
Vol.:(0123456789)

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-024-00776-x

Intelligent Page Migration on Heterogeneous Memory 
by Using Transformer

Songwen Pei1,2 · Wei Qin1 · Jianan Li1 · Junhao Tan1 · Jie Tang3 · 
Jean‑Luc Gaudiot4

Received: 13 February 2023 / Accepted: 17 August 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2024

Abstract
Locality-based migration strategies are widely used in existing memory space man-
agement. Such type of strategies are consistently confronts with challenges in effi-
ciently managing pages migration within constrained memory space, especially 
when new architecture such as hybrid of DRAM and NVM are emerging. Here we 
propose TransMigrator, an innovative predictive page migration model based on 
transformer architecture, which obtains a qualitative leap in the breadth and accu-
racy of prediction compared with traditional local-based methods. TransMigrator 
utilizes an end-to-end neural network to learn memory access behavior and page 
migration record in the long-term history and predict the most likely next page to 
fetch. Furthermore, a migration-management mechanism is designed to support the 
page-feeding from predictor, which in another way enhance the model robustness. 
The model achieves an average prediction accuracy better than 0.72, and saves an 
average of 0.24 access time overhead compared to strategies such as AC-CLOCK, 
THMigrator, and VC-HMM.

 *	 Songwen Pei 
	 swpei@usst.edu.cn

 *	 Wei Qin 
	 201440056@st.usst.edu.cn

1	 University of Shanghai for Science and Technology, Shanghai 200093, China
2	 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese 

Academy of Sciences, Beijing 100190, China
3	 South China University of Technology, Guangzhou 510641, China
4	 University of California, Irvine, CA 92617, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00776-x&domain=pdf


	 International Journal of Parallel Programming

1  Introduction

Driven by the growth of the data-intensive applications such as big data computing, 
cloud computing and super high-intensity training work, the traditional computing 
mode has been making the shift to large-scale data processing. The demand of abil-
ity to process large-scale data is not only dependent on computational power, but 
also on the capability of memory to store data. The Limitations such as unscalable 
capacity and huge static energy consumption of traditional DRAM system, make 
it hard to respond to the new challenges. A research [9] has revealed that DRAM 
consumes a portion 30–48% of the total system’s energy. Nowadays, data centers 
are increasingly focused on memory capabilities, efficiency and capacity of mem-
ory systems are becoming as critical as computational power. In response to the 
limitations of DRAM, Non-Volatile Random-Access Memory (NVM) has emerged 
as an alternative. which offers higher storage density and lower energy consump-
tion [5, 6, 24]. Despite its benefits, NVM is also facing challenges. It generally has 
lower performance compared to DRAM, like slower data access speed, particularly 
in writing, limited write endurance, and higher write energy consumption. Being 
specific, Phase-Changing Memory (PCM) requires more energy to change between 
amorphous and crystalline state compared to the energy needed for moving electric 
charges in the transistor [2]. Additionally, the PCM’s write latency can be up to 10 
times higher than that of DRAM.

Due to its inherent limitations, current NVM cannot completely replace DRAM 
entirely. As an alternative to a complete replacement, the concept of heterogeneous 
memory system has been proposed which integrates both DRAM and NVM. aiming 
to leverage the advantages of each while mitigating their disadvantages. [7, 18, 28]. 
To improve system performance, "Hot pages," which are accessed more frequently, 
should ideally be placed in DRAM due to its faster access times. Conversely, "cold 
pages," which are accessed less frequently, are better suited for NVM, which offers 
higher storage density and lower energy consumption.

There are generally two organizational approaches for hybrid memory systems: 
vertical and horizontal as shown in Fig. 1. In the vertical organization, DRAM is 
used as a cache for NVM. DRAM acts as a smaller, faster storage layer that holds 
frequently accessed data, while NVM serves as a larger, slower storage layer. When 
a request is missed in DRAM, the system will retrieve the data from NVM. The use 
of NVM is transparent to the programmer in Memory Mode. The vertical organiza-
tion also allows for the option to bypass DRAM and access NVM directly, such as 
the strategy THMigrator [19].

Fig. 1   Two kinds of hybrid 
memory organizations. Vertical 
organization in (a) and horizon-
tal organization in (b)



International Journal of Parallel Programming	

In the horizontal organization, DRAM and NVM are combined to form a single 
address space. In some strategies, a page could only reside in one memory device, 
such as CLOCK-DWF [14] and AC-CLOCK [13], of which type is named exclusive 
strategy. In contrast, a page is allowed exist in both memory devices simultaneously, 
such as APMigrate [27] and VC-HMM [22], which are referred to as a redundant 
strategy. The vertical organization naturally falls under the redundant strategy cat-
egory, because a page could be hold both in DRAM and NVM.

In order to take advantage of the hybrid memory system, pages should be placed 
in DRAM and NVM carefully through hotness evaluation. CLOCKDWF migrates 
only dirty pages (i.e., pages being written) to DRAM, while AC-CLOCK migrates 
pages being both read and written, which aims to keep frequently accessed pages 
in the faster DRAM. THMigrator uses a fixed threshold to decide when to migrate 
pages, which is not flexible enough to adapt to the varying access patterns of dif-
ferent applications. APMigrate and VC-HMM try to ease the inflexibility of fixed 
thresholds by dynamically adjusting the threshold based on the benefit derived from 
previous migrations. But the initial value of the threshold makes the system frag-
ile. The initial value of the threshold is crucial. If set too low, the system may per-
form many migrations that make little contribution to performance. These inefficient 
migrations may go unnoticed until the pages are eventually evicted. However, when 
pages are migrated back to NVM, the threshold may become overly large, prevent-
ing further beneficial migrations from being executed. This pitfall is demonstrated in 
our experiments.

The page prediction is crucial in migrating strategy, and we found that neural 
networks are particularly well-suited for this task because they can handle complex, 
nonlinear relationships in data. They can also adapt to changes in access patterns 
over time, making them a dynamic solution for memory management.

There are some Existing Neural Network Approaches in page migration in hybrid 
memory system. Kleio [10] trains a separate neural network for each important 
pages. Each network predicts the access count for its respective page in the next 
time interval. This method, while potentially accurate, can be complicated and 
resource-intensive due to the individual networks for each page. DeepSwapper [3] 
uses Long Short-Term Memory (LSTM) networks, a type of recurrent neural net-
work, to predict the next memory access sequence based on previous sequence. It 
operates on the differences between adjacent addresses rather than the addresses 
themselves, which can lead to instability and low precision when recovering the 
actual addresses. In contrast to the aforementioned methods, TransMigrator [20] is 
an extension of previous work that a single, end-to-end neural network to predict 
hot pages directly. This approach aims to simplify the system design by using one 
unified network instead of multiple individual networks. In addition to utilizing the 
page access history as transformer input, this paper also integrates the records of 
page migration and eviction to enhance the training data, thereby improving the pre-
dictive accuracy. Furthermore, the paper redesigns the page migration mechanism, 
optimizing the previous algorithm that determined the migration queue based solely 
on access history. A more suitable and rational page migration strategy has been 
constructed, which aligns better with the predictions made by the transformer. Here 
lists the main contributions as follows:



	 International Journal of Parallel Programming

•	 A transformer-based end-to-end predictor is proposed for hot page prediction.
•	 Migration and eviction history are included as network input parameters.
•	 TransMigrator is proposed as a robust hybrid memory management architecture. 

This architecture integrates a neural network predictor with a threshold-based 
fallback strategy. The dual approach ensures access latency losses are kept within 
acceptable range when predictor fails.

•	 The migration part of Migrator is reconstructed to assign a higher level of access 
priority to prediction result, which aligns better which predictor part.

2 � TransMigrator

Figure  2 provides a visual representation of how TransMigrator integrates into 
the overall system architecture. TransMigrator is designed for use in a hybrid 
memory system with a horizontal organization. The system employs a redundant 
strategy, meaning that pages can exist in both DRAM and NVM simultaneously. 
TransMigrator is designed to intercept all Last-Level Cache (LLC) misses, using 
migration controller (MigC), which allows TransMigrator to make informed deci-
sions about page migration based on actual access patterns. The MigC handles 
the translation of addresses between the unified address space and the physical 
locations in either DRAM or NVM, and is responsible for the actual migration of 
pages between DRAM and NVM.

Figure 3 offers a detailed look at the Migration Controller (MigC) within the 
TransMigrator system. The left part is responsible for predicting which pages are 
likely to become hot in the future. It uses a buffer that stores page numbers to pre-
pare for the network input. The right part manages the actual movement of pages 
between DRAM and NVM based on the predictions.The predictor is a standard 
transformer model, which is a type of neural network architecture known for its 
ability to handle sequential data effectively.

There are 3 components composing the right part:

•	 NVM Page List (NPL) tracks which pages are currently stored in NVM.
•	 DRAM Page List (DPL) tracks which pages are currently stored in DRAM.
•	 Candidate Page List (CPL), a list of pages that have the potential to become hot.

Fig. 2   System overview



International Journal of Parallel Programming	

These pages are considered for migration to DRAM upon their next access. Pages 
in the CPL are subject to a lifetime expiration. If not accessed within their lifetime, 
they are removed from the CPL. A request counter is used to track the expiration of 
pages in the CPL. The expiration time for a page is set based on the current counter 
value plus the predetermined lifetime.

The CPL serves as a bridge between the prediction part and the migration part. It 
allows the system to prepare migrate pages that the predictor identifies as potentially 
hot ones.

This design considers the balance between predictive intelligence and traditional 
threshold-based methods. To address potential inaccuracies in the predictor’s per-
formance, a fixed threshold method runs in parallel with the predictor. This dual 
approach ensures that the system remains robust and can still make effective migra-
tion decisions even if the neural network’s predictions are not always accurate.

2.1 � Design of Neural Network

The network takes a sequence of page numbers as input data, aiming to predict the 
page number that will be most frequently accessed in the subsequent sequence. The 
page prediction is formulated as a classification task, where each page number is 
treated like a ’word’ in natural language processing, and each word is mapped to an 
embedding vector, as shown in the Fig. 4.

Fig. 3   Details of migration 
controller

Fig. 4   Details of the neural network



	 International Journal of Parallel Programming

Due to the large address space, it’s impractical to map each page number 
directly to an embedding vector in a dictionary. To address this, page numbers 
are split into smaller tokens, similar to techniques used in natural language pro-
cessing. These tokens are of the same length in bits. Such approach of tokeniza-
tion helps to reduce the dictionary size, making it more manageable to create a 
mapping from tokens to embedding vectors.

We start the development process by modeling it as a sequence-to-sequence 
prediction, using the differences in adjacent addresses as input and output. The 
input was normalized, and the loss function was based on mean square error.

As shown in previous works, recovering the original addresses from the pre-
dicted differences proved to be difficult. It was challenging to accurately deter-
mine the mean, standard deviation, and base of the differences during the recov-
ery process. Due to the attributes of memory access traces were found to be 
intrinsically unstable, which makes it difficult for simple regression approaches 
to work effectively.

Both Long Short-Term Memory (LSTM) networks and transformer models 
were experimented with as the backbone of the network. At last the transformer 
model was found to offer better speed and accuracy in handling the task. Based 
on the evaluation, the transformer model was chosen for its superior perfor-
mance in terms of both speed and accuracy, making it the ideal candidate for the 
end-to-end network in TransMigrator.

Input Sequence The network takes as input a sequence of Lseq page numbers, 
which are the addresses of memory pages.

Output Sequence The output of the network is a sequence of N small tokens. 
These tokens can be reassembled to form the predicted page number.

Tokenization Each page number, which is 20 bits long due to the 32-bit 
address space and the 12 bits required for the 4 KB page size, is split into N 
small tokens, each of Ltoken bits. If 20 is not a multiple of Ltoken , zeros are padded 
to the high bits of the tokens to complete the sequence.

Network In terms of page numbers, the network operates on a many-to-one 
basis, meaning multiple input page numbers are used to predict a single out-
put page number. However, in terms of tokens, the network is many-to-many, as 
multiple input tokens are used to predict multiple output tokens. The dimension 
of the token embeddings and the model in the transformer are the same, denoted 
as dmodel . The dimension of the feedforward networks within the transformer is 
twice the model dimension, i.e., 2 × dmodel.

Transformer Encoder and Decoder The tokens are converted to embeddings, 
which serve as the input to the transformer encoder. The input to the transformer 
decoder consists of N learnable embeddings. The features of the decoder output 
are transformed from dmodel to C by a linear layer, where C is the dictionary size, 
calculated as 2Ltoken . The cross-entropy between the decoder output and the actual 
labels (the correct tokens) is used as the loss function. This loss is minimized 
during the training process to improve the accuracy of the network.



International Journal of Parallel Programming	

2.2 � Page Migration

We present a dual-path mechanism in TransMigrator for handling memory access 
events, involving both the predictor part and the migration part.

Predictor Part: When a memory access occurs, the accessed page number is added 
to an access buffer. If the buffer reaches its capacity (L pages), all stored page numbers 
are used as input for the predictor. The output page number from the predictor, which 
is a prediction of the next hot page, is added to the Candidate Page List (CPL) with a 
lifetime ( Lseq).

Migration Part: Pages in DRAM are maintained in LRU (Least Recently Used) 
order in the DRAM Page List (DPL). Upon access, a page is moved to the head of 
DPL. If a write operation occurs, the dirty bit is set. If DRAM is full, the tail page 
of DPL is evicted to NVM. Pages in CPL, if accessed, are copied into DRAM. This 
approach avoids clean pages write-back, saving NVM write operations. Pages in CPL 
with expired lifetimes are removed after each access cycle to filter out false positives 
and reduce unnecessary migrations. Pages in NVM are assigned with counters. When 
a counter exceeds a threshold, the page is added to CPL with a lifetime ( Lseq ). If a page 
is not found in DRAM or NVM, a page fault occurs. The page is loaded from external 
storage to DRAM once sufficient DRAM space has been confirmed.

Migration Procedure: When page P is accessed, its counter is incremented, and its 
number is added to the access buffer. The MigC searches for page P in DPL, CPL, and 
NPL in that order.

Operation 1 If P is in DPL, move P to the head and set the dirty bit if it’s a write 
operation.

Operation 2 If P is in CPL, migrate P to DRAM. If DRAM is full, evict the tail 
page of CPL to NVM, handling the dirty bit and data preservation. Add P to DPL and 
remove from CPL.

Operation 3 If P is in NPL, increment its counter. If it reaches the threshold, reset 
the counter, add P to CPL with a lifetime.

Operation 4 If P is not in any list, load it from storage into DRAM after ensuring 
space, and place it at the head of DPL.

Post-Operation Cleanup 1 MigC removes all pages from CPL that have expired 
their lifetimes.

Post-Operation Cleanup 2 MigC removes last 3 pages in DPL queue, and transfer 
them to CPL.

Post-Operation Cleanup 3 Invoke the Predictor function and feed it with most 
recent operation history information. MigC fetches 3 most likely pages from prediction 
results, and move them to tail of DPL queue.



	 International Journal of Parallel Programming

Algorithm 1   Page Migration algorithm



International Journal of Parallel Programming	

3 � Evaluation and Analysis

3.1 � Trace Collection

We use the SPEC CPU2006 benchmarks with the simulator GEM5, and totally 
10 benchmarks are run for 100 million instructions respectively to collect detailed 
traces of memory access patterns. The simulation is set up with a three-level cache 
architecture, which is common in many modern CPUs. AtomicSimpleCPU is used 
in GEM5 to prioritize simulation speed. The configuration details are provided in 
Table 1.

To simulate memory shortage situations, which are common in real-world appli-
cations, the memory capacity in the simulation can be artificially limited. The col-
lected traces are summarized in Table 2, which includes details such as the number 
of memory accesses, read/write operations, and other relevant metrics. Some bench-
marks exhibiting write-operations absence to memory is caused by their memory 
footprint not surpassing the dimensions of the L3 cache. For benchmarks with simi-
lar memory footprints, the request count can serve as an indicator of locality. Fewer 
requests suggest higher locality, in which case the benchmark accesses a smaller set 
of memory addresses more frequently. The collected traces likely reflect a variety of 
localities based on different memory footprint sizes, which is important for training 
and evaluating the TransMigrator system’s ability to predict effectively.

Table 1   GEM5 simulation 
configuration

Parameter Value

CPU AtomicSimpleCPU
L1 data cache 32 KB (8-way, 64-byte line)
L1 instruction cache 32 KB (8-way, 64-byte line)
L2 cache 512 KB (8-way, 64-byte line)
L3 cache 4 MB (16-way, 64-byte line)

Table 2   Trace characteristics. 
*“Ifetch” means instruction 
fetch

Benchmark Footprint Request Read Write Ifetch

bzip2 19.4648MB 103309 87148 15509 652
gcc 11.3885MB 157223 107483 41787 7953
calculix 5.24469MB 31889 28517 0 3372
cactusADM 25.5783MB 1052375 675028 373032 4315
sjeng 175.43MB 16536109 8299780 8234681 1648
hmmer 1.65619MB 6466 5143 0 1323
mcf 5.85046MB 98296 81729 15962 605
soplex 3.35858MB 19983 16628 0 3355
omnetpp 3.88507MB 12771 9834 0 2937
povray 5.37494MB 50785 46121 1 4663



	 International Journal of Parallel Programming

3.2 � Network Training

Dataset The training and validation dataset is a mixture of all collected traces. 
Traces are divided into smaller sequences of length 2 ×Lseq . Each small sequence is 
split into two halves; the first half is used as input, and the latter half produces real 
labels. The label is determined by the most frequently appearing page number in the 
latter half. A stride of 0.5×Lseq is used during splitting to generate more sequences. 
Sequences are randomly divided into a training set and a validation set in a 7:3 ratio. 
Due to severe imbalance in the number of sequences per benchmark, a weighted 
sampler is employed. The weight for sequences from benchmark i is 1

ni
 , where ni is 

the number of sequences for that benchmark. This approach gives smaller traces a 
higher chance of being included in a training batch.

Network configuration A cosine learning rate scheduler with a warm-up stage is 
used for stable convergence. The learning rate factor is calculated using an equation 
that considers the iteration number in batches (i), warm-up steps ( � ), and the maxi-
mum iteration (m). Table 3 would detail the specific configuration parameters of the 
network.

Results Traces are split into sequences of length L, and the network predicts 
whether the predicted page is the most frequent in the next sequence. As shown in 
Table 4, the network achieves an average prediction accuracy of 0.7245 in 10 bench-
marks. Given the scale of the network, this result is considered remarkable. Despite 
the high accuracy, the network alone may not be sufficient for the entire task, espe-
cially for benchmarks with lower accuracy. To compensate for potential inaccuracy, 
a classic threshold method is used in conjunction with the neural network.

(1)lrfactor =

{

0.5(1 + cos(
i

m
𝜋)) i ≥ 𝜔

i

𝜔

, i < 𝜔

,

Table 3   Network training 
configuration

Parameter Value

encoder layers 2
decoder layers 2
number of heads 2
model dimension 64
sequence length 30
token length 8
learning rate 0.001
batch size 2048
dropout 0.0
seed 43
loss cross entropy
optimizer adam



International Journal of Parallel Programming	

Table 4   Network prediction 
accuracy

Benchmark Accuracy

bzip2 0.648
cactusADM 0.401
calculix 0.7292
gcc 0.7638
hmmer 0.7765
mcf 0.8092
omnetpp 0.7485
povray 0.7643
sjeng 0.8000
soplex 0.8047

Table 5   Network prediction 
accuracy

Attributes threshold lifetime

AC-CLOCK – –
THMigrator 32 256
VC-HMM 32 256

3.3 � Migration Simulation

A simulator is created to assess different page migration strategies. The neural network’s 
predictions are pre-computed and stored in individual files for each benchmark, from 
which predicted page numbers are read as needed.

Configurations AC-CLOCK [13], THMigrator [19], and VC-HMM [22] are chosen 
for comparison. AC-CLOCK has no hyperparameters. THMigrator, VC-HMM, and the 
proposed design share two parameters: threshold and lifetime, both set to 32 and 256, 
respectively. VC-HMM utilizes a small DRAM as a direct mapping victim cache between 
DRAM and NVM, a feature also considered in the simulation setup. The parameters for 
the simulator, as shown in Table 5, are carefully chosen to reflect real-world usage.

To simulate intensive memory usage, the NVM size for each benchmark is set to 
approximate the memory footprint. The sizes of DRAM, NVM, and victim cache are set 
in a ratio of 1:8: 1

16
 , as detailed in Table 6 for each benchmark.

Evaluations Total access time and total energy consumption are defined by Eqs. 2 and 
3, which are derived from APMigrate with modifications.

When ascertaining the total access time, we disregard certain page migration costs. 
This is feasible because the migration of pages can occur in the intervals between mem-
ory access events. Absent this oversight, the efficiency of the system would be adversely 
affected by each page migration due to the substantial overhead associated with it, 
which is significantly greater than that of routine read and write operations within 
a cache line. On the other hand, in energy consumption evaluations, we do not 
follow such disregard, as the energy consumption is inherently observable and 
cannot be circumvented.



	 International Journal of Parallel Programming

Variables used in Eqs. 2 and 3 are explained in Table 7. The migration time is set 
to 380 times the DRAM access time according to APMigrate. Other variable values 
are sourced from [8] and listed in Table 8.

Table 6   Benchmarks 
configuration. * “VC” means 
victim cache used in VC-HMM

Benchmark NVMsize DRAMsize VCsize

bzip2 20.0MB 2.5MB 128.0KB
gcc 12.0MB 1.5MB 64.0KB
calculix 6.0MB 768.0KB 32.0KB
cactusADM 26.0MB 3.25MB 128.0KB
sjeng 176.0MB 22.0MB 1.0MB
hmmer 2.0MB 256.0KB 16.0KB
mcf 6.0MB 768.0KB 32.0KB
soplex 4.0MB 512.0KB 32.0KB
omnetpp 4.0MB 512.0KB 32.0KB
povray 6.0MB 768.0KB 32.0KB

Table 7   Variables in computation

Symbol Description

ndr DRAM read count
ndw DRAM write count
nnr NVM read count
nnw NVM write count
nmig migration count
tdr DRAM read latency
tdw DRAM write latency
tnr NVM read latency
tnw NVM write latency
tmig migration latency
sized DRAM size
datadr total data of DRAM read
datadw total data of DRAM write
datanr total data of NVM read
datanw total data of NVM write
edr DRAM read energy
edw DRAM write energy
enr NVM read energy
enw NVM write energy
pd DRAM static power
pn NVM static power
sizen NVM size



International Journal of Parallel Programming	

Ta
bl

e 
8  

M
em

or
y 

ch
ar

ac
te

ris
tic

s

A
ttr

ib
ut

es
D

R
A

M
N

V
M

la
te

nc
y 

re
ad

 (n
s)

15
50

la
te

nc
y 

w
rit

e 
(n

s)
15

15
0

en
er

gy
 re

ad
 (m

J/G
B

)
12

.1
85

7
15

.6
2

en
er

gy
 w

rit
e 

(m
J/G

B
)

3.
04

69
15

0
en

er
gy

 st
at

ic
 (m

W
/G

B
)

10
0

1



	 International Journal of Parallel Programming

3.4 � Access Time

As demonstrated in Fig. 5, TransMigrator, significantly reduces the average access 
time compared to THMigrator, VC-HMM, and AC-CLOCK by 38.72%, 26.27%, 
and 5.41%, respectively, with data normalized by dividing by the mean for each 
benchmark to ensure consistent scales. This indicates that TransMigrator is more 
efficient in managing memory access times.

THMigrator is described as conservative in the experiment setting, making fewer 
migrations than other approaches. This introduces very low energy consumption but 
leaves many pages in NVM, leading to increased access times. However, on bench-
marks gcc and sjeng, THMigrator performs better with more page migrations. Due 
to the limited capacity of DRAM, migrating certain pages is necessary for better per-
formance. Too few migrations can undermine the system’s performance. VC-HMM, 
which updates the threshold based on benefits, is highlighted as having a potential 
flaw. There is often a long delay between the start of migration and the adjustment 
of the threshold. When low beneficial migrations are detected, the threshold can be 
pushed to an extreme value, preventing further migrations and making it difficult for 
the threshold to return to a normal range. Despite the potential issue with threshold 
adjustment, VC-HMM generally performs better than THMigrator in most cases, 
except for the risk of falling into the trap of extreme threshold values. AC-CLOCK 
is noted for achieving relatively low access times compared to THMigrator and 
VC-HMM and is considered robust across all benchmarks. TransMigrator achieves 
lower access times than AC-CLOCK in most benchmarks, except for bzip2, where 

(2)

ttotal = ndr × tdr + ndw × tdw

+ nnr × tnr + nnw × tnw

+ nmig × tmig

(3)

etotal = datadr × edr + datadw × edw

+ datanr × enr + datanw × enw

+ (pd × sized + pn × sizen) × ttotal

Fig. 5   Normalized access time. The complete bar represents total access time. The shadow portion indi-
cates NVM access time



International Journal of Parallel Programming	

it has more NVM writes. The design does not distinguish between read and write 
accesses, which may lead to pages with many write accesses not being migrated 
based on access count. TransMigrator demonstrates robust and good performance in 
most benchmarks. It achieves low access time in the benchmark cactusADM, even 
with a prediction accuracy of only 40.10%. This suggests that the combination of the 
predictor and the fallback method is effective and robust. The effectiveness of the 
co-work between the predictor and the fallback method in TransMigrator is empha-
sized, contributing to its overall performance and robustness.

3.5 � Energy Consumption

As depicted in Fig. 6, the proposed method, TransMigrator, saves the average total 
energy consumption by 25.04% compared to VC-HMM but consumes more energy 
than AC-CLOCK by 10.22%. TransMigrator consumes 2.5 times the energy of 
THMigrator, which is more energy-efficient due to its conservative approach and 
fewer migrations. However, THMigrator’s lower energy consumption comes at the 
cost of slower access times. Non-Volatile Memory (NVM) is the dominant factor in 
energy consumption. Despite its low static power, NVM has a significant overhead 
for read and write operations compared to DRAM, especially during page migra-
tions. The more page migrations that occur, the higher the energy consumption, as 
illustrated in Fig. 7. More page migration does not necessarily reduce access time. 
For example, on the hmmer and omnetpp benchmarks, VC-HMM performs more 
migrations than TransMigrator but has a higher access time. VC-HMM has the low-
est number of migrations but the highest energy consumption. This is because regu-
lar accesses to NVM become the primary source of energy consumption when the 
number of migrations is reduced. AC-CLOCK and TransMigrator achieve a better 
balance between energy consumption and access time compared to the other two 
approaches. TransMigrator is noted for its efficiency, reducing energy consumption 
compared to VC-HMM while still providing faster access times than THMigrator.

Fig. 6   Normalized energy consumption. The complete bar represents total energy consumption. The 
shadow part indicates NVM consumption



	 International Journal of Parallel Programming

3.6 � Network Overhead

The prediction part (neural network) and the migration part of the system operate 
in parallel. This means they move independently, with the migration part always 
performing its routine tasks. The inference overhead of the neural network can be 
partially hidden due to the parallel nature of the system. This suggests that the time 
taken for the network to make predictions does not significantly impact the over-
all system performance because other processes continue to run concurrently. The 
system is designed to work effectively with or without the network part. The neural 
network enhances the system’s capabilities but is not essential for its basic opera-
tion. The latency of the system is influenced more by the prediction accuracy of 
the network than by its inference speed. This implies that even if the network takes 
some time to make predictions, as long as those predictions are accurate, the sys-
tem’s performance in terms of latency will be acceptable. The network only needs 
to commit an inference every multiple of memory accesses. This means that the fre-
quency of predictions is not as critical as the accuracy of those predictions. Given 
the inference frequency and the ability to apply various techniques to improve the 
network’s performance, there is room to use more sophisticated models. These mod-
els could potentially offer better prediction accuracy without causing a noticeable 
increase in latency. There is a trade-off between using a more complex model for 
better accuracy and maintaining low latency. However, due to the system’s design 
and operation, it is possible to leverage more complex models without significantly 
impacting latency.

4 � Related Work

DPQ [23] presents a promising approach for deploying deep neural networks on 
resource-constrained edge devices, for pruning and compressing deep neural net-
work models. The technique offers a balance between model size and accuracy, 
which is essential for practical applications in computility-limited deployment 
scenarios. SPARK [15] utilizes a variable-length scheme to optimize both the 

Fig. 7   Normalized migration count.The complete bar represents the sum count of migration from NVM 
to DRAM and writing back. The shadow portion indicates the NVM actual write back count, with clean 
pages excluded



International Journal of Parallel Programming	

algorithmic and architectural aspects for local parameter training. It represents 
an alternative approach to model compression that addresses the challenges of 
deploying large DNNs on constrained hardware. The work of Songwen Pei et al. 
[21] from the aspect of pruning optimizing, proposes a novel filter pruning algo-
rithm, named DRP. With a co-designed method called CBS, the solution per-
forms better in pruning networks of huge sizes, and makes it easier to deploy 
large-scale models on devices with limited resources.

The work Seok et al. [25] focuses on moving write-bounded pages to DRAM 
and read-bounded pages to NVM, using a moving average weight updated by 
access type and thresholds determined by trials. Clock-DWF [14] is Similar to 
[25], which aims to migrate write operations to DRAM but uses a CLOCK algo-
rithm for page selection and eviction based on dirty bits. Adaptive-Classification 
CLOCK [13] is an improvement over Clock-DWF, the approach of which places 
all fault pages in DRAM and enforces a stricter migration policy.

UIMigrate [26] calculates page hotness with decay factors and adjusts thresh-
olds based on migration benefits. APMigrate [27] builds on UIMigrate, writing 
back only changed parts of a page back to NVM using a bitmap. THMigrator 
[20] utilizes two-way hash chain lists for accelerated page lookup. VC-HMM 
[22] Introduces a victim cache between DRAM and NVM to reduce NVM write 
operations. AMP [12] Employs multiple strategies (LRU, LFU, random) and 
switches between them based on page access ratios and LRU hit ratios. Adavally 
et al. [1] Adjusts migration thresholds by monitoring migration counts and aver-
age access counts, using a small mapping table for page repositioning. OAM 
[16] Operates at the program object level, combining access time and energy 
consumption, and injects allocation/migration instructions via the compiler. 
Kleio [10] Selects important pages and trains a separate recurrent neural net-
work for each, using predicted access counts for migration decisions. Deep-
Swapper [4] Uses LSTMs to predict future address differences and migrates 
frequently written pages to NVM, unlike TransMigrator, which treats read and 
write equally. Doudali et al. [11] Maps page accesses to image pixels, marking 
areas for important pages based on access patterns. TransFetch [29] is Designed 
for prefetching data to the cache rather than page migration. It uses a similar 
input splitting method and transformer architecture as TransMigrator but dif-
fers in its approach to embeddings and output labeling. Long et  al. [17] pro-
poses prefetching an additional page on page faults for both CPUs and GPUs, 
modeling the problem as a classification task using transformer encoders for 
prediction.

5 � Conclusion

The article proposes TransMigrator, a novel approach to page migration in hybrid 
memory systems that combine DRAM and NVM. The core of TransMigrator is 
an end-to-end neural network with a transformer backbone, which is used to pre-
dict future hot pages based on previous memory access patterns. The network 
achieves an average prediction accuracy of 0.7245 across different benchmarks, 



	 International Journal of Parallel Programming

with an estimated model parameter size of 0.804 MB. TransMigrator combines 
the transformer-based predictor with a fixed threshold migration approach. The 
latter serves as a fallback mechanism when the predictor’s accuracy is low.

Experiments demonstrate that TransMigrator significantly outperforms other 
migration strategies like THMigrator, VC-HMM, and AC-CLOCK, reduc-
ing average access time by 38.72%, 26.27%, and 5.41%, respectively. The dual 
approach of prediction and fallback ensures accurate migrations and maintains 
low latency, even in cases of mispredictions.

Limitations: The simulator used for evaluation lacks timing information, which 
means some migration overheads are not fully accounted for. The neural network 
does not differentiate between read and write operations. The fallback method is 
considered simplistic and may not be optimal. These limitations suggest that the 
neural network could be integrated with other page migration strategies. Improve-
ments to the network design, and fallback mechanisms are identified as areas for 
future research.

Acknowledgements  We would like to thank the anonymous reviewers for their invaluable comments. 
This work was partially funded by the National Natural Science Foundation of China under Grant 
61975124, Shanghai Natural Science Foundation (20ZR1438500), State Key Laboratory of Computer 
Architecture (ICT, CAS) under Grant No.CARCHA202111, and Engineering Research Center of Soft-
ware/Hardware Co-design Technology and Application, Ministry of Education East China Normal Uni-
versity under Grant No.OP202202. Any opinions, findings and conclusions expressed in this paper are 
those of the authors and do not necessarily reflect the views of the sponsors.

Author contributions  Songwen Pei propose the original migrator mechnism, revise the manuscript, 
response comments, etc. Wei Qin discuss on the structure of TransMigrator, edit some figures, and 
rewirte it. Jinan Li edit the orginal manuscript, and do experiments and collect data. Junhao Tan edit 
and format part of the new version of manuscript. Jie Tang discuss the main contributions, and fix some 
typos. Jean-Luc Gaudiot suggests on the structure of the paper, polish some expression.

Declarations 

Conflict of interest  The authors declare no competing interests.

References

	 1.	 Adavally, S., Islam, M., Kavi, K.: Dynamically adapting page migration policies based on appli-
cations’ memory access behaviors. J. Emerg. Technol. Comput. Syst. (2021). https://​doi.​org/​10.​
1145/​34447​50

	 2.	 Aryana, K., Gaskins, J.T., Nag, J., Stewart, D.A., Bai, Z., Mukhopadhyay, S., Read, J.C., Olson, 
D.H., Hoglund, E.R., Howe, J.M., Giri, A., Grobis, M.K., Hopkins, P.E.: Interface controlled 
thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat. Com-
mun. 12, 774 (2021). https://​doi.​org/​10.​1038/​s41467-​020-​20661-8

	 3.	 Beigi, M. V., Pourshirazi, B., Memik, G., Zhu, Z.: Deepswapper: a deep learning based page 
swap management scheme for hybrid memory systems. In: Sarkar, V., Kim, H. (Eds.), PACT ’20: 
International conference on parallel architectures and compilation techniques, virtual event, GA, 
USA, October 3-7, 2020 pp. 353–354. ACM (2020a). https://​doi.​org/​10.​1145/​34104​63.​34146​72

	 4.	 Beigi, M. V., Pourshirazi, B., Memik, G., Zhu, Z.: Deepswapper: a deep learning based page 
swap management scheme for hybrid memory systems. In: Proceedings of the ACM international 

https://doi.org/10.1145/3444750
https://doi.org/10.1145/3444750
https://doi.org/10.1038/s41467-020-20661-8
https://doi.org/10.1145/3410463.3414672


International Journal of Parallel Programming	

conference on parallel architectures and compilation techniques, 10(1145/3410463), 3414672 
(2020)

	 5.	 Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., Sosa, N.E., Papan-
dreou, N., Lung, H.-L., Pozidis, H., Eleftheriou, E., Lam, C.H.: Recent progress in phase-change 
memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016). https://​doi.​org/​
10.​1109/​JETCAS.​2016.​25477​18

	 6.	 Cappelletti, P.: Non volatile memory evolution and revolution. In: 2015 IEEE International Electron 
Devices Meeting (IEDM) pp. 10.1.1–10.1.4 (2015). https://​doi.​org/​10.​1109/​IEDM.​2015.​74096​66

	 7.	 Chen, A.: A review of emerging non-volatile memory (NVM) technologies and applications. Solid-
State Electron. 125, 25–38 (2016). https://​doi.​org/​10.​1016/j.​sse.​2016.​07.​006

	 8.	 Chen, T.-Y., Chang, Y.-H., Chen, S.-H., Kuo, C.-C., Yang, M.-C., Wei, H.-W., Shih, W.-K.: 
Enabling write-reduction strategy for journaling file systems over byte-addressable nvram. 
In: 2017 54th ACM/EDAC/IEEE Design automation conference (DAC) pp. 1–6 (2017). 
10.1145/3061639.3062236

	 9.	 Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Com-
mun. Surv. Tutor. 18, 732–794 (2016). https://​doi.​org/​10.​1109/​COMST.​2015.​24811​83

	10.	 Doudali, T.D., Blagodurov, S., Vishnu, A., Gurumurthi, S., Gavrilovska, A.: Kleio: A hybrid mem-
ory page scheduler with machine intelligence. In: Proceedings of the 28th International symposium 
on high-performance parallel and distributed computing (2019). https://​api.​seman​ticsc​holar.​org/​
Corpu​sID:​19532​5868

	11.	 Doudali, T.D., Gavrilovska, A.: Toward computer vision-based machine intelligent hybrid memory 
management. In: Proceedings of the international symposium on memory systems MEMSYS ’21. 
New York, NY, USA: Association for Computing Machinery (2022). 10.1145/3488423.3519325

	12.	 Heo, T., Wang, Y., Cui, W., Huh, J., Zhang, L.: Adaptive page migration policy with huge pages in 
tiered memory systems. IEEE Trans. Comput. 71, 53–68 (2022). https://​doi.​org/​10.​1109/​TC.​2020.​
30366​86

	13.	 Kim, S., Hwang, S.-H., Kwak, J.W.: Adaptive-classification clock: Page replacement policy based 
on read/write access pattern for hybrid dram and PCM main memory. Microprocess. Microsyst. 57, 
65–75 (2018). https://​doi.​org/​10.​1016/j.​micpro.​2018.​01.​003

	14.	 Lee, S., Bahn, H., Noh, S.H.: Clock-dwf: a write-history-aware page replacement algorithm for 
hybrid PCM and dram memory architectures. IEEE Trans. Comput. 63, 2187–2200 (2014). https://​
doi.​org/​10.​1109/​TC.​2013.​98

	15.	 Liu, F., Yang, N., Li, H., Wang, Z., Song, Z., Pei, S., Jiang, L.: Spark: Scalable and precision-
aware acceleration of neural networks via efficient encoding. In: 2024 IEEE International sym-
posium on high-performance computer architecture (HPCA) pp. 1029–1042 (2024). 10.1109/
HPCA57654.2024.00082

	16.	 Liu, H., Liu, R., Liao, X., Jin, H., He, B., Zhang, Y.: Object-level memory allocation and migration 
in hybrid memory systems. IEEE Trans. Comput. 69, 1401–1413 (2020). https://​doi.​org/​10.​1109/​
TC.​2020.​29731​34

	17.	 Long, X., Gong, X., Zhang, B., Zhou, H.: Deep learning based data prefetching in CPU-GPU uni-
fied virtual memory. J. Parallel Distrib. Comput. 174, 19–31 (2023). https://​doi.​org/​10.​1016/j.​jpdc.​
2022.​12.​004

	18.	 Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for storage 
and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27, 1537–1550 (2016). https://​doi.​
org/​10.​1109/​TPDS.​2015.​24429​80

	19.	 Pei, S., Ji, Y., Shen, T., Liu, H.: Migration mechanism of heterogeneous memory pages using a two-
way hash chain list. SCI. SIN. Inf. 49(9), 1138–1158 (2019)

	20.	 Pei, S., Li, J., Qian, Y., Tang, J., Gaudiot, J.-L.: Transmigrator: a transformer-based predictive page 
migration mechanism for heterogeneous memory. In: Liu, S., Wei, X. (eds.) Network and Parallel 
Computing, pp. 180–191. Springer, Cham (2022)

	21.	 Pei, S., Luo, J., Liang, S., Ding, H., Ye, X., Chen, M.: Carbon emissions reduction of neural network 
by discrete rank pruning. CCF Trans. High Perform. Comput. 5, 334–346 (2023)

	22.	 Pei, S., Qian, Y., Ye, X., Liu, H., Kong, L.: Dram-based victim cache for page migration mechanism 
on heterogeneous main memory. J. Comput. Res. Develop. 59(3), 568–581 (2022)

	23.	 Pei, S., Wang, J., Zhang, B., Qin, W., Xue, H., Ye, X., Chen, M.: DPQ: dynamic pseudo-mean 
mixed-precision quantization for pruned neural network. Mach. Learn. 113, 4099–4112 (2024). 
https://​doi.​org/​10.​1007/​s10994-​023-​06453-3

https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/IEDM.2015.7409666
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1109/COMST.2015.2481183
https://api.semanticscholar.org/CorpusID:195325868
https://api.semanticscholar.org/CorpusID:195325868
https://doi.org/10.1109/TC.2020.3036686
https://doi.org/10.1109/TC.2020.3036686
https://doi.org/10.1016/j.micpro.2018.01.003
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1016/j.jpdc.2022.12.004
https://doi.org/10.1016/j.jpdc.2022.12.004
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1007/s10994-023-06453-3


	 International Journal of Parallel Programming

	24.	 Raoux, S., Xiong, F., Wuttig, M., Pop, E.: Phase change materials and phase change memory. MRS 
Bull. 39, 703–710 (2014)

	25.	 Seok, H., Park, Y., Park, K.-W., Park, K.H.: Efficient page caching algorithm with prediction and 
migration for a hybrid main memory. SIGAPP Appl. Comput. Rev. 11, 38–48 (2011). https://​doi.​
org/​10.​1145/​21077​56.​21077​60

	26.	 Tan, Y., Wang, B., Yan, Z., Deng, Q., Chen, X., Liu, D.: Uimigrate: adaptive data migration for 
hybrid non-volatile memory systems. In: 2019 Design, automation & test in Europe conference & 
exhibition (DATE) pp. 860–865 (2019). 10.23919/DATE.2019.8715118

	27.	 Tan, Y., Wang, B., Yan, Z., Srisa-an, W., Chen, X., Liu, D.: Apmigration: improving performance of 
hybrid memory performance via an adaptive page migration method. IEEE Trans. Parallel Distrib. 
Syst 31, 266–278 (2020). https://​doi.​org/​10.​1109/​TPDS.​2019.​29335​21

	28.	 Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-scale high-perfor-
mance computing. Comput. Sci. Eng. 17, 73–82 (2015). https://​doi.​org/​10.​1109/​MCSE.​2015.4

	29.	 Zhang, P., Srivastava, A., Nori, A. V., Kannan, R., Prasanna, V. K.: Fine-grained address segmenta-
tion for attention-based variable-degree prefetching. In: Proceedings of the 19th ACM international 
conference on computing frontiers CF ’22 pp. 103-112. New York, NY, USA: Association for Com-
puting Machinery (2022). 10.1145/3528416.3530236

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1145/2107756.2107760
https://doi.org/10.1145/2107756.2107760
https://doi.org/10.1109/TPDS.2019.2933521
https://doi.org/10.1109/MCSE.2015.4

	Intelligent Page Migration on Heterogeneous Memory by Using Transformer
	Abstract
	1 Introduction
	2 TransMigrator
	2.1 Design of Neural Network
	2.2 Page Migration

	3 Evaluation and Analysis
	3.1 Trace Collection
	3.2 Network Training
	3.3 Migration Simulation
	3.4 Access Time
	3.5 Energy Consumption
	3.6 Network Overhead

	4 Related Work
	5 Conclusion
	Acknowledgements 
	References


