gradient) can be similarly
defined where (1) is used for each component and L is the scalar operator for that component.

There are two main approaches used in the meshfree methods literature for determining the
stencil points, one based on k-nearest neighbors (KNN) and one based on ball searches. These are
illustrated in Figure 1 for a scattered point set X in the plane. The approach that uses KNN is
straightforward since it amounts to simply choosing the stencil Xi as the subset of ni points from X
that are closest to xi. The approach that uses ball searches is a bit more involved, so we summarize
it in Algorithm 1. Both methods attempt to select points such that the stencil satisfies polynomial
unisolvency conditions (see the discussion in Section 3.1). In this work, we use the method in
Algorithm 1 since

• it is better for producing stencils with symmetries when X is regular, which can be beneficial
for improving the accuracy of the approximations;

• it is more natural to use with the weighting kernel inherent to GMLS; and

• it produces stencils that are not biased in one direction when the spacing of the points in X
are anisotropic.
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Algorithm 1 Procedure for determining the stencil points based on ball searches.

1: Input: Point cloud X; stencil center xc; number initial stencil points n; radius factor τ ≥ 1
2: Output: Indices σc in X for the stencil center xc

3: Find the n nearest neighbors in X to xc, using the Euclidean distance
4: Compute the max distance hmax between xc and its n nearest neighbors
5: Find the indices σc of the points in X contained in the ball of radius τhmax centered at xc

(a) KNN (b) Ball search

Figure 1: Comparison of the two search algorithms used in this paper for determining a stencil. The nodes X are
marked with solid black disks and all the stencil points are marked with solid blue disks, except for the stencil center,
which is marked in red.

To measure distance in the ball search, we use the standard Euclidean distance measured in R3

rather than distance on the surface since this is simple to compute for any surface. We also use a
k-d tree to efficiently implement the method. Finally, the choice of parameters we use in Algorithm
1 are discussed in Section 3.3.

2.2. Surface differential operators in local coordinates

Here we review some differential geometry concepts that will be used in the subsequent sec-
tions. We refer the reader to the books [32–34] for a thorough discussion of these concepts and the
derivations of what follows.

We assume that M ⊂ R3 is a regular surface and let TxM denote the set of all vectors in R3

that are tangent to M at x ∈ M (i.e., the tangent space to M at x). This assumption implies that
for each point x ∈ M there exists a local parameterization in TxM of a neighborhood (or patch) of
M containing x of the form

f(x̂, ŷ) = (x̂, ŷ, f(x̂, ŷ)), (2)

where x̂, ŷ are local coordinates for TxM, and f is a smooth function for the “height” of the surface
patch over TxM [34]. This local parametric representation of a surface is called a Monge patch or
Monge form [33] and is illustrated for a bumpy sphere surface in Figure 2. As we see below, it is
particularly well suited for computing SDOs.

Using the parameterization (2), the local metric tensor G about x for the surface is given as

G =

[
∂x̂f · ∂x̂f ∂x̂f · ∂ŷf
∂ŷf · ∂x̂f ∂ŷf · ∂ŷf

]
=

[
1 + (∂x̂f)

2 (∂x̂f)(∂ŷf)
(∂x̂f)(∂ŷf) 1 + (∂ŷf)

2

]
. (3)

Letting gij denote the (i, j) entry of G−1, the surface gradient operator locally about x is given as

∇̂M = (∂x̂f)
(
g11∂x̂ + g12∂ŷ

)
+ (∂ŷf)

(
g21∂x̂ + g22∂ŷ

)
. (4)
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However, this is the surface gradient with respect to the horizontal x̂ŷ-plane (see Figure 2 (b)), and
subsequently needs to be rotated so that it is with respect to TxM in its original configuration. If
ξ1 and ξ2 are orthonormal vectors that span TxM and η is the unit outward normal to M at x,
then the surface gradient in the correct orientation is given as

∇M =
[
ξ1 ξ2 η

]︸ ︷︷ ︸
R

∇̂M. (5)

Using this result, the surface divergence of a smooth vector u ∈ TxM can be written as

∇M · u =
(
g11∂x̂ + g12∂ŷ

)
(∂x̂f)

TRTu+
(
g21∂x̂ + g22∂ŷ

)
(∂ŷf)

TRTu (6)

(a) (b)

Figure 2: Illustration of a Monge patch parameterization for a local neighborhood of a regular surface M in 3D.
(a) Entire surface (in gray) together with the tangent plane (in cyan) for a point xc where the Monge patch is
constructed (i.e., TxcM); red spheres mark a global point cloud X on the surface. (b) Close-up view of the Monge
patch parameterization, together with the points from a stencil Xc (red spheres) formed from X and the projection
of the stencil to the tangent plane (blue spheres); the stencil center xc is at the origin of the axes for the x̂ŷ-plane
and is marked with a violet sphere.

The surface Laplacian operator locally about x is given as

∆M =
1√
|g|

(
∂x̂

(√
|g|g11∂x̂

)
+ ∂x̂

(√
|g|g12∂ŷ

)
+

∂ŷ

(√
|g|g21∂x̂

)
+ ∂ŷ

(√
|g|g22∂ŷ

))
,

(7)

where |g| = det(G). This operator is invariant to rotations of the surface in R3, so no subsequent
modifications of (7) are necessary.

3. GMLS using local coordinates

The formulation of GMLS on a manifold was introduced by Liang & Zhao [11] and further refined
by Trask, Kuberry, and collaborators [12, 14]. It uses local coordinates to approximate SDOs as
defined in (5)–(7) and requires a method to also approximate the metric terms. Both approximations
are computed for each xi ∈ X ⊂ M using GMLS over a local stencil of points Xi ⊂ X. Below we
give a brief overview of the method assuming that the tangent/normal vectors for the surface are
known for each xi ∈ X. We then discuss a method for approximating these that is used in the
Compadre Toolkit [35], which we use in the numerical experiments.
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We present the GMLS method through the lens of derivatives of MLS approximants as we feel
this makes the analog to RBF-FD clearer, it is also closer to the description from [11]. Other
derivations of GMLS are based on weighted least squares approximants of general linear functionals
given at some set of points, e.g. [36–38]. However, both techniques produce the same result in the
end [37]. For a more thorough discussion of MLS approximants, see for example [39, ch. 22] and
the references therein.

3.1. Approximating the metric terms

The metric terms are approximated from an MLS reconstruction of the Monge patch of M
centered at each target point xi using a local stencil of ni points Xi ⊂ X. This procedure is
illustrated in Figure 2 and can be described as follows. First, the stencil Xi is expressed in the form
of (2) (i.e., (x̂j , ŷj , fj), j ∈ σi), where (x̂j , ŷj) are the coordinates for the stencil points in Txi

M,
and fj = f(x̂j , ŷj) are samples of the surface as viewed from the x̂ŷ-plane. These can be computed
explicitly as x̂j

ŷj
fj

 =
[
ξ1i ξ2i ηi

]T︸ ︷︷ ︸
RT

i

(xj − xi), (8)

where ξ1i and ξ2i are orthonormal vectors that span Txi
M and ηi is the unit normal to M at xi.

To simplify the notation that follows, we let x̂j = (x̂j , ŷj) and X̂i = {x̂j}j∈σi denote the projection
of the stencil Xi to TxiM. Note that for convenience in what comes later we have shifted the
coordinates so that the center of the projected stencil is x̂i = (0, 0).

In the second step, the approximate Monge patch at xi is constructed from a MLS approximant
of the data (x̂j , fj), j ∈ σi, which can be written as

q(x̂) =
L∑

k=1

bk(x̂)pk(x̂), (9)

where {p1, . . . , pL} is a basis for P2
ℓ (the space of bivariate polynomials of degree ℓ) and L =

dim(P2
ℓ) = (ℓ+1)(ℓ+2)/2 is the dimension of this space. The coefficients bk(x̂) of the approximant

are determined from the data according to the weighted least squares problem

b∗(x̂) = argmin
b∈RL

∑
j∈σi

wρ(x̂j , x̂)(q(x̂j)− fj)
2 = argmin

b∈RL

∥Wρ(x̂)
1/2(Pb− f)∥22, (10)

where wρ : R2 ×R2 → R≥0 is a weight kernel that depends on a support parameter ρ, Wρ(x̂) is the
ni × ni diagonal matrix Wρ(x̂) = diag(wρ(x̂j , x̂)), and P is the ni × L Vandermonde-type matrix

P =
[
p1(x̂j) p2(x̂j) · · · pL(x̂j)

]
, j ∈ σi (11)

Here we use underlines to denote vectors (i.e., b and f denote vectors containing coefficients and data
from (10), respectively). Note that the coefficients bk depend on x̂ because the kernel wρ depends
on x̂ (this gives origin to the term “moving” in MLS). We discuss the selection of the stencils and
weighting kernel below, but for now it is assumed that ni > L and Xi is unisolvent on the space P2

ℓ

(i.e., P is full rank), so that (10) has a unique solution.
The MLS approximant q is used in place of f in the Monge patch (2) and it is used to approximate

the metric terms in (5)–(7). To compute these terms, various derivatives need to be approximated
at the projected stencil center x̂i. Considering, for example, ∂x̂q, the approximation is computed as
follows:

∂x̂q
∣∣
x̂i

≈
L∑

k=1

b∗k(x̂i)∂x̂(pk(x̂))
∣∣
x̂i
, (12)
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where b∗k(x̂i) come from (10) with x̂ = x̂i. Other derivatives of metric terms in (5)–(7) are approx-
imated in a similar way to (12). We note if the standard monomial basis is used for {p1, . . . , pL},
then by centering the projected stencil in (8) about the origin, only one of the derivatives of pk in
(12) is non-zero when evaluated at x̂i.

Note that (12) is only an approximation of ∂x̂q because it does not include the contribution
of ∂x̂(b

∗
k(x̂))

∣∣
x̂i
. This approximation is referred to as a “diffuse derivative” in the literature and is

equivalent to the GMLS formulation of approximating derivatives [37]. The term “GMLS deriva-
tives” is preferred over “diffuse derivatives” to describe (12), since the approximation is not diffuse
or uncertain and has the same order of accuracy as the approximations that include the derivatives
of the weight kernels [40].

3.2. Approximating SDOs

The procedure for approximating any of the SDOs in (5)–(7) is similar to the one for approxi-
mating the metric terms, but for this task we are interested in computing stencil weights as in (1)
instead of the value of a derivative at a point. Since these SDOs involve computing various partial
derivatives with respect to x̂ and ŷ, we can use (12) as a starting point for generating these stencil

weights. If {uj}j∈σi are samples of a function u over the projected stencil X̂i, then we can again
approximate ∂x̂u

∣∣
x̂=x̂i

using (12), with b∗k(x̂i) defined in terms of the samples of u. To write this in

stencil form we note that (12) can be written using vector inner products as

∂x̂u
∣∣
x̂i

≈ ∂x̂q
∣∣
x̂i

≈
[
∂x̂p1

∣∣
x̂i

· · · ∂x̂pL
∣∣
x̂i

]
︸ ︷︷ ︸

(∂x̂p(x̂i))
T

b∗(x̂i) =
[
ci1 · · · cni

]︸ ︷︷ ︸
(cix̂)

T

u, (13)

where we have substituted the solution of b∗(x̂i) in (10) to obtain the term in the last equality.
Using the normal equation solution for b∗(x̂i), the stencil weights cix̂ can be expressed as

cix̂ = Wρ(x̂i)P (PTWρ(x̂i)P )−1(∂x̂p(x̂i)). (14)

This is typically computed using a QR factorization of Wρ(x̂i)
1/2P to promote numerical stability.

Stencil weights ciŷ, c
i
x̂x̂, c

i
x̂ŷ, and ciŷŷ for the other derivative operators appearing in (5)–(7) can

be computed in a similar manner for each stencil X̂i, i = 1, . . . , N . These can then be combined
together with the approximate metric terms to define the weights {cij} in (1) for any of the SDOs
in (5)–(7).

3.3. Choosing the stencils and weight kernel

As discussed in Section 2.1, we use Algorithm 1 to choose the stencil weights. For the initial
stencil size, we use L = dim(P2

ℓ). The radius factor τ controls the size of the stencil, with larger τ
resulting in larger stencils, and we experiment with this parameter in the numerical results section.

There are many choices for the weight kernel wρ in (10). Typically, a single radial kernel is used
to define wρ as wρ(x,y) = w(∥x− y∥/ρ), where x,y ∈ Rd and ∥ · ∥ is the standard Euclidean norm
for Rd. In this work, we use the same family of compactly supported radial kernels as [12, 14] and
implemented in [35]:

wρ(x,y) =

(
1− ∥x− y∥

ρ

)2m

+

, (15)

where m is a positive integer and (·)+ is the positive floor function. These C0 kernels have support
over the ball of radius ρ centered at y. While smoother kernels can be used such as Gaussians,
splines, or Wendland kernels [39], we have not observed any significant improvement in the accuracy
of GMLS derivative approximations with smoother kernels. In general, proofs on how the choice of
kernels effects the accuracy of GMLS approximations have yet to be found.

Finally, we note that the support parameter ρ is chosen on a per stencil basis and is set equal
to τhmax from Algorithm 1. Picking an optimal value for τ to minimize the approximation error
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is a difficult problem. In general, the optimal value depends locally on the point set and the
function (or its derivative) being approximated [41]. While there are some algorithms that attempt to
approximate this value to minimize the local pointwise error (e.g., [41, 42]), they are computationally
expensive. Typically, one chooses a single τ > 1 such that the minimization problem (10) is well-
posed (i.e., P is full rank). This can be easily monitored for each stencil to adjust τ appropriately.

3.4. Approximating the tangent space

When the tangent space Txi
M is unknown, a coarse approximation to it can be computed for each

stencil Xi using principal component analysis [11]. In this method, one computes the eigenvectors

of the covariance matrix XiX
T

i , where Xi is the 3-by-ni matrix formed from the stencil points Xi

centered about their mean. The two dominant eigenvectors of this matrix are taken as a coarse
approximation to TxiM and the third is taken as a coarse approximation to the normal to M at xi;
we denote these by ξ̃1i , ξ̃

2
i , and η̃i, respectively. Next, an approximate Monge patch parameterization

is formed with respect to this approximate tangent space using MLS following the same procedure
outlined at the beginning of Section 3.1. This procedure is illustrated in Figure 3 (a), where the
coarse approximate tangent plane is given in yellow. A refined approximation to the true tangent
plane and normal at the stencil center xc can be obtained by computing the tangent plane and
normal to the MLS approximant of the Monge patch at xc; this plane is given in cyan in Figure 3
(a). Once this plane is computed, a new Monge patch parameterization with respect to this refined
tangent plane approximation is formed, as illustrated in Figure 3 (b). This procedure is repeated
for each stencil Xi and the refined tangent space computed for each stencil is used in the procedure
described in Section 3.1 for approximating the metric terms.

(a) (b)

Figure 3: Illustration of the tangent plane correction method. (a) Monge patch parameterization for a local neigh-
borhood of a regular surface M (in gray) in 3D using a coarse approximation to the tangent plane (in yellow) at
the center of the stencil xc and the refined approximation to the tangent plane (in cyan). (b) Same as (a), but for
the Monge patch with respect to the refined tangent plane. The red spheres denote the points from the stencil and
the blue spheres mark the projection of the stencil to the (a) coarse and (b) refined tangent planes. The coarse and
refined approximations to the tangent and normal vectors are given as ξ1c , ξ

2
c , and ηc, respectively, with tildes on

these variables denoting the coarse approximation.

4. RBF-FD using the tangent plane

As discussed in the introduction, there are several RBF-FD methods that have been developed
over the past ten years for approximating SDOs. We use the one based on the tangent plane method
for formulating SDOs and PHS+Poly interpolants for approximating the derivatives that appear in
this formulation. The subsections below provide a detailed overview of these respective techniques.

4.1. Tangent plane method

The tangent plane method similarly uses local coordinates for the surface in the tangent plane
formed at each xi ∈ X, but unlike the method from Section 3.1, it does not use approximations to
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the metric terms. It instead approximates the SDOs at each xi using the standard definitions for
the derivatives in the tangent plane. So, using local coordinates (2) about xi, the surface gradient
for the tangent plane method is taken as

∇M = Ri

∂x̂∂ŷ
0

 , (16)

and the surface divergence of a smooth vector u ∈ Txi
M is taken as

∇M · u =
[
∂x̂ ∂ŷ 0

]
RT

i u, (17)

where Ri is the rotation matrix given in (8). Similarly, the surface Laplacian in the tangent plane
method is

∆M = ∂x̂x̂ + ∂ŷŷ. (18)

We next show that if Txi
M is known exactly for each xi ∈ X and the point at which the SDOs are

evaluated is xi, then the SDOs (16)–(18) are equivalent to the corresponding ones involving metric
terms (5)–(7). This was shown indirectly in [31] for the surface Laplacian using the distributional
definition of the surface Laplacian. Here we show the result follows explicitly for each surface
differential operator (5)–(7) from the local coordinate formulation in Section 2.2.

The first step is to note that the vectors ∂x̂f
∣∣
x̂i

and ∂ŷf
∣∣
x̂i

from the Monge parameterization

(2) are tangential to the x̂ŷ-plane and must therefore be orthogonal to the vector
[
0 0 1

]
. This

implies ∂x̂f = ∂ŷf = 0 at x̂i, which means the metric tensor (3) reduces to the identity matrix

when evaluated at x̂i. Using this result in (5) for ∇̂M means that the surface gradient formula (5)
is exactly (16) when evaluated at x̂i. The equivalence of the surface divergence formulas (6) and
(17) also follow immediately from this result.

The steps for showing the equivalence of the surface Laplacian operator are more involved. To
simplify the notation in showing this result, we denote partial derivatives of f with subscripts. For
the first step of this process, we substitute the explicit metric terms, |g| = (1+f2

x̂)(1+f2
ŷ )− (fx̂fŷ)

2,

g11 = (1 + fŷ)/|g|, g12 = g21 = −(fx̂)(fŷ)/|g|, and g22 = (1 + fx̂)/|g|, into (7) and expand the
derivatives. Next, we simplify to obtain the following formula:

∆M =
1(

f2
x̂ + f2

ŷ + 1
)2

((
fŷfx̂ŷ

(
1 + 2f2

x̂ + f2
ŷ

)
− (fx̂fx̂x̂ + fŷfx̂ŷ)(1 + f2

ŷ )− fx̂fŷŷ(1 + f2
x̂)
)
∂x̂+

(
fx̂fx̂ŷ

(
1 + 2f2

ŷ + f2
x̂

)
− (fŷfŷŷ + fx̂fx̂ŷ)(1 + f2

x̂)− fŷfx̂x̂(1 + f2
ŷ )
)
∂ŷ

)
+

g11∂x̂x̂ + 2g12∂x̂ŷ + g22∂ŷŷ

Using fx̂ = fŷ = g12 = 0 and g11 = g22 = 1 at x̂i, this formula reduces to (18).

4.2. Approximating the SDOs

Since the tangent plane method does not require computing approximations to any metric terms,
we only need to describe the RBF-FD method for approximating the derivatives that appear in (16)–
(18). We derive this method from derivatives of interpolants over the projected stencils for each point
xi ∈ X using the same notation as Section 3 and we assume that the tangent space is known. A
method for approximating the tangent space also using RBF-FD is discussed in Section 4.4.

Let {uj}j∈σi be samples of some function u over the projected stencil X̂i = {x̂j}j∈σi . The
PHS+Poly interpolant to this data can be written

s(x̂) =

ni∑
j=1

ajϕ(∥x̂− x̂σi
j
∥) +

L∑
k=1

bkpk(x̂), (19)
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where ϕ(r) = r2κ+1 is the PHS kernel of order 2κ+1, κ ∈ Z≥0, σi
j is the jth index in σi, ∥ ·∥ denotes

the Euclidean norm, and {p1, . . . , pL} are a basis for P2
ℓ . The expansion coefficients are determined

by the ni interpolation conditions and L additional moment conditions:

s(x̂j) = uj , j ∈ σi and

ni∑
j=1

ajpk(x̂σi
j
) = 0, k = 1, . . . , L. (20)

These conditions can be written as the following (ni + L)× (ni + L) linear system[
A P
PT 0

] [
a
b

]
=

[
u
0

]
, (21)

where Ajk = ∥x̂σi
j
− x̂σi

k
∥2κ+1 (j, k = 1, . . . , ni) and P is the same Vandermonde-type matrix given

in (11). The PHS parameter κ controls the smoothness of the kernel and should be chosen such that
0 ≤ κ ≤ ℓ. With this restriction on κ, it can be shown that A is positive definite on the subspace of
vectors in Rn satisfying the L moment conditions in (20) [36]. Hence, if the stencil points Xi are such
that rank(P ) = L (i.e., they are unisolvent on the space P2

ℓ), then the system (21) is non-singular
and the PHS+Poly interpolant is well-posed. Note that this is the same restriction on Xi for the
MLS problem (10) to have a unique solution.

The stencil weights for approximating any of the derivatives appearing in the SDOs (16)-(18)
can be obtained from differentiating the PHS+Poly interpolant (19). Without loss of generality,

consider approximating the operator ∂x̂ over the stencil X̂i. Using vector inner products as in (13),
the stencil weights for this operator are determined from the approximation

∂x̂u
∣∣
x̂i

≈ ∂x̂s
∣∣
x̂i

=
[
∂x̂ϕ(x̂i) ∂x̂p(x̂i)

]T [
a
b

]
.

where ∂x̂ϕ(x̂i) and ∂x̂p(x̂i) are vectors containing the entries ∂x̂∥x̂ − x̂σi
j
∥2κ+1

∣∣
x̂i
, j = 1, . . . , ni,

and ∂x̂pk(x̂)
∣∣
x̂i
, k = 1, . . . , L, respectively. Using (21) in the preceding expression gives the stencil

weights as the solution to the following linear system[
A P
PT 0

] [
cix̂
λ

]
=

[
∂x̂ϕ(x̂i)
∂x̂p(x̂i)

]
, (22)

where the entries in λ are not used as part of the weights. Note that this description is equivalent to
applying ∂x̂ to the PHS+Poly cardinal basis functions defined over the stencil and evaluating them
at x̂i [3].

Stencil weights ciŷ, c
i
x̂x̂, c

i
x̂ŷ, and ciŷŷ for the other partial derivatives can be computed in an

analogous way for each stencil X̂i, i = 1, . . . , N . These can then be combined together to define the
weights {cij} in (1) for any of the SDOs in (16)–(18).

4.3. Choosing the stencils and PHS order

Similar to GMLS, we use Algorithm 1 to choose the stencils and also use the same initial stencil
size of n = L for this algorithm. The parameter κ used to determine the PHS order should be
chosen with an upper bound of κ ≤ ℓ (so that (22) is well posed) and a lower bound such that
the derivatives of the PHS kernels make sense for whatever operator the RBF-FD stencils are being
used to approximate. In this work we use κ = ℓ as we have found that this choice works well
for approximating various SDOs across a wide range of surfaces. Choosing κ < ℓ can be useful
for improving the conditioning of the system (22) and for reducing Runge Phenomenon-type edge
effects in RBF-FD approximations near boundaries [43].

4.4. Approximating the tangent space

If TxiM is unknown for any xi ∈ X, then we use a similar procedure to the one discussed for
GMLS in Section 3.4 (and illustrated in Figure 3) to approximate it. The difference for RBF-FD

10



is that instead of using an MLS reconstruction of the Monge patch parameterization formed from
the coarse tangent plane approximation at each xi, we use the PHS+Poly interpolant (19) for the
reconstruction. The refined approximation to the tangent plane at each xi is then obtained from
derivatives of the PHS+Poly interpolant of the Monge patch for stencil Xi. We note that this
approach is new amongst the different tangent plane methods, as previous approaches assumed the
tangent space was computed by some other, possibly unrelated techniques, and not directly from the
stencils (e.g., [13, 22, 26]). By combining this technique with the tangent plane method, we arrive
at the first comprehensive PHS+Poly RBF-FD framework for approximating SDOs on point cloud
surfaces.

5. Theoretical comparison of GMLS and RBF-FD

In this section, we make comparisons of the GMLS and RBF-FD methods in terms of some of
their theoretical properties, including the different approaches in formulating SDOs, the parameters
of the approximations, and the computational cost.

One of the main differences between the GMLS and RBF-FD approaches is that the former uses
the local coordinate method to formulate SDOs, while the latter uses the tangent plane method.
As shown in Section 4.1 these methods are equivalent if the tangent space for M is known for each
xi ∈ X and the SDOs are evaluated at the stencil center xi. However, the GMLS method does not
take advantage of this and instead includes metric terms in the formulation. These metric terms are
approximated with the same order of accuracy as the GMLS approximation of the derivatives (see
below), so that these errors are asymptotically equivalent as the spacing of the points in the stencil
goes to zero. When the tangent space is unknown, both methods again approximate it to the same
order of accuracy as their respective approximations of the derivatives.

The GMLS and RBF-FD methods each feature the parameter ℓ, which controls the degree of
the polynomials used in the approximation. For a given ℓ, the formulas for either method are
exact for all bivariate polynomials of degree ℓ in the tangent plane formed by the stencil center xi.
Unsurprisingly, ℓ also effects the local accuracy of the formulas in the tangent plane with increasing
ℓ giving higher orders of accuracy for smooth problems; see [11, 40] for a study of the accuracy of
GMLS and [44, 45] for RBF-FD. The order of accuracy of both methods depends on the highest
order derivative appearing in the SDOs, and is generally ℓ if the derivative order is 1 and ℓ− 1 if the
derivative order is two. However, for certain quasi-uniform point clouds with symmetries, the order
has been shown to be ℓ for GMLS applied to second order operators like the surface Laplacian [11].

The computational cost of the methods can be split between the setup cost and the evaluation
cost. The setup cost depends on ℓ and ni (which depends on τ). For each stencil Xi, the dominant
setup cost of GMLS comes from solving the ni×L system (14), while the dominant cost for RBF-FD
comes from solving the (ni+L)× (ni+L) system (22). We use QR factorization to solve the GMLS
system and LU factorization to solve the RBF-FD system, which gives the following (to leading
order):

Setup cost GMLS ∼ 2
N∑
i=1

niL
2 and Setup cost RBF-FD ∼ 2

3

N∑
i=1

(ni + L)3. (23)

The stencil sizes depend on ℓ and τ , and for quasi-uniform point clouds X, ni is typically some
multiple γ of L. In this case, the setup cost of RBF-FD is higher by approximately (1 + γ)3/(3γ).
We note that the setup procedures for both methods are an embarrassingly parallel process, as each
set of stencil weights can be computed independently of every other set. The evaluation costs of
both methods are the same and can be reduced to doing sparse matrix-vector products. So, for a
scalar SDO like the surface Laplacian

evaluation cost GMLS & RBF-FD: ∼ 2
N∑
i=1

ni. (24)

If the ℓ and τ parameters remain fixed so that size of the stencils remain fixed as N increases, then
both the setup and evaluation cost are linear in N .
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(a) Icosahedral (b) Hammersley (c) Poisson disk

Figure 4: Examples from the three node sets considered in the numerical experiments: (a) N = 2562, (b) N = 2048,
(c) N = 2038.

6. Numerical comparison of GMLS and RBF-FD

We perform a number of numerical experiments comparing GMLS and RBF-FD for approxi-
mating the gradient, divergence, and Laplacian on two topologically distinct surfaces: the unit two
sphere S2 and the torus defined implicitly as

T2 =
{
(x, y, z) ∈ R3

∣∣ (1−√
x2 + y2)2 + z2 − 1/9 = 0

}
. (25)

For the experiments with the sphere, we consider two different node sets X, icosahedral and Ham-
mersley; see Figure 4 (a) & (b) for examples. The first are highly structured, quasi-uniform points
that are commonly used in numerical weather prediction [2, 4]. They have also been used in other
studies on GMLS [12] and RBF-FD [16] methods on the sphere. Hammersely are low discrepancy
point sequences commonly used in Monte-Carlo integration on the sphere [46]. They are highly un-
structured with some points that nearly overlap. For the experiments on the torus, we use Poisson
disk points generated using the weighted sample elimination (WSE) algorithm [47]. These points are
also unstructured, but are quasi-uniform; see Figure 4 (c) for an example. They have also previously
been used in studies on GMLS and RBF-FD methods [26]. Convergence results with other point
sets can be found in the PhD thesis of the first author [48].

Error estimates for GMLS and RBF-FD typically require the nodes to be quasi-uniform in the
sense that the average spacing between the points h (or more generally the mesh-norm) decreases
like h ∼ N−1/2 [36, 39]. As mentioned above, the icosahedral and Poisson disk node sets have this
property and are thus well-suited for numerically testing convergence rates of GMLS and RBF-FD
methods with increasing N (i.e., convergence as the density of the sampling of the surfaces increases).
Specifically, we experimentally examine the algebraic convergence rates β versus

√
N , assuming the

error behaves like O(N−β/2), and include results for polynomial degrees ℓ = 2, 4, and 6. The Ham-
mersley node sets are well suited to testing how stable the methods are to stencils with badly placed
points. Since these nodes have low discrepancy over the sphere, it also makes sense to test conver-
gence in a similar manner to the other point sets. The exact values of N used in the experiments
for each of the node sets are as follows. For Icosahedral, N = 10242, 40962, 163842, 655362, and for
Hammersley and Poisson disk: N = 8153, 32615, 130463, 521855.

All RBF-FD results that follow were obtained from a Python implementation of the method that
only utilizes the scientific computing libraries SciPy and NumPy. For the GMLS results, we use the
software package Compadre [35], which is implemented in C++ and uses the portable performance
library Kokkos.
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6.1. Convergence comparison: Sphere

We base all the convergence comparisons for the sphere on the following function consisting of a
random linear combination of translates of 50 Gaussians of different widths on the sphere:

u(x) =
50∑
j=1

dj exp(−γj∥x− yj∥2), x,yj ∈ S2, (26)

where yj are the centers and are randomly placed on the sphere, and dj & γj are sampled from
the normal distributions N (0, 1) & N (15, 4), respectively. This function has also been used in other
studies on RBF-FD methods [15]. We use samples of u in the surface gradient tests and measure
the error against the exact surface gradient, which can be computed using the Cartesian gradient ∇
in R3 as ∇Mu = ∇u − η(η · ∇u), where η is the unit outward normal to S2 [49] (which is just x).
Applying this to (26) gives

∇Mu = 2
50∑
j=1

djγj(yj − x(x · yj)) exp(−γj∥x− yj∥2). (27)

We use samples of this field in the surface divergence tests. Since ∇M · ∇Mu = ∆Mu, we compare
the errors in this test against the exact surface Laplacian of u, which can be computed using the
results of [3] as

∆Mu = −
50∑
j=1

djγj(4− ∥x− yj∥2(2 + γj(4− ∥x− yj∥2))) exp(−γj∥x− yj∥2).

We also use this in the tests of the surface Laplacian using samples of u.
For all these tests, we set radius factor τ in the stencil selection Algorithm 1 to 1.5, which gave

good results for both RBF-FD and GMLS (see the next section for some results on the effects of
increasing τ). While the exact tangent space for the sphere is trivially determined, we approximate
it in all the results using the methods discussed in the Section 3.4 for GMLS and Section 4.4 for
RBF-FD. These approximations are done with the same parameters for approximating the different
SDOs to keep the asymptotic orders of accuracy comparable. Although not included here, we did
experiments with the exact tangent space and obtained similar results to those presented here.

Figures 5 and 6 display the convergence results for GMLS and RBF-FD as a function of N . Each
figure is for a different point set type and contains the results for approximating the surface gradient,
divergence, and Laplacian in both the relative two- and max-norms and for different polynomial
degrees ℓ. We see from all the results that the measured convergence rates for GMLS and RBF-FD
are similar, but that RBF-FD gives lower errors for the same N and ℓ for approximating the surface
gradient and divergence. This is also true for the surface Laplacian when ℓ = 4 and ℓ = 6, but not
for ℓ = 2. For this case, GMLS gives lower errors for the same N on the icosahedral nodes and
about the same error for the Hammersley nodes. We also see from Figure 6 that both methods do
not appear to be effected by stability issues associated with badly placed points in the stencils for
the Hammersley nodes.

The measured convergence rates in the two-norm for the surface gradient and divergence ap-
proximations are close to the expected rates of ℓ for both point sets. However, when looking at
the convergence rates of the surface Laplacian, we see from Figure 5 that the icosahedral nodes
have higher rates than for the Hammersley nodes in Figure 6. These improved convergence rates
have been referred to as superconvergence in the GMLS literature and rely on the point set being
structured so that the stencils have certain symmetries [11]. When these symmetries do not exist, as
is the case for the Hammersley nodes, the convergence rates for the surface Laplacian more closely
follow the expected rates of ℓ− 1.

6.2. Convergence comparison: Torus

The convergence comparisons on the torus are based on the target function

u(x) =
x

8
(x4 − 10x2y2 + 5y4)(r2 − 60z2), x ∈ T2, (28)
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Figure 5: Convergence results for (a) surface gradient, (b) divergence, and (b) Laplacian on the sphere using icosahedral
node sets. Errors are given in relative two-norms (first column) and max-norms (second column). Markers correspond
to different ℓ: filled markers are GMLS and open markers are RBF-FD. Dash-dotted lines without markers correspond
to 2nd, 4th, and 6th order convergence with 1/

√
N . β are the measured order of accuracy computed using the lines

of best fit to the last three reported errors.
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Figure 6: Same as Figure 5, but for the Hammersley nodes on the sphere.
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Figure 7: Same as Figure 5, but for torus using Poisson disk points.
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Figure 8: Relative two-norm errors of the surface Laplacian approximations as the stencil radius parameter τ varies.
Left figure shows errors for several different values of τ and a fixed N = 130463. Right figure shows the convergence
rates of the methods for different τ and a fixed ℓ = 4.

where r =
√

x2 + y2. This function has also been used in other studies of RBF methods for
surfaces [49]. As with the sphere example, the surface gradient of u can be computed as ∇Mu =
∇u−η(η ·∇u), where η is the unit outward normal to T2, which can be computed from the implicit
equation (25). The surface Laplacian of (28) is given in [49] as

∆Mu(x) = − 3x

8r2
(x4 − 10x2y2 + 5y4)(10248r4 − 34335r3 + 41359r2 − 21320r + 4000), x ∈ T2.

Similar to the sphere, we use samples of ∇Mu in the tests of the divergence and compare the results
with ∆Mu above.

We first study the convergence rates with the stencil radius scaling τ = 1.5 and approximate
the tangent space, as we did with the sphere tests. Figure 7 displays the results for the surface
gradient, divergence, and Laplacian. We see that errors for RBF-FD are again smaller than the
errors for GMLS in almost all cases over the range of N tested. However, GMLS has a slightly higher
convergence rates in the case of the surface gradient and divergence, but not for the Laplacian. Both
methods have convergence rates that are close to the expected rates of ℓ for these surface gradient
and divergence and ℓ− 1 for the Laplacian.

Next we investigate how the approximation properties of the two methods change when τ is
increased, which results in larger stencil sizes. We focus on approximating the surface Laplacian as
similar results were found for the other SDOs. In the left plot of Figure 8, we show the relative two-
norm errors of the approximations for a fixed N as τ varies from 1.5 to 2.5. We see that increasing τ
has opposite effects on the two methods: the errors decrease for RBF-FD and increase with GMLS.
We see similar results in the right plot of Figure 8, where we show the convergence of the methods
with increasing N for different fixed values of τ (and ℓ fixed at 4). While the convergence rates do not
appear to change with τ , the overall errors decrease for RBF-FD and increase for GMLS. It should
be noted that the errors eventually increase for GMLS as τ decreases to 1 (which has been observed
in other studies) and picking an optimal τ in an automated way is challenging (e.g. [41, 42]).

These results make sense when one considers the different types of approximations the methods
are based on: RBF-FD is based on interpolation, while GMLS is based on least squares approxima-
tion. As the stencil sizes increase, RBF-FD has a larger approximation space consisting of more shifts
of PHS kernels, which can reduce the errors [44]. However, GMLS has the same fixed approximation
space of polynomials of degree ℓ regardless of the stencil size.

Finally, we compare the errors when the exact and approximate tangent spaces are used in the
two methods. We focus only on the surface Laplacian and for ℓ = 4 since similar results were
obtained for the other operators and other ℓ. Table 1 shows the results for both methods. The
approximate tangent spaces were computed using the methods from Sections 3.4 (GMLS) and 4.4
(RBF-FD) also using the polynomial degree ℓ = 4. As discussed in Section 5, this choice is made
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so that the tangent spaces are approximated with the same asymptotic order of accuracy as the
approximation of the metric terms with GMLS. We see from the table that the differences between
using the exact or the approximate tangent spaces for approximating the surface Laplacian is minor.

GMLS RBF-FD
N Exact Approx. Exact Approx.

8153 4.7984e-04 4.8004e-04 1.3311e-04 1.3312e-04
32615 6.0457e-05 6.04654e-05 1.5321e-05 1.5322e-05
130463 7.5486e-06 7.5488e-06 1.8811e-06 1.8811e-06
521855 8.0158e-07 8.0159e-07 2.0177e-07 2.0176e-07

Table 1: Comparison of the relative ℓ2 errors for the surface Laplacian on the torus using the exact tangent space for
the torus and approximations to it based on the methods from Sections 3.4 (GMLS) and 4.4 (RBF-FD). In all cases,
ℓ = 4 and the points are based on Poisson disk sampling.

6.3. Efficiency comparison

The results in Section 6 demonstrate that RBF-FD and GMLS have similar asymptotic conver-
gence rates for the same ℓ, but that RBF-FD can achieve lower errors for the same N and stencil
sizes. In this section, we consider which of the methods are more computationally efficient in terms
of error per computational cost. We examine both the efficiency when the setup costs are included
and when just the evaluation costs are included, as measured by (23) and (24), respectively. We limit
this comparison to τ = 1.5, but note that it may be possible to tune this parameter to (marginally)
optimize the efficiency of either method over this case. Figure 9 displays the results of this exam-
ination for the case of computing the surface Laplacian on the torus discretized with Poisson disk
sampling. Similar results were obtained for other SDOs and for the sphere, so we omit them. We see
from the figure that GMLS is more efficient when the setup costs are included, but that RBF-FD is
more efficient when only evaluation costs are included. For problems where the point sets are fixed
and approximations to a SDO are required to be performed multiple times—as occurs when solving
a time-dependent surface PDEs—the setup costs are not as important as the evaluation costs since
they are amortized across all time-steps. In this scenario RBF-FD is the more efficient method.

7. Concluding remarks

We presented a thorough comparison of the GMLS and RBF-FD methods for approximating
the three most common SDOs: the gradient, divergence, and Laplacian (Laplace-Beltrami). Our
analysis of the two different formulations of SDOs used in the methods revealed that if the exact
tangent space for the surface is used, these formulations are identical. We further derived a new
RBF-FD method for approximating the tangent space of surfaces represented only by point clouds.
Our numerical investigation of the methods showed that they appear to converge at similar rates
when the same polynomial degree ℓ is used, but that RBF-FD generally gives lower errors for the
same N and ℓ. We additionally examined the dependency of the stencil size on the methods (as
measured by the τ parameter) and found that the errors produced by GMLS deteriorate as the stencil
size increases. The errors for RBF-FD, contrastingly, appear to keep improving as the stencil size
increases. However, we don’t expect this trend to continue indefinitely, as eventually the tangent
plane formulation breaks down when the stencil size becomes too large. Finally, we investigated
the computational efficiency of the methods in terms of error versus computational cost and found
GMLS to be more efficient when setup costs are included and RBF-FD to be more efficient when
only considering evaluation costs.
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Figure 9: Comparison of the computational efficiency of GMLS and RBF-FD for approximating the surface Laplacian
in terms of accuracy per computational cost. (a) Shows the efficiency when considering the setup and evaluation costs
as defined in (23) and (24), respectively, while (b) show the efficiency when only considering the evaluation cost.
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