International Journal of Parallel Programming
https://doi.org/10.1007/510766-024-00776-x

®

Check for
updates

Intelligent Page Migration on Heterogeneous Memory
by Using Transformer

Songwen Pei’? . Wei Qin - Jianan Li' - Junhao Tan' - Jie Tang3 -
Jean-Luc Gaudiot*

Received: 13 February 2023 / Accepted: 17 August 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Locality-based migration strategies are widely used in existing memory space man-
agement. Such type of strategies are consistently confronts with challenges in effi-
ciently managing pages migration within constrained memory space, especially
when new architecture such as hybrid of DRAM and NVM are emerging. Here we
propose TransMigrator, an innovative predictive page migration model based on
transformer architecture, which obtains a qualitative leap in the breadth and accu-
racy of prediction compared with traditional local-based methods. TransMigrator
utilizes an end-to-end neural network to learn memory access behavior and page
migration record in the long-term history and predict the most likely next page to
fetch. Furthermore, a migration-management mechanism is designed to support the
page-feeding from predictor, which in another way enhance the model robustness.
The model achieves an average prediction accuracy better than 0.72, and saves an
average of 0.24 access time overhead compared to strategies such as AC-CLOCK,
THMigrator, and VC-HMM.

P< Songwen Pei
swpei@usst.edu.cn

< Wei Qin
201440056 @st.usst.edu.cn
University of Shanghai for Science and Technology, Shanghai 200093, China

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China

South China University of Technology, Guangzhou 510641, China
4 University of California, Irvine, CA 92617, USA

Published online: 12 September 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-024-00776-x&domain=pdf

International Journal of Parallel Programming

1 Introduction

Driven by the growth of the data-intensive applications such as big data computing,
cloud computing and super high-intensity training work, the traditional computing
mode has been making the shift to large-scale data processing. The demand of abil-
ity to process large-scale data is not only dependent on computational power, but
also on the capability of memory to store data. The Limitations such as unscalable
capacity and huge static energy consumption of traditional DRAM system, make
it hard to respond to the new challenges. A research [9] has revealed that DRAM
consumes a portion 30-48% of the total system’s energy. Nowadays, data centers
are increasingly focused on memory capabilities, efficiency and capacity of mem-
ory systems are becoming as critical as computational power. In response to the
limitations of DRAM, Non-Volatile Random-Access Memory (NVM) has emerged
as an alternative. which offers higher storage density and lower energy consump-
tion [5, 6, 24]. Despite its benefits, NVM is also facing challenges. It generally has
lower performance compared to DRAM, like slower data access speed, particularly
in writing, limited write endurance, and higher write energy consumption. Being
specific, Phase-Changing Memory (PCM) requires more energy to change between
amorphous and crystalline state compared to the energy needed for moving electric
charges in the transistor [2]. Additionally, the PCM’s write latency can be up to 10
times higher than that of DRAM.

Due to its inherent limitations, current NVM cannot completely replace DRAM
entirely. As an alternative to a complete replacement, the concept of heterogeneous
memory system has been proposed which integrates both DRAM and NVM. aiming
to leverage the advantages of each while mitigating their disadvantages. [7, 18, 28].
To improve system performance, "Hot pages," which are accessed more frequently,
should ideally be placed in DRAM due to its faster access times. Conversely, "cold
pages," which are accessed less frequently, are better suited for NVM, which offers
higher storage density and lower energy consumption.

There are generally two organizational approaches for hybrid memory systems:
vertical and horizontal as shown in Fig. 1. In the vertical organization, DRAM is
used as a cache for NVM. DRAM acts as a smaller, faster storage layer that holds
frequently accessed data, while NVM serves as a larger, slower storage layer. When
a request is missed in DRAM, the system will retrieve the data from NVM. The use
of NVM is transparent to the programmer in Memory Mode. The vertical organiza-
tion also allows for the option to bypass DRAM and access NVM directly, such as
the strategy THMigrator [19].

Fig. 1 Two kinds of hybrid

memory organizations. Vertical

organization in (a) and horizon- T i T i
tal organization in (b)

(a) (b)

@ Springer

International Journal of Parallel Programming

In the horizontal organization, DRAM and NVM are combined to form a single
address space. In some strategies, a page could only reside in one memory device,
such as CLOCK-DWF [14] and AC-CLOCK [13], of which type is named exclusive
strategy. In contrast, a page is allowed exist in both memory devices simultaneously,
such as APMigrate [27] and VC-HMM [22], which are referred to as a redundant
strategy. The vertical organization naturally falls under the redundant strategy cat-
egory, because a page could be hold both in DRAM and NVM.

In order to take advantage of the hybrid memory system, pages should be placed
in DRAM and NVM carefully through hotness evaluation. CLOCKDWF migrates
only dirty pages (i.e., pages being written) to DRAM, while AC-CLOCK migrates
pages being both read and written, which aims to keep frequently accessed pages
in the faster DRAM. THMigrator uses a fixed threshold to decide when to migrate
pages, which is not flexible enough to adapt to the varying access patterns of dif-
ferent applications. APMigrate and VC-HMM try to ease the inflexibility of fixed
thresholds by dynamically adjusting the threshold based on the benefit derived from
previous migrations. But the initial value of the threshold makes the system frag-
ile. The initial value of the threshold is crucial. If set too low, the system may per-
form many migrations that make little contribution to performance. These inefficient
migrations may go unnoticed until the pages are eventually evicted. However, when
pages are migrated back to NVM, the threshold may become overly large, prevent-
ing further beneficial migrations from being executed. This pitfall is demonstrated in
our experiments.

The page prediction is crucial in migrating strategy, and we found that neural
networks are particularly well-suited for this task because they can handle complex,
nonlinear relationships in data. They can also adapt to changes in access patterns
over time, making them a dynamic solution for memory management.

There are some Existing Neural Network Approaches in page migration in hybrid
memory system. Kleio [10] trains a separate neural network for each important
pages. Each network predicts the access count for its respective page in the next
time interval. This method, while potentially accurate, can be complicated and
resource-intensive due to the individual networks for each page. DeepSwapper [3]
uses Long Short-Term Memory (LSTM) networks, a type of recurrent neural net-
work, to predict the next memory access sequence based on previous sequence. It
operates on the differences between adjacent addresses rather than the addresses
themselves, which can lead to instability and low precision when recovering the
actual addresses. In contrast to the aforementioned methods, TransMigrator [20] is
an extension of previous work that a single, end-to-end neural network to predict
hot pages directly. This approach aims to simplify the system design by using one
unified network instead of multiple individual networks. In addition to utilizing the
page access history as transformer input, this paper also integrates the records of
page migration and eviction to enhance the training data, thereby improving the pre-
dictive accuracy. Furthermore, the paper redesigns the page migration mechanism,
optimizing the previous algorithm that determined the migration queue based solely
on access history. A more suitable and rational page migration strategy has been
constructed, which aligns better with the predictions made by the transformer. Here
lists the main contributions as follows:

@ Springer

International Journal of Parallel Programming

A transformer-based end-to-end predictor is proposed for hot page prediction.
Migration and eviction history are included as network input parameters.

e TransMigrator is proposed as a robust hybrid memory management architecture.
This architecture integrates a neural network predictor with a threshold-based
fallback strategy. The dual approach ensures access latency losses are kept within
acceptable range when predictor fails.

e The migration part of Migrator is reconstructed to assign a higher level of access
priority to prediction result, which aligns better which predictor part.

2 TransMigrator

Figure 2 provides a visual representation of how TransMigrator integrates into
the overall system architecture. TransMigrator is designed for use in a hybrid
memory system with a horizontal organization. The system employs a redundant
strategy, meaning that pages can exist in both DRAM and NVM simultaneously.
TransMigrator is designed to intercept all Last-Level Cache (LLC) misses, using
migration controller (MigC), which allows TransMigrator to make informed deci-
sions about page migration based on actual access patterns. The MigC handles
the translation of addresses between the unified address space and the physical
locations in either DRAM or NVM, and is responsible for the actual migration of
pages between DRAM and NVM.

Figure 3 offers a detailed look at the Migration Controller (MigC) within the
TransMigrator system. The left part is responsible for predicting which pages are
likely to become hot in the future. It uses a buffer that stores page numbers to pre-
pare for the network input. The right part manages the actual movement of pages
between DRAM and NVM based on the predictions.The predictor is a standard
transformer model, which is a type of neural network architecture known for its
ability to handle sequential data effectively.

There are 3 components composing the right part:

e NVM Page List (NPL) tracks which pages are currently stored in NVM.

e DRAM Page List (DPL) tracks which pages are currently stored in DRAM.
e Candidate Page List (CPL), a list of pages that have the potential to become hot.

Fig.2 System overview

@ Springer

International Journal of Parallel Programming

Fig. 3 Details of migration
controller

These pages are considered for migration to DRAM upon their next access. Pages
in the CPL are subject to a lifetime expiration. If not accessed within their lifetime,
they are removed from the CPL. A request counter is used to track the expiration of
pages in the CPL. The expiration time for a page is set based on the current counter
value plus the predetermined lifetime.

The CPL serves as a bridge between the prediction part and the migration part. It
allows the system to prepare migrate pages that the predictor identifies as potentially
hot ones.

This design considers the balance between predictive intelligence and traditional
threshold-based methods. To address potential inaccuracies in the predictor’s per-
formance, a fixed threshold method runs in parallel with the predictor. This dual
approach ensures that the system remains robust and can still make effective migra-
tion decisions even if the neural network’s predictions are not always accurate.

2.1 Design of Neural Network

The network takes a sequence of page numbers as input data, aiming to predict the
page number that will be most frequently accessed in the subsequent sequence. The
page prediction is formulated as a classification task, where each page number is
treated like a *word’ in natural language processing, and each word is mapped to an
embedding vector, as shown in the Fig. 4.

Page number
to Tokens Embeddings Query

Fig.4 Details of the neural network

@ Springer

International Journal of Parallel Programming

Due to the large address space, it’s impractical to map each page number
directly to an embedding vector in a dictionary. To address this, page numbers
are split into smaller tokens, similar to techniques used in natural language pro-
cessing. These tokens are of the same length in bits. Such approach of tokeniza-
tion helps to reduce the dictionary size, making it more manageable to create a
mapping from tokens to embedding vectors.

We start the development process by modeling it as a sequence-to-sequence
prediction, using the differences in adjacent addresses as input and output. The
input was normalized, and the loss function was based on mean square error.

As shown in previous works, recovering the original addresses from the pre-
dicted differences proved to be difficult. It was challenging to accurately deter-
mine the mean, standard deviation, and base of the differences during the recov-
ery process. Due to the attributes of memory access traces were found to be
intrinsically unstable, which makes it difficult for simple regression approaches
to work effectively.

Both Long Short-Term Memory (LSTM) networks and transformer models
were experimented with as the backbone of the network. At last the transformer
model was found to offer better speed and accuracy in handling the task. Based
on the evaluation, the transformer model was chosen for its superior perfor-
mance in terms of both speed and accuracy, making it the ideal candidate for the
end-to-end network in TransMigrator.

Input Sequence The network takes as input a sequence of L, page numbers,
which are the addresses of memory pages.

Output Sequence The output of the network is a sequence of N small tokens.
These tokens can be reassembled to form the predicted page number.

Tokenization Each page number, which is 20 bits long due to the 32-bit
address space and the 12 bits required for the 4 KB page size, is split into N
small tokens, each of L,,,, bits. If 20 is not a multiple of L zeros are padded
to the high bits of the tokens to complete the sequence.

Network In terms of page numbers, the network operates on a many-to-one
basis, meaning multiple input page numbers are used to predict a single out-
put page number. However, in terms of tokens, the network is many-to-many, as
multiple input tokens are used to predict multiple output tokens. The dimension
of the token embeddings and the model in the transformer are the same, denoted
as d,,,q.- The dimension of the feedforward networks within the transformer is
twice the model dimension, i.e., 2 X d,,,4,-

Transformer Encoder and Decoder The tokens are converted to embeddings,
which serve as the input to the transformer encoder. The input to the transformer
decoder consists of N learnable embeddings. The features of the decoder output
are transformed from d,, ,,, to C by a linear layer, where C is the dictionary size,
calculated as 2Lwier, The cross-entropy between the decoder output and the actual
labels (the correct tokens) is used as the loss function. This loss is minimized
during the training process to improve the accuracy of the network.

token >

@ Springer

International Journal of Parallel Programming

2.2 Page Migration

We present a dual-path mechanism in TransMigrator for handling memory access
events, involving both the predictor part and the migration part.

Predictor Part: When a memory access occurs, the accessed page number is added
to an access buffer. If the buffer reaches its capacity (L pages), all stored page numbers
are used as input for the predictor. The output page number from the predictor, which
is a prediction of the next hot page, is added to the Candidate Page List (CPL) with a
lifetime (L)

Migration Part: Pages in DRAM are maintained in LRU (Least Recently Used)
order in the DRAM Page List (DPL). Upon access, a page is moved to the head of
DPL. If a write operation occurs, the dirty bit is set. If DRAM is full, the tail page
of DPL is evicted to NVM. Pages in CPL, if accessed, are copied into DRAM. This
approach avoids clean pages write-back, saving NVM write operations. Pages in CPL
with expired lifetimes are removed after each access cycle to filter out false positives
and reduce unnecessary migrations. Pages in NVM are assigned with counters. When
a counter exceeds a threshold, the page is added to CPL with a lifetime (L,,,). If a page
is not found in DRAM or NVM, a page fault occurs. The page is loaded from external
storage to DRAM once sufficient DRAM space has been confirmed.

Migration Procedure: When page P is accessed, its counter is incremented, and its
number is added to the access buffer. The MigC searches for page P in DPL, CPL, and
NPL in that order.

Operation 1 If P is in DPL, move P to the head and set the dirty bit if it’s a write
operation.

Operation 2 If P is in CPL, migrate P to DRAM. If DRAM is full, evict the tail
page of CPL to NVM, handling the dirty bit and data preservation. Add P to DPL and
remove from CPL.

Operation 3 If P is in NPL, increment its counter. If it reaches the threshold, reset
the counter, add P to CPL with a lifetime.

Operation 4 If P is not in any list, load it from storage into DRAM after ensuring
space, and place it at the head of DPL.

Post-Operation Cleanup 1 MigC removes all pages from CPL that have expired
their lifetimes.

Post-Operation Cleanup 2 MigC removes last 3 pages in DPL queue, and transfer
them to CPL.

Post-Operation Cleanup 3 Invoke the Predictor function and feed it with most
recent operation history information. MigC fetches 3 most likely pages from prediction
results, and move them to tail of DPL queue.

@ Springer

International Journal of Parallel Programming

Algorithm 1 Page Migration algorithm

Require: DPL, NPL, CPL, request counter ¢,e,, and the threshold
function OnPageAcces

s(page p, operation op)

Creq ¢ Creqg + 15
if p in DPL then
node « index DPL by p;
if op is write then
node.dirty « true;
end if
move node to DPL head;
else if p in CPL then
node « index CPL by p;
if no free page in DRAM then
victim < DPL tail;
MoveToNVM (victim);
end if
remove node from CPL;
add node to DPL head;
else if p in NPL then
node < index NPL by p;
node.count < node.count + 1;
if node.count >threshold then
add node to C'PL head;
end if
else
if no free page in DRAM then
victim < DPL tail;
MoveToNVM (victim);
end if
add new page to DPL head;
end if
for all node of CPL do
if node.capireTime >cye, then
remove node from CPL;
end if
end for
for 3 node of DPL tail do
remove node from DPL;
add node to CPL:
end for
Invoke Predictor();
node 1 < Predictor.result 1;
node 2 < Predictor.result 2;
node 3 < Predictor.result 3;
for 3 node of DPL tail do
add node i to DPL tail;
end for

end function

function MoveToNVM(node n)
remove n from DPL;
if nin NPL then
if node.dirty is true then
write back;
end if
else
add n to NPL head;
write back;
end if

end function

> in DRAM

> in candidate list

> in NVM

> page fault

> check lifetime

> page fault page

@ Springer

International Journal of Parallel Programming

Table 1 GEMS simulation

configuration Parameter Value
CPU AtomicSimpleCPU
L1 data cache 32 KB (8-way, 64-byte line)
L1 instruction cache 32 KB (8-way, 64-byte line)
L2 cache 512 KB (8-way, 64-byte line)
L3 cache 4 MB (16-way, 64-byte line)

3 Evaluation and Analysis
3.1 Trace Collection

We use the SPEC CPU2006 benchmarks with the simulator GEMS, and totally
10 benchmarks are run for 100 million instructions respectively to collect detailed
traces of memory access patterns. The simulation is set up with a three-level cache
architecture, which is common in many modern CPUs. AtomicSimpleCPU is used
in GEMS to prioritize simulation speed. The configuration details are provided in
Table 1.

To simulate memory shortage situations, which are common in real-world appli-
cations, the memory capacity in the simulation can be artificially limited. The col-
lected traces are summarized in Table 2, which includes details such as the number
of memory accesses, read/write operations, and other relevant metrics. Some bench-
marks exhibiting write-operations absence to memory is caused by their memory
footprint not surpassing the dimensions of the L3 cache. For benchmarks with simi-
lar memory footprints, the request count can serve as an indicator of locality. Fewer
requests suggest higher locality, in which case the benchmark accesses a smaller set
of memory addresses more frequently. The collected traces likely reflect a variety of
localities based on different memory footprint sizes, which is important for training
and evaluating the TransMigrator system’s ability to predict effectively.

Table 2 Trace characteristics.

N . . Benchmark Footprint Request Read Write Ifetch
*“Ifetch” means instruction
fetch bzip2 19.4648MB 103309 87148 15509 652
gcc 11.3885MB 157223 107483 41787 7953
calculix 5.24469MB 31889 28517 0 3372
cactusADM 25.5783MB 1052375 675028 373032 4315
sjeng 175.43MB 16536109 8299780 8234681 1648
hmmer 1.65619MB 6466 5143 0 1323
mcf 5.85046MB 98296 81729 15962 605
soplex 3.35858MB 19983 16628 0 3355
omnetpp 3.88507MB 12771 9834 0 2937
povray 5.37494MB 50785 46121 1 4663

@ Springer

International Journal of Parallel Programming

Table 3 Network training

N Parameter Value
configuration

encoder layers 2

decoder layers

number of heads 2

model dimension 64

sequence length 30

token length 8

learning rate 0.001

batch size 2048
dropout 0.0

seed 43

loss Cross entropy
optimizer adam

3.2 Network Training

Dataset The training and validation dataset is a mixture of all collected traces.
Traces are divided into smaller sequences of length 2XL,, . Each small sequence is
split into two halves; the first half is used as input, and the latter half produces real
labels. The label is determined by the most frequently appearing page number in the
latter half. A stride of 0.5XL;,, is used during splitting to generate more sequences.
Sequences are randomly divided into a training set and a validation set in a 7:3 ratio.
Due to severe imbalance in the number of sequences per benchmark, a weighted

sampler is employed. The weight for sequences from benchmark i is i, where n; is

the number of sequences for that benchmark. This approach gives smaller traces a
higher chance of being included in a training batch.

Network configuration A cosine learning rate scheduler with a warm-up stage is
used for stable convergence. The learning rate factor is calculated using an equation
that considers the iteration number in batches (i), warm-up steps (@), and the maxi-
mum iteration (m). Table 3 would detail the specific configuration parameters of the
network.

0.5(1 + cos(in’)) i>w

lrfactor = . >
f i, i<w

(D

Results Traces are split into sequences of length L, and the network predicts
whether the predicted page is the most frequent in the next sequence. As shown in
Table 4, the network achieves an average prediction accuracy of 0.7245 in 10 bench-
marks. Given the scale of the network, this result is considered remarkable. Despite
the high accuracy, the network alone may not be sufficient for the entire task, espe-
cially for benchmarks with lower accuracy. To compensate for potential inaccuracy,
a classic threshold method is used in conjunction with the neural network.

@ Springer

International Journal of Parallel Programming

Table 4 Network prediction

Benchmark Accuracy
accuracy
bzip2 0.648
cactusADM 0.401
calculix 0.7292
gcc 0.7638
hmmer 0.7765
mcf 0.8092
omnetpp 0.7485
povray 0.7643
sjeng 0.8000
soplex 0.8047
Table 5 Network prediction Attributes threshold lifetime
accuracy
AC-CLOCK - -
THMigrator 32 256
VC-HMM 32 256

3.3 Migration Simulation

A simulator is created to assess different page migration strategies. The neural network’s
predictions are pre-computed and stored in individual files for each benchmark, from
which predicted page numbers are read as needed.

Configurations AC-CLOCK [13], THMigrator [19], and VC-HMM [22] are chosen
for comparison. AC-CLOCK has no hyperparameters. THMigrator, VC-HMM, and the
proposed design share two parameters: threshold and lifetime, both set to 32 and 256,
respectively. VC-HMM utilizes a small DRAM as a direct mapping victim cache between
DRAM and NVM, a feature also considered in the simulation setup. The parameters for
the simulator, as shown in Table 5, are carefully chosen to reflect real-world usage.

To simulate intensive memory usage, the NVM size for each benchmark is set to
approximate the memory footprint. The sizes of DRAM, NVM, and victim cache are set
in a ratio of 1:8:%, as detailed in Table 6 for each benchmark.

Evaluations Total access time and total energy consumption are defined by Egs. 2 and
3, which are derived from APMigrate with modifications.

When ascertaining the total access time, we disregard certain page migration costs.
This is feasible because the migration of pages can occur in the intervals between mem-
ory access events. Absent this oversight, the efficiency of the system would be adversely
affected by each page migration due to the substantial overhead associated with it,
which is significantly greater than that of routine read and write operations within
a cache line. On the other hand, in energy consumption evaluations, we do not
follow such disregard, as the energy consumption is inherently observable and
cannot be circumvented.

@ Springer

International Journal of Parallel Programming

Table 6 Benchmarks

configuration, * “VC™ means Benchmark NVMsize DRAMsize VCsize

victim cache used in VC-HMM bzip2 20.0MB 2.5MB 128.0KB
gcc 12.0MB 1.5MB 64.0KB
calculix 6.0MB 768.0KB 32.0KB
cactusADM 26.0MB 3.25MB 128.0KB
sjeng 176.0MB 22.0MB 1.0MB
hmmer 2.0MB 256.0KB 16.0KB
mcf 6.0MB 768.0KB 32.0KB
soplex 4.0MB 512.0KB 32.0KB
omnetpp 4.0MB 512.0KB 32.0KB
povray 6.0MB 768.0KB 32.0KB

Variables used in Eqs. 2 and 3 are explained in Table 7. The migration time is set
to 380 times the DRAM access time according to APMigrate. Other variable values
are sourced from [8] and listed in Table 8.

Table 7 Variables in computation

Symbol Description

ng, DRAM read count

Mgy, DRAM write count

n,, NVM read count

Ty, NVM write count

i migration count

Ly DRAM read latency

L DRAM write latency

Loy NVM read latency

Lo NVM write latency

Lnig migration latency

size, DRAM size

data,, total data of DRAM read
datay,, total data of DRAM write
data,, total data of NVM read
data,, total data of NVM write
ey DRAM read energy

e DRAM write energy

e, NVM read energy

e NVM write energy

P DRAM static power

D NVM static power

size, NVM size

@ Springer

International Journal of Parallel Programming

I 00T (gO/mw) onels A310u9

0s1 6910°¢ (go/[w) aam AS1oua
sl LS8TCT (gO/rur) pear K31oud
0S1 SI (su) 9yIm Kouare|
0s SI (su) pear Koudje|
INAN NVId SAINQLNY

SOTSLIR)ORIEYD AIOWIN 8 3|qe]

pringer

As

International Journal of Parallel Programming

tlotal = Ny, X tdr + m X tdw
+ 1, X, +n,, X1,, (2)
T+ Mg X g

mig

Cotal = datadr X eyy + datadw X €4y
+data,, X e,, + data,,, Xe,, 3)
+ (py X sizey + p, X size,) Xt

3.4 AccessTime

As demonstrated in Fig. 5, TransMigrator, significantly reduces the average access
time compared to THMigrator, VC-HMM, and AC-CLOCK by 38.72%, 26.27%,
and 5.41%, respectively, with data normalized by dividing by the mean for each
benchmark to ensure consistent scales. This indicates that TransMigrator is more
efficient in managing memory access times.

THMigrator is described as conservative in the experiment setting, making fewer
migrations than other approaches. This introduces very low energy consumption but
leaves many pages in NVM, leading to increased access times. However, on bench-
marks gcc and sjeng, THMigrator performs better with more page migrations. Due
to the limited capacity of DRAM, migrating certain pages is necessary for better per-
formance. Too few migrations can undermine the system’s performance. VC-HMM,
which updates the threshold based on benefits, is highlighted as having a potential
flaw. There is often a long delay between the start of migration and the adjustment
of the threshold. When low beneficial migrations are detected, the threshold can be
pushed to an extreme value, preventing further migrations and making it difficult for
the threshold to return to a normal range. Despite the potential issue with threshold
adjustment, VC-HMM generally performs better than THMigrator in most cases,
except for the risk of falling into the trap of extreme threshold values. AC-CLOCK
is noted for achieving relatively low access times compared to THMigrator and
VC-HMM and is considered robust across all benchmarks. TransMigrator achieves
lower access times than AC-CLOCK in most benchmarks, except for bzip2, where

25

Normalized Access Time

—————

i I
| i; L ' 1
| | g]]
. i i N i ,, i ANy
calculix gee hmmer mcf omnetpp povray sjeng soplex

TH AC_Clock mVCHMM m Trans(ours)

Fig.5 Normalized access time. The complete bar represents total access time. The shadow portion indi-
cates NVM access time

@ Springer

International Journal of Parallel Programming

it has more NVM writes. The design does not distinguish between read and write
accesses, which may lead to pages with many write accesses not being migrated
based on access count. TransMigrator demonstrates robust and good performance in
most benchmarks. It achieves low access time in the benchmark cactusADM, even
with a prediction accuracy of only 40.10%. This suggests that the combination of the
predictor and the fallback method is effective and robust. The effectiveness of the
co-work between the predictor and the fallback method in TransMigrator is empha-
sized, contributing to its overall performance and robustness.

3.5 Energy Consumption

As depicted in Fig. 6, the proposed method, TransMigrator, saves the average total
energy consumption by 25.04% compared to VC-HMM but consumes more energy
than AC-CLOCK by 10.22%. TransMigrator consumes 2.5 times the energy of
THMigrator, which is more energy-efficient due to its conservative approach and
fewer migrations. However, THMigrator’s lower energy consumption comes at the
cost of slower access times. Non-Volatile Memory (NVM) is the dominant factor in
energy consumption. Despite its low static power, NVM has a significant overhead
for read and write operations compared to DRAM, especially during page migra-
tions. The more page migrations that occur, the higher the energy consumption, as
illustrated in Fig. 7. More page migration does not necessarily reduce access time.
For example, on the hmmer and omnetpp benchmarks, VC-HMM performs more
migrations than TransMigrator but has a higher access time. VC-HMM has the low-
est number of migrations but the highest energy consumption. This is because regu-
lar accesses to NVM become the primary source of energy consumption when the
number of migrations is reduced. AC-CLOCK and TransMigrator achieve a better
balance between energy consumption and access time compared to the other two
approaches. TransMigrator is noted for its efficiency, reducing energy consumption
compared to VC-HMM while still providing faster access times than THMigrator.

~
L

"
wn

Normalized Access Time
o
@ [

S
P]

T
——
]

E—
P]
P]
s
S
.
S——
s

o
.

bzip2 cactusADM calculix gee hmmer mcf omnetpp povray sjeng soplex

TH AC_Clock ®mVCHMM m®Trans(ours)

Fig.6 Normalized energy consumption. The complete bar represents total energy consumption. The
shadow part indicates NVM consumption

@ Springer

International Journal of Parallel Programming

o

E

s

8

g I

i =

]

© B B] - L |

£ 05 | I,ff' & 1 | o B] B
0 | | | | | | [1] ||

bzip2 cactusADM calculix gee hmmer mcf omnetpp povray sjeng soplex

TH AC_Clock mVCHMM m Trans(ours)

Fig. 7 Normalized migration count.The complete bar represents the sum count of migration from NVM
to DRAM and writing back. The shadow portion indicates the NVM actual write back count, with clean
pages excluded

3.6 Network Overhead

The prediction part (neural network) and the migration part of the system operate
in parallel. This means they move independently, with the migration part always
performing its routine tasks. The inference overhead of the neural network can be
partially hidden due to the parallel nature of the system. This suggests that the time
taken for the network to make predictions does not significantly impact the over-
all system performance because other processes continue to run concurrently. The
system is designed to work effectively with or without the network part. The neural
network enhances the system’s capabilities but is not essential for its basic opera-
tion. The latency of the system is influenced more by the prediction accuracy of
the network than by its inference speed. This implies that even if the network takes
some time to make predictions, as long as those predictions are accurate, the sys-
tem’s performance in terms of latency will be acceptable. The network only needs
to commit an inference every multiple of memory accesses. This means that the fre-
quency of predictions is not as critical as the accuracy of those predictions. Given
the inference frequency and the ability to apply various techniques to improve the
network’s performance, there is room to use more sophisticated models. These mod-
els could potentially offer better prediction accuracy without causing a noticeable
increase in latency. There is a trade-off between using a more complex model for
better accuracy and maintaining low latency. However, due to the system’s design
and operation, it is possible to leverage more complex models without significantly
impacting latency.

4 Related Work

DPQ [23] presents a promising approach for deploying deep neural networks on
resource-constrained edge devices, for pruning and compressing deep neural net-
work models. The technique offers a balance between model size and accuracy,
which is essential for practical applications in computility-limited deployment
scenarios. SPARK [15] utilizes a variable-length scheme to optimize both the

@ Springer

International Journal of Parallel Programming

algorithmic and architectural aspects for local parameter training. It represents
an alternative approach to model compression that addresses the challenges of
deploying large DNNs on constrained hardware. The work of Songwen Pei et al.
[21] from the aspect of pruning optimizing, proposes a novel filter pruning algo-
rithm, named DRP. With a co-designed method called CBS, the solution per-
forms better in pruning networks of huge sizes, and makes it easier to deploy
large-scale models on devices with limited resources.

The work Seok et al. [25] focuses on moving write-bounded pages to DRAM
and read-bounded pages to NVM, using a moving average weight updated by
access type and thresholds determined by trials. Clock-DWF [14] is Similar to
[25], which aims to migrate write operations to DRAM but uses a CLOCK algo-
rithm for page selection and eviction based on dirty bits. Adaptive-Classification
CLOCK [13] is an improvement over Clock-DWF, the approach of which places
all fault pages in DRAM and enforces a stricter migration policy.

UlMigrate [26] calculates page hotness with decay factors and adjusts thresh-
olds based on migration benefits. APMigrate [27] builds on UIMigrate, writing
back only changed parts of a page back to NVM using a bitmap. THMigrator
[20] utilizes two-way hash chain lists for accelerated page lookup. VC-HMM
[22] Introduces a victim cache between DRAM and NVM to reduce NVM write
operations. AMP [12] Employs multiple strategies (LRU, LFU, random) and
switches between them based on page access ratios and LRU hit ratios. Adavally
et al. [1] Adjusts migration thresholds by monitoring migration counts and aver-
age access counts, using a small mapping table for page repositioning. OAM
[16] Operates at the program object level, combining access time and energy
consumption, and injects allocation/migration instructions via the compiler.
Kleio [10] Selects important pages and trains a separate recurrent neural net-
work for each, using predicted access counts for migration decisions. Deep-
Swapper [4] Uses LSTMs to predict future address differences and migrates
frequently written pages to NVM, unlike TransMigrator, which treats read and
write equally. Doudali et al. [11] Maps page accesses to image pixels, marking
areas for important pages based on access patterns. TransFetch [29] is Designed
for prefetching data to the cache rather than page migration. It uses a similar
input splitting method and transformer architecture as TransMigrator but dif-
fers in its approach to embeddings and output labeling. Long et al. [17] pro-
poses prefetching an additional page on page faults for both CPUs and GPUs,
modeling the problem as a classification task using transformer encoders for
prediction.

5 Conclusion

The article proposes TransMigrator, a novel approach to page migration in hybrid
memory systems that combine DRAM and NVM. The core of TransMigrator is
an end-to-end neural network with a transformer backbone, which is used to pre-
dict future hot pages based on previous memory access patterns. The network
achieves an average prediction accuracy of 0.7245 across different benchmarks,

@ Springer

International Journal of Parallel Programming

with an estimated model parameter size of 0.804 MB. TransMigrator combines
the transformer-based predictor with a fixed threshold migration approach. The
latter serves as a fallback mechanism when the predictor’s accuracy is low.

Experiments demonstrate that TransMigrator significantly outperforms other
migration strategies like THMigrator, VC-HMM, and AC-CLOCK, reduc-
ing average access time by 38.72%, 26.27%, and 5.41%, respectively. The dual
approach of prediction and fallback ensures accurate migrations and maintains
low latency, even in cases of mispredictions.

Limitations: The simulator used for evaluation lacks timing information, which
means some migration overheads are not fully accounted for. The neural network
does not differentiate between read and write operations. The fallback method is
considered simplistic and may not be optimal. These limitations suggest that the
neural network could be integrated with other page migration strategies. Improve-
ments to the network design, and fallback mechanisms are identified as areas for
future research.

Acknowledgements We would like to thank the anonymous reviewers for their invaluable comments.
This work was partially funded by the National Natural Science Foundation of China under Grant
61975124, Shanghai Natural Science Foundation (20ZR1438500), State Key Laboratory of Computer
Architecture (ICT, CAS) under Grant No.CARCHA?202111, and Engineering Research Center of Soft-
ware/Hardware Co-design Technology and Application, Ministry of Education East China Normal Uni-
versity under Grant No.OP202202. Any opinions, findings and conclusions expressed in this paper are
those of the authors and do not necessarily reflect the views of the sponsors.

Author contributions Songwen Pei propose the original migrator mechnism, revise the manuscript,
response comments, etc. Wei Qin discuss on the structure of TransMigrator, edit some figures, and
rewirte it. Jinan Li edit the orginal manuscript, and do experiments and collect data. Junhao Tan edit
and format part of the new version of manuscript. Jie Tang discuss the main contributions, and fix some
typos. Jean-Luc Gaudiot suggests on the structure of the paper, polish some expression.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Adavally, S., Islam, M., Kavi, K.: Dynamically adapting page migration policies based on appli-
cations’ memory access behaviors. J. Emerg. Technol. Comput. Syst. (2021). https://doi.org/10.
1145/3444750

2. Aryana, K., Gaskins, J.T., Nag, J., Stewart, D.A., Bai, Z., Mukhopadhyay, S., Read, J.C., Olson,
D.H., Hoglund, E.R., Howe, J.M., Giri, A., Grobis, M.K., Hopkins, P.E.: Interface controlled
thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat. Com-
mun. 12, 774 (2021). https://doi.org/10.1038/s41467-020-20661-8

3. Beigi, M. V., Pourshirazi, B., Memik, G., Zhu, Z.: Deepswapper: a deep learning based page
swap management scheme for hybrid memory systems. In: Sarkar, V., Kim, H. (Eds.), PACT ’20:
International conference on parallel architectures and compilation techniques, virtual event, GA,
USA, October 3-7, 2020 pp. 353-354. ACM (2020a). https://doi.org/10.1145/3410463.3414672

4. Beigi, M. V., Pourshirazi, B., Memik, G., Zhu, Z.: Deepswapper: a deep learning based page
swap management scheme for hybrid memory systems. In: Proceedings of the ACM international

@ Springer

https://doi.org/10.1145/3444750
https://doi.org/10.1145/3444750
https://doi.org/10.1038/s41467-020-20661-8
https://doi.org/10.1145/3410463.3414672

International Journal of Parallel Programming

11.

12.

13.

14.

16.

18.

19.

20.

21.

22.

23.

conference on parallel architectures and compilation techniques, 10(1145/3410463), 3414672
(2020)

Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., Sosa, N.E., Papan-
dreou, N., Lung, H.-L., Pozidis, H., Eleftheriou, E., Lam, C.H.: Recent progress in phase-change
memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146—-162 (2016). https://doi.org/
10.1109/JETCAS.2016.2547718

Cappelletti, P.: Non volatile memory evolution and revolution. In: 2015 IEEE International Electron
Devices Meeting (IEDM) pp. 10.1.1-10.1.4 (2015). https://doi.org/10.1109/IEDM.2015.7409666
Chen, A.: A review of emerging non-volatile memory (NVM) technologies and applications. Solid-
State Electron. 125, 25-38 (2016). https://doi.org/10.1016/j.s5¢.2016.07.006

Chen, T.-Y., Chang, Y.-H., Chen, S.-H., Kuo, C.-C., Yang, M.-C., Wei, H.-W., Shih, W.-K.:
Enabling write-reduction strategy for journaling file systems over byte-addressable nvram.
In: 2017 54th ACM/EDAC/IEEE Design automation conference (DAC) pp. 1-6 (2017).
10.1145/3061639.3062236

Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Com-
mun. Surv. Tutor. 18, 732-794 (2016). https://doi.org/10.1109/COMST.2015.2481183

Doudali, T.D., Blagodurov, S., Vishnu, A., Gurumurthi, S., Gavrilovska, A.: Kleio: A hybrid mem-
ory page scheduler with machine intelligence. In: Proceedings of the 28th International symposium
on high-performance parallel and distributed computing (2019). https://api.semanticscholar.org/
CorpusID: 195325868

Doudali, T.D., Gavrilovska, A.: Toward computer vision-based machine intelligent hybrid memory
management. In: Proceedings of the international symposium on memory systems MEMSYS ’21.
New York, NY, USA: Association for Computing Machinery (2022). 10.1145/3488423.3519325
Heo, T., Wang, Y., Cui, W., Huh, J., Zhang, L.: Adaptive page migration policy with huge pages in
tiered memory systems. IEEE Trans. Comput. 71, 53—68 (2022). https://doi.org/10.1109/TC.2020.
3036686

Kim, S., Hwang, S.-H., Kwak, J.W.: Adaptive-classification clock: Page replacement policy based
on read/write access pattern for hybrid dram and PCM main memory. Microprocess. Microsyst. 57,
65-75 (2018). https://doi.org/10.1016/j.micpro.2018.01.003

Lee, S., Bahn, H., Noh, S.H.: Clock-dwf: a write-history-aware page replacement algorithm for
hybrid PCM and dram memory architectures. IEEE Trans. Comput. 63, 2187-2200 (2014). https://
doi.org/10.1109/TC.2013.98

Liu, F.,, Yang, N., Li, H., Wang, Z., Song, Z., Pei, S., Jiang, L.: Spark: Scalable and precision-
aware acceleration of neural networks via efficient encoding. In: 2024 IEEE International sym-
posium on high-performance computer architecture (HPCA) pp. 1029-1042 (2024). 10.1109/
HPCA57654.2024.00082

Liu, H,, Liu, R., Liao, X., Jin, H., He, B., Zhang, Y.: Object-level memory allocation and migration
in hybrid memory systems. IEEE Trans. Comput. 69, 1401-1413 (2020). https://doi.org/10.1109/
TC.2020.2973134

Long, X., Gong, X., Zhang, B., Zhou, H.: Deep learning based data prefetching in CPU-GPU uni-
fied virtual memory. J. Parallel Distrib. Comput. 174, 19-31 (2023). https://doi.org/10.1016/j.jpdc.
2022.12.004

Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for storage
and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27, 1537-1550 (2016). https://doi.
org/10.1109/TPDS.2015.2442980

Pei, S., Ji, Y., Shen, T., Liu, H.: Migration mechanism of heterogeneous memory pages using a two-
way hash chain list. SCI. SIN. Inf. 49(9), 1138-1158 (2019)

Pei, S., Li, J., Qian, Y., Tang, J., Gaudiot, J.-L.: Transmigrator: a transformer-based predictive page
migration mechanism for heterogeneous memory. In: Liu, S., Wei, X. (eds.) Network and Parallel
Computing, pp. 180-191. Springer, Cham (2022)

Pei, S., Luo, J., Liang, S., Ding, H., Ye, X., Chen, M.: Carbon emissions reduction of neural network
by discrete rank pruning. CCF Trans. High Perform. Comput. 5, 334-346 (2023)

Pei, S., Qian, Y., Ye, X., Liu, H., Kong, L.: Dram-based victim cache for page migration mechanism
on heterogeneous main memory. J. Comput. Res. Develop. 59(3), 568-581 (2022)

Pei, S., Wang, J., Zhang, B., Qin, W., Xue, H., Ye, X., Chen, M.: DPQ: dynamic pseudo-mean
mixed-precision quantization for pruned neural network. Mach. Learn. 113, 4099-4112 (2024).
https://doi.org/10.1007/s10994-023-06453-3

@ Springer

https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/IEDM.2015.7409666
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1109/COMST.2015.2481183
https://api.semanticscholar.org/CorpusID:195325868
https://api.semanticscholar.org/CorpusID:195325868
https://doi.org/10.1109/TC.2020.3036686
https://doi.org/10.1109/TC.2020.3036686
https://doi.org/10.1016/j.micpro.2018.01.003
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1109/TC.2013.98
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1016/j.jpdc.2022.12.004
https://doi.org/10.1016/j.jpdc.2022.12.004
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1007/s10994-023-06453-3

International Journal of Parallel Programming

24.

25.

26.

217.

28.

29.

Raoux, S., Xiong, F., Wuttig, M., Pop, E.: Phase change materials and phase change memory. MRS
Bull. 39, 703-710 (2014)

Seok, H., Park, Y., Park, K.-W., Park, K.H.: Efficient page caching algorithm with prediction and
migration for a hybrid main memory. SIGAPP Appl. Comput. Rev. 11, 38-48 (2011). https://doi.
org/10.1145/2107756.2107760

Tan, Y., Wang, B., Yan, Z., Deng, Q., Chen, X., Liu, D.: Uimigrate: adaptive data migration for
hybrid non-volatile memory systems. In: 2019 Design, automation & test in Europe conference &
exhibition (DATE) pp. 860-865 (2019). 10.23919/DATE.2019.8715118

Tan, Y., Wang, B., Yan, Z., Srisa-an, W., Chen, X., Liu, D.: Apmigration: improving performance of
hybrid memory performance via an adaptive page migration method. IEEE Trans. Parallel Distrib.
Syst 31, 266278 (2020). https://doi.org/10.1109/TPDS.2019.2933521

Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-scale high-perfor-
mance computing. Comput. Sci. Eng. 17, 73-82 (2015). https://doi.org/10.1109/MCSE.2015.4
Zhang, P., Srivastava, A., Nori, A. V., Kannan, R., Prasanna, V. K.: Fine-grained address segmenta-
tion for attention-based variable-degree prefetching. In: Proceedings of the 19th ACM international
conference on computing frontiers CF *22 pp. 103-112. New York, NY, USA: Association for Com-
puting Machinery (2022). 10.1145/3528416.3530236

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1145/2107756.2107760
https://doi.org/10.1145/2107756.2107760
https://doi.org/10.1109/TPDS.2019.2933521
https://doi.org/10.1109/MCSE.2015.4

	Intelligent Page Migration on Heterogeneous Memory by Using Transformer
	Abstract
	1 Introduction
	2 TransMigrator
	2.1 Design of Neural Network
	2.2 Page Migration

	3 Evaluation and Analysis
	3.1 Trace Collection
	3.2 Network Training
	3.3 Migration Simulation
	3.4 Access Time
	3.5 Energy Consumption
	3.6 Network Overhead

	4 Related Work
	5 Conclusion
	Acknowledgements
	References

