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A  B  S  T  R  A  C  T  
 

As an increasing number of mobile robots are envisioned to work and interact with humans in construction 

workspaces, it becomes critical that robots’ spatial behaviors align with the expectations of human coworkers to 

ensure safe and efficient co-navigation. Yet, we have a limited understanding of what robotic spatial behaviors 

are perceived as socially normative under different work contexts. This paper investigated perceived appropriate 

proxemic behaviors of robots by examining actual construction practitioners’ spatial behaviors during in- 

teractions with robots. We developed a virtual environment of a typical indoor construction job site and explored 

the role of work conditions and human-robot relations on their proxemic behaviors. The findings reveal that 

participants tend to maintain a larger separation distance in more crowded work conditions compared to normal 

ones and when encountering a robot as a passerby compared to encountering a human. We further discuss the 

implications of our results for the development of robot path planning with appropriate distancing strategies. 
 

 

 

1. Introduction 

 
The construction industry is widely recognized as one of the most 

dangerous sectors largely because of its unstructured and congested 

work environment. Most construction practitioners describe their 

workplace as a place where constant interactions with others are inev- 

itable [1]. In these settings, ensuring safe interactions with others is of 

utmost importance. They need to maneuver through the workspace 

without causing collisions or disrupting others. While the shortest path 

is usually preferred, safety becomes the primary consideration in 

selecting paths when construction activities are conducted simulta- 

neously in close proximity [2]. In essence, keeping a sufficient distance 

from potential risks is a critical aspect of construction workplace 

conventions. 

Recent advancements in mobile robots demonstrated the potential 

for applications in construction job sites performing simple, non- 

permanent construction tasks, such as data collection [3], reality cap- 

ture [4,5], safety surveillance [6], and indoor environment monitoring 

[7,8]. The deployment of robots in human work environments can bring 

novel safety concerns for workers. With robots expected to encounter 

and interact with human workers while executing their tasks, the risks of 

collisions escalate with the robot’s presence [9–12]. Although main- 

taining the maximum possible separation distance from humans or 

halting in front of them may improve safety, it may result in inefficient 

navigation [13]. Moreover, even when no physical risk is involved, 

people can still feel unsafe in proximity to robots as robots can be 

perceived as disruptive and even threatening in workplaces [14]. Such 

persistent undesired interactions can potentially demotivate workers 

since robots interact with human workers daily [15]. Thus, to ensure 

workers’ physical and psychological safety and well-being, it became 

imperative to design robots to understand and conform to social norms 

of human spatial behaviors [16]. 

However, there remains a limited understanding of the appropriate 

spatial boundaries for robots that are designed to be operated in human 

workplaces. While a few studies have investigated human-robot proxe- 

mics in the construction domain, they primarily focused on direct 
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interactions [17], neglecting the nuanced intricacies of indirect in- 

teractions. Unlike the caged industrial work setting, construction job 

sites present various scenarios where workers may come into unplanned 

contact with mobile robots. Depending on the situations in which the 

interaction occurs, the same distance can be perceived as appropriate in 

one situation and inappropriate in another situation. As these unin- 

tended encounters represent a significant portion of interactions at 

construction workplaces, there is a need to study the underlying dy- 

namics of unplanned, indirect human-robot interactions. 

To this end, this study aims to investigate socially normative spatial 

behaviors for robots during indirect interactions. As spatial behaviors 

are often nuanced and contextualized, we propose to learn from actual 

construction workers’ demonstrations to infer what robotic behaviors 

are deemed appropriate from their perspectives. To do so, we conducted 

experiments in a virtual environment where participants navigated and 

interacted with robots in different human-robot relationships under 

varying degrees of crowded work conditions. Our analysis revealed the 

impact of these contextual factors on participants’ spatial behaviors, 

leading to differences in both proxemic adherence and navigation per- 

formances. The findings from this study can lay the groundwork for 

shaping new social norms addressing the challenges of ensuring safe and 

efficient robot path planning in human work environments. 

The remainder of this paper is organized in the following structure. 

Section 2 presents the theoretical backgrounds of human-robot proxe- 

mics. The research method is detailed in Section 3, followed by the re- 

sults in Section 4. Section 5 discusses the broader implications of our 

findings, and the conclusion is described in Section 6. 

 

2. Theoretical background 

 

This section presents the theoretical background of humans’ 

distancing behaviors. We first introduce proxemic theories in human 

social interactions. We then describe the constructs of appropriate 

distancing in human-robot interactions and introduce various factors 

that affect human distancing behaviors. We finally present our research 

hypotheses. 

 

2.1. Social spaces and proxemics 

 
A fundamental aspect of social norms in crowd navigation is collision 

avoidance, which is highly related to the notion of personal space. 

People form social spaces and manage their space in response to others 

across various social and interpersonal situations. Proxemics is the study 

of the observed human spatial behaviors, or spatial proximity, during 

human-human interactions [18]. Comprehending the various social 

spaces within human-human proxemics is essential to exhibit more 

natural and effective collision-free path planning. 

The most fundamental social space is individuals’ personal space in 

interpersonal interactions. Proxemic theory identified four ranges of 

personal spaces (e.g., intimate (<45 cm), personal (45 cm – 1.2 m), 

social (1.2 m – 3.6 m), and public distances (>3.6 m)) for different social 

interactions [19]. They are usually represented in concentric circles 

[19], though several studies suggested other shapes, such as an ellipse 

[20]. Because people consider personal spaces as their private space, 

violating the individual’s personal space can cause discomfort [21], 

even in short-term interactions. 

Similarly, when people gather, they form a group space. A group of 

people tends to arrange certain formations (e.g., F-formation [22], O- 

space [23]). The group space is bigger than a mere summation of the 

individual’s personal space. Intruding on the group space will cause 

discomfort, though the individual’s personal space is not intruded. 

When individuals engage in an activity, they form an activity space 

related to the physical actions performed by the activity and related 

objects [24]. Based on the type of activities that a person performs, the 

body posture, positioning, and task boundary will vary, requiring 

different sizes of activity space [25]. In construction job sites, the 

activity space can be equated with work zones, which typically refer to 

areas for workers, materials, tools, and travel paths necessary for 

completing a construction task [26]. 

The different sizes of these spaces suggest that proxemic behaviors 

are more complicated than simple collision avoidance as they maintain a 

greater distance than merely preventing physical contact. These spaces 

indicate the distance at which people begin to feel uncomfortable by 

others’ presence [27,28]. Thus, the principles of proxemics can be 

applied as a control mechanism in human-robot interactions to ensure 

safe proxemic behaviors, as illustrated in Fig. 1. Robots should under- 

stand the humans’ proxemic norms and maintain a sufficient distance 

from workers concerning these social spaces. 

 

2.2. Constructs of appropriate proxemics in human-robot interaction 

 
With the increasing number of robot applications in human envi- 

ronments, a rich body of work has studied human-robot proxemics and 

has sought to identify appropriate distances for robots. 

Traditionally, determining an appropriate distance has been 

centered on physical safety considerations. Regulations and standards, 

such as EN ISO 13482:2014, emphasize maintaining a specific safety 

distance from robots to minimize collision risks [29]. This safety-based 

proxemic preference is often employed in work environments where the 

risk of physical harm to humans is a prominent issue. This approach 

establishes the appropriate distance at which the robot poses no physical 

threat to humans, often achieved by segregating robot working areas 

from human workspaces [30]. 

More recently, perceived or psychological safety has gained promi- 

nence as a factor in determining the suitable distance between humans 

and robots. [31] showed that unfamiliar robots in work settings can be 

perceived as disruptive and potentially dangerous, inducing user anxi- 

ety. Such negative feelings can increase cognitive overload and lead to 

unsafe behaviors [32]. Consequently, maintaining a certain distance, 

irrespective of physical safety concerns, becomes imperative to mitigate 

perceived threats and ensure the psychological safety of workers. 

Similarly, comfort serves as another psychological construct influ- 

encing the choice of separation distance between robots and humans. It 

is sometimes used interchangeably with perceived safety, as comfort 

essentially entails the absence of negative emotions such as feelings of 

unsafe. Comfort-based proxemic preference measures the optimal dis- 

tance at which individuals do not feel uncomfortable with the proximity 

of a robot [33,34]. Increasing the distance from robots can mitigate 

discomfort caused by close interaction [14]. 

Together, these constructs imply that the operationalization of 

appropriate proxemic behaviors centers on the protective function when 

threats are presented [31]. Maintaining greater distance mitigates 

perceived risks. 

 

2.3. Attributes of human-robot proxemics 

 

User studies exploring how people respond to a robot’s spatial 

movement yielded varied assessments of appropriate distances between 

humans and robots, spanning from intimate to social distances, as 

summarized in Table 1. These studies identified and differed on the 

types of attributes and showed how these attributes to some degree 

explain the observed differences in proxemic behaviors. 

 

2.3.1. Personal attributes 

Among the most researched factors on human-robot proxemics are 

personal attributes such as age, gender, or personality. Despite the 

abundance of literature, the findings are inconsistent and less straight- 

forward. For instance, studies on the effect of age presented varying 

conclusions. [35] observed that children generally maintained a greater 

physical distance from the robot compared to adults, while [36] found 

no significant age-related effect. Studies examining the impact of gender 

also have shown minimal or no significant effect on proxemic 
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Fig. 1. Different social spaces: (a) personal space, (b) group space, and (c) activity space. 
 

 

Table 1 

Overview of Human-Robot Proxemic Studies. 

 Interaction Context Robot Features Human-Robot 

Distance (cm) 

Key variable Size 

1 Pacchierotti et al. [33] Passing Mechanic robot (PeopleBot- Not intimate • Contextual (Passing distance) n = 10 

  Minnie)    

2 Neggers et al. [58] Passing Humanoid robot Intimate (36) • Contextual (Passing distance and side) n = 32 
  (Pepper robot)    

3 Lo et al. [59] Crossing Inverted-pendulum robot Social (208) • Robot (Crossing behavior – e.g., speed) n = 98 
  (1 m tall)    

4 Leichtmann et al. [60] Approached by robot Mobile robot w/ arm (185 Personal (51) • Contextual (Room size, working memory n = 72 

 
5 Walters et al. [35] 

 

Approaching & 

cm tall) 

Mechanic robot (PeopleBot, 

 

Social (175) & 

load) 

• Personal (Gender, age) 

 

n = 196 

 approached by robot 1.1.m tall) Personal (84) • Contextual (Subject of approach) & 

 
6 Walters et al. [39] 

 

Approaching & 
 

Mechanic robot (PeopleBot, 
 

Personal to social 

 
• Personal (Personality traits) 

n = 28 

n = 28 

 
7 Takayama and 

approached by robot 

Approaching & 

1.1.m tall) 

Personal Robot 2 
 

Intimate to personal 

 
• Personal (Experience, pet ownership, 

 

n = 30 

Pantofaru [41] approached by robot (1.35 m tall)  gender)  

    • Robot (Head direction)  

    • Contextual (Subject of approach)  

8 Torta et al. [61] Approached by robot Humanoid robot Social (173–182) • Contextual (Direction of approach, n = 18 
  (NAO)  participant’s body posture)  

9 Rossi et al. [40] Approached by robot Pioneer 3DX Personal (88) • Contextual (Participant’s activity) n = 50 
  (1.3 m tall)  • Personal (Personality)  

    • Robot (Speed)  

10 Lehmann et al. [43] Approaching robot Humanoid robot Personal (48) • Robot (Head gaze movement, leaning back n = 40 

  (NAO, 58 cm tall)  behavior)  

 

preferences [37], with conflicting results reported. It is suggested that 

gender requires more sophisticated examination due to its complex 

nature [38]. Regarding personality traits, [39] showed that proactive 

individuals had been observed to allow robots to approach closer, 

whereas those more neurotic kept a larger distance in human-robot in- 

teractions [40]. Though dispositional factors influence human-robot 

interaction behaviors, the overall effect remains inconclusive and 

inconsistent due to complex and multifaceted relationships among these 

factors. Another personal attribute potentially impacting human-robot 

proxemics is prior experience or familiarity with robotic technologies. 

Individuals with previous experience with robots may have different 

expectations and might not keep as much distance, feeling more in 

control during interactions with familiar technologies. Several studies 

[37,41] showed that people with prior experiences tend to maintain a 

shorter distance toward robots. In some studies, prior pet ownership is 

sometimes considered an indicator of prior experience with robots 

because both include interactions with non-human agents [42]. 

 

2.3.2. Robot-related attributes 

Robot-related factors are also known to have some effect on proxe- 

mic preference. Studies have observed how various robotic attributes 

influence individuals’ proxemic preferences. They revealed distinct 

proxemic expectations based on robot design attributes, such as size and 

anthropomorphism [43,44] as well as robot behaviors, including speed 

[45], sound [46], and gaze behaviors [42]. Nonetheless, the degree of 

robot design’s effect on distancing behaviors requires further investi- 

gation, as the literature presents mixed outcomes. For instance, the 

robot’s impact on size or height showed inconclusive results. Generally, 

individuals allow shorter robots to approach them more closely than 

large robots [47], but the relationship between robot size and preferred 

distance is inconsistent [48,49]. Similarly, a robot’s speed has yielded 

divergent results regarding preferred distances. In different studies, 

increased robot speed has been associated with significantly larger dis- 

tances [45] and smaller distances [40]. Regarding the appearance of 

robots, people hold higher expectations of proxemic social norm con- 

formity when interacting with a humanoid robot. However, in certain 

instances, people maintained a greater distance toward robots with a 

mechanical appearance [50]. Because of the limited findings, it is 

difficult to deliver reliable conclusions on the effect of robotic factors on 

proxemic behaviors. 

 

2.3.3. Context-related attributes 

Contextual factors refer to temporary elements associated with the 

environment or situation in which the human-robot interaction occurs 

[51]. Several studies examined how individuals respond to these factors 

in terms of proxemic preferences. For example, the physical context of 

the environment, such as the size of the space, can impact users’ comfort 

distance [52], particularly when their spatial movement is constrained 

in narrower areas compared to more open spaces. In confined spaces like 

narrow hallways [31] or when positioned close to a wall [53], in- 

dividuals typically require a greater comfort distance from a robot. 

Another aspect relates to user context. Depending on the specific 

activity a user is engaged in, the preferred distance may vary. For 

example, activities involving more static, lower posture positions (e.g., 
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sitting) tend to favor a smaller distance compared to activities involving 

upstanding postures (e.g., standing, walking) [40]. [54] also showed 

that people tend to prefer shorter distances when approaching a robot 

themselves rather than when being approached by a robot, as they 

perceive a greater sense of control over the interaction. 

Lastly, interaction context is also a vital aspect. The typical roles of 

humans in human-robot interactions are supervisor, operator, team- 

mate, programmer, or bystander [55]. Studies explored how these 

interaction contexts affect the distance between the robot and the 

human. [56] used a concept of power distance for different relationships 

and showed that users prefer a closer distance for supervisor robots. 

In the context of mobile construction robots, it is anticipated that 

most humans will primarily function as passersby or bystanders, with 

only a limited number of individuals operating the robot. However, 

indirect interactions such as coexistence in a workplace have not been 

sufficiently investigated. This gap highlights the need to investigate how 

workers in diverse work contexts [57] maintain distances from robots 

and how the nature of the human-robot relationship (e.g., operator vs. 

passersby) influences this behavior. Thus, this study explores indirect 

human-robot interactions under varied work conditions, focusing on 

human roles as operators and passersby navigating a workspace. 

 

 

2.4. Research hypotheses 

 

Although the previous literature identified factors affecting humans’ 

preferred distance from robots, it is still unclear whether the effect of 

contextual factors will be observed in varied construction work contexts, 

especially when it involves more indirect interaction situations. This 

leads to the following questions: What human distancing behaviors will be 

observed under different work conditions? Will their proxemic behaviors be 

different when their roles in human-robot interactions are different? To this 

end, this study investigates the effect of 1) the work conditions (WC) of 

the job sites and 2) the human-robot relationship (HRR) on appropriate 

spatial behaviors during unintended encounters. We manipulated the 

crowdedness of simulation environments as well as the role of humans in 

human-robot relations, and we studied how they influence proxemic 

behaviors, as depicted in Fig. 2. 

We hypothesized that the appropriate distance between a robot and a 

human will vary depending on work conditions. In work environments 

with greater spatial constraints (e.g., crowded spaces), individuals tend 

to increase their distance to mitigate the risk of collisions, given their 

reduced control over spatial movement. Similarly, when co-present 

workers are engaged in high-workload tasks (e.g., physically 

demanding activities), people also tend to increase the separation dis- 

tance because the capacity of other workers to avoid collisions decreases 

as they focus more on their tasks. Consequently, the desired safe distance 

will be higher in these complex work situations compared to normal 

conditions. This leads to the first set of hypotheses: 

H1. Participants will (a) have a smaller frequency of personal space in- 

trusions, (b) have a longer navigation duration, and (c) cover a longer 

traveled path length (indicative of safer behaviors) in more crowded situa- 

tions than in normal situations. 

Secondly, we posit that the type of HRR (e.g., a human’s role in 

relation to a robot) affects the appropriate distance between them. 

People can feel uncomfortable working around robots [62]. This 

discomfort can be even more pronounced when they lack control over 

the robot. For example, the distance one maintains from an approaching 

autonomous robot as a passerby will be greater than the distance one 

keeps toward an approaching human as a robot operator, although both 

involve interactions between a human and a robot. This leads to the 

second hypothesis: 

H2. Participants will (a) have a smaller frequency of personal space in- 

trusions, (b) have a longer navigation duration, and (c) cover a longer 

traveled path length (indicative of safer behaviors) when encountering a robot 

than when encountering a human. 

Lastly, we posit that work conditions and HRR influence proxemic 

behaviors, and the perceived risk level mediates the effect of work 

conditions and HRR. Perceived risk is known to trigger human cognitive 

factors that subsequently influence behaviors. In the construction work 

context, we assumed that people perceive a certain degree of danger 

from contextual risk elements in the workplace environment. Conse- 

quently, proxemic behaviors can be mediated by their perceived danger, 

as keeping a separation distance can reduce discomfort and safety risks 

arising from the situation. Thus, we assumed that people tend to increase 

their distance from others when they perceive a higher risk. This leads to 

the third hypothesis: 

H3. Perceived danger level will mediate the effects of the (a) work condition 

and (b) the human-robot relation on the minimum distance from others. 

 

3. Method 

 
To investigate the effects of WC and HRR, we conducted human- 

subject experiments in which construction practitioners performed a 

navigation task in a virtual environment, followed up with post-trial 

surveys and semi-structured interviews. The detailed methods are 

described in this section. 

 

3.1. Participants 

 
The sample size was determined through a priori power analysis 

considering two main effects of work context and human-robot rela- 

tionship [63]. Assuming a statistical power of 80% and medium effect 

size (f = 0.22) with α value of 0.05, we decided on the minimum sample 

size of 66 [63]. 78 participants from 8 construction projects, including 

commercial, residential building, and civil projects, participated in the 

experiments. By eliminating incomplete data, 71 participants (2 females 

and 69 males; average age: 44.3 & SD: 12.8) completed the study. All 

participants were practitioners in the construction industry with 

adequate work experience (average work experience: 13 years) and 

 
 

 

 

 

Fig. 2. Overview of research hypotheses with contextual factors as independent variables and perceived danger as a mediator. 
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domain knowledge. The detailed descriptions of the participants are 

summarized in Table 2. 

 

3.2. Study design 

 

3.2.1. Virtual environment design 

We designed virtual simulation environments of a typical indoor 

construction workplace in Unity. As immediate or near-future robot 

applications are perceived to be quadruped robots or other mobile robot 

platforms carrying out temporary construction tasks such as data cap- 

ture or safety monitoring [64] or simple single tasks [65,66], we 

incorporated quadruped and mobile robots to interact with the partici- 

pants. Since most onsite mobile robots are configured as a mobile plat- 

form equipped with a robotic arm, our study also adopted this design. As 

the height of typical mobile robots with medium to large robotic arms 

ranges from 0.8 to 1.3 m, we designed our robot to be 1.3 m tall, 

reflecting the size of actual robots. Regarding robot speed, we pro- 

grammed the robot NPCs to move at speeds equivalent to human NPCs 

to minimize any potential influence of speed on the participants’ 

perception. 

In the simulated work environment, we created four types of in- 

teractions that can occur from the indoor job site layout, as depicted in 

Fig. 3. We assumed the black paths represent more socially normative 

paths that comply with proxemic rules. In contrast, the red paths 

represent more efficient behaviors optimized by navigation performance 

(e.g., shortest paths). We extracted the participants’ behavioral data 

related to these four interactions for data analysis. 

We preprogrammed the movement of non-player characters (NPCs) 

to be initiated by a trigger. NPCs were set to begin to move toward the 

predefined waypoints once the distance between the NPC and an agent 

controlled by the participant gets smaller than a threshold. In this way, 

we ensured all participants had the same interactions during each 

experiment. 

 

3.2.2. Experiment design 

To explore the effect of contextual factors on the distance between a 

robot and a human, we employed a 2 (WC) x 2 (HRR) within-subject 

design. For the first independent variable, WC factor (IV1), we imple- 

mented normal and crowded conditions by varying the number of 

workers and objects as well as the intensity of the activities. Based on the 

feedback from a pilot test, we designed the crowded work conditions 

(IV1a) including 9 NPC workers, and added large-scale construction 

objects such as stocked wooden pallets and pipes. NPCs were executing 

high-workload tasks, such as carrying materials or working on a height. 

Combined, this condition was to represent a busy and congested work 

environment. On the other hand, the normal work conditions (IV1b) 

included 4 NPC workers, carrying out simple activities, such as walking 

or nailing a wall. The environment also included a smaller number of 

construction objects to represent less crowded ones. The manipulation 

check of the environment design is described in Section 4.1. 

For the second independent variable, HRR factor (IV2), we created 

two human-interaction contexts by assigning the participants one of two 

roles: (a) a human worker teleoperating a legged robot, or (b) a human 

worker navigating the workplace. In both cases, the participant was 

approached by and interacted with other human and robot NPCs in the 

 
Table 2 

Overview of Participants. 
 

 

Variable Group Sample Size 

-10 years 31 

environment. For the teleoperator role (IV2a), the participant was 

approached by human NPCs (as depicted in Fig. 4(a)), while, for the 

passerby role (IV2b), the participant navigated as a human avatar and 

was approached by robot NPCs (as depicted in Fig. 4(b)). 

 

3.3. Experiment procedures 

 

The experiment was conducted in accordance with the university’s 

Institutional Review Board guidelines (H23040). In the first part of the 

experiment, participants were briefed about the overview and provided 

their informed consent. We presented a short video demonstrating po- 

tential applications of autonomous mobile and legged robots in con- 

struction settings. In the second part, each participant took a tutorial 

session to familiarize themselves with the navigation task in our simu- 

lation environment. The virtual environment was displayed on a large 

screen, and participants were instructed to sequentially navigate toward 

predetermined target positions using keyboard controls, simulating the 

way they would navigate in the actual job sites. If participants intruded 

into the personal spaces of other NPCs, the simulation environment 

generated a “collision” alert. 

Once participants became familiar with the environment and the 

task, they were randomly assigned to one of the test conditions and 

conducted four experiments. The order of conditions was randomized 

and equally distributed across the possible combinations to mitigate the 

effects of the test order. After each experiment, participants completed a 

survey about how they perceived the simulation environments. Upon 

completing the entire set of experiments, we conducted a semi- 

structured interview regarding general demographic information, 

work experiences, and thoughts on expected social norms for onsite 

robots. 

 

3.4. Data analysis and evaluation metrics 

 
For evaluation measures, we employed both objective and subjective 

measures. Subjective measurements were obtained through self-report 

questionnaires, where participants shared their perceptions of the 

simulation environment using a series of 5-point Likert scale questions. 

For objective measurements, we assessed proxemic conformity (e.g., 

minimum distance from others and frequency of personal space intru- 

sion) and general navigation performance (e.g., navigation duration and 

length of traveled path) because general navigation performance can 

also serve as an indicator of proxemic behaviors. The navigation path (in 

meters) can reveal patterns in proxemic behavior, such as maintaining a 

larger distance from others. Similarly, navigation duration (in seconds) 

can indicate collision avoidance behaviors. For instance, people may 

take longer if they slow down or pause to allow a passerby to cross when 

personal space cannot be upheld. To analyze individual navigation 

performance measures, we normalized each trial value by dividing it by 

the participant’s average value. This normalization equalizing the 

average to 1 adjusts the value according to the average [67], which can 

account for the significant variations observed in participants’ naviga- 

tion performance. 

For proximity conformity measures, we recorded the raw log files of 

each participant’s simulation in Unity and extracted the states of all 

agents, such as position and velocity, to analyze specific proxemic 

behavior features. We counted an incident as a personal space violation 

whenever the shortest distance measured from the outer perimeter of 

the character played by the participants to the outer perimeter of any 

other characters in the simulation was less than the predetermined 

threshold at any given time. The threshold was set at 1.2 m, corre- 
sponding to the upper range of the personal spaces range [19]. 

Work Experience 11–20 years 24 

21 - years 16 

Role Management 30 

Trade workers 41 

Previous robot experience Yes 16 

No 55 

1)  re uenc o ersonal s ace intrusions: the number of when the 

distance between the robot and the human is <1.2 m. 

2) Average minimum distance to the nearest agent: the average dis- 

tance from the boundary of the encountering robot/human to the 
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Fig. 3. Illustration of the simulation environment layout and the human-robot interactions: 1) Crossing, 2) Passing, 3) Group Interaction, and 4) Merging. 

 

 

Fig. 4. Virtual construction site environment in Unity. Fig. 4(a) illustrates a trial when participants take a teleoperator role and navigate from a robot’s point of view 

while encountering human NPCs. Fig. 4(b) illustrates a trial when participants take a human worker role and navigate from a human avatar’s point of view while 

encountering robot NPCs. 

 

boundary of the human/robot that a participant maintained during 

the interactions. 

3) Total distance traveled: the total navigation length a participant 

took during the interactions divided by the participant’s average 

value. 

4) Total navigation duration: the total time (in seconds) a participant 

took to travel from the initial position to the end position divided by 

the participant’s average value. 

 
For data analysis, we conducted statistical tests to test the research 

hypotheses. First, we tested for normality using the Shapiro-Wilk test 

and homogeneity of variance using Levene’s test. When normality and 

homoscedasticity assumptions are met, we performed a two-way Anal- 

ysis of Variance (ANOVA) with a Tukey post hoc to examine the main 

and interaction effects of the WC and HRR. Otherwise, we performed the 

Wilcoxon Sign-Rank Test, which is a non-parametric version of the 

statistical test. 

4. Results 

 

4.1. Simulation environments manipulation test 

 
To ensure the efficacy of our method, the immersiveness of the 

simulation environment is critical. To check whether participants 

perceived the simulation environment as we designed, we first measured 

participants’ evaluation of the simulation environment using five 5- 

point Likert scale questionnaires. We asked about the perceived 

crowdedness of work conditions (Cronbach’s alpha = 0.87). The ANOVA 

indicated that the participants’ perceived work conditions were signif- 

icantly different between the simulation environments (F(1, 282) = 

24.73, p < 0.001, η2
=0.08) as illustrated in Fig. 5. This supports the 

hypothesis that we designed our simulation environment as intended, 

and the manipulation of work conditions did affect the participant’s 

perception. 
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Fig. 5. The differences in participants’ perceived crowdedness level for simu- 

lation environments, indicating a statistically significant difference in the 

perceived crowdedness for (1) crowded and (2) normal work conditions. ··· p 

< 0.001. 

 

4.2. Analysis of proxemic behaviors 

 
For H1a and H2a, we employed a Wilcoxon Sign-Rank Test because 

of the unmet homoscedasticity assumption. We found a significant effect 

of WC and HRR on the frequency of personal space intrusion, though the 

effect size was small, as summarized in Table 3, supporting H1a and 

H2a. 

People more frequently intruded into the personal spaces of the 

human NPCs compared to robot NPCs, as illustrated in Fig. 6. The sig- 

nificant difference in the frequency of violation instances for different 

HRRs was corroborated by the differences in the minimum distance for 

different HRRs. For example, a greater distance was maintained from the 

robot NPCs (M = 1.65, SD = 0.61) compared to human NPCs (M = 1.49, 

SD = 0.61) while participants were passing their work zone (F(3, 280) = 

1.87, p = 0.02). In the narrow corridors, there was also a significant 

increase in the lateral offset distance away from the approaching robot 

(M = 0.88, SD = 0.95) compared to human (M = 0.71, SD = 0.75), (F(3, 

280) = 1.21, p = 0.09). During the post-interviews, several participants 

expressed their mistrust of robots, which led to a larger separation dis- 

tance from robots. Unlike humans, who have an innate ability to sense 

the presence of others and swiftly react to their movement, robots were 

perceived as unsafe, struggling with collision avoidance, and prone to 

malfunctions. Due to the perceived incapabilities of robots, they opted 

for increased safety distances to avoid potential accidents. 

“… robots are still not as agile as humans in adapting to unexpected 

situations.” 

Regarding the WC, people were less likely to intrude into the per- 

sonal spaces of others in crowded environments. While the average 

minimum distance people keep from others in the crowded environment 

was higher (M = 0.83, SD = 0.93) than in the normal environment (M = 

Fig. 6. The difference in frequency of personal space intrusion for each 

experiment condition. 

 

0.74, SD = 0.77), the difference was not significant. In post-interview 

sessions, however, participants still conveyed their tendency to main- 

tain a greater distance from those engaged in strenuous activities, such 

as carrying materials. 

“If I’m just walking around, a robot walking close to me is okay. But if I’m 

working on something, I might need more space; so I’d say it’s better to 

keep extra distance.” 

 

 
4.3. Analysis of total navigation duration and path length 

 
To test H1bc and H2bc, we conducted a two-way ANOVA to test the 

main and interaction effects of WC and HRR on navigation 

performances. 

As for total navigation duration, a significant main effect of HRR on 

navigation duration was found (F(3, 271) = 5.06, p = 0.001), as 

 
 
 
 
 

 

 

 

Table 3 

Wilcoxon Signed Rank test results on personal space intrusions. Results showed 

significant main effects of HRR and WC. · p < 0.05. 
 

Measure V Effect size p-value 

HRR 4976 0.217 0.010 · 

WC 2885 0.172 0.037 · 

 
 

 

 

Fig. .. The difference in total navigation duration for each experi- 

ment condition. 
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illustrated in Fig. 7. This finding suggests that people tend to spend more 

time reaching target locations when encountering robot NPCs as 

opposed to human NPCs. This behavior was evident in intersection 

scenarios (F(3, 271) = 8.94, p < 0.001) and merging scenarios (F(3, 

271) = 5.24, p = 0.001). At the intersection, participants generally 

yielded and waited for the robot passerby NPC to cross the intersection. 

The frequency of overtaking was significantly lower when approached 

by robots (X2(1) = 9.87, p = 0.001). Similarly, in the merging case, they 

often waited until the robot NPC had overtaken and reached the target 

position first, resulting in fewer overtaking instances (X2(1) = 13.02, p 

< 0.001). WC, however, did not have a significant effect of WC on the 

traveled duration, thus not supporting H1b. During the post-interview 

session, a participant explained that he was trying to “get out of there 

as soon as possible” in the crowded environment because he “didn’t want 

to get in anybody’s way.” 

Regarding total navigation path length, a significant main effect was 

observed for HRR in support of H2c (F(3, 271) = 18.28, p < 0.001), and 

no significant main effect for WC or an interaction effect was found. As 

described in 4.2, participants tended to navigate around the work zone 

when they were approached by robots, leading to a significant increase 

in the path length in the group interaction scenario (F(3, 271), p < 

0.001). Similarly, in the passing scenario, a significant difference in the 

path length was also found for HRR (F(3, 271) = 3.21, p = 0.02) as well 

as for WC (F(3, 271) = 3.21, p = 0.04), indicating that people take larger 

lateral offset to the side when encountering a robot and in crowded 

environments. (See Fig. 8.) 

 

4.4. Mediation effect of perceived danger level 

 
For H3, we conducted a mediation analysis on the relation between 

proxemic behaviors and contextual factors with the perceived danger 

level as a mediator, using Baron and Kenny’s approach [68]. We 

measured the participants’ perceived danger level of the simulated job 

sites (Cronbach’s alpha = 0.751) using four 5-point Likert scale ques- 

tionnaires. To have a significant mediation effect, the effect of WC and 

HRR on proxemic behaviors should be decreased because the explained 

variance is lowered due to the perceived risks variance. Against our H3, 

perceived safety risk did not have a significant mediation effect, as 

depicted in Fig. 9. 

 

 

 

Fig. 8. The difference in total navigation path length for each experi- 

ment condition. 

5. Discussions 

 

5.1. Considerations for new social norms for co-navigation 

 
The success of robot application in human-populated environments 

depends on the robot’s ability to behave congruently with social ex- 

pectations. The initial step toward developing socially appropriate robot 

behaviors involves understanding how human coworkers expect robots 

to behave in various work contexts. Our results suggested that the per- 

sonal spaces imposed by proxemic rules are not fixed and the appro- 

priate spatial behaviors of robots can and should be adaptable based on 

the contexts of the interaction. In crowded environments, people tend to 

prefer more passive spatial behaviors. A similar trend was observed 

when people interact with robots acting as passersby. The most con- 

servative spatial behaviors were exhibited when they encountered ro- 

bots in a crowded work environment. This suggests that people’s 

perceptions of robot behavior appropriateness vary with context, and 

there is a need to explore the influence of other contextual factors on 

spatial behaviors. 

Another noteworthy finding is that the perceived danger did not 

have a significant impact on governing spatial behaviors, though it was 

identified as an important factor in the human-robot proxemics litera- 

ture [29]. Post-interview data suggests that one possible alternative 

explanation is the mistrust of robots. The trust level appears to be related 

to the perceived robot’s capabilities. As described in Section 4.2, par- 

ticipants expressed their concerns about the robot’s incapacity to detect 

and avoid collision quickly, which led them to take an extra safety buffer 

distance. They noted that enhancing the reliability and sensitivity of 

robots’ onboard sensors to ensure robust collision prevention could 

foster trust. 

“If a strong sense of trust is established between humans and robots, we 

might not need such a wide distance.” 

This finding offers practical implications for designing robot motion 

behaviors in workplaces. The appropriate distance is a dynamic concept, 

evolving as people interact with and acclimate to robots’ behaviors. 

Consequently, the spatial strategies for robots should be constantly 

adjusted in response to shifts in users’ trust levels. In the early phases, 

robot behaviors should be designed with safer proxemic strategies. 

 

5.2. Need for communicating navigational intents 

 
When navigating in a crowd, humans communicate their naviga- 

tional intents through various means, including eye gaze, body postures, 

gestures, and verbal cues. These social cues are fundamental elements of 

proxemic behaviors, assisting people in coordinating with others. In 

construction work environments, practitioners often leverage both ver- 

bal and nonverbal social cues to communicate their navigational intent 

and to avoid potential collision risks. Thus, communicating intent to 

nearby workers is paramount in managing unforeseen changes and 

disruptions to ensure safety. 

During the experiments, participants complained that the robots 

lacked such social cues and communication abilities, which made robot 

motions ununderstandable and unpredictable. Considering previous 

research, which highlighted that the lack of predictability can diminish 

trust levels [69], it is plausible that this unpredictability contributed to 

participants’ low trust levels, provoking a larger separation distance. 

Overall, participants highlighted the importance of robots’ communi- 

cation functions to convey their navigational intent, which would 

enhance their understanding of robots’ behaviors. 

“If the robot can communicate like a human, then it’s fine to keep a 

distance like with people. However, if it can’t communicate, I believe it’s 

better to keep a greater distance.” 

Regarding the potential communication interfaces, construction 

practitioners perceived direct and explicit methods, such as visual or 
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Fig. 9. Mediation analysis with perceived danger level as proposed mediators. 

 

audio inputs, to be more effective than natural, subtle social signals like 

eye gaze although previous studies showed that social cues are more 

legible and thus more effective in communicating robots’ intents to 

novice users [13,70]. For example, they found the projection of robot 

trajectories on the floor or a display screen useful, as these are already 

employed in current construction practices. Warning sounds were also 

deemed effective, especially when people have reduced visibility or 

attention level (e.g. when people accidentally get in the way while 

engaged in their tasks). Nonetheless, participants emphasized that both 

methods are limited and ineffective in certain situations. This implies 

that future research should examine the efficacy of various human-robot 

interface combinations within a specific work context. 

 

5.3. Implications for worker’s perception of robots as coworkers 

 
Our findings revealed that participants suggested robots should 

operate and behave similarly to humans, and the same proxemic rules 

governing spatial movement in human-human interactions can and 

should be applied to human-robot interactions. This includes contextu- 

ally appropriate distancing behaviors. This finding is significant because 

it indicates a shift in construction practitioners’ perception of robots: 

they no longer perceive robots as threats but as potential future co- 

workers. In terms of proxemic rules, they held the same expectations for 

robots that mirror those they had for human coworkers in similar cir- 

cumstances [67]. 

“It’s like how people get trained on safety rules before they start working 

onsite. Robots should also made aware of human norms and rules.” 

This perspective aligns with the principles of The Media Equation 

[71] and findings from other research in HRI, which explain that people 

often perceive and respond to technology in ways similar to their in- 

teractions with humans. Participants also suggested that socially 

appropriate behaviors can foster more efficient co-navigation because 

they can make a better sense of human-like behaviors. Socially appro- 

priate behaviors will enhance workers’ ability to predict robot behav- 

iors, and, in turn, people can incorporate the anticipated motions of 

robots into their path planning to achieve more fluent coordination. 

“If the robot follows human norms, its behavior should be predictable like 

a human, so there may not be a need for a safety buffer.” 

 
6. Conclusion 

 
The integration of robots at workplaces can transform traditional 

work conventions. In this study, we aimed to understand socially 

normative robot behaviors in future human-robot shared workplaces. 

We presented a human-subject study to analyze the effect of contextual 

factors on perceived appropriate proxemic behaviors during indirect 

human-robot interactions. The results revealed a tendency among con- 

struction practitioners to adopt safer proxemic behaviors when 

interacting with robots, while there was an implication that this 

perception may evolve as people gain more trust in robots. 

From this study, we can derive practical recommendations on how to 

design natural, human-centric proxemic behaviors for autonomous ro- 

bots working alongside humans. Such guidelines can improve the 

physical and psychological safety of workers. Moreover, our study 

contributes to the HRI domain by shedding light on the socially 

normative proxemic behaviors in indirect human-robot interactions, 

which were previously underexplored. 

Nevertheless, our findings are subject to several limitations. First, the 

study was conducted within a virtual simulation environment displayed 

on a large screen. While studies suggest that a screen-based VR envi- 

ronment can offer a sense of immersion and is preferred by inexperi- 

enced users, the fidelity of the simulation environment could benefit 

from more advanced, high-fidelity virtual simulators. For instance, 

incorporating audio features in the VR simulation [72] or using head- 

mounted displays (HMDs) [73] could augment the participants’ expe- 

rience. These enriched experiences might lead to greater immersion, 

potentially yielding different findings, especially for experienced users. 

Secondly, we did not exhaustively investigate the impact of personal 

and robot-related factors, which could have a more pronounced influ- 

ence on proxemic behaviors within the construction domain. For 

example, robot design aspects such as size or speed may affect human 

proxemic behaviors in safety-critical work environments although prior 

studies conducted in social settings did not find consistent significant 

effects of these factors [48,49]. In addition, individual attributes, such as 

prior experience or familiarity with robotic technologies, could also 

influence the outcomes in the construction work environments. While 

our study could not produce meaningful outcome findings regarding 

these factors, due to the imbalance in our dataset, future studies can 

elucidate the influence of these factors. 

Lastly, our study primarily focused on initial interactions with 

autonomous mobile robots, considering that the majority of the current 

construction workforce has limited exposure to robotic technologies. We 

cannot ensure that our findings will be generalizable to future HRI 

scenarios in which people gain more experience and become more 

familiar with the capabilities and limitations of robots. Future research 

will investigate how human behaviors evolve with increased experience 

with robotic technologies in the real world. 
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