
41st International Symposium on Automation and Robotics in Construction (ISARC 2024) 

988 

 

 

Robust High-Precision LiDAR Localization in Construction 
Environments 

Andrew Yarovoi1 Pengyu Mo2 Yong Kwon Cho3
 

1Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA 
2School of Electrical and Computer Engineering, Georgia Institute of Technology, USA 
3School of Civil and Environmental Engineering, Georgia Institute of Technology, USA 

ayarovoi3@gatech.edu, pmo30@gatech.edu yong.cho@ce.gatech.edu 
 

Abstract - 

Accurate localization plays a crucial role in the effective 

operation of autonomous robotics systems, especially in dy- 

namic environments such as construction sites. Simultaneous 

Localization and Mapping (SLAM) utilizing LiDAR sensors 

has emerged as a popular solution due to its ability to func- 

tion without external infrastructure. However, existing al- 

gorithms exhibit significant shortcomings. Despite current 

methods achieving high accuracy over long trajectories, they 

struggle with precision and reliability in complex indoor en- 

vironments. This paper introduces a novel feature-based 

LiDAR SLAM system designed to address these limitations 

and enhance short-term precision and overall robustness. 

The proposed system is evaluated using both existing datasets 

and a physical robot platform, addressing the limitations of 

current implementations and showcasing improved perfor- 

mance in challenging real-world scenarios, particularly in 

construction environments. 
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1 Introduction 

Localization is a critical component of nearly all au- 

tonomous robotics systems. Accurately understanding the 

robot’s pose relative to its environment is often crucial for 

navigation and manipulation tasks. While GPS can some- 

times be sufficient for outdoor environments, more com- 

plex approaches are typically needed for indoor environ- 

ments due to significant signal attenuation by the building. 

In warehousing and manufacturing, autonomous robots are 

conventionally localized using visual markers placed in the 

environment or external camera systems with fixed posi- 

tions. These approaches have enabled increased robotic 

automation which has lowered costs, increased workforce 

productivity, and improved efficiency [1]. However, these 

approaches are often not feasible in construction due to 

construction sites continuously evolving throughout the 

building process. This makes setting up external localiza- 

tion systems difficult. 

One popular solution is to use onboard sensors to per- 

form simultaneous localization and mapping (SLAM), al- 

lowing autonomous systems to localize in previously un- 

mapped environments. SLAM can provide high-accuracy 

and precise positional estimates in indoor environments, 

without the need for any external infrastructure. One popu- 

lar onboard sensor for performing SLAM is LiDAR, which 

typically uses the time of flight data of a laser to measure 

distances to nearby obstacles. These distance measure- 

ments are converted to a point cloud, providing a 3D rep- 

resentation of the environment. LiDAR has numerous 

advantages over cameras such as direct measurement of 

depth and invariance to lighting conditions. This elim- 

inates scale ambiguities and allows for robust measure- 

ments, even in harsh or dim lighting conditions such as 

those commonly present in night-shift work operations. 

Additionally, LiDARs are not impacted by textureless or 

highly repetitive textured environments, which are com- 

mon in construction (e.g. unfinished/unfurnished rooms, 

brick walls). 

Over the last couple of decades, various algorithms and 

frameworks have been proposed for performing LiDAR- 

based SLAM. One of the most popular and robust of the 

recent methods is LIO-SAM [2]. LIO-SAM uses a range- 

image generated from a point cloud to extract LOAM [3] 

features. It then uses frame-to-frame matching and frame- 

to-global-map matching, along with GTSAM [4] to gen- 

erate a 3D point cloud of the environment and localize the 

LiDAR within it. Additionally, LIO-SAM tightly couples 

the LiDAR and IMU, allowing for point cloud deskewing 

and full utilization of the IMU data in the factor graph op- 

timization. Unlike other more recent point-based methods 

such as ART-SLAM [5], LIO-SAM is feature-based and 

thus more computationally efficient. This allows it to run 

on smaller robots without a GPU. As such, it has become 

a popular option for mobile robots and is used extensively 

in the research community [6, 7, 8, 9]. 

While LIO-SAM has been shown effective on multiple 

datasets, it has several limitations that make it sub-optimal 

for real-world localization of a navigating autonomous sys- 
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Figure 1. An overview of the proposed algorithm 

 

tem. Despite achieving high long-term trajectory accu- 

racy, LIO-SAM often provides poor short-term precision. 

This results in large short-term errors in the pose esti- 

mate that can lead to navigational issues and poor map 

quality. These issues are particularly evident when work- 

ing with robotic systems that exhibit high vibrations (such 

as quadruped robots) or systems utilizing cheaper, lower- 

quality IMUs. Additionally, the algorithm lacks robust- 

ness in complex environments where limited visibility of 

the ground planes and LIO-SAM’s lack of consideration 

for surface normals leads to weak constraints on the roll, 

pitch, and z-height. This can lead to complete loss of 

tracking in many confined indoor environments, such as 

stairways and small rooms. These limitations make current 

implementations unreliable in common construction envi- 

ronments, endangering the robot and the people around 

it. 

To address these issues, we present a novel feature-based 

LiDAR-inertial SLAM system that significantly improves 

short-term precision and overall robustness. The proposed 

system is validated on existing datasets and a physical 

robotics platform. 

 

2 Methodology 

Figure 1 shows an overview of the different modules in 

the proposed algorithm. Unlike existing approaches, the 

proposed algorithm first organizes the cloud into a 𝐶x𝑁 
array (organized cloud), where 𝐶 is the number of chan- 

nels in the LiDAR, 𝑁 is the number of samples taken per 

revolution of the LiDAR, and each element in the array is 

a point storing its x, y, z, and intensity values. This pre- 

processing step speeds up computations of later steps in 

the pipeline, enabling real-time performance. After orga- 

nizing, the cloud is deskewed using IMU data to undo any 

distortions caused by rotations of the LiDAR sensor over 

the capture interval of the point cloud. This is necessary 

as LiDARs typically output their data as scans (one full ro- 

tation of the laser array) which contains points captured at 

different times over the scan period. Deskewing removes 

any distortions caused by rotations of the sensor over the 

scan period. The deskewed point cloud then undergoes 

feature extraction where planar points (Figure 2) and edge 

points (Figure 3) are extracted from the cloud using novel 

proprietary feature extractors. Planar points are further 

clustered into individual planes. Unlike LIO-SAM which 

labels points as planar based on the local roughness of the 

range image, we consider the full 3D positions of each 

point and its neighbors to more reliably identify planar 

surfaces and remove non-planar points. Additionally, our 

approach efficiently estimates the normals of the points, 

providing us with richer features and additional informa- 

tion during feature matching and pose optimization. The 

individual planes, each containing a point cloud of their 

constituent points, along with an edge cloud comprising 

all the edge points, are subsequently assembled into a 

Frame object. This Frame is initialized with an initial 

pose derived from the last predicted pose and the IMU’s 

orientation estimate. 
 

Figure 2. Example of extracted plane points 

 

 

Figure 3. Example of extracted edge points 
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An iterative process is then used to match the features 

and optimize the pose of the current frame with respect 

to the key frames. At each iteration, a 3-stage matching 

approach is used to first match the Frame to its nearest 

key frames, then match the Frame’s planes to the selected 

key frames’ planes, and finally match planar and edge 

points in the Frame to the planar and edge points stored 

in the matched planes and key frames’ edge clouds. The 

feature matching step results in a set of planar and edge 

correspondences that are used to calculate multiple error 

metrics. These metrics are minimized with respect to the 

Frame’s pose using Newton’s method. The Frame’s esti- 

mated pose is then updated and the iterations are repeated 

until we converge on a pose or have repeated a set number 

of iterations. The final pose of the LiDAR is returned as 

the final output of the system. If needed, the frame is 

added to the key frames to iteratively grow the map. 

Ultimately, our approach differs from LIO-SAM in three 

main ways. First, we organize the cloud and use the full 

3D positions of the points during feature extraction, in- 

stead of using the range image. The organization of the 

point cloud allows us to compute features in a compa- 

rable amount of time to LIO-SAM while utilizing more 

of the point cloud’s information. Second, we do not use 

LOAM features, and instead use novel feature extractors 

that extract more reliable planes and edges. Our edge de- 

tector explicitly handles edges caused by occlusions and 

our plane detector efficiently estimates normals, providing 

more information for pose optimization. Our use of dif- 

ferent feature extractors also enables us to utilize 3-stage 

feature matching which exploits the additional information 

captured by the features to improve matching accuracy. 

Lastly, our method uses key framing to efficiently repre- 

sent the map, enabling frame-to-global-map matching for 

every frame. This results in a highly memory-efficient map 

representation and limits the short-term drift, improving 

the short-term precision of the localization estimate. 

An additional difference in the current implementation 

is that we do not use a factor graph to optimize the global 

map or fuse IMU orientation estimates into our pose graph. 

This is a limitation of our current approach as it can lead to 

larger long-term drift for very long sequences. However, 

we plan to address this issue in future work by incorporat- 

ing our design with GTSAM [4]. 

 

3 Experiments 

To evaluate the performance of the proposed approach 

against a baseline, the algorithm is quantitatively com- 

pared to LIO-SAM on an existing construction site dataset, 

as well as qualitatively evaluated on physical robotics hard- 

ware. LIO-SAM provides a good baseline as it requires the 

same sensors (a 360-LiDAR and an IMU), is also feature- 

based, and requires similar computational resources. For 

numerical analysis, we primarily evaluate the accuracy of 

the localization estimates, as localization is the primary 

use case of real-time SLAM algorithms for most systems. 

Additionally, localization can be evaluated more directly 

than map quality and better localization directly leads to 

improved mapping. 

 

3.1 Hilti Dataset 

To evaluate the absolute positional accuracy, both al- 

gorithms were tested on some of the additional sequences 

provided by the Hilti SLAM Challenge 2022 dataset [10]. 

This dataset provides ROS bag recordings of LiDAR and 

IMU sequences collected from various construction and 

indoor environments using a Hesai Pandar XT-32 LiDAR. 

Vitally, the dataset also provides millimeter-accurate syn- 

chronized ground truth poses collected with a motion- 

capture system. This allows direct comparison of the pre- 

dicted and ground truth trajectories. 

To enable both algorithms to process the data, the point 

clouds were preprocessed to convert them into a Velodyne 

point format (does not change any data, but changes point 

format). Additionally, the IMU data was preprocessed as 

both algorithms expect the IMU to provide fused orien- 

tation estimates. These were generated using the open- 

source imu filter madgwick package [11]. To provide a 

wide range of difficulties and environments, 5 sequences 

from the dataset were tested. These are Exp04, Exp05, 

Exp06, Exp14, and Exp18. 

 
Table 1. Dataset statistics for Hilti sequences calcu- 
lated based on the ground truth poses 

 

Dataset 

Max 
Pitch 
/ Roll 
(◦) 

Mean 
Ang 
Vel 
(◦/s) 

Mean 
Lin 
Vel 
(m/s) 

Max 
Ang 
Vel 
(◦/s) 

Max 
Lin 
Vel 
(m/s) 

Exp04 10.968 19.970 0.606 142.194 1.886 
Exp05 17.324 17.110 0.561 146.696 1.616 
Exp06 58.033 38.971 0.617 263.522 2.408 

 

The first three scans were captured on three floors of 

a real-world indoor construction site with progressively 

more aggressive motions. The three datasets all include 

variations in Z-height, open and confined spaces, and tilt- 

ing in both pitch and roll. Table 1 provides some statistics 

generated from the ground truth poses provided by the 

datasets. Exp06 in particular offers very fast motions and 

aggressive rotations. Both Exp04 and Exp05 were des- 

ignated as easy difficulty by the dataset creators, while 

Exp06 was designated as medium difficulty due to the fast 

motions. 

Captured in more demanding indoor settings, Exp14 

and Exp18 both present challenging sequences with ge- 

ometric ambiguity and confined spaces. Notably, Exp14 
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showcases a rectangular staircase, while Exp18 incorpo- 

rates a spiral staircase at the beginning and end of the 

sequence, resulting in their classification as medium and 

hard difficulty, respectively. 

 
Table 2. Results from the Hilti Sequences, N/A in- 
dicates an algorithm lost tracking and could not re- 
cover 

 

Seq Algorithm 
Trans Trans 
RMSE SD 
(m) (m) 

Rot 
RMSE 
(◦) 

Rot 
SD 
(◦) 

Exp04 
LIO-SAM 0.1670 0.0879 1.486 0.355 
Ours 0.1147 0.0566 0.966 0.493 

Exp05 
LIO-SAM 0.0945 0.0450 0.873 0.336 
Ours 0.1124 0.0564 1.818 1.055 

Exp06 LIO-SAM 0.3599 0.2274 2.258 1.053 
Ours 0.4825 0.2578 4.098 1.707 

Exp14 LIO-SAM 
Ours 

N/A 
0.7966 

N/A 
0.5292 

N/A 
3.985 

N/A 
1.559 

Exp18 LIO-SAM 
Ours 

N/A 
0.7979 

N/A 
0.5713 

N/A 
10.433 

N/A 
3.854 

 

The two algorithms were evaluated on all five sequences 

using a Ryzen 5600H processor, processing the data in 

real-time. The predicted poses were captured and stored 

in a text file, and then synchronized with the ground truth 

poses using timestamps. For evaluation, translation er- 

rors were calculated using the Euclidean distance between 

the estimated and ground truth trajectories. The rotation 

errors were calculated as the smallest angle between the 

estimated and ground truth orientations. The root-mean- 

square (RMSE) and the standard deviation (SD) of the 

translational and rotational errors are reported to evaluate 

the accuracy and consistency of the estimated trajectories 

in Table 2. 
 

 
Figure 4. Predicted trajectory (red) versus ground 
truth (green) for Exp14 using our approach 

 

 

As shown in Table 2, our approach achieved better re- 

sults in 3 of the 5 sequences. Importantly, Exp14 and 

Exp18 show that our approach is more robust than LIO- 

SAM by completing the sequence. LIO-SAM on the other 

hand lost tracking in the first 5 seconds of both sequences 

due to starting in confined spaces and having to navi- 

gate stairways. Additionally, most of the errors in Exp14 

occurred in the last few seconds due to the cloud being 

highly geometrically ambiguous as a result of the transla- 

tional symmetry of the stairway (Figure 4). Exp18 also 

highlights the generalization capability of our approach 

to various built environments. While the other sequences 

primarily feature standard built environments, Exp18 was 

captured in a gallery with curved walls, ornate columns, 

and tight walkways. Despite there being few truly planar 

surfaces, our plane extractor was able to identify locally 

planar surfaces and outperformed LIO-SAM, completing 

the sequence. 

 

Figure 5. Angled view of the predicted trajectory for 
Exp06 using our approach 

 

 

Our algorithm also achieved better performance on 

Exp04. Upon initial inspection, it seems that LIO-SAM 

exhibited slightly better performance in Exp05 and Exp06. 

However, as shown in Figure 5 and Figure 6, our approach 

produced a smoother and more locally accurate trajec- 

tory, despite experiencing some additional drift in roll and 

pitch that resulted in comparable but slightly higher overall 

RMSE. This additional drift is due to how our algorithm 

integrates the IMU data into our pose estimates. Currently, 

our algorithm only utilizes the IMU data for initial pose es- 

timation and point cloud deskewing. However, IMUs also 

generate attitude measurements, which provide absolute 

constraints on the roll and pitch of the system. Since our 

system does not fuse the IMU orientation estimates with 

our final predicted pose, our algorithm is more susceptible 

to long-term drift in the roll and pitch axes for longer se- 

quences with aggressive motions. Therefore, even though 

our system provided better short-term estimates for Exp 05 

and Exp06, the full trajectory errors were slightly higher. 

Future work will focus on reducing these errors by reinte- 

grating the IMU data into the LiDAR pose estimate follow- 
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(a) LIO-SAM’s predicted trajectory 

 

(b) Our predicted trajectory 

Figure 6. The predicted (red) and ground truth 
(green) trajectories for Exp06 (cloud generated from 
ground truth for reference) 

 

 

ing Gauss-Newton optimization. Nevertheless, even with 

our current implementation, the preference for a smoother 

and locally accurate trajectory for navigation purposes may 

outweigh the marginal gain in long-term positional accu- 

racy offered by LIO-SAM. A similar story was observed 

in Exp05. 

 

3.2 Quadruped Robot Dataset 

While the Hilti SLAM Challenge dataset provides real- 

world sequences collected via a high-quality hand-held 

system, it may not be fully representative of the types of 

trajectories followed and the vibrations produced by many 

robotics systems. To evaluate the algorithm on a robotics 

platform, our algorithm and LIO-SAM were evaluated on a 

dataset collected in an indoor environment using a teleop- 

erated Unitree Go1 quadruped robot equipped with a Velo- 

dyne VLP-16 LiDAR and a YostLabs 3-Space Micro USB 

IMU (Figure 7). Compared to the Hilti Dataset, the data 

produced by this system is much noisier due to lower IMU 

precision, high vibrations due to the robot’s walking gait, 

and a lower precision LiDAR. Additionally, the LiDAR 

has a very limited field-of-view (30◦) and lower resolution 

(only 16 channels), providing an additional challenge to 

the SLAM system. Both algorithms took less than 50 ms 

to process each frame. 

 

Figure 7. Lab robot used to collect dataset 

 

Figure 8 shows a close-up of the resultant trajectory and 

generated map. While the overall trajectories produced by 

both algorithms were similar, the difference in short-term 

precision becomes apparent. During the test, LIO-SAM 

suffered from poor short-term precision in the predicted 

pose. This is likely due to their strategy of performing 

frame-to-global map matching at a slower rate than frame- 

to-frame matching, as well as vibrations picked up by the 

IMU. Our approach did not suffer from these issues and 

produced a much smoother and more accurate trajectory. 

Additionally, our 3-stage matching approach can use nor- 

mal information to distinguish between the two sides of 

a wall, accurately recovering the thicknesses of the walls. 

Meanwhile, LIO-SAM uses only proximity during match- 

ing, meaning both sides of the wall typically merge into a 

single plane, making it difficult to recover the geometry of 

the building. This has significant implications for build- 

ing information modeling (BIM) as wall thicknesses are 

often of great interest for accurately modeling the building 

geometry. 

As shown in Figure 9, the higher precision in predicted 

poses also leads to improved map quality and sharper point 

clouds. The difference is most evident when comparing 

the thin legs of the chairs, and the guard rail by the stairs. 

Improved map quality is of significant importance for tasks 

such as object detection, where sharper maps translate to 

lower noise in the object point clouds, capturing finer de- 

tails of the object and improving the odds of accurate clas- 

sification or segmentation. Additionally, the reduction in 
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(a) LIO-SAM’s predicted trajectory 

 

(b) Our predicted trajectory 

Figure 8. The predicted trajectory (yellow) and re- 
sultant map for the quadruped robot dataset (from 
same viewing angle) 

 

 

noise in the object point clouds can improve the precision 

of measurements between object features, enabling more 

accurate object modeling. 

Local stability in the estimated pose is also crucial for 

autonomous navigation. Poor short-term positional drift 

can cause the robot to temporarily assume it is too close 

or inside an obstacle, causing it to react unpredictably or 

sporadically. This can lead to jerky or dangerous recovery 

behaviors where the robot attempts to continuously re-plan 

its trajectory around obstacles. Our algorithm generates 

smoother, more accurate local trajectories than LIO-SAM, 

which can lead to less time spent re-planning and more 

consistent robot behavior. 

 

4 Conclusion 

In this study, we present a novel, computationally 

lightweight, LiDAR SLAM system for real-time localiza- 

tion and mapping. The proposed system was designed as 

a stand-alone C++ package to be used with 360 LiDAR 

scanners. The system was evaluated on a real construc- 

tion dataset as well as on a quadruped robot. The system 

(a) Map produced by LIO-SAM 

 

(b) Map produced by our approach 

Figure 9. Example maps recovered by LIO-SAM and 
our approach using the quadruped robot 

 

 

achieved state-of-the-art performance on the majority of 

the datasets and demonstrated improvements in the pose 

estimate’s robustness and precision. 

While the proposed system provides clear advantages 

for the localization of autonomous systems, it does have 

some limitations. The current approach only uses the IMU 

for initial pose estimation and deskewing the cloud. This 

leads to eventual drift in roll and pitch as the IMU data is 

not utilized during pose estimation. Future work will inte- 

grate the final pose estimates with a factor graph to enable 

more flexible integration of additional sensors. This will 

also allow us to incorporate attitude or preintegrated IMU 

factors, improving the pitch and roll estimation over long 

trajectories. 
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