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In this article, we share our real-world experiences of digital 

twin, a practical autonomous driving system development 

paradigm, which generates an integral, comprehensive, 

precise, and reliable representation of the physical 

environment to minimize the need for physical testing.  

Over the last decade, autonomous driving (AD) 
has evolved into a thriving sector, which 
begins to reshape the transportation sys-
tem in the aspects of safety and efficiency.1

With an increasing number of autonomous vehicles (AVs) 
operating on the road, safety and reliability undoubtedly 
arise to be the most important concerns of the AV system 

development. Nonetheless, while the latest literature 
indicates that AVs have the potential to significantly 
improve vehicle safety,2 this safety improvement cannot 
be achieved until billions of kilometers of accumulative 
testing under all-weather conditions has been taken by 
a fleet of AVs.3 With existing physical testings by run-
ning a fleet of AVs and development infrastructures that 
mainly exploit physical testing data, it will take decades 
and tens of billions of dollars of investment to achieve the 
safety goals for AVs.
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Fortunately, there is a simulation-based 
method, dubbed digital twin, to signifi-
cantly accelerate the verification pro-
cess of AVs while effectively reducing 
the development costs in a high-fidel-
ity virtual environment. Digital twin 
requires a development paradigm shift. 
Instead of relying heavily on physi-
cal testing data, the digital twin base 
approach creates a virtual but precise 
representation of the physical environ-
ment that can simulate a wide spec-
trum of weather and traffic conditions. 
Testing AVs in virtual and controllable 
environments could lead to orders of 
magnitudes of improvement on devel-
opment efficiency in terms of time 
and cost. For instance, to test how AVs 
can handle heavy snow, we may have 
to wait for months until snow arrives 
and then collect physical testing data 
on the road. With digital twin, we can 
construct a road and generate a heavy 
snow scenario, and consequently pro-
duce various high quality testing data 
as needed. Encouragingly, our initial 
digital twin system deployment that 
combines both physical testing and 
digital twin testing has led to signifi-
cant advantages in cost reduction and 
efficiency improvement,4 which still 
leaves tremendous headroom for fur-
ther improvement.

In summary, this article makes the 
following contributions:

›› We pinpoint the problems of 
existing AD simulation methods 
and how digital twin can effec-
tively address these problems.

›› We first generalize three design 
principles of the AD digital twin 
system, drawing from our real-
world development experience.

›› We present an architecture of 
the AD digital twin system, 
and the technical details of 

the building blocks, including 
ingestion of real-world mapping 
data, sensor data simulation, as 
well as synthesis of various traf-
fic participants.

AD SIMULATION
Simulation is not new to the automo-
bile industry, for example, vehicle dy
namic simulators5 have been widely 
used in the development process, such 
as steering system development. As for 

AD software development, simulators 
have been used heavily to test and ver-
ify the decision making module and 
the path planning module under var-
ious conditions by feeding perception 
data (for example, position and mov-
ing states of the ego vehicle and other 
traffic participants).6 This approach 
is lightweight and scalable but lacks 
a high-fidelity representation of the 
world, hence leading to two problems: 
1) simulation tests are not equiva-
lent to the physical tests that exercise 
the end-to-end AV software pipeline, 
which includes perception, localiza-
tion, decision making, path planning, 
and vehicle control7; and 2) cases 
related to physical conditions, such as 
a wide spectrum weather and lighting 
conditions, cannot be examined.

Recently, high-fidelity simulators  
based on game engines have been 
developed for testing end-to-end AD 
software, such as Carla8 and LGLVS,9 
which use computer graphic (CG) mod-
els, rendering algorithms and physical 
models to produce a high-fidelity envi-
ronment including background scenes, 
sensor data, and traffic participants. 
Unfortunately, the gap between virtual 
reality and actual reality has not been 
closed by this effort for several reasons.

First, these simulators only pro-
vide maps of virtual cities, in which 
geographic and physical features of 
the environment are different from 
those of real-world road tests. With-
out a digital twin map that precisely 
reconstructs the structural of the real-
world environment, AD functions 
related to road geometry and traffic 
rules (for example, exit or enter high-
way ramps) can hardly be assessed in  
the simulators.

Second, the behaviors of moving 
objects, such as vehicles and pedes-
trians, are hard-coded and control
led by predetermined animations 
embedded in the simulators, which 
is not able to represent the wide spec-
trum of behaviors and interaction of 
real traffics. Therefore, challenging 

TESTING AVs IN VIRTUAL AND 
CONTROLLABLE ENVIRONMENTS COULD 

LEAD TO ORDERS OF MAGNITUDES 
OF IMPROVEMENT ON DEVELOPMENT 

EFFICIENCY IN TERMS OF TIME 
AND COST.
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scenarios, such as driving at intersec-
tions and aggressive driving behav-
iors (for e x a mple, veh ic le c ut-i n s),  
cannot be faithfully evaluated.

Last, the fidelity of sensor data are 
low in these simulators, and thus not 
able to verify the functionalities and 
reliability of the AV software under test. 
For instance, when simulating lidar sen-
sors in these simulators, the generated 
point clouds are approximated by depth 
maps or ray casting on 3D objects, which 
do not take reflection and diffusion into 
account, and hence the distribution of 
point clouds in simulation is far from 
the physical counterpart.

In addition, different from the sim-
ulation for AV software development, 
many recent works on vehicle hard-
ware development utilize the term 
digital twin10 for physical simulation11 
based on physical modeling tools, such 
as MATLAB and Modelica,12 to accel-
erate the development and integration 
of vehicle hardware.

In our context, the digital twin para-
digm should be able to generate an inte-
gral, comprehensive, precise, and reliable 
virtual environment that closely approx-
imate the physical environment, so as to 
allow AD companies to quickly test and 
verify their software. To begin with, this 
demands a virtual but high-fidelity rep-
resentation of complex systems, includ-
ing but not limited to, high-fidelity 3D 
environments through the integration 
of real-world high-definition (HD) maps, 
high-fidelity sensor modeling that is able 
to approximate the behaviors of real-
world sensors, and synthesis of traffic 
participants that are able to interact with 
sensors and with each other.

PRINCIPLES OF AD DIGITAL 
TWIN DESIGN
We regard digital twin as a paradigm, 
rather than a group of techniques, for 

the AD technology development pro-
cess, which should include design prin-
ciples specific to AD applications, and a 
group of building blocks to compose a 
high-fidelity AD digital twin. Drawing 
from our real-world deployment experi-
ences, in this section, we summarize the 
principles of AD digital twin paradigm:

›› Principle 1: structural twin: The 
digital twin should include pre-
cise 3D models of the environ-
ments, which render the same 
geographical and geometrical 
properties as the physical coun-
terparts. Based on the structural 
twin, physical processes of AVs 
can be faithfully modeled. For 
example, with the geometric 
information of a target environ-
ment, realistic lidar point clouds 
and camera images could be 
synthesized; with physical road 
structures and geometric infor-
mation, navigation and control 
algorithms can be faithfully 
verified in the simulator.

›› Principle 2: physical twin: Phys-
ical processes of object move-
ments, collisions, and sensing 
should be faithfully modeled in 
the AV simulator. Physical twin 
properties should correspond 
to real-world objects properties 
to support physical simulation. 
For example, a vehicle dynamics 
model requires a set of param-
eters to precisely emulate the 
vehicle’s maneuvers; mass and 
mesh of objects are necessary 
for modeling collision; texture 
and color of objects are for ren-
dering camera images and lidar 
point clouds.

›› Principle 3: logical twin: Sim-
ulated traffic participants 
(for example, vehicles and 

pedestrians) should have a 
behavior similar to their phys-
ical counterparts when inter-
acting with the AV and other 
objects. This principle is critical 
for testing the planning and 
decision module of an AV, espe-
cially in scenes of heavy traffic.

ARCHITECTURAL DESIGN  
OF AD DIGITAL TWIN

Overall architecture
To represent structural, physical, and 
behavior information in a virtual 
environment, we have developed our 
digital twin system based on a game 
engine,13 which provides graphics 
and physics engines for 3D modeling, 
image rendering, and physical simula-
tion. On top of the game engine, three 
building blocks are designed to imple-
ment the digital twin properties: 1) the 
3D digital twin map corresponds to 
the structural twin, 2) sensor models 
correspond to the physical twin, and 
3) the traffic controller corresponds to 
the logical twin.

The architecture of our AD digi-
tal twin is illustrated in Figure 1. To 
preserve the structural information, 
the digital twin map is constructed 
off line based on the AV’s HD maps.14 
In the digital twin map, CG models 
with physical properties (for exam-
ple, material, and color) are used to 
represent 3D objects. The traffic con-
troller updates the states of traffic 
participants (for example, cars and 
trucks) in each simulation cycle, 
including kinematic states, location, 
and so on. To construct realistic traf-
fic f lows, the digital twin system uses 
real data recorded by AVs to compose 
high-fidelity scenarios, a snippet of 
recorded data containing events or 
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AV behaviors we want to test, such 
as turning left at an intersection. To 
react to any updates in AD software, 
the traffic controller uses kinematic 
model-based intelligent agents to 
update traffic states rather than sim-
ply replaying recorded data, which 
could avoid unrealistic interactions, 
such as a rear-end crash with accel-
eration into the AV. Based on the 
CG model and the states of traffics, 
the sensor model uses graphic ren-
dering techniques to emulate the 
physical sensing process of cameras 
and lidars, which generates sensor 
frames in line with physical coun-
terparts in terms of data structure 
and throughput for the AD software. 
The AD software generates control 

commands that drive the AV to move 
according to the vehicle dynamic 
model in the simulator.

Digital twin map design
The digital twin map maintains the 
structural and physical properties of 
the real scene. To be compatible with 
rendering pipeline and physical simu-
lation, we use CG models to represent 
the digital twin map.

Creating a large-scale CG-based 
digital twin map is challenging, as 
manually creating 3D CG models is 
the prevalent practice in the modern 
game development process, but the 
cost of creating a large-scale 3D scene 
is prohibitively high. Fortunately, AV 
operations heavily rely on HD maps, 

which are comprehensive and pre-
cise representations of the road envi-
ronments. Generally, a HD map con-
sists of two layers: 1) a traffic related 
marking map, which is typically used 
for autonomous navigation, contains 
detailed positional and category in
formation of traffic objects, such as 
lanes, road boundaries, traffic signs, 
and so on; and 2) a point cloud map 
used for localization, containing the 
precise 3D structures of the environ-
ment. Although the point cloud map 
provides structural information, re
constructing the mesh and texture 
information from cloud point is still 
an open problem.15

We use a hybrid approach that 
combines the merits of HD map and 

Digital Twin System

Digital Twin Map

Traffic Controller

Recorded
Traffic Data

Kinematic
Models

Intelligent
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FIGURE 1. The architecture of the digital twin simulator for AD. The digital twin map reflects the structural properties of static environ-
ment. The sensor model generates high-fidelity sensor streams. The traffic controller reflects realistic behavior of moving objects. The 
ego vehicle dynamic model emulates the behavior of an AV under control commands.
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CG models to construct the 3D twin 
map. First, we integrate the HD maps, 
from which objects’ geometrical and 
structural information are extracted. 
Then we develop a domain-specific 
object library containing CG model 
of traffic facilities and markings. As 
the number of types of traffic facil-
ities and markings is limited, the 
cost of building and maintaining 
the domain-specific object library 
i s  m a n a ge a ble.  Sp e c i f ic a l l y,  t he  
domain-specific object library con-
tains three kinds of CG models: 1) 
traffic related markings, including 
road surface, lane markings, cross-
walks, and so on; 2) traffic related 
facilities, such as traffic signs and 

traffic lights; and 3) other roadside 
objects, such as poles, trees, walls,  
and buildings.

We have developed and verified an 
effective method to generate 3D twin 
maps, as shown in Figure 2, which 
consists of two stages: in the first 
stage we construct the 3D road sur-
face models from the traffic marking 
map mentioned earlier; in the second 
stage, we map point clouds of various 
objects above the road surface to the 
corresponding 3D models from the 
domain-specific object library.

In detail, we use the positions of 
lanes and road boundaries from the 
traffic marking map to fit planes 
f o r  r e p r e s e n t i n g  r o a d  s u r f a c e s .  

Mesh structure of the road surfa
ces can then be obtained by the 
t rad it ion a l t r i a ng u l at ion on t he  
plane method.16 Then textures and 
materials of road surfaces and road 
markings (for example, lanes and 
crosswalks) are attached to the gen-
erated meshes.

We extract the category and pose 
of objects above the road surface from 
the point cloud maps, with which 
corresponding 3D models from the 
domain-specific object library can 
be placed onto their locations on the 
road surfaces. To establish correspon-
dence between point clouds and CG 
models in the domain-specific object 
l ibrar y, we f irst apply a semantic 

Traffic Related Markings Road Surface Mesh Road CG Model

Point Cloud
Above the Road

Registered CG Models
Above the Road

3D CG Model of
the Twin Environment

FIGURE 2. The process of generating 3D twin maps from traffic markings and point cloud maps. 

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 31,2024 at 05:38:51 UTC from IEEE Xplore.  Restrictions apply. 



	 S E P T E M B E R  2 0 2 2 � 31

segmentation neural net work on 
the point cloud map to classify point 
clouds. Then, we identify and remove 
the point clouds of the road surface 
using the progressive mor pholog-
ical filter.17 After that, we apply the 
Euclidean clustering algorithm of 
point cloud library (PCL)18 on the point 
clouds to obtain the point clouds of 
each instance. To register CG models 
in the digital twin map, we first gener-
ate the point clouds of the 3D CG mod-
els by sampling points on the mesh 
of CG models using Open3D.19 Then, 
we apply the iterative closest point 
algorithm to align the point clouds of 
the CG model with the point cloud of 
each instance,18 which completes the 
registration of the CG models in the  
3D twin map.

The 3D digital twin map is in the 
standard format of 3D CG models, 
which can be easily imported into 
game engines. With 3D CG models, 
red, green, blue (RGB) images can 
be rendered by using the render-
ing pipeline provided in the game 
engi ne.20 Fur t her more, w it h t he 
mesh and material properties of the 
CG model, lidar point clouds can be 
generated with ray tracing–based ren-
dering techniques.21

Simulating physical sensors
Cameras and lidars are the AV’s main 
sensors for perception and localiza-
tion. As our simulation system is based 
on CG models and rendering pipe-
line, synthesizing the RGB images is 
straightforward. However, rendering 
realistic lidar point clouds is challeng-
ing, since point clouds contain not only 
structural information but also materi-
al-related properties, that is, intensity.

High-fidelity AV simulators9 uti-
lize depth maps or ray casting8 to syn-
thesize lidar point clouds. With a lidar 

sensor’s location and internal config-
urations, pixels in 2D images can be 
transformed to 3D point clouds. Ray 
casting can model the point clouds 
as the 3D locations where lidar arrays 
projected from sensor nodes first hit 
some objects’ surface mesh. Both of 
the methods essentially model point 
clouds as the result of intersections 
between lidar rays and meshes of 3D 
models, therefore can only produce 
structural information.

We employ a material-aware approach 
to synthesize point clouds, which ren-
ders intensities of point cloud based on 
objects’ material information by ray 
tracing.21 We have developed a render-
ing model parameterized by material’s 
light-related properties to compute 
the energy of reflection, diffusion, 
and transmission of lidar rays given 
the energy of the incoming ray on the 
objects’ surface. Only the rays with 
energy above a threshold continue 
to transmit. Unlike ray casting that 
stops ray transmission when hitting 
a surface, ray tracing will recursively 
apply the rendering model to trans-
mit lidar rays until the energy of rays 
falls below the threshold. Intensities 
can be derived based on the energy 
of received rays. The effectiveness of 
the proposed method is demonstrated 
in Figure 3. It shows that the inten-
sity distribution of the point clouds 

synthesized by our method is very 
close to that of a real object.

Synthesis of traffic participants
A typical AV generates gigabytes of 
traffic flow data that contains time 
series of moving object states and the 
ego vehicle states (for example, pose, 
type, contour, and velocity) per day.22 
Our digital twin system can replay the 
recorded data in the simulation envi-
ronment by simply placing an object 
on the digital twin map at each time-
stamp. Poses of an object in the digital 
twin map are obtained by transform-
ing the object’s pose from the real-
world coordinate to the game engine’s 
coordinate. With recorded real data 
and real scenarios that are extracted 
from recorded data, the digital twin 
system is able to closely examine the 
AV’s behavior in real-world traffic 
environments, which is invaluable for 
identifying corner cases and debug-
ging AV systems.

However, simply replaying the 
recorded traffic flows does not pro-
vide the necessary flexibility in mod-
eling the behaviors of traffic partici-
pants. In the case of a software update 
to the AV, the AV’s behavior will devi-
ate from that in the recordings, which 
also impact the behaviors of other 
traffic participants. For example, if 
the AV changes its behavior from lane 

(a) (b) (c)

FIGURE 3. The lidar point clouds of a bus. (a) Real data. (b) Synthesized by ray casting. (c) 
Synthesized by our material-aware approach. Color represents intensity.
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keeping to lane changing after a soft-
ware update in the planning module, 
the behaviors of other vehicles behind 
the AV will also be affected by the AV’s 
algorithm change.

To address this problem, instead 
of simply replaying the recordings, 
we treat each traffic participant as an 
intelligent agent in which we can apply 
suitable kinematic models and behav-
ioral planning algorithms. Hence, each 
traffic participant can dynamically react 
to the changing environment. In our 
design, dubbed intelligent replay, the 
digital twin system reuses the routing 
information from the recordings but 
enables behavioral planning for each 

traffic participant, allowing each traf-
fic participant to intelligently inter-
act with the AV under test, and thus 
effectively stress-test the newly devel-
oped algorithms.

EVALUATION
We employ a controller-agent archi-
tecture to implement the digital twin 
system in Figure 1, in which the digi-
tal twin map is built offline based on 
the process mentioned earlier; the 
traffic controller, the sensor model, 
and the ego vehicle dynamic model 
form a loop-closed pipeline with the 
AD system. The traffic controller 
drives the simulation process. In each 

simulation cycle, the traffic controller 
update traffic states according to realistic 
traffic recordings and intelligent replay 
mentioned earlier; then the sensor model 
does the heavy lifting computation, 
which renders images and lidar frames.

As digital twin maps are built from 
HD maps based on the process men-
tioned earlier, the positional precision 
of traffic markings and facilities is in 
line with that of the HD maps, which is 
with an accuracy of 10 cm. Regarding 
compute resource allocation, we imple-
ment the digital twin system along with 
AV software on AWS cloud servers, a 
g5.4×large (16 cores vCPUs and a Nvidia 
A10 GPU) instance and a g4dn.4×large 
(16 cores vCPUs and a Nvidia Tesla T4 
GPU) instance.23 The computationally in
tensive algorithms in the system, that is, 
the rendering pipeline that synthesizes 
the lidar and camera data and the AV’s 
perception algorithm, is allocated to the 
GPU. The rest of the modules are exe-
cuted using CPU resources. In our eval-
uation, the digital twin system renders 
a 64-line lidar and two 1080p cameras. 
The frame rate of rendering lidar is 10 Hz,  
which is in line with the physical device. 
The frame rate of cameras is 13 Hz on 
the g4dn.4×large and 30 Hz on the 
g5.4×large. The cost of physical tests 
is about US$180/hour4; the cost of the 
cloud digital twin–based development 
system is US$2.2/hour on g4dn.4×large 
and US$3.2/hour on g5.4×large. In the 
digital twin virtual environment, the 
vehicle under simulation can run at the 
same speed as a physical AV in the real 
world. With the same operation budget, 
the cumulative driving miles of an AV 
in the virtual environment can be two 
orders of magnitudes more efficient com-
pared to the physical counterpart. Further 
optimization on the compute system can 
further improve the cost and efficiency 
advantages of the digital twin paradigm.
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Restricted by physical testing 
constraints, the current AV 
development process is slow 

and costly, and it has become the bot-
tleneck of the AV industry.3 In this 
article, we introduce the AV digital 
twin, a practical and effective para-
digm for efficiently developing AD 
system. Unlike traditional AD simu-
lation methods, which mostly focus 
on one aspect of AV development, the 
digital twin paradigm generates an 
integral, comprehensive, precise, and 
reliable representation of the phys-
ical environment, thus delivering a 
fast development iteration time at a 
low cost.

D r aw i n g f r om ou r r e a l-world 
deployment experiences, we sum-
marize three design principles of 
AD digita l t win (str uct ura l t win, 
physical twin, and logical twin), and 
present a digital twin system con-
structed based on the design prin-
ciples and delve into the technical 
details of the core components of 
the digital twin system, including 
digital twin maps, physical sensor 
simulation, and synthesis of traf-
f ic par ticipants. The digita l t win  
pa r a d ig m a l low s AV compa n ie s  
to stress-test various AV software com-
ponents on different roads with a wide 
spectrum of weather conditions, to 
generate high-fidelity sensor data for 
deep learning model training, and to 
verify the reliability of the end-to-end 
AV system when interacting with all 
kinds of traffic participants.

Extensibility is the imminent next 
step for the digital twin paradigm. By 
incorporating different domain-spe-
cific simulators into the digital twin 
system, we can greatly accelerate the  
development process of different 
domains within the intelligent trans-
portation ecosystem. To accelerate 

the development of vehicle to every-
thing (V2X) system in the context of 
infrastructure-vehicle cooperative 
AD, we plan to incorporate V2X net-
work simulators to our digital twin 
system. Similarly, to advance com-
pute system designs for AD, we plan 
to incorporate design automation 
tools and compute system simula-
tors to our digital twin system. With  
the proposed paradigm, the digital 
twin system will become the core 
engine that drives the whole AV indus-
try forward. 
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