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twin, a practical autonomous driving system development
paradigm, which generates an integral, comprehensive,
precise, and reliable representation of the physical
environment to minimize the need for physical testing.
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ver the last decade, autonomous driving (AD)
has evolved into a thriving sector, which
begins to reshape the transportation sys-
tem in the aspects of safety and efficiency.!
With anincreasing number of autonomous vehicles (AVs)
operating on the road, safety and reliability undoubtedly
arise to be the most important concerns of the AV system
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development. Nonetheless, while the latest literature
indicates that AVs have the potential to significantly
improve vehicle safety,? this safety improvement cannot
be achieved until billions of kilometers of accumulative
testing under all-weather conditions has been taken by
a fleet of AVs. With existing physical testings by run-
ning a fleet of AVs and development infrastructures that
mainly exploit physical testing data, it will take decades
and tens of billions of dollars of investment to achieve the
safety goals for AVs.
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Fortunately, there is a simulation-based
method, dubbed digital twin, to signifi-
cantly accelerate the verification pro-
cess of AVs while effectively reducing
the development costs in a high-fidel-
ity virtual environment. Digital twin
requires a development paradigm shift.
Instead of relying heavily on physi-
cal testing data, the digital twin base
approach creates a virtual but precise
representation of the physical environ-
ment that can simulate a wide spec-
trum of weather and traffic conditions.
Testing AVs in virtual and controllable
environments could lead to orders of
magnitudes of improvement on devel-
opment efficiency in terms of time
and cost. For instance, to test how AVs
can handle heavy snow, we may have
to wait for months until snow arrives
and then collect physical testing data
on the road. With digital twin, we can
construct a road and generate a heavy
snow scenario, and consequently pro-
duce various high quality testing data
as needed. Encouragingly, our initial
digital twin system deployment that
combines both physical testing and
digital twin testing has led to signifi-
cant advantages in cost reduction and
efficiency improvement,4 which still
leaves tremendous headroom for fur-
ther improvement.

In summary, this article makes the
following contributions:

) We pinpoint the problems of
existing AD simulation methods
and how digital twin can effec-
tively address these problems.

) We first generalize three design
principles of the AD digital twin
system, drawing from our real-
world development experience.

) We present an architecture of
the AD digital twin system,
and the technical details of

the building blocks, including
ingestion of real-world mapping
data, sensor data simulation, as
well as synthesis of various traf-
fic participants.

AD SIMULATION

Simulation is not new to the automo-
bile industry, for example, vehicle dy-
namic simulators® have been widely
used in the development process, such
assteering system development. As for

Recently, high-fidelity simulators
based on game engines have been
developed for testing end-to-end AD
software, such as Carla® and LGLVS,’
which use computer graphic (CG) mod-
els, rendering algorithms and physical
models to produce a high-fidelity envi-
ronment including background scenes,
sensor data, and traffic participants.
Unfortunately, the gap between virtual
reality and actual reality has not been
closed by this effort for several reasons.

TESTING AVs IN VIRTUAL AND
CONTROLLABLE ENVIRONMENTS COULD
LEAD TO ORDERS OF MAGNITUDES
OF IMPROVEMENT ON DEVELOPMENT
EFFICIENCY IN TERMS OF TIME
AND COST.

AD software development, simulators
have been used heavily to test and ver-
ify the decision making module and
the path planning module under var-
ious conditions by feeding perception
data (for example, position and mov-
ing states of the ego vehicle and other
traffic participants).® This approach
is lightweight and scalable but lacks
a high-fidelity representation of the
world, hence leading to two problems:
1) simulation tests are not equiva-
lent to the physical tests that exercise
the end-to-end AV software pipeline,
which includes perception, localiza-
tion, decision making, path planning,
and vehicle control’; and 2) cases
related to physical conditions, such as
a wide spectrum weather and lighting
conditions, cannot be examined.
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First, these simulators only pro-
vide maps of virtual cities, in which
geographic and physical features of
the environment are different from
those of real-world road tests. With-
out a digital twin map that precisely
reconstructs the structural of the real-
world environment, AD functions
related to road geometry and traffic
rules (for example, exit or enter high-
way ramps) can hardly be assessed in
the simulators.

Second, the behaviors of moving
objects, such as vehicles and pedes-
trians, are hard-coded and control-
led by predetermined animations
embedded in the simulators, which
is not able to represent the wide spec-
trum of behaviors and interaction of
real traffics. Therefore, challenging
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scenarios, such as driving at intersec-
tions and aggressive driving behav-
iors(forexample,vehicle cut-ins),
cannot be faithfully evaluated.

Last, the fidelity of sensor data are
low in these simulators, and thus not
able to verify the functionalities and
reliability of the AV software under test.
For instance, when simulating lidar sen-
sors in these simulators, the generated
point clouds are approximated by depth
maps or ray casting on 3D objects, which
do not take reflection and diffusion into
account, and hence the distribution of
point clouds in simulation is far from
the physical counterpart.

In addition, different from the sim-
ulation for AV software development,
many recent works on vehicle hard-
ware development utilize the term
digital twin'® for physical simulation'!
based on physical modeling tools, such
as MATLAB and Modelica,'? to accel-
erate the development and integration
of vehicle hardware.

In our context, the digital twin para-
digm should be able to generate an inte-
gral, comprehensive, precise, and reliable
virtual environment that closely approx-
imate the physical environment, so as to
allow AD companies to quickly test and
verify their software. To begin with, this
demands a virtual but high-fidelity rep-
resentation of complex systems, includ-
ing but not limited to, high-fidelity 3D
environments through the integration
of real-world high-definition (HD) maps,
high-fidelity sensor modeling thatis able
to approximate the behaviors of real-
world sensors, and synthesis of traffic
participants that are able to interact with
sensors and with each other.

PRINCIPLES OF AD DIGITAL
TWIN DESIGN

We regard digital twin as a paradigm,
rather than a group of techniques, for

the AD technology development pro-
cess, which should include design prin-
ciples specific to AD applications, and a
group of building blocks to compose a
high-fidelity AD digital twin. Drawing
from our real-world deployment experi-
ences, inthissection, we summarize the
principles of AD digital twin paradigm:

) Principle 1: structural twin: The
digital twin should include pre-
cise 3D models of the environ-
ments, which render the same
geographical and geometrical
properties as the physical coun-
terparts. Based on the structural
twin, physical processes of AVs
can be faithfully modeled. For
example, with the geometric
information of a target environ-
ment, realistic lidar point clouds
and camera images could be
synthesized; with physical road
structures and geometric infor-
mation, navigation and control
algorithms can be faithfully
verified in the simulator.
Principle 2: physical twin: Phys-
ical processes of object move-
ments, collisions, and sensing
should be faithfully modeled in
the AV simulator. Physical twin
properties should correspond

to real-world objects properties
to support physical simulation.
For example, a vehicle dynamics
model requires a set of param-
eters to precisely emulate the
vehicle’s maneuvers; mass and

~

mesh of objects are necessary
for modeling collision; texture
and color of objects are for ren-
dering camera images and lidar
point clouds.

Principle 3:logical twin: Sim-
ulated traffic participants

(for example, vehicles and

~

pedestrians) should have a
behavior similar to their phys-
ical counterparts when inter-
acting with the AV and other
objects. This principle is critical
for testing the planning and
decision module of an AV, espe-
cially in scenes of heavy traffic.

ARCHITECTURAL DESIGN
OF AD DIGITAL TWIN

Overall architecture

To represent structural, physical, and
behavior information in a virtual
environment, we have developed our
digital twin system based on a game
engine,!® which provides graphics
and physics engines for 3D modeling,
image rendering, and physical simula-
tion. On top of the game engine, three
building blocks are designed to imple-
ment the digital twin properties: 1) the
3D digital twin map corresponds to
the structural twin, 2) sensor models
correspond to the physical twin, and
3) the traffic controller corresponds to
the logical twin.

The architecture of our AD digi-
tal twin is illustrated in Figure 1. To
preserve the structural information,
the digital twin map is constructed
offline based on the AV's HD maps.14
In the digital twin map, CG models
with physical properties (for exam-
ple, material, and color) are used to
represent 3D objects. The traffic con-
troller updates the states of traffic
participants (for example, cars and
trucks) in each simulation cycle,
including kinematic states, location,
and so on. To construct realistic traf-
ficflows, the digitaltwin systemuses
real datarecorded by AVs to compose
high-fidelity scenarios, a snippet of
recorded data containing events or
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AV behaviors we want to test, such
as turning left at an intersection. To
react to any updates in AD software,
the traffic controller uses kinematic
model-based intelligent agents to
update traffic states rather than sim-
ply replaying recorded data, which
could avoid unrealistic interactions,
such as a rear-end crash with accel-
eration into the AV. Based on the
CG model and the states of traffics,
the sensor model uses graphic ren-
dering techniques to emulate the
physical sensing process of cameras
and lidars, which generates sensor
frames in line with physical coun-
terparts in terms of data structure
and throughput for the AD software.
The AD software generates control

commands that drive the AV to move
according to the vehicle dynamic
model in the simulator.

Digital twin map design

The digital twin map maintains the
structural and physical properties of
the real scene. To be compatible with
rendering pipeline and physical simu-
lation, we use CG models to represent
the digital twin map.

Creating a large-scale CG-based
digital twin map is challenging, as
manually creating 3D CG models is
the prevalent practice in the modern
game development process, but the
cost of creating a large-scale 3D scene
is prohibitively high. Fortunately, AV
operations heavily rely on HD maps,

Digital Twin System

which are comprehensive and pre-
cise representations of the road envi-
ronments. Generally, a HD map con-
sists of two layers: 1) a traffic related
marking map, which is typically used
for autonomous navigation, contains
detailed positional and category in-
formation of traffic objects, such as
lanes, road boundaries, traffic signs,
and so on; and 2) a point cloud map
used for localization, containing the
precise 3D structures of the environ-
ment. Although the point cloud map
provides structural information, re-
constructing the mesh and texture
information from cloud point is still
an open problem.

We use a hybrid approach that
combines the merits of HD map and
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FIGURE 1. The architecture of the digital twin simulator for AD. The digital twin map reflects the structural properties of static environ-
ment. The sensor model generates high-fidelity sensor streams. The traffic controller reflects realistic behavior of moving objects. The
ego vehicle dynamic model emulates the behavior of an AV under control commands.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 31,2024 at 05:38:51 UTC from IEEE Xplore. éq:s,};ré(ia%r]_:sl?ag%lx.z

29



DIGITAL TWINS

CG models to construct the 3D twin
map. First, we integrate the HD maps,
from which objects’ geometrical and
structuralinformationare extracted.
Then we develop a domain-specific
object library containing CG model
of traffic facilities and markings. As
the number of types of traffic facil-
ities and markings is limited, the
cost of building and maintaining
the domain-specific object library
is manageable. Specifically, the
domain-specific object library con-
tains three kinds of CG models: 1)
traffic related markings, including
road surface, lane markings, cross-
walks, and so on; 2) traffic related
facilities, such as traffic signs and

traffic lights; and 3) other roadside
objects, such as poles, trees, walls,
and buildings.

We have developed and verified an
effective method to generate 3D twin
maps, as shown in Figure 2, which
consists of two stages: in the first
stage we construct the 3D road sur-
face models from the traffic marking
map mentioned earlier; in the second
stage, we map point clouds of various
objects above the road surface to the
corresponding 3D models from the
domain-specific object library.

In detail, we use the positions of
lanes and road boundaries from the
traffic marking map to fit planes
for representing road surfaces.

Mesh structure of the road surfa-
ces can then be obtained by the
traditional triangulation on the
plane method.'® Then textures and
materials of road surfaces and road
markings (for example, lanes and
crosswalks) are attached to the gen-
erated meshes.

We extract the category and pose
of objects above the road surface from
the point cloud maps, with which
corresponding 3D models from the
domain-specific object library can
be placed onto their locations on the
road surfaces. To establish correspon-
dence between point clouds and CG
models in the domain-specific object
library, we first apply a semantic

Traffic Related Markings

Road Surface Mesh

(T

[ A |

Road CG Model

Point Cloud
Above the Road

Registered CG Models
Above the Road

3D CG Model of
the Twin Environment

FIGURE 2. The process of generating 3D twin maps from traffic markings and point cloud maps.
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segmentation neural network on
the point cloud map to classify point
clouds. Then, we identify and remove
the point clouds of the road surface
using the progressive morpholog-
ical filter.'” After that, we apply the
Euclidean clustering algorithm of
point cloudlibrary (PCL)*® on the point
clouds to obtain the point clouds of
each instance. To register CG models
inthe digital twin map, we first gener-
ate the point clouds of the 3D CG mod-
els by sampling points on the mesh
of CG models using Open3D.! Then,
we apply the iterative closest point
algorithm to align the point clouds of
the CG model with the point cloud of
each instance,'® which completes the
registration of the CG models in the
3D twin map.

The 3D digital twin map is in the
standard format of 3D CG models,
which can be easily imported into
game engines. With 3D CG models,
red, green, blue (RGB) images can
be rendered by using the render-
ing pipeline provided in the game
engine.?? Furthermore, with the
mesh and material properties of the
CG model, lidar point clouds can be
generated with ray tracing-based ren-
dering techniques.?!

Simulating physical sensors
Cameras and lidars are the AV’s main
sensors for perception and localiza-
tion. As our simulation system is based
on CG models and rendering pipe-
line, synthesizing the RGB images is
straightforward. However, rendering
realistic lidar point clouds is challeng-
ing, since point clouds contain not only
structuralinformation but also materi-
al-related properties, that is, intensity.
High-fidelity AV simulators® uti-
lize depth maps or ray casting8 to syn-
thesize lidar point clouds. With a lidar

sensor’s location and internal config-
urations, pixels in 2D images can be
transformed to 3D point clouds. Ray
casting can model the point clouds
as the 3D locations where lidar arrays
projected from sensor nodes first hit
some objects’ surface mesh. Both of
the methods essentially model point
clouds as the result of intersections
between lidar rays and meshes of 3D
models, therefore can only produce
structural information.

We employ a material-aware approach
to synthesize point clouds, which ren-
dersintensities of point cloud based on
objects’ material information by ray
tracing.?! We have developed a render-
ing model parameterized by material’s
light-related properties to compute
the energy of reflection, diffusion,
and transmission of lidar rays given
the energy of the incoming ray on the
objects’ surface. Only the rays with
energy above a threshold continue
to transmit. Unlike ray casting that
stops ray transmission when hitting
a surface, ray tracing will recursively
apply the rendering model to trans-
mit lidar rays until the energy of rays
falls below the threshold. Intensities
can be derived based on the energy
of received rays. The effectiveness of
the proposed method is demonstrated
in Figure 3. It shows that the inten-
sity distribution of the point clouds

(a) (b)

synthesized by our method is very
close to that of a real object.

Synthesis of traffic participants

A typical AV generates gigabytes of
traffic flow data that contains time
series of moving object states and the
ego vehicle states (for example, pose,
type, contour, and velocity) per day.22
Our digital twin system can replay the
recorded data in the simulation envi-
ronment by simply placing an object
on the digital twin map at each time-
stamp. Poses of an object in the digital
twin map are obtained by transform-
ing the object’s pose from the real-
world coordinate to the game engine’s
coordinate. With recorded real data
and real scenarios that are extracted
from recorded data, the digital twin
system is able to closely examine the
AV’s behavior in real-world traffic
environments, which is invaluable for
identifying corner cases and debug-
ging AV systems.

However, simply replaying the
recorded traffic flows does not pro-
vide the necessary flexibility in mod-
eling the behaviors of traffic partici-
pants. In the case of a software update
to the AV, the AV's behavior will devi-
ate from that in the recordings, which
also impact the behaviors of other
traffic participants. For example, if
the AV changes its behavior from lane

(c)
FIGURE 3. The lidar point clouds of a bus. (a) Real data. (b) Synthesized by ray casting. (c)
Synthesized by our material-aware approach. Color represents intensity.
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keeping to lane changing after a soft-
ware update in the planning module,
the behaviors of other vehicles behind
the AV will also be affected by the AV's
algorithm change.

To address this problem, instead
of simply replaying the recordings,
we treat each traffic participant as an
intelligent agent in which we can apply
suitable kinematic models and behav-
ioral planning algorithms. Hence, each
traffic participant can dynamically react
to the changing environment. In our
design, dubbed intelligent replay, the
digital twin system reuses the routing
information from the recordings but
enables behavioral planning for each

traffic participant, allowing each traf-
fic participant to intelligently inter-
act with the AV under test, and thus
effectively stress-test the newly devel-
oped algorithms.

EVALUATION

We employ a controller-agent archi-
tecture to implement the digital twin
system in Figure 1, in which the digi-
tal twin map is built offline based on
the process mentioned earlier; the
traffic controller, the sensor model,
and the ego vehicle dynamic model
form a loop-closed pipeline with the
AD system. The traffic controller
drives the simulation process. In each

simulation cycle, the traffic controller
update traffic states according to realistic
traffic recordings and intelligent replay
mentioned earlier; then the sensor model
does the heavy lifting computation,
which rendersimages and lidar frames.
As digital twin maps are built from
HD maps based on the process men-
tioned earlier, the positional precision
of traffic markings and facilities is in
line with that of the HD maps, which is
with an accuracy of 10 cm. Regarding
compute resource allocation, we imple-
ment the digital twin system along with
AV software on AWS cloud servers, a
g5.4xlarge (16 cores vCPUs and a Nvidia
Al10 GPU) instance and a g4dn.4xlarge
(16 cores vCPUs and a Nvidia Tesla T4
GPU) instance.?® The computationally in-
tensive algorithms in the system, that is,
the rendering pipeline that synthesizes
the lidar and camera data and the AV’s
perception algorithm, is allocated to the
GPU. The rest of the modules are exe-
cuted using CPU resources. In our eval-
uation, the digital twin system renders
a 64-line lidar and two 1080p cameras.
The frame rate of rendering lidar is 10 Hz,
which is in line with the physical device.
The frame rate of cameras is 13 Hz on
the g4dn.4xlarge and 30 Hz on the
g5.4xlarge. The cost of physical tests
is about USS$180/hour®; the cost of the
cloud digital twin-based development
system is USS$S2.2/hour on g4dn.4xlarge
and US$3.2/hour on g5.4xlarge. In the
digital twin virtual environment, the
vehicle under simulation can run at the
same speed as a physical AV in the real
world. With the same operation budget,
the cumulative driving miles of an AV
in the virtual environment can be two
orders of magnitudes more efficient com-
pared to the physical counterpart. Further
optimization on the compute system can
further improve the cost and efficiency
advantages of the digital twin paradigm.
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estricted by physical testing

constraints, the current AV

development process is slow
and costly, and it has become the bot-
tleneck of the AV industry. In this
article, we introduce the AV digital
twin, a practical and effective para-
digm for efficiently developing AD
system. Unlike traditional AD simu-
lation methods, which mostly focus
on one aspect of AV development, the
digital twin paradigm generates an
integral, comprehensive, precise, and
reliable representation of the phys-
ical environment, thus delivering a
fast development iteration time at a
low cost.

Drawing from our real-world
deployment experiences, we sum-
marize three design principles of
AD digital twin (structural twin,
physical twin, and logical twin), and
present a digital twin system con-
structed based on the design prin-
ciples and delve into the technical
details of the core components of
the digital twin system, including
digital twin maps, physical sensor
simulation, and synthesis of traf-
fic participants. The digital twin
paradigm allows AV companies
to stress-test various AV software com-
ponents on different roads with a wide
spectrum of weather conditions, to
generate high-fidelity sensor data for
deep learning model training, and to
verify the reliability of the end-to-end
AV system when interacting with all
kinds of traffic participants.

Extensibility is the imminent next
step for the digital twin paradigm. By
incorporating different domain-spe-
cific simulators into the digital twin
system, we can greatly accelerate the
development process of different
domains within the intelligent trans-
portation ecosystem. To accelerate

the development of vehicle to every-
thing (V2X) system in the context of
infrastructure-vehicle cooperative
AD, we plan to incorporate V2X net-
work simulators to our digital twin
system. Similarly, to advance com-
pute system designs for AD, we plan
to incorporate design automation
tools and compute system simula-
tors to our digital twin system. With
the proposed paradigm, the digital
twin system will become the core
engine that drives the whole AV indus-
try forward.
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